Science.gov

Sample records for inhalation exposure components

  1. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter

    PubMed Central

    Morakinyo, Oyewale Mayowa; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley; Hunter, Raymond Paul

    2016-01-01

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality. PMID:27314370

  2. Inhalation exposure of animals.

    PubMed Central

    Phalen, R F

    1976-01-01

    Relative advantages and disadvantages and important design criteria for various exposure methods are presented. Five types of exposures are discussed: whole-body chambers, head-only exposures, nose or mouth-only methods, lung-only exposures, and partial-lung exposures. Design considerations covered include: air cleaning and conditioning; construction materials; losses of exposure materials; evenness of exposure; sampling biases; animal observation and care; noise and vibration control, safe exhausts, chamber loading, reliability, pressure fluctuations; neck seals, masks, animal restraint methods; and animal comfort. Ethical considerations in use of animals in inhalation experiments are also discussed. PMID:1017420

  3. Inhalation exposure methodology.

    PubMed Central

    Phalen, R F; Mannix, R C; Drew, R T

    1984-01-01

    Modern man is being confronted with an ever-increasing inventory of potentially toxic airborne substances. Exposures to these atmospheric contaminants occur in residential and commercial settings, as well as in the workplace. In order to study the toxicity of such materials, a special technology relating to inhalation exposure systems has evolved. The purpose of this paper is to provide a description of the techniques which are used in exposing laboratory subjects to airborne particles and gases. The various modes of inhalation exposure (whole body, head only, nose or mouth only, etc.) are described at length, including the advantages and disadvantages inherent to each mode. Numerous literature citations are included for further reading. Among the topics briefly discussed are the selection of appropriate animal species for toxicological testing, and the types of inhalation studies performed (acute, chronic, etc.). PMID:6383799

  4. INHALATION EXPOSURE-RESPONSE METHODOLOGY

    EPA Science Inventory

    The Inhalation Exposure-Response Analysis Methodology Document is expected to provide guidance on the development of the basic toxicological foundations for deriving reference values for human health effects, focusing on the hazard identification and dose-response aspects of the ...

  5. Avian inhalation exposure chamber

    DOEpatents

    Briant, J.K.; Driver, C.J.

    1992-05-05

    An exposure system is designed for delivering gaseous material ranging in particle size from 0.4 micrometers to 20.0 micrometers uniformly to the heads of experimental animals, primarily birds. The system includes a vertical outer cylinder and a central chimney with animal holding bottles connected to exposure ports on the vertical outer cylinder. 2 figs.

  6. Avian inhalation exposure chamber

    DOEpatents

    Briant, James K.; Driver, Crystal J.

    1992-01-01

    An exposure system for delivering gaseous material ranging in particle size from 0.4 micrometers to 20.0 micrometers uniformly to the heads of experimental animals, primarily birds. The system includes a vertical outer cylinder and a central chimney with animal holding bottles connected to exposure ports on the vertical outer cylinder.

  7. INHALATION EXPOSURE-RESPONSE ASSESSMENTS FOR FIVE CHEMICALS

    EPA Science Inventory

    Inhalation exposure-response assessments for five chemicals (acrolein, ethylene oxide, hexachlorocyclopentadiene, hydrogen sulfide, and phosgene) for less-than-lifetime durations are being developed to inform the development of the Inhalation Exposure-Response Analysis Methodolog...

  8. ASSESSMENT OF DIOXIN INHALATION EXPOSURES AND ...

    EPA Pesticide Factsheets

    In the days following the September 11, 2001, terrorist attack on New York City's World Trade Center (WTC) towers, EPA, other federal agencies, and New York City and New York State public health and environmental authorities initiated numerous air monitoring activities to better understand the ongoing impact of emissions from that disaster. Using these data, EPA conducted an inhalation exposure and human health risk assessment. The overall evaluation focused on particulate matter, metals, polychlorinated biphenyls, dioxin-like compounds, asbestos, and volatile organic compounds. This paper reports on the analysis of dioxin-like compounds only.Lorber, M. 2003. Assessment of Dioxin Inhalation Exposures and Potential Health Impacts Following the Collapse of the World Trade Center Towers. Organohalogen Compounds 63 (no page numbers). journal article

  9. Variations in exposure to inhalable wood dust in the Danish furniture industry. Within- and between-worker and factory components estimated from passive dust sampling.

    PubMed

    Vinzents, P S; Schlünssen, V; Feveile, H; Schaumburg, I

    2001-10-01

    Variability of exposure to wood dust at large factories in the Danish furniture industry was studied. Three repeated exposure measurements of 292 workers at 38 factories were included in the study. The measurements were carried out by use of personal passive dust monitors. The components of variance were estimated by means of a random effects ANOVA model. The ratio of within- to between-worker variance was 1.07. Based on this result, and three repeated exposure measurements, the observed relation between health outcome and exposure will be attenuated to 74% of the true value. Grouping by factory showed very poor exposure contrast, as the contrast in exposure level among factories was as low as 0.15.

  10. 40 CFR 79.61 - Vehicle emissions inhalation exposure guideline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., densities and shapes, and to predict where in the respiratory tract such particles may be deposited. It... to particles which are capable of being inhaled and may be deposited anywhere within the respiratory...) Principles and design criteria of inhalation exposure systems. Proper conduct of inhalation toxicity...

  11. Assessing inhalation exposure from airborne soil contaminants

    SciTech Connect

    Shinn, J.H.

    1998-04-01

    A method of estimation of inhalation exposure to airborne soil contaminants is presented. this method is derived from studies of airborne soil particles with radioactive tags. The concentration of contaminants in air (g/m{sup 3}) can be derived from the product of M, the suspended respirable dust mass concentration (g/m{sup 3}), S, the concentration of contaminant in the soil (g/g), and E{sub f}, an enhancement factor. Typical measurement methods and values of M, and E{sub f} are given along with highlights of experiences with this method.

  12. Conceptual model for assessment of inhalation exposure: defining modifying factors.

    PubMed

    Tielemans, Erik; Schneider, Thomas; Goede, Henk; Tischer, Martin; Warren, Nick; Kromhout, Hans; Van Tongeren, Martie; Van Hemmen, Joop; Cherrie, John W

    2008-10-01

    The present paper proposes a source-receptor model to schematically describe inhalation exposure to help understand the complex processes leading to inhalation of hazardous substances. The model considers a stepwise transfer of a contaminant from the source to the receptor. The conceptual model is constructed using three components, i.e. (i) the source, (ii) various transmission compartments and (iii) the receptor, and describes the contaminant's emission and its pattern of transport. Based on this conceptual model, a list of nine mutually independent principal modifying factors (MFs) is proposed: activity emission potential, substance emission potential, localized control, separation, segregation, dilution, worker behavior, surface contamination and respiratory protection. These MFs describe the exposure process at a high level of abstraction so that the model can be generically applicable. A list of exposure determinants underlying each of these principal MFs is proposed to describe the exposure process at a more detailed level. The presented conceptual model is developed in conjunction with an activity taxonomy as described in a separate paper. The proposed conceptual model and MFs should be seen as 'building blocks' for development of higher tier exposure models.

  13. INHALATION TOXICOLOGY METHODS: The Generation and Characterization of Exposure Atmospheres and Inhalational Exposures

    PubMed Central

    Chen, Lung-Chi; Lippmann, Morton

    2015-01-01

    In this review, we outline the need for laboratory-based inhalation toxicology studies, the historical background on adverse health effects of airborne toxicants, and the benefits of advance planning for the building of analytic options into the study design to maximize the scientific gains to be derived from the investments in the study. We then discuss methods for: 1) the generation and characterization of exposure atmospheres for inhalation exposures in humans and laboratory animals; 2) their delivery and distribution into and within whole-body exposure chambers, head-only exposure chambers, face-masks, and mouthpieces or nasal catheters; 3) options for on-line functional assays during and between exposures; and 4) options for serial non-invasive assays of response. In doing so, we go beyond exposures to single agents and simple mixtures, and include methods for evaluating biological responses to complex environmental mixtures. We also emphasize that great care should be taken in the design and execution of such studies so that the scientific returns can be maximized both initially, and in follow-up utilization of archived samples of the exposure atmospheres, excreta, and tissues collected for histology. PMID:25645246

  14. A novel sulfur mustard (HD) vapor inhalation exposure system for accurate inhaled dose delivery

    PubMed Central

    Perry, Mark R.; Benson, Eric M.; Kohne, Jonathon W.; Plahovinsak, Jennifer L.; Babin, Michael C.; Platoff, Gennady E.; Yeung, David T.

    2014-01-01

    Introduction A custom designed HD exposure system was used to deliver controlled inhaled doses to an animal model through an endotracheal tube. Methods Target HD vapor challenges were generated by a temperature controlled bubbler/aerosol trap, while concentration was monitored near real-time by gas chromatography. Animal breathing parameters were monitored real-time by an in-line pneumotach, pressure transducer, and Buxco pulmonary analysis computer/software. For each exposure, the challenge atmosphere was allowed to stabilize at the desired concentration while the anesthetized animal was provided humidity controlled clean air. Once the target concentration was achieved and stable, a portion of the challenge atmosphere was drawn past the endotracheal tube, where the animal inhaled the exposure ad libitum. During the exposure, HD vapor concentration and animal weight were used to calculate the needed inhaled volume to achieve the target inhaled dose (μg/kg). The exposures were halted when the inhaled volume was achieved. Results The exposure system successfully controlled HD concentrations from 22.2 to 278 mg/m3 and accurately delivered inhaled doses between 49.3 and 1120 μg/kg with actual administered doses being within 4% of the target level. Discussion This exposure system administers specific HD inhaled doses to evaluate physiological effects and for evaluation of potential medical countermeasure treatments. PMID:25291290

  15. Incinerator air emissions: Inhalation exposure perspectives

    SciTech Connect

    Rogers, H.W.

    1995-12-01

    Incineration is often proposed as the treatment of choice for processing diverse wastes, particularly hazardous wastes. Where such treatment is proposed, people are often fearful that it will adversely affect their health. Unfortunately, information presented to the public about incinerators often does not include any criteria or benchmarks for evaluating such facilities. This article describes a review of air emission data from regulatory trial burns in a large prototype incinerator, operated at design capacity by the US Army to destroy chemical warfare materials. It uses several sets of criteria to gauge the threat that these emissions pose to public health. Incinerator air emission levels are evaluated with respect to various toxicity screening levels and ambient air levels of the same pollutants. Also, emission levels of chlorinated dioxins and furans are compared with emission levels of two common combustion sources. Such comparisons can add to a community`s understanding of health risks associated with an incinerator. This article focuses only on the air exposure/inhalation pathway as related to human health. It does not address other potential human exposure pathways or the possible effects of emissions on the local ecology, both of which should also be examined during a complete analysis of any major new facility.

  16. Nicotine and Carbon Monoxide Exposure from Inhalation of Cigarillo Smoke

    PubMed Central

    Koszowski, Bartosz; Rosenberry, Zachary R.; Kanu, Alieu; Viray, Lauren C.; Potts, Jennifer L.; Pickworth, Wallace B.

    2015-01-01

    Background There has been an increase in the use of cigarillos in the US. People who smoke cigarillos typically also regularly smoke cigarettes (dual users). Methods We compared puffing topography, biomarkers of acute exposure [exhaled carbon monoxide (COex) and plasma nicotine] and physiologic effects from usual brand cigarette and Black & Mild cigarillo smoking in dual users (N=23) in two laboratory sessions. Results Participants (21 men) smoked an average of 17.5 cigarettes/day. Cigarillo consumption varied widely from as few as 1/week to daily. Participants were highly nicotine dependent (average FTND score: 6.3). There were statistically significant differences in smoking behavior between cigarette and cigarillo smoking in time to smoke, number of puffs, and total puff volume (all P<0.001). Average puff duration, interpuff interval average puff volume, and puff velocity did not differ between cigarettes and cigarillos. Nicotine boost was similar after both cigarettes and cigarillos. COex boost was significantly greater after cigarillo smoking compared to cigarette smoking (P<0.001). Conclusions The smoking pattern and exposure profile indicate that dual users inhale cigarillo smoke just as they inhale cigarette smoke thereby exposing themselves to considerable amounts of nicotine and other components of tobacco smoke. COex exposure results imply that cigarillo smoking may be associated with higher exposure to smoke-delivered volatile components of mainstream cigarillo smoke including carcinogens when compared to cigarettes. Impact The findings that cigarillos and cigarettes are smoked similarly in dual users are relevant to health and regulatory considerations on cigar products. PMID:26459155

  17. Respiratory disorders associated with heavy inhalation exposure to dolomite dust

    PubMed Central

    Neghab, M; Abedini, R; Soltanzadeh, A; Iloon Kashkooli, A; Ghayoomi, S M A

    2012-01-01

    Background Although dolomite is classified as a relatively non-toxic, nuisance dust, little information exists as to its potential to produce respiratory disorders following occupational exposure. The purpose of this study was, therefore, to evaluate the possible effects, if any, of heavy inhalation exposure to this chemical on the prevalence of respiratory symptoms, functional impairments and radiographic abnormalities of the lungs. Methods The study population consisted of a group of 39 exposed subjects engaged in digging and excavating activities that were in operation for building a local dam, as well as 40 healthy non-exposed employees that served as the referent group. Subjects were interviewed and respiratory symptoms questionnaires, as suggested by the American Thoracic Society (ATS), were completed for them. Thereafter, they underwent chest X-ray and lung function tests. Additionally, using routine gravimetric techniques, personal dust monitoring for airborne inhalable and respirable dust was carried out at different dusty work sites. Finally to determine the chemical composition of the dust, it was analyzed by X-ray fluorescence (XRF) technique. Results XRF revealed that the major component (50.52%) of the dust was calcium magnesium carbonate, dolomite. Additionally, levels of exposure to inhalable and respirable dust were estimated to be 51.7±24.31 and 23.0±18.11mg/m3, respectively. Statistical analysis of the data showed that symptoms such as regular cough, phlegm, wheezing, productive cough and shortness of breath were significantly (p<0.05) more prevalent among exposed workers. Similarly, the ratio of FEV1/FVC in exposed subjects was significantly different from that of non-exposed individuals. In contrast, no significant abnormalities were observed in the chest radiographs of both groups. Conclusions In conclusion, while these data cast doubt on the notion that dolomite is a harmless chemical, they provide evidence in favour of the proposition that

  18. Pathways of inhalation exposure to manganese in children ...

    EPA Pesticide Factsheets

    Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation pathway model to ambient air Mn was hypothesized. Data for model evaluation were obtained from participants in the Communities Actively Researching Exposure Study (CARES). These data were collected in 2009 and included levels of Mn in residential soil and dust, levels of Mn in children's hair, information on the amount of time the child spent outside, heat and air conditioning in the home and level of parent education. Hair Mn concentration was the primary endogenous variable used to assess the theoretical inhalation exposure pathways. The model indicated that household dust Mn was a significant contributor to child hair Mn (0.37). Annual ambient air Mn concentration (0.26), time children spent outside (0.24) and soil Mn (0.24) significantly contributed to the amount of Mn in household dust. These results provide a potential framework for understanding the inhalation exposure pathway for children exposed to ambient air Mn who live in proximity to an industrial emission source. The purpose of this study was to use a structural equations modeling approach combined with exposure estimates derived from air-dispersion modeling to assess potential inhalation exposure pathways for children to a

  19. Exposure Assessment Tools by Routes - Inhalation

    EPA Pesticide Factsheets

    EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases

  20. Inhalation a significant exposure route for chlorinated organophosphate flame retardants.

    PubMed

    Schreder, Erika D; Uding, Nancy; La Guardia, Mark J

    2016-05-01

    Chlorinated organophosphate flame retardants (ClOPFRs) are widely used as additive flame retardants in consumer products including furniture, children's products, building materials, and textiles. Tests of indoor media in homes, offices, and other environments have shown these compounds are released from products and have become ubiquitous indoor pollutants. In house dust samples from Washington State, U.S.A., ClOPFRs were the flame retardants detected in the highest concentrations. Two ClOPFRs, tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP) and tris(2-chloroethyl)phosphate (TCEP), have been designated as carcinogens, and there is growing concern about the toxicity of the homologue tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP). In response to concerns about exposure to these compounds, the European Union and a number of U.S. states have taken regulatory action to restrict their use in certain product categories. To better characterize exposure to ClOPFRs, inhalation exposure was assessed using active personal air samplers in Washington State with both respirable and inhalable particulate fractions collected to assess the likelihood particles penetrate deep into the lungs. Concentrations of ∑ClOPFRs (respirable and inhalable) ranged from 97.1 to 1190 ng m(-3) (mean 426 ng m(-3)), with TCPP detected at the highest concentrations. In general, higher levels were detected in the inhalable particulate fraction. Total intake of ClOPFRs via the inhalation exposure route was estimated to exceed intake via dust ingestion, indicating that inhalation is an important route that should be taken into consideration in assessments of these compounds.

  1. INDOOR AIR QUALITY AND INHALATION EXPOSURE - SIMULATION TOOL KIT

    EPA Science Inventory

    A Microsoft Windows-based indoor air quality (IAQ) simulation software package is presented. Named Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short, this package complements and supplements existing IAQ simulation programs and is desi...

  2. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements exposure to welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  3. CONTROLLED, SHORT-TERM DERMAL AND INHALATION EXPOSURE TO CHLOROFORM

    EPA Science Inventory

    Studies were conducted to determine the uptake by humans of chloroform as a result of controlled short-term dermal and inhalation exposures. The approach used continuous real-time breath analysis to determine exhaled-breath profiles and evaluate chloroform kinetics in the huma...

  4. Computer controlled multi-walled carbon nanotube inhalation exposure system.

    PubMed

    McKinney, Walter; Chen, Bean; Frazer, Dave

    2009-10-01

    Inhalation exposure systems are necessary tools for determining the dose-response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this project was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of airborne multi-walled carbon nanotubes (MWCNT). An aerosol generator was developed which was capable of suspending a respirable fraction of multi-walled carbon nanotubes from bulk material. The output of the generator was used to expose small laboratory animals to constant aerosol concentrations up to 12 mg/m(3). Particle distribution and morphology of the MWCNT aerosol delivered to the exposure chamber were measured and compared to samples previously taken from air inside a facility that produces MWCNT. The comparison showed the MWCNT generator was producing particles similar in size and shape to those found in a work environment. The inhalation exposure system combined air flow controllers, particle monitors, data acquisition devices, and custom software with automatic feedback control to achieve constant and repeatable exposure chamber temperature, relative humidity, pressure, aerosol concentration, and particle size distribution. The automatic control algorithm was capable of maintaining the mean aerosol concentration to within 0.1 mg/m(3) of the selected target value, and it could reach 95% of the target value in less than 10 minutes during the start-up of an inhalation exposure. One of the major advantages of this system was that once the exposure parameters were selected, a minimum amount of operator intervention was required over the exposure period.

  5. Post-accident inhalation exposure and experience with plutonium

    SciTech Connect

    Shinn, J

    1998-06-01

    This paper addresses the issue of inhalation exposure immediately afterward and for a long time following a nuclear accident. For the cases where either a nuclear weapon burns or explodes prior to nuclear fission, or at locations close to a nuclear reactor accident containing fission products, a major concern is the inhalation of aerosolized plutonium (Pu) particles producing alpha-radiation. We have conducted field studies of Pu- contaminated real and simulated accident sites at Bikini, Johnston Atoll, Tonopah (Nevada), Palomares (Spain), Chernobyl, and Maralinga (Australia).

  6. An interesting case of characteristic methanol toxicity through inhalational exposure

    PubMed Central

    Kumar, Pratyush; Gogia, Atul; Kakar, Atul; Miglani, Pratyush

    2015-01-01

    Methanol poisoning is rare but carries high risk of morbidity and mortality. Most of the cases witnessed in emergency are due to consumption of adulterated alcohol. Here we are reporting a very rare case of methanol poisoning through inhalational exposure leading to putamen necrosis and decreased visual acuity. He had dyselectrolytemia and metabolic acidosis which was successfully managed with early intervention. Its importance lies in the fact that inhalational methanol poisoning is an entity which if picked up early can prevent long-term neurological sequelae. PMID:26285665

  7. INHALATION EXPOSURE AND INTAKE DOSE MODEL IMPROVEMENTS

    EPA Science Inventory

    This presentation highlights recent human exposure model improvements and products developed by the EMRB in coordination with scientists in the OAQPS and provides insight into how these products are used by the OAQPS in its regulatory process. Besides providing a status report of...

  8. The validity of the EASE expert system for inhalation exposures.

    PubMed

    Cherrie, John W; Hughson, Graeme W

    2005-03-01

    Estimation and Assessment of Substance Exposure (EASE) is a computerized expert system developed by the UK Health and Safety Executive to facilitate exposure assessments in the absence of exposure measurements. The system uses a number of rules to predict a range of likely exposures or an 'end-point' for a given work situation. The purpose of this study was to identify a number of inhalation exposure measurements covering a wide range of end-points in the EASE system to compare with the predicted exposures. Occupational exposure data sets were identified from previous research projects or from consultancy work. Available information for each set of measurements was retrieved from archive storage and reviewed to ensure that it was adequate to enable EASE (version 2) predictions to be obtained. Exposure measurements and other relevant contextual data were abstracted and entered into a computer spreadsheet. EASE predictions were then obtained for each task or job and entered into the spreadsheet. In addition, we generated a random exposure range for each data set for comparison with the EASE predictions. Finally, we produced exposure assessments for a subset of the data using a structured subjective assessment method. We were able to identify approximately 4000 inhalation exposure measurements covering 52 different scenarios and 28 EASE end-points. The data included measurements of solvent vapours, non-fibrous dusts and fibres. In 62% of the end-points the EASE predictions were generally greater than the exposure measurements and in 30% of the end-points the EASE estimates were comparable with the measurements. The random allocation of exposure ranges was, as expected, less reliable than EASE, although there were still about one-third of the cases where the randomly generated exposure ranges generally agreed with the measurements. The structured subjective assessments undertaken by a human expert produced exposure estimates in better agreement with the measurements

  9. Characterization and assessment of dermal and inhalable nickel exposures in nickel production and primary user industries.

    PubMed

    Hughson, G W; Galea, K S; Heim, K E

    2010-01-01

    The aim of this study was to measure the levels of nickel in the skin contaminant layer of workers involved in specific processes and tasks within the primary nickel production and primary nickel user industries. Dermal exposure samples were collected using moist wipes to recover surface contamination from defined areas of skin. These were analysed for soluble and insoluble nickel species. Personal samples of inhalable dust were also collected to determine the corresponding inhalable nickel exposures. The air samples were analysed for total inhalable dust and then for soluble, sulfidic, metallic, and oxidic nickel species. The workplace surveys were carried out in five different workplaces, including three nickel refineries, a stainless steel plant, and a powder metallurgy plant, all of which were located in Europe. Nickel refinery workers involved with electrolytic nickel recovery processes had soluble dermal nickel exposure of 0.34 microg cm(-2) [geometric mean (GM)] to the hands and forearms. The GM of soluble dermal nickel exposure for workers involved in packing nickel salts (nickel chloride hexahydrate, nickel sulphate hexahydrate, and nickel hydroxycarbonate) was 0.61 microg cm(-2). Refinery workers involved in packing nickel metal powders and end-user powder operatives in magnet production had the highest dermal exposure (GM = 2.59 microg cm(-2) soluble nickel). The hands, forearms, face, and neck of these workers all received greater dermal nickel exposure compared with the other jobs included in this study. The soluble nickel dermal exposures for stainless steel production workers were at or slightly above the limit of detection (0.02 microg cm(-2) soluble nickel). The highest inhalable nickel concentrations were observed for the workers involved in nickel powder packing (GM = 0.77 mg m(-3)), although the soluble component comprised only 2% of the total nickel content. The highest airborne soluble nickel exposures were associated with refineries using

  10. Inhalation exposure to haloacetic acids and haloketones during showering.

    PubMed

    Xu, Xu; Weisel, Clifford P

    2003-02-01

    Inhalation exposure to haloacetic acids (HAAs) and haloketones (HKs) in contaminated drinking water occurs during showering. The size distribution of the aerosols generated by a shower was determined using an eight size-range particle counter, which measured particles from 0.1 to >2 microm. An exponential increase in aerosol numbers was observed while the shower water was on, while the aerosol numbers declined exponentially once the water was turned off. The half-lives of the shower aerosols were longer than 5 min after the shower water was turned off. Although the majority of the shower-generated aerosols were smaller than 0.3 microm, these aerosols only contributed approximately 2% to the measured total aerosol mass. The total shower-generated particulate HAA and HK concentrations collected on an open face filter were approximately 6.3 and 0.13 microg/m3, respectively, for shower water HAA and HK concentrations of 250 and 25 microg/L, respectively. The vapor-phase HK concentrations were 25-50 microg/m3. The estimate of the dose from inhalation exposure of disinfection byproducts (DBPs) in the particulate phase indicate that they represent less than 1% of the ingestion dose, so inhalation is not expected to be an important exposure route to nonvolatile water contaminants or the portion of volatile DBPs that stay in the particulate phase, unless the lung is the target organ. The vapor-phase levels of volatile HKs, though, are significantly higher and can contribute greater than 10% of the ingestion dose during a shower. Thus, risk assessment to the these DBPs needs to consider the inhalation route.

  11. Beryllium contamination and exposure monitoring in an inhalation laboratory setting.

    PubMed

    Muller, Caroline; Audusseau, Séverine; Salehi, Fariba; Truchon, Ginette; Chevalier, Gaston; Mazer, Bruce; Kennedy, Greg; Zayed, Joseph

    2010-02-01

    Beryllium (Be) is used in several forms: pure metal, beryllium oxide, and as an alloy with copper, aluminum, or nickel. Beryllium oxide, beryllium metal, and beryllium alloys are the main forms present in the workplace, with inhalation being the primary route of exposure. Cases of workers with sensitization or chronic beryllium disease challenge the scientific community for a better understanding of Be toxicity. Therefore, a toxicological inhalation study using a murine model was performed in our laboratory in order to identify the toxic effects related to different particle sizes and chemical forms of Be. This article attempts to provide information regarding the relative effectiveness of the environmental monitoring and exposure protection program that was enacted to protect staff (students and researchers) in this controlled animal beryllium inhalation exposure experiment. This includes specific attention to particle migration control through intensive housekeeping and systematic airborne and surface monitoring. Results show that the protective measures applied during this research have been effective. The highest airborne Be concentration in the laboratory was less than one-tenth of the Quebec OEL (occupational exposure limit) of 0.15 microg/m(3). Considering the protection factor of 10(3) of the powered air-purifying respirator used in this research, the average exposure level would be 0.03 x 10(- 4) microg/m(3), which is extremely low. Moreover, with the exception of one value, all average Be concentrations on surfaces were below the Quebec Standard guideline level of 3 microg/100 cm(2) for Be contamination. Finally, all beryllium lymphocyte proliferation tests for the staff were not higher than controls.

  12. Modelling of occupational exposure to inhalable nickel compounds.

    PubMed

    Kendzia, Benjamin; Pesch, Beate; Koppisch, Dorothea; Van Gelder, Rainer; Pitzke, Katrin; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Siemiatycki, Jack; Lavoué, Jerome; Jöckel, Karl-Heinz; Stamm, Roger; Brüning, Thomas

    2017-01-18

    The aim of this study was to estimate average occupational exposure to inhalable nickel (Ni) using the German exposure database MEGA. This database contains 8052 personal measurements of Ni collected between 1990 and 2009 in adjunct with information on the measurement and workplace conditions. The median of all Ni concentrations was 9 μg/m(3) and the 95th percentile was 460 μg/m(3). We predicted geometric means (GMs) for welders and other occupations centered to 1999. Exposure to Ni in welders is strongly influenced by the welding process applied and the Ni content of the used welding materials. Welding with consumable electrodes of high Ni content (>30%) was associated with 10-fold higher concentrations compared with those with a low content (<5%). The highest exposure levels (GMs ≥20 μg/m(3)) were observed in gas metal and shielded metal arc welders using welding materials with high Ni content, in metal sprayers, grinders and forging-press operators, and in the manufacture of batteries and accumulators. The exposure profiles are useful for exposure assessment in epidemiologic studies as well as in industrial hygiene. Therefore, we recommend to collect additional exposure-specific information in addition to the job title in community-based studies when estimating the health risks of Ni exposure.Journal of Exposure Science and Environmental Epidemiology advance online publication, 18 January 2017; doi:10.1038/jes.2016.80.

  13. Inhalation Exposure Input Parameters for the Biosphere Model

    SciTech Connect

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  14. EXPOSURE TO ACROLEIN BY INHALATION CAUSES PLATELET ACTIVATION

    PubMed Central

    Sithu, Srinivas D; Srivastava, Sanjay; Siddiqui, Maqsood A; Vladykovskaya, Elena; Riggs, Daniel W; Conklin, Daniel J; Haberzettl, Petra; O’Toole, Timothy E; Bhatnagar, Aruni; D’Souza, Stanley E

    2010-01-01

    Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5 ppm for 6 h) or sub-chronic (1 ppm, 6h/day for 4 days) acrolein inhalation exposures. The acute exposure to acrolein did not cause pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption. PMID:20678513

  15. Exposure to acrolein by inhalation causes platelet activation

    SciTech Connect

    Sithu, Srinivas D.; Srivastava, Sanjay; Siddiqui, Maqsood A.; Vladykovskaya, Elena; Riggs, Daniel W.; Conklin, Daniel J.; Haberzettl, Petra; O'Toole, Timothy E.; Bhatnagar, Aruni; D'Souza, Stanley E.

    2010-10-15

    Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5 ppm for 6 h) or sub-chronic (1 ppm, 6 h/day for 4 days) acrolein inhalation exposures. The acute exposure to acrolein did not cause pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.

  16. Exposure to acrolein by inhalation causes platelet activation.

    PubMed

    Sithu, Srinivas D; Srivastava, Sanjay; Siddiqui, Maqsood A; Vladykovskaya, Elena; Riggs, Daniel W; Conklin, Daniel J; Haberzettl, Petra; O'Toole, Timothy E; Bhatnagar, Aruni; D'Souza, Stanley E

    2010-10-15

    Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5ppm for 6h) or sub-chronic (1ppm, 6h/day for 4days) acrolein inhalation exposures. The acute exposure to acrolein did not cause pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.

  17. Inhalation exposure system used for acute and repeated-dose methyl isocyanate exposures of laboratory animals.

    PubMed

    Adkins, B; O'Connor, R W; Dement, J M

    1987-06-01

    Laboratory animals were exposed by inhalation for 2 hr/day (acute) or 6 hr/day (four consecutive days, repeated dose) to methyl isocyanate (MIC). Exposures were conducted in stainless steel and glass inhalation exposure chambers placed in stainless steel, wire mesh cages. MIC was delivered with nitrogen via stainless steel and Teflon supply lines. Chamber concentrations ranged from 0 to 60 ppm and were monitored continuously with infrared spectrophotometers to 1 ppm and at 2-hr intervals to 20 ppb with a high performance liquid chromatograph equipped with a fluorescence detector. Other operational parameters monitored on a continuous basis included chamber temperature (20-27 degrees C), relative humidity (31-64%), static (transmural) pressure (-0.3 in.), and flow (300-500 L/min). The computer-assistance system interfaced with the inhalation exposure laboratory is described in detail, including the analytical instrumentation calibration system used throughout this investigation.

  18. Risk Assessment of Baby Powder Exposure through Inhalation

    PubMed Central

    Moon, Min Chaul; Park, Jung Duck; Choi, Byung Soon; Park, So Young; Kim, Dong Won; Chung, Yong Hyun; Hisanaga, Naomi

    2011-01-01

    This study was conducted to assess the exposure risk through inhalation to baby powder for babies and adults under simulated conditions. Baby powder was applied to a baby doll and the amount of baby powder consumed per application was estimated. The airborne exposure to baby powder during application was then evaluated by sampling the airborne baby powder near the breathing zones of both the baby doll and the person applying the powder (the applicator). The average amount of baby powder consumed was 100 mg/application, and the average exposure concentration of airborne baby powder for the applicator and baby doll was 0.00527 mg/m3 (range 0.00157~0.01579 mg/m3) and 0.02207 mg/m3 (range 0.00780~ 0.04173 mg/m3), respectively. When compared with the Occupational Exposure Limit of 2 mg/m3 set by the Korean Ministry of Labor and the Threshold Limit Value (TLV) of 2 mg/m3 set by the ACGIH (American Conference of Governmental Industrial Hygienists), the exposure concentrations were much lower. Next, the exposure to asbestos-containing baby powder was estimated and the exposure risk was assessed based on the lung asbestos contents in normal humans. As a result, the estimated lung asbestos content resulting from exposure to asbestos-containing baby powder was found to be much lower than that of a normal Korean with no asbestos-related occupational history. PMID:24278563

  19. Metabolomic changes in murine serum following inhalation exposure to gasoline and diesel engine emissions.

    PubMed

    Brower, Jeremy B; Doyle-Eisele, Melanie; Moeller, Benjamin; Stirdivant, Steven; McDonald, Jacob D; Campen, Matthew J

    2016-04-01

    The adverse health effects of environmental exposure to gaseous and particulate components of vehicular emissions are a major concern among urban populations. A link has been established between respiratory exposure to vehicular emissions and the development of cardiovascular disease (CVD), but the mechanisms driving this interaction remain unknown. Chronic inhalation exposure to mixed vehicle emissions has been linked to CVD in animal models. This study evaluated the temporal effects of acute exposure to mixed vehicle emissions (MVE; mixed gasoline and diesel emissions) on potentially active metabolites in the serum of exposed mice. C57Bl/6 mice were exposed to a single 6-hour exposure to filtered air (FA) or MVE (100 or 300 μg/m(3)) by whole body inhalation. Immediately after and 18 hours after the end of the exposure period, animals were sacrificed for serum and tissue collection. Serum was analyzed for metabolites that were differentially present between treatment groups and time points. Changes in metabolite levels suggestive of increased oxidative stress (oxidized glutathione, cysteine disulfide, taurine), lipid peroxidation (13-HODE, 9-HODE), energy metabolism (lactate, glycerate, branched chain amino acid catabolites, butrylcarnitine, fatty acids), and inflammation (DiHOME, palmitoyl ethanolamide) were observed immediately after the end of exposure in the serum of animals exposed to MVE relative to those exposed to FA. By 18 hours post exposure, serum metabolite differences between animals exposed to MVE versus those exposed to FA were less pronounced. These findings highlight complex metabolomics alterations in the circulation following inhalation exposure to a common source of combustion emissions.

  20. Metabolomic Changes in Murine Serum Following Inhalation Exposure to Gasoline and Diesel Engine Emissions

    PubMed Central

    Brower, Jeremy B.; Doyle-Eisele, Melanie; Moeller, Benjamin; Stirdivant, Steven; McDonald, Jacob D.; Campen, Matthew J.

    2016-01-01

    The adverse health effects of environmental exposure to gaseous and particulate components of vehicular emissions are a major concern among urban populations. A link has been established between respiratory exposure to vehicular emissions and the development of cardiovascular disease (CVD), but the mechanisms driving this interaction remain unknown. Chronic inhalation exposure to mixed vehicle emissions has been linked to CVD in animal models. This study evaluated the temporal effects of acute exposure to mixed vehicle emissions (MVE; mixed gasoline and diesel emissions) on potentially active metabolites in the serum of exposed mice. C57Bl/6 mice were exposed to a single 6 hour exposure to filtered air (FA) or MVE (100 or 300 µg/m3) by whole body inhalation. Immediately after and 18 hours after the end of the exposure period, animals were sacrificed for serum and tissue collection. Serum was analyzed for metabolites that were differentially present between treatment groups and time points. Changes in metabolite levels suggestive of increased oxidative stress (oxidized glutathione, cysteine disulfide, taurine), lipid peroxidation (13-HODE, 9-HODE), energy metabolism (lactate, glycerate, branched chain amino acid catabolites, butrylcarnitine, fatty acids), and inflammation (DiHOME, palmitoyl ethanolamide) were observed immediately after the end of exposure in the serum of animals exposed to MVE relative to those exposed to FA. By 18 hours post exposure, serum metabolite differences between animals exposed to MVE versus those exposed to FA were less pronounced. These findings highlight complex metabolomics alterations in the circulation following inhalation exposure to a common source of combustion emissions. PMID:27017952

  1. Metal induced inhalation exposure in urban population: A probabilistic approach

    NASA Astrophysics Data System (ADS)

    Widziewicz, Kamila; Loska, Krzysztof

    2016-03-01

    The paper was aimed at assessing the health risk in the populations of three Silesian cities: Bielsko-Biała, Częstochowa and Katowice exposed to the inhalation intake of cadmium, nickel and arsenic present in airborne particulate matter. In order to establish how the exposure parameters affects risk a probabilistic risk assessment framework was used. The risk model was based on the results of the annual measurements of As, Cd and Ni concentrations in PM2.5 and the sets of data on the concentrations of those elements in PM10 collected by the Voivodship Inspectorate of Environmental Protection over 2012-2013 period. The risk was calculated as an incremental lifetime risk of cancer (ILCR) in particular age groups (infants, children, adults) following Monte Carlo approach. With the aim of depicting the effect the variability of exposure parameters exerts on the risk, the initial parameters of the risk model: metals concentrations, its infiltration into indoor environment, exposure duration, exposure frequency, lung deposition efficiency, daily lung ventilation and body weight were modeled as random variables. The distribution of inhalation cancer risk due to exposure to ambient metals concentrations was LN (1.80 × 10-6 ± 2.89 × 10-6) and LN (6.17 × 10-7 ± 1.08 × 10-6) for PM2.5 and PM10-bound metals respectively and did not exceed the permissible limit of the acceptable risk. The highest probability of contracting cancer was observed for Katowice residents exposed to PM2.5 - LN (2.01 × 10-6 ± 3.24 × 10-6). Across the tested age groups adults were approximately one order of magnitude at higher risk compared to infants. Sensitivity analysis showed that exposure duration (ED) and body weight (BW) were the two variables, which contributed the most to the ILCR.

  2. Inhalation Exposure Input Parameters for the Biosphere Model

    SciTech Connect

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  3. Inhalants

    MedlinePlus

    ... place a chemical- soaked rag in their mouth. Abusers may also inhale fumes from a balloon or ... by inhalants usually lasts just a few minutes, abusers often try to prolong it by continuing to ...

  4. Inhalants

    MedlinePlus

    ... Drug Facts Chat Day: Inhalants Drug Facts Chat Day: Inhalants Print Can you get high off of ... Cool Order Free Materials National Drugs & Alcohol Chat Day Newsletter Sign up to receive National Drug & Alcohol ...

  5. Distribution of 125Iricin in mice following aerosol inhalation exposure

    SciTech Connect

    Doebler, J.A.; Wiltshire, N.D.; Mayer, T.W.; Estep, J.E.; Moeller, R.B.

    1995-12-31

    Studies were conducted to examine the uptake and redistribution of 251Iricin from the lungs of mice following nose-only aerosol inhalation exposure. Radiolabelled contents were measured in lung and various extra-pulmonary tissues 15 min through 30 h following 10 min aerosol exposures. Pharmacokinetic analyses were performed on whole organ data obtained for lungs, stomach, liver and spleen. Radioactivity within the lungs, maximal at 15 min post-exposure, was eliminated in a biexponential fashion with a long Beta half-life (approx. 40 h). Large amounts of radiolabel were also found within the gastrointestinal tract. Radiolabel within the stomach exhibited an absorption phase and two-compartment elimination. Radiolabel content of many other tissues, including known accumulation sites for intravenously administered toxin, was significantly (p < 0,05) increased (relative to 15 min post-exposure) in association with the early elimination of radiolabel from the lungs, but levels in these tissues were very low and did not increase after 4 h post-exposure. The only exception was our sample of trachea, which showed delayed elevations in radiolabel (peak at 24 h); this pattern was attributable to the contained thyroid (not removed at necropsy) and its trapping of free (125I released) upon tissue 125Iricin degradation. The overall data indicate that ricin administered by aerosol inhalation is delivered to both respiratory and gastrointestinal tracts; however, it is not extensively transported from either tract to other potential target sites. Ricin delivered to the lungs is primarily sequestered within the lungs until degradation. Only small amounts of ricin delivered to the gastrointestinal tract are absorbed into the circulation.

  6. Inhalation exposure to jet fuel (JP8) among U.S. Air Force personnel.

    PubMed

    Smith, Kristen W; Proctor, Susan P; Ozonoff, Al; McClean, Michael D

    2010-10-01

    As jet fuel is a common occupational exposure among military and civilian populations, this study was conducted to characterize jet fuel (JP8) exposure among active duty U.S. Air Force personnel. Personnel (n = 24) were divided a priori into high, moderate, and low exposure groups. Questionnaires and personal air samples (breathing zone) were collected from each worker over 3 consecutive days (72 worker-days) and analyzed for total hydrocarbons (THC), benzene, toluene, ethylbenzene, xylenes, and naphthalene. Air samples were collected from inside the fuel tank and analyzed for the same analytes. Linear mixed-effects models were used to evaluate the exposure data. Our results show that the correlation of THC (a measure of overall JP8 inhalation exposure) with all other analytes was moderate to strong in the a priori high and moderate exposure groups combined. Inhalation exposure to all analytes varied significantly by self-reported JP8 exposure (THC levels higher among workers reporting JP8 exposure), a priori exposure group (THC levels in high group > moderate group > low group), and more specific job task groupings (THC levels among workers in fuel systems hangar group > refueling maintenance group > fuel systems office group > fuel handling group > clinic group), with task groupings explaining the most between-worker variability. Among highly exposed workers, statistically significant job task-related predictors of inhalation exposure to THC indicated that increased time in the hangar, working close to the fuel tank (inside > less than 25 ft > greater than 25 ft), primary job (entrant > attendant/runner/fireguard > outside hangar), and performing various tasks near the fuel tank, such as searching for a leak, resulted in higher JP8 exposure. This study shows that while a priori exposure groups were useful in distinguishing JP8 exposure levels, job task-based categories should be considered in epidemiologic study designs to improve exposure classification. Finally

  7. Generation and characterization of gasoline engine exhaust inhalation exposure atmospheres.

    PubMed

    McDonald, Jacob D; Barr, Edward B; White, Richard K; Kracko, Dean; Chow, Judith C; Zielinska, Barbara; Grosjean, Eric

    2008-10-01

    Exposure atmospheres for a rodent inhalation toxicology study were generated from the exhaust of a 4.3-L gasoline engine coupled to a dynamometer and operated on an adapted California Unified Driving Cycle. Exposure levels were maintained at three different dilution rates. One chamber at the lowest dilution had particles removed by filtration. Each exposure atmosphere was characterized for particle mass, particle number, particle size distribution, and detailed chemical speciation. The majority of the mass in the exposure atmospheres was gaseous carbon monoxide, nitrogen oxides, and volatile organics, with small amounts of particle-bound carbon/ions and metals. The atmospheres varied according to the cycle, with the largest spikes in volatile organic and inorganic species shown during the "cold start" portion of the cycle. Ammonia present from the exhaust and rodents interacted with the gasoline exhaust to form secondary inorganic particles, and an increase in exhaust resulted in higher proportions of secondary inorganics as a portion of the total particle mass. Particle size had a median of 10-20 nm by number and approximately 150 nm by mass. Volatile organics matched the composition of the fuel, with large proportions of aliphatic and aromatic hydrocarbons coupled to low amounts of oxygenated organics. A new measurement technique revealed organics reacting with nitrogen oxides have likely resulted in measurement bias in previous studies of combustion emissions. Identified and measured particle organic species accounted for about 10% of total organic particle mass and were mostly aliphatic acids and polycyclic aromatic hydrocarbons.

  8. Assessment of bioaerosols and inhalable dust exposure in Swiss sawmills.

    PubMed

    Oppliger, Anne; Rusca, Sophie; Charrière, Nicole; Vu Duc, Trinh; Droz, Pierre-Olivier

    2005-07-01

    An assessment of wood workers' exposure to airborne cultivable bacteria, fungi, inhalable endotoxins and inhalable organic dust was performed at 12 sawmills that process mainly coniferous wood species. In each plant, samples were collected at four or five different work sites (debarking, sawing, sorting, planing and sawing cockpit) and the efficiency of sampling devices (impinger or filter) for determining endotoxins levels was evaluated. Results show that fungi are present in very high concentrations (up to 35 000 CFU m(-3)) in all sawmills. We also find that there are more bioaerosols at the sorting work site (mean +/- SD: 7723 +/- 9919 CFU m(-3) for total bacteria, 614 +/- 902 CFU m(-3) for Gram-negative, 19 438 +/- 14 246 CFU m(-3) for fungi, 7.0 +/- 9.0 EU m(-3) for endotoxin and 2.9 +/- 4.8 g m(-3) for dust) than at the sawing station (mean +/- SD: 1938 +/- 2478 CFU m(-3) for total bacteria, 141 +/- 206 CFU m(-3) for Gram-negative, 12 207 +/- 10 008 CFU m(-3) for fungi, 2.1 +/- 1.9 EU m(-3) for endotoxin and 0.75 +/- 0.49 mg m(-3) for dust). At the same time, the species composition and concentration of airborne Gram-negative bacteria were studied. Penicillinium sp. were the predominant fungi, while Bacillus sp. and the Pseudomonadacea family were the predominant Gram-positive and Gram-negative bacteria encountered, respectively.

  9. LOW-DOSE AIRBORNE ENDOTOXIN EXPOSURE ENHANCES BRONCHIAL RESPONSIVENESS TO INHALED ALLERGEN IN ATOPIC ASTHMATICS

    EPA Science Inventory

    Endotoxin exposure has been associated with both protection against development of TH2-immune responses during childhood and exacerbation of asthma in persons who already have allergic airway inflammation.1 Occupational and experimental inhalation exposures to endotoxin have been...

  10. Prenatal Inhalation Exposure to Evaporative Condensates of Gasoline with 15% Ethanol and Evaluation of Sensory Function in Adult Rat Offspring

    EPA Science Inventory

    The introduction of ethanol-blended automotive fuels has raised concerns about potential health effects from inhalation exposure to the combination of ethanol and gasoline hydrocarbon vapors. Previously, we evaluated effects of prenatal inhalation exposure to 100% ethanol (E100) ...

  11. Exposure to inhalable flour dust in Canadian flour mills.

    PubMed

    Karpinski, Eva A

    2003-12-01

    In 1999, the American Conference of Governmental Industrial Hygienists (ACGIH(R)) proposed a Threshold Limit Value (TLV(R)) of 0.5 mg/m(3) for flour dust with a sensitization notation. The Labour Program of the Department of Human Resources Development Canada (HRDC), following notice of the intention to set a TLV, conducted a study of the levels of exposure to flour dust in flour mills across Canada to verify existing conditions, as well as to decide whether to adopt the proposed TLV or reference some other value. As part of the study, a relationship between flour dust concentrations obtained by using Institute of Occupational Medicine (IOM) samplers and closed-face 37-mm cassettes was examined and the literature on the health effects of exposure to flour dust was reviewed. A total of 104 millers, packers, sweepers, bakery mix operators, and others (mixed tasks) from 14 flour mills were sampled over an 8-hour work shift using IOM samplers. The results indicate that 101 employees (97.1%) were exposed to levels exceeding 0.5 mg/m(3), 66 employees (67.3%) to levels exceeding 5 mg/m(3), and 44 employees (42.3%) to levels exceeding 10 mg/m(3). For comparison purposes, flour dust measurements were also taken in a highly automated flour mill using state-of-the-art technology. The results suggest that even with the most up-to-date technology and proper cleaning operations in place, the flour milling industry may not be able to reduce the flour dust levels to below the TLV of 0.5 mg/m(3). According to the measurements of inhalable and total dust concentrations, the IOM sampler appears to be a more efficient collector of inhalable airborne particles up to 100 microm than the closed-face 37-mm cassette.

  12. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

    PubMed

    Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M

    2014-10-01

    Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.

  13. Assessment of relative potential for Legionella species or surrogates inhalation exposure from common water uses.

    PubMed

    Hines, Stephanie A; Chappie, Daniel J; Lordo, Robert A; Miller, Brian D; Janke, Robert J; Lindquist, H Alan; Fox, Kim R; Ernst, Hiba S; Taft, Sarah C

    2014-06-01

    The Legionella species have been identified as important waterborne pathogens in terms of disease morbidity and mortality. Microbial exposure assessment is a tool that can be utilized to assess the potential of Legionella species inhalation exposure from common water uses. The screening-level exposure assessment presented in this paper developed emission factors to model aerosolization, quantitatively assessed inhalation exposures of aerosolized Legionella species or Legionella species surrogates while evaluating two generalized levels of assumed water concentrations, and developed a relative ranking of six common in-home uses of water for potential Legionella species inhalation exposure. Considerable variability in the calculated exposure dose was identified between the six identified exposure pathways, with the doses differing by over five orders of magnitude in each of the evaluated exposure scenarios. The assessment of exposure pathways that have been epidemiologically associated with legionellosis transmission (ultrasonic and cool mist humidifiers) produced higher estimated inhalation exposure doses than pathways where epidemiological evidence of transmission has been less strong (faucet and shower) or absent (toilets and therapy pool). With consideration of the large uncertainties inherent in the exposure assessment process used, a relative ranking of exposure pathways from highest to lowest exposure doses was produced using culture-based measurement data and the assumption of constant water concentration across exposure pathways. In this ranking, the ultrasonic and cool mist humidifier exposure pathways were estimated to produce the highest exposure doses, followed by the shower and faucet exposure pathways, and then the toilet and therapy pool exposure pathways.

  14. Protocols of radiocontaminant air monitoring for inhalation exposure estimates

    SciTech Connect

    Shinn, J.H.

    1995-09-01

    Monitoring the plutonium and americium particle emissions from soils contaminated during atmospheric nuclear testing or due to accidental releases is important for several reasons. First, it is important to quantify the extent of potential human exposure from inhalation of alpha-emitting particles, which is the major exposure pathway from transuranic radionuclides. Second, the information provided by resuspension monitoring is the basis of criteria that determine the target soil concentrations for management and cleanup of contaminated soil sites. There are other radioactive aerosols, such as the fission products (cesium and strontium) and neutron-activation products (europium isotopes), which may be resuspended and therefore necessary to monitor as well. This Standard Protocol (SP) provides the method used for radiocontaminant air monitoring by the Health and Ecological Assessment Division (formerly Environmental Sciences Division), Lawrence Livermore National Laboratory, as developed and tested at Nevada Test Site (NTS) and in the Marshall Islands. The objective of this SP is to document the applications and methods of monitoring of all the relevant variables. This protocol deals only with measuring air concentrations of radionuclides and total suspended particulates (TSP, or {open_quotes}dust{close_quotes}). A separate protocol presents the more difficult measurements required to determine transuranic aerosol emission rates, or {open_quotes}resuspension rate{close_quotes}.

  15. Cerium Oxide Nanoparticle Nose-Only Inhalation Exposures ...

    EPA Pesticide Factsheets

    There is a critical need to assess the health effects associated with exposure of commercially produced NPs across the size ranges reflective of that detected in the industrial sectors that are generating, as well as incorporating, NPs into products. Generation of stable and low concentrations of size-fractionated nanoscale aerosols in nose-only chambers can be difficult, and when the aerosol agglomerates during generation, the problems are significantly increased. One problem is that many nanoscale aerosol generators have higher aerosol output and/or airflow than can be accommodated by a nose-only inhalation chamber, requiring much of the generated aerosol to be diverted to exhaust. Another problem is that mixing vessels used to modulate the fluctuating output from aerosol generators can cause substantial wall losses, consuming much of the generated aerosol. Other available aerosol generation systems can produce nanoscale aerosols from nanoparticles (NPs), however these NPs are generated in real time and do not approximate the physical and chemical characteristics of NPs that are commercially produced exposing the workers and the public. The health effects associated with exposure to commercial NP production, which are more morphologically and size heterogeneous, is required for risk assessment. To overcome these problems, a low-consumption dry-particulate nanoscale aerosol generator was developed to deliver stable concentrations in the range of 10–5000 µg

  16. Inhalants

    MedlinePlus

    ... Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Prescription Drugs & Cold ... Notes Articles Adolescent Cigarette, Alcohol Use Declines as Marijuana Use Rises ( February 2013 ) Program Helps Troubled Boys ...

  17. Exposure indices for the National Children's Study: application to inhalation exposures in Queens County, NY

    PubMed Central

    Isukapalli, Sastry S.; Brinkerhoff, Christopher J.; Xu, Shu; Dellarco, Michael; Landrigan, Philip J.; Lioy, Paul J.; Georgopoulos, Panos G.

    2014-01-01

    Characterization of environmental exposures to population subgroups within the National Children's Study (NCS), or other large-scale human environmental health studies is essential for developing a high-quality data platform for subsequent investigations. A computational formulation utilizing the tiered exposure ranking framework is presented for calculating inhalation exposure indices (EIs) for population subgroups. This formulation employs a probabilistic approach and combines information from diverse, publicly available exposure-relevant databases and information on biological mechanisms, for ranking study locations or population subgroups with respect to potential for specific end point-related environmental exposures. These EIs capture and summarize, within a set of numerical values/ranges, complex distributions of potential exposures to multiple airborne contaminants. These estimates capture spatial and demographic variability within each study segment, and allow for the relative comparison of study locations based on different statistical metrics of exposures. The EI formulation was applied to characterize and rank segments within Queens County, NY, which is one of the Vanguard centers for the NCS. Inhalation EI estimates relevant to respiratory outcomes, and potentially to pregnancy outcomes (low birth weight and preterm birth rates) were calculated at the study segment level. Results indicate that there is substantial variability across the study segments in Queens County, NY, and within segments, and showed an exposure gradient across the study segments that can help guide and target environmental and personal exposure sampling efforts in this county. The results also serve as an example application of the EI for use in other exposure and outcome studies. PMID:23072768

  18. STOP-EXPOSURE STUDIES OF INHALED CHLORINE PROVIDE IMPORTANT INSIGHTS ON PATHOGENESIS

    EPA Science Inventory

    As part of a project to inform approaches for risk assessment of inhaled irritants of interest to homeland security, a set of acute (Peay et aI., SOT 2010) and subacute (George et aI., SOT 2010) studies of inhaled chlorine (CI2) in female F344 rats was performed. The exposure des...

  19. Exposure to inhaled THM: comparison of continuous and event-specific exposure assessment for epidemiologic purposes.

    PubMed

    Thiriat, N; Paulus, H; Le Bot, B; Glorennec, P

    2009-10-01

    Trihalomethanes (THMs) (chloroform, bromoform, dibromochloromethane, and bromodichloromethane) are the most abundant by-products of chlorination. People are exposed to THMs through ingestion, dermal contact and inhalation. The objective of this study was to compare two methods for assessing THM inhalation: a direct method with personal monitors assessing continuous exposure and an indirect one with microenvironmental sampling and collection of time-activity data during the main event exposures: bathing, showering and swimming. This comparison was conducted to help plan a future epidemiologic study of the effects of THMs on the upper airways of children. 30 children aged from 4 to 10 years were included. They wore a 3M 3520 organic vapor monitor for 7 days. We sampled air in their bathrooms (during baths or showers) and in the indoor swimming pools they visited and recorded their time-activity patterns. We used stainless steel tubes full of Tenax to collect air samples. All analyses were performed with Gas Chromatography and Mass Spectrometry (GC-MS). Chloroform was the THM with the highest concentrations in the air of both bathrooms and indoor swimming pools. Its continuous and event exposure measurements were significantly correlated (r(s)=0.69 p<0.001). Continuous exposures were higher than event exposures, suggesting that the event exposure method does not take into account some influential microenvironments. In an epidemiologic study, this might lead to random exposure misclassification, thus underestimation of the risk, and reduced statistical power. The continuous exposure method was difficult to implement because of its poor acceptability and the fragility of the personal monitors. These two points may also reduce the statistical power of an epidemiologic study. It would be useful to test the advantages and disadvantages of a second sample in the home or of modeling the baseline concentration of THM in the home to improve the event exposure method.

  20. Pulmonary response and transmigration of inorganic fibers by inhalation exposure.

    PubMed Central

    Lee, K. P.; Barras, C. E.; Griffith, F. D.; Waritz, R. S.

    1981-01-01

    Rats, hamsters, and guinea pigs were exposed by inhalation to different concentrations of potassium octatitanate fibers. Following 3 months of exposure, the animals were sacrificed between the 15th and 24th month. The exposed animals showed dose-related dust deposition and pulmonary fibrosis mainly in the respiratory bronchiolar region. Most short fibers (less than 5 micrograms) were phagocytized by alveolar macrophages, but long fibers (greater than 10 micrograms) were phagocytized by foreign body giant cells. Dust-laden macrophages (dust cells) entered into the lumen of bronchial lymphatic or pulmonary blood vessels. Numerous dust cells were transported from the lung to the tracheobronchial and mediastinal lymph nodes where some dust cells penetrated into the blood or lymphatic circulation. Massive direct cell migration of the mediastinal adipose tissue from the lymph nodes occurred occasionally. Dust-laden giant cells were found only occasionally in the liver, and there was widespread migration of the fibers into other vital organs and tissues without any significant responses. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 PMID:7212016

  1. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.

  2. Inhalation and Dietary Exposure to PCBs in Urban and Rural Cohorts via Congener-Specific Measurements

    PubMed Central

    2015-01-01

    Polychlorinated biphenyls (PCBs) are a group of 209 persistent organic pollutants, whose documented carcinogenic, neurological, and respiratory toxicities are expansive and growing. However, PCB inhalation exposure assessments have been lacking for North American ambient conditions and lower-chlorinated congeners. We assessed congener-specific inhalation and dietary exposure for 78 adolescent children and their mothers (n = 68) in the Airborne Exposure to Semi-volatile Organic Pollutants (AESOP) Study. Congener-specific PCB inhalation exposure was modeled using 293 measurements of indoor and outdoor airborne PCB concentrations at homes and schools, analyzed via tandem quadrupole GS-MS/MS, combined with questionnaire data from the AESOP Study. Dietary exposure was modeled using Canadian Total Diet Survey PCB concentrations and National Health and Nutrition Examination Survey (NHANES) food ingestion rates. For ∑PCB, dietary exposure dominates. For individual lower-chlorinated congeners (e.g., PCBs 40+41+71, 52), inhalation exposure was as high as one-third of the total (dietary+inhalation) exposure. ∑PCB inhalation (geometric mean (SE)) was greater for urban mothers (7.1 (1.2) μg yr–1) and children (12.0 (1.2) μg yr–1) than for rural mothers (2.4 (0.4) μg yr–1) and children (8.9 (0.3) μg yr–1). Schools attended by AESOP Study children had higher indoor PCB concentrations than did homes, and account for the majority of children’s inhalation exposure. PMID:25510359

  3. Health effects of subchronic inhalation exposure to gasoline engine exhaust.

    PubMed

    Reed, M D; Barrett, E G; Campen, M J; Divine, K K; Gigliotti, A P; McDonald, J D; Seagrave, J C; Mauderly, J L; Seilkop, S K; Swenberg, J A

    2008-10-01

    Gasoline engine emissions are a ubiquitous source of exposure to complex mixtures of particulate matter (PM) and non-PM pollutants; yet their health hazards have received little study in comparison with those of diesel emissions. As a component of the National Environmental Respiratory Center (NERC) multipollutant research program, F344 and SHR rats and A/J, C57BL/6, and BALBc mice were exposed 6 h/day, 7 days/week for 1 week to 6 months to exhaust from 1996 General Motors 4.3-L engines burning national average fuel on a simulated urban operating cycle. Exposure groups included whole exhaust diluted 1:10, 1:15, or 1:90, filtered exhaust at the 1:10 dilution, or clean air controls. Evaluations included organ weight, histopathology, hematology, serum chemistry, bronchoalveolar lavage, cardiac electrophysiology, micronuclei in circulating cells, DNA methylation and oxidative injury, clearance of Pseudomonas aeruginosa from the lung, and development of respiratory allergic responses to ovalbumin. Among the 120 outcome variables, only 20 demonstrated significant exposure effects. Several statistically significant effects appeared isolated and were not supported by related variables. The most coherent and consistent effects were those related to increased red blood cells, interpreted as likely to have resulted from exposure to 13-107 ppm carbon monoxide. Other effects supported by multiple variables included mild lung irritation and depression of oxidant production by alveolar macrophages. The lowest exposure level caused no significant effects. Because only 6 of the 20 significant effects appeared to be substantially reversed by PM filtration, the majority of effects were apparently caused by non-PM components of exhaust.

  4. Dose-Response Modeling for Inhalational Anthrax in Rabbits Following Single or Multiple Exposures.

    PubMed

    Gutting, Bradford W; Rukhin, Andrey; Marchette, David; Mackie, Ryan S; Thran, Brandolyn

    2016-11-01

    There is a need to advance our ability to characterize the risk of inhalational anthrax following a low-dose exposure. The exposure scenario most often considered is a single exposure that occurs during an attack. However, long-term daily low-dose exposures also represent a realistic exposure scenario, such as what may be encountered by people occupying areas for longer periods. Given this, the objective of the current work was to model two rabbit inhalational anthrax dose-response data sets. One data set was from single exposures to aerosolized Bacillus anthracis Ames spores. The second data set exposed rabbits repeatedly to aerosols of B. anthracis Ames spores. For the multiple exposure data the cumulative dose (i.e., the sum of the individual daily doses) was used for the model. Lethality was the response for both. Modeling was performed using Benchmark Dose Software evaluating six models: logprobit, loglogistic, Weibull, exponential, gamma, and dichotomous-Hill. All models produced acceptable fits to either data set. The exponential model was identified as the best fitting model for both data sets. Statistical tests suggested there was no significant difference between the single exposure exponential model results and the multiple exposure exponential model results, which suggests the risk of disease is similar between the two data sets. The dose expected to cause 10% lethality was 15,600 inhaled spores and 18,200 inhaled spores for the single exposure and multiple exposure exponential dose-response model, respectively, and the 95% lower confidence intervals were 9,800 inhaled spores and 9,200 inhaled spores, respectively.

  5. Subchronic Inhalation Exposure of Rats to Libby Amphibole and Amosite Asbestos: Effects at 1 and 3 Months Post Exposure**

    EPA Science Inventory

    Increased asbestosis, lung cancer, and mesothelioma rates are evident after exposures to Libby amphibole (LA). To support dosimetry model development and compare potency, a subchronic nose-only inhalation exposure study (6 hr/d, 5 d/wk, 13 wk) was conducted in male F344 rats. Rat...

  6. Inhalation exposure and risk from mobile source air toxics in future years.

    PubMed

    Cook, Richard; Strum, Madeleine; Touma, Jawad S; Palma, Ted; Thurman, James; Ensley, Darrell; Smith, Roy

    2007-01-01

    Modeling of inhalation exposure and risks resulting from exposure to mobile source air toxics can be used to evaluate impacts of reductions from control programs on overall risk, as well as changes in relative contributions of different source sectors to risk, changes in contributions of different pollutants to overall risk, and changes in geographic distributions of risk. Such analysis is useful in setting regulatory priorities, and informing the decision-making process. In this paper, we have conducted national-scale air quality, exposure, and risk modeling for the US in the years 2015, 2020, and 2030, using similar tools and methods as the 1999 National-Scale Air Toxics Assessment. Our results suggest that US Environmental Protection Agency emission control programs will substantially reduce average inhalation cancer risks and potential noncancer health risks from exposure to mobile source air toxics. However, cancer risk and noncancer hazard due to inhalation of air toxics will continue to be a public health concern.

  7. SUBCHRONIC INHALATION EXPOSURE OF RATS TO LIBBY AMPHIBOLE AND AMOSITE ASBESTOS

    EPA Science Inventory

    Exposure to Libby amphibole (LA) is associated with significant increases in asbestosis, lung cancer, and mesothelioma. To support biological potency assessment and dosimetry model development, a subchronic nose-only inhalation exposure study (6 hr/d, 5 d/wk, 13 wk) was conducted...

  8. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    EPA Science Inventory

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  9. Inhalation Exposure Systems for the Development of Rodent Models of Sulfur Mustard-Induced Pulmonary Injury

    PubMed Central

    Weber, Waylon M.; Kracko, Dean A.; Lehman, Mericka R.; Irvin, Clinton M.; Blair, Lee F.; White, Richard K.; Benson, Janet M.; Grotendorst, Gary R.; Cheng, Yung-Sung; McDonald, Jacob D.

    2011-01-01

    Sulfur mustard (SM) is a chemical threat agent for which its effects have no current treatment. Due to the ease of synthesis and dispersal of this material, the need to develop therapeutics is evident. The present manuscript details the techniques used to develop SM laboratory exposure systems for the development of animal models of pulmonary injury. These models are critical for evaluating SM injury and developing therapeutics against that injury. Iterative trials were conducted to optimize a lung injury model. The resulting pathology was used as a guide, with a goal of effecting homogeneous and diffuse lung injury comparable to that of human injury. Inhalation exposures were conducted by either nose-only inhalation or intubated inhalation. The exposures were conducted to either directly vaporized SM or SM that was nebulized from an ethanol solution. Inhalation of SM by nose-only inhalation resulted in severe nasal epithelial degeneration and minimal lung injury. The reactivity of SM did not permit it to transit past the upper airways to promote lower airway injury. Intratracheal inhalation of SM vapors at a concentration of 5400 mg · min/m3 resulted in homogeneous lung injury with no nasal degeneration. PMID:20025432

  10. Inhalation exposure systems for the development of rodent models of sulfur mustard-induced pulmonary injury.

    PubMed

    Weber, Waylon M; Kracko, Dean A; Lehman, Mericka R; Irvin, Clinton M; Blair, Lee F; White, Richard K; Benson, Janet M; Grotendorst, Gary R; Cheng, Yung-Sung; McDonald, Jacob D

    2010-01-01

    Sulfur mustard (SM) is a chemical threat agent for which its effects have no current treatment. Due to the ease of synthesis and dispersal of this material, the need to develop therapeutics is evident. The present manuscript details the techniques used to develop SM laboratory exposure systems for the development of animal models of pulmonary injury. These models are critical for evaluating SM injury and developing therapeutics against that injury. Iterative trials were conducted to optimize a lung injury model. The resulting pathology was used as a guide, with a goal of effecting homogeneous and diffuse lung injury comparable to that of human injury. Inhalation exposures were conducted by either nose-only inhalation or intubated inhalation. The exposures were conducted to either directly vaporized SM or SM that was nebulized from an ethanol solution. Inhalation of SM by nose-only inhalation resulted in severe nasal epithelial degeneration and minimal lung injury. The reactivity of SM did not permit it to transit past the upper airways to promote lower airway injury. Intratracheal inhalation of SM vapors at a concentration of 5400 mg x min/m(3) resulted in homogeneous lung injury with no nasal degeneration.

  11. Biodistribution of inhaled metal oxide nanoparticles mimicking occupational exposure: a preliminary investigation using enhanced darkfield microscopy.

    PubMed

    Guttenberg, Marissa; Bezerra, Leonardo; Neu-Baker, Nicole M; Del Pilar Sosa Idelchik, María; Elder, Alison; Oberdörster, Günter; Brenner, Sara A

    2016-10-01

    Inhalation exposure to engineered nanomaterials (ENMs) may result in adverse pulmonary and/or systemic health effects. In this study, enhanced darkfield microscopy (EDFM) was used as a novel approach to visualizing industrial metal oxide nanoparticles (NPs) (silica, ceria, or alumina) in multiple tissue types following inhalation in rats mimicking occupational exposures. Advantages of EDFM over electron microscopy (EM) include reduced cost, time, and ease of sample preparation and operation. Following 4-6 hour inhalation exposures at three concentrations (3.5-34.0 mg/m(3) ), lungs and secondary organs were harvested at 24 hours or 7 days post-exposure and prepared for brightfield (BF) microscopy and EDFM. NPs were visualized within the lung and associated lymphatic tissues and in major organs of excretion (liver, spleen, kidney). EDFM also revealed NPs within pulmonary blood vessels and localization within specific regions of toxicological relevance in liver and kidney, indicating pathways of excretion. Results demonstrate the utility of EDFM for rapid direct visualization of NPs in various tissue types and suggest the potential for metal oxide NPs to distribute to secondary tissues following inhalation exposure. Confirmation of the composition, distribution, and relative abundance of inhaled NPs will be pursued by combining EDFM with hyperspectral imaging (HSI) and mapping.

  12. Nonrespirability of Carbon Fibers in Rats from Repeated Inhalation Exposure

    DTIC Science & Technology

    1990-09-01

    They thank Erica R. Riley, Physics Division, CRDEC, for her SEM analysis of the generated material and Dr. Lucas Brennecke, Pathology Associates, for... Ballantyne , B., and Clary, J.J., "Subchronic Inhalation Toxicology of Carbon Fibers," J., Vol. 28, pp 373-376 (1986). 15. Guide for th,’ Care and Use

  13. Acrolein Inhalation Alters Myocardial Synchrony and Performance at and Below Exposure Concentrations that Cause Ventilatory Responses.

    PubMed

    Thompson, Leslie C; Ledbetter, Allen D; Haykal-Coates, Najwa; Cascio, Wayne E; Hazari, Mehdi S; Farraj, Aimen K

    2017-04-01

    Acrolein is an irritating aldehyde generated during combustion of organic compounds. Altered autonomic activity has been documented following acrolein inhalation, possibly impacting myocardial synchrony and function. Given the ubiquitous nature of acrolein in the environment, we sought to better define the immediate and delayed functional cardiac effects of acrolein inhalation in vivo. We hypothesized that acrolein inhalation would increase markers of cardiac mechanical dysfunction, i.e., myocardial dyssynchrony and performance index in mice. Male C57Bl/6J mice were exposed to filtered air (FA) or acrolein (0.3 or 3.0 ppm) for 3 h in whole-body plethysmography chambers (n = 6). Echocardiographic analyses were performed 1 day before exposure and at 1 and 24 h post-exposure. Speckle tracking echocardiography revealed that circumferential strain delay (i.e., dyssynchrony) was increased at 1 and 24 h following exposure to 3.0 ppm, but not 0.3 ppm, when compared to pre-exposure and/or FA exposure. Pulsed wave Doppler of transmitral blood flow revealed that acrolein exposure at 0.3 ppm, but not 3.0 ppm, increased the Tei index of myocardial performance (i.e., decreased global heart performance) at 1 and 24 h post-exposure compared to pre-exposure and/or FA exposure. We conclude that short-term inhalation of acrolein can acutely modify cardiac function in vivo and that echocardiographic evaluation of myocardial synchrony and performance following exposure to other inhaled pollutants could provide broader insight into the health effects of air pollution.

  14. Exposure to inhaled isobutyl nitrite reduces T cell-dependent responsiveness

    SciTech Connect

    Soderberg, L.S.F.; Barnett, J.B. )

    1991-03-11

    Isobutyl nitrite is a drug of abuse popular among male homosexuals and among adolescents. In order to approximate the nitrite exposures of inhalant abusers, mice were treated with 900 ppm isobutyl nitrite in an inhalation chamber for 45 min per day for 14 days. At 72 hr after the last exposure, mice were assayed for immune competence. Under these conditions, mice gained only half the weight of mice exposed to air. The spleens of nitrite exposed mice weighed 15% less and had 24% fewer cells per spleen than controls. Adjusted for equal cell numbers, T cell mitogenic and allogeneic proliferative responses were significantly reduce by 33% and 47%, respectively. Unstimulated spleen cells had elevated levels of IL-2 transcription following exposure to isobutyl nitrite suggesting that nitrite inhalation caused a nonspecific induction of T cells. In contrast, B cell proliferative responses to LPS were unaltered. Exposure to the nitrite reduced the frequency of T-dependent antibody plaque-forming cells (PFC) by 63% and the total number of reduced by 60% after as few as five daily exposures to isobutyl nitrite. Therefore, the data suggest that habitual inhalation of isobutyl nitrite impairs immune competence and that toxicity appears to be directed toward T cell functions.

  15. ASSESSING THE HEALTH EFFECTS AND RISKS ASSOCIATED WITH CHILDREN’S INHALATION EXPOSURES – ASTHMA AND ALLERGY

    EPA Science Inventory

    Adults and children may have different reactions to inhalation exposures, which may be the result of differences in inhaled or target tissue doses following similar exposures, and/or due to growth and development of the lung which continues postnatally in distinct stages. Because...

  16. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model

    PubMed Central

    Barnewall, Roy E.; Comer, Jason E.; Miller, Brian D.; Gutting, Bradford W.; Wolfe, Daniel N.; Director-Myska, Alison E.; Nichols, Tonya L.; Taft, Sarah C.

    2012-01-01

    Repeated low-level exposures to biological agents could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as B. anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU) of B. anthracis spores) and included a pilot feasibility characterization study, acute exposure study, and a multiple 15 day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses to rabbits. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 × 102, 1 × 103, 1 × 104, and 1 × 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 × 102, 1 × 103, and 1 × 104 CFU. In all studies, targeted inhaled doses remained consistent from rabbit-to-rabbit and day-to-day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and over multiple exposure days. PMID:22919662

  17. Characterization of exogeous particale content: Of canine tissue urban vs. rural inhalation exposures

    NASA Astrophysics Data System (ADS)

    Kennedy, Jamell

    Exogenous zinc (Zn) is emerging as a serious contaminant in the environment. Yearly deposition of zinc particles line heavily traveled inner city roadways and less traveled rural roadways. Particle size for zinc ranges from approximately PM10 to PM 2.5 microm or less. These fine particles contain microscopic solids or liquids that can cause serious health problems. PM10 are considered to be "thoracic" sized particles, with the mass fraction of inhaled particles penetrating beyond the larynx. Whereas, PM2.5 are considered to be "respirable" sized particles, with the mass fraction of inhaled particles penetrating to the unciliated airways. Exogenous zinc can be used as a quantifiable marker to contrast the differences in exposures in canines originating from urban and rural environments. These exposures are analyzed using a scanning electron microscope with energy dispersive X-ray spectrometry, and usage of a morphometric point counting method for a physical count and categorization of composition of inhaled retained particle content.

  18. Subchronic Inhalation Exposure of Rats to Libby Amphibole and Amosite Asbestos: Effects at 18 Months Post Exposure

    EPA Science Inventory

    Increased asbestosis, lung cancer, and mesothelioma rates are evident after exposures to Libby amphibole (LA). To support dosimetry model development and compare potency, a subchronic nose-only inhalation study (6 hr/d, 5 d/wk, 13 wk) was conducted in male F344 rats. Rats were ex...

  19. Subchronic Inhalation Exposure of Rats to Libby Amphibole and Amosite Asbestos: Effects at 18 Months Post Exposure###

    EPA Science Inventory

    Increased asbestosis, lung cancer, and mesothelioma rates are evident after exposures to Libby amphibole (LA). To support dosimetry model development and compare potency, a subchronic nose-only inhalation study (6 hr/d, 5 d/wk, 13 wk) was conducted in male F344 rats. Rats were ex...

  20. Subchronic inhalation exposure of rats to Libby amphibole and amosite asbestos: Effects at 1 and 3 months post exposure#

    EPA Science Inventory

    Increased asbestosis, lung cancer, and mesothelioma rates are evident in humans after exposures to Libby amphibole (LA). To support dosimetry model development and compare potency, a subchronic nose-only inhalation study (6 hr/d, 5 d/wk, 13 wk) was conducted in male F344 rats. Ra...

  1. Quantitative assessment of inhalation exposure and deposited dose of aerosol from nanotechnology-based consumer sprays†

    PubMed Central

    Nazarenko, Yevgen; Lioy, Paul J.; Mainelis, Gediminas

    2015-01-01

    This study provides a quantitative assessment of inhalation exposure and deposited aerosol dose in the 14 nm to 20 μm particle size range based on the aerosol measurements conducted during realistic usage simulation of five nanotechnology-based and five regular spray products matching the nano-products by purpose of application. The products were also examined using transmission electron microscopy. In seven out of ten sprays, the highest inhalation exposure was observed for the coarse (2.5–10 μm) particles while being minimal or below the detection limit for the remaining three sprays. Nanosized aerosol particles (14–100 nm) were released, which resulted in low but measurable inhalation exposures from all of the investigated consumer sprays. Eight out of ten products produced high total deposited aerosol doses on the order of 101–103 ng kg−1 bw per application, ~85–88% of which were in the head airways, only <10% in the alveolar region and <8% in the tracheobronchial region. One nano and one regular spray produced substantially lower total deposited doses (by 2–4 orders of magnitude less), only ~52–64% of which were in the head while ~29–40% in the alveolar region. The electron microscopy data showed nanosized objects in some products not labeled as nanotechnology-based and conversely did not find nano-objects in some nano-sprays. We found no correlation between nano-object presence and abundance as per the electron microscopy data and the determined inhalation exposures and deposited doses. The findings of this study and the reported quantitative exposure data will be valuable for the manufacturers of nanotechnology-based consumer sprays to minimize inhalation exposure from their products, as well as for the regulators focusing on protecting the public health. PMID:25621175

  2. TWO-WEEK INHALATION EXPOSURE OF RATS TO LIBBY AMPHIBOLE (LA) AND AMOSITE ASBESTOS

    EPA Science Inventory

    The relative potency of LA compared to UICC amosite was assessed in a subacute inhalation study designed to set exposure levels for a future subchronic study. Male F344 rats (n=7/group) were exposed nose-only to air (control), 3 concentrations of LA, or I concentration of amosite...

  3. Analysis of Exposure-Dose Variation of Inhaled Particles in Adult Subjects.

    EPA Science Inventory

    Although internal dose is a key factor for determining the health risk of inhaled pollutant particles, available dose information is largely limited to young healthy adults under a few typical exposure conditions. Extrapolation of the limited dose information to different populat...

  4. POTENTIAL INHALATION EXPOSURE TO VOLATILE CHEMICALS IN WATER-BASED HARD-SURFACE CLEANERS

    EPA Science Inventory

    Potential inhalation exposure of building occupants to volatile chemicals in water-based hard-surface cleaners was evaluated by analyzing 267 material safety data sheets (MSDSs). Among the 154 chemicals reported, 44 are volatile or semi-volatile. Hazardous air pollutants (HAPs) r...

  5. Metabolite profiles of rats in repeated dose toxicological studies after oral and inhalative exposure.

    PubMed

    Fabian, E; Bordag, N; Herold, M; Kamp, H; Krennrich, G; Looser, R; Ma-Hock, L; Mellert, W; Montoya, G; Peter, E; Prokudin, A; Spitzer, M; Strauss, V; Walk, T; Zbranek, R; van Ravenzwaay, B

    2016-07-25

    The MetaMap(®)-Tox database contains plasma-metabolome and toxicity data of rats obtained from oral administration of 550 reference compounds following a standardized adapted OECD 407 protocol. Here, metabolic profiles for aniline (A), chloroform (CL), ethylbenzene (EB), 2-methoxyethanol (ME), N,N-dimethylformamide (DMF) and tetrahydrofurane (THF), dosed inhalatively for six hours/day, five days a week for 4 weeks were compared to oral dosing performed daily for 4 weeks. To investigate if the oral and inhalative metabolome would be comparable statistical analyses were performed. Best correlations for metabolome changes via both routes of exposure were observed for toxicants that induced profound metabolome changes. e.g. CL and ME. Liver and testes were correctly identified as target organs. In contrast, route of exposure dependent differences in metabolic profiles were noted for low profile strength e.g. female rats dosed inhalatively with A or THF. Taken together, the current investigations demonstrate that plasma metabolome changes are generally comparable for systemic effects after oral and inhalation exposure. Differences may result from kinetics and first pass effects. For compounds inducing only weak changes, the differences between both routes of exposure are visible in the metabolome.

  6. Quantitative monitoring of dermal and inhalation exposure to 1,6-hexamethylene diisocyanate monomer and oligomers.

    PubMed

    Fent, Kenneth W; Jayaraj, Karupiah; Ball, Louise M; Nylander-French, Leena A

    2008-04-01

    Respiratory sensitization and occupational asthma are associated with exposure to 1,6-hexamethylene diisocyanate (HDI) in both monomeric and oligomeric forms. The monomer and polymers of diisocyanates differ significantly in their rates of absorption into tissue and their toxicity, and hence may differ in their contribution to sensitization. We have developed and evaluated a liquid chromatography/mass spectrometry (LC-MS) method capable of quantifying HDI and its oligomers (uretidone, biuret, and isocyanurate) in air, tape-stripped skin, and paint samples collected in the automotive refinishing industry. To generate analytical standards, urea derivatives of HDI, biuret, and isocyanurate were synthesized by reaction with 1-(2-methoxyphenyl)piperazine and purified. The urea derivatives were shown to degrade on average by less than 2% per week at -20 degrees C over a 2 month period in occupational samples. The average recovery of HDI and its oligomers from tape was 100% and the limits of detection were 2 and 8 fmol microl(-1), respectively. Exposure assessments were performed on 13 automotive spray painters to evaluate the LC-MS method and the sampling methods under field conditions. Isocyanurate was the most abundant component measured in paint tasks, with median air and skin concentrations of 2.4 mg m(-3) and 4.6 microg mm(-3), respectively. Log-transformed concentrations of HDI (r = 0.79, p < 0.0001) and of isocyanurate (r = 0.71, p < 0.0001) in the skin of workers were correlated with the log-transformed product of air concentration and painting time. The other polyisocyanates were detected on skin for less than 25% of the paint tasks. This LC-MS method provides a valuable tool to investigate inhalation and dermal exposures to specific polyisocyanates and to explore relative differences in the exposure pathways.

  7. INHALATION EXPOSURE TO CARBON NANOTUBES (CNT) AND CARBON NANOFIBERS (CNF): METHODOLOGY AND DOSIMETRY

    PubMed Central

    Oberdörster, Günter; Castranova, Vincent; Asgharian, Bahman; Sayre, Phil

    2015-01-01

    Carbon nanotubes (CNT) and nanofibers (CNF) are used increasingly in a broad array of commercial products. Given current understandings, the most significant life-cycle exposures to CNT/CNF occur from inhalation when they become airborne at different stages of their life cycle, including workplace, use, and disposal. Increasing awareness of the importance of physicochemical properties as determinants of toxicity of CNT/CNF and existing difficulties in interpreting results of mostly acute rodent inhalation studies to date necessitate a reexamination of standardized inhalation testing guidelines. The current literature on pulmonary exposure to CNT/CNF and associated effects is summarized; recommendations and conclusions are provided that address test guideline modifications for rodent inhalation studies that will improve dosimetric extrapolation modeling for hazard and risk characterization based on the analysis of exposure-dose-response relationships. Several physicochemical parameters for CNT/CNF, including shape, state of agglomeration/aggregation, surface properties, impurities, and density, influence toxicity. This requires an evaluation of the correlation between structure and pulmonary responses. Inhalation, using whole-body exposures of rodents, is recommended for acute to chronic pulmonary exposure studies. Dry powder generator methods for producing CNT/CNF aerosols are preferred, and specific instrumentation to measure mass, particle size and number distribution, and morphology in the exposure chambers are identified. Methods are discussed for establishing experimental exposure concentrations that correlate with realistic human exposures, such that unrealistically high experimental concentrations need to be identified that induce effects under mechanisms that are not relevant for workplace exposures. Recommendations for anchoring data to results seen for positive and negative benchmark materials are included, as well as periods for postexposure observation

  8. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure

    PubMed Central

    Donaldson, Ken; Tran, Lang; Jimenez, Luis Albert; Duffin, Rodger; Newby, David E; Mills, Nicholas; MacNee, William; Stone, Vicki

    2005-01-01

    This review considers the molecular toxicology of combustion-derived nanoparticles (CDNP) following inhalation exposure. CDNP originate from a number of sources and in this review we consider diesel soot, welding fume, carbon black and coal fly ash. A substantial literature demonstrates that these pose a hazard to the lungs through their potential to cause oxidative stress, inflammation and cancer; they also have the potential to redistribute to other organs following pulmonary deposition. These different CDNP show considerable heterogeneity in composition and solubility, meaning that oxidative stress may originate from different components depending on the particle under consideration. Key CDNP-associated properties of large surface area and the presence of metals and organics all have the potential to produce oxidative stress. CDNP may also exert genotoxic effects, depending on their composition. CDNP and their components also have the potential to translocate to the brain and also the blood, and thereby reach other targets such as the cardiovascular system, spleen and liver. CDNP therefore can be seen as a group of particulate toxins unified by a common mechanism of injury and properties of translocation which have the potential to mediate a range of adverse effects in the lungs and other organs and warrant further research. PMID:16242040

  9. Acute respiratory toxicity following inhalation exposure to soman in guinea pigs

    SciTech Connect

    Perkins, Michael W.; Pierre, Zdenka; Rezk, Peter; Sabnekar, Praveena; Sciuto, Alfred M.; Nambiar, Madhusoodana P.

    2010-06-01

    Respiratory toxicity and lung injury following inhalation exposure to chemical warfare nerve agent soman was examined in guinea pigs without therapeutics to improve survival. A microinstillation inhalation exposure technique that aerosolizes the agent in the trachea was used to administer soman to anesthetized age and weight matched male guinea pigs. Animals were exposed to 280, 561, 841, and 1121 mg/m{sup 3} concentrations of soman for 4 min. Survival data showed that all saline controls and animals exposed to 280 and 561 mg/m{sup 3} soman survived, while animals exposed to 841, and 1121 mg/m{sup 3} resulted in 38% and 13% survival, respectively. The microinstillation inhalation exposure LCt{sub 50} for soman determined by probit analysis was 827.2 mg/m{sup 3}. A majority of the animals that died at 1121 mg/m{sup 3} developed seizures and died within 15-30 min post-exposure. There was a dose-dependent decrease in pulse rate and blood oxygen saturation of animals exposed to soman at 5-6.5 min post-exposure. Body weight loss increased with the dose of soman exposure. Bronchoalveolar lavage (BAL) fluid and blood acetylcholinesterase and butyrylcholinesterase activity was inhibited dose-dependently in soman treated groups at 24 h. BAL cells showed a dose-dependent increase in cell death and total cell counts following soman exposure. Edema by wet/dry weight ratio of the accessory lung lobe and trachea was increased slightly in soman exposed animals. An increase in total bronchoalveolar lavage fluid protein was observed in soman exposed animals at all doses. Differential cell counts of BAL and blood showed an increase in total lymphocyte counts and percentage of neutrophils. These results indicate that microinstillation inhalation exposure to soman causes respiratory toxicity and acute lung injury in guinea pigs.

  10. Computer-automated silica aerosol generator and animal inhalation exposure system

    PubMed Central

    McKinney, Walter; Chen, Bean; Schwegler-Berry, Diane; Frazer, Dave G.

    2015-01-01

    Inhalation exposure systems are necessary tools for determining the dose response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this study was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of uniformly dispersed airborne silica particles. An acoustical aerosol generator was developed which was capable of re-suspending particles from bulk powder. The aerosolized silica output from the generator was introduced into the throat of a venturi tube. The turbulent high-velocity air stream within the venturi tube increased the dispersion of the re-suspended powder. That aerosol was then used to expose small laboratory animals to constant aerosol concentrations, up to 20mg/m3, for durations lasting up to 8h. Particle distribution and morphology of the silica aerosol delivered to the exposure chamber were characterized to verify that a fully dispersed and respirable aerosol was being produced. The inhalation exposure system utilized a combination of airflow controllers, particle monitors, data acquisition devices and custom software with automatic feedback control to achieve constant and repeatable exposure environments. The automatic control algorithm was capable of maintaining median aerosol concentrations to within ±0.2 mg/m3 of a user selected target concentration during exposures lasting from 2 to 8 h. The system was able to reach 95% of the desired target value in <10min during the beginning phase of an exposure. This exposure system provided a highly automated tool for conducting inhalation toxicology studies involving silica particles. PMID:23796015

  11. Computer-automated silica aerosol generator and animal inhalation exposure system.

    PubMed

    McKinney, Walter; Chen, Bean; Schwegler-Berry, Diane; Frazer, Dave G

    2013-06-01

    Inhalation exposure systems are necessary tools for determining the dose response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this study was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of uniformly dispersed airborne silica particles. An acoustical aerosol generator was developed which was capable of re-suspending particles from bulk powder. The aerosolized silica output from the generator was introduced into the throat of a venturi tube. The turbulent high-velocity air stream within the venturi tube increased the dispersion of the re-suspended powder. That aerosol was then used to expose small laboratory animals to constant aerosol concentrations, up to 20 mg/m(3), for durations lasting up to 8 h. Particle distribution and morphology of the silica aerosol delivered to the exposure chamber were characterized to verify that a fully dispersed and respirable aerosol was being produced. The inhalation exposure system utilized a combination of airflow controllers, particle monitors, data acquisition devices and custom software with automatic feedback control to achieve constant and repeatable exposure environments. The automatic control algorithm was capable of maintaining median aerosol concentrations to within ±0.2 mg/m(3) of a user selected target concentration during exposures lasting from 2 to 8 h. The system was able to reach 95% of the desired target value in <10 min during the beginning phase of an exposure. This exposure system provided a highly automated tool for conducting inhalation toxicology studies involving silica particles.

  12. Comparison of sarin and cyclosarin toxicity by subcutaneous, intravenous and inhalation exposure in Gottingen minipigs.

    PubMed

    Hulet, Stanley W; Sommerville, Douglas R; Miller, Dennis B; Scotto, Jacqueline A; Muse, William T; Burnett, David C

    2014-02-01

    Sexually mature male and female Gottingen minipigs were exposed to various concentrations of GB and GF vapor via whole-body inhalation exposures or to liquid GB or GF via intravenous or subcutaneous injections. Vapor inhalation exposures were for 10, 60 or 180 min. Maximum likelihood estimation was used to calculate the median effect levels for severe effects (ECT50 and ED50) and lethality (LCT50 and LD50). Ordinal regression was used to model the concentration × time profile of the agent toxicity. Contrary to that predicted by Haber's rule, LCT50 values increased as the duration of the exposures increased for both nerve agents. The toxic load exponents (n) were calculated to be 1.38 and 1.28 for GB and GF vapor exposures, respectively. LCT50 values for 10-, 60- and 180-min exposures to vapor GB in male minipigs were 73, 106 and 182 mg min/m(3), respectively. LCT50 values for 10-, 60 - and 180-min exposures to vapor GB in female minipigs were 87, 127 and 174 mg min/m(3), respectively. LCT50 values for 10-, 60- and 180-min exposures to vapor GF in male minipigs were 218, 287 and 403 mg min/m(3), respectively. LCT50 values for 10-, 60- and 180-min exposures in female minipigs were 183, 282 and 365 mg min/m(3), respectively. For GB vapor exposures, there was a tenuous gender difference which did not exist for vapor GF exposures. Surprisingly, GF was 2-3 times less potent than GB via the inhalation route of exposure regardless of exposure duration. Additionally GF was found to be less potent than GB by intravenous and subcutaneous routes.

  13. Assessing Inhalation Exposures Associated with Contamination Events in Water Distribution Systems

    PubMed Central

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2016-01-01

    When a water distribution system (WDS) is contaminated, short-term inhalation exposures to airborne contaminants could occur as the result of domestic water use. The most important domestic sources of such exposures are likely to be showering and the use of aerosol-producing humidifiers, i.e., ultrasonic and impeller (cool-mist) units. A framework is presented for assessing the potential effects of short-term, system-wide inhalation exposures that could result from such activities during a contamination event. This framework utilizes available statistical models for showering frequency and duration, available exposure models for showering and humidifier use, and experimental results on both aerosol generation and the volatilization of chemicals during showering. New models for the times when showering occurs are developed using time-use data for the United States. Given a lack of similar models for how humidifiers are used, or the information needed to develop them, an analysis of the sensitivity of results to assumptions concerning humidifier use is presented. The framework is applied using network models for three actual WDSs. Simple models are developed for estimating upper bounds on the potential effects of system-wide inhalation exposures associated with showering and humidifier use. From a system-wide, population perspective, showering could result in significant inhalation doses of volatile chemical contaminants, and humidifier use could result in significant inhalation doses of microbial contaminants during a contamination event. From a system-wide perspective, showering is unlikely to be associated with significant doses of microbial contaminants. Given the potential importance of humidifiers as a source of airborne contaminants during a contamination event, an improved understanding of the nature of humidifier use is warranted. PMID:27930709

  14. Assessing Inhalation Exposures Associated with Contamination Events in Water Distribution Systems

    DOE PAGES

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2016-12-08

    When a water distribution system (WDS) is contaminated, short-term inhalation exposures to airborne contaminants could occur as the result of domestic water use. The most important domestic sources of such exposures are likely to be showering and the use of aerosol-producing humidifiers, i.e., ultrasonic and impeller (cool-mist) units. A framework is presented for assessing the potential effects of short-term, system-wide inhalation exposures that could result from such activities during a contamination event. This framework utilizes available statistical models for showering frequency and duration, available exposure models for showering and humidifier use, and experimental results on both aerosol generation and themore » volatilization of chemicals during showering. New models for the times when showering occurs are developed using time-use data for the United States. Given a lack of similar models for how humidifiers are used, or the information needed to develop them, an analysis of the sensitivity of results to assumptions concerning humidifier use is presented. The framework is applied using network models for three actual WDSs. Simple models are developed for estimating upper bounds on the potential effects of system-wide inhalation exposures associated with showering and humidifier use. From a system-wide, population perspective, showering could result in significant inhalation doses of volatile chemical contaminants, and humidifier use could result in significant inhalation doses of microbial contaminants during a contamination event. From a system-wide perspective, showering is unlikely to be associated with significant doses of microbial contaminants. In conclusion, given the potential importance of humidifiers as a source of airborne contaminants during a contamination event, an improved understanding of the nature of humidifier use is warranted.« less

  15. Assessing Inhalation Exposures Associated with Contamination Events in Water Distribution Systems

    SciTech Connect

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2016-12-08

    When a water distribution system (WDS) is contaminated, short-term inhalation exposures to airborne contaminants could occur as the result of domestic water use. The most important domestic sources of such exposures are likely to be showering and the use of aerosol-producing humidifiers, i.e., ultrasonic and impeller (cool-mist) units. A framework is presented for assessing the potential effects of short-term, system-wide inhalation exposures that could result from such activities during a contamination event. This framework utilizes available statistical models for showering frequency and duration, available exposure models for showering and humidifier use, and experimental results on both aerosol generation and the volatilization of chemicals during showering. New models for the times when showering occurs are developed using time-use data for the United States. Given a lack of similar models for how humidifiers are used, or the information needed to develop them, an analysis of the sensitivity of results to assumptions concerning humidifier use is presented. The framework is applied using network models for three actual WDSs. Simple models are developed for estimating upper bounds on the potential effects of system-wide inhalation exposures associated with showering and humidifier use. From a system-wide, population perspective, showering could result in significant inhalation doses of volatile chemical contaminants, and humidifier use could result in significant inhalation doses of microbial contaminants during a contamination event. From a system-wide perspective, showering is unlikely to be associated with significant doses of microbial contaminants. In conclusion, given the potential importance of humidifiers as a source of airborne contaminants during a contamination event, an improved understanding of the nature of humidifier use is warranted.

  16. The impact of a change to inhalable occupational exposure limits: strontium chromate exposure in the U.S. Air Force.

    PubMed

    Carlton, Gary N

    2003-01-01

    The American Conference of Governmental Industrial Hygienists has announced its intention to replace all total particulate threshold limit values (TLVs) with size-selective TLVs. Because the U.S. Air Force has adopted the TLVs as its occupational exposure limits, the impact of this change is of interest, specifically for hexavalent chromium. This article reviews historical strontium chromate sampling data in the Air Force and the impact of its reinterpretation in comparison to an inhalable TLV. Based on the measured conversion factor between the 37-mm cassette and the IOM inhalable sampler, inhalable strontium chromate exposures will continue to exceed the TLV during all aircraft priming and most sanding procedures. In addition, inhalable exposures are expected to exceed 1000 times the TLV, greater than the highest currently assigned protection factor for airline respirators, during 25% of priming procedures. Without a change in the value of the current TLV time-weighted average of 0.5 microg/m(3), the Air Force will need to reduce strontium chromate levels, either by incorporating work practices that decrease worker productivity or considering a change to nonchromated primers.

  17. 40 CFR 79.61 - Vehicle emissions inhalation exposure guideline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ensure the controlled generation of the exposure atmosphere, the adequate dilution of the test emissions... systems selected to meet criteria for a given exposure study. (1) Emissions generation. Emissions shall be... delivery system is the means used to transport the emissions from the generation system to the...

  18. 40 CFR 79.61 - Vehicle emissions inhalation exposure guideline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ensure the controlled generation of the exposure atmosphere, the adequate dilution of the test emissions... systems selected to meet criteria for a given exposure study. (1) Emissions generation. Emissions shall be... delivery system is the means used to transport the emissions from the generation system to the...

  19. 40 CFR 79.61 - Vehicle emissions inhalation exposure guideline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ensure the controlled generation of the exposure atmosphere, the adequate dilution of the test emissions... systems selected to meet criteria for a given exposure study. (1) Emissions generation. Emissions shall be... delivery system is the means used to transport the emissions from the generation system to the...

  20. 40 CFR 79.61 - Vehicle emissions inhalation exposure guideline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ensure the controlled generation of the exposure atmosphere, the adequate dilution of the test emissions... systems selected to meet criteria for a given exposure study. (1) Emissions generation. Emissions shall be... delivery system is the means used to transport the emissions from the generation system to the...

  1. MODELING INHALATION AND MULTIMEDIA MULTIPATHWAY HUMAN EXPOSURES TO ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Estimation of exposures of children and adults to air toxics or multimedia pollutants require careful consideration of sources and concentrations of pollutants that may be present in different media, as well as various routes and pathways of exposures associated with age-specif...

  2. Post-exposure treatment with nasal atropine methyl bromide protects against microinstillation inhalation exposure to sarin in guinea pigs

    SciTech Connect

    Che, Magnus M.; Conti, Michele; Boylan, Megan; Sabnekar, Praveena; Rezk, Peter; Sciuto, Alfred M.; Doctor, Bhupendra P.; Nambiar, Madhusoodana P.

    2009-09-15

    We evaluated the protective efficacy of nasal atropine methyl bromide (AMB) which does not cross the blood-brain barrier against sarin inhalation exposure. Age and weight matched male guinea pigs were exposed to 846.5 mg/m{sup 3} sarin using a microinstillation inhalation exposure technique for 4 min. The survival rate at this dose was 20%. Post-exposure treatment with nasal AMB (2.5 mg/kg, 1 min) completely protected against sarin induced toxicity (100% survival). Development of muscular tremors was decreased in animals treated with nasal AMB. Post-exposure treatment with nasal AMB also normalized acute decrease in blood oxygen saturation and heart rate following sarin exposure. Inhibition of blood AChE and BChE activities following sarin exposure was reduced in animals treated with nasal AMB, indicating that survival increases the metabolism of sarin or expression of AChE. The body weight loss of animals exposed to sarin and treated with nasal AMB was similar to saline controls. No differences were observed in lung accessory lobe or tracheal edema following exposure to sarin and subsequent treatment with nasal AMB. Total bronchoalveolar lavage fluid (BALF) protein, a biomarker of lung injury, showed trends similar to saline controls. Surfactant levels post-exposure treatment with nasal AMB returned to normal, similar to saline controls. Alkaline phosphatase levels post-exposure treatment with nasal AMB were decreased. Taken together, these data suggest that nasal AMB blocks the copious airway secretion and peripheral cholinergic effects and protects against lethal inhalation exposure to sarin thus increasing survival.

  3. Post-exposure treatment with nasal atropine methyl bromide protects against microinstillation inhalation exposure to sarin in guinea pigs.

    PubMed

    Che, Magnus M; Conti, Michele; Chanda, Soma; Boylan, Megan; Sabnekar, Praveena; Rezk, Peter; Amari, Ethery; Sciuto, Alfred M; Gordon, Richard K; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2009-09-15

    We evaluated the protective efficacy of nasal atropine methyl bromide (AMB) which does not cross the blood-brain barrier against sarin inhalation exposure. Age and weight matched male guinea pigs were exposed to 846.5 mg/m(3) sarin using a microinstillation inhalation exposure technique for 4 min. The survival rate at this dose was 20%. Post-exposure treatment with nasal AMB (2.5 mg/kg, 1 min) completely protected against sarin induced toxicity (100% survival). Development of muscular tremors was decreased in animals treated with nasal AMB. Post-exposure treatment with nasal AMB also normalized acute decrease in blood oxygen saturation and heart rate following sarin exposure. Inhibition of blood AChE and BChE activities following sarin exposure was reduced in animals treated with nasal AMB, indicating that survival increases the metabolism of sarin or expression of AChE. The body weight loss of animals exposed to sarin and treated with nasal AMB was similar to saline controls. No differences were observed in lung accessory lobe or tracheal edema following exposure to sarin and subsequent treatment with nasal AMB. Total bronchoalveolar lavage fluid (BALF) protein, a biomarker of lung injury, showed trends similar to saline controls. Surfactant levels post-exposure treatment with nasal AMB returned to normal, similar to saline controls. Alkaline phosphatase levels post-exposure treatment with nasal AMB were decreased. Taken together, these data suggest that nasal AMB blocks the copious airway secretion and peripheral cholinergic effects and protects against lethal inhalation exposure to sarin thus increasing survival.

  4. Organic Dust, Lipopolysaccharide, and Peptidoglycan Inhalant Exposures Result in Bone Loss/Disease

    PubMed Central

    Dusad, Anand; Thiele, Geoff M.; Klassen, Lynell W.; Gleason, Angela M.; Bauer, Christopher; Mikuls, Ted R.; Duryee, Michael J.; West, William W.; Romberger, Debra J.

    2013-01-01

    Skeletal health consequences associated with chronic inflammatory respiratory disease, and particularly chronic obstructive pulmonary disease (COPD), contribute to overall disease morbidity. Agricultural environmental exposures induce significant airway diseases, including COPD. However, animal models to understand inhalant exposure–induced lung injury and bone disease have not been described. Using micro–computed tomography (micro-CT) imaging technology and histology, bone quantity and quality measurements were investigated in mice after repetitive intranasal inhalation exposures to complex organic dust extracts (ODEs) from swine confinement facilities. Comparison experiments with LPS and peptidoglycan (PGN) alone were also performed. After 3 weeks of repetitive ODE inhalation exposure, significant loss of bone mineral density and trabecular bone volume fraction was evident, with altered morphological microarchitecture changes in the trabecular bone, compared with saline-treated control animals. Torsional resistance was also significantly reduced. Compared with saline treatment, ODE-treated mice demonstrated decreased collagen and proteoglycan content in their articular cartilage, according to histopathology. Significant bone deterioration was also evident after repetitive intranasal inhalant treatment with LPS and PGN. These findings were not secondary to animal distress, and not entirely dependent on the degree of induced lung parenchymal inflammation. Repetitive LPS treatment demonstrated the most pronounced changes in bone parameters, and PGN treatment resulted in the greatest lung parenchymal inflammatory changes. Collectively, repetitive inhalation exposures to noninfectious inflammatory agents such as complex organic dust, LPS, and PGN resulted in bone loss. This animal model may contribute to efforts toward understanding the mechanisms and evaluating the therapeutics associated with adverse skeletal health consequences after subchronic airway injury

  5. Bioavailability of octamethylcyclotetrasiloxane (D(4)) after exposure to silicones by inhalation and implantation.

    PubMed Central

    Luu, H M; Hutter, J C

    2001-01-01

    We developed a physiologically based pharmacokinetic (PBPK) model to predict the target organ doses of octamethylcyclotetrasiloxane (D(4)) after intravenous (IV), inhalation, or implantation exposures. The model used (14)C-D(4) IV disposition data in rats to estimate tissue distribution coefficients, metabolism, and excretion parameters. We validated the model by comparing the predicted blood and tissues concentrations of D(4) after inhalation to experimental results in both rats and humans. We then used the model to simulate D(4) kinetics after single and/or repeated D(4) exposures in rats and humans. The model predicted bioaccumulation of D(4) in fatty tissues (e.g., breast), especially in women. Because of its high lipid solubility (Log P(oct/water) = 5.1), D(4) persisted in fat with a half life of 11.1 days after inhalation and 18.2 days after breast implant exposure. Metabolism and excretion remained constant with repeated exposures, larger doses, and/or different routes of exposure. The accumulation of D(4) in fatty tissues should play an important role in the risk assessment of D(4) especially in women exposed daily to multiple personal care products and silicone breast implants. PMID:11712992

  6. Acute microinstillation inhalation exposure to sarin induces changes in respiratory dynamics and functions in guinea pigs.

    PubMed

    Conti, Michele L; Che, Magnus M; Boylan, Megan; Sciuto, Alfred M; Gordon, Richard K; Nambiar, Madhusoodana P

    2009-01-01

    This study investigates the toxic effects of sarin on respiratory dynamics following microinstillation inhalation exposure in guinea pigs. Animals are exposed to sarin for 4 minutes, and respiratory functions are monitored at 4 hours and 24 hours by whole-body barometric plethysmography. Data show significant changes in respiratory dynamics and function following sarin exposure. An increase in respiratory frequency is observed at 4 hours post exposure compared with saline controls. Tidal volume and minute volume are also increased in sarin-exposed animals 4 hours after exposure. Peak inspiratory flow increases, whereas peak expiratory flow increases at 4 hours and is erratic following sarin exposure. Animals exposed to sarin show a significant decrease in expiratory time and inspiratory time. End-inspiratory pause is unchanged whereas end-expiratory pause is slightly decreased 24 hours after sarin exposure. These results indicate that inhalation exposure to sarin alters respiratory dynamics and function at 4 hours, with return to normal levels at 24 hours post exposure.

  7. Range-Finding Risk Assessment of Inhalation Exposure to Nanodiamonds in a Laboratory Environment

    PubMed Central

    Koivisto, Antti J.; Palomäki, Jaana E.; Viitanen, Anna-Kaisa; Siivola, Kirsi M.; Koponen, Ismo K.; Yu, Mingzhou; Kanerva, Tomi S.; Norppa, Hannu; Alenius, Harri T.; Hussein, Tareq; Savolainen, Kai M.; Hämeri, Kaarle J.

    2014-01-01

    This study considers fundamental methods in occupational risk assessment of exposure to airborne engineered nanomaterials. We discuss characterization of particle emissions, exposure assessment, hazard assessment with in vitro studies, and risk range characterization using calculated inhaled doses and dose-response translated to humans from in vitro studies. Here, the methods were utilized to assess workers’ risk range of inhalation exposure to nanodiamonds (NDs) during handling and sieving of ND powder. NDs were agglomerated to over 500 nm particles, and mean exposure levels of different work tasks varied from 0.24 to 4.96 µg·m−3 (0.08 to 0.74 cm−3). In vitro-experiments suggested that ND exposure may cause a risk for activation of inflammatory cascade. However, risk range characterization based on in vitro dose-response was not performed because accurate assessment of delivered (settled) dose on the cells was not possible. Comparison of ND exposure with common pollutants revealed that ND exposure was below 5 μg·m−3, which is one of the proposed exposure limits for diesel particulate matter, and the workers’ calculated dose of NDs during the measurement day was 74 ng which corresponded to 0.02% of the modeled daily (24 h) dose of submicrometer urban air particles. PMID:24840353

  8. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation

    PubMed Central

    Kuempel, Eileen D.; Sweeney, Lisa M.; Morris, John B.; Jarabek, Annie M.

    2015-01-01

    The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates. PMID:26551218

  9. Ethanol toxicokinetics resulting from inhalation exposure in human volunteers and toxicokinetic modeling.

    PubMed

    Dumas-Campagna, Josée; Tardif, Robert; Charest-Tardif, Ginette; Haddad, Sami

    2014-02-01

    Uncertainty exists regarding the validity of a previously developed physiologically-based pharmacokinetic model (PBPK) for inhaled ethanol in humans to predict the blood levels of ethanol (BLE) at low level exposures (<1000 ppm). Thus, the objective of this study is to document the BLE resulting from low levels exposures in order to refine/validate this PBPK model. Human volunteers were exposed to ethanol vapors during 4 h at 5 different concentrations (125-1000 ppm), at rest, in an inhalation chamber. Blood and exhaled air were sampled. Also, the impact of light exercise (50 W) on the BLE was investigated. There is a linear relationship between the ethanol concentrations in inhaled air and (i) BLE (women: r²= 0.98/men: r²= 0.99), as well as (ii) ethanol concentrations in the exhaled air at end of exposure period (men: r²= 0.99/women: r²= 0.99). Furthermore, the exercise resulted in a net and significant increase of BLE (2-3 fold). Overall, the original model predictions overestimated the BLE for all low exposures performed in this study. To properly simulate the toxicokinetic data, the model was refined by adding a description of an extra-hepatic biotransformation of high affinity and low capacity in the richly perfused tissues compartment. This is based on the observation that total clearance observed at low exposure levels was much greater than liver blood flow. The results of this study will facilitate the refinement of the risk assessment associated with chronic inhalation of low levels of ethanol in the general population and especially among workers.

  10. Behavioral evaluation of rats following low-level inhalation exposure to sarin.

    PubMed

    Genovese, Raymond F; Mioduszewski, Robert J; Benton, Bernard J; Pare, Matthew A; Cooksey, Jessica A

    2009-02-01

    We evaluated the effects, in rats, of single and multiple low-level inhalation exposures to sarin. Rats were trained on a variable-interval, 56 s (VI56) schedule of food reinforcement and then exposed to sarin vapor (1.7-4.0 mg/m(3) x 60 min) or air control. The exposures did not produce clinical signs of toxicity other than miosis. Subsequently, performance on the VI56 and acquisition of a radial-arm maze spatial memory task was evaluated over approximately 11 weeks. Single exposures did not affect performance on the VI56 and had little effect on acquisition of the radial-arm maze task. Multiple exposures (4.0 mg/m(3) x 60 min/day x 3) disrupted performance on the VI56 schedule during the initial post-exposure sessions. The disruption, however, resolved after several days. Multiple exposures also produced a deficit on the radial-arm maze task in that sarin-exposed rats tended to take it longer to complete the maze and to make more errors. The deficit, however, resolved during the first three weeks of acquisition. These results demonstrate that in rats, inhalation exposure to sarin at levels below those causing overt signs of clinical toxicity can produce cognitive and performance deficits. Furthermore, the observed deficits do not appear to be persistent.

  11. Adverse respiratory effects in rats following inhalation exposure to ammonia: respiratory dynamics and histopathology.

    PubMed

    Perkins, Michael W; Wong, Benjamin; Tressler, Justin; Rodriguez, Ashley; Sherman, Katherine; Andres, Jaclynn; Devorak, Jennifer; L Wilkins, William; Sciuto, Alfred M

    2017-01-01

    Acute respiratory dynamics and histopathology of the lungs and trachea following inhaled exposure to ammonia were investigated. Respiratory dynamic parameters were collected from male Sprague-Dawley rats (300-350 g) during (20 min) and 24 h (10 min) after inhalation exposure for 20 min to 9000, 20,000, and 23,000 ppm of ammonia in a head-only exposure system. Body weight loss, analysis of blood cells, and lungs and trachea histopathology were assessed 1, 3, and 24 h following inhalation exposure to 20,000 ppm of ammonia. Prominent decreases in minute volume (MV) and tidal volume (TV) were observed during and 24 h post-exposure in all ammonia-exposed animals. Inspiratory time (IT) and expiratory time (ET) followed similar patterns and decreased significantly during the exposure and then increased at 24 h post-exposure in all ammonia-exposed animals in comparison to air-exposed controls. Peak inspiratory (PIF) and expiratory flow (PEF) significantly decreased during the exposure to all ammonia doses, while at 24 h post-exposure they remained significantly decreased following exposure to 20,000 and 23,000 ppm. Exposure to 20,000 ppm of ammonia resulted in body weight loss at 1 and 3 h post-exposure; weight loss was significant at 24 h compared to controls. Exposure to 20,000 ppm of ammonia for 20 min resulted in increases in the total blood cell counts of white blood cells, neutrophils, and platelets at 1, 3, and 24 h post-exposure. Histopathologic evaluation of the lungs and trachea tissue of animals exposed to 20,000 ppm of ammonia at 1, 3, and 24 h post-exposure revealed various morphological changes, including alveolar, bronchial, and tracheal edema, epithelial necrosis, and exudate consisting of fibrin, hemorrhage, and inflammatory cells. The various alterations in respiratory dynamics and damage to the respiratory system observed in this study further emphasize ammonia-induced respiratory toxicity and the relevance of

  12. A Murine Inhalation Model to Characterize Pulmonary Exposure to Dry Aspergillus fumigatus Conidia

    PubMed Central

    Buskirk, Amanda D.; Green, Brett J.; Lemons, Angela R.; Nayak, Ajay P.; Goldsmith, W. Travis; Kashon, Michael L.; Anderson, Stacey E.; Hettick, Justin M.; Templeton, Steven P.; Germolec, Dori R.; Beezhold, Donald H.

    2014-01-01

    Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Δalb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1×105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Δalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants. PMID:25340353

  13. Longitudinal distribution of ozone absorption in the lung: Effect of continuous inhalation exposure

    SciTech Connect

    Asplund, P.T.; Rigas, M.L.; Ultman, J.S.; Ben-Jebria, A. |

    1996-11-01

    The effect of continuous exposure to ozone on the absorption of ozone in the conducting airways of human lungs was investigated with a bolus-response method. Eleven healthy nonsmoking college students (8 males, 3 females) were exposed at rest for 2 h on 3 separate days to air containing 0 ppm, 0.12 ppm, and 0.36 ppm ozone. A personal inhalation chamber equipped with a head-only clear plastic dome was used for exposure. Every 30 min a subject removed the dome and orally inhaled a series of five ozone-air boluses, each in a separate breath. Penetration of the boluses distal to the lips was targeted in the range of 70-120 ml (corresponding to the central conducting airways). By integrating the inhaled and exhaled-ozone concentration curves, we obtained the absorbed fraction {Lambda} and the dispersion ({sigma}{sup 2}) of the ozone bolus for each test breath. In addition, the subtraction of baseline measurements made just before exposure enabled us to determine the changes in absorbed fraction ({Delta}{Lambda}) and in dispersion ({Delta}{sigma}{sup 2}) that resulted from exposure alone. Absorbed fraction decreased, but {sigma}{sup 2} increased during O{sub 3} exposure, and the differences in {Delta}{Lambda} and in {Delta}{sigma}{sup 2} between breathing air and exposure to either 0.12 ppm or 0.36 ppm O{sub 3} were significant. We concluded that exposure of the conducting airways to O{sub 3} reduced their capacity to absorb O{sub 3}, possibly by the depletion of biochemical substrates that are normally oxidized by O{sub 3}. 20 refs., 9 figs.

  14. The effect of ozone exposure on the dispersion of inhaled aerosol boluses in healthy human subjects

    SciTech Connect

    Keefe, M.J.; Bennett, W.D.; DeWitt, P.; Seal, E.; Strong, A.A.; Gerrity, T.R. )

    1991-07-01

    Acute exposure of humans to low levels of ozone are known to cause decreases in FVC and increases in SRaw. These alterations in lung function do not, however, elucidate the potential for acute small airway responses. In this study we employed a test of aerosol dispersion to examine the potential effects of ozone on small airways in humans. Twenty-two healthy nonsmoking male volunteers were exposed to 0.4 ppm ozone for 1 h while exercising at 20 L/min/m2 body surface area. Before and immediately after exposure, tests of spirometry (FVC, FEV1, and FEF25-75) and plethysmography (Raw and SRaw) were performed. Subjects also performed an aerosol dispersion test before and after exposure. Each test involved a subject inhaling five to seven breaths of a 300-ml bolus of a 0.5 micron triphenyl phosphate aerosol injected into a 2-L tidal volume. The bolus was injected into the tidal breath at three different depths: at Depth A the bolus was injected after 1.6 L of clean air were inhaled from FRC, at Depth B after 1.2 L, and at Depth C after 1.2 L but with inhalation beginning from RV. The primary measure of bolus dispersion was the expired half-width (HW). Secondary measures were the ratio (expressed as percent) of peak exhaled aerosol concentration to peak inhaled concentration (PR), shift in the median bolus volume between inspiration and expiration (VS), and percent of total aerosol recovered (RC). Changes in pulmonary function after ozone exposure were consistent with previous findings.

  15. Commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi.

    PubMed

    Kumar, Pramod; Gupta, N C

    2016-01-15

    A public health concern is to understand the linkages between specific pollution sources and adverse health impacts. Commuting can be viewed as one of the significant-exposure activity in high-vehicle density areas. This paper investigates the commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi, India. Air pollution levels are significantly contributed by automobile exhaust and also in-vehicle exposure can be higher sometime than ambient levels. Motorcycle, auto rickshaw, car and bus were selected to study particles concentration along two routes in Delhi between Kashmere Gate and Dwarka. The bus and auto rickshaw were running on compressed natural gas (CNG) while the car and motorcycle were operated on gasoline fuel. Aerosol spectrometer was employed to measure inhalable, thoracic and alveolic particles during morning and evening rush hours for five weekdays. From the study, we observed that the concentration levels of these particles were greatly influenced by transportation modes. Concentrations of inhalable particles were found higher during morning in auto rickshaw (332.81 ± 90.97 μg/m(3)) while the commuter of bus exhibited higher exposure of thoracic particles (292.23 ± 110.45 μg/m(3)) and car commuters were exposed to maximum concentrations of alveolic particles (222.37 ± 26.56 μg/m(3)). We observed that in evening car commuters experienced maximum concentrations of all sizes of particles among the four commuting modes. Interestingly, motorcycle commuters were exposed to lower levels of inhalable and thoracic particles during morning and evening hours as compared to other modes of transport. The mean values were found greater than the median values for all the modes of transport suggesting that positive skewed distributions are characteristics of naturally occurring phenomenon.

  16. Increased Non-conducted P-wave Arrhythmias after a Single Oil Fly Ash Inhalation Exposure in Hypertensive Rats

    EPA Science Inventory

    Exposure to combustion-derived fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality especially in individuals with cardiovascular disease, including hypertension. PM inhalation causes several adverse changes in cardiac function that ar...

  17. Inflammatory Cytokines and White Blood Cell Counts Response to Environmental Levels of Diesel Exhaust and Ozone Inhalation Exposures

    EPA Science Inventory

    Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in envi...

  18. Exposure versus internal dose: Respiratory tract deposition modeling of inhaled asbestos fibers in rats and humans (Presentation Poster)

    EPA Science Inventory

    Exposure to asbestos is associated with respiratory diseases, including asbestosis, lung cancer and mesothelioma. Internal fiber dose depends on fiber inhalability and orientation, fiber density, length and width, and various deposition mechanisms (DM). Species-specific param...

  19. Exposure and inhalation risk assessment in an aluminium cast-house.

    PubMed

    Godderis, L; Vanderheyden, W; Van Geel, J; Moens, G; Masschelein, R; Veulemans, H

    2005-12-01

    To date the exposure, absorption and respiratory health effects of cast-house workers have not been described since most studies performed in the aluminium industry are focused on exposure and health effects of potroom personnel. In the present study, we assessed the external exposure and the absorbed dose of metals in personnel from the aluminium cast house. This was combined with an evaluation of respiratory complaints and the lung function of the personnel. 30 workers from an aluminium casting plant participated and 17 individuals of the packaging and distribution departments were selected as controls. The exposure was assessed by the quantification of total inhalable fume with metal fraction and by the determination of urinary aluminium, chromium, beryllium, manganese and lead concentration. Carbon monoxide (CO), carbon dioxide (CO2), aldehydes and polyaromatic hydrocarbons and man-made mineral fibres concentration were assessed as well. In order to evaluate their respiratory status each participant filled out a questionnaire and their lung function was tested by forced spirometry. Total inhalable fume exposure was maximum 4.37 mg m(-3). Exposure to the combustion gases, man-made mineral fibres and metal fume was well below the exposure limits. Beryllium could not be detected in the urine. The values of aluminium, manganese and lead in the urine were all under the respective reference value. One individual had a urinary chromium excretion above the ACGIH defined biological exposure index (BEI) of 30 microg g(-1) creatinine. There was no significant difference in any of the categories of the respiratory questionnaire and in the results of the spirometry between cast house personnel and referents (Chi-square, all p > 0.05). Exposure in cast houses seem to be acceptable under these conditions. However, peak exposure to fumes cannot be excluded and the potential risk of chromium and beryllium exposure due to the recycling of aluminium requires further attention.

  20. Inhalation toxicity of 4-ethoxyaniline (p-phenetidine): critical analysis of results of subacute inhalation exposure studies in rats.

    PubMed

    Pauluhn, J; Mohr, U

    2001-11-01

    This article addresses results from a single 4-h and repeated 1- and 4-wk inhalation exposure studies in Wistar rats with vapor and/or aerosol atmospheres of 4-ethoxyaniline (p-phenetidine). Groups of 10 rats/sex were exposed nose-only to mean analytical concentrations of 11.1, 86.2, and 882.6 mg p-phenetidine/m(3) using an exposure regimen of 6 h/day, 5 days/wk for 4 wk. Concentrations were selected based on results from a pilot study in which rats were exposed under identical conditions on 5 consecutive days for 6 h/day to mean analytical concentrations of 38.2, 133.0, and 1247.6 mg/m(3). In repeated exposure studies, the focus of endpoints was on hematotoxicity. The LC50 was not determined, but no rats died following a single 4-h exposure to 5085 mg/m(3) as a mixture of vapor and aerosol. No mortality was observed either in the 1- or 4-wk studies. Rats exposed to 882.6 mg/m(3) and above evoked characteristic signs of toxicity that included cyanosis, with no apparent progression of findings during the exposure period. Animals exposed to 86.2 mg/m(3) and above exhibited a concentration-dependent, significant increase in blood methemoglobin and reticulocyte counts as well as a significant decrease in hemoglobin, hematocrit, and red blood cell counts. Spleen weights were significantly increased in groups exposed to 133.0 mg/m(3) and above. Microscopic changes demonstrated an increased hematopoiesis (bone marrow smears) and splenic hemosiderosis at 86.2 and 882.6 mg/m(3) and a hepatic hemosiderosis only at 882.6 mg/m(3). These data suggest that the toxicity of p-phenetidine is similar to that of its structural analog aniline. Based on the erythrocytotoxicity occurring at 86.2 mg/m(3) and above, including the apparent reactive changes in bone marrow (increased erythropoiesis) and spleen (increased erythroclasia), the no-observed-adverse-effect level (NOAEL) of the 4-wk study was 11.1 mg/m(3) air and that of the 1-wk study was 38.2 mg/m(3) air. This difference in

  1. Risk assessment of inhalation exposure to Particulate Polycyclic Aromatic Hydrocarbons in school children

    NASA Astrophysics Data System (ADS)

    Jyethi, D. S.; Khillare, P. S.; Sarkar, S.

    2013-12-01

    Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for one year (2009-10) at an urban site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ~11.6 times the World Health Organization standard. Vehicular (59.5%) and coal combustion (40.5%) sources accounted for the high levels of PAHs (range 38.1 ng m-3 - 217.3 ng m-3) with four and five ring PAHs having ~80 % contribution. Atmospheric distribution of total PAHs were heavily influenced (~75%) by the carcinogenic species and the B[a]P equivalent concentrations, through both TEF and MEF approach, exhibited highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day-1) followed by monsoon (232.59 ng day-1) and summer (171.08 ng day-1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend: school hours>commuting to school>resting period, in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r=0.94, p<0.001) with the daily inhalation exposure level of school children. It is important to note that health hazards posed by vehicular pollution are born disproportionately by children attending certain schools based on the location of the school. Interestingly, since India is a tropical country, most of the buildings are naturally ventilated and their air exchange rates are higher than heating, ventilation, and air conditioning (HVAC)-equipped buildings, resulting into a significant impact of outdoor air on indoor air quality. In the apparent absence of any indoor PAH sources, outdoor concentrations and in turn air exchange rates (that are specific for infiltration and natural ventilation pathways) play a key role in assessing PAH exposure. A conservative estimate of ~11 excess cancer cases in children during childhood and ~ 652 cases for a

  2. [The risk of inhalable wood dust: assessment of workers exposure wood working factories].

    PubMed

    Zakrzewska, M; Tarzia, V; Iannò, A; Capone, P P; Campopiano, A; Giardino, R; Villella, E

    2007-01-01

    The International Agency for Research on Cancer RC) has classified wood dust as carcinogenic to humans based on demiological and experimental evidence. Exposure to wood dust may use respiratory and dermal symptoms and diseases. The aim of this work was to estimate occupational exposure to inhalable wood dust adopting the formal procedure described by UNI EN 689/97. The exposure of 23 workers in three different working day was measured. In total, 69 personal air samplings were carried out at five wood working factories. Inhalable fraction of airborne dust was collected on 5 microm pore size, 25 mm diameter PVC filters utilizing the IOM samplers. The quantity of the wood dust was determined with gravimetric method. The results show that about 13% of the exposure values exceed the limit of 5 mg/m3 specified by the Italian Law Decree 66/2000 and about 48% of personal exposures are lower then the limit value. Prevention measures, technological solutions and personal protection equipment should be adopted in order to reduce worker's exposure.

  3. Applicability of a modified MCE filter method with Button Inhalable Sampler for monitoring personal bioaerosol inhalation exposure.

    PubMed

    Xu, Zhenqiang; Xu, Hong; Yao, Maosheng

    2013-05-01

    In this study, a "modified" mixed cellulose ester (MCE) filter culturing method (directly placing filter on agar plate for culturing without extraction) was investigated in enumerating airborne culturable bacterial and fungal aerosol concentration and diversity both in different environments. A Button Inhalable Sampler loaded with a MCE filter was operated at a flow rate of 5 L/min to collect indoor and outdoor air samples using different sampling times: 10, 20, and 30 min in three different time periods of the day. As a comparison, a BioStage impactor, regarded as the gold standard, was operated in parallel at a flow rate of 28.3 L/min for all tests. The air samples collected by the Button Inhalable Sampler were directly placed on agar plates for culturing, and those collected by the BioStage impactor were incubated directly at 26 °C. The colony forming units (CFUs) were manually counted and the culturable concentrations were calculated both for bacterial and fungal aerosols. The bacterial CFUs developed were further washed off and subjected to polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) for diversity analysis. For fungal CFUs, microscopy method was applied to studying the culturable fungal diversity obtained using different methods. Experimental results showed that the performance of two investigated methods varied with sampling environments and microbial types (culturable bacterial and fungal aerosols). For bacterial aerosol sampling, both methods were shown to perform equally well, and in contrast the "modified" MCE filter method was demonstrated to enumerate more culturable fungal aerosols than the BioStage impactor. In general, the microbial species richness (number of gel bands) was observed to increase with increasing collection time. For both methods, the DGGE gel patterns were observed to vary with sampling time and environment despite of similar number of gel bands. In addition, an increase in sampling time from 20 to 30 min

  4. Lung carcinogenesis in rats after inhalation exposure to (237)NpO2.

    PubMed

    Dudoignon, N; Guézingar-Liébard, F; Guillet, K; L'Hullier, I; Rateau, G; Monchaux, G; Fritsch, P

    1999-12-01

    The results of several studies of experimental carcinogenesis suggest that, after inhalation of alpha-particle emitters, lung tumor incidence varies depending on the exposure rate and dose distribution in the tissue. In the case of transuranics, the main influencing factor would be the specific alpha-particle activity of the inhaled actinide. To confirm these results, long-term studies were performed using male Sprague-Dawley rats exposed to (237)NpO(2) by inhalation. The initial lung burdens of the animals ranged from 0. 1 to about 7 kBq. The rats were followed during their life span and weighed regularly, and their lung burdens were determined in vivo and at death to estimate the lung dose. At death, the incidence of lung tumors and their malignancy and histological types were analyzed. The analysis revealed a typically linear-quadratic dose response for incidence of malignant lung neoplasm and a differential dose response for various types of tumors. Although these results confirm the influence of the activity of the inhaled actinide oxide, further experiments are needed to be able to compare a more homogeneous population of animals.

  5. Kinetics of deposition and clearance of inhaled mineral dusts during chronic exposure.

    PubMed Central

    Vincent, J H; Johnston, A M; Jones, A D; Bolton, R E; Addison, J

    1985-01-01

    New inhalation studies have been carried out with rats exposed to UICC (Union International Contre le Cancer) amosite asbestos, with the main aim of further elucidating the factors the influence the accumulation of dust in the lung during prolonged chronic exposure. The results show that, for exposure times beyond a few weeks, the lung burden rises linearly and does not level off as predicted by simple models based on ideas taken from the 1966 report of the Task Group on Lung Dynamics. Furthermore, the lung burden is found to scale directly in proportion to the exposure concentration in a way that seems to contradict the overload hypothesis stated earlier. Nevertheless, the general pattern exhibited by our results for asbestos is markedly similar to that found elsewhere for rats inhaling diesel fume, leading to the suggestion that it is general (and not specific to fibrous dust); and the hypothesis that, whereas overload of clearance can take place at high lung burdens after exposure has ceased, it is cancelled by the sustained stimulus to clearance mechanisms provided by the continuous challenge of chronic exposure. The linearity of the increase in lung burden is explained in terms of a kinetic model involving sequestration of some inhaled material to parts of the lung where it is difficult to clear. The particular sequestration model favoured is one where, the longer a particle remains in the lung without being cleared, the more likely it will be sequestrated (and therefore less likely cleared). It is believed that such ideas may eventually be useful in forming exposure-dose relations for epidemiology. PMID:2864076

  6. Increased susceptibility to RSV infection by exposure to inhaled diesel engine emissions.

    PubMed

    Harrod, Kevin S; Jaramillo, Richard J; Rosenberger, Cynthia L; Wang, Shan-Ze; Berger, Jennifer A; McDonald, Jacob D; Reed, Matthew D

    2003-04-01

    Although epidemiologic data strongly suggest a role for inhaled environmental pollutants in modulating the susceptibility to respiratory infection in humans, the underlying cellular and molecular mechanisms have not been well studied in experimental systems. The current study assessed the impact of inhaled diesel engine emissions (DEE) on the host response in vivo to a common pediatric respiratory pathogen, respiratory syncytial virus (RSV). Using a relatively resistant mouse model of RSV infection, prior exposure to either 30 microg/m3 particulate matter (PM) or 1,000 microg/m3 PM of inhaled DEE (6 h/d for seven consecutive days) increased lung inflammation to RSV infection as compared with air-exposed RSV-infected C57Bl/6 mice. Inflammatory cells in bronchoalveolar lavage fluid were increased in a dose-dependent manner with regard to the level of DEE exposure, concomitant with increased levels of inflammatory mediators. Lung histology analysis indicated pronounced peribronchial and peribronchiolar inflammation concordant with the level of DEE exposure during infection. Mucous cell metaplasia was markedly increased in the airway epithelium of DEE-exposed mice following RSV infection. Interestingly, both airway and alveolar host defense and immunomodulatory proteins were attenuated during RSV infection by prior DEE exposure. DEE-induced changes in inflammatory and lung epithelial responses to infection were associated with increased RSV gene expression in the lungs following DEE exposure. These findings are consistent with the concept that DEE exposure modulates the lung host defense to respiratory viral infections and may alter the susceptibility to respiratory infections leading to increased lung disease.

  7. Maternal and Fetal Blood and Organ Toluene Levels in Rats Following Acute and Repeated Binge Inhalation Exposure

    PubMed Central

    Bowen, Scott E.; Hannigan, John H.; Irtenkauf, Susan

    2007-01-01

    Inhalation of organic solvents is a persistent form of drug abuse with particular concern being the abuse of inhalants by women of child-bearing age. While studies have begun assessing postnatal outcomes of offspring exposed prenatally to inhalants, relatively little is known about the distribution of toluene in blood and body tissues of pregnant, inhalant-abusing women, or in the fetuses. The present study assessed the tissue toluene levels attained following brief toluene exposures using a pre-clinical rat model of maternal inhalant abuse. Timed-pregnant Sprague-Dawley rats were exposed to toluene at 8,000 or 12,000 parts per million (ppm) for 15, 30 or 45 min/exposure. Exposures occurred twice each day from gestational day 8 (GD8) through GD20. Immediately following the second exposure on GD8, GD14 and GD20 blood was taken from the saphenous vein of the dams. Following saphenous vein blood collection on GD20, dams were sacrificed and trunk blood was collected along with maternal tissue specimens from cerebellum, heart, lung, kidney and liver. The placenta, amniotic fluid and fetal brain were also collected. Results demonstrated that maternal saphenous blood toluene levels increased as the inhaled concentration of toluene and duration of exposure increased. The maternal cerebellum, heart, kidney and liver appeared to be saturated after 30 min on GD20 such that toluene levels in those organs were equivalent across all ambient concentrations of inhaled toluene. Toluene levels also increased in fetal brain as the inhaled concentration of toluene increased and in placenta and amniotic fluid as the duration of exposure increased. Toluene levels in all tissues at GD20, except maternal lung and amniotic fluid, were higher than in maternal saphenous blood suggesting that toluene concentrated in those organs. Measurement of toluene levels in blood and other tissues following repeated toluene exposure demonstrated that toluene readily reaches a variety of potential sites

  8. A Novel System to Generate WTC Dust Particles for Inhalation Exposures

    PubMed Central

    Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Soukup, Joleen M.; Zelikoff, Judith; Ghio, Andrew; Peltier, Richard E.; Asgharian, Bahman; Chen, Lung-Chi; Cohen, Mitchell D.

    2014-01-01

    First Responders (FR) present at Ground Zero within the first 72-hr after the WTC (World Trade Center) collapse have progressively exhibited significant respiratory injury. The majority (>96%) of WTC dusts were >10 μm and no studies have examined potential health effects of this size fraction. This study sought to develop a system to generate and deliver supercoarse (10–53 μm) WTC particles to a rat model in a manner that mimicked FR exposure scenarios. A modified Fishing Line generator was integrated onto an intratracheal inhalation (ITIH) system that allowed for a bypassing of the nasal passages so as to mimic FR exposures. Dust concentrations were measured gravimetrically; particle size distribution was measured via elutriation. Results indicate that the system could produce dusts with 23 μm MMAD at levels up to ≥ 1200 mg/m3. To validate system utility, F344 rats were exposed for 2-hr to ≈100 mg WTC dust/m3. Exposed rats had significantly increased lung weight and levels of select tracer metals 1-hr post-exposure. Using this system, it is now possible to conduct relevant inhalation exposures to determine adverse WTC dusts impacts on the respiratory system. Furthermore, this novel integrated Fishing Line-ITIH system could potentially be used in the analyses of a wide spectrum of other dusts/pollutants of sizes previously untested or delivered to the lungs in ways that did not reflect realistic exposure scenarios. PMID:24220216

  9. Proposal for reference concentrations (RfC) for inhalation exposure to methanol.

    PubMed

    Vyskocil; Viau

    2000-12-01

    A tentative reference concentration (RfC) for methanol in ambient air, i.e. an exposure concentration below which adverse effects are not expected to occur, was derived from the analysis of the toxicological data available in the literature. Well-documented studies that correlate environmental levels of methanol with observed toxic effects have not been found in the literature, nor have any long-term epidemiological studies of chronic low-level occupational exposure been found. Assessment of RfC for acute inhalation exposure is based on a human study (n=26 subjects) with a 'tentative' NOAEL of 262 mg/m(3). The calculated RfC for 1 h exposure is 104.8 mg/m(3). The RfC is given a low confidence rating as there was only one methanol concentration used. A well designed study on monkeys served as the basis for the assessment of RfC for chronic inhalation exposure. In this study, 13.1 and 131 mg/m(3) were considered as NOAEL and LOAEL, respectively. The calculated RfC is 0.38 mg/m(3). The overall database is weak, lacking data on reproductive and developmental endpoints in human or non-human primates. Nevertheless, the RfC is given a medium confidence rating because of the strength of the principal study.

  10. Early intrauterine exposure to tobacco-inhaled products and obesity.

    PubMed

    Toschke, A M; Montgomery, S M; Pfeiffer, U; von Kries, R

    2003-12-01

    An association between maternal smoking during pregnancy and offspring obesity has been reported. This study assessed the impact of maternal smoking during the first trimester. Data on 4,974 German children aged 5-6 years were obtained at school entry health examinations in 2001-2002 in Bavaria. Obesity was defined by body mass index using International Obesity Task Force cutpoints. Prevalence of obesity was 1.9% (95% confidence interval (CI): 1.5, 2.4) in offspring of never smokers, 4.5% (95% CI: 2.9, 6.7) for maternal smoking during the first trimester only, and 5.9% (95% CI: 3.8, 8.7) for maternal smoking throughout pregnancy. Unadjusted odds ratios were higher for maternal smoking throughout pregnancy (odds ratio = 3.23, 95% CI: 2.00, 5.21) compared with the first trimester only (odds ratio = 2.41, 95% CI: 1.49, 3.91). Adjusted odds ratios were similar: 1.70 (95% CI: 1.02, 2.87) for maternal smoking throughout pregnancy and 2.22 (95% CI: 1.33, 3.69) for maternal smoking in the first trimester only. When modeled together, no statistically significant difference in obesity risk was found between maternal smoking in the first trimester compared with throughout pregnancy. The effect of intrauterine tobacco exposure on childhood obesity may depend largely on cigarette smoking during the first trimester, whereas the additional impact of smoking throughout pregnancy might be due to confounding by sociodemographics. Women should be encouraged to quit smoking prior to conception.

  11. Health Risk Assessment of Inhalation Exposure to Formaldehyde and Benzene in Newly Remodeled Buildings, Beijing

    PubMed Central

    Huang, Lihui; Mo, Jinhan; Sundell, Jan; Fan, Zhihua; Zhang, Yinping

    2013-01-01

    Objective To assess health risks associated with inhalation exposure to formaldehyde and benzene mainly emitted from building and decoration materials in newly remodeled indoor spaces in Beijing. Methods We tested the formaldehyde and benzene concentrations in indoor air of 410 dwellings and 451 offices remodeled within the past year, in which the occupants had health concerns about indoor air quality. To assess non-carcinogenic health risks, we compared the data to the health guidelines in China and USA, respectively. To assess carcinogenic health risks, we first modeled indoor personal exposure to formaldehyde and benzene using the concentration data, and then estimated the associated cancer risks by multiplying the indoor personal exposure by the Inhalation Unit Risk values (IURs) provided by the U.S. EPA Integrated Risk Information System (U.S. EPA IRIS) and the California Office of Environmental Health Hazard Assessment (OEHHA), respectively. Results (1) The indoor formaldehyde concentrations of 85% dwellings and 67% offices were above the acute Reference Exposure Level (REL) recommended by the OEHHA and the concentrations of all tested buildings were above the chronic REL recommended by the OEHHA; (2) The indoor benzene concentrations of 12% dwellings and 32% offices exceeded the reference concentration (RfC) recommended by the U.S. EPA IRIS; (3) The median cancer risks from indoor exposure to formaldehyde and benzene were 1,150 and 106 per million (based on U.S. EPA IRIS IURs), 531 and 394 per million (based on OEHHA IURs). Conclusions In the tested buildings, formaldehyde exposure may pose acute and chronic non-carcinogenic health risks to the occupants, whereas benzene exposure may pose chronic non-carcinogenic risks to the occupants. Exposure to both compounds is associated with significant carcinogenic risks. Improvement in ventilation, establishment of volatile organic compounds (VOCs) emission labeling systems for decorating and refurbishing materials

  12. NEUROTOXICITY FOLLOWING ACUTE INHALATION EXPOSURE TO THE OIL DISPERSANT COREXIT EC9500A

    PubMed Central

    Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Goldsmith, William T.; Jackson, Mark; McKinney, Walter; Frazer, David G.; Robinson, Victor A.; Castranova, Vincent

    2015-01-01

    Consequent to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico, there is an emergent concern about the short- and long-term adverse health effects of exposure to crude oil, weathered-oil products, and oil dispersants among the workforce employed to contain and clean up the spill. Oil dispersants typically comprise of a mixture of solvents and surfactants that break down floating oil to micrometer-sized droplets within the water column, thus preventing it from reaching the shorelines. As dispersants are generally sprayed from the air, workers are at risk for exposure primarily via inhalation. Such inhaled fractions might potentially permeate or translocate to the brain via olfactory or systemic circulation, producing central nervous system (CNS) abnormalities. To determine whether oil dispersants pose a neurological risk, male Sprague-Dawley rats were exposed by whole-body inhalation exposure to a model oil dispersant, COREXIT EC9500A (CE; approximately 27 mg/m3 × 5 h/d × 1 d), and various molecular indices of neural dysfunction were evaluated in discrete brain areas, at 1 or 7 d postexposure. Exposure to CE produced partial loss of olfactory marker protein in the olfactory bulb. CE also reduced tyrosine hydroxylase protein content in the striatum. Further, CE altered the levels of various synaptic and neuronal intermediate filament proteins in specific brain areas. Reactive astrogliosis, as evidenced by increased expression of glial fibrillary acidic protein, was observed in the hippocampus and frontal cortex following exposure to CE. Collectively, these findings are suggestive of disruptions in olfactory signal transduction, axonal function, and synaptic vesicle fusion, events that potentially result in an imbalance in neurotransmitter signaling. Whether such acute molecular aberrations might persist and produce chronic neurological deficits remains to be ascertained. PMID:21916746

  13. Case Study: Three Acute 241Am Inhalation Exposures with DTPA Therapy

    SciTech Connect

    Carbaugh, Eugene H.; Lynch, Timothy P.; Cannon, Curt; Lewis, Loren L.

    2010-10-01

    Three workers incurred inhalation exposures to 241Am oxide as a result of waste sorting and compaction activities. The magnitudes of the exposures were not fully recognized until the following day when an in vivo chest count identified a significant lung deposition of 241Am in a male worker, and DTPA chelation therapy was initiated. Two additional workers (one female and one male) were then identified as sufficiently exposed to also warrant therapy. In vivo bioassay measurements were performed over the ensuing 6 months to quantify the 241Am activity in the lungs, liver, and skeleton. Urine and fecal samples were collected and showed readily detectable 241Am. Clinical lab tests and medical evaluations all showed normal results. There were no significant adverse clinical health effects from the therapy. The estimated 241Am inhalation intakes for the three workers were 1800 Bq, 630 Bq, and 150 Bq. Lung retention showed somewhat longer pulmonary clearance half-times than standard inhalation class W or absorption Type M assumptions. The three underwent slightly different therapy regimes, with therapy effectiveness factors (defined as the ratio of the reference doses without therapy relative to the final assessed doses) of 4.65, 1.93, and 1.67, respectively.

  14. Source identification of ambient PM 2.5 during summer inhalation exposure studies in Detroit, MI

    NASA Astrophysics Data System (ADS)

    Morishita, Masako; Keeler, Gerald J.; Wagner, James G.; Harkema, Jack R.

    Particulate air pollution is associated with cardiopulmonary morbidity and mortality in heavily populated urban centers of the United States. Because ambient fine particulate matter (aerodynamic diameter ⩽2.5 μm; PM 2.5) is a complex mixture resulting from multiple sources and variable atmospheric conditions, it is difficult to identify specific components of PM 2.5 that are responsible for adverse health effects. During four consecutive summers from 2000 to 2003 we characterized the ambient gaseous and PM 2.5 air quality in an urban southwest Detroit community where childhood asthma hospitalization rates are more than twice the statewide average. Both integrated and continuous PM measurements together with gaseous air pollution measurements were performed using a mobile air research facility, AirCARE1, in which concurrent toxicological studies were being conducted. Chemical and physical characterizations of PM 2.5 as well as receptor modeling using positive matrix factorization (PMF) were completed. Results from PMF indicated that six major sources contributed to the observed ambient PM 2.5 mass during the summer months. Primary sources included (1) coal combustion/secondary sulfate aerosol, (2) motor vehicle/urban road dust, (3) municipal waste incinerators, (4) oil combustion/refineries, (5) sewage sludge incinerators, and (6) iron/steel manufacturing. Although the contribution of the coal/secondary sulfate aerosol source was greater than other factors, increased levels of urban PM 2.5 from local combustion sources were also observed. In addition to characterization of ambient PM 2.5 and their sources in southwest Detroit, this paper discusses possible associations of ambient PM 2.5 from local combustion sources, specifically incinerator and refinery emissions and the observed adverse health effects during the inhalation exposure campaigns.

  15. An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO₂ inhalation exposures.

    PubMed

    Demokritou, Philip; Gass, Samuel; Pyrgiotakis, Georgios; Cohen, Joel M; Goldsmith, William; McKinney, Walt; Frazer, David; Ma, Jane; Schwegler-Berry, Diane; Brain, Joseph; Castranova, Vincent

    2013-12-01

    Nanoscale CeO₂ is increasingly used for industrial and commercial applications, including catalysis, UV-shielding and as an additive in various nanocomposites. Because of its increasing potential for consumer and occupational exposures, a comprehensive toxicological characterisation of this nanomaterial is needed. Preliminary results from intratracheal instillation studies in rats point to cytotoxicity and inflammation, though these studies may not accurately use realistic nanoscale exposure profiles. By contrast, published in vitro cellular studies have reported limited toxicological outcomes for the case of nano-ceria. Here, the authors present an integrative study evaluating the toxicity of nanoscale CeO₂ both in vitro, using the A549 lung epithelial cell line, and in vivo using an intact rat model. Realistic nano-ceria exposure atmospheres were generated using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES), and rats were exposed via inhalation. Finally, the use of a nanothin amorphous SiO₂ encapsulation coating as a means of mitigating CeO₂ toxicity was assessed. Results from the inhalation experiments show lung injury and inflammation with increased PMN and LDH levels in the bronchoalveolar lavage fluid of the CeO₂-exposed rats. Moreover, exposure to SiO₂-coated CeO₂ did not induce any pulmonary toxicity to the animals, representing clear evidence for the safe by design SiO₂-encapsualtion concept.

  16. Acute Inhalation Exposure to Vaporized Methamphetamine Causes Lung Injury in Mice

    PubMed Central

    Wells, Sandra M.; Buford, Mary C.; Braseth, Sarah N.; Hutchison, James D.; Holian, Andrij

    2009-01-01

    Methamphetamine (MA) is currently the most widespread illegally used stimulant in the United States. Use of MA by smoking is the fastest growing mode of administration, which increases concerns about potential pulmonary and other medical complications. A murine exposure system was developed to study the pulmonary affects of inhaled MA. Mice were exposed to 25–100 mg vaporized MA and assessments were made 3 h following initiation of exposure to model acute lung injury. Inhalation of MA vapor resulted in dose-dependent increases in MA plasma levels that were in the range of those experienced by MA users. At the highest MA dose, histological changes were observed in the lung and small but significant increases in lung wet weight to body weight ratios (5.656 ± 0.176 mg/g for the controls vs. 6.706± 0.135 mg/g for the 100 mg MA-exposed mice) were found. In addition, there was 53% increase in total protein in bronchoalveolar lavage (BAL) fluid, greater than 20% increase in albumin levels in the BAL fluid, greater than 2.5-fold increase in lactate dehydrogenase levels in the BAL fluid, and reduced total BAL cell numbers (approximately 77% of controls). Levels of the early response cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 were dose-dependently increased in BAL fluid of MA-exposed mice. Exposure to 100 mg MA significantly increased free radical generation in the BAL cells to 107–146% of controls and to approximately 135% of the controls in lung tissue in situ. Together, these data show that acute inhalation exposure to relevant doses of volatilized MA is associated with elevated free radical formation and significant lung injury. PMID:18645723

  17. Toxicological response of Sprague Dawley rats from inhalation exposure to perfluorooctane sulfonyl fluoride (POSF).

    PubMed

    Butenhoff, John L; Olsen, Geary W; Chang, Sue

    2017-04-05

    Perfluorooctane sulfonyl fluoride (POSF) was a volatile starting material in the production of perfluorooctane sulfonate (PFOS), a stable surfactant that has been extensively studied due to its ubiquitous environmental distribution and slow clearance in humans. Because the inhalation toxicity of POSF on repeated exposure has not been previously reported, the current study evaluated the inhalation toxicity of POSF at 30, 100, and 300ppm (v/v) in rats for up to 13 weeks with a four-week recovery period. The extent of PFOS formation was also measured because POSF hydrolyzed to form PFOS. In addition, detailed urinalysis and examination of the urinary bladder were included to determine if factors associated with the development of bladder cancer were present. Exposure to POSF at 300ppm was associated with reduction in body weight-gain, necrosis of laryngeal cartilage, increased lung and bronchi weight with septal thickening, and changes in alveolar macrophages. The microscopic observations in larynx and lung are consistent with likely hydrolysis of POSF to form hydrogen fluoride (HF). Exposure to POSF at 100 and 300ppm was associated with increased relative liver weight, hepatocellular hypertrophy (except for females exposed to 100ppm POSF), and lowering of serum cholesterol (male only). After 13 weeks of exposure to 30, 100, or 300ppm POSF, serum PFOS concentration approximated 7, 35, or 100μg/mL, respectively. Approximately 0.1% of inhaled POSF was converted to PFOS. No changes indicative of bladder effects were observed in these rats exposed to POSF at any dose.

  18. Behavior of rock wool in rat lungs after exposure by nasal inhalation.

    PubMed

    Kudo, Yuichiro; Kohyama, Norihiko; Satoh, Toshihiko; Konishi, Yoshihito; Aizawa, Yoshiharu

    2006-11-01

    To evaluate the safety of rock wool (RW) fibers, we examined the biopersistence of RW fibers in the lungs of rats, based on the changes of fiber number and fiber size in the length and width, in a nose-only inhalation exposure study. Twenty male Fischer 344 rats (6 to 10 wk old) were exposed to RW fibers at a fiber concentration of 70.6 (20.4) fiber/m(3) and a dispersion density of 30.4 (6.6) mg/m(3) [arithmetic mean (SD)] continuously for 3 h daily for 5 consecutive days. Five rats each were sacrificed shortly after exposure ended (baseline group) and at 1, 2, and 4 wk after exposure, and their lung tissues were ashed by a low temperature plasma-asher. The numbers and sizes of fibers in the ash samples were determined using a phase contrast microscope and a computed image analyzer. The fiber numbers in the lungs at 4 wk after exposure had significantly decreased from the baseline value, i. e. shortly after exposure (p<0.05). The half-lives of RW fibers calculated using the one-compartment model were 32 d for total fibers and 10 d for fibers longer than 20 microm in length. Fiber number was 53.6% of the baseline at 4 wk after exposure (baseline group=100%). Likewise, fiber sizes had significantly decreased at 4 wk after exposure (p<0.05), probably because fibers had been dissolved in body fluid, phagocytosed by alveolar macrophages or discharged from the body by mucociliary movement. In future studies, it will be necessary to examine the carcinogenicity of RW fibers through long-term inhalation studies.

  19. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene.

    PubMed

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P<0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P<0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  20. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene

    PubMed Central

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P < 0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P < 0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  1. Nanomaterial inhalation exposure from nanotechnology-based cosmetic powders: a quantitative assessment

    PubMed Central

    Nazarenko, Yevgen; Zhen, Huajun; Han, Taewon; Lioy, Paul J.

    2012-01-01

    In this study we quantified exposures to airborne particles ranging from 14 nm to 20 µm due to the use of nanotechnology-based cosmetic powders. Three nanotechnology-based and three regular cosmetic powders were realistically applied to a mannequin’s face while measuring the concentration and size distribution of inhaled aerosol particles. Using these data we calculated that the highest inhaled particle mass was in the coarse aerosol fraction (2.5–10 µm), while particles <100 nm made minimal contribution to the inhaled particle mass. For all powders, 85–93 % of aerosol deposition occurred in the head airways, while <10 % deposited in the alveolar and <5 % in the tracheobronchial regions. Electron microscopy data suggest that nanomaterials were likely distributed as agglomerates across the entire investigated aerosol size range (14 nm–20 µm). Thus, investigation of nanoparticle health effects should consider not only the alveolar region, but also other respiratory system regions where substantial nanomaterial deposition during the actual nanotechnology-based product use would occur. PMID:23175627

  2. Hepatotumorigenicity of ethyl tertiary-butyl ether with 2-year inhalation exposure in F344 rats.

    PubMed

    Saito, Arata; Sasaki, Toshiaki; Kasai, Tatuya; Katagiri, Taku; Nishizawa, Tomoshi; Noguchi, Tadashi; Aiso, Shigetoshi; Nagano, Kasuke; Fukushima, Shoji

    2013-05-01

    Carcinogenicity of ethyl tertiary-butyl ether (ETBE) was examined with inhalation exposure using F344/DuCrlCrlj rats. Groups of 50 male and 50 female rats, 6 week old at commencement, were exposed to ETBE at 0, 500, 1,500 or 5,000 ppm (v/v) in whole-body inhalation chambers for 6 h/day, 5 days/week for 104 weeks. A significant increase in the incidence of hepatocellular adenomas was indicated in males exposed at 5,000 ppm, but not in females at any concentration. In addition, significantly increased incidences of eosinophilic and basophilic cell foci were observed in male rats at 5,000 ppm. Regarding non-neoplastic lesions, rat-specific changes were observed in kidney, with an increase in the severity of chronic progressive nephropathy in both sexes at 5,000 ppm. Increased incidences of urothelial hyperplasia of the pelvis were observed at 1,500 ppm and above, and mineral deposition was apparent in the renal papilla at 5,000 ppm in males. There were no treatment-related histopathological changes observed in any other organs or tissues in either sex. The present 2-year inhalation study demonstrated hepatotumorigenicity of ETBE in male, but not in female rats.

  3. Assessment of the genotoxicity of trichloroethylene in the in vivo micronucleus assay by inhalation exposure.

    PubMed

    Wilmer, J W; Spencer, P J; Ball, N; Bus, J S

    2014-05-01

    The in vivo genotoxic potential of trichloroethylene (TCE) was evaluated by examining the incidence of micronucleated polychromatic erythrocytes (MN-PCEs) in the bone marrow. Groups of male CD rats were exposed by inhalation to targeted concentrations of 0 (negative control), 50, 500, 2500 or 5000 ppm for 6 consecutive hours on a single day. The exposure concentrations were selected to overlap those employed by a published study that reported a 2- to 3-fold increase in the frequency of micronuclei in male rats following a single inhalation exposure to 5, 500 and 5000 ppm TCE for 6h but not following repeated exposure to similar concentrations. In addition, any treatment-related findings were assessed in the context of potential TCE-induced hypothermia. Clinical signs consistent with marked TCE-induced sedation were observed in rats exposed to 5000 ppm and subsequently three rats died prior to the end of the 6h exposure period. No remarkable changes in body temperature were observed in surviving animals monitored with transponders before and after exposures. There were no statistically significant increases in the frequencies of MN-PCEs in groups treated with the test material as compared to the negative controls. The positive control animals showed a significant increase in the frequency of MN-PCEs and a decrease in the relative proportion of PCEs among erythrocytes as compared to the negative control animals. There were no statistically significant differences in the per cent PCEs in groups treated with the test material. As no increase in the incidence of micronuclei was observed in any of the TCE exposure groups, kinetochore analyses were not performed. Under the experimental conditions used, TCE was considered to be negative in the rat bone marrow micronucleus test.

  4. Blood and bronchoalveolar lavage fluid acetylcholinesterase levels following microinstillation inhalation exposure to sarin in Guinea pigs.

    PubMed

    Che, Magnus M; Conti, Michele; Boylan, Megan; Sciuto, Alfred M; Gordon, Richard K; Nambiar, Madhusoodana P

    2008-07-01

    We determined acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition in the bronchoalveolar lavage fluid (BALF) following inhalation exposure to chemical threat nerve agent (CTNA) sarin. Age- and weight-matched male guinea pigs were exposed to five different doses of sarin (169.3, 338.7, 508, 677.4, and 846.5 mg/m(3)) using a microinstillation inhalation exposure technique for 4 min. The technique involves aerosolization of the agent in the trachea using a microcatheter with a center hole that delivers the agent and multiple peripheral holes that pumps air to aerosolize the agent at the tip. Animals exposed to higher doses of sarin occasionally developed seizures and succumbed to death within 15 min after exposure. The LCt(50) for sarin using the microinstillation technique was determined to be close to 677.4 mg/m(3). Ear blood AChE activity showed a dose-dependent inhibition at 15 min postexposure. The inhibition of blood AChE remained constant over 35 and 55 min after sarin exposure indicating that there was no lung depot effect. Cardiac blood AChE and butyrylcholinesterase (BChE) activity in surviving animals euthanized at 24 h postexposure showed a dose-dependent inhibition with an inhibition of 60% at 677.4 and 846.5 mg/m(3) sarin exposure. AChE and BChE activity in bronchoalveolar lavage fluid (BALF) showed a slight increase at 338.7 to 677.4 mg/m(3) sarin exposure but a marginal inhibition at 169.3 mg/m(3). In contrast, the AChE protein levels determined by immunoblotting showed an increase at 169.3 mg/m(3) in the BALF. The BALF protein level, a biomarker of lung injury, was increased maximally at 338.7 mg/m(3) and that increase was dropped with an increase in the dose of sarin. The BALF protein levels correlated with the AChE and BChE activity. These data suggest that sarin microinstillation inhalation exposure results in respiratory toxicity and lung injury characterized by changes in lavage AChE, BChE, and protein levels.

  5. Inhalation exposure in the home to volatile organic contaminants of drinking water.

    PubMed

    Andelman, J B

    1985-12-01

    Our field studies show that indoor air concentrations of volatilized trichloroethylene (TCE) can be substantial when TCE-contaminated water is used domestically. Using a model shower, increases in TCE water concentrations, water temperature and drop path (time) increased the steady-state air TCE concentrations. Volatilization was incomplete and the rates were comparable to predicted ones. Indoor air models show that the inhalation route of exposure for such chemicals has the potential for being much greater than by direct ingestion. This should be considered in developing regulations to limit adverse health impacts from contaminants of potable water.

  6. A Comparison of "Total Dust" and Inhalable Personal Sampling for Beryllium Exposure

    SciTech Connect

    Carter, Colleen M.

    2012-05-09

    In 2009, the American Conference of Governmental Industrial Hygienists (ACGIH) reduced the Beryllium (Be) 8-hr Time Weighted Average Threshold Limit Value (TLV-TWA) from 2.0 μg/m3 to 0.05 μg/m3 with an inhalable 'I' designation in accordance with ACGIH's particle size-selective criterion for inhalable mass. Currently, per the Department of Energy (DOE) requirements, the Lawrence Livermore National Laboratory (LLNL) is following the Occupational Health and Safety Administration (OSHA) Permissible Exposure Limit (PEL) of 2.0 μg/m3 as an 8-hr TWA, which is also the 2005 ACGIH TLV-TWA, and an Action Level (AL) of 0.2 μg/m3 and sampling is performed using the 37mm (total dust) sampling method. Since DOE is considering adopting the newer 2009 TLV guidelines, the goal of this study was to determine if the current method of sampling using the 37mm (total dust) sampler would produce results that are comparable to what would be measured using the IOM (inhalable) sampler specific to the application of high energy explosive work at LLNL's remote experimental test facility at Site 300. Side-by-side personal sampling using the two samplers was performed over an approximately two-week period during chamber re-entry and cleanup procedures following detonation of an explosive assembly containing Beryllium (Be). The average ratio of personal sampling results for the IOM (inhalable) vs. 37-mm (total dust) sampler was 1.1:1 with a P-value of 0.62, indicating that there was no statistically significant difference in the performance of the two samplers. Therefore, for the type of activity monitored during this study, the 37-mm sampling cassette would be considered a suitable alternative to the IOM sampler for collecting inhalable particulate matter, which is important given the many practical and economic advantages that it presents. However, similar comparison studies would be necessary for this conclusion to be applied to other types of

  7. Occupational exposure to inhalable wood dust in the member states of the European Union.

    PubMed

    Kauppinen, Timo; Vincent, Raymond; Liukkonen, Tuula; Grzebyk, Michel; Kauppinen, Antti; Welling, Irma; Arezes, Pedro; Black, Nigel; Bochmann, Frank; Campelo, Filipe; Costa, Manuel; Elsigan, Gerhard; Goerens, Robert; Kikemenis, Anastasia; Kromhout, Hans; Miguel, Sérgio; Mirabelli, Dario; McEneany, Roisin; Pesch, Beate; Plato, Nils; Schlünssen, Vivi; Schulze, Johannes; Sonntag, Roland; Verougstraete, Violaine; De Vicente, Maria Angeles; Wolf, Joachim; Zimmermann, Marta; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai

    2006-08-01

    The aim of this study was to estimate occupational exposure to inhalable wood dust by country, industry, the level of exposure and type of wood dust in 25 member states of the European Union (EU-25) for the purposes of hazard control, exposure surveillance and assessment of health risks. National labour force statistics, a country questionnaire (in 15 member states, EU-15), a company survey (in Finland, France, Germany and Spain), exposure measurements (from Denmark, Finland, France, Germany, The Netherlands and the United Kingdom) and expert judgements were used to generate preliminary estimates of exposure to different types of wood dust. The estimates were generated according to industrial class (six wood industries, four other sectors) and level of exposure (five classes). These estimates were reviewed and finalized by national experts from 15 member states. Crude estimates were generated also for 10 new member states (EU-10). The basic data and final estimates were included in the WOODEX database. In 2000-2003, about 3.6 million workers (2.0% of the employed EU-25 population) were occupationally exposed to inhalable wood dust. Of those, construction employed 1.2 million exposed workers (33%), mostly construction carpenters. The numbers of exposed workers were 700,000 (20%) in the furniture industry, 300,000 (9%) in the manufacture of builders' carpentry, 200,000 (5%) in sawmilling, 150,000 (4%) in forestry and <100,000 in other wood industries. In addition, there were 700,000 exposed workers (20%) in miscellaneous industries employing carpenters, joiners and other woodworkers. The numbers of exposed workers varied by country ranging from <3,000 in Luxembourg and Malta to 700,000 in Germany. The highest exposure levels were estimated to occur in the construction sector and furniture industry. Due to limited exposure data there was considerable uncertainty in the estimates concerning construction woodworkers. About 560,000 workers (16% of the exposed) may be

  8. Pathways of inhalation exposure to manganese in children living near a ferromanganese refinery: A structural equation modeling approach

    EPA Science Inventory

    Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation ...

  9. A novel system to generate WTC dust particles for inhalation exposures.

    PubMed

    Vaughan, Joshua M; Garrett, Brittany J; Prophete, Colette; Horton, Lori; Sisco, Maureen; Soukup, Joleen M; Zelikoff, Judith T; Ghio, Andrew; Peltier, Richard E; Asgharian, Bahman; Chen, Lung-Chi; Cohen, Mitchell D

    2014-01-01

    First responders (FRs) present at Ground Zero within the critical first 72 h after the World Trade Center (WTC) collapse have progressively exhibited significant respiratory injury. The majority (>96%) of WTC dusts were >10 μm and no studies have examined potential health effects of this size fraction. This study sought to develop a system to generate and deliver supercoarse (10-53 μm) WTC particles to a rat model in a manner that mimicked FR exposure scenarios. A modified Fishing Line generator was integrated onto an intratracheal inhalation (ITIH) system that allowed for a bypassing of the nasal passages so as to mimic FR exposures. Dust concentrations were measured gravimetrically; particle size distribution was measured via elutriation. Results indicate that the system could produce dusts with 23 μm mass median aerodynamic diameter (MMAD) at levels up to ≥1200 mg/m(3). To validate system utility, F344 rats were exposed for 2 h to ≈100 mg WTC dust/m(3). Exposed rats had significantly increased lung weight and levels of select tracer metals 1 h after exposure. Using this system, it is now possible to conduct relevant inhalation exposures to determine adverse WTC dusts impacts on the respiratory system. Furthermore, this novel integrated Fishing Line-ITIH system could potentially be used in the analyses of a wide spectrum of other dusts/pollutants of sizes previously untested or delivered to the lungs in ways that did not reflect realistic exposure scenarios.

  10. Effects of exercise exposure on toxic interactions between inhaled oxidant and aldehyde air pollutants

    SciTech Connect

    Mautz, W.J.; Kleinman, M.T.; Phalen, R.F.; Crocker, T.T.

    1988-01-01

    Respiratory tract injury resulting from inhalation of mixtures of ozone (O3) and nitrogen dioxide (NO2) and of O3 and formaldehyde (HCHO) was studied in Sprague-Dawley rats under exposure conditions of rest and exercise. Focal inflammatory injury induced in lung parenchyma by O3 exposure was measured morphometrically and HCHO injury to the nasal respiratory epithelium was measured by cell turnover using tritium-labeled thymidine. Mixtures of O3 (0.35 or 0.6 ppm) with NO2 (respectively 0.6 or 2.5 ppm) doubled the level of lung injury produced by O3 alone in resting exposures to the higher concentrations and in exercising exposures to the lower concentrations. Formaldehyde (10 ppm) mixed with O3 (0.6 ppm) resulted in reduced lung injury compared to O3 alone in resting exposures, but exercise exposure to the mixture did not show an antagonistic interaction. Nasal epithelial injury from HCHO exposure was enhanced when O3 was present in a mixture. Mixtures of O3 and NO2 at high and low concentrations formed respectively 0.73 and 0.02 ppm nitric acid (HNO3) vapor. Chemical interactions among the oxidants, HNO3, and other reaction products (N2O5 and nitrate radical) and lung tissue may be the basis for the O3-NO2 synergism. Increased dose and dose rate associated with exercise exposure may explain the presence of synergistic interaction at lower concentrations than observed in resting exposure. No oxidation products were detected in O3-HCHO mixtures, and the antagonistic interaction observed in lung tissue during resting exposure may result from irritant breathing pattern interactions.

  11. Effects of arsenic trioxide inhalation exposure on pulmonary antibacterial defenses in mice

    SciTech Connect

    Aranyi, C.; Bradof, J.N.; O'Shea, W.J.; Graham, J.A.; Miller, F.J.

    1985-01-01

    The effects of single and multiple (5 and 20) 3-h inhalation exposures to aerosols of arsenic trioxide on the pulmonary defense system of mice were investigated. Arsenic trioxide mist was generated from an aqueous solution and dried to produce particulate aerosols of 0. 4 micron mass median aerodynamic diameter. Aerosol mass concentration ranged from 125 to 1000 micrograms As/m3. Effects of the exposures were evaluated by determination of changes in susceptibility to experimentally induced streptococcal aerosol infection and in pulmonary bactericidal activity to /sup 35/S-labeled Klebsiella pneumoniae. Significant increases in mortality due to the infectious challenge and decreases in bactericidal activity were seen after single 3-h exposures to 270, 500, and 940 micrograms As/m3. Similarly, 5 or 20 multiple 3-h exposures to 500 micrograms As/m3 produced consistently significant increases in mortality and decreases in pulmonary bactericidal activity. At 125 or 250 micrograms As/m3, a decrease in bactericidal activity was seen only after 20 exposures to 250 micrograms/m3. Results from earlier studies with an arsenic-containing copper smelter dust were compared to these data. The possibility of the development of adaptation during multiple exposures to arsenic trioxide is also considered.

  12. Recombinant paraoxonase 1 protects against sarin and soman toxicity following microinstillation inhalation exposure in guinea pigs.

    PubMed

    Valiyaveettil, Manojkumar; Alamneh, Yonas; Rezk, Peter; Perkins, Michael W; Sciuto, Alfred M; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2011-05-10

    To explore the efficacy of paraoxonase 1 (PON1) as a catalytic bioscavenger, we evaluated human recombinant PON1 (rePON1) expressed in Trichoplusia ni larvae against sarin and soman toxicity using microinstillation inhalation exposure in guinea pigs. Animals were pretreated intravenously with catalytically active rePON1, followed by exposure to 1.2 X LCt₅₀ sarin or soman. Administration of 5 units of rePON1 showed mild increase in the blood activity of the enzyme after 30 min, but protected the animals with a significant increase in survival rate along with minimal signs of nerve agent toxicity. Recombinant PON1 pretreated animals exposed to sarin or soman prevented the reduction of blood O₂ saturation and pulse rate observed after nerve agent exposure. In addition, rePON1 pretreated animals showed significantly higher blood PON1, acetylcholinesterase (AChE), and butyrylcholinesterase activity after nerve agent exposure compared to the respective controls without treatments. AChE activity in different brain regions of rePON1 pretreated animals exposed to sarin or soman were also significantly higher than respective controls. The remaining activity of blood PON1, cholinesterases and brain AChE in PON1 pretreated animals after nerve agent exposure correlated with the survival rate. In summary, these data suggest that human rePON1 protects against sarin and soman exposure in guinea pigs.

  13. Characterization of an inhaled toluene drug discrimination in mice: effect of exposure conditions and route of administration.

    PubMed

    Shelton, Keith L; Slavova-Hernandez, Galina

    2009-06-01

    The drug discrimination procedure in animals has been extensively utilized to model the abuse related, subjective effects of drugs in humans, but it has seldom been used to examine abused volatile inhalants like toluene. The present study sought to characterize the temporal aspects of toluene's discriminative stimulus as well assess toluene blood concentrations under identical exposure conditions. B6SJLF1/J mice were trained to discriminate 10 min of exposure to 6000 ppm inhaled toluene vapor from air. Toluene vapor concentration dependently substituted for the training exposure condition with longer exposures to equivalent concentrations producing greater substitution than shorter exposures. Toluene's discriminative stimulus effects dissipated completely by 60 min after the cessation of exposure. Injected liquid toluene dose-dependently substituted for toluene vapor as well as augmenting the discriminative stimulus effects of inhaled toluene. Toluene blood concentrations measured under several exposure conditions which produced full substitution were all nearly identical suggesting that the concentration of toluene in the animal tissues at the time of testing determined discriminative performance. These results indicate that the discriminative stimulus effects of inhaled toluene vapor are likely mediated by CNS effects rather than by its pronounced peripheral stimulus effects.

  14. Inhalational exposure to dimethyl sulfate vapor followed by reactive airway dysfunction syndrome

    PubMed Central

    Aghabiklooei, Abbas; Zamani, Nasim; Shiva, Hamidreza; Rezaei, Nader

    2010-01-01

    Dimethyl sulfate (DMS) is an oily liquid used as a solvent, stabilizer, sulfonation agent, and catalyst. Exposure to DMS primarily happens in the workplace via inhalational contact and damages the upper and lower airways. Our manuscript reports a case of DMS-related reactive airway dysfunction syndrome (RADS). The patient was a healthy 29-year-old man who was referred to our ER after accidental exposure to the vapor of DMS with the complaint of dyspnea, dry cough, photophobia, and hoarseness. His vital signs were normal except for a low-grade fever. Redness of the pharynx, conjunctivitis, and cholinergic signs and symptoms were present. Conservative management with O2 and fluid therapy was initiated. Twenty hours later, the patient became drowsy and his respiratory symptoms exacerbated; chest X-ray revealed haziness in the base of the right lung and prominence of the vessels of the lung hillum. After 1 week, the liver transaminases rose and C-reactive protein elevated (2+). The patient got better with conservative treatment and was discharged after 9 days; however, exertional dyspnea, wheezing, and thick white sputum persisted and therefore, reactive airway dysfunction syndrome (RADS) related to DMS vapor was confirmed which was treated by prednisolone. Exertional dyspnea continued up to 10 months. Hoarseness lasted for 6 months. This case shows that DMS vapor inhalation can cause RADS especially in the chemical workers who continue working in the contaminated place despite the relatively good air conditioning. PMID:21461165

  15. Lung changes in rats following inhalation exposure to volcanic ash for two years

    SciTech Connect

    Wehner, A.P.; Dagle, G.E.; Clark, M.L.; Buschbom, R.L.

    1986-08-01

    Rats were exposed by inhalation to 5 or 50 mg/m/sup 3/ Mount St. Helens volcanic ash, to 50 mg/m/sup 3/ quartz (positive controls), or to filtered room air (sham-exposed controls), for 6 hr/day, 5 days/week, for up to 24 months to investigate biological effects of chronic inhalation exposure to volcanic ash under controlled laboratory conditions. Exposure-related lung changes comprised accelerated respiratory frequency; alveolar macrophage accumulation; interstitial reaction; lymphoreticular reaction in peribronchiolar regions and in mediastinal lymph nodes; alveolar proteinosis in the 50- mg/m/sup 3/ ash- or quartz-exposed groups; increase in fresh lung weights; decreased body weight and increased mortality in the quartz-exposed group; and epidermoid carcinomas especially in the quartz-exposed females and, to a lesser extent, in the 50-mg/m/sup 3/ ash-exposed females. The observed changes reflect significant dose-response and agent-response relationships.

  16. Improved inhalation technology for setting safe exposure levels for workplace chemicals

    NASA Technical Reports Server (NTRS)

    Stuart, Bruce O.

    1993-01-01

    Threshold Limit Values recommended as allowable air concentrations of a chemical in the workplace are often based upon a no-observable-effect-level (NOEL) determined by experimental inhalation studies using rodents. A 'safe level' for human exposure must then be estimated by the use of generalized safety factors in attempts to extrapolate from experimental rodents to man. The recent development of chemical-specific physiologically-based toxicokinetics makes use of measured physiological, biochemical, and metabolic parameters to construct a validated model that is able to 'scale-up' rodent response data to predict the behavior of the chemical in man. This procedure is made possible by recent advances in personal computer software and the emergence of appropriate biological data, and provides an analytical tool for much more reliable risk evaluation and airborne chemical exposure level setting for humans.

  17. Effects of Didecyldimethylammonium Chloride (DDAC) on Sprague-Dawley Rats after 13 Weeks of Inhalation Exposure

    PubMed Central

    Kim, Yong-Soon; Lee, Sung-Bae; Lim, Cheol-Hong

    2017-01-01

    Didecyldimethylammonium chloride (DDAC) is used in many types of biocidal products including tableware, carpets, humidifiers, and swimming pools, etc. In spite of increased chances of DDAC exposure through inhalation, studies on the inhalation toxicity of DDAC are not common even though the toxicity of DDAC might be significantly higher if it were to be administered through routes other than the respiratory system. DDAC aerosols were exposed to Sprague-Dawley rats in whole body exposure chambers for a duration of 13 weeks. The Mass Median Aerodynamic Diameters of the DDAC aerosol were 0.63 μm, 0.81 μm, and 1.65 μm, and the geometric standard deviations were 1.62, 1.65, and 1.65 in the low (0.11 ± 0.06 mg/m3), the middle (0.36 ± 0.20 mg/m3) and the high (1.41 ± 0.71 mg/m3) exposure groups, respectively. Body weight was confirmed to be clearly influenced by exposure to DDAC and mean body weight was approximately 35% lower in the high (1.41 ± 0.71 mg/m3) male group and 15% lower in the high (1.41 ± 0.71 mg/m3) female group compared to that of the control group. In the bronchoalveolar lavage fluid assay, the levels of albumin and lactate dehydrogenase had no effect on DDAC exposure. The lung weight increased for the middle (0.36 ± 0.20 mg/m3) and the high (1.41 ± 0.71 mg/m3) concentrations of the DDAC exposure group, and inflammatory cell infiltration and interstitial pneumonia were partially observed in the lungs of the middle (0.36 ± 0.20 mg/m3) and the high (1.41 ± 0.71 mg/m3) exposure groups. However, severe histopathological symptoms, including proteinosis and/or fibrosis, were not found. Based on the results of the changes in the body weight and lung weight, it is considered that the NOAEL (no-observed adverse effect) level for the 13-week exposure duration is 0.11 mg/m3. PMID:28133508

  18. Quantitative health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons on citizens in Tianjin, China.

    PubMed

    Bai, Zhipeng; Hu, Yandi; Yu, Huan; Wu, Nan; You, Yan

    2009-08-01

    Considering the large amounts of PAHs emitted into the ambient air in China, it is urgent to take preliminary health risk assessment of citizens through inhalation exposure to PAHs in China. The incremental lifetime cancer risk (ILCR) model was used to get the risk level of Tianjin citizens as an example, and Monte Carlo simulation was adopted to deal with the uncertainty. Exposure analysis found that the average values of B[a]P equivalent (B[a]Peq) daily exposure doses for children in the indoor, traffic and outdoor settings were estimated to be 2,446.8, 478.4, and 321.6 ng day(-1), respectively. And those for adults were 3,344.1, 794.9, and 519.0 ng day(-1), respectively. Much attention must be paid to indoor exposure, as it contributes more than 70% of the B[a]Peq daily exposure dose. ILCR falls within the range of 10(-5)-10(-3), which is higher than the acceptable risk level of 10(-6), and lower than the priority risk level (10(-3)). So this risk should be compared with those of other public health issues in the purpose of risk management. Sensitivity analysis found that the two variables, indoor air PAHs concentration distribution and the cancer slope factor (CSF) of BaP, contribute about 89% of the total risk uncertainty. Thus they are considered as the two main factors influencing the accuracy of the PAHs health risk assessment.

  19. Source-to-receptor pathways of anthropogenic PM 2.5 in Detroit, Michigan: Comparison of two inhalation exposure studies

    NASA Astrophysics Data System (ADS)

    Morishita, Masako; Keeler, Gerald J.; McDonald, Jacob D.; Wagner, James G.; Young, Li-Hao; Utsunomiya, Satoshi; Ewing, Rodney C.; Harkema, Jack R.

    Recent studies have attributed toxic effects of ambient fine particulate matter (aerodynamic diameter ≤ 2.5 μm; PM 2.5) to physical and/or chemical properties rather than total mass. However, identifying specific components or sources of a complex mixture of ambient PM 2.5 that are responsible for adverse health effects is still challenging. In order to improve our understanding of source-to-receptor pathways for ambient PM 2.5 (links between sources of ambient PM 2.5 and measures of biologically relevant dose), integrated inhalation toxicology studies using animal models and concentrated air particles (CAPs) were completed in southwest Detroit, a community where the pediatric asthma rate is more than twice the national average. Ambient PM 2.5 was concentrated with a Harvard fine particle concentrator housed in AirCARE1, a mobile air research laboratory which facilitates inhalation exposure studies in real-world settings. Detailed characterizations of ambient PM 2.5 and CAPs, identification of major emission sources of PM 2.5, and quantification of trace elements in the lung tissues of laboratory rats that were exposed to CAPs for two distinct 3-day exposure periods were completed. This paper describes the physical/chemical properties and sources of PM 2.5, pulmonary metal concentrations and meteorology from two different 3-day exposure periods—both conducted at the southwest Detroit location in July 2003—which resulted in disparate biological effects. More specifically, during one of the exposure periods, ambient PM 2.5-derived trace metals were recovered from lung tissues of CAPs-exposed animals, and these metals were linked to local combustion point sources in southwest Detroit via receptor modeling and meteorology; whereas in the other exposure period, no such trace metals were observed. By comparing these two disparate results, this investigation was able to define possible links between PM 2.5 emitted from refineries and incinerators and biologically

  20. Acute lung injury following inhalation exposure to nerve agent VX in guinea pigs.

    PubMed

    Wright, Benjamin S; Rezk, Peter E; Graham, Jacob R; Steele, Keith E; Gordon, Richard K; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2006-05-01

    A microinstillation technique of inhalation exposure was utilized to assess lung injury following chemical warfare nerve agent VX [methylphosphonothioic acid S-(2-[bis(1-methylethyl)amino]ethyl) O-ethyl ester] exposure in guinea pigs. Animals were anesthetized using Telazol-meditomidine, gently intubated, and VX was aerosolized using a microcatheter placed 2 cm above the bifurcation of the trachea. Different doses (50.4 microg/m3, 70.4 micro g/m(m3), 90.4 microg/m(m3)) of VX were administered at 40 pulses/min for 5 min. Dosing of VX was calculated by the volume of aerosol produced per 200 pulses and diluting the agent accordingly. Although the survival rate of animals exposed to different doses of VX was similar to the controls, nearly a 20% weight reduction was observed in exposed animals. After 24 h of recovery, the animals were euthanized and bronchoalveolar lavage (BAL) was performed with oxygen free saline. BAL was centrifuged and separated into BAL fluid (BALF) and BAL cells (BALC) and analyzed for indication of lung injury. The edema by dry/wet weight ratio of the accessory lobe increased 11% in VX-treated animals. BAL cell number was increased in VX-treated animals compared to controls, independent of dosage. Trypan blue viability assay indicated an increase in BAL cell death in 70.4 microg/m(m3) and 90.4 microg/m(m3) VX-exposed animals. Differential cell counting of BALC indicated a decrease in macrophage/monocytes in VX-exposed animals. The total amount of BAL protein increased gradually with the exposed dose of VX and was highest in animals exposed to 90.4 microg/m(m3), indicating that this dose of VX caused lung injury that persisted at 24 h. In addition, histopathology results also suggest that inhalation exposure to VX induces acute lung injury.

  1. Effect of 4-week inhalation exposure to 1-bromopropane on blood pressure in rats.

    PubMed

    Huang, Fen; Ichihara, Sahoko; Yamada, Yuki; Banu, Shameema; Ichihara, Gaku

    2017-03-01

    The pathophysiology of hypertension is complex and multifactorial, and includes exposure to various chemical substances. Several recent studies have documented the reproductive and neurological toxicities of 1-bromopropane (1-BP). Given that 1-BP increased reactive oxygen species in the brain of rats, we hypothesized that 1-BP also has cardiovascular toxicity through increased oxidative stress. To test this hypothesis, male F344 and Wistar Nagoya rats (n = 7-8 per group per test) were exposed to 0 or 1000 ppm of 1-BP via inhalation for 4 weeks (8 h per day, 7 days per week). The exposure to 1-BP increased systolic blood pressure. This effect was associated with a significant decrease in the reduced/oxidized glutathione ratio. A significant increase in nitrotyrosine levels, activation of the NADPH oxidase pathway, which was evidenced by upregulation of gp91phox, a NADPH oxidase subunit, and significant decreases in the expressions of antioxidant molecules such as Cu/Zn- and Mn-superoxide dismutase catalase, and nuclear factor erythroid 2-related factor 2, were observed in the aortas of Wistar Nagoya rats exposed to 1-BP. Our results indicate that subacute (4-week) inhalation exposure to 1-BP increases blood pressure and suggest that this cardiovascular toxic effect is due, at least in part, to increased oxidative stress mediated through activation of the NADPH oxidase pathway. Further study is needed to assess whether NADPH oxidase activation causes the increase in blood pressure in the rats exposed to 1-BP. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Gastrointestinal acetylcholinesterase activity following endotracheal microinstillation inhalation exposure to sarin in guinea pigs.

    PubMed

    Chanda, Soma; Song, Jian; Rezk, Peter; Sabnekar, Praveena; Doctor, Bhupendra P; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2010-09-06

    The goal of this study was to assess acetylcholinesterase (AChE) inhibition at different regions of the gastrointestinal (GI) tract following inhalation exposure to nerve agent sarin. Seven major regions of the GI tract were removed from saline control animals (n=3) and 677.4 mg/m(3) sarin-exposed animals at 4h (n=4) and 24h (n=4) post-exposure. AChE activity was determined in blood and homogenized tissue supernatant by specific Ellman's assay using Iso-OMPA, a BChE inhibitor, and expressed as activity/optical density of hemoglobin for blood and activity/mg protein for tissues. Our data showed that the AChE activity was significantly decreased for groups both 4h and 24h post-sarin exposure. Among the seven chosen regions of the guinea pig GI tract, duodenum showed the highest AChE activity in control animals. The AChE activity was significantly decreased in the stomach (p=0.03), duodenum (p=0.029), jejunum (p=0.006), and ileum (p=0.006) 4h following sarin exposure. At 24h post-sarin exposure the AChE activity of duodenum (p=0.029) and ileum (p=0.006) was significantly inhibited. Esophagus showed no inhibition following sarin exposure at both 4h and 24h groups. These results suggest that the AChE activity is different in different regions of the GI tract and highest levels of AChE inhibition following sarin exposure were seen in regions exhibiting higher overall AChE activity and cholinergic function.

  3. Inhalation exposure to ethylene induces eosinophilic rhinitis and nasal epithelial remodeling in Fischer 344 rats.

    PubMed

    Brandenberger, Christina; Hotchkiss, Jon A; Krieger, Shannon M; Pottenger, Lynn H; Harkema, Jack R

    2015-11-05

    This study investigated the time- and concentration-dependent effects of inhaled ethylene on eosinophilic rhinitis and nasal epithelial remodeling in Fisher 344 rats exposed to 0, 10, 50, 300, or 10,000 ppm ethylene, 6 h/day, 5 days/week for up to 4 weeks. Morphometric quantitation of eosinophilic inflammation and mucous cell metaplasia/hyperplasia (MCM) and nasal mucosal gene expression were evaluated at anatomic sites previously shown to undergo ethylene-induced epithelial remodeling. Serum levels of total IgE, IgG1 and IgG2a were measured to determine if ethylene exposure increased the expression of Th2-associated (IgE and IgG1) relative to Th1-associated (IgG2a) antibody isotypes. Rats exposed to 0 or 10,000 ppm for 1, 3, 5, 10, or 20 days were analyzed to assess the temporal pattern of ethylene-induced alterations in nasal epithelial cell proliferation, morphology and gene expression. Rats exposed to 0, 10, 50, 300, and 10,000 ppm ethylene for 20 days were analyzed to assess concentration-dependent effects on lesion development. Additional rats exposed 4 weeks to 0, 300, or 10,000 ppm ethylene were held for 13 weeks post-exposure to examine the persistence of ethylene-induced mucosal alterations. The data indicate that cell death and reparative cell proliferation were not a part of the pathogenesis of ethylene-induced nasal lesions. Enhanced gene expression of Th2 cytokines (e.g., IL-5, IL-13) and chitinase (YM1/2) in the nasal mucosa was much greater than that of Th1 cytokines (e.g., IFNγ) after ethylene exposure. A significant increase in MCM was measured after 5 days of exposure to 10,000 ppm ethylene and after 20 days of exposure 10 ppm ethylene. Ethylene-induced MCM was reversible after cessation of exposure. No increase in total serum IgE, IgG1 or IgG2a was measured in any ethylene-exposed group. These data do not support involvement of an immune-mediated allergic mechanism in the pathogenesis of ethylene-induced nasal lesions in rats. Repeated

  4. ACUTE NEUROTOXIC EFFECTS OF INHALED PERCHLOROETHYLENE ON PATTERN VISUAL EVOKED POTENTIALS AS A FUNCTION OF EXPOSURE AND ESTIMATED BLOOD AND BRAIN CONCENTRATION.

    EPA Science Inventory

    Previous experiments have shown the effects of acute inhalation exposure to trichloroethylene (TCE) and toluene are related to the target tissue concentration at the time of testing. The current studies examined exposure to another volatile organic compound, perchloroethylene (P...

  5. In Utero Smoke Exposure and Impaired Response to Inhaled Corticosteroids in Children with Asthma

    PubMed Central

    Cohen, Robyn T.; Raby, Benjamin A.; Van Steen, Kristel; Fuhlbrigge, Anne L.; Celedón, Juan C.; Rosner, Bernard A.; Strunk, Robert C.; Zeiger, Robert S.; Weiss, Scott T.

    2010-01-01

    Background Few studies have examined the effects of in utero smoke exposure (IUS) on lung function in children with asthma, and there are no published data on the impact of IUS on treatment outcomes in asthmatic children. Objectives To explore whether IUS exposure is associated with increased airway responsiveness among children with asthma, and whether IUS modifies the response to treatment with inhaled corticosteroids (ICS). Methods To assess the impact of parent-reported IUS exposure on airway responsiveness in childhood asthma we performed a repeated-measures analysis of methacholine PC20 data from the Childhood Asthma Management Program (CAMP), a four-year, multicenter, randomized double masked placebo controlled trial of 1041 children ages 5–12 comparing the long term efficacy of ICS with mast cell stabilizing agents or placebo. Results Although improvement was seen in both groups, asthmatic children with IUS exposure had on average 26% less of an improvement in airway responsiveness over time compared to unexposed children (p=.01). Moreover, while children who were not exposed to IUS who received budesonide experienced substantial improvement in PC20 compared to untreated children (1.25 fold-increase, 95% CI 1.03, 1.50, p=.02) the beneficial effects of budesonide were attenuated among children with a history of IUS exposure (1.04 fold-increase, 95% CI 0.65, 1.68, p=.88). Conclusions IUS reduces age-related improvements in airway responsiveness among asthmatic children. Moreover, IUS appears to blunt the beneficial effects of ICS use on airways responsiveness. These results emphasize the importance of preventing this exposure through smoking cessation counseling efforts with pregnant women. PMID:20673983

  6. Behavior of rock wool in lungs after exposure by nasal inhalation in rats.

    PubMed

    Kudo, Yuichiro; Aizawa, Yoshiharu

    2009-07-01

    To evaluate the safety of rock wool (RW fibers), we examined the biopersistence of a RW sample in the lungs of rats, based on the changes of fiber number and fiber size in terms of length and width, by a nose-only inhalation exposure study. Twenty male Fischer 344 rats (6-10 weeks old) were exposed to RW fibers at a concentration of 70 (21) fiber/m(3) and 30 (6.6) mg/m(3), arithmetic mean (geometric standard deviation), continuously for 3 h daily for five consecutive days. Five rats each were sacrificed shortly and at 1, 2, and 4 weeks after exposure, and their lung tissues were ashed by a low-temperature plasma-asher. Then, the numbers and sizes of fibers in the ashed samples were determined using phase-contrast microscope and computed image analyzer. The fiber numbers in the lungs 4 weeks after exposure significantly decreased from the baseline value, i.e., shortly after exposure (P < 0.05). The half-lives of RW fibers calculated from the one-compartment model were 32 days for total fibers and 10 days for fibers longer than 20 mum. The decrease of fiber number was 53.6% by 4 weeks after exposure (baseline group = 100%). Likewise, fiber sizes significantly decreased by 4 weeks after exposure (P < 0.05), probably because fibers were dissolved in body fluid, ingested by alveolar macrophages or discharged to outside of the body by mucociliary movement. In future studies, it is necessary to examine the long-term persistence of RW fibers in the lungs.

  7. SIMULATION TOOL KIT FOR INDOOR AIR QUALITY AND INHALATION EXPOSURE (IAQX) VERSION 1.0 USER'S GUIDE

    EPA Science Inventory

    The User's Guide describes a Microsoft Windows-based indoor air quality (IAQ) simulation software package designed Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short. This software complements and supplements existing IAQ simulation programs and...

  8. Behavioral and biochemical evaluation of sub-lethal inhalation exposure to VX in rats.

    PubMed

    Genovese, Raymond F; Benton, Bernard J; Lee, Esther H; Shippee, Sara J; Jakubowski, E Michael

    2007-03-22

    We evaluated the effects of low-level inhalation exposures (whole body, 60min duration) to the chemical warfare nerve agent VX (0.016, 0.15, 0.30 or 0.45mg/m(3)) in rats. The range of concentrations was approximately equivalent to 0.02-0.62 times 1.0 LC50. Biochemical effects were assessed by evaluating blood acetylcholinesterase (AChE) activity and by a regeneration assay that quantified the amount of VX (as the G analog) present in blood. Behavioral effects were assessed using a variable-interval 56-s schedule of reinforcement (VI56), in which rats were trained to press a lever to receive a food reward. VI56 training was established before exposure and evaluations continued after exposure. Additionally, after exposure, acquisition and maintenance of an eight-arm radial maze (RAM) task was evaluated in which rats learned to locate the four arms of the maze that presented a single food pellet reward. Behavioral assessments were conducted over approximately 3 months following exposure. Transient miosis was observed following exposure to all concentrations of VX and exposures to the 0.45mg/m(3) concentration also produced mild and temporary signs of toxicity (i.e., slight tremor and ataxia) in some subjects. All concentrations of VX also inhibited circulating AChE and the highest concentration inhibited AChE activity to less than 10% of pre-exposure values. Regenerated VX-G was found in red blood cell (RBC) and plasma blood fractions. In this respect, more VX-G was seen in plasma than RBC. Only small disruptions were observed on the VI56 or RAM following some VX exposures. In general, however, behavioral effects were minor and not clearly systematic. Taken together these results demonstrate that largely asymptomatic exposures to VX vapors in rats can produce substantial biochemical effects while having only minor performance effects on a previously learned behavioral task and on the acquisition of a new behavioral task.

  9. Acute pulmonary toxicity following inhalation exposure to aerosolized VX in anesthetized rats.

    PubMed

    Peng, Xinqi; Perkins, Michael W; Simons, Jannitt; Witriol, Alicia M; Rodriguez, Ashley M; Benjamin, Brittany M; Devorak, Jennifer; Sciuto, Alfred M

    2014-06-01

    This study evaluated acute toxicity and pulmonary injury in rats at 3, 6 and 24 h after an inhalation exposure to aerosolized O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX). Anesthetized male Sprague-Dawley rats (250-300 g) were incubated with a glass endotracheal tube and exposed to saline or VX (171, 343 and 514 mg×min/m³ or 0.2, 0.5 and 0.8 LCt₅₀, respectively) for 10 min. VX was delivered by a small animal ventilator at a volume of 2.5 ml × 70 breaths/minute. All VX-exposed animals experienced a significant loss in percentage body weight at 3, 6, and 24 h post-exposure. In comparison to controls, animals exposed to 514 mg×min/m³ of VX had significant increases in bronchoalveolar lavage (BAL) protein concentrations at 6 and 24 h post-exposure. Blood acetylcholinesterase (AChE) activity was inhibited dose dependently at each of the times points for all VX-exposed groups. AChE activity in lung homogenates was significantly inhibited in all VX-exposed groups at each time point. All VX-exposed animals assessed at 20 min and 3, 6 and 24 h post-exposure showed increases in lung resistance, which was prominent at 20 min and 3 h post-exposure. Histopathologic evaluation of lung tissue of the 514 mg×min/m³ VX-exposed animals at 3, 6 and 24 h indicated morphological changes, including perivascular inflammation, alveolar exudate and histiocytosis, alveolar septal inflammation and edema, alveolar epithelial necrosis, and bronchiolar inflammatory infiltrates, in comparison to controls. These results suggest that aerosolization of the highly toxic, persistent chemical warfare nerve agent VX results in acute pulmonary toxicity and lung injury in rats.

  10. Kinetics of sarin (GB) following a single sublethal inhalation exposure in the guinea pig.

    PubMed

    Whalley, Christopher E; McGuire, Jeffrey M; Miller, Dennis B; Jakubowski, Edward M; Mioduszewski, Robert J; Thomson, Sandra A; Lumley, Lucille A; McDonough, John H; Shih, Tsung-Ming A

    2007-06-01

    To improve toxicity estimates from sublethal exposures to chemical warfare nerve agents (CWNA), it is necessary to generate mathematical models of the absorption, distribution, and elimination of nerve agents. However, current models are based on representative data sets generated with different routes of exposure and in different species and are designed to interpolate between limited laboratory data sets to predict a wide range of possible human exposure scenarios. This study was performed to integrate CWNA sublethal toxicity data in male Duncan Hartley guinea pigs. Specific goal was to compare uptake and clearance kinetics of different sublethal doses of sarin (either 0.1 x or 0.4 x LC50) in blood and tissues of guinea pigs exposed to agent by acute whole-body inhalation exposure after the 60-min LC50 was determined. Arterial catheterization allowed repeated blood sampling from the same animal at various time periods. Blood and tissue levels of acetylcholinesterase, butyrylcholinesterase, and regenerated sarin (rGB) were determined at various time points during and following sarin exposure. The following pharmacokinetic parameters were calculated from the graph of plasma or RBC rGB concentration versus time: time to reach the maximal concentration; maximal concentration; mean residence time; clearance; volume of distribution at steady state; terminal elimination-phase rate constant; and area under plasma concentration time curve extrapolated to infinity using the WinNonlin analysis program 5.0. Plasma and RBC t(1/2) for rGB was also calculated. Data will be used to develop mathematical model of absorption and distribution of sublethal sarin doses into susceptible tissues.

  11. Component-specific toxic concerns of the inhalable fraction of urban road dust.

    PubMed

    Potgieter-Vermaak, S; Rotondo, G; Novakovic, V; Rollins, S; Van Grieken, R

    2012-12-01

    Continuous global urbanisation causes an ever-growing ecological footprint of pollution. Road dust (RD), one of these pollutants, poses a health concern due to carcinogenic and toxic components potentially present in the micron-sized fractions. The literature reports on the concentrations of trace, toxic metals and metalloids present in RD (Hooker and Nathanail in Chem Geol 226:340-351, 2006), but the literature on its molecular composition is limited. Recent reports on the bioaccessibility of platinum group metals are also reported (Colombo et al. in Chem Geol 226:340-351, 2008). In vitro and animal toxicological studies confirmed that the chemical composition of inhaled particles plays a major role in its toxic, genotoxic and carcinogenic mechanisms, but the component-specific toxic effects are still not understood. Particle-bound airborne transition metals can also lead to the production of reactive oxygen species in lung tissue; a special concern amongst particularly susceptible cohorts (children and elderly). The characterisation of the molecular composition of the fine fraction is evidently of importance for public health. During a pilot study, partially characterised size-fractioned RD samples (Barrett et al. in Eviron Sci Technol 44:2940-2946, 2010) were analysed for their elemental concentration using X-ray fluorescence spectrometry and inductively coupled plasma mass spectrometry. In addition, separately dispersed particles (200 particles per size fraction) were analysed individually by means of computer-controlled electron probe X-ray micro-analysis (CC-EPXMA) and their molecular structure probed by studying elemental associations. These were correlated with micro-Raman spectroscopy (MRS) results. It was found that the fine fraction (<38 μm) had the highest Pb (238 ppm) and Cr (171 ppm) concentrations. The CC-EPXMA data showed >50 % association of Cr-rich particles with Pb, and the MRS data showed that the Cr was mostly present as lead chromate and

  12. Depleted uranium contamination by inhalation exposure and its detection after approximately 20 years: implications for human health assessment.

    PubMed

    Parrish, Randall R; Horstwood, Matthew; Arnason, John G; Chenery, Simon; Brewer, Tim; Lloyd, Nicholas S; Carpenter, David O

    2008-02-01

    Inhaled depleted uranium (DU) aerosols are recognised as a distinct human health hazard and DU has been suggested to be responsible in part for illness in both military and civilian populations that may have been exposed. This study aimed to develop and use a testing procedure capable of detecting an individual's historic milligram-quantity aerosol exposure to DU up to 20 years after the event. This method was applied to individuals associated with or living proximal to a DU munitions plant in Colonie New York that were likely to have had a significant DU aerosol inhalation exposure, in order to improve DU-exposure screening reliability and gain insight into the residence time of DU in humans. We show using sensitive mass spectrometric techniques that when exposure to aerosol has been unambiguous and in sufficient quantity, urinary excretion of DU can be detected more than 20 years after primary DU inhalation contamination ceased, even when DU constitutes only approximately 1% of the total excreted uranium. It seems reasonable to conclude that a chronically DU-exposed population exists within the contamination 'footprint' of the munitions plant in Colonie, New York. The method allows even a modest DU exposure to be identified where other less sensitive methods would have failed entirely. This should allow better assessment of historical exposure incidence than currently exists.

  13. Estimated rate of fatal automobile accidents attributable to acute solvent exposure at low inhaled concentrations.

    PubMed

    Benignus, Vernon A; Bushnell, Philip J; Boyes, William K

    2011-12-01

    Acute solvent exposures may contribute to automobile accidents because they increase reaction time and decrease attention, in addition to impairing other behaviors. These effects resemble those of ethanol consumption, both with respect to behavioral effects and neurological mechanisms. These observations, along with the extensive data on the relationship between ethanol consumption and fatal automobile accidents, suggested a way to estimate the probability of fatal automobile accidents from solvent inhalation. The problem can be approached using the logic of the algebraic transitive postulate of equality: if A=B and B=C, then A=C. We first calculated a function describing the internal doses of solvent vapors that cause the same magnitude of behavioral impairment as ingestion of ethanol (A=B). Next, we fit a function to data from the literature describing the probability of fatal car crashes for a given internal dose of ethanol (B=C). Finally, we used these two functions to generate a third function to estimate the probability of a fatal car crash for any internal dose of organic solvent vapor (A=C). This latter function showed quantitatively (1) that the likelihood of a fatal car crash is increased by acute exposure to organic solvent vapors at concentrations less than 1.0 ppm, and (2) that this likelihood is similar in magnitude to the probability of developing leukemia from exposure to benzene. This approach could also be applied to other potentially adverse consequences of acute exposure to solvents (e.g., nonfatal car crashes, property damage, and workplace accidents), if appropriate data were available.

  14. Single inhalation exposure to 90SrCl2 in the beagle dog: hematological effects

    SciTech Connect

    Gillett, N.A.; Muggenburg, B.A.; Boecker, B.B.; Hahn, F.F.; Seiler, F.A.; Rebar, A.H.; Jones, R.K.; McClellan, R.O.

    1987-05-01

    The toxicity of /sup 90/Sr administered by the inhalation route was studied in young adult Beagle dogs exposed once to aerosols containing /sup 90/SrCl/sub 2/. Due to its relatively soluble chemical form, /sup 90/Sr was rapidly translocated from lung to bone where a substantial portion was retained for a long period of time. This resulted in only a brief radiation exposure of the respiratory tract and a protracted exposure of the skeleton. The long-term retained burdens ranged from 0.037 to 4.4 MBq /sup 90/Sr/kg body wt. Dogs were subsequently observed throughout their life span. Six dogs with long-term retained burdens of 1.7 to 4.1 MBq /sup 90/Sr/kg died at less than 32 days after exposure from radiation-induced bone marrow hypoplasia. Review of hematological parameters of all dogs showed a similar, consistent, and dose-related pancytopenia in those animals having a long-term retained burden of greater than 0.37 MBq /sup 90/Sr/kg. Thrombocytopenia and neutropenia persisted in all exposed dogs through 1000 days after exposure. For reference purposes, a burden of 0.37 MBq /sup 90/Sr/kg is calculated to deliver an average radiation dose to the skeleton over 30, 100, and 1000 days after intake of 1.0, 2.8, and 17 Gy, respectively. The hematologic changes were similar to those seen in people exposed to high doses of whole-body external radiation.

  15. Treatment with endotracheal therapeutics after sarin microinstillation inhalation exposure increases blood cholinesterase levels in guinea pigs.

    PubMed

    Che, Magnus M; Song, Jian; Oguntayo, Samuel; Doctor, Bhupendra P; Rezk, Peter; Perkins, Michael W; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2012-05-01

    Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in the blood and tissues of animals that are treated with a number of endotracheally aerosolized therapeutics for protection against inhalation toxicity to sarin. Therapeutics included, aerosolized atropine methyl bromide (AMB), scopolamine or combination of AMB with salbutamol, sphingosine 1-phosphate, keratinocyte growth factor, adenosine A1 receptor antisense oligonucleotide (EPI2010), 2,3-diacetyloxybenzoic acid (2,3 DABA), oxycyte, and survanta. Guinea pigs exposed to 677.4 mg/m(3) or 846.5 mg/m(3) (1.2 LCt(50)) sarin for 4 min using a microinstillation inhalation exposure technique and treated 1 min later with the aerosolized therapeutics. Treatment with all therapeutics significantly increased the survival rate with no convulsions throughout the 24 h study period. Blood AChE activity determined using acetylthiocholine as substrate showed 20% activity remaining in sarin-exposed animals compare to controls. In aerosolized AMB and scopolamine-treated animals the remaining AChE activity was significantly higher (45-60%) compared to sarin-exposed animals (p < 0.05). Similarly, treatment with all the combination therapeutics resulted in significant increase in blood AChE activity in comparison to sarin-exposed animals although the increases varied between treatments (p < 0.05). BChE activity was increased after treatment with aerosolized therapeutics but was lesser in magnitude compared to AChE activity changes. Various tissues showed elevated AChE activity after therapeutic treatment of sarin-exposed animals. Increased AChE and BChE activities in animals treated with nasal therapeutics suggest that enhanced breathing and reduced respiratory toxicity/lung injury possibly contribute to rapid normalization of chemical warfare nerve agent inhibited cholinesterases.

  16. Potential for Inhalation Exposure to Engineered Nanoparticles from Nanotechnology-Based Cosmetic Powders

    PubMed Central

    Nazarenko, Yevgen; Zhen, Huajun; Han, Taewon; Lioy, Paul J.

    2012-01-01

    Background: The market of nanotechnology-based consumer products is rapidly expanding, and the lack of scientific evidence describing the accompanying exposure and health risks stalls the discussion regarding its guidance and regulation. Objectives: We investigated the potential for human contact and inhalation exposure to nanomaterials when using nanotechnology-based cosmetic powders and compare them with analogous products not marketed as nanotechnology based. Methods: We characterized the products using transmission electron microscopy (TEM) and laser diffraction spectroscopy and found nanoparticles in five of six tested products. TEM photomicrographs showed highly agglomerated states of nanoparticles in the products. We realistically simulated the use of cosmetic powders by applying them to the face of a human mannequin head while simultaneously sampling the released airborne particles through the ports installed in the mannequin’s nostrils. Results: We found that a user would be exposed to nanomaterial predominantly through nanoparticle-containing agglomerates larger than the 1–100-nm aerosol fraction. Conclusions: Predominant deposition of nanomaterial(s) will occur in the tracheobronchial and head airways—not in the alveolar region as would be expected based on the size of primary nanoparticles. This could potentially lead to different health effects than expected based on the current understanding of nanoparticle behavior and toxicology studies for the alveolar region. PMID:22394622

  17. Epicutaneous antigen exposure induces a Th17 response that drives airway inflammation after inhalation challenge

    PubMed Central

    He, Rui; Oyoshi, Michiko K.; Jin, Haoli; Geha, Raif S.

    2007-01-01

    IL-17 has been implicated in a number of inflammatory diseases, but the conditions of antigen exposure that drive the generation of Th17 responses have not been well defined. Epicutaneous (EC) immunization of mice with ovalbumin (OVA), which causes allergic skin inflammation with many characteristics of the skin lesions of atopic dermatitis, was found to also drive IL-17 expression in the skin. EC, but not i.p., immunization of mice with OVA drove the generation of IL-17-producing T cells in draining lymph nodes and spleen and increased serum IL-17 levels. OVA inhalation by EC-sensitized mice induced IL-17 and CXCL2 expression and neutrophil influx in the lung along with bronchial hyperreactivity, which were reversed by IL-17 blockade. Dendritic cells trafficking from skin to lymph nodes expressed more IL-23 and induced more IL-17 secretion by naïve T cells than splenic dendritic cells. This was inhibited by neutralizing IL-23 in vitro and by intradermal injection of anti-TGFβ neutralizing antibody in vivo. Our findings suggest that initial cutaneous exposure to antigens in patients with atopic dermatitis may selectively induce the production of IL-17, which, in turn, drives inflammation of their airways. PMID:17893340

  18. Pathways of inhalation exposure to manganese in children living near a ferromanganese refinery: A structural equation modeling approach.

    PubMed

    Fulk, Florence; Succop, Paul; Hilbert, Timothy J; Beidler, Caroline; Brown, David; Reponen, Tiina; Haynes, Erin N

    2017-02-01

    Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation pathway model to ambient air Mn was hypothesized. Data for model evaluation were obtained from participants in the Communities Actively Researching Exposure Study (CARES). These data were collected in 2009 and included levels of Mn in residential soil and dust, levels of Mn in children's hair, information on the amount of time the child spent outside, heat and air conditioning in the home and level of parent education. Hair Mn concentration was the primary endogenous variable used to assess the theoretical inhalation exposure pathways. The model indicated that household dust Mn was a significant contributor to child hair Mn (0.37). Annual ambient air Mn concentration (0.26), time children spent outside (0.24) and soil Mn (0.24) significantly contributed to the amount of Mn in household dust. These results provide a potential framework for understanding the inhalation exposure pathway for children exposed to ambient air Mn who live in proximity to an industrial emission source.

  19. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures.

    PubMed

    Proctor, Deborah M; Suh, Mina; Campleman, Sharan L; Thompson, Chad M

    2014-11-05

    Inhalation of hexavalent chromium [Cr(VI)] is associated with increased lung cancer risk among workers in several industries, most notably chromate production workers exposed to high concentrations of Cr(VI) (≥100 μg/m(3)), for which clear exposure-response relationships and respiratory irritation and tissue damage have been reported. Data from this industry are used to assess lung cancer risk associated with environmental and current occupational exposures, occurring at concentrations that are significantly lower. There is considerable uncertainty in the low dose extrapolation of historical occupational epidemiology data to assess risk at current exposures because no published or well recognized mode of action (MOA) for Cr(VI)-induced lung tumors exists. We conducted a MOA analysis for Cr(VI)-induced lung cancer evaluating toxicokinetic and toxicological data in humans and rodents and mechanistic data to assess plausibility, dose-response, and temporal concordance for potential MOAs. Toxicokinetic data support that extracellular reduction of Cr(VI), which limits intracellular absorption of Cr(VI) and Cr(VI)-induced toxicity, can be overwhelmed at high exposure levels. In vivo genotoxicity and mutagenicity data are mostly negative and do not support a mutagenic MOA. Further, both chronic bioassays and the epidemiologic literature support that lung cancer occurs at exposures that cause tissue damage. Based on this MOA analysis, the overall weight of evidence supports a MOA involving deposition and accumulation of particulate chromium in the bifurcations of the lung resulting in exceedance of clearance mechanisms and cellular absorption of Cr(VI). Once inside the cell, reduction of Cr(VI) results in oxidative stress and the formation of Cr ligands. Subsequent protein and DNA damage lead to tissue irritation, inflammation, and cytotoxicity. These effects, concomitant with increased cell proliferation, result in changes to DNA sequences and/or methylation status

  20. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes

    PubMed Central

    2014-01-01

    Background Engineered carbon nanotubes are currently used in many consumer and industrial products such as paints, sunscreens, cosmetics, toiletries, electronic processes and industrial lubricants. Carbon nanotubes are among the more widely used nanoparticles and come in two major commercial forms, single-walled carbon nanotubes (SWCNT) and the more rigid, multi-walled carbon nanotubes (MWCNT). The low density and small size of these particles makes respiratory exposures likely. Many of the potential health hazards have not been investigated, including their potential for carcinogenicity. We, therefore, utilized a two stage initiation/promotion protocol to determine whether inhaled MWCNT act as a complete carcinogen and/or promote the growth of cells with existing DNA damage. Six week old, male, B6C3F1 mice received a single intraperitoneal (ip) injection of either the initiator methylcholanthrene(MCA, 10 μg/g BW, i.p.), or vehicle (corn oil). One week after i.p. injections, mice were exposed by inhalation to MWCNT (5 mg/m3, 5 hours/day, 5 days/week) or filtered air (controls) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for lung tumor formation. Results Twenty-three percent of the filtered air controls, 26.5% of the MWCNT-exposed, and 51.9% of the MCA-exposed mice, had lung bronchiolo-alveolar adenomas and lung adenocarcinomas. The average number of tumors per mouse was 0.25, 0.81 and 0.38 respectively. By contrast, 90.5% of the mice which received MCA followed by MWCNT had bronchiolo-alveolar adenomas and adenocarcinomas with an average of 2.9 tumors per mouse 17months after exposure. Indeed, 62% of the mice exposed to MCA followed by MWCNT had bronchiolo-alveolar adenocarcinomas compared to 13% of the mice that received filtered air, 22% of the MCA-exposed, or 14% of the MWCNT-exposed. Mice with early morbidity resulting in euthanasia had the highest rate of metastatic disease. Three mice exposed to both MCA and

  1. Trichloroethene levels in human blood and exhaled breath from controlled inhalation exposure.

    PubMed Central

    Pleil, J D; Fisher, J W; Lindstrom, A B

    1998-01-01

    (SE) = 0.12 across all subjects. blood/breath comparisons at equilibrium resulted in calculated in vivo partition coefficients with a mean of 10.8 and SE = 0.60 across all subjects and experiments and 9.69 with SE = 0.93 for elimination-only experiments. We found that about 78% of trichloroethene entering the body during inhalation exposure is metabolized, stored, or excreted through routes other than exhalation. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9721257

  2. Lung cancer risk from exposure to alpha particles and inhalation of other pollutants in rats

    SciTech Connect

    Burns, F.J.

    1990-01-01

    The goal of these experiments is to establish a quantitative correlation between early DNA damage and cancer incidence in a way that would be helpful for assessing the carcinogenic risk of radon alone or in combination with specific indoor pollutants. Rat tracheal epithelium has been exposed in vivo to {sup 210}Po alpha particles in the presence and absence of NO{sub 2} or cigarette smoke. The major accomplishments so far are: the design and implementation of a tracheal implant to simulate radon alpha particle exposure, the measurement of DNA breaks in a small 7.0 mm segment of the trachea exposed to external x-irradiation, the measurement of the rate of repair of the x-ray induced tracheal DNA strand breaks, the measurement of DNA strand breaks following inhalation of cigarette smoke or NO{sub 2}, the measurement of tracheal DNA stand breaks following exposure to high doses {sup 210}Po alpha particle radiation, the assessment of the amount of mucous in the goblet cells and in the underlying mucous glands. So far we have been unable to detect DNA strand breaks in the tracheal epithelium as a result of exposure to NO{sub 2} cigarette smoke or {sup 210}Po alpha particles. We have developed a simple artificial' trachea consisting of rat tracheal epithelial cells growing on a basement membrane coated millipore filter. Experiments are proposed to utilize these artificial tracheas to eliminate the potential interference of increased mucous secretion and/or inflammation that can significantly affect the radiation dose from the alpha particles. 61 refs., 17 figs.

  3. Exposure to airborne microbial components in autumn and spring during work at Danish biofuel plants.

    PubMed

    Madsen, A M

    2006-11-01

    Exposure to microbial components can cause respiratory problems. The exposure levels to microbial components at biofuel plants are not known. Therefore, exposure to inhalable airborne fungi, bacteria, actinomycetes, endotoxin and NAGase was measured using personal and stationary samplers at five Danish biofuel plants in autumn and spring. The personal exposure levels to endotoxin (median=55 EU m-3), thermophilic actinomycetes (median=1.3x10(4) colony forming units (cfu) m-3), total bacteria (median=48x10(4) cells m-3) and total fungi (median=21x10(4) spores m-3) were, in general, high at the five biofuel plants. At straw reception areas, higher exposure to most microbial components was found in spring than in autumn. Endotoxin was found in higher concentrations at straw plants than at wood-chip plants, while the opposite was measured for Aspergillus fumigatus. Some tasks were associated with exposures to microorganisms and endotoxins at much higher levels than the suggested occupational exposure limits. For example, people working with a straw shredder for at least 30 min during a working day were exposed to a median endotoxin exposure of 23,775 endotoxin units (EU) m-3. People working with estimating the water content in wood chips and repairing the chips cranes for at least 30 min during a working day were exposed to a median value of A. fumigatus of 6.7x10(4) cfu m-3 and a median value of fungi of 70x10(4) spores m-3. Consequently, this working environment may cause respiratory disorders in the people working at the plant. Differences in exposure levels were seen between the plants and this may partly be due to differences of the process equipment, tasks and the biofuel handled.

  4. Inhalation exposure to chloramine T induces DNA damage and inflammation in lung of Sprague-Dawley rats.

    PubMed

    Shim, Ilseob; Seo, Gyun-Baek; Oh, Eunha; Lee, Mimi; Kwon, Jung-Taek; Sul, Donggeun; Lee, Byung-Woo; Yoon, Byung-Il; Kim, Pilje; Choi, Kyunghee; Kim, Hyun-Mi

    2013-01-01

    Chloramine T has been widely used as a disinfectant in many areas such as kitchens, laboratories and hospitals. It has been also used as a biocide in air fresheners and deodorants which are consumer products; however, little is known about its toxic effects by inhalation route. This study was performed to identify the subacute inhalation toxicity of chloramine T under whole-body inhalation exposure conditions. Male and female groups of rats were exposed to chloramine T at concentrations of 0.2, 0.9 and 4.0 mg/m³ for 6 hr/day, 5 days/week during 4 weeks. After 28-day repeated inhalation of chloramine T, there were dose-dependently significant DNA damage in the rat tissues evaluated and inflammation was histopathologically noted around the terminal airways of the lung in both genders. As a result of the expression of three types of antioxidant enzymes (SOD-2, GPx-1, PRX-1) in rat's lung after exposure, there was no significant change of all antioxidant enzymes in the male and female rats. The results showed that no observed adverse effect level (NOAEL) was 0.2 mg/m³ in male rats and 0.9 mg/m³ in female rats under the present experimental condition.

  5. Altered Methylation in Tandem Repeat Element and Elemental Component Levels in Inhalable Air Particles

    PubMed Central

    Hou, Lifang; Zhang, Xiao; Zheng, Yinan; Wang, Sheng; Dou, Chang; Guo, Liqiong; Byun, Hyang-Min; Motta, Valeria; McCracken, John; Díaz, Anaité; Kang, Choong-Min; Koutrakis, Petros; Bertazzi, Pier Alberto; Li, Jingyun; Schwartz, Joel; Baccarelli, Andrea A.

    2014-01-01

    Exposure to particulate matter (PM) has been associated with lung cancer risk in epidemiology investigations. Elemental components of PM have been suggested to have critical roles in PM toxicity, but the molecular mechanisms underlying their association with cancer risks remain poorly understood. DNA methylation has emerged as a promising biomarker for environmental-related diseases, including lung cancer. In this study, we evaluated the effects of PM elemental components on methylation of three tandem repeats in a highly-exposed population in Beijing, China. The Beijing Truck Driver Air Pollution Study was conducted shortly before the 2008 Beijing Olympic Games (June 15-July 27, 2008) and included 60 truck drivers and 60 office workers. On two days separated by 1-2 weeks, we measured blood DNA methylation of SATα, NBL2, D4Z4, and personal exposure to eight elemental components in PM2.5, including aluminum (Al), silicon (Si), sulfur (S), potassium (K), calcium (Ca) titanium (Ti), iron (Fe), and zinc (Zn). We estimated the associations of individual elemental component with each tandem repeat methylation in generalized estimating equations (GEE) models adjusted for PM2.5 mass and other covariates. Out of the eight examined elements, NBL2 methylation was positively associated with concentrations of Si (0.121, 95%CI: 0.030; 0.212, FDR=0.047) and Ca (0.065, 95%CI: 0.014; 0.115, FDR=0.047) in truck drivers. In office workers, SATα methylation was positively associated with concentrations of S (0.115, 95%CI: 0.034; 0.196, FDR=0.042). PM-associated differences in blood tandem-repeat methylation may help detect biological effects of the exposure and identify individuals who may eventually experience higher lung cancer risk. PMID:24273195

  6. Quantifying the distribution of inhalation exposure in human populations: Distribution of minute volumes in adults and children

    SciTech Connect

    Beals, J.A.J.; Funk, L.M.; Fountain, R.; Sedman, R.

    1996-09-01

    Assessments of inhalation exposure to environmental agents necessitate quantitative estimates of pulmonary ventilation rates. Estimating a range of exposures in a given population requires an understanding of the variability of ventilation rates in the population. Distribution of ventilation rates (Ve) were described based on the results of a large study where Ve were measured while subjects performed a variety of physical tasks. Three distinct ventilation levels were identified using cluster analyses of the mean Ve and then various activities were assigned to the three levels using a k-means procedure. Separate distributions were identified for the three Ve levels for adult males, adult females, and children. The variability of Ve was consistent with a lognormal distribution for all groups. An aggregate daily inhalation rate can be estimated based on the distributions of Ve. 41 refs., 1 fig., 5 tabs.

  7. Toluene Inhalation Exposure for 13 Weeks Causes Persistent Changes in Electroretinograms of Long-Evans Rats

    PubMed Central

    Boyes, William K.; Bercegeay, Mark; Degn, Laura; Beasley, Tracey E.; Evansky, Paul A.; Mwanza, Jean Claude; Geller, Andrew M.; Pinckney, Charles; Nork, T. Michael; Bushnell, Philip J.

    2016-01-01

    Studies of humans chronically exposed to volatile organic solvents have reported impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports, however, lacked confirmation from controlled laboratory experiments. To address this question experimentally, we examined visual function by recording visual evoked potentials (VEP) and/or electroretinograms (ERG) from four sets of rats exposed repeatedly to toluene. In addition, eyes of the rats were examined with an ophthalmoscope and some of the retinal tissues were evaluated for rod and M-cone photoreceptor immunohistochemistry. The first study examined rats following exposure to 0, 10, 100 or 1000 ppm toluene by inhalation (6 hr/d, 5 d/wk) for 13 weeks. One week after the termination of exposure, the rats were implanted with chronically indwelling electrodes and the following week pattern-elicited VEPs were recorded. VEP amplitudes were not significantly changed by toluene exposure. Four to five weeks after completion of exposure, rats were dark-adapted overnight, anesthetized, and several sets of electroretinograms (ERG) were recorded. In dark-adapted ERGs recorded over a 5-log (cd-s/m2) range of flash luminance, b-wave amplitudes were significantly reduced at high stimulus luminance values in rats previously exposed to 1000 ppm toluene. A second set of rats, exposed concurrently with the first set, was tested approximately one year after the termination of 13 weeks of exposure to toluene. Again, dark-adapted ERG b-wave amplitudes were reduced at high stimulus luminance values in rats previously exposed to 1000 ppm toluene. A third set of rats was exposed to the same concentrations of toluene for only 4 weeks, and a fourth set of rats exposed to 0 or 1000 ppm toluene for 4 weeks were tested approximately 1 year after the completion of exposure. No statistically significant reductions of ERG b-wave amplitude were observed in either set of rats exposed for 4 weeks. No

  8. INHALATION EXPOSURE OF RATS TO LIBBY AMPHIBOLE (LA) AND AMOSITE ASBESTOS

    EPA Science Inventory

    Inhalation toxicology studies are being conducted to inform the risk assessment ofLibby amphibole. The overall purpose of these studies is to compare the toxicity of inhaled Libby amphibole fibers to a positive control fiber sample (UICC amosite). A 2-week study was conducted to ...

  9. Job categories and their effect on exposure to fungal alpha-amylase and inhalable dust in the U.K. baking industry.

    PubMed

    Elms, Joanne; Beckett, Paul; Griffin, Peter; Evans, Paul; Sams, Craig; Roff, Martin; Curran, Andrew D

    2003-01-01

    Enzymes in flour improver, in particular fungal alpha-amylase, are known to be a significant cause of respiratory allergy in the baking industry. This study measured total inhalable dust and fungal alpha-amylase exposures in U.K. bakeries, mills, and a flour improver production and packing facility and determined whether assignment of job description could identify individuals with the highest exposures to fungal alpha-amylase and inhalable dust. A total of 117 personal samples were taken for workers in 19 bakeries, 2 mills, and a flour improver production and packing facility and were analyzed using a monoclonal based immunoassay. Occupational hygiene surveys were undertaken for each site to assign job description and identify individuals who worked directly with flour improvers. Analysis of exposure data identified that mixers and weighers from large bakeries had the highest exposures to both inhalable dust and fungal alpha-amylase among the different categories of bakery workers (p<.01). Currently, the maximum exposure limit for flour dust in the United Kingdom is 10 mg/m(3) (8-hour time-weighted average reference period). In this study 25% of the total dust results for bakers exceeded 10 mg/m(3), and interestingly, 63% of the individuals with exposure levels exceeding 10 mg/m(3) were weighers and mixers. Individuals who worked directly with flour improvers were exposed to higher levels of both inhalable dust and fungal alpha-amylase (p<.01) than those who were not directly handling these products. Before sensitive immunoassays were utilized for the detection of specific inhalable allergens, gravimetric analysis was often used as a surrogate. There was a weak relationship between inhalable dust and fungal alpha-amylase exposures; however, inhalable dust levels could not be used to predict amylase exposures, which highlights the importance of measuring both inhalable dust and fungal alpha-amylase exposures.

  10. A two-generation inhalation reproductive toxicity study upon the exposure to manganese chloride.

    PubMed

    McGough, Doreen; Jardine, Lynne

    2017-01-01

    A number of published studies have suggested that high levels of exposure to manganese, especially those found in occupational settings, can adversely affect the reproductive system. The objective of this study was therefore to investigate if these findings can be replicated using the Sprague Dawley rat and, if so, to identify those parts of the reproductive system are more susceptible. Male and female rats were exposed to manganese dichloride (MnCl2) via inhalation at concentrations of 0 (air-control); 5, 10 and 20μg/L air over 10 weeks (F0) and over 11 weeks (F1) prior to mating, and then throughout mating, gestation and lactation until termination after the F1 and F2 generation had reached Day 21 of lactation respectively. Animals were monitored for clinical signs of toxicity and for effects on body weight, food consumption, effects on the entire reproductive system including maternal care. The offspring were monitored for survival and growth up to weaning. Blood samples were taken from all adult animals for bioanalytical of manganese analysis prior to dosing, prior to mating and prior to weaning/necropsy. There were no deaths related to treatment, though respiratory tract effects were observed in F0 animals in the mid and high dose animals. Body weight and food consumption were affected at high dose in both generation. There were no treatment-related effects on the oestrous cycles, mating performance, sexual maturity, fertility or duration of gestation or litter size, the sperm motility, count of morphology (sperm) or the ovary follicle scoring in either generation. The No Observed Effect Level (NOEL) for reproductive performance was considered to be the target dose level of 20μg/L. Based on these findings, manganese chloride could not be considered a reprotoxicant under these conditions of exposure. Therefore, soluble and insoluble forms of inorganic manganese compounds by extrapolation cannot be considered as reprotoxicants.

  11. Effects of subchronic inhalation exposure to ethyl tertiary butyl ether on splenocytes in mice.

    PubMed

    Li, Q; Kobayashi, M; Inagaki, H; Hirata, Y; Hirata, K; Shimizu, T; Wang, R-S; Suda, M; Kawamoto, T; Nakajima, T; Kawada, T

    2011-01-01

    Ethyl tertiary-butyl ether (ETBE) is a motor fuel oxygenate used in reformulated gasoline. The current use of ETBE in gasoline or petrol is modest but increasing. To investigate the effects of ETBE on splenocytes, mice were exposed to 0 (control), 500 ppm, 1750 ppm, or 5000 ppm of ETBE by inhalation for 6 h/day for 5 days/wk over a 6- or 13-week period. Splenocytes were harvested from the control and exposed mice, and the following cell phenotypes were quantified by flow cytometry: (1) B cells (PerCP-Cy5.5-CD45R/B220), (2) T cells (PerCP-Cy5-CD3e), (3) T cell subsets (FITC-CD4 and PE-CD8a), (4) natural killer (NK) cells (PE-NK1.1), and (5) macrophages (FITC-CD11b). Body weight and the weight of the spleen were also examined. ETBE-exposure did not affect the weight of the spleen or body weight, while it transiently increased the number of RBC and the Hb concentration. The numbers of splenic CD3+, CD4+, and CD8+ T cells, the percentage of CD4+ T cells and the CD4+/CD8+ T cell ratio in the ETBE-exposed groups were significantly decreased in a dose-dependent manner. However, ETBE exposure did not affect the numbers of splenic NK cells, B cells, or macrophages or the total number of splenocytes. The above findings indicate that ETBE selectively affects the number of splenic T cells in mice.

  12. Assessment of inhalation exposures and potential health risks to the general population that resulted from the collapse of the World Trade Center towers.

    PubMed

    Lorber, Matthew; Gibb, Herman; Grant, Lester; Pinto, Joseph; Pleil, Joachim; Cleverly, David

    2007-10-01

    In the days following the collapse of the World Trade Center (WTC) towers on September 11, 2001 (9/11), the U.S. Environmental Protection Agency (EPA) initiated numerous air monitoring activities to better understand the ongoing impact of emissions from that disaster. Using these data, EPA conducted an inhalation exposure and human health risk assessment to the general population. This assessment does not address exposures and potential impacts that could have occurred to rescue workers, firefighters, and other site workers, nor does it address exposures that could have occurred in the indoor environment. Contaminants evaluated include particulate matter (PM), metals, polychlorinated biphenyls, dioxins, asbestos, volatile organic compounds, particle-bound polycyclic aromatic hydrocarbons, silica, and synthetic vitreous fibers (SVFs). This evaluation yielded three principal findings. (1) Persons exposed to extremely high levels of ambient PM and its components, SVFs, and other contaminants during the collapse of the WTC towers, and for several hours afterward, were likely to be at risk for acute and potentially chronic respiratory effects. (2) Available data suggest that contaminant concentrations within and near ground zero (GZ) remained significantly elevated above background levels for a few days after 9/11. Because only limited data on these critical few days were available, exposures and potential health impacts could not be evaluated with certainty for this time period. (3) Except for inhalation exposures that may have occurred on 9/11 and a few days afterward, the ambient air concentration data suggest that persons in the general population were unlikely to suffer short-term or long-term adverse health effects caused by inhalation exposures. While this analysis by EPA evaluated the potential for health impacts based on measured air concentrations, epidemiological studies conducted by organizations other than EPA have attempted to identify actual impacts. Such

  13. Analysis of Intervention Strategies for Inhalation Exposure to Polycyclic Aromatic Hydrocarbons and Associated Lung Cancer Risk Based on a Monte Carlo Population Exposure Assessment Model

    PubMed Central

    Zhou, Bin; Zhao, Bin

    2014-01-01

    It is difficult to evaluate and compare interventions for reducing exposure to air pollutants, including polycyclic aromatic hydrocarbons (PAHs), a widely found air pollutant in both indoor and outdoor air. This study presents the first application of the Monte Carlo population exposure assessment model to quantify the effects of different intervention strategies on inhalation exposure to PAHs and the associated lung cancer risk. The method was applied to the population in Beijing, China, in the year 2006. Several intervention strategies were designed and studied, including atmospheric cleaning, smoking prohibition indoors, use of clean fuel for cooking, enhancing ventilation while cooking and use of indoor cleaners. Their performances were quantified by population attributable fraction (PAF) and potential impact fraction (PIF) of lung cancer risk, and the changes in indoor PAH concentrations and annual inhalation doses were also calculated and compared. The results showed that atmospheric cleaning and use of indoor cleaners were the two most effective interventions. The sensitivity analysis showed that several input parameters had major influence on the modeled PAH inhalation exposure and the rankings of different interventions. The ranking was reasonably robust for the remaining majority of parameters. The method itself can be extended to other pollutants and in different places. It enables the quantitative comparison of different intervention strategies and would benefit intervention design and relevant policy making. PMID:24416436

  14. Determination of potential dermal and inhalation operator exposure to malathion in greenhouses with the whole body dosimetry method.

    PubMed

    Machera, K; Goumenou, M; Kapetanakis, E; Kalamarakis, A; Glass, C R

    2003-01-01

    One of the steps during the authorization process of plant protection products (PPP) in the European Union is to evaluate the safety of the operator. For this purpose, information on the probable levels of operator exposure during the proposed uses of the PPP is required. These levels can be estimated by using existing mathematical models or from field study data. However, the existing models have several shortcomings, including the lack of data for operator exposure levels during spray applications by hand lance, especially in greenhouses. The present study monitored the potential dermal and inhalation operator exposure from hand-held lance applications of malathion on greenhouse tomatoes at low and high spraying pressures. The methodology for monitoring potential exposure was based on the whole body dosimetry method. Inhalation exposure was monitored using personal air pumps and XAD-2 sampling tubes. For the monitoring of hand exposure, cotton gloves were used in two trials and rubber gloves in another three. The total volumes of spray solution contaminating the body of the operator were 25.37 and 35.83 ml/h, corresponding to 0.05 and 0.07% of the applied spray solution, respectively, in the case of low pressure knapsack applications and from 160.76 to 283.45 ml/h, corresponding to 0.09-0.19% of the spray solution applied, in the case of hand lance applications with tractor-generated high pressure. Counts on gloves depended on the absorbance/repellency of the glove material. The potential inhalation exposures were estimated at 0.07 and 0.09 ml/h in the case of low pressure knapsack applications, based on a ventilation rate of 25 l/min. Both potential dermal operator exposure (excluding hands) and potential inhalation exposure were increased by a factor of approximately 7 when the application pressure was increased from 3 to 18 bar in greenhouse trials with a tractor-assisted hand lance, the rest of the application conditions being very similar.

  15. Children's inhalation exposure to methamidophos from sprayed potato fields in Washington State: exploring the use of probabilistic modeling of meteorological data in exposure assessment.

    PubMed

    Ramaprasad, Jaya; Tsai, Min G-Yi; Fenske, Richard A; Faustman, Elaine M; Griffith, William C; Felsot, Allan S; Elgethun, Kai; Weppner, Sarah; Yost, Michael G

    2009-09-01

    We examined the significance of meteorology and postspray volatilization of methamidophos (an organophosphorus insecticide) in assessing potential inhalation risk to children in an agricultural community. We combined fluxes from sources and dispersion modeling with a range of possible local meteorology to create output to study the variability in potential community exposure as a result of changing temperature, wind speeds and wind directions. This work is based on an aerial spray drift study where air sampling measurements of methamidophos were made before, during and after a spray event were used to examine acute inhalation risk for children living in an Eastern Washington State community in close proximity (between 15 and 200 m) to sprayed potato fields. We compared the measured average air concentrations of methamidophos in the community to a "no observed adverse effect level" for subchronic inhalation to characterize acute and subchronic inhalation risks. The baseline estimates of inhalation exposure were below Environment Protection Agency's (EPA) level of concern based on a target margin of exposure of 300. As meteorological conditions during and after spraying influence the amount of material moving into areas where children reside we used historical meteorological data to drive model simulations that predicted likely air residue concentrations under different wind and temperature conditions. We also added variability to the decay constant and initial emission fluxes to create a 2-D simulation of estimated air concentrations in the community near the fields. This work provides a methodological framework for the assessment of air concentrations of pesticides from agricultural sprays in the absence of extended measurements, although including variability from meteorological conditions. The deterministic as well as the probabilistic risk analyses in this study indicated that postspray volatilization in the specific spray situation analyzed (methamidophos

  16. Graphical Arrays of Chemical-Specific Health Effect Reference Values for Inhalation Exposures (2009 Final Report)

    EPA Science Inventory

    This document provides graphical arrays and tables of key information on the derivation of human inhalation health effect reference values for specific chemicals, allowing comparisons across durations, populations, and intended use. A number of program offices within the Agency, ...

  17. Pathology of acute inhalation exposure to 3-methylfuran in the rat and hamster

    SciTech Connect

    Haschek, W.M.; Morse, C.C.; Boyd, M.R.; Hakkinen, P.J.; Witschi, H.P.

    1983-01-01

    The acute inhalation toxicity of 3-methylfuran (3MF) was investigated in SPF Fischer-derived and CD/CR rats, and golden Syrian hamsters by determination of the 2-week LC/sub 50/, and by histologic examination of animals killed 1, 3, and 14 days following a 1-hr exposure to 148 and 322 ..mu..mole 3MF/liter for CD/CR rats and hamsters, respectively. The Fischer-derived rat was more sensitive to 3MF-induced lethality than the CD/CR rat with an LC/sub 50/ in the male rat of 81 ..mu..mole/liter-1 hr as compared to 222 ..mu..mole/liter-1hr. No sex difference was found. The hamster was relatively resistant with no lethality at 322 ..mu..mole 3MF/liter-2 hr. Pulmonary damage was present in both species. In the hamster, selective necrosis of nonciliated bronchiolar epithelial (Clara) cells was seen at 1 day with virtually complete regeneration by 14 days whereas in the rat the bronchiolar epithelial damage was more extensive and was followed by scattered peribronchiolar fibrosis and epithelial mucous metaplasia suggestive of ''small airway disease'' of man. Relatively selective 3MF-induced necrosis of olfactory epithelium occurred in the nasal mucosa of both species. Resolution of this lesion was seen by 14 days in the hamster. In the rat, however, the necrosis was much more extensive and was followed by partially occlusive fibrosis of the nasal cavity as seen at 14 days. 3MF also induced centrilobular hepatic necrosis in both species. In the rat, lymphocyte necrosis in the thymus and spleen, and esophageal necrosis was also seen.

  18. Pathology of acute inhalation exposure to 3-methylfuran in the rat and hamster

    SciTech Connect

    Haschek, W.M.; Morse, C.C.; Boyd, M.R.; Hakkinen, P.J.; Witschi, H.P.

    1983-12-01

    The acute inhalation toxicity of 3-methylfuran (3MF) was investigated in SPF Fischer-derived and CD/CR rats, and golden Syrian hamsters by determination of the 2-week LC50, and by histologic examination of animals killed 1, 3, and 14 days following a 1-hr exposure to 148 and 322 mumole 3MF/liter for CD/CR rats and hamsters, respectively. The Fischer-derived rat was more sensitive to 3MF-induced lethality than the CD/CR rat with an LC50 in the male rat of 81 mumole/liter-1 hr as compared to 222 mumole/liter-1 hr. No sex difference was found. The hamster was relatively resistant with no lethality at 322 mumole 3MF/liter-2 hr. Pulmonary damage was present in both species. In the hamster, selective necrosis of nonciliated bronchiolar epithelial (Clara) cells was seen at 1 day with virtually complete regeneration by 14 days whereas in the rat the bronchiolar epithelial damage was more extensive and was followed by scattered peribronchiolar fibrosis and epithelial mucous metaplasia suggestive of ''small airway disease'' of man. Relatively selective 3MF-induced necrosis of olfactory epithelium occurred in the nasal mucosa of both species. Resolution of this lesion was seen by 14 days in the hamster. In the rat, however, the necrosis was much more extensive and was followed by partially occlusive fibrosis of the nasal cavity as seen at 14 days. 3MF also induced centrilobular hepatic necrosis in both species. In the rat, lymphocyte necrosis in the thymus and spleen, and esophageal necrosis was also seen.

  19. Dominant lethal study in CD-1 mice following inhalation exposure to 1,3-butadiene: Final technical report

    SciTech Connect

    Hackett, P.L.; Mast, T.J.; Brown, M.G.; Clark, M.L.; Evanoff, J.J.; Rowe, S.E.; McClanahan, B.J.; Buschbom, R.L.; Decker, J.R.; Rommereim, R.L.; Westerberg, R.B.

    1988-04-01

    The effects of whole-body inhalation exposures to 1,3-butadiene on the reproductive system was evaluated. The results of dominant lethality in CD-1 male mice that were exposed to 1,3-butadiene are described. Subsequent to exposure, males were mated with two unexposed females. Mating was continued for 8 weeks with replacement of two females each week. Gravid uteri were removed, and the total number, position and status of implantations were determined. The mice were weighed prior to exposure and at 0, 1, 2, 3, 4, 5, 6, 7, and 8 weeks after exposure and at sacrifice. The animals were observed for mortality, morbidity and signs of toxicity throughout the study. 19 refs., 5 figs., 9 tabs.

  20. Pulmonary cellular effects in rats following aerosol exposures to ultrafine Kevlar aramid fibrils: evidence for biodegradability of inhaled fibrils.

    PubMed

    Warheit, D B; Kellar, K A; Hartsky, M A

    1992-10-01

    Previous chronic inhalation studies have shown that high concentrations of Kevlar fibrils produced fibrosis and cystic keratinizing tumors in rats following 2-year inhalation exposures. The current studies were undertaken to evaluate mechanisms and to assess the toxicity of inhaled Kevlar fibrils relative to other reference materials. Rats were exposed to ultrafine Kevlar fibers (fibrils) for 3 or 5 days at concentrations ranging from 600-1300 fibers/cc (gravimetric concentrations ranging from 2-13 mg/m3). A complete characterization of the fiber aerosol and dose was carried out. These measurements included gravimetric concentrations, mass median aerodynamic diameter, fiber number, and count median lengths and diameters of the aerosol. Following exposures, cells and fluids from groups of sham- and fiber-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, lactate dehydrogenase (LDH), protein, and N-acetyl glucosaminidase (NAG) values were measured in BAL fluids at several time points postexposure. Alveolar macrophages were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy. The lungs of additional exposed animals were processed for deposition, cell labeling, retained dose, and lung clearance studies, as well as fiber dimensions (from digested lung tissue), histopathology, and transmission electron microscopy. Five-day exposures to Kevlar fibrils elicited a transient granulocytic inflammatory response with concomitant increases in BAL fluid levels of alkaline phosphatase, NAG, LDH, and protein. Unlike the data from silica and asbestos exposures where inflammation persisted, biochemical parameters returned to control levels at time intervals between 1 week and 1 month postexposure. Macrophage function in Kevlar-exposed alveolar macrophages was not significantly different from sham controls at any time period. Cell labeling studies were carried out immediately after exposure, as well as 1

  1. Measurement of human CYP1A2 induction by inhalation exposure to benzo(a)pyrene based on in vivo isotope breath method.

    PubMed

    Duan, Xiaoli; Shen, Guofeng; Yang, Hongbiao; Lambert, George; Wei, Fusheng; Zhang, Junfeng Jim

    2016-01-01

    Cytochrome P450 1A2 (CYP1A2) is an enzyme involved in the metabolic activation of certain carcinogens, and inducible by toxic substrates. To date, few studies have investigated in vivo CYP1A2 induction in humans and its relationship to polycylic aromatic hydrocarbons (PAHs) like benzo(a)pyrene (BaP). Non-smoking healthy male coke-oven workers (n = 30) were recruited as 'exposure' group, and non-smoking healthy office workers in the same city (n = 10) were selected as 'control' group, to test whether high inhalation exposure to PAHs can induce CYP1A2 activity in human livers. Significantly higher inhalation exposure of PAHs were found among the exposure group compared to the control. Inhalation BaP exposure concentration in the exposure group was more than 30 times higher than the control group (p < 0.001). However, the exposure group did not exhale significant higher levels of (13)CO2/(12)CO2 in breath samples (p = 0.81), and no significant relationship was found between the inhaled BaP concentration and the (13)CO2/(12)CO2 ratio (p = 0.91). A significant association was found between the (13)CO2/(12)CO2 exhalation and dietary BaP intake level. Hepatic CYP1A2 activity/induction level was not effected by inhaled BaP but was altered by ingestion of BaP.

  2. A probabilistic modeling approach to assess human inhalation exposure risks to airborne aflatoxin B 1 (AFB 1)

    NASA Astrophysics Data System (ADS)

    Liao, Chung-Min; Chen, Szu-Chieh

    To assess how the human lung exposure to airborne aflatoxin B 1 (AFB 1) during on-farm activities including swine feeding, storage bin cleaning, corn harvest, and grain elevator loading/unloading, we present a probabilistic risk model, appraised with empirical data. The model integrates probabilistic exposure profiles from a compartmental lung model with the reconstructed dose-response relationships based on an empirical three-parameter Hill equation model, describing AFB 1 cytotoxicity for inhibition response in human bronchial epithelial cells, to quantitatively estimate the inhalation exposure risks. The risk assessment results implicate that exposure to airborne AFB 1 may pose no significance to corn harvest and grain elevator loading/unloading activities, yet a relatively high risk for swine feeding and storage bin cleaning. Applying a joint probability function method based on exceedence profiles, we estimate that a potential high risk for the bronchial region (inhibition=56.69% with 95% confidence interval (CI): 35.05-72.87%) and bronchiolar region (inhibition=44.93% with 95% CI: 21.61 - 66.78%) is alarming during swine feeding activity. We parameterized the proposed predictive model that should encourage a risk-management framework for discussion of carcinogenic risk in occupational settings where inhalation of AFB 1-contaminated dust occurs.

  3. Effects of single and repeated inhalation exposure of Syrian hamsters to aerosols of /sup 144/CeO/sub 2/

    SciTech Connect

    Lundgren, D.L.; Hahn, F.F.; McClellan, R.O.

    1982-05-01

    Male Syrian hamsters (84 days old at the time of the initial exposure) were repeatedly exposed by inhalation at approximately 60-day intervals for 1 year (seven exposures) to aerosols of /sup 144/CeO/sub 2/ to reestablish lung burdens of 0.4, 2.0, or 10 ..mu..Ci of /sup 144/Ce. Other hamsters were exposed once when either 84, 220, or 360 days old to achieve similar initial lung burdens. Primary lung tumors were observed in 7 of 197 hamsters repeatedly exposed to /sup 144/CeO/sub 2/ that died between 177 and 685 days after the initial inhalation exposure. The cumulative adsorbed ..beta..-radiation doses to the lungs of these hamsters were 14,000 to 50,000 rad. Primary lung tumors also were observed in 6 of 153 hamsters exposed once to /sup 144/CeO/sub 2/ when 84 or 220 days old that died between 270 and 695 days after exposure. The cumulative ..beta..-radiation doses to the lungs of these hamsters were 6000 to 21,000 rad. Lung tumors were not observed in hamsters exposed when 360 days old or in control hamsters. The incidences of primary lung tumors were more dependent on the cumulative dose to the lung than the radiation dose pattern that resulted in the cumulative dose.

  4. An in vivo and in vitro toxicological characterization of realistic nanoscale CeO2 inhalation exposures

    PubMed Central

    Demokritou, Philip; Gass, Samuel; Pyrgiotakis, Georgios; Cohen, Joel M.; Goldsmith, William; McKinney, Walt; Frazer, David; Ma, Jane; Schwegler-Berry, Diane; Brain, Joseph; Castranova, Vincent

    2015-01-01

    Nanoscale CeO2 is increasingly used for industrial and commercial applications, including catalysis, UV-shielding, and as an additive in various nanocomposites. Because of its increasing potential for consumer and occupational exposures, a comprehensive toxicological characterization of this nanomaterial is needed. Preliminary results from intratracheal instillation studies in rats point to cytoxicity and inflammation, though these studies may not accurately use realistic nanoscale exposure profiles. In contrast, published in vitro cellular studies have reported limited toxicological outcomes for the case of nano-ceria. Here, we present an integrative study evaluating the toxicity of nanoscale CeO2 both in vitro, using the A549 lung epithelial cell line, and in vivo using an intact rat model. Realistic nano-ceria exposure atmospheres were generated using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES), and rats were exposed via inhalation. Finally, the use of a nanothin amorphous SiO2 encapsulation coating as a means of mitigating CeO2 toxicity was assessed. Results from the inhalation experiments show lung injury and inflammation with increased PMN and LDH levels in the bronchoalveolar lavage fluid of the CeO2 exposed rats. Moreover, exposure to SiO2-coated CeO2 did not induce any pulmonary toxicity to the animals, representing clear evidence for the safe by design SiO2-encapsualtion concept. PMID:23061914

  5. Chronic inhalation studies of man-made vitreous fibres: characterization of fibres in the exposure aerosol and lungs.

    PubMed

    Hesterberg, T W; Miiller, W C; Thevenaz, P; Anderson, R

    1995-10-01

    Inhalation studies were conducted to determine the chronic biological effects in rodents of respirable fractions of different man-made vitreous fibres (MMVFs), including refractory ceramic fibre (RCF), fibrous glass, rock (stone) wool and slag wool. Animals were exposed nose-only, 6 h per day, 5 days per week, for 18 months (hamsters) or 24 months (rats). Exposure to 10 mg m-3 of crocidolite or chrysotile asbestos induced pulmonary fibrosis, lung tumours and mesothelioma in rats, thus validating the inhalation model with known human carcinogenic fibres. Exposure of rats to 30 mg m-3 of refractory ceramic fibres (RCF) also resulted in pulmonary fibrosis as well as significant increases in lung tumours and mesothelioma. In hamsters, 30 mg m-3 of RCF induced a 41% incidence of mesotheliomas. Exposure of rats to 30 mg m-3 of fibre glasses (MMVF 10 or 11) or of slag wool (MMVF 22) was associated with an inflammatory response, but no mesotheliomas or significant increase in the lung tumours were observed. Rock wool (stone wool: MMVF 21) at the same exposure level resulted in minimal lung fibrosis, but no mesotheliomas or significant increase in the lung tumours were observed. Fibre numbers (WHO fibres) and dimensions in the aerosols and lungs of exposed animals were comparable in this series of inhalation studies. Differences in lung fibre burdens and lung clearance rates could not explain the differences observed in the toxicologic effects of the MMVFs. These findings indicate that dose, dimension and durability may not be the only determinants of fibre toxicity. Chemical composition and the surface physico-chemical properties of the fibres may also play an important role.

  6. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure

    PubMed Central

    Gosens, Ilse; Cassee, Flemming R.; Zanella, Michela; Manodori, Laura; Brunelli, Andrea; Costa, Anna Luisa; Bokkers, Bas G. H.; de Jong, Wim H.; Brown, David; Hristozov, Danail; Stone, Vicki

    2016-01-01

    Abstract Introduction: Increased use of nanomaterials has raised concerns about the potential for undesirable human health and environmental effects. Releases into the air may occur and, therefore, the inhalation route is of specific interest. Here we tested copper oxide nanoparticles (CuO NPs) after repeated inhalation as hazard data for this material and exposure route is currently lacking for risk assessment. Methods: Rats were exposed nose-only to a single exposure concentration and by varying the exposure time, different dose levels were obtained (C × T protocol). The dose is expressed as 6 h-concentration equivalents of 0, 0.6, 2.4, 3.3, 6.3, and 13.2 mg/m3 CuO NPs, with a primary particle size of 10 9.2–14 nm and an MMAD of 1.5 μm. Results: Twenty-four hours after a 5-d exposure, dose-dependent lung inflammation and cytotoxicity were observed. Histopathological examinations indicated alveolitis, bronchiolitis, vacuolation of the respiratory epithelium, and emphysema in the lung starting at 2.4 mg/m3. After a recovery period of 22 d, limited inflammation was still observed, but only at the highest dose of 13.2 mg/m3. The olfactory epithelium in the nose degenerated 24 h after exposure to 6.3 and 13.2 mg/m3, but this was restored after 22 d. No histopathological changes were detected in the brain, olfactory bulb, spleen, kidney and liver. Conclusion: A 5-d, 6-h/day exposure equivalent to an aerosol of agglomerated CuO NPs resulted in a dose-dependent toxicity in rats, which almost completely resolved during a 3-week post-exposure period. PMID:27132941

  7. Population inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk in Beijing region: Contributions of indoor and outdoor sources and exposures

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Zhao, Bin

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most toxic air pollutants in China. Efforts in assessing population inhalation exposure to PAHs, and its contribution to lung cancer risk for Chinese residents, have been limited due to insufficient data on measured indoor concentrations. A mass-balance model to predict indoor PAH concentrations was developed, along with estimated exposures and attributable lung cancer risks for residents in the Beijing region in 2006, with a 2-stage Monte Carlo simulation framework. The exposures and risks were split into three parts, based on the sources and places of exposure, to estimate the contributions of indoor and outdoor PAH sources and exposures, in order to better understand the source and place pattern of PAH exposure. PAHs bring considerable lung cancer risk to the population of Beijing region. The population attributable fraction (PAF) of lung cancer for Beijing's overall population is 2.99% [95% confidence interval (CI): 1.71%-4.26%]. Median contribution of indoor exposure to outdoor-originated PAHs (OUT-in) is 78% (CI: 73%-81%) in the overall population, for 97% (CI: 94%-99%) of whom OUT-in is the largest contributor. Rural residents are facing considerable exposure to indoor-originated PAHs (IN-in), which dominates the total exposure in 12% (CI: 2%-24%) of the rural population. This model framework could be used in quantitative comparison of different interventions on exposure to PAHs as well as other airborne pollutants.

  8. Organ weight changes in mice after long-term inhalation exposure to manganese oxides nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeman, T.; Buchtová, M.; Dočekal, B.; Míšek, I.; Navrátil, J.; Mikuška, P.; Šerý, O.; Večeřa, Z.

    2015-05-01

    Recently, it has been proven that manganese from inhaled particles of manganese compounds can accumulate in the internal organs of laboratory animals. Nevertheless, there were only a few researches dealing with changes in body morphology induced by inhalation of these particles, even though results of some studies indicate existence of such changes. The aim of our research was to assess the effect of inhaled manganese oxides nanoparticles on weight of internal organs. For this purpose a long-term inhalation experiment on laboratory mice was performed, during which the mice were exposed to MnO.Mn2O3 nanoparticles in concentration 2 × 106 particles/cm3 for 17 weeks, 24 hours a day, 7 days a week. Manganese oxides nanoparticles were synthesized continuously via aerosol route in a hot wall tube flow reactor using thermal decomposition of metal organic precursor manganese(II)acetylacetonate in the flow tube reactor at temperature 750 °C in the presence of 30 vol% of oxygen. It was proven that inhaled nanoparticles can influence the weight of internal organs of mice. Moreover, it was discovered that the resulting change in weight of selected organs is disproportional. The mice from the experimental group had statistically significantly lighter kidneys, liver and spleen and heavier pancreas compared to the mice from the control group.

  9. Effects of combined exposure of F344 rats to radiation and chronically inhaled cigarette smoke

    SciTech Connect

    Finch, G.L.; Nikula, K.J.; Barr, E.B.

    1995-12-01

    Nuclear workers may be exposed to radiation in various forms, such as low-LET {gamma}-irradiation or {alpha}-irradiation from inhaled {sup 239}PuO{sub 2} particles. These workers may then have increased risk for lung cancer compared to the general population. Of additional concern is the possibility that interactions between radiation and other carcinogens may increase the risk of cancer induction, compared to the risks from either type of agent alone. An important and common lung carcinogen is cigarette smoke. The purpose of this project is to better determine the combined effects of chronically inhaled cigarette smoke and either inhaled {sup 239}PuO{sub 2} or external, thoracic X-irradiation on the induction of lung cancer in rats. Histologic and dosimetric evaluations of rats in the CS + {sup 239}PuO{sub 2} study continue, and the study of CS + X rays is beginning.

  10. Increased Nonconducted P-Wave Arrhythmias after a Single Oil Fly Ash Inhalation Exposure in Hypertensive Rats

    PubMed Central

    Farraj, Aimen K.; Haykal-Coates, Najwa; Winsett, Darrell W.; Hazari, Mehdi S.; Carll, Alex P.; Rowan, William H.; Ledbetter, Allen D.; Cascio, Wayne E.; Costa, Daniel L.

    2009-01-01

    Background Exposure to combustion-derived fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality especially in individuals with cardiovascular disease, including hypertension. PM inhalation causes several adverse changes in cardiac function that are reflected in the electrocardiogram (ECG), including altered cardiac rhythm, myocardial ischemia, and reduced heart rate variability (HRV). The sensitivity and reliability of ECG-derived parameters as indicators of the cardiovascular toxicity of PM in rats are unclear. Objective We hypothesized that spontaneously hypertensive (SH) rats are more susceptible to the development of PM-induced arrhythmia, altered ECG morphology, and reduced HRV than are Wistar Kyoto (WKY) rats, a related strain with normal blood pressure. Methods We exposed rats once by nose-only inhalation for 4 hr to residual oil fly ash (ROFA), an emission source particle rich in transition metals, or to air and then sacrificed them 1 or 48 hr later. Results ROFA-exposed SH rats developed nonconducted P-wave arrhythmias but no changes in ECG morphology or HRV. We found no ECG effects in ROFA-exposed WKY rats. ROFA-exposed SH rats also had greater pulmonary injury, neutrophil infiltration, and serum C-reactive protein than did ROFA-exposed WKY rats. Conclusions These results suggest that cardiac arrhythmias may be an early sensitive indicator of the propensity for PM inhalation to modify cardiovascular function. PMID:19479011

  11. Inflammatory Cytokines and White Blood Cell Counts Response to Environmental Levels of Diesel Exhaust and Ozone Inhalation Exposures

    PubMed Central

    Stiegel, Matthew A.; Pleil, Joachim D.; Sobus, Jon R.; Madden, Michael C.

    2016-01-01

    Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in environmental exposure in time and from person to person. Previously, environmentally controlled human exposure chambers have been used to study DE and O3 dose-response patterns separately, but investigation of co-exposures has not been performed under controlled conditions. Because a mixture is a more realistic exposure scenario for the general public, in this study we investigate the relationships of urban levels of urban-level DE exposure (300 μg/m3), O3 (0.3 ppm), DE + O3 co-exposure, and innate immune system responses. Fifteen healthy human volunteers were studied for changes in ten inflammatory cytokines (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) and counts of three white blood cell types (lymphocytes, monocytes, and neutrophils) following controlled exposures to DE, O3, and DE+O3. The results show subtle cytokines responses to the diesel-only and ozone-only exposures, and that a more complex (possibly synergistic) relationship exists in the combination of these two exposures with suppression of IL-5, IL-12p70, IFN-γ, and TNF-α that persists up to 22-hours for IFN-γ and TNF-α. The white blood cell differential counts showed significant monocyte and lymphocyte decreases and neutrophil increases following the DE + O3 exposure; lymphocytes and neutrophils changes also persist for at least 22-hours. Because human studies must be conducted under strict safety protocols at environmental levels, these effects are subtle and are generally only seen with detailed statistical analysis. This study indicates that the observed associations between environmental exposures and cardiopulmonary effects are possibly mediated by inflammatory response mechanisms. PMID:27058360

  12. Airborne exposure to inhalable hexavalent chromium in welders and other occupations: Estimates from the German MEGA database.

    PubMed

    Pesch, Beate; Kendzia, Benjamin; Hauptmann, Kristin; Van Gelder, Rainer; Stamm, Roger; Hahn, Jens-Uwe; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Siemiatycki, Jack; Lavoué, Jerome; Jöckel, Karl-Heinz; Brüning, Thomas

    2015-07-01

    This study aimed to estimate occupational exposure to inhalable hexavalent chromium (Cr(VI)) using the exposure database MEGA. The database has been compiling Cr(VI) concentrations and ancillary data about measurements at German workplaces. We analysed 3659 personal measurements of inhalable Cr(VI) collected between 1994 and 2009. Cr(VI) was determined spectrophotometrically at 540 nm after reaction with diphenylcarbazide. We assigned the measurements to pre-defined at-risk occupations using the information provided about the workplaces. Two-thirds of the measurements were below the limit of quantification (LOQ) and multiply imputed according to the distribution above LOQ. The 75th percentile value was 5.2 μg/m(3) and the 95th percentile was 57.2 μg/m(3). We predicted the geometric mean for 2h sampling in the year 2000, and the time trend of Cr(VI) exposure in these settings with and without adjustment for the duration of measurements. The largest dataset was available for welding (N = 1898), which could be further detailed according to technique. The geometric means were above 5 μg/m(3) in the following situations: spray painting, shielded metal arc welding, and flux-cored arc welding if applied to stainless steel. The geometric means were between 1 μg/m(3) and 5 μg/m(3) for gas metal arc welding of stainless steel, cutting, hard-chromium plating, metal spraying and in the chemical chromium industry. The exposure profiles described here are useful for epidemiologic and industrial health purposes. Exposure to Cr(VI) varies not only between occupations, but also within occupations as shown for welders. In epidemiologic studies, it would be desirable to collect exposure-specific information in addition to the job title.

  13. Inhalation Exposures to Particulate Matter and Carbon Monoxide during Ethiopian Coffee Ceremonies in Addis Ababa: A Pilot Study

    PubMed Central

    Keil, Chris; Kassa, Hailu; Brown, Alexander; Kumie, Abera; Tefera, Worku

    2010-01-01

    The unique Ethiopian cultural tradition of the coffee ceremony increases inhalation exposures to combustion byproducts. This pilot study evaluated exposures to particulate matter and carbon monoxide in ten Addis Ababa homes during coffee ceremonies. For coffee preparers the geometric mean (57 μg/m3) and median (72 μg/m3) contributions to an increase in a 24-hour time-weighted average exposure were above World Health Organization (WHO) guidelines. At 40% of the study sites the contribution to the 24-hour average exposure was greater than twice the WHO guideline. Similar exposure increases existed for ceremony participants. Particulate matter concentrations may be related to the use of incense during the ceremony. In nearly all homes the WHO guideline for a 60-minute exposure to carbon monoxide was exceeded. Finding control measures to reduce these exposures will be challenging due to the deeply engrained nature of this cultural practice and the lack of availability of alternative fuels. PMID:20886061

  14. Passive exposure of Earth radiation budget experiment components (A0147)

    NASA Technical Reports Server (NTRS)

    Hickey, J. R.; Griffin, F. J.

    1984-01-01

    In-flight calibration for the solr and Earth flux channels was examined. Earth Radiation on Budget (ERB) channel components were exposed to the space environment and then retrieved and resubmitted to radiometric calibration after exposure. It is suggested that corrections may be applied to ERB results and information will be obtained to aid in the selection of components for future operational solar and Earth radiation budget experiments. To assure that these high accuracy devices are measuring real variations and are not responding to changes induced by the space environment, it is desirable to test such devices radiometrically after exposure to the best approximation of the orbital environment.

  15. Passive exposure of Earth radiation budget experiment components (A0147)

    NASA Astrophysics Data System (ADS)

    Hickey, J. R.; Griffin, F. J.

    1984-02-01

    In-flight calibration for the solr and Earth flux channels was examined. Earth Radiation on Budget (ERB) channel components were exposed to the space environment and then retrieved and resubmitted to radiometric calibration after exposure. It is suggested that corrections may be applied to ERB results and information will be obtained to aid in the selection of components for future operational solar and Earth radiation budget experiments. To assure that these high accuracy devices are measuring real variations and are not responding to changes induced by the space environment, it is desirable to test such devices radiometrically after exposure to the best approximation of the orbital environment.

  16. INTRODUCTION: INHALATION EXPOSURE AND SYSTEMIC IMMUNOTOXICITY: MECHANISMS LINKING THE LUNG AND IMMUNE SYSTEM

    EPA Science Inventory


    Concerns regarding inhaled compounds, immune suppression and increased risk of disease have focused primarily on suppression of local immune responses in the lung and susceptibility to respiratory infections. However, a number of studies have shown that both gaseous (O3, NO2)...

  17. IMMUNOTOXICITY AND BIODISTRIBUTION ANALYSIS OF ARSENIC TRIOXIDE IN C57Bl/6 MICE FOLLOWING A TWO-WEEK INHALATION EXPOSURE

    PubMed Central

    Burchiel, Scott W.; Mitchell, Leah A.; Lauer, Fredine T.; Sun, Xi; McDonald, Jacob D.; Hudson, Laurie G.; Liu, Ke Jian

    2010-01-01

    In these studies the immunotoxicity of arsenic trioxide (ATO, As2O3) was evaluated in mice following 14 days of inhalation exposures (nose only, 3 hrs per day) at concentrations of 50 μg/m3 and 1 mg/m3. A biodistribution analysis performed immediately after inhalation exposures revealed highest levels of arsenic in the kidneys, bladder, liver, and lung. Spleen cell levels were comparable to those found in the blood, with the highest concentration of arsenic detected in the spleen being 150 μg/mg tissue following the 1 mg/m3 exposures. No spleen cell cytotoxicity was observed at either of the two exposure levels. There were no changes in spleen cell surface marker expression for B cells, T cells, macrophages, and natural killer (NK) cells. There were also no changes detected in the B cell (LPS-stimulated) and T cell (Con A-stimulated) proliferative responses of spleen cells, and no changes were found in the NK-mediated lysis of Yac-1 target cells. The primary T-dependent antibody response was, however, found to be highly susceptible to ATO suppression. Both the 50 μg/m3 and 1 mg/m3 exposures produced greater than 70% suppression of the humoral immune response to sheep red blood cells. Thus, the primary finding of this study is that the T-dependent humoral immune response is extremely sensitive to suppression by ATO and assessment of humoral immune responses should be considered in evaluating the health effects of arsenic containing agents. PMID:19800901

  18. Immunotoxicity and biodistribution analysis of arsenic trioxide in C57Bl/6 mice following a 2-week inhalation exposure

    SciTech Connect

    Burchiel, Scott W.; Mitchell, Leah A.; Lauer, Fredine T.; Sun Xi; McDonald, Jacob D.; Hudson, Laurie G.; Liu Kejian

    2009-12-15

    In these studies the immunotoxicity of arsenic trioxide (ATO, As{sub 2}O{sub 3}) was evaluated in mice following 14 days of inhalation exposures (nose only, 3 h per day) at concentrations of 50 mug/m{sup 3} and 1 mg/m{sup 3}. A biodistribution analysis performed immediately after inhalation exposures revealed highest levels of arsenic in the kidneys, bladder, liver, and lung. Spleen cell levels were comparable to those found in the blood, with the highest concentration of arsenic detected in the spleen being 150 mug/g tissue following the 1 mg/m{sup 3} exposures. No spleen cell cytotoxicity was observed at either of the two exposure levels. There were no changes in spleen cell surface marker expression for B cells, T cells, macrophages, and natural killer (NK) cells. There were also no changes detected in the B cell (LPS-stimulated) and T cell (Con A-stimulated) proliferative responses of spleen cells, and no changes were found in the NK-mediated lysis of Yac-1 target cells. The primary T-dependent antibody response was, however, found to be highly susceptible to ATO suppression. Both the 50 mug/m{sup 3} and 1 mg/m{sup 3} exposures produced greater than 70% suppression of the humoral immune response to sheep red blood cells. Thus, the primary finding of this study is that the T-dependent humoral immune response is extremely sensitive to suppression by ATO and assessment of humoral immune responses should be considered in evaluating the health effects of arsenic containing agents.

  19. Lung Cancer in Chinese Women: Evidence for an Interaction between Tobacco Smoking and Exposure to Inhalants in the Indoor Environment

    PubMed Central

    Tang, Li; Lim, Wei-Yen; Eng, Philip; Leong, Swan Swan; Lim, Tow Keang; Ng, Alan W.K.; Tee, Augustine; Seow, Adeline

    2010-01-01

    Background Epidemiologic data suggest that Chinese women have a high incidence of lung cancer in relation to their smoking prevalence. In addition to active tobacco smoke exposure, other sources of fumes and airborne particles in the indoor environment, such as cooking and burning of incense and mosquito coils, have been considered potential risk factors for lung cancer. Objectives We used a case–control study to explore effects of inhalants from combustion sources common in the domestic environment on lung cancer and their modification by active tobacco smoking. Methods We analyzed 703 primary lung cancer cases and 1,578 controls. Data on demographic background and relevant exposures were obtained by face-to-face interviews in the hospital. Results We observed a positive relationship with daily exposure to incense or mosquito coils and to cooking fumes only among smokers, and no association among lifetime nonsmokers. Interactions between smoking and frequency of cooking, or exposure to incense or mosquito coils were statistically significant and consistent with synergistic effects on lung cancer. The odds ratio (OR) comparing smokers without daily incense or mosquito coil exposure with nonsmokers without daily exposure was 2.80 [95% confidence interval (CI), 1.86–4.21], whereas the OR comparing smokers with daily exposure to the same referent group was 4.61 (95% CI, 3.41–6.24). In contrast, daily exposure to incense or mosquito coils was not associated with lung cancer among nonsmokers (OR = 0.91; 95% CI, 0.72–1.16). We observed the same pattern of associations for smokers without (OR = 2.31; 95% CI, 1.52–3.51) and with (OR = 4.50; 95% CI, 3.21–6.30) daily cooking exposure compared with nonsmokers, with no evidence of an association with daily cooking exposure among nonsmokers. Conclusion Our results suggest that active tobacco smoking not only is an important risk factor for development of lung cancer, but also may cause smokers to be more susceptible

  20. Effects of combined exposure of F344 rats to inhaled Plutonium-239 dioxide and a chemical carcinogen (NNK)

    SciTech Connect

    Lundgren, D.L.; Carlton, W.W.; Griffith, W.C.

    1995-12-01

    Workers in nuclear weapons facilities have a significant potential for exposure to chemical carcinogens and to radiation from external sources or from internally deposited radionuclides such as {sup 239}Pu. Although the carcinogenic effects of inhaled {sup 239}Pu and many chemicals have been studied individually, very little information is available on their combined effects. One chemical carcinogen that workers could be exposed to via tobacco smoke is the tobacco-specific nitrosamine 4-(N-methyl-n-nitrosamino)-1-(3-pyridyl)-1(3-pyridyl)-1-butanone (NNK), a product of tobacco curing and the pyrolysis of nicotine in tobacco. NNK causes lung tumors in rats, regardless of the route of administration and to a lesser extent liver, nasal, and pancreatic tumors. From the results presented, it can be concluded that exposure to a chemical carcinogen (NNK) in combination with {alpha}-particle radiation from inhaled {sup 239}PuO{sub 2} acts in, at best, an additive manner in inducing lung cancer in rats.

  1. Effect of short-term stainless steel welding fume inhalation exposure on lung inflammation, injury, and defense responses in rats

    SciTech Connect

    Antonini, James M. Stone, Sam; Roberts, Jenny R.; Chen, Bean; Schwegler-Berry, Diane; Afshari, Aliakbar A.; Frazer, David G.

    2007-09-15

    Many welders have experienced bronchitis, metal fume fever, lung function changes, and an increase in the incidence of lung infection. Questions remain regarding the possible mechanisms associated with the potential pulmonary effects of welding fume exposure. The objective was to assess the early effects of stainless steel (SS) welding fume inhalation on lung injury, inflammation, and defense responses. Male Sprague-Dawley rats were exposed to gas metal arc-SS welding fume at a concentration of 15 or 40 mg/m{sup 3} x 3 h/day for 1, 3, or 10 days. The control group was exposed to filtered air. To assess lung defense responses, some animals were intratracheally inoculated with 5 x 10{sup 4}Listeria monocytogenes 1 day after the last exposure. Welding particles were collected during exposure, and elemental composition and particle size were determined. At 1, 4, 6, 11, 14, and 30 days after the final exposure, parameters of lung injury (lactate dehydrogenase and albumin) and inflammation (PMN influx) were measured in the bronchoalveolar lavage fluid. In addition, particle-induced effects on pulmonary clearance of bacteria and macrophage function were assessed. SS particles were composed of Fe, Cr, Mn, and Ni. Particle size distribution analysis indicated the mass median aerodynamic diameter of the generated fume to be 0.255 {mu}m. Parameters of lung injury were significantly elevated at all time points post-exposure compared to controls except for 30 days. Interestingly, no significant difference in lung PMNs was observed between the SS and control groups at 1, 4, and 6 days post-exposure. After 6 days post-exposure, a dramatic increase in lung PMNs was observed in the SS group compared to air controls. Lung bacteria clearance and macrophage function were reduced and immune and inflammatory cytokines were altered in the SS group. In summary, short-term exposure of rats to SS welding fume caused significant lung damage and suppressed lung defense responses to bacterial

  2. A pilot study of personal exposure to respirable and inhalable dust during the sanding and sawing of medium density fibreboard (MDF) and soft wood.

    PubMed

    Hursthouse, Andrew; Allan, Fraser; Rowley, Louise; Smith, Frank

    2004-08-01

    A pilot study of production of respirable and inhalable dusts from sawing and sanding medium density fibreboard (MDF) and softwood in a typical cabinet-making workshop produced high but variable exposure levels at the bench and operator position. Exposure levels for the total inhalable fraction (approximately <100 microm) were 6.9-91 mg m(-3) for MDF and 2.5-45 mg m(-3) for softwood. For the respirable fraction (< 10 microm) levels were 0.4-13 mg m(-3) for MDF and 0.4-2.9 mg m(-3) for softwood. These results show significant dust loading is produced in the coarser fraction and that the material used has a significant impact on levels produced. It suggests that fuller evaluation of operator influence of fine dust production is needed and may question the common application of a single inhalable exposure standard for wood dust to all wood working scenarios.

  3. Personal Exposure to Inhalable Dust and the Specific Latex Aero-Allergen, Hev b6.02, in Latex Glove Manufacturing in Thailand

    PubMed Central

    Sanguanchaiyakrit, Nuthchyawach; Povey, Andrew C.; de Vocht, Frank

    2014-01-01

    Objectives: Latex product manufacturing is an important industry in south-east Asia but has the potential for considerable occupational exposure of workers to latex allergens. Although exposure to latex allergens can result in adverse health reactions, few studies to characterize this exposure have been conducted to date. This study therefore aimed to characterize current airborne inhalable dust and the specific allergen, Hev b 6.02, exposures in this industry in Thailand. Methods: Workers were recruited from three factories in the southern part of Thailand. Full-shift inhalable dust personal air sampling was conducted using IOM sampling heads equipped with polytetrafluoroethylene filters at a 2.0 l min−1 flowrate. After weighing to determine inhalable dust levels, filters were extracted and analysed for Hev b 6.02 using an enzyme immunometric assay. Results: Two hundred and seventy-five workers agreed to participate, resulting in a total of 292 measurements. Geometric mean (GM) personal exposure to inhalable dust was 0.88mg m–3, but individual exposures up to 12.34mg m–3 were measured. The pattern of exposure was similar across factories, with highest exposures in the stripping (GM 2.08–4.05mg m–3 for the 3 factories) and tumbling departments (1.11–2.17mg m–3). Within-worker (day-to-day) variability contributed 92% to total variability. The Hev b 6.02 exposure pattern was similar with time-weighted average GM exposure levels in the oldest factory ranging from 8.7mg m–3 in the laboratory to 30.2mg m–3 in the stripping department. In contrast to inhalable dust exposure, total exposure variability was primary driven by variability between workers (67%). Conclusions: Workers in these latex product factories get routinely exposed to measurable Hev b 6.02 levels, which may give rise to increased incidence of allergic symptoms and occupational asthma. Also, in this measurement campaign a 10mg m–3, but not 15mg m–3, occupational exposure limit for

  4. Design, construction, and characterization of a novel robotic welding fume generator and inhalation exposure system for laboratory animals.

    PubMed

    Antonini, James M; Afshari, Aliakbar A; Stone, Sam; Chen, Bean; Schwegler-Berry, Diane; Fletcher, W Gary; Goldsmith, W Travis; Vandestouwe, Kurt H; McKinney, Walter; Castranova, Vincent; Frazer, David G

    2006-04-01

    Respiratory effects observed in welders have included lung function changes, metal fume fever, bronchitis, and a possible increase in the incidence of lung cancer. Many questions remain unanswered regarding the causality and possible underlying mechanisms associated with the potential toxic effects of welding fume inhalation. The objective of the present study was to construct a completely automated, computer-controlled welding fume generation and inhalation exposure system to simulate real workplace exposures. The system comprised a programmable six-axis robotic welding arm, a water-cooled arc welding torch, and a wire feeder that supplied the wire to the torch at a programmed rate. For the initial studies, gas metal arc welding was performed using a stainless steel electrode. A flexible trunk was attached to the robotic arm of the welder and was used to collect and transport fume from the vicinity of the arc to the animal exposure chamber. Undiluted fume concentrations consistently ranged from 90-150 mg/m(3) in the animal chamber during welding. Temperature and humidity remained constant in the chamber during the welding operation. The welding particles were composed of (from highest to lowest concentration) iron, chromium, manganese, and nickel as measured by inductively coupled plasma atomic emission spectroscopy. Size distribution analysis indicated the mass median aerodynamic diameter of the generated particles to be approximately 0.24 microm with a geometric standard deviation (sigma(g)) of 1.39. As determined by transmission and scanning electron microscopy, the generated aerosols were mostly arranged as chain-like agglomerates of primary particles. Characterization of the laboratory-generated welding aerosol has indicated that particle morphology, size, and chemical composition are comparable to stainless steel welding fume generated in other studies. With the development of this novel system, it will be possible to establish an animal model using

  5. Amphibole asbestos in tree bark--a review of findings for this inhalational exposure source in Libby, Montana.

    PubMed

    Ward, Tony J; Spear, Terry M; Hart, Julie F; Webber, James S; Elashheb, Mohamed I

    2012-01-01

    In June 2009, the U.S. Environmental Protection Agency (EPA) designated the town of Libby, Montana, a public health emergency--the first and only time the EPA has made such a determination under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). From about 1920 until 1990, the leading source of vermiculite ore for the United States and the world was from a mine near Libby. This vermiculite ore was contaminated with fibrous and asbestiform amphibole in veins throughout the deposit. Today, areas surrounding the abandoned vermiculite processing/mining facilities and much of the town of Libby are contaminated with these asbestos fibers, contributing to an outbreak of asbestos-related diseases in the Libby population. Trees in Libby and in forested areas surrounding the abandoned mine have accumulated amphibole asbestos fibers on their bark surface, providing for inhalational exposures. Several studies have been conducted to further understand this exposure pathway. To address exposures to the public, Libby amphibole (LA) was measured in personal breathing zone and Tyvek surface wipe samples collected during firewood harvesting simulations, as well as in the ash and emissions of woodstoves when amphibole-contaminated firewood was combusted. Occupational studies simulating wildland firefighting and routine U.S. Department of Agriculture (USDA) Forest Service activities have also been conducted in the forested areas surrounding the abandoned mine, demonstrating the potential for inhalational exposures during common regional workplace activities. We present a review of the findings of this emerging environmental health concern impacting not only the residents of Libby but applicable to other populations living near asbestos-contaminated areas.

  6. Assessment of potential (inhalation and dermal) and actual exposure to acetamiprid by greenhouse applicators using liquid chromatography-tandem mass spectrometry.

    PubMed

    Marín, A; Martínez Vidal, J L; Egea Gonzalez, F J; Garrido Frenich, A; Glass, C R; Sykes, M

    2004-05-25

    New analytical methods based on liquid chromatography with electrospray tandem mass spectrometry (LC-MS/MS) have been developed and validated for assessing the exposure of greenhouse workers to acetamiprid. Both ambient (potential inhalation and dermal exposure) and internal dose (biological monitoring of urine samples) measurements were carried out. Potential inhalation exposure was assessed using Chromosorb 102 cartridges connected to air personal samplers. Potential dermal exposure was estimated by using whole body dosimetry. The measurement of actual exposure was done by analyzing the parent compound in urine samples of the applicators, after a solid-phase extraction (SPE) step. The methods showed a good accuracy (72-92%), precision (2-13%) and lower limits (few microg l(-1)). The validated approaches have been applied to assess potential and actual exposure of agricultural workers spraying acetamiprid in greenhouses. The results shown the need to wear personal protective equipment (suits) in order to reduce the absorbed dose of acetamiprid.

  7. Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

    PubMed Central

    Herzog, Fabian; Loza, Kateryna; Balog, Sandor; Clift, Martin J D; Epple, Matthias; Gehr, Peter; Petri-Fink, Alke

    2014-01-01

    Summary In the emerging market of nano-sized products, silver nanoparticles (Ag NPs) are widely used due to their antimicrobial properties. Human interaction with Ag NPs can occur through the lung, skin, gastrointestinal tract, and bloodstream. However, the inhalation of Ag NP aerosols is a primary concern. To study the possible effects of inhaled Ag NPs, an in vitro triple cell co-culture model of the human alveolar/airway barrier (A549 epithelial cells, human peripheral blood monocyte derived dendritic and macrophage cells) together with an air–liquid interface cell exposure (ALICE) system was used in order to reflect a real-life exposure scenario. Cells were exposed at the air–liquid interface (ALI) to 0.03, 0.3, and 3 µg Ag/cm2 of Ag NPs (diameter 100 nm; coated with polyvinylpyrrolidone: PVP). Ag NPs were found to be highly aggregated within ALI exposed cells with no impairment of cell morphology. Furthermore, a significant increase in release of cytotoxic (LDH), oxidative stress (SOD-1, HMOX-1) or pro-inflammatory markers (TNF-α, IL-8) was absent. As a comparison, cells were exposed to Ag NPs in submerged conditions to 10, 20, and 30 µg Ag/mL. The deposited dose per surface area was estimated by using a dosimetry model (ISDD) to directly compare submerged vs ALI exposure concentrations after 4 and 24 h. Unlike ALI exposures, the two highest concentrations under submerged conditions promoted a cytotoxic and pro-inflammatory response after 24 h. Interestingly, when cell cultures were co-incubated with lipopolysaccharide (LPS), no synergistic inflammatory effects were observed. By using two different exposure scenarios it has been shown that the ALI as well as the suspension conditions for the lower concentrations after 4 h, reflecting real-life concentrations of an acute 24 h exposure, did not induce any adverse effects in a complex 3D model mimicking the human alveolar/airway barrier. However, the highest concentrations used in the ALI setup, as well as

  8. Evaluation of Pulmonary and Systemic Toxicity of Oil Dispersant (COREXIT EC9500A®) Following Acute Repeated Inhalation Exposure

    PubMed Central

    Roberts, Jenny R; Anderson, Stacey E; Kan, Hong; Krajnak, Kristine; Thompson, Janet A; Kenyon, Allison; Goldsmith, William T; McKinney, Walter; Frazer, David G; Jackson, Mark; Fedan, Jeffrey S

    2014-01-01

    INTRODUCTION Oil spill cleanup workers come into contact with numerous potentially hazardous chemicals derived from the oil spills, as well as chemicals applied for mitigation of the spill, including oil dispersants. In response to the Deepwater Horizon Macondo well oil spill in the Gulf of Mexico in 2010, a record volume of the oil dispersant, COREXIT EC9500A, was delivered via aerial applications, raising concern regarding potential health effects that may result from pulmonary exposure to the dispersant. METHODS The current study examined the effects on pulmonary functions, cardiovascular functions, and systemic immune responses in rats to acute repeated inhalation exposure of COREXIT EC9500A at 25 mg/m3, five hours per day, over nine work days, or filtered air (control). At one and seven days following the last exposure, a battery of parameters was measured to evaluate lung function, injury, and inflammation; cardiovascular function; peripheral vascular responses; and systemic immune responses. RESULTS No significant alterations in airway reactivity were observed at one or seven days after exposure either in baseline values or following methacholine (MCh) inhalation challenge. Although there was a trend for an increase in lung neutrophils and phagocyte oxidant production at one-day post exposure, there were no significant differences in parameters of lung inflammation. In addition, increased blood monocytes and neutrophils, and decreased lymphocyte numbers at one-day post exposure also did not differ significantly from air controls, and no alterations in splenocyte populations, or serum or spleen immunoglobulin M (IgM) to antigen were observed. There were no significant differences in peripheral vascular responsiveness to vasoconstrictor and vasodilator agonists or in blood pressure (BP) responses to these agents; however, the baseline heart rate (HR) and HR responses to isoproterenol (ISO) were significantly elevated at one-day post exposure, with resolution

  9. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China

    PubMed Central

    Hu, Dalin; Yang, Jianping; Liu, Yungang; Zhang, Wenjuan; Peng, Xiaowu; Wei, Qinzhi; Yuan, Jianhui; Zhu, Zhiliang

    2016-01-01

    Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet  little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs) in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01) and both were lower than 50 ppm (an occupational threshold limit value). The calculated cancer risks (CRs) at the investigated petrol stations was 0.170 to 0.240 per 106 for operating workers, and 0.026 to 0.049 per 106 for support staff, which are below the typical target range for risk management of 1 × 10−6 to 1 × 10−4; The hazard quotients (HQs) for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk. PMID:26861375

  10. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China.

    PubMed

    Hu, Dalin; Yang, Jianping; Liu, Yungang; Zhang, Wenjuan; Peng, Xiaowu; Wei, Qinzhi; Yuan, Jianhui; Zhu, Zhiliang

    2016-02-06

    Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs) in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01) and both were lower than 50 ppm (an occupational threshold limit value). The calculated cancer risks (CRs) at the investigated petrol stations was 0.170 to 0.240 per 10⁶ for operating workers, and 0.026 to 0.049 per 10⁶ for support staff, which are below the typical target range for risk management of 1 × 10(-6) to 1 × 10(-4); The hazard quotients (HQs) for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.

  11. Medical countermeasure against respiratory toxicity and acute lung injury following inhalation exposure to chemical warfare nerve agent VX.

    PubMed

    Nambiar, Madhusoodana P; Gordon, Richard K; Rezk, Peter E; Katos, Alexander M; Wajda, Nikolai A; Moran, Theodore S; Steele, Keith E; Doctor, Bhupendra P; Sciuto, Alfred M

    2007-03-01

    To develop therapeutics against lung injury and respiratory toxicity following nerve agent VX exposure, we evaluated the protective efficacy of a number of potential pulmonary therapeutics. Guinea pigs were exposed to 27.03 mg/m(3) of VX or saline using a microinstillation inhalation exposure technique for 4 min and then the toxicity was assessed. Exposure to this dose of VX resulted in a 24-h survival rate of 52%. There was a significant increase in bronchoalveolar lavage (BAL) protein, total cell number, and cell death. Surprisingly, direct pulmonary treatment with surfactant, liquivent, N-acetylcysteine, dexamethasone, or anti-sense syk oligonucleotides 2 min post-exposure did not significantly increase the survival rate of VX-exposed guinea pigs. Further blocking the nostrils, airway, and bronchioles, VX-induced viscous mucous secretions were exacerbated by these aerosolized treatments. To overcome these events, we developed a strategy to protect the animals by treatment with atropine. Atropine inhibits muscarinic stimulation and markedly reduces the copious airway secretion following nerve agent exposure. Indeed, post-exposure treatment with atropine methyl bromide, which does not cross the blood-brain barrier, resulted in 100% survival of VX-exposed animals. Bronchoalveolar lavage from VX-exposed and atropine-treated animals exhibited lower protein levels, cell number, and cell death compared to VX-exposed controls, indicating less lung injury. When pulmonary therapeutics were combined with atropine, significant protection to VX-exposure was observed. These results indicate that combinations of pulmonary therapeutics with atropine or drugs that inhibit mucous secretion are important for the treatment of respiratory toxicity and lung injury following VX exposure.

  12. Medical countermeasure against respiratory toxicity and acute lung injury following inhalation exposure to chemical warfare nerve agent VX

    SciTech Connect

    Nambiar, Madhusoodana P.; Doctor, Bhupendra P.

    2007-03-15

    To develop therapeutics against lung injury and respiratory toxicity following nerve agent VX exposure, we evaluated the protective efficacy of a number of potential pulmonary therapeutics. Guinea pigs were exposed to 27.03 mg/m{sup 3} of VX or saline using a microinstillation inhalation exposure technique for 4 min and then the toxicity was assessed. Exposure to this dose of VX resulted in a 24-h survival rate of 52%. There was a significant increase in bronchoalveolar lavage (BAL) protein, total cell number, and cell death. Surprisingly, direct pulmonary treatment with surfactant, liquivent, N-acetylcysteine, dexamethasone, or anti-sense syk oligonucleotides 2 min post-exposure did not significantly increase the survival rate of VX-exposed guinea pigs. Further blocking the nostrils, airway, and bronchioles, VX-induced viscous mucous secretions were exacerbated by these aerosolized treatments. To overcome these events, we developed a strategy to protect the animals by treatment with atropine. Atropine inhibits muscarinic stimulation and markedly reduces the copious airway secretion following nerve agent exposure. Indeed, post-exposure treatment with atropine methyl bromide, which does not cross the blood-brain barrier, resulted in 100% survival of VX-exposed animals. Bronchoalveolar lavage from VX-exposed and atropine-treated animals exhibited lower protein levels, cell number, and cell death compared to VX-exposed controls, indicating less lung injury. When pulmonary therapeutics were combined with atropine, significant protection to VX-exposure was observed. These results indicate that combinations of pulmonary therapeutics with atropine or drugs that inhibit mucous secretion are important for the treatment of respiratory toxicity and lung injury following VX exposure.

  13. Estimating the contribution of inhalation exposure to di-2-ethylhexyl phthalate (DEHP) for PVC production workers, using personal air sampling and urinary metabolite monitoring.

    PubMed

    Fong, Jer-Pei; Lee, Fang-Jin; Lu, I-Syuan; Uang, Shi-Nian; Lee, Ching-Chang

    2014-01-01

    Because of troubling reports of high urinary metabolite levels and adverse reproductive health effects in workers exposed to di(2-ethylhexyl)phthalate (DEHP) in occupational settings, concern about exposure to DEHP in occupational settings is increasing. However, the contributions of different routes of exposure to DEHP are unclear. We used personal air sampling and biomonitoring to determine the contribution of inhalation exposure to the body burden of DEHP in the workplace. Eighty-nine workers (high-exposure group: 66 raw-materials workers; low-exposure group: 23 administrative workers) were recruited from three polyvinyl chloride (PVC) factories. Urinary levels of mono(2-ethylhexyl) phthalate (MEHP), (mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) were measured in pre-shift and post-shift samples. The geometric means of airborne concentrations of DEHP were 5.3 μg/m3 (low-exposure group) and 32.7 μg/m3 (high-exposure group) (P<0.01). Correlation analysis showed a consistently significant association between airborne DEHP concentration and urinary DEHP metabolite levels in the high-exposure group. Calculating daily DEHP intake based on total urinary metabolite levels showed that the geometric means of total daily urinary metabolite levels of DEHP were 9.2 μg/kg/day (low-exposure group) and 15.5 μg/kg/day (high-exposure group) (P<0.01). A quartile analysis of all workers showed a significant trend toward an association between the individual contribution of inhalation exposure to DEHP and urinary DEHP metabolite levels, for which the mean inhalation contribution was 46.7% in the highest quartile. We conclude that inhalation-absorbed airborne DEHP significantly increased the total body burden of DEHP in these occupationally exposed workers.

  14. Instillation versus Inhalation of Multiwalled Carbon Nanotubes: Exposure-Related Health Effects, Clearance, and the Role of Particle Characteristics

    PubMed Central

    2015-01-01

    Inhaled multiwalled carbon nanotubes (MWCNTs) may cause adverse pulmonary responses due to their nanoscale, fibrous morphology and/or biopersistance. This study tested multiple factors (dose, time, physicochemical characteristics, and administration method) shown to affect MWCNT toxicity with the hypothesis that these factors will influence significantly different responses upon MWCNT exposure. The study is unique in that (1) multiple administration methods were tested using particles from the same stock; (2) bulk MWCNT formulations had few differences (metal content, surface area/functionalization); and (3) MWCNT retention was quantified using a specialized approach for measuring unlabeled MWCNTs in rodent lungs. Male Sprague–Dawley rats were exposed to original (O), purified (P), and carboxylic acid functionalized (F) MWCNTs via intratracheal instillation and inhalation. Blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected at postexposure days 1 and 21 for quantifying biological responses and MWCNTs in lung tissues by programmed thermal analysis. At day 1, MWCNT instillation produced significant BALF neutrophilia and MWCNT-positive macrophages. Instilled O- and P-MWCNTs produced significant inflammation in lung tissues, which resolved by day 21 despite MWCNT retention. MWCNT inhalation produced no BALF neutrophilia and no significant histopathology past day 1. However, on days 1 and 21 postinhalation of nebulized MWCNTs, significantly increased numbers of MWCNT-positive macrophages were observed in BALF. Results suggest (1) MWCNTs produce transient inflammation if any despite persistence in the lungs; (2) instilled O-MWCNTs cause more inflammation than P- or F-MWCNTs; and (3) MWCNT suspension media produce strikingly different effects on physicochemical particle characteristics and pulmonary responses. PMID:25144856

  15. Inhaled Steroids

    MedlinePlus

    ... Medications Long-Term Control Medications Inhaled Steroids Inhaled Steroids Make an Appointment Ask a Question Refer Patient ... more about steroids? What are some common inhaled steroids? Common inhaled steroids include: Asmanex ® (mometasone) Alvesco ® (ciclesonide) ...

  16. Acute toxic effects of nerve agent VX on respiratory dynamics and functions following microinsillation inhalation exposure in guinea pigs.

    PubMed

    Rezk, Peter E; Graham, Jacob R; Moran, Theodore S; Gordon, Richard K; Sciuto, Alfred M; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2007-03-01

    Exposure to a chemical warfare nerve agent (CWNA) leads to severe respiratory distress, respiratory failure, or death if not treated. We investigated the toxic effects of nerve agent VX on the respiratory dynamics of guinea pigs following exposure to 90.4 mug/m3 of VX or saline by microinstillation inhalation technology for 10 min. Respiratory parameters were monitored by whole-body barometric plethysmography at 4, 24, and 48 h, 7 d, 18 d, and 4 wk after VX exposure. VX-exposed animals showed a significant decrease in the respiratory frequency (RF) at 24 and 48 h of recovery (p value .0329 and .0142, respectively) compared to the saline control. The tidal volume (TV) slightly increased in VX exposed animals at 24 and significantly at 48 h (p = .02) postexposure. Minute ventilation (MV) increased slightly at 4 h but was reduced at 24 h and remained unchanged at 48 h. Animals exposed to VX also showed an increase in expiratory (Te) and relaxation time (RT) at 24 and 48 h and a small reduction in inspiratory time (Ti) at 24 h. A significant increase in end expiratory pause (EEP) was observed at 48 h after VX exposure (p = .049). The pseudo lung resistance (Penh) was significantly increased at 4 h after VX exposure and remained slightly high even at 48 h. Time-course studies reveal that most of the altered respiratory dynamics returned to normal at 7 d after VX exposure except for EEP, which was high at 7 d and returned to normal at 18 d postexposure. After 1 mo, all the monitored respiratory parameters were within normal ranges. Bronchoalveolar lavage (BAL) 1 mo after exposure showed virtually no difference in protein levels, cholinesterase levels, cell number, and cell death in the exposed and control animals. These results indicate that sublethal concentrations of VX induce changes in respiratory dynamics and functions that over time return to normal levels.

  17. A COMPUTER-CONTROLLED WHOLE-BODY INHALATION EXPOSURE SYSTEM FOR THE OIL DISPERSANT COREXIT EC9500A

    PubMed Central

    Goldsmith, William Travis; McKinney, Walter; Jackson, Mark; Law, Brandon; Bledsoe, Toni; Siegel, Paul; Cumpston, Jared; Frazer, David

    2015-01-01

    An automated whole-body inhalation exposure system capable of exposing 12 individually housed rats was designed to examine the potential adverse health effects of the oil dispersant COREXIT EC9500A, used extensively during the Deepwater Horizon oil spill. A computer–controlled syringe pump injected the COREXIT EC9500A into an atomizer where droplets and vapor were formed and mixed with diluent air. The aerosolized COREXIT EC9500A was passed into a customized exposure chamber where a calibrated light-scattering instrument estimated the real-time particle mass concentration of the aerosol in the chamber. Software feedback loops controlled the chamber aerosol concentration and pressure throughout each exposure. The particle size distribution of the dispersant aerosol was measured and shown to have a count median aerodynamic diameter of 285 nm with a geometric standard deviation of 1.7. The total chamber concentration (particulate + vapor) was determined using a modification of the acidified methylene blue spectrophotometric assay for anionic surfactants. Tests were conducted to show the effectiveness of closed loop control of chamber concentration and to verify chamber concentration homogeneity. Five automated 5-h animal exposures were performed that produced controlled and consistent COREXIT EC9500A concentrations (27.1 ± 2.9 mg/m3, mean ± SD). PMID:21916743

  18. Hardwood smoke alters murine splenic T cell responses to mitogens following a 6-month whole body inhalation exposure

    SciTech Connect

    Burchiel, Scott W. . E-mail: Sburchiel@salud.unm.edu; Lauer, Fredine T.; Dunaway, Sandy L.; Zawadzki, Jerome; McDonald, Jacob D.; Reed, Matthew D.

    2005-02-01

    The purpose of these studies was to assess the effects of hardwood smoke (HWS) inhalation (30-1000 {mu}g/m{sup 3}) on the systemic immune responses of A/J mice evaluated after 6 months of daily exposures. Spleen cells obtained from mice were assessed for changes in cell number, cell surface marker expression [B, T, macrophage, and natural killer (NK) cells], and responses to B cell (LPS, endotoxin) and T cell (Con A) mitogens. Results showed that HWS smoke increased T cell proliferation in the 100 {mu}g/m{sup 3} exposure group and produced a concentration-dependent suppression of T cell proliferation at concentrations >300 {mu}g/m{sup 3}. There were no effects on B cell proliferation or in spleen cell surface marker expression. Analyses of the exposure atmospheres revealed the presence of significant levels of naphthalene and methylated napthalenes, fluorene, phenanthrene, and anthracene in the exposure chambers, as well as low concentrations of several metals (K, Ca, and Fe). Our results demonstrate that environmentally relevant concentrations of HWS may be immunosuppressive to the immune system of mice exposed during a 6-month period.

  19. RECONSTRUCTING POPULATION EXPOSURES FROM DOSE BIOMARKERS: INHALATION OF TRICHLOROETHYLENE (TCE) AS A CASE STUDY

    EPA Science Inventory

    Physiologically based pharmacokinetic (PBPK) modeling is a well-established toxicological tool designed to relate exposure to a target tissue dose. The emergence of federal and state programs for environmental health tracking and the availability of exposure monitoring through bi...

  20. Toxicity of chemical components of fine particles inhaled by aged rats: effects of concentration.

    PubMed

    Kleinman, Michael T; Hyde, Dallas M; Bufalino, Charles; Basbaum, Carol; Bhalla, Deepak K; Mautz, William J

    2003-09-01

    This study tested the hypothesis that exposure to mixtures containing fine particles and ozone (O3) would cause pulmonary injury and decrements in functions of immunological cells in exposed rats (22-24 months old) in a dose-dependent manner. Rats were exposed to high and low concentrations of ammonium bisulfate and elemental carbon and to 0.2 ppm O3. Control groups were exposed to purified air or O3 alone. The biological end points measured included histopathological markers of lung injury, bronchoalveolar lung fluid proteins, and measures of the function of the lung's innate immunological defenses (macrophage antigen-directed phagocytosis and respiratory burst activity). Exposure to O3 alone at 0.2 ppm did not result in significant changes in any of the measured end points. Exposures to the particle mixtures plus O3 produced statistically significant changes consistent with adverse effects. The low-concentration mixture produced effects that were statistically significant compared to purified air but, with the exception of macrophage Fc receptor binding, exposure to the high-concentration mixture did not. The effects of the low- and high-concentration mixtures were not significantly different. The study supports previous work that indicated that particle + O3 mixtures were more toxic than O3 alone.

  1. Pulmonary Endpoints (Lung Carcinomas and Asbestosis) Following Inhalation Exposure to Asbestos

    PubMed Central

    Mossman, Brooke T.; Lippmann, Morton; Hesterberg, Thomas W.; Kelsey, Karl T.; Barchowsky, Aaron; Bonner, James C.

    2011-01-01

    Lung carcinomas and pulmonary fibrosis (asbestosis) occur in asbestos workers. Understanding the pathogenesis of these diseases is complicated because of potential confounding factors, such as smoking, which is not a risk factor in mesothelioma. The modes of action (MOA) of various types of asbestos in the development of lung cancers, asbestosis, and mesotheliomas appear to be different. Moreover, asbestos fibers may act differentially at various stages of these diseases, and have different potencies as compared to other naturally occurring and synthetic fibers. This literature review describes patterns of deposition and retention of various types of asbestos and other fibers after inhalation, methods of translocation within the lung, and dissolution of various fiber types in lung compartments and cells in vitro. Comprehensive dose-response studies at fiber concentrations inhaled by humans as well as bivariate size distributions (lengths and widths), types, and sources of fibers are rarely defined in published studies and are needed. Species-specific responses may occur. Mechanistic studies have some of these limitations, but have suggested that changes in gene expression (either fiber-catalyzed directly or by cell elaboration of oxidants), epigenetic changes, and receptor-mediated or other intracellular signaling cascades may play roles in various stages of the development of lung cancers or asbestosis. PMID:21534086

  2. Inhalation exposure of rats to asphalt fumes generated at paving temperatures alters pulmonary xenobiotic metabolism pathways without lung injury.

    PubMed Central

    Ma, Jane Y C; Rengasamy, Apavoo; Frazer, Dave; Barger, Mark W; Hubbs, Ann F; Battelli, Lori; Tomblyn, Seith; Stone, Samuel; Castranova, Vince

    2003-01-01

    Asphalt fumes are complex mixtures of various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). PAHs require bioactivation by the cytochrome P-450 monooxygenase system to exert toxic/carcinogenic effects. The present study was carried out to characterize the acute pulmonary inflammatory responses and the alterations of pulmonary xenobiotic pathways in rats exposed to asphalt fumes by inhalation. Rats were exposed at various doses and time periods to air or to asphalt fumes generated at paving temperatures. To assess the acute damage and inflammatory responses, differential cell counts, acellular lactate dehydrogenase (LDH) activity, and protein content of bronchoalveolar lavage fluid were determined. Alveolar macrophage (AM) function was assessed by monitoring generation of chemiluminescence and production of tumor necrosis factor-alpha and interleukin-1. Alteration of pulmonary xenobiotic pathways was determined by monitoring the protein levels and activities of P-450 isozymes (CYP1A1 and CYP2B1), glutathioneS-transferase (GST), and NADPH:quinone oxidoreductase (QR). The results show that acute asphalt fume exposure did not cause neutrophil infiltration, alter LDH activity or protein content, or affect AM function, suggesting that short-term asphalt fume exposure did not induce acute lung damage or inflammation. However, acute asphalt fume exposure significantly increased the activity and protein level of CYP1A1 whereas it markedly reduced the activity and protein level of CYP2B1 in the lung. The induction of CYP1A1 was localized in nonciliated bronchiolar epithelial (Clara) cells, alveolar septa, and endothelial cells by immunofluorescence microscopy. Cytosolic QR activity was significantly elevated after asphalt fume exposure, whereas GST activity was not affected by the exposure. This induction of CYP1A1 and QR with the concomitant down-regulation of CYP2B1 after asphalt fume exposure could alter PAH metabolism and may lead to potential

  3. Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD.

    PubMed

    Chen, Huan; Carter, Kimberly E

    2017-05-01

    Various toxic chemicals used in hydraulic fracturing fluids may influence the inherent health risks associated with these operations. This study investigated the possible occupational inhalation exposures and potential risks related to the volatile organic compounds (VOCs) from chemical storage tanks and flowback pits used in hydraulic fracturing. Potential risks were evaluated based on radial distances between 5 m and 180 m from the wells for 23 contaminants with known inhalation reference concentration (RfC) or inhalation unit risks (IUR). Results show that chemicals used in 12.4% of the wells posed a potential acute non-cancer risks for exposure and 0.11% of the wells with may provide chronic non-cancer risks for exposure. Chemicals used in 7.5% of the wells were associated with potential acute cancer risks for exposure. Those chemicals used in 5.8% of the wells may be linked to chronic cancer risks for exposure. While eight organic compounds were associated with acute non-cancer risks for exposure (>1), methanol the major compound in the chemical storage tanks (1.00-45.49) in 7,282 hydraulic fracturing wells. Wells with chemicals additives containing formaldehyde exhibited both acute and chronic cancer risks for exposure with IUR greater than 10(-6), suggesting formaldehyde was the dominant contributor to both types of risks for exposure in hydraulic fracturing. This study also found that due to other existing on-site emission sources of VOCs and the geographically compounded air concentrations from other surrounding wells, chemical emissions data from storage tanks and flowback pits used in this study were lower than reported concentrations from field measurements where higher occupational inhalation risks for exposure may be expected.

  4. Inhalation Cancer Risk Associated with Exposure to Complex Polycyclic Aromatic Hydrocarbon Mixtures in an Electronic Waste and Urban Area in South China

    PubMed Central

    Wang, Jing; Chen, Shejun; Tian, Mi; Zheng, Xiaobo; Gonzales, Leah; Ohura, Takeshi; Mai, Bixian; Simonich, Staci L. Massey

    2012-01-01

    Atmospheric particulate matter samples were collected from May 2010 to April 2011 in a rural e-waste area and in Guangzhou, South China, to estimate the lifetime inhalation cancer risk from exposure to parent polycyclic aromatic hydrocarbons (PAHs), high molecular weight PAHs (MW 302 PAHs), and halogenated PAHs (HPAHs). Seasonal variations in the PAH concentrations and profile within and between the e-waste and urban areas indicated different PAH sources in the two areas. Benzo[b]fluoranthene, BaP, dibenz[ah]anthracene, and dibenzo[al]pyrene made the most significant contribution to the inhalation cancer risk. MW 302 PAHs accounting for 18.0% of the total cancer risk in the e-waste area and 13.6% in the urban area, while HPAHs made a minor contribution (< 0.1%) in both the areas. The number of lifetime excess lung cancers due to exposure to parent PAHs, MW 302 PAHs, and HPAHs ranged from 15.1 to 1198 per million people in the e-waste area and from 9.3 to 737 per million people in Guangzhou. PAH exposure accounted for 0.02 to 1.94% of the total lung cancer cases in Guangzhou. On average, the inhalation cancer risk in the e-waste area was 1.6 times higher than in the urban area. The e-waste dismantling activities in South China led to higher inhalation cancer risk due to PAH exposure than the urban area. PMID:22913732

  5. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: Evidence from a novel translational in vitro model**

    EPA Science Inventory

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  6. Effects of subchronic inhalation exposure of rats to emissions from a diesel engine burning soybean oil-derived biodiesel fuel.

    PubMed

    Finch, G L; Hobbs, C H; Blair, L F; Barr, E B; Hahn, F F; Jaramillo, R J; Kubatko, J E; March, T H; White, R K; Krone, J R; Ménache, M G; Nikula, K J; Mauderly, J L; Van Gerpen, J; Merceica, M D; Zielinska, B; Stankowski, L; Burling, K; Howell, S

    2002-10-01

    There is increasing interest in diesel fuels derived from plant oils or animal fats ("biodiesel"), but little information on the toxicity of biodiesel emissions other than bacterial mutagenicity. F344 rats were exposed by inhalation 6 h/day, 5 days/wk for 13 wk to 1 of 3 dilutions of emissions from a diesel engine burning 100% soybean oil-derived fuel, or to clean air as controls. Whole emissions were diluted to nominal NO(x) concentrations of 5, 25, or 50 ppm, corresponding to approximately 0.04, 0.2, and 0.5 mg particles/m(3), respectively. Biologically significant, exposure-related effects were limited to the lung, were greater in females than in males, and were observed primarily at the highest exposure level. There was a dose-related increase in the numbers of alveolar macrophages and the numbers of particles in the macrophages, as expected from repeated exposure, but no neutrophil response even at the highest exposure level. The macrophage response was reduced 28 days after cessation of the exposure. Among the high-level females, the group mean lung weight/body weight ratio was increased, and minimal, multifocal bronchiolar metaplasia of alveolar ducts was observed in 4 of 30 rats. Lung weights were not significantly increased, and metaplasia of the alveolar ducts was not observed in males. An increase in particle-laden macrophages was the only exposure-related finding in lungs at the intermediate and low levels, with fewer macrophages and fewer particles per macrophage at the low level. Alveolar histiocytosis was observed in a few rats in both exposed and control groups. There were statistically significant, but minor and not consistently exposure-related, differences in body weight, nonpulmonary organ weights, serum chemistry, and glial fibrillary acidic protein in the brain. There were no significant exposure-related effects on survival, clinical signs, feed consumption, ocular toxicity, hematology, neurohistology, micronuclei in bone marrow, sister

  7. Differences in aerosolization of Rift Valley fever virus resulting from choice of inhalation exposure chamber: implications for animal challenge studies

    PubMed Central

    Bethel, Laura M.; Powell, Diana S.; Caroline, Amy L.; Hartman, Amy L.

    2014-01-01

    Abstract The aerosol characteristics of Rift Valley fever virus (RVFV) were evaluated to achieve reproducible infection of experimental animals with aerosolized RVFV suitable for animal efficacy studies. Spray factor (SF), the ratio between the concentrations of the aerosolized agent to the agent in the aerosol generator, is used to compare performance differences between aerosol exposures. SF indicates the efficiency of the aerosolization process; a higher SF means a lower nebulizer concentration is needed to achieve a desired inhaled dose. Relative humidity levels as well as the duration of the exposure and choice of exposure chamber all impacted RVFV SF. Differences were also noted between actual and predicted minute volumes for different species of nonhuman primates. While NHP from Old World species (Macaca fascicularis, M. mulatta, Chlorocebus aethiops) generally had a lower actual minute volume than predicted, the actual minute volume for marmosets (Callithrix jacchus) was higher than predicted (150% for marmosets compared with an average of 35% for all other species examined). All of these factors (relative humidity, chamber, duration, and minute volume) impact the ability to reliably and reproducibly deliver a specific dose of aerosolized RVFV. The implications of these findings for future pivotal efficacy studies are discussed. PMID:24532259

  8. Pulmonary response after exposure to inhaled nickel hydroxide nanoparticles: short and long-term studies in mice

    PubMed Central

    Gillespie, Patricia A.; Kang, Gi Soo; Elder, Alison; Gelein, Robert; Chen, Lu; Moreira, Andre L.; Koberstein, Jeffrey; Tchou-Wong, Kam-Meng; Gordon, Terry; Chen, Lung Chi

    2010-01-01

    Short and long-term pulmonary response to inhaled nickel hydroxide nanoparticles (nano-Ni(OH)2, CMD = 40 nm) in C57BL/6 mice was assessed using a whole body exposure system. For short-term studies mice were exposed for 4 h to nominal concentrations of 100, 500, and 1000 mg/m3. For long-term studies mice were exposed for 5 h/d, 5 d/w, for up to 5 months (m) to a nominal concentration of 100 mg/m3. Particle morphology, size distribution, chemical composition, solubility, and intrinsic oxidative capacity were determined. Markers of lung injury and inflammation in bronchoalveolar lavage fluid (BALF); histopathology; and lung tissue elemental nickel content and mRNA changes in macrophage inflammatory protein-2 (Mip-2), chemokine ligand 2 (Ccl2), interleukin 1-alpha (Il-1α), and tumor necrosis factor-alpha (Tnf-α) were assessed. Dose-related changes in BALF analyses were observed 24 h after short-term studies while significant changes were noted after 3 m and/or 5 m of exposure (24 h). Nickel content was detected in lung tissue, Ccl2 was most pronouncedly expressed, and histological changes were noted after 5 m of exposure. Collectively, data illustrates nano-Ni(OH)2 can induce inflammatory responses in C57BL/6 mice. PMID:20730025

  9. Toxicity evaluation of exposure to an atmospheric mixture of polychlorinated biphenyls by nose-only and whole-body inhalation regimens

    PubMed Central

    Hu, Xin; Adamcakova-Dodd, Andrea; Lehmler, Hans-Joachim; Thorne, Peter S.

    2016-01-01

    The health risk of inhalation exposure to polychlorinated biphenyls (PCB) cannot be assessed due to the lack of rigorous inhalation studies providing a low dose effect level. One large uncertainty rests on the exposure regimen. Whole-body exposure systems allow oral PCB intake that confounds the exposure. Thus, we sought to compare the whole-body and nose-only exposure methods by conducting contemporaneous PCB inhalation exposures. Vapor-phase PCBs were generated from the Chicago Air Mixture supplemented with PCB 11 (CAM+). Female Sprague-Dawley rats were exposed concurrently to a PCB concentration of 533 ± 93 µg/m3, 4 h/day, 6 days/week, for 4 weeks. Congener-specific analysis using gas chromatography– mass spectrometry (GC/MS) showed higher total PCB concentration in the lungs of nose-only exposed animals than the whole-body exposed, resulting in a higher dose level for nose-only group. Congener profiles were consistent among exposure groups and tissue types and were dominated by PCB 28/31 and higher-chlorinated congeners reflecting rapid metabolism of other lower-chlorinated PCBs. No significant change was seen regarding metabolic enzyme expression, glutathione, or histopathology. However, diminished weight gain and reduced plasma total thyroxine levels were found in both groups compared with controls, with stronger response in the nose-only group. Lipid peroxidation was also elevated in the liver of nose-only exposed animals. We conclude that nose-only exposure was the preferred regimen for 4-wk PCB inhalation studies and thyroid hormone dysregulation was observed at an estimated dose of 1320 µg/kg b.w., providing information on a preliminary lowest-observed-adverse-effect-level (LOAEL). PMID:26348937

  10. Ecstasy Exposure & Gender: Examining Components of Verbal Memory Functioning

    PubMed Central

    Price, Jenessa S.; Shear, Paula; Lisdahl, Krista M.

    2014-01-01

    Objective Studies have demonstrated verbal memory deficits associated with past year ecstasy use, although specific underlying components of these deficits are less understood. Further, prior research suggests potential gender differences in ecstasy-induced serotonergic changes. Therefore, the current study investigated whether gender moderated the relationship between ecstasy exposure and components of verbal memory after controlling for polydrug use and confounding variables. Method Data were collected from 65 polydrug users with a wide range of ecstasy exposure (ages 18–35; 48 ecstasy and 17 marijuana users; 0–2310 ecstasy tablets). Participants completed a verbal learning and memory task, psychological questionnaires, and a drug use interview. Results Increased past year ecstasy exposure predicted poorer short and long delayed free and cued recalls, retention, and recall discrimination. Male ecstasy users were more susceptible to dose-dependent deficits in retention than female users. Conclusion Past year ecstasy consumption was associated with verbal memory retrieval, retention, and discrimination deficits in a dose-dependent manner in a sample of healthy young adult polydrug users. Male ecstasy users were at particular risk for deficits in retention following a long delay. Gender difference may be reflective of different patterns of polydrug use as well as increased hippocampal sensitivity. Future research examining neuronal correlates of verbal memory deficits in ecstasy users are needed. PMID:25545890

  11. DEVELOPMENT OF EXPOSURE-RESPONSE MODELS FOR THE ACUTE RESPIRATORY EFFECTS OF INHALED IRRITANTS IN HUMANS

    EPA Science Inventory

    In order to conduct quantitative risk assessment with minimal uncertainty for short-term exposure to ozone and other respiratory irritants, one must identify exposure-response (E-R) models which accurately predict the distribution of the magnitudes of response (or the proportion ...

  12. Inhalation exposure to isocyanates of car body repair shop workers and industrial spray painters.

    PubMed

    Pronk, Anjoeka; Tielemans, Erik; Skarping, Gunnar; Bobeldijk, Ivana; VAN Hemmen, Joop; Heederik, Dick; Preller, Liesbeth

    2006-01-01

    As part of a large-scale epidemiological study, occupational isocyanate exposure was assessed in spray-painting environments. The aim was to assess which compounds contribute to isocyanate exposure in car body repair shops and industrial painting companies, and to identify tasks with high risk of isocyanate exposure. Mainly personal task-based samples (n = 566) were collected from 24 car body repair shops and five industrial painting companies using impingers with DBA in toluene. Samples were analysed by LC-MS for isocyanate monomers, oligomers and products of thermal degradation. From the 23 analysed compounds, 20 were detected. Exploratory factor analysis resulted in a HDI, TDI and MDI factor with the thermal degradation products divided over the TDI and MDI factors. The HDI factor mainly consisted of HDI oligomers and was dominant in frequency and exposure levels in both industries. Spray painting of PU lacquers resulted in the highest exposures for the HDI factor (Exposure variability during PU spray painting was large with a variability over time of (ww)S(2) = 9.1 compared with between-worker variability of (bw)S(2) = 1.6. Lower level exposure to the HDI factor was found during other painting-related tasks and even tasks without direct exposure to paint. Exposure to the TDI factor was found more regularly in car body repair shops than in industrial painting companies. Exposure levels were low (Exposure to the MDI factor was found incidentally during spraying and welding in car body repair shops (exposure in both industries with highest exposures during PU spraying. However, since respiratory protection is less extensively used during other

  13. A Method for Quantifying the Acute Health Impacts of Residential Non-Biological Exposure Via Inhalation

    SciTech Connect

    Logue, Jennifer M.; Sherman, Max H.; Singer, Bret C.

    2014-08-01

    The inability to monetize the health costs of acute exposures in homes and the benefits of various control options is a barrier to justifying policies and approaches that can reduce exposure and improve health.We synthesized relationships between short-term outdoor concentration changes and health outcomes to estimate the health impacts of short-term in-home exposures. Damage and cost impacts of specific health outcomes were taken from the literature. We assessed the impact of vented and non-vented residential natural gas cooking burners on Southern California occupants for two pollutants (NO2 and CO).

  14. Inhalation exposure to sulfur mustard in the guinea pig model: Clinical, biochemical and histopathological characterization of respiratory injuries

    SciTech Connect

    Allon, Nahum; Amir, Adina; Manisterski, Eliau; Rabinovitz, Ishay; Dachir, Shlomit; Kadar, Tamar

    2009-12-01

    Guinea pigs (GP) were exposed (head only) in individual plethysmographs to various concentrations of sulfur mustard vapor, determined online, using FTIR attached to flow chamber. The LCt{sub 50} and the inhaled LD{sub 50} were calculated at different time points post exposure. Surviving animals were monitored for clinical symptoms, respiratory parameters and body weight changes for up to 30 days. Clinical symptoms were noted at 3 h post exposure, characterized by erythematic and swelling nose with extensive mucous secretion (with or without bleeding). At 6 h post exposure most of the guinea pigs had breathing difficulties, rhonchi and dyspnea and few deaths were noted. These symptoms peaked at 48 h and were noted up to 8 days, associated with few additional deaths. Thereafter, a spontaneous healing was noted, characterized by recovery of respiratory parameters and normal weight gain with almost complete apparent healing within 2 weeks. Histopathological evaluation of lungs and trachea in the surviving GPs at 4 weeks post exposure revealed a dose-dependent residual injury in both lung and trachea expressed by abnormal recovery of the tracheal epithelium concomitant with a dose-dependent increase in cellular volume in the lungs. These abnormal epithelial regeneration and lung remodeling were accompanied with significant changes in protein, LDH, differential cell count and glutathione levels in the bronchoalveolar lavage (BAL). It is suggested that the abnormal epithelial growth and cellular infiltration into the lung as well as the continuous lung inflammation could cause recurrent lung injury similar to that reported for HD exposed human casualties.

  15. Changes in HPBMC markers of immmune function following controlled short-term inhalation exposures of humans to hardwood smoke.

    PubMed

    Burchiel, Scott W; Lauer, Fredine T; MacKenzie, Debra; McClain, Shea; Kuehl, Philip J; McDonald, Jacob D; Harrod, Kevin S

    2016-01-01

    Previous studies have shown that complex mixtures containing particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) produce systemic immunotoxicity in animal models following inhalation exposures. While we and others have shown that emissions associated with hardwood smoke (HWS), cigarette smoke and diesel exhaust can suppress the immune systems of animals in vitro and in vivo, there have been few immune function studies on human peripheral blood mononuclear cells (HPBMC) following exposure of humans to HWS. Our work shows that T cells are an important targets of PM and PAH immunotoxicity. These studies were conducted on HPBMC from 14 human volunteers receiving four 2 h nightly exposures to clean air or HWS at a concentration of 500 ug/m(3). We measured anti-CD3/anti-CD28 stimulated T-cell proliferation and HPBMC cytokine production in cell supernatants, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), TH1 cytokines γIFN and IL-2, TH2 cytokine IL-4, Th17 cytokine interleukin 17A (IL-17A) and interleukin 10 (IL-10). We analyzed results using analysis of variance (ANOVA), t-tests and Pearson correlation. Results showed that there was significant variation in the amount of T-cell proliferation observed following polyclonal activation with anti-CD3/anti-CD28 antibodies in both the air and HWS-exposed groups. There was not a significant effect of HWS on T-cell proliferation. However, we did find a strong relationship between the presence of proinflammatory cytokines (IL-1β, TNF-α, IL-6, but not IL-8) and the amount of T-cell proliferation seen in individual donors, demonstrating that brief exposures of humans to HWS can produce changes in systemic immunity that is associated with proinflammatory cytokines.

  16. Estimating safe human exposure levels for lunar dust using benchmark dose modeling of data from inhalation studies in rats.

    PubMed

    Scully, Robert R; Lam, Chiu-Wing; James, John T

    2013-12-01

    The pulmonary toxicity of airborne lunar dust was assessed in rats exposed by nose-only inhalation to 0, 2.1, 6.8, 20.8 and 60.6 mg/m3 of respirable size lunar dust. Rats were exposed for 6 h/d, 5 d/week, for 4 weeks (120 h). Biomarkers of toxicity were assessed in bronchial alveolar lavage fluid (BALF) collected at 1 d, 1 week, 4 weeks or 13 weeks post-exposure for a total of 76 endpoints. Benchmark dose (BMD) analysis was conducted on endpoints that appeared to be sensitive to dose. The number of endpoints that met criteria for modeling was 30. This number was composed of 13 endpoints that produced data suitable for parametric analysis and 17 that produced non-normal data. Mean BMD values determined from models generated from non-normal data were lower but not significantly different from the mean BMD of models derived from normally distributed data. Thus BMDs ranged from a minimum of 10.4 (using the average BMD from all 30 modeled endpoints) to a maximum of 16.6 (using the average BMD from the most restricted set of models). This range of BMDs yields safe exposure estimate (SEE) values of 0.6 and 0.9 mg/m3, respectively, when BMDs are extrapolated to humans, using a species factor of 3 and extrapolated from a 1-month exposure to an anticipated 6-month lunar surface exposure. This estimate is very similar to a no-observable-adverse-effect-level (NOAEL) determined from the same studies (0.4 mg/m3) and a SEE derived from a study of rats that were intratracheally instilled with lunar dusts (0.5-1.0 mg/m3).

  17. ESTIMATED RATE OF FATAL AUTOMOBILE ACCIDENTS ATTRIBUTABLE TO ACUTE SOLVENT EXPOSURE AT LOW INHALED CONCENTRATIONS

    EPA Science Inventory

    Acute solvent exposures may contribute to automobile accidents because they increase reaction time and decrease attention, in addition to impairing other behaviors. These effects resemble those of ethanol consumption, both with respect to behavioral effects and neurological mecha...

  18. Butyrylcholinesterase in guinea pig lung lavage: a novel biomarker to assess lung injury following inhalation exposure to nerve agent VX.

    PubMed

    Graham, Jacob R; Wright, Benjamin S; Rezk, Peter E; Gordon, Richard K; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2006-06-01

    Respiratory disturbances play a central role in chemical warfare nerve agent (CWNA) induced toxicity; they are the starting point of mass casualty and the major cause of death. We developed a microinstillation technique of inhalation exposure to nerve agent VX and assessed lung injury by biochemical analysis of the bronchoalveolar lavage fluid (BALF). Here we demonstrate that normal guinea pig BALF has a significant amount of cholinesterase activity. Treatment with Huperzine A, a specific inhibitor of acetylcholinesterase (AChE), showed that a minor fraction of BALF cholinesterase is AChE. Furthermore, treatment with tetraisopropyl pyrophosphoramide (iso-OMPA), a specific inhibitor of butyrylcholinesterase (BChE), inhibited more than 90% of BChE activity, indicating the predominance of BChE in BALF. A predominance of BChE expression in the lung lavage was seen in both genders. Substrate specific inhibition indicated that nearly 30% of the cholinesterase in lung tissue homogenate is AChE. BALF and lung tissue AChE and BChE activities were strongly inhibited in guinea pigs exposed for 5 min to 70.4 and 90.4 microg/m3 VX and allowed to recover for 15 min. In contrast, BALF AChE activity was increased 63% and 128% and BChE activity was increased 77% and 88% after 24 h of recovery following 5 min inhalation exposure to 70.4 microg/m3 and 90.4 mg/m3 VX, respectively. The increase in BALF AChE and BChE activity was dose dependent. Since BChE is synthesized in the liver and present in the plasma, an increase in BALF indicates endothelial barrier injury and leakage of plasma into lung interstitium. Therefore, a measure of increased levels of AChE and BChE in the lung lavage can be used to determine the chronology of barrier damage as well as the extent of lung injury following exposure to chemical warfare nerve agents.

  19. Gene expression profiling of kidneys from Sprague-Dawley rats following 12-week inhalation exposure to silver nanoparticles.

    PubMed

    Dong, Mi Sook; Choi, Ji-Yoon; Sung, Jae Hyuck; Kim, Jin Sik; Song, Kyung Seuk; Ryu, Hyun Ryol; Lee, Ji Hyun; Bang, In Seok; An, Kangho; Park, Hyun Min; Song, Nam Woong; Yu, Il Je

    2013-07-01

    The specific properties of silver nanoparticles (AgNPs), such as antimicrobial activity and electrical conductivity, allow them to be used in many fields. However, their expanding application is also raising health, environmental and safety concerns. Previous in vivo AgNP toxicity studies have indicated a gender-different accumulation of silver in the kidneys, with 2-3 times more silver in female kidneys compared to male kidneys. However, no other studies have further addressed this gender difference. Accordingly, the current study investigated the gender-dependent effect of AgNPs on the kidney gene level based on toxicogenomic studies of kidneys obtained from rats exposed to AgNPs via inhalation for 12 weeks. When compared with the fresh air control, the silver nanoparticle-exposed kidneys included 104 genes with a more than 1.3-fold expression increase. For the male rat kidneys exposed to a low or high dose of silver nanoparticles, 96 genes exhibited expression changes, where six genes changed with both the low and high dose; four increased and two decreased. Meanwhile, for the female rat kidneys exposed to a low or high dose of silver nanoparticles, 66 genes exhibited expression changes, where 11 genes changed with both the low and high dose; nine increased and two decreased. Gender-dependent gene expression changes of more than 2-fold were linked to 163 genes, with 79 genes in the male kidneys and 84 genes in the female kidneys, plus gender-dependent gene expression changes of more than 5-fold were linked to 21 genes. However, no genes involved in apoptosis or the cell cycle were activated by the 12-week silver nanoparticle inhalation exposure. Overall, the male rat kidneys showed a higher expression of genes involved in xenobiotic metabolism, while the female rat kidneys showed a higher expression of genes involved in extracellular signaling.

  20. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China.

    PubMed

    Wang, Lingqing; Zhong, Buqing; Liang, Tao; Xing, Baoshan; Zhu, Yifang

    2016-12-01

    Exposure to radionuclide thorium (Th) has generated widespread public concerns, mainly because of its radiological effects on human health. Activity levels of airborne (232)Th in total suspended particulate (TSP) were measured in the vicinity of the largest rare earth mine in China in August 2012 and March 2013. The mean activity concentrations of (232)Th in TSP ranged from 820μBqm(-3) in a mining area in August 2012 to 39,720μBqm(-3) in a smelting area in March 2013, much higher than the world reference of 0.5μBqm(-3). Multistatistical analysis and Kohonen's self-organizing maps suggested that (232)Th in TSP was mainly derived from rare earth mining and smelting practices. In addition, personal inhalation exposures to (232)Th associated with respirable particulate (PM10) were also measured among local dwellers via personal monitoring. The mean dose values for different age groups in the smelting and mining areas ranged from 97.86 to 417μSvyear(-)(1) and from 101.03 to 430.83μSvyear(-1), respectively. These results indicate that people living in the study areas are exposed to high levels of widespread (232)Th.

  1. Chronic inhalation exposure of hamsters to nickel-enriched fly ash

    SciTech Connect

    Wehner, A.P.; Dagle, G.E.; Milliman, E.M.

    1981-10-01

    Hamsters were chronically exposed to approx.70 ..mu..g/liter respirable nickel-enriched fly ash (NEFA) aerosol, approx.17 ..mu..g/liter NEFA, or approx.70 ..mu..g/liter fly ash (FA) for up to 20 months. A control group received sham exposures. The NEFA particles of respirable size contained approximately 6% nickel, compared to about 0.3% for FA. Five hamsters/group were sacrificed after 4, 8, 12, or 16 months of exposure. An additional five hamsters/group were withdrawn from exposure at the same intervals for lifelong observations. Exposures to NEFA had no significant effect on body weight and life span of the animals although heavy deposits of NEFA in the lungs were demonstrated. However, lung weights of the high NEFA- and of the FA-exposed animals were significantly higher than those of the low-NEFA group and the controls, and mean lung volumes were significantly larger for the high-NEFA grop and the FA group than for the low-NEFA group and the controls. Dust was deposited (anthracosis) in the lungs of all exposed hamsters. Incidence and severity of interstitial reaction and bronchiolization were significantly higher in the dust-exposed groups than in the sham-exposed controls. The severity of anthracosis, interstitial reaction, and bronchiolization was significantly lower in the low-NEFA group than in the high-NEFA and FA groups. While two malignant primary thorax tumors were found in two hamsters of the high-NEFA group, no statistically significant carcinogenesis was observed. Of the exposure-related changes, only anthracosis decreased after withdrawal from exposure. Pulmonary nickel burdens after 20 months of exposure suggest that the pulmonary clearance rate was slower in the high-NEFA group than in the low-NEFA group.

  2. Short-term inhalation exposure to mild steel welding fume had no effect on lung inflammation and injury but did alter defense responses to bacteria in rats.

    PubMed

    Antonini, James M; Roberts, Jenny R; Stone, Sam; Chen, Bean T; Schwegler-Berry, Diane; Frazer, David G

    2009-02-01

    Many workers worldwide are continually exposed to complex aerosols generated from welding processes. The objective was to assess the effect of inhalation exposure to mild steel (MS) welding fume on lung injury, inflammation, and defense responses. Male Sprague-Dawley rats were exposed to MS fume at a concentration of 40 mg/m(3) x 3 h/day x 3 or 10 days using a robotic welding fume generator. Controls were exposed to filtered air. To assess lung defense responses, a group of animals were intratracheally inoculated with 5 x 10(4) Listeria monocytogenes 1 day after the last daily exposure. Welding particles were collected during exposure, and chemical composition and particle size were determined. After exposure, lung injury, inflammation, and host defense (bacterial clearance) were measured. The particles were composed of iron (80.6 %) and manganese (14.7 %) with a mass median aerodynamic diameter of 0.31 microm. No significant difference was observed in lung injury or inflammation after MS fume inhalation at 1, 4, and 11 days after the last exposure. However, there were significantly more bacteria at 3 days after infection in the lungs of the animals exposed to MS fume compared to air controls. Acute exposure of rats to MS fume had no effect on injury and inflammation, but suppressed lung defense responses after infection. More chronic inhalation studies are needed to further examine the immune effects and to elucidate the possible mechanisms of the suppressed lung defense response to infection associated with the inhalation of MS welding fume.

  3. Comparative occupational exposures to formaldehyde released from inhaled wood product dusts versus that in vapor form.

    PubMed

    Gosselin, Nathalie H; Brunet, Robert C; Carrier, Gaétan

    2003-05-01

    Particle boards and other wood boards are usually made with formaldehyde-based resins. Woodworkers are thus exposed to formaldehyde in vapor form as well as from airborne dust once it enters their respiratory tract. These workers remain exposed to formaldehyde released from the dust still present in their upper respiratory tract, even after their work shift. In assessing the risk associated with formaldehyde exposure, one needs to consider the relative importance of these two sources of exposure. This study proposes two kinetic models to estimate and compare the exposures. For various exposure scenarios, one model predicts the amount of formaldehyde absorbed from the ambient vapor form and the other predicts the amount absorbed by the respiratory tract upon its release from wood product dust. Model parameters are determined using data from published studies. Based on a daily work shift of 8 hr, with a dust concentration in air of 5 mg/m(3) and a formaldehyde concentration bound to dust of 9 microg/mg, model simulations predict that the amount of absorbed formaldehyde released from wood dust is approximately 1/100 of the amount absorbed from the ambient vapor form at a concentration level of 0.38 mg/m(3) (0.3 ppm). Since the formaldehyde concentration in wood dust used above is much higher than usually observed while the dust and vapor form formaldehyde concentrations are of the order of acceptable upper values, these results indicate that the formaldehyde exposure from wood dust is comparatively negligible.

  4. Developmental effects after inhalation exposure of gravid rabbits and rats to ethylene glycol monoethyl ether.

    PubMed Central

    Andrew, F D; Hardin, B D

    1984-01-01

    The effects of ethylene glycol monoethyl ether (EGEE) were determined on development in utero. Pregnant New Zealand White rabbits were exposed to air or 160 or 617 ppm EGEE for 7 hr/day from 1 to 18 days of gestation (dg). Virgin Wistar rats were exposed to 150 or 649 ppm EGEE or air 5 days/week for the 3 weeks immediately preceding their breeding. Sperm-positive rats were subsequently exposed to air or 202 or 767 ppm EGEE for 7 hr/day from 1 to 19 dg. Group sizes were 29 to 38 per concentration for both species. Pregestational exposure of rats had no effect on mating success, and there was no effect of EGEE exposure on establishment of pregnancy in either species. Rabbits exposed to the both concentrations had decreased food intake and depressed weight gain. Exposure-related mortality occurred in the 617 ppm EGEE group of rabbits. The only toxic sign seen in rats was reduced weight gain after exposure to 767 ppm EGEE. Exposure induced high embryomortality at maternal toxic concentrations in rats and rabbits, while lower levels induced fetal growth retardation in rats but not in rabbits. Gestational exposure increased the incidence of anomalies and variations; these were primarily of soft tissues in rabbits and of skeleton in rats. Thus, significant evidence of terata, fetal growth retardation and embryomortality were induced in rabbits and rats at levels that were below or similar to those that induced maternal manifestation of toxicity. These data implicate EGEE as a teratogen. PMID:6499796

  5. Intra-oral formication induced by occupational exposure mimicking inhalation abuse.

    PubMed

    Thomas, Erin; Johnson, Cleverick

    2012-01-01

    Multiple cases of nail salon workers with occupational exposure to acetone, toluene, and acrylic monomers, namely methyl methacrylate and cyanoacrylates, presented separately to our clinic with similar complaints of factitious gingival stomatitis and formication--an abnormal sensation like ants crawling on or inside the skin. Recognizing oral manifestations resulting from possible toxic chemical exposure is not generally thought to be within the realm of most dental practices, yet to assure appropriate care, dentists must be vigilant and include thorough patient interviews in the diagnostic equation.

  6. Effects of repeat exposure to inhalation anesthetics on liver and renal function

    PubMed Central

    Nishiyama, Tomoki

    2013-01-01

    Background: Cross hypersensitivity to inhalation anesthetics has not been studied. The aim of this study was to investigate it by comparing liver and renal function after repeated anesthesia with sevoflurane and isoflurane retrospectively. Materials and Methods: The adult patients who received general anesthesia twice within the interval of 14 days to 1 year were retrospectively analyzed. Those who received sevoflurane anesthesia twice (SS group, 53 cases), isoflurane anesthesia twice (II group, 31 cases), sevoflurane followed by isoflurane anesthesia (SI group, 29 cases), isoflurane followed by sevoflurane anesthesia (IS group, 35 cases), and propofol–fentanyl anesthesia twice (PP group, 58 cases) were enrolled. Serum concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (Bil), gamma-glutamyl transpeptidase (γ-GTP), blood urea nitrogen (BUN), and creatinine (Cr) measured 1-3, 5-8, and 12-16 days after surgery were investigated. Results: In the IS group, the number of the patients with abnormal values of ALT and γ-GTP 5–8 days after surgery were significantly smaller at second anesthesia compared to the first anesthesia. The number of the patients with abnormal values of AST, ALT, and γ-GTP were significantly larger in the II group than the SS and PP groups. The number of patients who had higher values in each parameter at second anesthesia compared to the first anesthesia was not different among the groups. Conclusions: Sevoflurane and isoflurane might have no cross hypersensitivity. Both anesthetics might not have any additional risks to increase liver and renal damage by second anesthesia. PMID:23493664

  7. Assessing Inhalation Exposures Associated with Contamination Events inWater Distribution Systems

    EPA Pesticide Factsheets

    EPANET network models (inp files) used in paper. The file ??cdf2003-12singles.txt?? developed using ATUS data, that contains tab-separated values for the starting times and cumulative probabilities plotted in Fig. 2 in supporting design report. There are 101 rows in the file. The first entry in each row is the cumulative probability (0 to 1.0) and the second entry is the corresponding starting time (0.0 to 24.0 hours). The second file (??two events 2003-12.txt??) was developed that contains data for all 36,652 ATUS respondents who reported two grooming events in 2003 to 2012. Results in this file are used in TEVA-SPOT to generate random starting time for individuals who take two showers per day. The file has 36,652 rows and five tab-separated columns. The first column contains the year the data were collected and the second column contains the ATUS identifiers used for the respondents. The third column contains the starting times in hours local time for the first event and the fourth column contains the starting time in hours local time for the second event. The fifth column provides the ATUS weights for the respondents. Weights are needed to compensate for the manner in which sampling and data collection were carried out in ATUS. The Report (EPA/600/R-15/271) documents the design for incorporating the capability for estimating inhalation doses in TEVA-SPOT.This dataset is associated with the following publication:Janke , R., M. Davis, and T. Taxon. Assessing In

  8. Development of an Inhalational Bacillus anthracis Exposure Therapeutic Model in Cynomolgus Macaques

    PubMed Central

    Comer, Jason E.; Stark, Gregory V.; Ray, Bryan D.; Tordoff, Kevin P.; Knostman, Katherine A. B.; Meister, Gabriel T.

    2012-01-01

    Appropriate animal models are required to test medical countermeasures to bioterrorist threats. To that end, we characterized a nonhuman primate (NHP) inhalational anthrax therapeutic model for use in testing anthrax therapeutic medical countermeasures according to the U.S. Food and Drug Administration Animal Rule. A clinical profile was recorded for each NHP exposed to a lethal dose of Bacillus anthracis Ames spores. Specific diagnostic parameters were detected relatively early in disease progression, i.e., by blood culture (∼37 h postchallenge) and the presence of circulating protective antigen (PA) detected by electrochemiluminescence (ECL) ∼38 h postchallenge, whereas nonspecific clinical signs of disease, i.e., changes in body temperature, hematologic parameters (ca. 52 to 66 h), and clinical observations, were delayed. To determine whether the presentation of antigenemia (PA in the blood) was an appropriate trigger for therapeutic intervention, a monoclonal antibody specific for PA was administered to 12 additional animals after the circulating levels of PA were detected by ECL. Seventy-five percent of the monoclonal antibody-treated animals survived compared to 17% of the untreated controls, suggesting that intervention at the onset of antigenemia is an appropriate treatment trigger for this model. Moreover, the onset of antigenemia correlated with bacteremia, and NHPs were treated in a therapeutic manner. Interestingly, brain lesions were observed by histopathology in the treated nonsurviving animals, whereas this observation was absent from 90% of the nonsurviving untreated animals. Our results support the use of the cynomolgus macaque as an appropriate therapeutic animal model for assessing the efficacy of medical countermeasures developed against anthrax when administered after a confirmation of infection. PMID:22956657

  9. Cellulosic building insulation versus mineral wool, fiberglass or perlite: installer's exposure by inhalation of fibers, dust, endotoxin and fire-retardant additives.

    PubMed

    Breum, N O; Schneider, T; Jørgensen, O; Valdbjørn Rasmussen, T; Skibstrup Eriksen, S

    2003-11-01

    A task-specific exposure matrix was designed for workers installing building insulation materials. A priori, a matrix element was defined by type of task (installer or helper), type of work area (attic spaces or wall cavities) and type of insulation material (slabs from mineral wool, fiberglass or flax; loose-fill cellulosic material or perlite). In the laboratory a mock-up (full scale) of a one-family house was used for simulated installation of insulation materials (four replicates per matrix element). Personal exposure to dust and fibers was measured. The dust was analyzed for content of endotoxin and some trace elements (boron and aluminum) from fire-retardant or mold-resistant additives. Fibers were characterized as WHO fibers or non-WHO fibers. In support of the exposure matrix, the dustiness of all the materials was measured in a rotating drum tester. For installers in attic spaces, risk of exposure was low for inhalation of dust and WHO fibers from slab materials of mineral wool or fiberglass. Slab materials from flax may cause high risk of exposure to endotoxin. The risk of exposure by inhalation of dust from loose-fill materials was high for installers in attic spaces and for some of the materials risk of exposure was high for boron and aluminum. Exposure by inhalation of cellulosic WHO fibers was high but little is known about the health effects and a risk assessment is not possible. For the insulation of walls, the risk of installers' exposure by inhalation of dust and fibers was low for the slab materials, while a high risk was observed for loose-fill materials. The exposure to WHO fibers was positively correlated to the dust exposure. A dust level of 6.1 mg/m3 was shown to be useful as a proxy for screening exposure to WHO fibers in excess of 10(6) fibers/m3. In the rotating drum, slabs of insulation material from mineral wool or fiberglass were tested as not dusty. Cellulosic loose-fill materials were tested as very dusty, and perlite proved to be

  10. Selective Cognitive Deficits in Adult Rats after Prenatal Exposure to Inhaled Ethanol

    EPA Science Inventory

    Increased use of ethanol blends in gasoline suggests a need to assess the potential public health risks of exposure to these fuels. Ethanol consumed during pregnancy is a teratogen. However, little is known about the potential developmental neurotoxicity of ethanol delivered by i...

  11. EXHALED HUMAN BREATH MEASUREMENT OF JET FUEL CONSTITUENTS: DISTINGUISHING BETWEEN INHALATION AND DERMAL EXPOSURE ROUTES

    EPA Science Inventory

    In response to anecdotal reports, perceived health issues, and widespread complaints, the U.S. military launched an investigation into the occupational and environmental human exposure to jet fuel. The work described in the presentation assesses the correlation between two breat...

  12. Cerium Oxide Nanoparticle Nose-Only Inhalation Exposures Using a Low-Sample-Consumption String Generator

    EPA Science Inventory

    There is a critical need to assess the health effects associated with exposure of commercially produced NPs across the size ranges reflective of that detected in the industrial sectors that are generating, as well as incorporating, NPs into products. Generation of stable and low ...

  13. Perfluorooctanesulfonate (PFOS) Conversion from N-Ethyl-N-(2-hydroxyethyl)-perfluorooctanesulfonamide (EtFOSE) in male Sprague Dawley rats after inhalation exposure.

    PubMed

    Chang, Sue; Mader, Brian T; Lindstrom, Kent R; Lange, Cleston C; Hart, Jill A; Kestner, Thomas A; Schulz, Jay F; Ehresman, David J; Butenhoff, John L

    2017-05-01

    Ethyl-N-(2-hydroxyethyl)-perfluorooctanesulfonamide (EtFOSE) was one of the key building blocks for many of the perfluorooctanesulfonyl-based chemistry and laboratory studies have shown that EtFOSE can metabolically degrade to perfluorooctanesulfonate (PFOS). Non-occupational contribution sources to PFOS are thought to occur in general population via diets, drinking water, air and dust. For workers, however, the exposure route was mostly airborne and the exposure source was predominantly to precursor compounds such as EtFOSE. We undertook this study to investigate how much EtFOSE was converted to PFOS in the serum for male rats after 6h of exposure to EtFOSE vapor (whole body) at ambient temperature, which simulated a work place exposure scenario. There were no abnormal clinical observations and all rats gained weight during study. Interim tail-vein blood samples, collected up to 21 days after exposure, were analyzed for Et-FOSE and PFOS concentrations by LC-MS/MS. Upon inhalation exposure, the biotransformation of EtFOSE to PFOS in serum in the male rats was rapid and very little EtFOSE was detected in the serum within 24h after EtFOSE exposure. The highest conversion to PFOS in serum after exposure to EtFOSE vapor appeared to occur between Day 8-14 post exposure. Considering the potential surface and fur adsorption of test compound in the whole-body exposure system, our data would support that at least 10% of the inhaled EtFOSE was biotransformed to PFOS in the serum based on the range of lower 95% CI (confidence interval) values. This information is valuable because it quantitatively translates EtFOSE exposure into serum PFOS concentration, which serves as a matrix for internal dosimetry (of PFOS exposure) that can be used as an anchor across species as well as between different exposure routes.

  14. Effects of inhalation exposure to SRC-II heavy and middle distillates

    SciTech Connect

    Springer, D.L.; Miller, R.A.; Weimer, W.C.; Ragan, H.A.; Buschbom, R.L.; Mahlum, D.D.

    1984-11-01

    To expand the data base on potential health effects of coal liquefaction materials, we have performed studies with both solvent refined coal (SRC)-II heavy distillate (HD) and middle distillate (MD). Weight gain for exposed animals was less than that of controls and was dose-related, ranging from no significant difference for animals in the low-exposure group to failure to gain in the high-dose animals. Liver weights increased significantly over controls, and thymus weights decreased for animals sacrificed at 5 and 13 weeks. After both exposure periods, there were significant treatment-related decreases in erythrocyte parameters and in certain types of white blood cells (WBC). Bone marrow cellularity, and numbers of megakaryocytes consistently decreased, suggesting that bone marrow is a target tissue for high-boiling coal liquids. Microscopic evaluation of tissue indicated exposure-related changes is listed. In contrast to the reported mutagenic and carcinogenic effects observed for the high-boiling coal liquids, middle-boiling-range materials lacked such activity in these assays. These data demonstrate a great deal of similarity in the kinds of effects observed following exposure to middle- and high-boiling-range coal liquids. However, the significance of changes in organ weights and peripheral blood parameters are not always readily apparent following a subchronic study. Because of this, we exposed animals to HD in a manner similar to that for the subchronic experiment and have followed these animals throughout their lives for the development of adverse effects such as reduced longevity and the appearance of tumors. Results from this study will be available for mice in FY 1985 and for rats in FY 1986.

  15. Determining Nanoparticle Inhalation Exposure in the Prosthetics Laboratory at Walter Reed National Military Medical Center

    DTIC Science & Technology

    2013-04-29

    regardless of the origin. 1-1-1 Natural origins Along with anthropogenic origins, nanoparticles occurs naturally. Dust storms, volcanic eruptions ...especially nanoparticles, released when a volcano erupts is huge. In addition to lava, vapor condensation droplets, gases, and up to 30 million tons of ash...through a supersaturated isopropyl alcohol solution , in which they are grown. The exposure time and concentration are both closely controlled, and

  16. Asbestosis occurring after brief inhalational exposure: usefulness of bronchoalveolar lavage in diagnosis.

    PubMed Central

    Barbers, R G; Abraham, J L

    1989-01-01

    A case of clinically and radiologically typical asbestosis manifesting in a 55 year old man occurred 36 years after a brief exposure period of less than one year. A transbronchial lung biopsy was performed but the samples were considered non-diagnostic. The diagnosis was supported by the use of bronchoalveolar lavage to obtain alveolar samples and scanning electron microscopy-energy dispersive x ray analysis of fibres found in the bronchoalveolar lavage fluid which showed a predominance of amosite. Images PMID:2538140

  17. Asbestosis occurring after brief inhalational exposure: usefulness of bronchoalveolar lavage in diagnosis.

    PubMed

    Barbers, R G; Abraham, J L

    1989-02-01

    A case of clinically and radiologically typical asbestosis manifesting in a 55 year old man occurred 36 years after a brief exposure period of less than one year. A transbronchial lung biopsy was performed but the samples were considered non-diagnostic. The diagnosis was supported by the use of bronchoalveolar lavage to obtain alveolar samples and scanning electron microscopy-energy dispersive x ray analysis of fibres found in the bronchoalveolar lavage fluid which showed a predominance of amosite.

  18. Changes in collagen metabolism and proteinolysis after repeated inhalation exposure to ozone

    SciTech Connect

    Pickrell, J.A.; Hahn, F.F.; Rebar, A.H.; Horoda, R.A.; Henderson, R.F.

    1987-04-01

    To study the changes in collagen metabolism that occur in the pathogenesis of pulmonary fibrosis, female rats were exposed to 0, 0.57, and 1.1 ppm ozone for 19 hr/day for 11 days and sacrificed 12 or 60 days after initiation of exposure. The lungs of rats sacrificed at 12 days after initiation of exposure to 1.1 ppm had interstitial pneumonia characterized by a mixed inflammatory cell infiltrate, type II cell hyperplasia, and fibroplasia, a proliferation of the collagen-producing cells; increased cathepsin D and macrophage elastase activity, indicating macrophage-induced proteinolysis; a reduced percentage of the increased collagen production that was ultrafilterable, indicating a decreased rate of intracellular degradation of newly produced collagen prior to its secretion; and increased lavage fluid hydroxyproline, indicating turnover of extracellular collagenous matrix. Reduced intracellular collagen degradation correlated directly with both increased net collagen production and fibroplasia in rats exposed to 1.1 ppm ozone for 11 days. These changes preceded an increased total lung collagen and the development of modest fibroplasia and fibrosis in the alveolar duct regions by 60 days after the 1.1 ppm ozone exposure was initiated.

  19. Acetalated Dextran Microparticulate Vaccine Formulated via Coaxial Electrospray Preserves Toxin Neutralization and Enhances Murine Survival Following Inhalational Bacillus Anthracis Exposure.

    PubMed

    Gallovic, Matthew D; Schully, Kevin L; Bell, Matthew G; Elberson, Margaret A; Palmer, John R; Darko, Christian A; Bachelder, Eric M; Wyslouzil, Barbara E; Keane-Myers, Andrea M; Ainslie, Kristy M

    2016-10-01

    Subunit formulations are regarded as the safest type of vaccine, but they often contain a protein-based antigen that can result in significant challenges, such as preserving antigenicity during formulation and administration. Many studies have demonstrated that encapsulation of protein antigens in polymeric microparticles (MPs) via emulsion techniques results in total IgG antibody titers comparable to alum formulations, however, the antibodies themselves are non-neutralizing. To address this issue, a coaxial electrohydrodynamic spraying (electrospray) technique is used to formulate a microparticulate-based subunit anthrax vaccine under conditions that minimize recombinant protective antigen (rPA) exposure to harsh solvents and high shear stress. rPA and the adjuvant resiquimod are encapsulated either in separate or the same acetalated dextran MPs. Using a murine model, the electrospray formulations lead to higher IgG2a subtype titers as well as comparable total IgG antibody titers and toxin neutralization relative to the FDA-approved vaccine (BioThrax). BioThrax provides no protection against a lethal inhalational challenge of the highly virulent Ames Bacillus anthracis anthrax strain, whereas 50% of the mice vaccinated with separately encapsulated electrospray MPs survive. Overall, this study demonstrates the potential use of electrospray for encapsulating protein antigens in polymeric MPs.

  20. Efficacy of post exposure administration of doxycycline in a murine model of inhalational melioidosis.

    PubMed

    Gelhaus, H Carl; Anderson, Michael S; Fisher, David A; Flavin, Michael T; Xu, Ze-Qi; Sanford, Daniel C

    2013-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis. Treatment of melioidosis is suboptimal and developing improved melioidosis therapies requires animal models. In this report, we exposed male BALB/c mice to various amounts of aerosolized B. pseudomallei 1026b to determine lethality. After establishing a median lethal dose (LD(50)) of 2,772 colony forming units (cfu)/animal, we tested the ability of doxycycline administered 6 hours after exposure to a uniformly lethal dose of ~20 LD(50) to prevent death and eliminate bacteria from the lung and spleens. Tissue bacterial burdens were examined by PCR analysis. We found that 100% of mice treated with doxycycline survived and B. pseudomallei DNA was not amplified from the lungs or spleens of most surviving mice. We conclude the BALB/c mouse is a useful model of melioidosis. Furthermore, the data generated in this mouse model indicate that doxycycline is likely to be effective in post-exposure prophylaxis of melioidosis.

  1. Inhalation exposure to cleaning products: application of a two-zone model.

    PubMed

    Earnest, C Matt; Corsi, Richard L

    2013-01-01

    In this study, modifications were made to previously applied two-zone models to address important factors that can affect exposures during cleaning tasks. Specifically, we expand on previous applications of the two-zone model by (1) introducing the source in discrete elements (source-cells) as opposed to a complete instantaneous release, (2) placing source cells in both the inner (near person) and outer zones concurrently, (3) treating each source cell as an independent mixture of multiple constituents, and (4) tracking the time-varying liquid concentration and emission rate of each constituent in each source cell. Three experiments were performed in an environmentally controlled chamber with a thermal mannequin and a simplified pure chemical source to simulate emissions from a cleaning product. Gas phase concentration measurements were taken in the bulk air and in the breathing zone of the mannequin to evaluate the model. The mean ratio of the integrated concentration in the mannequin's breathing zone to the concentration in the outer zone was 4.3 (standard deviation, σ = 1.6). The mean ratio of measured concentration in the breathing zone to predicted concentrations in the inner zone was 0.81 (σ = 0.16). Intake fractions ranged from 1.9 × 10(-3) to 2.7 × 10(-3). Model results reasonably predict those of previous exposure monitoring studies and indicate the inadequacy of well-mixed single-zone model applications for some but not all cleaning events.

  2. Hepatic pathology in mice after continuous inhalation exposure to 1, 1, 1-trichloroethane

    NASA Technical Reports Server (NTRS)

    Mcnutt, N. S.; Master, R. L.; Mcconnell, E. E.; Morris, F.

    1974-01-01

    Mice exposed to either 250ppm or 1,000ppm 1,1,1-trichloroethane in air continuously for 14 weeks demonstrated significant changes in the centrilobular hepatocytes for the 1,000ppm group. Moderate liver triglyceride accumulation was evident in the 1,000ppm group and peaked at 40mg/gm of tissue after 7 weeks of exposure. Focal hepatocyte necrosis occurred in 40% of the mice exposed to 1,000ppm for 12 weeks. This necrosis was associated with an acute inflammatory infiltrate and hypertrophy of Kupffer cells. These findings indicate that the pathological alternations observed with 1,1,1-trichloroethane are similar to those observed with dichloromethane except for different time courses of the effects and different degrees of recovery. The toxic effects of 1,1,1-trichloroethane are of a similar type to those produced by carbon tetrachloride but appear much less severe.

  3. Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study.

    PubMed

    Geraets, Liesbeth; Oomen, Agnes G; Schroeter, Jeffry D; Coleman, Victoria A; Cassee, Flemming R

    2012-06-01

    In order to obtain more insight into the tissue distribution, accumulation, and elimination of cerium oxide nanoparticles after inhalation exposure, blood and tissue kinetics were investigated during and after a 28-day inhalation study in rats with micro- and nanocerium oxide particles (nominal primary particle size: < 5000, 40, and 5-10 nm). Powder aerosolization resulted in comparable mass median aerodynamic diameter (1.40, 1.17, and 1.02 μm). After single exposure, approximately 10% of the inhaled dose was measured in lung tissue, as was also estimated by a multiple path particle dosimetry model (MPPD). Though small differences in pulmonary deposition efficiencies of cerium oxide were observed, no consistent differences in pulmonary deposition between the micro- and nanoparticles were observed. Each cerium oxide sample was also distributed to tissues other than lung after a single 6-h exposure, such as liver, kidney, and spleen and also brain, testis, and epididymis. No clear particle size-dependent effect on extrapulmonary tissue distribution was observed. Repeated exposure to cerium oxide resulted in significant accumulation of the particles in the (extra)pulmonary tissues. In addition, tissue clearance was shown to be slow, and, overall, insignificant amounts of cerium oxide were eliminated from the body at 48- to 72-h post-exposure. In conclusion, no clear effect of the primary particle size or surface area on pulmonary deposition and extrapulmonary tissue distribution could be demonstrated. This is most likely explained by similar aerodynamic diameter of the cerium oxide particles in air because of the formation of aggregates and irrespective possible differences in surface characteristics. The implications of the accumulation of cerium oxide particles for systemic toxicological effects after repeated chronic exposure via ambient air are significant and require further exploration.

  4. Deposition and biokinetics of inhaled nanoparticles

    PubMed Central

    2010-01-01

    Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones. The presented approach ranges from inhaled particle deposition probability and retention in the respiratory tract to biokinetics and clearance of particles out of the respiratory tract. Particle transport into the blood circulation (translocation), towards secondary target organs and tissues (accumulation), and out of the body (clearance) is considered. The macroscopically assessed amount of particles in the respiratory tract and secondary target organs provides dose estimates for toxicological studies on the level of the whole organism. Complementary, microscopic analyses at the individual particle level provide detailed information about which cells and subcellular components are the target of inhaled particles. These studies contribute to shed light on mechanisms and modes of action eventually leading to adverse health effects by inhaled nanoparticles. We review current methods for macroscopic and microscopic analyses of particle deposition, retention and clearance. Existing macroscopic knowledge on particle biokinetics and microscopic views on particle organ interactions are discussed comparing nanometer and micrometer sized particles. We emphasize the importance for quantitative analyses and the use of particle doses derived from real world exposures. PMID:20205860

  5. Effects of Short-term Exposure to Inhalable Particulate Matter on DNA Methylation of Tandem Repeats

    PubMed Central

    Guo, Liqiong; Byun, Hyang-Min; Zhong, Jia; Motta, Valeria; Barupal, Jitendra; Zheng, Yinan; Dou, Chang; Zhang, Feiruo; McCracken, John P.; Diaz, Anaité; Marco, Sanchez-Guerra; Colicino, Silvia; Schwartz, Joel; Wang, Sheng; Hou, Lifang; Baccarelli, Andrea A.

    2015-01-01

    There is compelling evidence that particulate matter (PM) increases lung cancer risk by triggering systemic inflammation, and leukocyte DNA hypomethylation. However, previous investigations focused on repeated element sequences from LINE-1 and Alu families. Tandem repeats, which display a greater propensity to mutate, and are often hypomethylated in cancer patients, have never been investigated in individuals exposed to PM. We measured methylation of three tandem repeats (SATα, NBL2, D4Z4) by polymerase chain reaction–pyrosequencing on blood samples from truck drivers and office workers (60 per group) in Beijing, China. We used lightweight monitors to measure personal PM2.5 (PM with aerodynamic diameter ≤2.5 µm) and elemental carbon (EC, a tracer of PM from vehicular traffic). Ambient PM10 data were obtained from air quality measuring stations. Overall, an interquartile increase in personal PM2.5 and ambient PM10 levels was associated with a significant covariate-adjusted decrease in SATα methylation (−1.35% 5-methyl cytosine [5mC], P = 0.01; and −1.33%5mC; P = 0.01, respectively). Effects from personal PM2.5 and ambient PM10 on SATα methylation were stronger in truck drivers (−2.34%5mC, P = 0.02; −1.44%5mC, P = 0.06) than office workers (−0.95%5mC, P = 0.26; −1.25%5mC, P = 0.12, respectively). Ambient PM10 was negatively correlated with NBL2 methylation in truck drivers (−1.38%5mC, P = 0.03) but not in office workers (1.04%5mC, P = 0.13). Our result suggests that PM exposure is associated with hypomethylation of selected tandem repeats. Measuring tandem-repeat hypomethylation in easy-to-obtain blood specimens might identify individuals with biological effects and potential cancer risk from PM exposure. PMID:24436168

  6. Lessons learned from case studies of inhalation exposures of workers to radioactive aerosols

    SciTech Connect

    Hoover, M.D.; Fencl, A.F.; Newton, G.J.

    1995-12-01

    Various Department of Energy requirements, rules, and orders mandate that lessons learned be identified, evaluated, shared, and incorporated into current practices. The recently issued, nonmandatory DOE standard for Development of DOE Lessons Learned Program states that a DOE-wide lessons learned program will {open_quotes}help to prevent recurrences of negative experiences, highlight best practices, and spotlight innovative ways to solve problems or perform work more safely, efficiently, and cost effectively.{close_quotes} Additional information about the lessons learned program is contained in the recently issued DOE handbook on Implementing U.S. Department of Energy Lessons Learned Programs and in October 1995 DOE SAfety Notice on Lessons Learned Programs. This report summarizes work in progress at ITRI to identify lessons learned for worker exposures to radioactive aerosols, and describes how this work will be incorporated into the DOE lessons learned program, including a new technical guide for measuring, modeling, and mitigating airborne radioactive particles. Follow-on work is focusing on preparation of {open_quotes}lessons learned{close_quotes} training materials for facility designers, managers, health protection professionals, line supervisors, and workers.

  7. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment.

    PubMed

    Fujitani, Yuji; Kobayashi, Takahiro; Arashidani, Keiichi; Kunugita, Naoki; Suemura, Kouji

    2008-06-01

    Assessment of human exposure is important for the elucidation of potential health risks. However, there is little information available on particle number concentrations and number size distributions, including those of nanoparticles, in the working environments of factories producing engineered nanomaterials. The authors used a scanning mobility particle sizer and an optical particle counter to measure the particle number size distributions of particles ranging in diameter (D(p)) from 10 nm to >5000 nm in a fullerene factory and used scanning electron microscopy to examine the morphology of the particles. Comparisons of particle size distributions and morphology during non-work periods, during work periods, during an agitation process, and in the nearby outdoor air were conducted to identify the sources of the particles and to determine their physical properties. A modal diameter of 25 nm was found in the working area during the non-work period; this result was probably influenced by ingress of outdoor air. During the removal of fullerenes from a storage tank for bagging and/or weighing, the particle number concentration at D(p)<50 nm was no greater than that in the non-work period, but the concentration at D(p)>1000 nm was greater during the non-work period. When a vacuum cleaner was in use, the particle number concentration at D(p)<50 nm was greater than that during the non-work period, but the concentration at D(p)>1000 nm was no greater. Scanning electron microscopy revealed that the coarse particles emitted during bagging and/or weighing were aggregates/agglomerates of fullerenes; although origin of particles with D(p)<50 nm is unclear.

  8. Dermal, inhalation, and internal exposure to 1,6‐HDI and its oligomers in car body repair shop workers and industrial spray painters

    PubMed Central

    Pronk, A; Yu, F; Vlaanderen, J; Tielemans, E; Preller, L; Bobeldijk, I; Deddens, J A; Latza, U; Baur, X; Heederik, D

    2006-01-01

    Objectives To study inhalation and dermal exposure to hexamethylene diisocyanate (HDI) and its oligomers as well as personal protection equipment (PPE) use during task performance in conjunction with urinary hexamethylene diamine (HDA) in car body repair shop workers and industrial spray painters. Methods Personal task based inhalation samples (n = 95) were collected from six car body repair shops and five industrial painting companies using impingers with di‐n‐butylamine (DBA) in toluene. In parallel, dermal exposure was assessed using nitril rubber gloves. Gloves were submerged into DBA in toluene after sampling. Analysis for HDI and its oligomers was performed by LC‐MS/MS. Urine samples were collected from 55 workers (n = 291) and analysed for HDA by GC‐MS. Results Inhalation exposure was strongly associated with tasks during which aerosolisation occurs. Dermal exposure occurred during tasks that involve direct handling of paint. In car body repair shops associations were found between detectable dermal exposure and glove use (odds ratio (OR) 0.22, 95% confidence interval (CI) 0.09 to 0.57) and inhalation exposure level (OR 1.34, 95% CI 0.97 to 1.84 for a 10‐fold increase). HDA in urine could be demonstrated in 36% and 10% of car body repair shop workers and industrial painting company workers respectively. In car body repair shops, the frequency of detectable HDA was significantly elevated at the end of the working day (OR 2.13, 95% CI 1.07 to 4.22 for 3–6 pm v 0–8 am). In both branches HDA was detected in urine of ∼25% of the spray painters. In addition HDA was detected in urine of a large proportion of non‐spray painters in car body repair shops. Conclusion Although (spray) painting with lacquers containing isocyanate hardeners results in the highest external exposures to HDI and oligomers, workers that do not perform paint related tasks may also receive a considerable internal dose. PMID:16728504

  9. Differential electrocardiogram efffects in normal and hypertensive rats after inhalation exposure to transition metal rich particulate matter

    EPA Science Inventory

    Inhalation of particulate matter (PM) associated with air pollution causes adverse effects on cardiac function including heightened associations with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. Some of these effects have been attributable to transitio...

  10. STUDY DESIGN CONSIDERATIONS FOR THE EXPOSURE COMPONENT OF THE NATIONAL CHILDREN'S STUDY

    EPA Science Inventory

    An ideal strategy for the exposure monitoring component of the planned National Children's Study (NCS) is to measure indoor and outdoor concentrations and personal exposures of children to a variety of pollutants, including ambient particulate and gaseous pollutants, biologicals,...

  11. No genotoxicity in rat blood cells upon 3- or 6-month inhalation exposure to CeO2 or BaSO4 nanomaterials.

    PubMed

    Cordelli, Eugenia; Keller, Jana; Eleuteri, Patrizia; Villani, Paola; Ma-Hock, Lan; Schulz, Markus; Landsiedel, Robert; Pacchierotti, Francesca

    2017-01-01

    In the course of a 2-year combined chronic toxicity-carcinogenicity study performed according to Organisation for Economic Co-operation and Development (OECD) Test Guideline 453, systemic (blood cell) genotoxicity of two OECD representative nanomaterials, CeO2 NM-212 and BaSO4 upon 3- or 6-month inhalation exposure to rats was assessed. DNA effects were analysed in leukocytes using the alkaline Comet assay, gene mutations and chromosome aberrations were measured in erythrocytes using the flow cytometric Pig-a gene mutation assay and the micronucleus test (applying both microscopic and flow cytometric evaluation), respectively. Since nano-sized CeO2 elicited lung effects at concentrations of 5mg/m(3) (burdens of 0.5mg/lung) in the preceding range-finding study, whereas nano-sized BaSO4 did not induce any effect, female rats were exposed to aerosol concentrations of 0.1 up to 3mg/m(3) CeO2 or 50mg/m(3) BaSO4 nanomaterials (6h/day; 5 days/week; whole-body exposure). The blood of animals treated with clean air served as negative control, whereas blood samples from rats treated orally with three doses of 20mg/kg body weight ethylnitrosourea at 24h intervals were used as positive controls. As expected, ethylnitrosourea elicited significant genotoxicity in the alkaline Comet and Pig-a gene mutation assays and in the micronucleus test. By contrast, 3- and 6-month CeO2 or BaSO4 nanomaterial inhalation exposure did not elicit significant findings in any of the genotoxicity tests. The results demonstrate that subchronic inhalation exposure to different low doses of CeO2 or to a high dose of BaSO4 nanomaterials does not induce genotoxicity on the rat hematopoietic system at the DNA, gene or chromosome levels.

  12. Inhalation Injuries

    MedlinePlus

    ... you can inhale that can cause acute internal injuries. Particles in the air from fires and toxic ... and lung diseases worse. Symptoms of acute inhalation injuries may include Coughing and phlegm A scratchy throat ...

  13. Asthma Inhalers

    MedlinePlus

    ... an inhaler into the lungs. But CFCs are ozone-depleting substances (ODSs) that hurt the environment. Manufacturers ... inhalers, that do not rob the atmosphere of ozone. “The FDA [Food and Drug Administration] and various ...

  14. Inhalant Abuse

    MedlinePlus

    ... Who may be abusing inhalants?The most common abusers of inhalants are teenagers, especially those who are ... to your child about the dangers of trying drugs can help him or her make the right ...

  15. Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components.

    PubMed

    Takemoto, Hiroaki; Ito, Michiho; Shiraki, Tomohiro; Yagura, Toru; Honda, Gisho

    2008-01-01

    Agarwood oil and spikenard extract were examined for their sedative activity using a spontaneous vapor administration system. It was shown that inhalation of agarwood oil vapor sedated mice. The main volatile constituents of the oil were found to be benzylacetone [agarwood oil from a Hong Kong market (1)], or alpha-gurjunene and (+)-calarene [agarwood oil made in Vietnam (2)]. A hexane extract of spikenard contained a lot of calarene, and its vapor inhalation had a sedative effect on mice. Individual principles benzylacetone, calarene, and alpha-gurjunene were administered to mice, which reproduced the result of the corresponding oil or extract. However, the most effective dose of the compounds was lower than their original content in the oil and extract (benzylacetone 0.1%, calarene 0.17%, alpha-gurjunene 1.5%).

  16. Sedative effects of inhaled essential oil components of traditional fragrance Pogostemon cablin leaves and their structure–activity relationships

    PubMed Central

    Ito, Ken; Akahoshi, Yasuko; Ito, Michiho; Kaneko, Shuji

    2015-01-01

    Plants rich in essential oils, such as Pogostemon cablin (P. cablin; 廣藿香 guǎng huò xiāng), have been used for aromas and as herbal medicines since ancient times because of their sedative effects. We investigated the sedative effects of hexane extract from P. cablin using locomotor activity in mice. Inhalation of P. cablin hexane extract exhibited significant sedative activity in a dose-dependent manner. In order to isolate the active constituents, the extract was fractionated and diacetone alcohol was identified as an active compound. Inhalation of diacetone alcohol significantly reduced murine locomotor activity in a dose-dependent manner, and this effect was not observed in olfaction-impaired mice. We examined the structure–activity relationship of diacetone alcohol and similar compounds. The ketone group at the two-position and number of carbons may play important roles in the sedative activity of diacetone alcohol. PMID:27114936

  17. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report April 1, 1982-March 31, 1983

    SciTech Connect

    Eidson, A.F.

    1984-05-01

    The problems addressed are the protection of uranium mill workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. A quantitative analytical method for yellowcake was developed based on the infrared absorption of ammonium diuranate and U/sub 3/O/sub 8/ mixtures in KBr. The method was applied to yellowcake samples obtained from six operating mills. The composition of yellowcake from the six mills ranged from nearly pure ammonium diuranate to nearly pure U/sub 3/O/sub 8/. The composition of yellowcake samples taken from lots from the same mill was only somewhat less variable. Because uranium mill workers might be exposed to yellowcake either by contamination of a wound or by inhalation, a study of retention and translocation of uranium after subcutaneous implantation in rats was done. The results showed that 49% of the implanted yellowcake cleared from the body with a half-time (T sub 1/2) in the body of 0.3 days, and the remainder was cleared with a T sub 1/2 of 11 to 30 days. Exposures of Beagle dogs by nose-only inhalation to aerosols of commercial yellowcake were completed. Biochemical indicators of kidney dysfunction that appeared in blood and urine 4 to 8 days after exposure to the more soluble yellowcake showed significant changes in dogs, but levels returned to normal by 16 days after exposure. No biochemical evidence of kidney dysfunction was observed in dogs exposed to the less soluble yellowcake form. 18 figures, 9 tables.

  18. Part 1. Biologic responses in rats and mice to subchronic inhalation of diesel exhaust from U.S. 2007-compliant engines: report on 1-, 3-, and 12-month exposures in the ACES bioassay.

    PubMed

    Mcdonald, Jacob D; Doyle-Eisele, Melanie; Gigliotti, Andrew; Miller, Rodney A; Seilkop, Steve; Mauderly, Joe L; Seagrave, JeanClare; Chow, Judith; Zielinska, Barbara

    2012-09-01

    The Health Effects Institute and its partners conceived and funded a program to characterize the emissions from heavy-duty diesel engines compliant with the 2007 and 2010 on-road emissions standards in the United States and to evaluate indicators of lung toxicity in rats and mice exposed repeatedly to diesel exhaust (DE*) from 2007-compliant engines. The preliminary hypothesis of this Advanced Collaborative Emissions Study (ACES) was that 2007-compliant on-road diesel emissions ". . . will not cause an increase in tumor formation or substantial toxic effects in rats and mice at the highest concentration of exhaust that can be used . . . although some biological effects may occur." This hypothesis is being tested at the Lovelace Respiratory Research Institute (LRRI) by exposing rats by chronic inhalation as a carcinogenicity bioassay, measuring indicators of pulmonary toxicity in rats after 1, 3, 12, and 24-30 months of exposure (final time point depends on the survival of animals), and measuring similar indicators of pulmonary toxicity in mice after 1 and 3 months of exposure. This report provides results of exposures through 3 months in rats and mice. Emissions from a 2007-compliant, 500-horsepower-class engine and aftertreatment system operated on a variable-duty cycle were used to generate the animal inhalation test atmospheres. Four treatment groups were exposed to one of three concentrations (dilutions) of exhaust combined with crankcase emissions, or to clean air as a negative control. Dilutions of exhaust were set to yield average integrated concentrations of 4.2, 0.8, and 0.1 ppm nitrogen dioxide (NO2). Exposure atmospheres were analyzed by daily measurements of key components and periodic detailed physical-chemical characterizations. Exposures were conducted 16 hr/dy (overnight), 5 dy/wk. Rats were evaluated for hematology, serum chemistry, bronchoalveolar lavage (BAL), lung cell proliferation, and histopathology after 1 month of exposure, and the same

  19. Chronic cigarette smoke exposure increases the pulmonary retention and radiation dose of {sup 239}Pu inhaled as {sup 239}PuO{sub 2} by F344 rats

    SciTech Connect

    Finch, G.L.; Lundgren, D.L.; Barr, E.B.; Chen, B.T.; Griffith, W.C.; Hobbs, C.H.; Hoover, M.D.; Nikula, K.J.; Mauderly, J.L.

    1998-12-01

    As a portion of a study to examine how chronic cigarette smoke exposure might alter the risk of lung tumors from inhaled {sup 239}PuO{sub 2} in rats, the effects of smoke exposure on alpha-particle lung dosimetry over the life-span of exposed rats were determined. Male and female rats were exposed to inhaled {sup 239}PuO{sub 2} alone or in combination with cigarette smoke. Animals exposed to filtered air along served as controls for the smoke exposure. Whole-body exposure to mainstream smoke diluted to concentrations of either 100 or 250 mg total particulate matter m{sup {minus}3} began at 6 wk of age and continued for 6 h d{sup {minus}1}, 5 d wk{sup {minus}1}, for 30 mo. A single, pernasal, acute exposure to {sup 239}PuO{sub 2} was given to all rats at 12 wk of age. Exposure to cigarette smoke caused decreased body weight gains in a concentration dependent manner. Lung-to-body weight ratios were increased in smoke-exposed rats. Rats exposed to cigarette smoke before the {sup 239}PuO{sub 2} exposure deposited less {sup 239}Pu in the lung than did controls. Except for male rats exposed to LCS, exposure to smoke retarded the clearance of {sup 239}Pu from the lung compared to control rats through study termination at 870 d after {sup 239}PuO{sub 2} exposure. Radiation doses to lungs were calculated by sex and by exposure group for rats on study for at least 360 d using modeled body weight changes, lung-to-body weight ratios, and standard dosimetric calculations. For both sexes, estimated lifetime radiation doses from the time of {sup 239}PuO{sub 2} exposure to death were 3.8 Gy, 4.4 Gy, or 6.7 Gy for the control, LCS, or HCS exposure groups, respectively. Assuming an approximately linear dose-response relationship between radiation dose and lung neoplasm incidence, approximate increases of 20% or 80% in tumor incidence over controls would be expected in rats exposed to {sup 239}PuO{sub 2} and LCS or {sup 239}PuO{sub 2} and HCS, respectively.

  20. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: IV. Vascular effects of repeated inhalation exposure to a mixture of five inorganic gases.

    PubMed

    Mauderly, J L; Kracko, D; Brower, J; Doyle-Eisele, M; McDonald, J D; Lund, A K; Seilkop, S K

    2014-09-01

    An experiment was conducted to test the hypothesis that a mixture of five inorganic gases could reproduce certain central vascular effects of repeated inhalation exposure of apolipoprotein E-deficient mice to diesel or gasoline engine exhaust. The hypothesis resulted from preceding multiple additive regression tree (MART) analysis of a composition-concentration-response database of mice exposed by inhalation to the exhausts and other complex mixtures. The five gases were the predictors most important to MART models best fitting the vascular responses. Mice on high-fat diet were exposed 6 h/d, 7 d/week for 50 d to clean air or a mixture containing 30.6 ppm CO, 20.5 ppm NO, 1.4 ppm NO₂, 0.5 ppm SO₂, and 2.0 ppm NH₃ in air. The gas concentrations were below the maxima in the preceding studies but in the range of those in exhaust exposure levels that caused significant effects. Five indicators of stress and pro-atherosclerotic responses were measured in aortic tissue. The exposure increased all five response indicators, with the magnitude of effect and statistical significance varying among the indicators and depending on inclusion or exclusion of an apparent outlying control. With the outlier excluded, three responses approximated predicted values and two fell below predictions. The results generally supported evidence that the five gases drove the effects of exhaust, and thus supported the potential of the MART approach for identifying putative causal components of complex mixtures.

  1. Exposure of F344 rats to aerosols of {sup 239}PuO{sub 2} and chronically inhaled cigarette smoke

    SciTech Connect

    Finch, G.L.; Nikula, K.J.; Barr, E.B.; Bechtold, W.E.; Chen, B.T.; Griffith, W.C.; Hobbs, C.H.; Hoover, M.D.; Mauderly, J.L.

    1994-11-01

    Nuclear workers may be accidently exposed to radioactive materials such as {sup 239}PuO{sub 2} by inhalation, and thus have increased risk for lung cancer compared to the general population. Of additional concern is the possibility that interactions between radionuclides and other carcinogens may increase the risk of cancer induction. An important and common lung carcinogen is cigarette smoke. This study is being conducted to better determine the combined effects of inhaled {sup 239}PuO{sub 2} and cigarette smoke on the induction of lung cancer in rats.

  2. A Review of the Diagnosis and Treatment of Ochratoxin A Inhalational Exposure Associated with Human Illness and Kidney Disease including Focal Segmental Glomerulosclerosis

    PubMed Central

    Hope, Janette H.; Hope, Bradley E.

    2012-01-01

    Ochratoxin A (OTA) exposure via ingestion and inhalation has been described in the literature to cause kidney disease in both animals and humans. This paper reviews Ochratoxin A and its relationship to human health and kidney disease with a focus on a possible association with focal segmental glomerulosclerosis (FSGS) in humans. Prevention and treatment strategies for OTA-induced illness are also discussed, including cholestyramine, a bile-acid-binding resin used as a sequestrant to reduce the enterohepatic recirculation of OTA. PMID:22253638

  3. Environmental Inequality in Exposures to Airborne Particulate Matter Components in the United States

    PubMed Central

    Ebisu, Keita

    2012-01-01

    Background: Growing evidence indicates that toxicity of fine particulate matter ≤ 2.5 μm in diameter (PM2.5) differs by chemical component. Exposure to components may differ by population. Objectives: We investigated whether exposures to PM2.5 components differ by race/ethnicity, age, and socioeconomic status (SES). Methods: Long-term exposures (2000 through 2006) were estimated for 215 U.S. census tracts for PM2.5 and for 14 PM2.5 components. Population-weighted exposures were combined to generate overall estimated exposures by race/ethnicity, education, poverty status, employment, age, and earnings. We compared population characteristics for tracts with and without PM2.5 component monitors. Results: Larger disparities in estimated exposures were observed for components than for PM2.5 total mass. For race/ethnicity, whites generally had the lowest exposures. Non-Hispanic blacks had higher exposures than did whites for 13 of the 14 components. Hispanics generally had the highest exposures (e.g., 152% higher than whites for chlorine, 94% higher for aluminum). Young persons (0–19 years of age) had levels as high as or higher than other ages for all exposures except sulfate. Persons with lower SES had higher estimated exposures, with some exceptions. For example, a 10% increase in the proportion unemployed was associated with a 20.0% increase in vanadium and an 18.3% increase in elemental carbon. Census tracts with monitors had more non-Hispanic blacks, lower education and earnings, and higher unemployment and poverty than did tracts without monitors. Conclusions: Exposures to PM2.5 components differed by race/ethnicity, age, and SES. If some components are more toxic than others, certain populations are likely to suffer higher health burdens. Demographics differed between populations covered and not covered by monitors. PMID:22889745

  4. Differential Responses upon Inhalation Exposure to Biodiesel versus Diesel Exhaust on Oxidative Stress, Inflammatory and Immune Outcomes

    EPA Science Inventory

    Biodiesel (BD) exhaust may have reduced adverse health effects due to lower mass emissions and reduced production of hazardous compounds compared to diesel exhaust. To investigate this possibility, we compared adverse effects in lungs and liver of BALB/cJ mice after inhalation ex...

  5. Substance use - inhalants

    MedlinePlus

    Substance abuse - inhalants; Drug abuse - inhalants; Drug use - inhalants; Glue - inhalants ... symptoms and may include: Strong cravings for the drug Having mood swings from feeling depressed to agitated ...

  6. Long- and short-term changes in the neuroimmune-endocrine parameters following inhalation exposures of F344 rats to low-dose sarin.

    PubMed

    Peña-Philippides, Juan Carlos; Razani-Boroujerdi, Seddigheh; Singh, Shashi P; Langley, Raymond J; Mishra, Neerad C; Henderson, Rogene F; Sopori, Mohan L

    2007-05-01

    Inhalation of subclinical doses of sarin suppresses the antibody-forming cell (AFC) response, T-cell mitogenesis, and serum corticosterone (CORT) levels, and high doses of sarin cause lung inflammation. However, the duration of these changes is not known. In these studies, rats were exposed to a subclinical dose of sarin (0.4 mg/m3/h/day) for 1 or 5 days, and immune and inflammatory parameters were assayed up to 8 weeks before sarin exposure. Our results showed that the effects of a 5-day sarin exposure on the AFC response and T-cell receptor (TCR)-mediated Ca2+ response disappeared within 2-4 weeks after sarin exposure, whereas the CORT and adrenocorticotropin hormone (ACTH) levels remained significantly decreased. Pretreatment of rats with chlorisondamine attenuated the effects of sarin on the AFC and the TCR-mediated Ca2+ response, implicating the autonomic nervous system (ANS) in the sarin-induced changes in T-cell function. Moreover, exposure to a single or five repeated subclinical doses of sarin upregulated the mRNA expression of proinflammatory cytokines in the lung, which is associated with the activation of NFkappaB in bronchoalveolar lavage cells. These effects were lost within 2 weeks of sarin inhalation. Our results suggest that while sarin-induced changes in T cells and cytokine gene expression were short lived, suppression of CORT and ACTH levels were relatively long lived and might represent biomarkers of sarin exposure. Moreover, while the effects of sarin on T-cell function were regulated by the ANS, the decreased CORT levels by sarin might result from its effects on the hypothalamus-pituitary-adrenal axis.

  7. Use of sulfur hexafluoride airflow studies to determine the appropriate number and placement of air monitors in an alpha inhalation exposure laboratory

    SciTech Connect

    Newton, G.J.; Hoover, M.D.

    1995-12-01

    Determination of the appropriate number and placement of air monitors in the workplace is quite subjective and is generally one of the more difficult tasks in radiation protection. General guidance for determining the number and placement of air sampling and monitoring instruments has been provided by technical reports such as Mishima, J. These two documents and other published guidelines suggest that some insight into sampler placement can be obtained by conducting airflow studies involving the dilution and clearance of the relatively inert tracer gas sulfur hexafluoride (SF{sub 6}) in sampler placement studies and describes the results of a study done within the ITRI alpha inhalation exposure laboratories. The objectives of the study were to document an appropriate method for conducting SF{sub 6} dispersion studies, and to confirm the appropriate number and placement of air monitors and air samplers within a typical ITRI inhalation exposure laboratory. The results of this study have become part of the technical bases for air sampling and monitoring in the test room.

  8. Effects of combined exposure of F344 rats to inhaled {sup 239}PuO{sub 2} and a chemical carcinogen (NNK)

    SciTech Connect

    Lundgren, D.L.; Belinsky, S.A.; Nikula, K.J.; Griffith, W.C.; Hoover, M.D.

    1994-11-01

    Workers in nuclear weapons facilitates have a significant potential for exposure to chemical carcinogens and to radiation from external sources or from internally deposited radionuclides such as {sup 239}Pu. Although the carcinogenic effects of inhaled {sup 239}Pu and many chemicals have been studied individually, very little information is available on their combined effects. One chemical carcinogen that workers could be exposed to, via tobacco smoke, is the tobacco-specific nitrosamine 4-(N-Methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a product of the curing of tobacco and pyrolysis of nicotine in tobacco. NNK causes lung tumors in rats, regardless of the route of administration and to a lesser extent tumors in the liver, nasal passages, and pancreas. The purpose of this study is to characterize the effects of combined exposure of rats to NNK and internally deposited plutonium, as well as to these agents alone.

  9. Acute Inhalation Injury

    PubMed Central

    Gorguner, Metin; Akgun, Metin

    2010-01-01

    Inhaled substances may cause injury in pulmonary epithelium at various levels of respiratory tract, leading from simple symptoms to severe disease. Acute inhalation injury (AII) is not uncommon condition. There are certain high risk groups but AII may occur at various places including home or workplace. Environmental exposure is also possible. In addition to individual susceptibility, the characteristics of inhaled substances such as water solubility, size of substances and chemical properties may affect disease severity as well as its location. Although AII cases may recover in a few days but AII may cause long-term complications, even death. We aimed to discuss the effects of short-term exposures (minutes to hours) to toxic substances on the lungs. PMID:25610115

  10. Repeated inhalation exposure to octamethylcyclotetrasiloxane produces hepatomegaly, transient hepatic hyperplasia, and sustained hypertrophy in female Fischer 344 rats in a manner similar to phenobarbital.

    PubMed

    McKim, J M; Kolesar, G B; Jean, P A; Meeker, L S; Wilga, P C; Schoonhoven, R; Swenberg, J A; Goodman, J I; Gallavan, R H; Meeks, R G

    2001-04-15

    Octamethylcyclotetrasiloxane (D4) has been described as a phenobarbital-like inducer of hepatic enzymes. Phenobarbital (PB) and phenobarbital-like chemicals induce transient hepatic and thyroid hyperplasia and sustained hypertrophy in rats and mice. The extent to which these processes are involved with D4-induced hepatomegaly is not known. The present study has evaluated the effects of repeated inhalation exposure to D4 vapors on hepatic and thyroid cell proliferation and hypertrophy with respect to time and exposure concentration. Female Fischer 344 rats were exposed via whole body inhalation to 0 ppm D4, 700 ppm D4 vapors (6 h/day; 5 days/week), or 0.05% PB in drinking water over a 4-week period. Incorporation of 5'-bromo-2-deoxyuridine (BrdU) and the abundance of proliferating cell nuclear antigen were used as indicators of cell proliferation. Designated animals from each treatment group were euthanized on study days 6, 13, and 27. The effect of D4 exposure concentration on hepatic cell proliferation was evaluated at 0, 7, 30, 70, 150, 300, or 700 ppm. Liver-to-body weight ratios in animals exposed to 700 ppm D4 were increased 18, 20, and 22% over controls while PB-treated animals showed increases of 33, 27, and 27% over controls on days 6, 13, and 27 respectively. Hepatic incorporation of BrdU following exposure to D4 was highest on day 6 (labeling index = 15-22%) and was at or below control values by day 27. This pattern of transient hyperplasia was observed in all hepatic lobes examined and was similar to the pattern observed following treatment with PB.

  11. Toxicologic significance of histologic change in the larynx of the rat following inhalation exposure: A critical review

    SciTech Connect

    Osimitz, Thomas G. Droege, Wiebke; Finch, John M.

    2007-12-15

    The larynx is a site in the respiratory tract of animals that often shows a response to inhaled substances. In many cases, the most sensitive endpoint in repeated dose inhalation studies is squamous metaplasia (often of minimal severity) of the larynx. The U.S. Environmental Protection Agency has speculated that squamous metaplasia in the rodent larynx might be a pre-neoplastic lesion or a precursor to other serious effects and has proposed to use the effect of squamous metaplasia occurring in subchronic inhalation toxicology studies as a toxicologic endpoint for use in quantitative risk assessment [U.S. Environmental Protection Agency, 2006a. Reregistration Eligibility Decision for MGK-264, U.S. Environmental Protection Agency, 2006b,Reregistration Eligibility Decision for Piperonyl Butoxide, U.S. Environmental Protection Agency, 2006c. Reregistration Eligibility Decision for Pyrethrins]. To reach a conclusion as to its significance, we sought to establish the nature of this effect in the relevant context of rodent inhalation studies. A comprehensive review of the literature shows that laryngeal metaplasia can be produced by a wide range of chemically dissimilar substances, and even by 'non-chemical' means such as irritation by aerosols and particles, and dehydration by alcohols or low humidity air. There is no published evidence that this effect is pre-neoplastic and it is clearly and repeatedly characterized as an adaptive response. Moreover, the well-differentiated character of laryngeal squamous metaplasia, the reversibility of incidence and severity of it during recovery periods, combined with no significant clinical observations and the lack of progression over time indicates that this response is adaptive and should not be considered to be indicative of significant human risk. We therefore conclude that squamous metaplasia of the rodent larynx is not a relevant toxicologic endpoint.

  12. Health Hazard Evaluation of Liquid Monopropellants. Phase 4. Subchronic Inhalation of Hydroxylammonium Nitrate, January 1985.

    DTIC Science & Technology

    2014-09-26

    MD 21010-5422 PHASE 4 HEALTH HAZARD EVALUATION OF LIQUID MONOPROPELLANTS STUDY NO. 75-51-0132-85 SUBCHRONIC INHALATION OF HYDROXYLAMMONIUM NITRATE ...airborne exposures to animals of hydroxylanmonlum nitrate (HAN), a major component of liquid gun propellants. This evaluation will assist in advising on...SUBCHRONIC INHALATION OF HYDROXYLAMMONIUM NITRATE JANUARY 1985 1. AUTHORITY. Letter, US Army Ballistics Research Laboratory, DRDAR-BLP, 21 August 1978

  13. Testing of Laser Components Subjected to Exposure in Space

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2010-01-01

    Materials International Space Station Experiment (MISSE) missions provide an opportunity for developing space qualifiable materials by studying the response of novel materials when subjected to the synergistic effects of the harsh space environment. MISSE 6 was transported to the international Space Station (ISS) via STS 123 on March 11. 2008. The astronauts successfully attached the passive experiment containers (PEC) to external handrails of the international space station (ISS) and opened up for long term exposure. After more than a year of exposure attached to the station's exterior, the PEC with several hundred material samples returned to the earth with the STS-128 space shuttle crew that was launched on shuttle Discovery from the Kennedy Space Center, Fla., on Aug. 28. Meanwhile, MISSE 7 launch is scheduled to be launched on STS 129 mission. MISSE-7 was launched on Space Shuttle mission STS-129 on Atlantis was launched on November 16, 2009. This paper will briefly review recent efforts on MISSE 6 and MISSE 7 missions at NASA Langley Research Center (LaRC).

  14. Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse.

    PubMed

    Martínez-Alfaro, Minerva; Cárabez-Trejo, Alfonso; Gallegos-Corona, Marco-Antonio; Pedraza-Aboytes, Gustavo; Hernández-Chan, Nancy Georgina; Leo-Amador, Guillermo Enrique

    2010-04-01

    Humans can come into contact with thinner by occupational exposure or by intentional inhalation abuse. Numerous studies of workers for genotoxic effects of thinner exposure have yielded conflicting results, perhaps because co-exposure to variable other compounds cannot be avoided in workplace exposure studies. In contrast, there is no data concerning the genotoxic effects of intentional inhalation abuse. The aim of this project was to examine the genotoxic effects of thinner inhalation in an animal model of thinner abuse (rats exposed to 3000 ppm toluene, a high solvent concentration over a very short, 15 min time period, twice a day for 6 weeks). The data presented here provides evidence that thinner inhalation in our experimental conditions is able to induce weight loss, lung abnormalities and oxidative stress. This oxidative stress induces oxidative DNA damage that is not a characteristic feature of genotoxic damage. No significant difference in DNA damage and DNA repair (biomarkers of genotoxicity) in lymphocytes from thinner-treated and control rats was found. Lead treatment was used as a positive control in these assays. Finally, bone marrow was evaluated as a biomarker of cellular alteration associated with thinner inhalation. The observed absence of hemopoietic and genetic toxicity could be explained in part by the absence of benzene, the only carcinogenic component of thinner; however, benzene is no longer a common component of thinner. In conclusion, thinner did not cause genotoxic effects in an experimental model of intentional abuse despite the fact that thinner inhalation induces oxidative stress.

  15. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies.

    PubMed

    Mutlu, Esra; Nash, David G; King, Charly; Krantz, Todd Q; Preston, William T; Kooter, Ingeborg M; Higuchi, Mark; DeMarini, David; Linak, William P; Gilmour, M Ian

    2015-01-01

    Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this end, a program at the U.S. EPA assessed health effects of biodiesel emissions in rodent inhalation models. Commercially obtained soybean biodiesel (B100) and a 20% blend with petroleum diesel (B20) were compared to pure petroleum diesel (B0). Rats and mice were exposed independently for 4 h/day, 5 days/week for up to 6 weeks. Exposures were controlled by dilution air to obtain low (50 µg/m(3)), medium (150 µg/m(3)) and high (500 µg/m(3)) diesel particulate mass (PM) concentrations, and compared to filtered air. This article provides details on facilities, fuels, operating conditions, emission factors and physico-chemical characteristics of the emissions used for inhalation exposures and in vitro studies. Initial engine exhaust PM concentrations for the B100 fuel (19.7 ± 0.7 mg/m(3)) were 30% lower than those of the B0 fuel (28.0 ± 1.5 mg/m(3)). When emissions were diluted with air to control equivalent PM mass concentrations, B0 exposures had higher CO and slightly lower NO concentrations than B100. Organic/elemental carbon ratios and oxygenated methyl esters and organic acids were higher for the B100 than B0. Both the B0 and B100 fuels produced unimodal-accumulation mode particle-size distributions, with B0 producing lower concentrations of slightly larger particles. Subsequent papers in this series will describe the effects of these atmospheres on cardiopulmonary responses and in vitro genotoxicity studies.

  16. The effect of exposure to sulphuric acid on the early asthmatic response to inhaled grass pollen allergen.

    PubMed

    Tunnicliffe, W S; Evans, D E; Mark, D; Harrison, R M; Ayres, J G

    2001-10-01

    Particulate sulphates, including sulphuric acid (H2SO4), are important components of the ambient aerosol in some areas and are regarded as air pollutants with potentially important human health effects. Challenge studies suggest little or no effect of H2SO4 exposure on lung function in asthmatic adults, although some epidemiological studies demonstrate an effect of acid species on symptoms in subjects with asthma. To date, the effect of H2SO4 on allergen responsiveness has not been studied. The effect of exposure to particulate H2SO4 on the early asthmatic response to grass pollen allergen has been investigated in 13 adults with mild asthma. After establishment of the provocative dose of allergen producing a 15% fall in forced expiratory volume in one second (FEVI) (PD15) for each subject, they were exposed to air, 100 microg m(-3) or 1,000 g x m(-3) H2SO4 for 1 h, double-blind in random order > or =2 weeks apart, through a head dome delivery system 14 h after each exposure subject underwent a fixed-dose allergen challenge (PD15). Ten subjects completed the study. The mean early asthmatic responses (maximum percentage change in FEV1 during the first 2 h after challenge) following air, 100 microg x m(-3) H2SO4, and 1,000 microg m(-3) H2SO4, were -14.1%, -16.7%, and -18.4%, respectively. The difference between 1,000 microg x m(-3) H2SO4 and air was significant (mean difference: -4.3%, 95% confidence interval (CI: -1.2-7.4%, p=0.013). The difference between air and 100 microg m(-3) H2SO4 approached significance (mean difference: -2.6%, 95% CI: 0.0-5.3%, p = 0.051). These results suggest that, at least at high mass concentration, sulphuric acid can potentiate the early asthmatic response of mild asthmatic subjects to grass pollen allergen, although the effect is limited.

  17. Inhalation of Whole Diesel Exhaust but not Gas-Phase Components Affects In Vitro Platelet Aggregation in Hypertensive Rats

    EPA Science Inventory

    Rationale: Intravascular thrombosis and platelet aggregation are enhanced following exposure to diesel exhaust (DE) and other respirable particulate matter; however, the roles of endothelial and circulating mediators on platelet aggregation remain unclear. We hypothesized that ad...

  18. Inhaled Bordetella pertussis vaccine decreases airway responsiveness in guinea pigs.

    PubMed

    Vargas, M H; Bazán-Perkins, B; Segura, P; Campos, M G; Selman, M; Montaño, L M

    1995-01-01

    Bordetella pertussis (BP) has been used as adjuvant for experimental animal immunization, but its effects on airway responsiveness are uncertain. Three groups of guinea pigs were used: animals with a single exposure to inhaled BP vaccine (strain 134, total dose 1.24 x 10(12) germs), animals submitted to a sensitization procedure through inhalation of ovalbumin plus BP, and healthy control animals. Four weeks after inhalation of BP or after the beginning of sensitization, dose- or concentration-response curves to histamine were constructed in vivo and in vitro (tracheal and parenchymal preparations). We found that BP alone produced lower responses to histamine than control guinea pigs in vivo (insufflation pressure, p = 0.0003) and in tracheal tissues (p = 0.04), but not in parenchymal preparations. Sensitization did not modify the responsiveness compared with their respective controls. These results suggest that some BP component(s), probably pertussis toxin, causes a long lasting airway hyporesponsiveness in guinea pigs.

  19. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats.

    PubMed

    Kasai, Tatsuya; Umeda, Yumi; Ohnishi, Makoto; Kondo, Hitomi; Takeuchi, Tetsuya; Aiso, Shigetoshi; Nishizawa, Tomoshi; Matsumoto, Michiharu; Fukushima, Shoji

    2015-05-01

    Cancer development due to fiber-like straight type of multi-walled carbon nanotubes (MWCNTs) has raised concerns for human safety because of its shape similar to asbestos. To set concentrations of MWCNT for a rat carcinogenicity study, we conducted a 13-week whole body inhalation study. F344 male and female rats, 6-week-old at the commencement of the study, were exposed by whole-body inhalation to MWCNT at concentrations of 0, 0.2, 1 and 5 mg/m(3) with a generation and exposure system utilizing the cyclone sieve method. Measured concentrations in the exposure chambers were 0.20 ± 0.02, 1.01 ± 0.11 and 5.02 ± 0.25 mg/m(3) for 13 weeks. The MMAD (GSD) of MWCNT were 1.4-1.6 μm (2.3-3.0), and mean width and length were 94.1-98.0 nm and 5.53-6.19 μm, respectively, for each target concentration. Lung weights were increased 1.2-fold with 1 mg/m(3) and 1.3-fold with 5 mg/m(3) in both sexes compared to the controls. In the bronchoalveolar lavage fluid (BALF) analyses, inflammatory parameters were increased concentration-dependently in both sexes from 0.2 mg/m(3). Granulomatous changes in the lung were induced at 1 and 5 mg/m(3) in females and even at 0.2 mg/m(3) in males. Focal fibrosis of the alveolar wall was observed in both sexes at 1 mg/m(3) or higher. Inflammatory infiltration in the visceral pleural and subpleural areas was induced only at 5 mg/m(3). In conclusion, we determined 0.2 mg/m(3) as the low-observed-adverse-effect level (LOAEL) for respiratory tract toxicity in the present inhalation exposure study of rats.

  20. Effects of a two-year inhalation exposure of rats to coal dust and/or diesel exhaust on tension responses of isolated airway smooth muscle

    SciTech Connect

    Fedan, J.S.; Frazer, D.G.; Moorman, W.J.; Attfield, M.D.; Franczak, M.S.; Kosten, C.J.; Cahill, J.F.; Lewis, T.R.; Green, F.H.

    1985-04-01

    This study was performed to determine whether chronic inhalation exposure of rats to levels of coal dust (CD) and/or diesel exhaust (DE) similar to those experienced by underground miners affects the pharmacologic characteristics of the animal's airway smooth muscle. Animals were exposed for 2 yr to CD alone, DE alone, or CD and DE (CD + DE) in combination. Concentration-response relationships for tension changes induced with acetylcholine, 5-hydroxytryptamine, potassium chloride, and isoproterenol were assessed in vitro on isolated preparations of rat airway smooth muscle (trachealis). Compared with control animals, the maximal contractile responses to acetylcholine of tissues from CD-, DE-, and CD + DE-exposed animals were significantly increased; the effects of CD and DE exposure were additive. The CD + DE exposure, but not the individual treatments, resulted in a significant increase in the maximal relaxation response elicited by isoproterenol; this interaction may have resulted from the addition of, or the synergism between, the nonsignificant effects of CD and DE alone. No treatment altered the sensitivity (EC50 values) of the muscles to the agonists used. The results indicate that chronic exposure to CD, DE, and CD + DE produces differential modifications in the behavior of rat airway smooth muscle. These findings may have some bearing on humans exposed to these substances.

  1. [Inhalation exposure to welding fumes of arc welders in processing Cr-Ni steel in large chemical industry].

    PubMed

    Dyrba, B C; Richter, K H

    1989-05-01

    For clearing up the inhalative load by welding fumes and gases of arc welders in industrial workshops mainly working on Cr-Ni-steels the following welding processes were studied: tungsten inert-gas (TIG), electrode-by-hand (EH), metal inert-gas (MIG), and plasma cutting (plasma). From the total load by welding fumes follows the rank TIG less than EH less than plasma less than MIG. Observing the maximum allowable concentration (MACD) for the total welding fume, no MACD for Cr and Ni was found exceeded. Regarding the welding gases ozone and CO no limit values were exceeded. From the results conclusions were made.

  2. FURTHER REFINEMENTS AND TESTING OF APEX3.0: EPA'S POPULATION EXPOSURE MODEL FOR CRITERIA AND AIR TOXIC INHALATION

    EPA Science Inventory

    The Air Pollutants Exposure Model (APEX(3.0)) is a PC-based model that was derived from the probabilistic NAAQS Exposure Model for carbon monoxide (pNEM/CO). APEX will be one of the tools used to estimate human population exposure for criteria and air toxic pollutants as part ...

  3. Ethylene oxide inhalation at different exposure-rates affects binding levels in mouse germ cells and hemoglobin. Possible explanation for the effect.

    PubMed

    Sega, G A; Brimer, P A; Generoso, E E

    1991-08-01

    Male mice were exposed to [3H]EtO by inhalation at different exposure rates (300 parts per million (ppm) of EtO for 1 h: 150 ppm for 2 h: 75 ppm for 4 h). The total exposure was fixed at 300 ppm-h. The amount of EtO binding to developing spermatogenic stages, to sperm DNA, to testis DNA and to hemoglobin was then measured as a function of the EtO exposure rate. Generally, as the exposure rate increased there was an increase in the amount of EtO binding to the targets. For example, alkylation of sperm from the caudal epididymides 6 d posttreatment, of DNA from the vas sperm (averaged over 4 time points), of testis DNA (90 min posttreatment), and of hemoglobin (averaged over 4 time points), was 2.0 +/- 0.2 (SD), 1.8 +/- 0.4, 2.9 +/- 0.3, and 1.5 +/- 0.1 times greater, respectively, after an exposure to 300 ppm for 1 h than after an exposure to 75 ppm for 4 h. The testicular DNA from animals exposed to 300 ppm of [3H]EtO for 1 h was also analyzed for the presence of N7-hydroxyethylguanine (N7HEG) and O6-hydroxyethylguanine (O6HEG). The half-life (T1 2) of the N7HEG in the testis DNA was calculated to be 2.8 d. This lesion was removed relatively rapidly from the testis DNA and was probably excised by enzymatic repair. No formation of O6HEG was detected in any of the testis DNA samples analyzed. Additional experiments showed that the exposure rate effect was the result of less total EtO being taken in by the mice over long exposure times compared to that taken in during shorter exposure times at higher concentrations. This result argues against the idea that the exposure rate effect is the result of physiological/enzymological changes affecting transport or metabolism of the chemical within the animals under different exposure rate conditions.

  4. Inhalation toxicology and carcinogenicity of 1,3-butadiene in B6C3F1 mice following 65 weeks of exposure.

    PubMed Central

    Melnick, R L; Huff, J E; Roycroft, J H; Chou, B J; Miller, R A

    1990-01-01

    1,3-Butadiene, a large-production volume chemical used mainly in the manufacture of synthetic rubber, was found to induce multiple-organ carcinogenicity in male and female B6C3F1 mice at exposure concentrations (625 and 1250 ppm) equivalent to and below the OSHA standard of 1000 ppm. Since this study was terminated after 60 weeks of exposure because of reduced survival due to fatal tumors, and because dose-response relationships for 1,3-butadiene-induced neoplastic and nonneoplastic lesions were not clearly established, a second long-term inhalation study of 1,3-butadiene in B6C3F1 mice was conducted at lower exposure concentrations, ranging from 6.25 to 625 ppm. Both the histopathological findings from animals dying through week 65 and the results of evaluations of animals exposed for 40 and 65 weeks are presented in this report. Exposure to 1,3-butadiene caused a regenerative anemia at concentrations of 62.5 ppm and higher. Testicular atrophy was induced at 625 ppm, and ovarian atrophy was observed at 20 ppm and higher. During the first 50 weeks of the study, lymphocytic lymphoma was the major cause of death of mice exposed to 625 ppm 1,3-butadiene. Neoplasms of the heart, forestomach, lung, Harderian gland, mammary gland, ovary, and liver were frequently observed in 1,3-butadiene-exposed mice that died between week 40 and week 65 of the study. Studies in which exposure to 1,3-butadiene was stopped after limited periods were also included to assess the relationship between exposure levels and duration of exposures on the outcome of 1,3-butadiene-induced carcinogenicity. In these studies, lymphocytic lymphomas were induced in male mice exposed to 625 ppm 1,3-butadiene for only 13 weeks. The incidence of lymphocytic lymphoma in male mice exposed to 625 ppm 1,3-butadiene for 26 weeks was two times that in mice exposed to 625 ppm for 13 weeks. However, when the exposure concentration was reduced by half to 312 ppm and the exposure duration extended to 52 weeks, the

  5. Effect of restricted food supply to pregnant rats inhaling carbon monoxide on fetal weight, compared with cigarette smoke exposure

    SciTech Connect

    Tachi, N.; Aoyama, M.

    1986-12-01

    Although many studies have shown that cigarette smoking during gestation retarded the intrauterine fetal growth, resulting in the decreased birth weight in babies born to smoking mothers, neither causal substance nor mechanism of action to disturb fetal growth has been firmly established yet. Based on the human and animal studies, researchers have implied that fetal hypoxia induced by carbon monoxide (CO) in the cigarette smoke to be responsible for the event. A shortage in energy intake in smoking mothers also has been suspected to cause the retardation in fetal development. In the previous results (Tachi and Aoyama 1983), the weight increment in CO exposed animals was greater than that in the smoke exposed group. The phenomenon seemed to indicate that the reduction in the food intake occurs in animals which inhale the cigarette smoke, and induces the disturbance of fetal development in association with CO. In the present study, so as to evaluate the role of energy intake upon the fetal development in utero, the experiment of paired feeding with pregnant rats exposed to cigarette smoke is designed in animals which inhale the cigarette smoke, CO, or room air, following after the observation of the quantity of food taken by mothers exposed to cigarette smoke, CO, or room air.

  6. Abdominal bloating and irritable bowel syndrome like symptoms following microinstillation inhalation exposure to chemical warfare nerve agent VX in guinea pigs.

    PubMed

    Katos, Alexandre M; Conti, Michele L; Moran, Theodore S; Gordon, Richard K; Doctor, Bhupendra P; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2007-05-01

    While assessing the methylphosphonothioic acid S-(2-(bis(1-methylethyl)amino)ethyl)O-ethyl ester (VX) induced respiratory toxicity and evaluating therapeutics against lung injury, we observed that the animals were experiencing abnormal swelling in the abdominal area. Nerve agent has been known to increase salivary, nasal and gastrointestinal secretion and cause diarrhea. This study was initiated to investigate the effect of VX on the gastrointestinal tract (GI) since abdominal pathology may affect breathing and contribute to the on going respiratory toxicity. The mid-abdominal diameter and the size of the lower left abdomen was measured before and after 27.3 mg/m3 VX exposure by microinstillation and at 30 min intervals up to 2 h post-VX exposure. Both VX and saline exposed animals exhibited a decrease in circumference of the upper abdomen, although the decrease was slightly higher in VX-exposed animals up to 1 h. The waist diameter increased slightly in VX-exposed animals from 60 to 90 min post-VX exposure but was similar to saline controls. The lower left abdomen near to the cecum, 6 cm below and 2cm to the right of the end of the sternum, showed an increase in size at 30-60 min that was significantly increased at 90-120 min post-VX exposure. In addition, VX-exposed animals showed loose fecal matter compared to controls. Necropsy at 24h showed an increased small intestine twisting motility in VX-exposed animals. Body tissue AChE assay showed high inhibition in the esophagus and intestine in VX-exposed animals indicating that a significant amount of the agent is localized to the GI following microinstillation exposure. These results suggest that microinstillatipn inhalation VX exposure induces gastrointestinal disturbances similar to that of irritable bowel syndrome and bloating.

  7. Toxicity of inhaled isocyanate in F344/N rats and B6C3F1 mice. I. Acute exposure and recovery studies

    SciTech Connect

    Bucher, J.R.; Gupta, B.N.; Adkins, B. Jr.; Thompson, M.; Jameson, C.W.; Thigpen, J.E.; Schwetz, B.A.

    1987-06-01

    Male and female F344/N rats and B6C3F1 mice were exposed to lethal and sublethal concentrations of methyl isocyanate by inhalation. Mortality, clinical signs, body and organ weights, and changes in clinical pathology and hematology were monitored immediately after 2-hr exposures and during the ensuing 3 months. Additional studies investigated the possible involvement of cyanide in the toxicity of methyl isocyanate. Deaths of rats and mice exposed to lethal concentrations (20 to 30 ppm) began within 15-18 hr, with males more prone to early death than females. A second wave of deaths occurred after 8 to 10 days, affecting primarily female rats and mice exposed to 20 to 30 ppm of methyl isocyanate, and male and female rats exposed to 10 ppm. Most deaths occurred during the first month following the exposures and were preceded by periods of severe respiratory distress. Body weights decreased in proportion to dose early, but then weight gain resumed in survivors at control rates. The only organ with a consistent, dose-related weight change was the lung, which was heavier throughout the studies in animals exposed to high concentrations of methyl isocyanate. Blood and brain cholinesterase were not inhibited. Studies attempting to measure cyanide in the blood of methyl isocyanate-exposed rats, and attempting to affect lethality with a cyanide antidote (sodium nitrite and sodium thiosulfate) gave negative results. The findings indicate that at these doses, methyl isocyanate inhalation causes deaths and persistent pulmonary changes, but no evidence of extrapulmonary toxicity in rodents. Cyanide does not appear to be involved in methyl isocyanate toxicity.

  8. Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Leibo; Wang, Fumei; Ji, Yaqin; Jiao, Jiao; Zou, Dekun; Liu, Lingling; Shan, Chunyan; Bai, Zhipeng; Sun, Zengrong

    2014-03-01

    In this study, filter samples of six Phthalate esters (PAEs) in indoor PM10 and PM2.5 were collected from thirteen homes in Tianjin, China. The results showed that the concentrations of Σ6PAEs in indoor PM10 and PM2.5 were in the range of 13.878-1591.277 ng m-3 and 7.266-1244.178 ng m-3, respectively. Dibutyl phthalate (DBP) was the most abundant compounds followed by di-2-ethylhexyl phthalate (DEHP) in indoor PM10 and PM2.5. Whereas DBP and dimethyl phthalate (DMP) were the predominant compounds in indoor air (gas-phase + particle-phase), the median values were 573.467 and 368.364 ng m-3 respectively. The earlier construction time, the lesser indoor area, the old decoration, the very crowded items coated with plastic and a lower frequency of dusting may lead to a higher level of PAEs in indoor environment. The six PAEs in indoor PM10 and PM2.5 were higher in summer than those in winter. The daily intake (DI) of six PAEs for five age groups through air inhalation in indoor air in Tianjin was estimated. The results indicated that the highest exposure dose was DBP in every age group, and infants experienced the highest total DIs (median: 664.332 ng kg-bw-1 day-1) to ∑6PAEs, whereas adults experienced the lowest total DIs (median: 155.850 ng kg-bw-1 day-1) to ∑6PAEs. So, more attention should be paid on infants in the aspect of indoor inhalation exposure to PAEs.

  9. Circulating factors induce coronary endothelial ceIl activation foIlowing exposure to inhaled diesel exhaust and nitrogen dioxide in humans :Evidence from a novel translational in vitro model

    EPA Science Inventory

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  10. Investigation of the effects of long-duration exposure on active optical system components (S0050)

    NASA Technical Reports Server (NTRS)

    Blue, M. D.; Gallagher, J. J.; Shackelford, R. G.

    1984-01-01

    The effects of long duration space exposure on the relevant performance parameters of lasers, radiation detectors, and selected optical components, was determined. The results and implications of the measurements indicating real or suspected degradation mechanisms were evaluated and guidelines, based on these results, for selection and use of components for space electro-optical systems are established.

  11. Sperm-head morphology study in B6C3F1 mice following inhalation exposure to 1,3-butadiene: Final technical report

    SciTech Connect

    Hackett, P.L.; McClanahan, B.J.; Brown, M.G.; Buschbom, R.L.; Clark, M.L.; Decker, J.R.; Evanoff, J.J.; Rommereim, R.L.; Rowe, S.E.; Westerberg, R.B.

    1988-04-01

    The present report describes the results of a study of the morphology of epididymal sperm heads of B6C3F1 mice that were exposed to varying concentrations of 1,3-butadiene. During the fifth post-exposure week, the animals were killed and examined for gross lesions of the reproductive tract; suspensions of the epididymal sperm were prepared for morphologic evaluations. No mortality was observed in any of the inhalation exposure groups. Transient toxic signs, including piloerection and dyspnea, were evident during a 20- to 30-minute period following exposure to 5000 ppM. Mean values for body weights and weight gains of the mice exposed to 1,3-butadiene were not significantly different from control values. A concentration-related increase in the incidence of sperm-head abnormalities was evident and the percentage of sperm heads that were morphologically abnormal was significantly higher in mice exposed to 1000 and 5000 ppM than in the controls. 23 refs., 2 figs., 6 tabs.

  12. Occupational asthma related to mouse allergen exposure and rhinoconjunctivitis due to collagenase inhalation in a laboratory technician.

    PubMed

    Muñoz, X; Gómez-Ollés, S; Cruz, M J; Morell, F

    2007-01-01

    We describe the case of a 27-year-old patient working in a research laboratory, who developed occupational asthma to mouse proteins and presented symptoms of rhinoconjunctivitis caused by manipulation of collagenase. Specific inhalation challenge confirmed the diagnosis of occupational asthma to mouse proteins, whereas specific challenge with collagenase only evoked symptoms of rhinitis and conjunctivitis. SDS-PAGE and Western blot analysis for collagenase showed that the patient's IgE antibodies bound specifically to a protein with a molecular weight of 92 kDa. Hence, this was an unusual case of double sensitization. The sensitization to collagenase presented in this report may represent a new occupational disease in technicians working in medical or research laboratories.

  13. Investigation of the effects of long duration space exposure on active optical system components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1994-01-01

    This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems.

  14. Translocation and fate of sized man-made mineral fibers following exposure by intratracheal instillation or inhalation in rats

    SciTech Connect

    Bernstein, D M; Drew, R T; Kuschner, M

    1980-01-01

    A number of studies have suggested that both the length and diameter of glass fibers are important parameters in determining their deposition and translocation in the lung and in the subsequent pathological response by the lung. However, the fibers used in these studies had broad size distributions and were often administered in a highly artificial manner. To better characterize the biological response to glass fibers, a study is being conducted to determine the translocation and ultimate fate of fibers of defined sizes after introduction into the respiratory tract of rats by both instillation and inhalation. The fibers have geometric mean diameters of 1.5 ..mu..m (sigma g = 1.11) and lengths of either 5 ..mu..m (sigma g = 1.49) or 60 ..mu..m (sigma g = 3.76). Serial sacrifices following intratracheal instillation of either 2 mg or 20 mg doses have shown differences in the response to the two sizes of fibers. The short fibers appear to lie primarily within mononuclear phagocytes in both the lung and lymph nodes. The majority of long fibers, however, cannot be totally engulfed by macrophages, nor are they cleared to the lymph nodes, although smaller fragments accompanying the long fibers may be so cleared. The long fibers produce a striking foreign body reaction in the lung, particularly when impacted in the bronchi. Significant numbers of long fibers, but few, if any, short fibers are found in the plural cavity. A trachea only inhalation method was used to expose rats to approximately 500 fibers/cc for one hour. Between 30,000 to 50,000 fibers were deposited in the lung of each rat.

  15. Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users

    NASA Astrophysics Data System (ADS)

    Lin, Nan; Chen, Yuanchen; Du, Wei; Shen, Guofeng; Zhu, Xi; Huang, Tianbo; Wang, Xilong; Cheng, Hefa; Liu, Junfeng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy Y.; Xing, Baoshan; Tao, Shu

    2016-12-01

    Polycyclic aromatica hydrocarbons (PAHs) are a group of compounds with carcinogenic potentials and residential solid fuel combustion is one major source of PAHs in most developing countries. Replacement of traditional stoves with improved ones is believed to be a practical approach to reduce pollutant emissions, however, field assessments on the performance and consequent impacts on air quality and human health after adopting improved stoves are rare. The study is the first time to quantify inhalation exposure to PAHs among the residents who adopted wood gasifier stoves. The results were compared to those still burning coals in the region and compared to exposure levels for different fuel/stove users in literature. The results showed that the PAHs exposure levels for the wood gasifier stove users were significantly lower than the values for those using traditional wood stoves reported in literature, and the daily exposure concentrations of BaPeq (Benzo[a]pyrene equivalent concentration) can be reduced by 48%-91% if traditional wood stoves were replaced by wood gasifier stoves. The corresponding Incremental Lifetime Cancer Risk (ILCR) decreased approximately four times from 1.94 × 10-4 to 5.17 × 10-5. The average concentration of the total 26 PAHs for the wood users was 1091 ± 722 ng/m3, which was comparable to 1060 ± 927 ng/m3 for those using anthracite coals, but the composition profiles were considerably different. The average BaPeq were 116 and 25.8 ng/m3 for the wood and coal users, respectively, and the corresponding ILCR of the anthracite coal users was 1.69 × 10-5, which was nearly one third of those using the wood gasifier stoves. The wood users exposed to not only high levels of high molecular weight PAHs, but relatively high fractions of particulate phase PAHs in small particles compared to the coal users, resulting in high exposure risks.

  16. Deterioration in brain and heart functions following a single sub-lethal (0.8 LCt{sub 50}) inhalation exposure of rats to sarin vapor:

    SciTech Connect

    Allon, N. Chapman, S.; Egoz, I.; Rabinovitz, I.; Kapon, J.; Weissman, B.A.; Yacov, G.; Bloch-Shilderman, E.; Grauer, E.

    2011-05-15

    The main injuries among victims of the terrorist act in the Tokyo subway resulted from sub-lethal inhalation and whole body exposure to sarin vapor. In order to study the long term effects of such exposure and to simulate these conditions, freely moving rats were exposed to sarin vapor (27.2 {+-} 1.7 {mu}g/l) for 10 min. About 50% of the rats showed no overt symptoms and the rest had mild to moderate clinical symptoms that subsided within 4 h following exposure. A reduction of weight was noted during the first 3 days with full recovery on the 4th day. Rat's heart was challenged with epinephrine 1 and 6 months post exposure. A significant reduction in the threshold for epinephrine-induced arrhythmia (EPIA) was noted in rats exposed to sarin. A time dependent increase in the kD and Bmax values of muscarinic auto receptors (M2) was recorded in the rat's cortex and striatum. No changes were recorded in the rats' brain trans locator protein (TSPO) levels, concomitant with no observed changes in the animals' performance in A Morris water maze test. A significant increase in open field activity was noted 6 months following exposure to sarin vapor as well as a significant decrease in prostaglandin E{sub 2} (PGE{sub 2}) production in the brain. It is speculated that down regulation of the M2 auto receptor function, caused hyper reactivity of the cholinergic system which leads to the changes described above. The continuous reduction in M2 auto-receptor system through an unknown mechanism may be the cause for long lasting decline in sarin-exposed casualties' health.

  17. The Variable Effects of Ozone and/or Diesel Particulate Inhalation Exposure on Allergic Airways Responses in Mice

    EPA Science Inventory

    Exposure to diesel exhaust particle matter (DEP) associated with the combustion of diesel fuel exacerbates asthma. Likewise, similar effects have been reported with exposure to the oxidizing air pollutant ozone (O3). Since levels of both pollutants in ambient air are e...

  18. Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months.

    PubMed

    Arts, Josje H E; Muijser, Hans; Duistermaat, Evert; Junker, Karin; Kuper, C Frieke

    2007-10-01

    Evidence suggests that short-term animal exposures to synthetic amorphous silicas (SAS) and crystalline silica can provide comparable prediction of toxicity to those of 90-day studies, therefore providing the opportunity to screen these types of substances using short-term rather than 90-day studies. To investigate this hypothesis, the inhalation toxicity of three SAS, precipitated silica Zeosil 45, silica gel Syloid 74, and pyrogenic silica Cab-O-Sil M5 was studied in Wistar rats. Rats were exposed nose-only to concentrations of 1, 5 or 25mg/m(3) of one of the SAS 6h a day for five consecutive days. Positive controls were exposed to 25mg/m(3) crystalline silica (quartz dust), negative controls to clean air. Animals were necropsied the day after the last exposure or 1 or 3 months later. All exposures were tolerated without serious clinical effects, changes in body weight or food intake. Differences in the effects associated with exposure to the three types of SAS were limited and almost exclusively confined to the 1-day post-exposure time point. Silicon levels in tracheobronchial lymph nodes were below the detection limit in all groups at all time points. Silicon was found in the lungs of all high concentration SAS groups 1-day post-exposure, and was cleared 3 months later. Exposure to all three SAS at 25mg/m(3) induced elevations in biomarkers of cytotoxicity in bronchoalveolar lavage fluid (BALf), increases in lung and tracheobronchial lymph node weight and histopathological lung changes 1-day post-exposure. Exposure to all three SAS at 5mg/m(3) induced histopathological changes and changes in BALf only. With all three SAS these effects were transient and, with the exception of slight histopathological lung changes at the higher exposure levels, were reversible during the 3-month recovery period. No adverse changes were observed in animals exposed to any of the SAS at 1mg/m(3). In contrast, with quartz-exposed animals the presence of silicon in the lungs was

  19. Inhalation toxicokinetics of soman stereoisomers in the atropinized guinea pig with nose-only exposure to soman vapor.

    PubMed

    Langenberg, J P; Spruit, H E; van der Wiel, H J; Trap, H C; Helmich, R B; Bergers, W W; van Helden, H P; Benschop, H P

    1998-07-01

    The toxicokinetics of the four stereoisomers of the nerve agent C(+/-)P(+/-)-soman were studied in anesthetized, atropinized guinea pigs for nose-only exposure to soman vapor. During exposure the respiratory minute volume (RMV) and respiratory frequency (RF) were monitored. Blood samples were taken for chiral gas chromatographic analysis of the concentrations of nerve agent stereoisomers and for measurement of the progressive inhibition of acetylcholinesterase (AChE). The animals were exposed for 4-8 min to 0.4-0.8 LCt50 of C(+/-)P(+/-)-soman. Concentrations of the P(-)-isomers increased rapidly during exposure, up to several nanograms per milliliter of blood. Mathematical equations describing the concentration-time courses of the P(-)-isomers were obtained by nonlinear regression. The kinetics were mathematically described as a discontinuous process, with a monoexponential equation for the exposure period and a two-exponential equation for the postexposure period. The absorption phase of C(+)P(-)-soman lagged behind that of the C(-)P(-)-isomer, presumably due to preferential covalent binding at as yet unidentified binding sites. The terminal half-life observed after nose-only exposure is longer than that observed after an equitoxic iv bolus administration, which suggests the presence of a depot in the upper respiratory tract from which absorption continues after termination of the exposure. Two types of nonlinearity of the toxicokinetics were observed, i.e., with dose and with exposure time. The AChE activity was rapidly inhibited during exposure to the nerve agent vapor. There were no soman-related effects on RMV and RF. The toxicokinetics of the soman stereoisomers observed for nose-only exposure are compared with those determined for iv bolus and sc administration.

  20. Health Effects Associated with Inhalation Exposure to Diesel Emission Generated with and without CeO2 Nano Fuel Additive

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...

  1. Inhaled matters of the heart

    PubMed Central

    Zaky, Ahmed; Ahmad, Aftab; Dell’Italia, Louis J; Jahromi, Leila; Reisenberg, Lee Ann; Matalon, Sadis; Ahmad, Shama

    2015-01-01

    Inhalations of atmospheric pollutants, especially particulate matters, are known to cause severe cardiac effects and to exacerbate preexisting heart disease. Heart failure is an important sequellae of gaseous inhalation such as that of carbon monoxide. Similarly, other gases such as sulphur dioxide are known to cause detrimental cardiovascular events. However, mechanisms of these cardiac toxicities are so far unknown. Increased susceptibility of the heart to oxidative stress may play a role. Low levels of antioxidants in the heart as compared to other organs and high levels of reactive oxygen species produced due to the high energetic demand and metabolic rate in cardiac muscle are important in rendering this susceptibility. Acute inhalation of high concentrations of halogen gases is often fatal. Severe respiratory injury and distress occurs upon inhalation of halogens gases, such as chlorine and bromine; however, studies on their cardiac effects are scant. We have demonstrated that inhalation of high concentrations of halogen gases cause significant cardiac injury, dysfunction, and failure that can be critical in causing mortalities following exposures. Our studies also demonstrated that cardiac dysfunction occurs as a result of a direct insult independent of coexisting hypoxia, since it is not fully reversed by oxygen supplementation. Therefore, studies on offsite organ effects of inhaled toxic gases can impact development of treatment strategies upon accidental or deliberate exposures to these agents. Here we summarize the knowledge of cardiovascular effects of common inhaled toxic gases with the intent to highlight the importance of consideration of cardiac symptoms while treating the victims. PMID:26665179

  2. Repeated inhalation exposure of rats to an anionic high molecular weight polymer aerosol: application of prediction models to better understand pulmonary effects and modes of action.

    PubMed

    Pauluhn, Jürgen

    2014-08-01

    Opposed to the wealth of information available for kinetic lung overload-related effects of poorly-soluble, low-toxicity particles (PSP), only limited information is available on biodegradable high molecular weight (HMW) organic polymers (molecular weight >20,000 Da). It is hypothesized that such types of polymers may exert a somewhat similar volume displacement-related mode of action in alveolar macrophages as PSP; however, with a differing biokinetics of the material retained in the lung. This polyurethane polymer was examined in single and 2-/13-week repeated exposure rat inhalation bioassays. The design of studies was adapted to that commonly applied for PSP. Rats were nose-only exposed for 6h/day for the respective study duration, followed by 1-, 2- and 4-week postexposure periods in the single, 2- and 13-week studies, respectively. While the findings in bronchoalveolar lavage (BAL) and histopathology were consistent with those typical of PSP, they appear to be superimposed by pulmonary phospholipidosis and a much faster reversibility of pulmonary inflammation. Kinetic modeling designed to estimate the accumulated lung burden of biopersistent PSP was also suitable to simulate the overload-dependent outcomes of this biodegradable polymer as long as the faster than normal elimination kinetics was observed and an additional 'void space volume' was added to adjust for the phagocytosed additional fraction of pulmonary phospholipids. The changes observed following repeated inhalation exposure appear to be consistent with a retention-related etiopathology (kinetic overload). In summary, this study did not reveal evidence of any polymer-specific pulmonary irritation or parenchymal injury. Taking all findings into account, 7 mg polymer/m(3) (exposure 6h/day, 5-days/week on 13 consecutive weeks) constitutes the point of departure for lower respiratory tract findings that represent a transitional state from effects attributable to an overload-dependent pulmonary

  3. Does exposure to inhalation anesthesia gases change the ratio of X-bearing sperms and Y-bearing Sperms? A worth exploring project into an uncharted domain.

    PubMed

    Gupta, Deepak; Mckelvey, George; Kaminski, Edward; Zestos, Maria Markakis

    2016-09-01

    According to recent surveys performed in United States and India, anesthesia care providers were observed to have sired female offspring in a higher proportion than male offspring as their firstborn progeny; however, the reasons for the skew are not clear. Our hypothesis is that the underlying biological evidence may be elucidated by unraveling differences (if any) between the concentrations of X-bearing sperms and Y-bearing sperms in the semen samples obtained from males exposed to varied levels of anesthetics in their lifetimes. Therefore, the objectives of the envisaged study would be to conduct a three-stage investigative study on in-vitro human semen samples to determine (a) X-bearing sperms and Y-bearing sperms concentrations' ratio in male pediatric anesthesia care providers' semen samples, (b) changes in X-bearing sperms and Y-bearing sperms concentrations' ratios between the pre-rotation and post-rotation semen samples of male medical student volunteers/observers, and (c) changes in X-bearing sperms and Y-bearing sperms concentrations' ratios between the pre-operative and post-operative day-3 semen samples of male patients presenting for outpatient procedures under inhalational anesthesia. The expected outcomes would be (a) linear and positive correlation of the anesthetic gas usage (exposure) with increased X-bearing sperms/Y-bearing sperms ratio in post-anesthesia day 3 sample as compared to the baseline preoperative sample, (b) linear and positive correlation of the anesthetic gas usage (exposure) with increased X-bearing sperms/Y-bearing sperms ratio in post-rotation sample as compared to the baseline sample, and (c) observation of high X-bearing sperms/Y-bearing sperms ratio in the pediatric anesthesia care providers. In summary, effects (if any) of occupational or personal exposure to inhalational anesthetic gases on the X-bearing sperms and Y-bearing sperms ratio is a worthy project wherein lots of questions that have arisen over decades could find

  4. Food hypersensitivity by inhalation

    PubMed Central

    Ramirez, Daniel A; Bahna, Sami L

    2009-01-01

    Though not widely recognized, food hypersensitivity by inhalation can cause major morbidity in affected individuals. The exposure is usually more obvious and often substantial in occupational environments but frequently occurs in non-occupational settings, such as homes, schools, restaurants, grocery stores, and commercial flights. The exposure can be trivial, as in mere smelling or being in the vicinity of the food. The clinical manifestations can vary from a benign respiratory or cutaneous reaction to a systemic one that can be life-threatening. In addition to strict avoidance, such highly-sensitive subjects should carry self-injectable epinephrine and wear MedicAlert® identification. Asthma is a strong predisposing factor and should be well-controlled. It is of great significance that food inhalation can cause de novo sensitization. PMID:19232116

  5. Ciclesonide Oral Inhalation

    MedlinePlus

    ... ciclesonide inhaler while you are near an open flame or a heat source. The inhaler may explode ... inhaler near a heat source or an open flame. Protect the inhaler from freezing and direct sunlight. ...

  6. Fluticasone Oral Inhalation

    MedlinePlus

    ... aerosol inhaler while you are near an open flame or a heat source. The inhaler may explode ... inhaler near a heat source or an open flame. Protect the inhaler from freezing and direct sunlight. ...

  7. Flunisolide Oral Inhalation

    MedlinePlus

    ... flunisolide inhaler while you are near an open flame or a heat source. The inhaler may explode ... inhaler near a heat source or an open flame. Protect the inhaler from freezing and direct sunlight. ...

  8. Bioaccumulation and locomotor effects of manganese sulfate in Sprague-Dawley rats following subchronic (90 days) inhalation exposure

    SciTech Connect

    Tapin, Danielle; Kennedy, Greg; Lambert, Jean; Zayed, Joseph . E-mail: joseph.zayed@umontreal.ca

    2006-03-01

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic compound that was introduced as an antiknock additive to replace lead in unleaded fuel. The combustion of MMT results in the emission of fine Mn particulates mainly in the form of manganese sulfate and manganese phosphate. The objective of this study is to determine the effects of subchronic exposure to Mn sulfate in different tissues, on locomotor activity, on neuropathology, and on blood serum biochemical parameters. A control group and three groups of 30 male Sprague-Dawley rats were exposed 6-h/day, 5 days/week for 13 consecutive weeks at 30, 300, or 3000 {mu}g/m{sup 3} Mn sulfate. Locomotor activity was measured during 36 h using an Auto-Track System. Blood and the following tissues were collected and analyzed for manganese content by neutron activation analysis: olfactory bulb, globus pallidus, caudate/putamen, cerebellum, frontal cortex, liver, lung, testis, and kidney. Neuronal cell counts were obtained for the caudate/putamen and the globus pallidus and clinical biochemistry was assessed. Manganese concentrations were increased in blood, kidney, lung, and testis and in all brain regions in the 3000 {mu}g/m{sup 3} exposure group. Significant differences were also noted in the 300 {mu}g/m{sup 3} exposure group. Neuronal cell counts for the globus pallidus were significantly different between the two highest exposed groups and the controls. Locomotor activity for all exposure concentrations and resting time for the middle and highest concentrations for the two night resting periods were significantly increased. Total ambulatory count was decreased significantly for all exposure concentrations. Biochemical profiles also presented significant differences. No body weight loss was observed between all groups. These results suggest that neurotoxicity could occur at low exposure levels of Mn sulfate, one of the main combustion products of MMT.

  9. Assessment of the reproductive toxicity of inhalation exposure to ethyl tertiary butyl ether in male mice with normal, low active and inactive ALDH2.

    PubMed

    Weng, Zuquan; Ohtani, Katsumi; Suda, Megumi; Yanagiba, Yukie; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2014-04-01

    No data are available regarding aldehyde dehydrogenase 2 (ALDH2) polymorphisms related to the reproductive toxicity possibly caused by ethyl tertiary butyl ether (ETBE). In this study, two inhalation experiments were performed in Aldh2 knockout (KO), heterogeneous (HT) and wild type (WT) C57BL/6 male mice exposed to ETBE, and the data about general toxicity, testicular histopathology, sperm head numbers, sperm motility and sperm DNA damage were collected. The results showed that the 13-week exposure to 0, 500, 1,750 and 5,000 ppm ETBE significantly decreased sperm motility and increased levels of sperm DNA strand breaks and 8-hydroxy-deoxyguanosine in both WT and KO mice, the effects were found in 1,750 and 5,000 ppm groups of WT mice, and all of the three exposed groups of KO mice compared to the corresponding control; furthermore, ETBE also caused decrease in the relative weights of testes and epididymides, the slight atrophy of seminiferous tubules of testis and reduction in sperm numbers of KO mice exposed to ≥500 ppm. In the experiment of exposure to lower concentrations of ETBE (0, 50, 200 and 500 ppm) for 9 weeks, the remarkable effects of ETBE on sperm head numbers, sperm motility and sperm DNA damage were further observed in KO and HT mice exposed to 200 ppm ETBE, but not in WT mice. Our findings suggested that only exposure to high concentrations of ETBE might result in reproductive toxicity in mice with normal active ALDH2, while low active and inactive ALDH2 enzyme significantly enhanced the ETBE-induced reproductive toxicity in mice, even exposed to low concentrations of ETBE, mainly due to the accumulation of acetaldehyde as a primary metabolite of ETBE.

  10. Oxidative Stress, Inflammatory Biomarkers, and Toxicity in Mouse Lung and Liver After Inhalation Exposure to 100% Biodiesel or Petroleum Diesel Emissions

    PubMed Central

    Shvedova, Anna A.; Yanamala, Naveena; Murray, Ashley R.; Kisin, Elena R.; Khaliullin, Timur; Hatfield, Meghan K.; Tkach, Alexey V.; Krantz, Q. T.; Nash, David; King, Charly; Gilmour, M. Ian; Gavett, Stephen H.

    2015-01-01

    Over the past decade, soy biodiesel (BD) has become a first alternative energy source that is economically viable and meets requirements of the Clean Air Act. Due to lower mass emissions and reduced hazardous compounds compared to diesel combustion emissions (CE), BD exposure is proposed to produce fewer adverse health effects. However, considering the broad use of BD and its blends in different industries, this assertion needs to be supported and validated by mechanistic and toxicological data. Here, adverse effects were compared in lungs and liver of BALB/cJ mice after inhalation exposure (0, 50, 150, or 500 μg/m3; 4 h/d, 5 d/wk, for 4 wk) to CE from 100% biodiesel (B100) and diesel (D100). Compared to D100, B100 CE produced a significant accumulation of oxidatively modified proteins (carbonyls), an increase in 4-hydroxynonenal (4-HNE), a reduction of protein thiols, a depletion of antioxidant gluthatione (GSH), a dose-related rise in the levels of biomarkers of tissue damage (lactate dehydrogenase, LDH) in lungs, and inflammation (myeloperoxidase, MPO) in both lungs and liver. Significant differences in the levels of inflammatory cytokines interleukin (IL)-6, IL-10, IL-12p70, monocyte chemoattractant protein (MCP)-1, interferon (IFN) γ, and tumor necrosis factor (TNF)-α were detected in lungs and liver upon B100 and D100 CE exposures. Overall, the tissue damage, oxidative stress, inflammation, and cytokine response were more pronounced in mice exposed to BD CE. Further studies are required to understand what combustion products in BD CE accelerate oxidative and inflammatory responses. PMID:24156694

  11. Impact of inhalational exposure to ethanol fuel on the pharmacokinetics of verapamil, ibuprofen and fluoxetine as in vivo probe drugs for CYP3A, CYP2C and CYP2D in rats.

    PubMed

    Cardoso, Juciane Lauren Cavalcanti; Lanchote, Vera Lucia; Pereira, Maria Paula Marques; Capela, Jorge Manuel Vieira; de Moraes, Natália Valadares; Lepera, José Salvador

    2015-10-01

    Occupational toxicology and clinical pharmacology integration will be useful to understand potential exposure-drug interaction and to shape risk assessment strategies in order to improve occupational health. The aim of the present study was to evaluate the effect of exposure to ethanol fuel on in vivo activities of cytochrome P450 (CYP) isoenzymes CYP3A, CYP2C and CYP2D by the oral administration of the probe drugs verapamil, ibuprofen and fluoxetine. Male Wistar rats exposed to filtered air or to 2000 ppm ethanol in a nose-only inhalation chamber during (6 h/day, 5 days/week, 6 weeks) received single oral doses of 10 mg/kg verapamil or 25 mg/kg ibuprofen or 10 mg/kg fluoxetine. The enantiomers of verapamil, norverapamil, ibuprofen and fluoxetine in plasma were analyzed by LC-MS/MS. The area under the curve plasma concentration versus time extrapolated to infinity (AUC(0-∞)) was calculated using the Gauss-Laguerre quadrature. Inhalation exposure to ethanol reduces the AUC of both verapamil (approximately 2.7 fold) and norverapamil enantiomers (>2.5 fold), reduces the AUC(0-∞) of (+)-(S)-IBU (approximately 2 fold) and inhibits preferentially the metabolism of (-)-(R)-FLU. In conclusion, inhalation exposure of ethanol at a concentration of 2 TLV-STEL (6 h/day for 6 weeks) induces CYP3A and CYP2C but inhibits CYP2D in rats.

  12. Evaluation of the fate and pathological response in the lung and pleura of brake dust alone and in combination with added chrysotile compared to crocidolite asbestos following short-term inhalation exposure.

    PubMed

    Bernstein, D M; Rogers, R A; Sepulveda, R; Kunzendorf, P; Bellmann, B; Ernst, H; Creutzenberg, O; Phillips, J I

    2015-02-15

    This study was designed to provide an understanding of the biokinetics and potential toxicology in the lung and pleura following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake-dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6h/day for 5 days to either brake-dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake-dust or crocidolite asbestos. The chrysotile fibers were relatively biosoluble whereas the crocidolite asbestos fibers persisted through the life-time of the animal. This was reflected in the lung and the pleura where no significant pathological response was observed at any time point in the brake dust or chrysotile/brake dust exposure groups through 365 days post exposure. In contrast, crocidolite asbestos produced a rapid inflammatory response in the lung parenchyma and the pleura, inducing a significant increase in fibrotic response in both of these compartments. Crocidolite fibers were observed embedded in the diaphragm with activated mesothelial cells immediately after cessation of exposure. While no chrysotile fibers were found in the mediastinal lymph nodes, crocidolite fibers of up to 35 μm were observed. These results provide support that brake-dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung or the pleural cavity following short term inhalation.

  13. Inhalation Injury.

    DTIC Science & Technology

    1994-01-01

    alpha,-antitrypsin resulting cur most often as the result of tracheal in prolonged action of proteases such as or laryngeal damage from the endotra... curs is determined by physicochemical Turbulent airflow, such as at bifurca- properties of the inhaled substance, its tions of the airway, separates

  14. Biodistribution of the GATA-3-specific DNAzyme hgd40 after inhalative exposure in mice, rats and dogs

    SciTech Connect

    Turowska, Agnieszka; Librizzi, Damiano; Baumgartl, Nadja; Kuhlmann, Jens; Dicke, Tanja; Merkel, Olivia; Homburg, Ursula; Höffken, Helmut; Renz, Harald; Garn, Holger

    2013-10-15

    The DNAzyme hgd40 was shown to effectively reduce expression of the transcription factor GATA-3 RNA which plays an important role in the regulation of Th2-mediated immune mechanisms such as in allergic bronchial asthma. However, uptake, biodistribution and pharmacokinetics of hgd40 have not been investigated yet. We examined local and systemic distribution of hgd40 in naive mice and mice suffering from experimental asthma. Furthermore, we evaluated the pharmacokinetics as a function of dose following single and repeated administration in rats and dogs. Using intranasal administration of fluorescently labeled hgd40 we demonstrated that the DNAzyme was evenly distributed in inflamed asthmatic mouse lungs within minutes after single dose application. Systemic distribution was investigated in mice using radioactive labeled hgd40. After intratracheal application, highest amounts of hgd40 were detected in the lungs. High amounts were also detected in the bladder indicating urinary excretion as a major elimination pathway. In serum, low systemic hgd40 levels were detected already at 5 min post application (p.a.), subsequently decreasing over time to non-detectable levels at 2 h p.a. As revealed by Single Photon Emission Computed Tomography, trace amounts of hgd40 were detectable in lungs up to 7 days p.a. Also in the toxicologically relevant rats and dogs, hgd40 was detectable in blood only shortly after inhalative application. The plasma pharmacokinetic profile was dose and time dependent. Repeated administration did not lead to drug accumulation in plasma of dogs and rats. These pharmacokinetic of hgd40 provide guidance for clinical development, and support an infrequent and convenient dose administration regimen. - Highlights: • Local and systemic distribution of GATA-3-specific DNAzyme hgd40 was investigated. • Pharmacokinetics of hgd40 was tested in rats and dogs. • hgd40 dissolved in PBS was easily taken up into the lungs after local application. • No

  15. Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model.

    PubMed

    Smither, Sophie J; Eastaugh, Lin S; Steward, Jackie A; Nelson, Michelle; Lenk, Robert P; Lever, Mark S

    2014-04-01

    Filoviruses cause disease with high case fatality rates and are considered biological threat agents. Licensed post-exposure therapies that can be administered by the oral route are desired for safe and rapid distribution and uptake in the event of exposure or outbreaks. Favipiravir or T-705 has broad antiviral activity and has already undergone phase II and is undergoing phase III clinical trials for influenza. Here we report the first use of T-705 against Ebola virus. T-705 gave 100% protection against aerosol Ebola virus E718 infection; protection was shown in immune-deficient mice after 14 days of twice-daily dosing. T-705 was also shown to inhibit Ebola virus infection in cell culture. T-705 is likely to be licensed for use against influenza in the near future and could also be used with a new indication for filovirus infection.

  16. PBPK modeling/Monte Carlo simulation of methylene chloride kinetic changes in mice in relation to age and acute, subchronic, and chronic inhalation exposure.

    PubMed Central

    Thomas, R S; Yang, R S; Morgan, D G; Moorman, M P; Kermani, H R; Sloane, R A; O'Connor, R W; Adkins, B; Gargas, M L; Andersen, M E

    1996-01-01

    During a 2-year chronic inhalation study on methylene chloride (2000 or 0 ppm; 6 hr/day, 5 days/week), gas-uptake pharmacokinetic studies and tissue partition coefficient determinations were conducted on female B6C3F1, mice after 1 day, 1 month, 1 year, and 2 years of exposure. Using physiologically based pharmacokinetic (PBPK) modeling coupled with Monte Carlo simulation and bootstrap resampling for data analyses, a significant induction in the mixed function oxidase (MFO) rate constant (Vmaxc) was observed at the 1-day and 1-month exposure points when compared to concurrent control mice while decreases in glutathione S-transferase (GST) rate constant (Kfc) were observed in the 1-day and 1-month exposed mice. Within exposure groups, the apparent Vmaxc maintained significant increases in the 1-month and 2-year control groups. Although the same initial increase exists in the exposed group, the 2-year Vmaxc is significantly smaller than the 1-month group (p < 0.001). Within group differences in median Kfc values show a significant decrease in both 1-month and 2-year groups among control and exposed mice (p < 0.001). Although no changes in methylene chloride solubility as a result of prior exposure were observed in blood, muscle, liver, or lung, a marginal decrease in the fat:air partition coefficient was found in the exposed mice at p = 0.053. Age related solubility differences were found in muscle:air, liver:air, lung:air, and fat:air partition coefficients at p < 0.001, while the solubility of methylene chloride in blood was not affected by age (p = 0.461). As a result of this study, we conclude that age and prior exposure to methylene chloride can produce notable changes in disposition and metabolism and may represent important factors in the interpretation for toxicologic data and its application to risk assessment. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 4. Figure 4. Figure 4. Figure 5. Figure 5. Figure 5. Figure 5. PMID:8875160

  17. Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays: Implications for inhalation exposure

    NASA Astrophysics Data System (ADS)

    Calderón, Leonardo; Han, Taewon T.; McGilvery, Catriona M.; Yang, Letao; Subramaniam, Prasad; Lee, Ki-Bum; Schwander, Stephan; Tetley, Teresa D.; Georgopoulos, Panos G.; Ryan, Mary; Porter, Alexandra E.; Smith, Rachel; Chung, Kian Fan; Lioy, Paul J.; Zhang, Junfeng; Mainelis, Gediminas

    2017-04-01

    The increasing prevalence and use of nanotechnology-enabled consumer products have increased potential consumer exposures to nanoparticles; however, there is still a lack of data characterizing such consumer exposure. The research reported here investigated near-field airborne exposures due to the use of 13 silver (Ag)-based and 5 zinc (Zn)-based consumer sprays. The products were sprayed into a specially designed glove box, and all products were applied with equal spraying duration and frequency. Size distribution and concentration of the released particles were assessed using a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the presence of metals in all investigated products. Spray liquids and airborne particles from select products were examined using transmission electron microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDS). We found that all sprays produced airborne particles ranging in size from nano-sized particles (<100 nm) to coarse particles (>2.5 μm); however, there was a substantial variation in the released particle concentration depending on a product. The total aerosol mass concentration was dominated by the presence of coarse particles, and it ranged from ∼30 μg/m3 to ∼30,000 μg/m3. The TEM verified the presence of nanoparticles and their agglomerates in liquid and airborne states. The products were found to contain not only Ag and Zn compounds - as advertised on the product labeling - but also a variety of other metals including lithium, strontium, barium, lead, manganese and others. The results presented here can be used as input to model population exposures as well as form a basis for human health effects studies due to the use nanotechnology-enabled products.

  18. Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum.

    PubMed

    Guerra, R; Vera-Aguilar, E; Uribe-Ramirez, M; Gookin, G; Camacho, J; Osornio-Vargas, A R; Mugica-Alvarez, V; Angulo-Olais, R; Campbell, A; Froines, J; Kleinman, T M; De Vizcaya-Ruiz, A

    2013-10-24

    To study central nervous system airborne PM related subchronic toxicity, SD male rats were exposed for eight weeks to either coarse (32 μg/m³), fine (178 μg/m³) or ultrafine (107 μg/m³) concentrated PM or filtered air. Different brain regions (olfactory bulb, frontal cortex, striatum and hippocampus), were harvested from the rats following exposure to airborne PM. Subsequently, prooxidant (HO-1 and SOD-2), and inflammatory markers (IL-1β and TNFα), apoptotic (caspase 3), and unfolded protein response (UPR) markers (XBP-1S and BiP), were also measured using real-time PCR. Activation of nuclear transcription factors Nrf-2 and NF-κB, associated with antioxidant and inflammation processes, respectively, were also analyzed by GSMA. Ultrafine PM increased HO-1 and SOD-2 mRNA levels in the striatum and hippocampus, in the presence of Nrf-2 activation. Also, ultrafine PM activated NF-κB and increased IL-1β and TNFα in the striatum. Activation of UPR was observed after exposure to coarse PM through the increment of XBP-1S and BiP in the striatum, accompanied by an increase in antioxidant response markers HO-1 and SOD-2. Our results indicate that exposure to different size fractions of PM may induce physiological changes (in a neuroanatomical manner) in the central nervous system (CNS), specifically within the striatum, where inflammation, oxidative stress and UPR signals were effectively activated.

  19. Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum

    PubMed Central

    Guerra, R.; Vera-Aguilar, E.; Uribe-Ramirez, M.; Gookin, G.; Camacho, J.; Osornio-Vargas, A.R.; Mugica-Alvarez, V.; Angulo-Olais, R.; Campbell, A.; Froines, J.; Kleinman, T.M.; De Vizcaya-Ruiz, A.

    2014-01-01

    To study central nervous system airborne PM related subchronic toxicity, SD male rats were exposed for eight weeks to either coarse (32 µg/m3), fine (178 µg/m3) or ultrafine (107 µg/m3) concentrated PM or filtered air. Different brain regions (olfactory bulb, frontal cortex, striatum and hippocampus), were harvested from the rats following exposure to airborne PM. Subsequently, prooxidant (HO-1 and SOD-2), and inflammatory markers (IL-1β and TNFα), apoptotic (caspase 3), and unfolded protein response (UPR) markers (XBP-1S and BiP), were also measured using real-time PCR. Activation of nuclear transcription factors Nrf-2 and NF-κB, associated with antioxidant and inflammation processes, respectively, were also analyzed by GSMA. Ultrafine PM increased HO-1 and SOD-2 mRNA levels in the striatum and hippocampus, in the presence of Nrf-2 activation. Also, ultrafine PM activated NF-κB and increased IL-1β and TNFα in the striatum. Activation of UPR was observed after exposure to coarse PM through the increment of XBP-1S and BiP in the striatum, accompanied by an increase in antioxidant response markers HO-1 and SOD-2. Our results indicate that exposure to different size fractions of PM may induce physiological changes (in a neuroanatomical manner) in the central nervous system (CNS), specifically within the striatum, where inflammation, oxidative stress and UPR signals were effectively activated. PMID:23892126

  20. The biological exposure indices: a key component in protecting workers from toxic chemicals.

    PubMed Central

    Morgan, M S

    1997-01-01

    Biological monitoring of exposure to chemicals in the workplace is an important component of exposure assessment and prevention of adverse health effects. It should be employed in conjunction with ambient air monitoring to provide information on the absorbed dose of a chemical agent and the effect of all routes of exposure. Judgments regarding the acceptable level of a chemical or its metabolite in biological samples are facilitated by comparison to a reference value. The American Conference of Governmental Industrial Hygienists has established a series of recommended reference values called the Biological Exposure Indices (BEI). The history and characteristics of the BEI are reviewed, and their suitability for use by occupational health specialists is examined. A number of challenges and stimuli to the continued development and improvement of these reference values are described, and the impact of recent advances in macromolecular biology is assessed. PMID:9114280

  1. A 28-day rat inhalation study with an integrated molecular toxicology endpoint demonstrates reduced exposure effects for a prototypic modified risk tobacco product compared with conventional cigarettes.

    PubMed

    Kogel, Ulrike; Schlage, Walter K; Martin, Florian; Xiang, Yang; Ansari, Sam; Leroy, Patrice; Vanscheeuwijck, Patrick; Gebel, Stephan; Buettner, Ansgar; Wyss, Christoph; Esposito, Marco; Hoeng, Julia; Peitsch, Manuel C

    2014-06-01

    Towards a systems toxicology-based risk assessment, we investigated molecular perturbations accompanying histopathological changes in a 28-day rat inhalation study combining transcriptomics with classical histopathology. We demonstrated reduced biological activity of a prototypic modified risk tobacco product (pMRTP) compared with the reference research cigarette 3R4F. Rats were exposed to filtered air or to three concentrations of mainstream smoke (MS) from 3R4F, or to a high concentration of MS from a pMRTP. Histopathology revealed concentration-dependent changes in response to 3R4F that were irritative stress-related in nasal and bronchial epithelium, and inflammation-related in the lung parenchyma. For pMRTP, significant changes were seen in the nasal epithelium only. Transcriptomics data were obtained from nasal and bronchial epithelium and lung parenchyma. Concentration-dependent gene expression changes were observed following 3R4F exposure, with much smaller changes for pMRTP. A computational-modeling approach based on causal models of tissue-specific biological networks identified cell stress, inflammation, proliferation, and senescence as the most perturbed molecular mechanisms. These perturbations correlated with histopathological observations. Only weak perturbations were observed for pMRTP. In conclusion, a correlative evaluation of classical histopathology together with gene expression-based computational network models may facilitate a systems toxicology-based risk assessment, as shown for a pMRTP.

  2. Development of linear and threshold no significant risk levels for inhalation exposure to titanium dioxide using systematic review and mode of action considerations.

    PubMed

    Thompson, Chad M; Suh, Mina; Mittal, Liz; Wikoff, Daniele S; Welsh, Brian; Proctor, Deborah M

    2016-10-01

    Titanium dioxide (TiO2) has been characterized as a poorly soluble particulate (PSP) with low toxicity. It is well accepted that low toxicity PSPs such as TiO2 induce lung tumors in rats when deposition overwhelms particle clearance mechanisms. Despite the sensitivity of rats to PSPs and questionable relevance of PSP-induced tumors to humans, TiO2 is listed as a possible human carcinogen by some agencies and regulators. Thus, environmental toxicity criteria for TiO2 are needed for stakeholders to evaluate potential risks from environmental exposure and regulatory compliance. A systematic review of the literature was conducted to characterize the available data and identify candidate datasets upon which toxicity values could be derived. Key to this assessment, a survey of mechanistic data relevant for lung cancer was used to support quantitative inhalation risk assessment approaches. A total of 473 human studies were identified, 7 of which were epidemiological studies that met inclusion criteria to quantitatively characterize carcinogenic endpoints in humans. None of these studies supported derivation of toxicity criteria; therefore, animal data were used to derived safety values for TiO2 using different dose-metrics (regional deposited dose ratios, TiO2 particle surface area lung burden, and volumetric overload of alveolar macrophages), benchmark dose modeling, and different low-dose extrapolation approaches. Based on empirical evidence and mechanistic support for nonlinear mode of action involving particle overload, chronic inflammation and cell proliferation, a no significant risk level (NSRL) of 300 μg/day was derived. By comparison, low-dose linear extrapolation from tumor incidence in the rat lung resulted in an NSRL value of 44 μg/day. These toxicity values should be useful for stakeholders interested in assessing risks from environmental exposure to respirable TiO2.

  3. On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure.

    PubMed

    Sutunkova, M P; Katsnelson, B A; Privalova, L I; Gurvich, V B; Konysheva, L K; Shur, V Ya; Shishkina, E V; Minigalieva, I A; Solovjeva, S N; Grebenkina, S V; Zubarev, I V

    2016-07-01

    The aim of our study was to test a hypothesis according to which the pulmonary clearance vs. retention of metal oxide nanoparticles (NPs) is controlled not only by physiological mechanisms but also by their solubilization which in some cases may even prevail. Airborne Fe2O3 NPs with the mean diameter of 14±4nm produced by sparking from 99.99% pure iron rods were fed into a nose-only exposure tower. Rats were exposed to these NPs for 4h a day, 5days a week during 3, 6 or 10 months at the mean concentration of 1.14±0.01mg/m(3). NPs collected from the air exhausted from the exposure tower proved insoluble in water but dissolved markedly in the cell free broncho-alveolar lavage fluid supernatant and in the sterile bovine blood serum. The Fe2O3 content of the lungs and lung-associated lymph nodes was measured by the Electron Paramagnetic Resonance (EPR) spectroscopy. We found a relatively low but significant pulmonary accumulation of Fe2O3, gradually increasing with time. Besides, we obtained TEM-images of nanoparticles within alveolocytes and the myelin sheaths of brain fibers associated with ultrastructural damage. We have developed a multicompartmental system model describing the toxicokinetics of inhaled nanoparticles after their deposition in the lower airways as a process controlled by their (a) high ability to penetrate through the alveolar membrane; (b) active endocytosis; (c) in vivo dissolution. To conclude, both experimental data and the identification of the system model confirmed our initial hypothesis and demonstrated that, as concerns iron oxide NPs of the dimensions used, the dissolution-depending mechanisms proved to be dominant.

  4. Behavioral and neurochemical alterations in the offspring of rats after maternal or paternal inhalation exposure to the industrial solvent 2-methoxyethanol.

    PubMed

    Nelson, B K; Brightwell, W S; Burg, J R; Massari, V J

    1984-02-01

    The industrial solvent 2-methoxyethanol (2ME) has antifertility effects in male rats at 300 ppm and is teratogenic in rats and rabbits at 50 ppm. The present research investigated if exposure of paternal or maternal animals to 25 ppm 2ME, the current U.S. permissible occupational exposure limit, would produce detectable effects in the offspring. Eighteen male young-adult Sprague-Dawley rats were exposed to 25 ppm 2ME 7 hr/day, 7 days/week for 6 weeks; they were then mated with untreated females which were allowed to deliver and rear their young. In addition, groups of 15 pregnant rats were exposed 7 hr/day on gestation days 7-13 or 14-20 and allowed to deliver and rear their young. At birth, litters were culled to 4 females and 4 males for behavioral testing of neuromotor function, activity, and simple learning ability on days 10 through 90. In addition, brains from newborn and 21-day-old offspring were analyzed for neurochemical deviations from controls. No effects on paternal or maternal animals, nor on the number or weight of live offspring, were noted. Behavioral testing revealed significant differences from controls only in avoidance conditioning of offspring of mothers exposed on days 7-13. In contrast, neurochemical deviations were observed in brains from 21-day-old offspring from the paternally exposed group as well as from both maternally exposed groups; changes were numerous in the brainstem and cerebrum but were fewer in the cerebellum and midbrain. Thus it appears that both paternal and maternal inhalation of 25 ppm 2ME produces some effect which is reflected in neurochemical deviations in the offspring.

  5. Biotransformation of 2,3,3,3-tetrafluoropropene (HFO-1234yf) in male, pregnant and non-pregnant female rabbits after single high dose inhalation exposure

    SciTech Connect

    Schmidt, Tobias; Bertermann, Rüdiger; Rusch, George M.; Hoffman, Gary M.; Dekant, Wolfgang

    2012-08-15

    2,3,3,3-Tetrafluoropropene (HFO-1234yf) is a novel refrigerant intended for use in mobile air conditioning. It showed a low potential for toxicity in rodents studies with most NOAELs well above 10,000 ppm in guideline compliant toxicity studies. However, a developmental toxicity study in rabbits showed mortality at exposure levels of 5,500 ppm and above. No lethality was observed at exposure levels of 2,500 and 4,000 ppm. Nevertheless, increased subacute inflammatory heart lesions were observed in rabbits at all exposure levels. Since the lethality in pregnant animals may be due to altered biotransformation of HFO-1234yf and to evaluate the potential risk to pregnant women facing a car crash, this study compared the acute toxicity and biotransformation of HFO-1234yf in male, female and pregnant female rabbits. Animals were exposed to 50,000 ppm and 100,000 ppm for 1 h. For metabolite identification by {sup 19}F NMR and LC/MS-MS, urine was collected for 48 h after inhalation exposure. In all samples, the predominant metabolites were S-(3,3,3-trifluoro-2-hydroxypropanyl)-mercaptolactic acid and N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine. Since no major differences in urinary metabolite pattern were observed between the groups, only N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine excretion was quantified. No significant differences in recovery between non-pregnant (43.10 ± 22.35 μmol) and pregnant female (50.47 ± 19.72 μmol) rabbits were observed, male rabbits exposed to 100,000 ppm for one hour excreted 86.40 ± 38.87 μmol. Lethality and clinical signs of toxicity were not observed in any group. The results suggest that the lethality of HFO-1234yf in pregnant rabbits unlikely is due to changes in biotransformation patterns or capacity in pregnant rabbits. -- Highlights: ► No lethality and clinical signs were observed. ► No differences in metabolic pattern between pregnant and non-pregnant rabbits. ► Rapid and similar metabolite

  6. A FIM Study to Assess Safety and Exposure of Inhaled Single Doses of AP301—A Specific ENaC Channel Activator for the Treatment of Acute Lung Injury

    PubMed Central

    Schwameis, Richard; Eder, Sandra; Pietschmann, Helmut; Fischer, Bernhard; Mascher, Hermann; Tzotzos, Susan; Fischer, Hendrik; Lucas, Rudolf; Zeitlinger, Markus; Hermann, Robert

    2014-01-01

    AP301 is an activator of ENaC-mediated Na+ uptake for the treatment of pulmonary permeability edema in acute respiratory distress syndrome (ARDS). The purpose of this “first-in-man” study was to examine local and systemic safety and systemic exposure of ascending single doses of AP301, when inhaled by healthy male subjects. In a double-blind, placebo-controlled study, 48 healthy male subjects were randomized to 6 ascending dose groups (single doses up to 120 mg) of 8 subjects each (3:1 randomization of AP301: placebo). Serial assessments included spirometry, exhaled nitric oxide (eNO), vital signs, ECG, safety laboratory, adverse events (AE), and blood samples for the quantification of AP301 in plasma. Descriptive statistics was applied. All 48 subjects received treatment, and completed the study as per protocol. No serious, local (e.g., hoarseness, cough, bronchospasm), or dose-limiting AEs were noted. None of the assessments indicated notable dose or time-related alterations of safety outcomes. Observed AP301 systemic exposure levels were very low, with mean Cmax values of <2.5 ng/mL in the highest dose groups. Inhaled AP301 single doses up to 120 mg were safe and well tolerated by healthy male subjects. Distribution of inhaled AP301 was largely confined to the lung, as indicated by very low AP301 systemic exposure levels. PMID:24515273

  7. A study of the biological effect of continuous inhalation exposure of 1, 1, 1-trichloroethene (methyl chloroform) on animals

    NASA Technical Reports Server (NTRS)

    Macewen, J. D.; Kinkead, E. R.; Haun, C. C.

    1974-01-01

    The effects of continuous exposure to 1,1,1-trichloroethane on hepatic morphology and function are evaluated and compared with those produced by methylene chloride (dichloromethane) to determine environmental concentrations of each compound that would produce a similar biological response, i.e., a comparable increase in liver triglycerides over control levels. Experimental findings on mice, rats, dogs, and monkeys indicate that the pathological alternations observed with 1,1,1-trichloroethane are similar to those observed with dichloromethane except for different time courses of the effects and different degrees of recovery. A ten fold greater atmospheric concentration of 1,1,1-trichloroethane is required to produce the minimal liver changes found at 100 ppm dichloromethane.

  8. Effects of inhaled sulfur dioxide (SO/sub 2/) on pulmonary function in healthy adolescents: exposure to SO/sub 2/ alone or SO/sub 2/ + sodium chloride droplet aerosol during rest and exercise

    SciTech Connect

    Koenig, J.Q.; Pierson, W.E.; Horike, M.; Frank, R.

    1982-01-01

    Statistically significant changes in pulmonary functional measurements in asthmatic adolescents exposed to sulfur dioxide (SO/sub 2/) at reset and during exercise were recently reported. To determine whether those results were due to the subjects' adolescence or to their asthma, the identical exposures were repeated in healthy adolescents. The healthy subjects showed small, statistically significant changes after exposure to SO/sub 2/, but these changes were slight compared to those seen in the asthmatic adolescents. It was concluded that asthmatic adolescents are much more sensitive to the effects of inhaled SO/sub 2/ than are healthy adolescents. (JMT)

  9. Estimation of neutron and other radiation exposure components in low earth orbit

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C. Jr; Badavi, F. F.; Shinn, J. L.; Cucinotta, F. A.; Badhwar, G. D.; Clowdsley, M. S.; Heinbockel, J. H.; Wilson, J. W.; Atwell, W.; Beaujean, R.; Kopp, J.; Reitz, G.

    2001-01-01

    The interaction of high-energy space radiation with spacecraft materials generates a host of secondary particles, some, such as neutrons, are more biologically damaging and penetrating than the original primary particles. Before committing astronauts to long term exposure in such high radiation environments, a quantitative understanding of the exposure and estimates of the associated risks are required. Energetic neutrons are traditionally difficult to measure due to their neutral charge. Measurement methods have been limited by mass and weight requirements in space to nuclear emulsion, activation foils, a limited number of Bonner spheres, and TEPCs. Such measurements have had limited success in quantifying the neutron component relative to the charged components. We will show that a combination of computational models and experimental measurements can be used as a quantitative tool to evaluate the radiation environment within the Shuttle, including neutrons. Comparisons with space measurements are made with special emphasis on neutron sensitive and insensitive devices. c2001 Elsevier Science Ltd. All rights reserved.

  10. Biomarker variance component estimation for exposure surrogate selection and toxicokinetic inference

    PubMed Central

    Sobus, Jon R.; Pleil, Joachim D.; McClean, Michael D.; Herrick, Robert F.; Rappaport, Stephen M.

    2010-01-01

    Biomarkers are useful exposure surrogates given their ability to integrate exposures through all routes and to reflect interindividual differences in toxicokinetic processes. Also, biomarker concentrations tend to vary less than corresponding environmental measurements, making them less-biasing surrogates for exposure. In this article, urinary PAH biomarkers (namely, urinary naphthalene [U-Nap]; urinary phenenthrene [U-Phe]; 1-hydroxypyrene [1-OH-Pyr]; and 1-, (2+3)-, 4-, and 9-hydroxyphenenthrene [1-, (2+3)-, 4-, and 9-OH-Phe]) were evaluated as surrogates for exposure to hot asphalt emissions using data from 20 road-paving workers. Linear mixed-effects models were used to estimate the within- and between-person components of variance for each urinary biomarker. The ratio of within- to between-person variance was then used to estimate the biasing effects of each biomarker on a theoretical exposure-response relationship. Mixed models were also used to estimate the amounts of variation in Phe metabolism to individual OH-Phe isomers that could be attributed to Phe exposure (as represented by U-Phe concentrations) and covariates representing time, hydration level, smoking status, age, and body mass index. Results showed that 1-OH-Phe, (2+3)-OH-Phe, and 1-OH-Pyr were the least-biasing surrogates for exposure to hot asphalt emissions, and that effects of hydration level and sample collection time substantially inflated bias estimates for the urinary biomarkers. Mixed-model results for the individual OH-Phe isomers showed that between 63% and 82% of the observed biomarker variance was collectively explained by Phe exposure, the time and day of sample collection, and the hydration level, smoking status, body mass index, and age of each worker. By difference, the model results also showed that, depending on the OH-Phe isomer, a maximum of 6% to 23% of the total biomarker variance was attributable to differences in unobserved toxicokinetic processes between the workers

  11. Exposure of human lung cells to inhalable substances: a novel test strategy involving clean air exposure periods using whole diluted cigarette mainstream smoke.

    PubMed

    Ritter, Detlef; Knebel, Jan W; Aufderheide, Michaela

    2003-01-01

    An experimental approach was established for the validation of an in vitro test system for complex environmental test atmospheres consisting of both gaseous substances and particulates. Smoke from two different cigarette types (generated by an automatic cigarette-smoking machine) was employed to assess both the sensitivity and the specificity of the system. The smoke was diluted with synthetic air and used to expose human lung cells grown on microporous membranes. Cells were exposed alternately to diluted cigarette smoke and pure synthetic air. The effect of diluted smoke was assessed without humidification, addition of CO2, or any other physical or chemical modification of the smoke. The experimental setup included online monitoring of the gas phase (by analysis of CO concentration) and particulate phase (by light-scattering photometry). Replicate experiments confirmed a reproducible generation and dilution of the smoke and a smoke age of about 7 s at the time it came into contact with the cells. Experiments using human lung cells revealed that smoke from the two different cigarette types induced different levels of dose-dependent toxicity. A cell exposure of 6 min using 6 alternating smoke and synthetic air periods was sufficient to cause different effects as measured by intracellular glutathione content. The fact that the system could differentiate between two different types of cigarette smoke demonstrated its high sensitivity and specificity. The system offers new ways to test native complex gaseous and aerosol mixtures in vitro using short exposure times and very small amounts of test substances.

  12. Comparative Iron Oxide Nanoparticle Cellular Dosimetry and Response in Mice by the Inhalation and Liquid Cell Culture Exposure Routes

    SciTech Connect

    Teeguarden, Justin G.; Mikheev, Vladimir B.; Minard, Kevin R.; Forsythe, William C.; Wang, Wei; Sharma, Gaurav; Karin, Norman J.; Tilton, Susan C.; Waters, Katrina M.; Asgharian, Bahman; Price, Owen; Pounds, Joel G.; Thrall, Brian D.

    2014-01-01

    quantitative comparison of in vitro and in vivo systems advance their use for hazard assessment and extrapolation to humans. The mildly inflammogentic cellular doses experienced by mice were similar those calculated for humans exposed to the same at the existing permissible exposure limit of 10 mg/m3 iron oxide (as Fe).

  13. Levalbuterol Oral Inhalation

    MedlinePlus

    Levalbuterol comes as a solution (liquid) to inhale by mouth using a nebulizer (machine that turns medication into a mist that can be inhaled), a concentrated solution to be mixed with normal saline and inhaled ...

  14. Degradation of electro-optic components aboard LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    Re-measurement of the properties of a set of electro-optic components exposed to the low earth orbital environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, LED's, filter, mirrors, and black paints will be presented. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens. We find plastics and multi-layer dielectric coatings to be potentially unstable. Semiconductor devices, metal, and glass are more likely to be stable.

  15. Evaluation of the fate and pathological response in the lung and pleura of brake dust alone and in combination with added chrysotile compared to crocidolite asbestos following short-term inhalation exposure

    SciTech Connect

    Bernstein, D.M.; Rogers, R.A.; Sepulveda, R.; Kunzendorf, P.; Bellmann, B.; Ernst, H.; Creutzenberg, O.; Phillips, J.I.

    2015-02-15

    This study was designed to provide an understanding of the biokinetics and potential toxicology in the lung and pleura following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake-dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6 h/day for 5 days to either brake-dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake-dust or crocidolite asbestos. The chrysotile fibers were relatively biosoluble whereas the crocidolite asbestos fibers persisted through the life-time of the animal. This was reflected in the lung and the pleura where no significant pathological response was observed at any time point in the brake dust or chrysotile/brake dust exposure groups through 365 days post exposure. In contrast, crocidolite asbestos produced a rapid inflammatory response in the lung parenchyma and the pleura, inducing a significant increase in fibrotic response in both of these compartments. Crocidolite fibers were observed embedded in the diaphragm with activated mesothelial cells immediately after cessation of exposure. While no chrysotile fibers were found in the mediastinal lymph nodes, crocidolite fibers of up to 35 μm were observed. These results provide support that brake-dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung or the pleural cavity following short term inhalation. - Highlights: • Evaluated brake dust w/wo added chrysotile in comparison to crocidolite asbestos. • Persistence, translocation, pathological response in the lung and pleural cavity. • Chrysotile cleared rapidly from the lung while the crocidolite asbestos persisted. • No significant pathology in lung or pleural cavity observed at any time point in the brake-dust groups. • Crocidolite quickly

  16. Source identification of ambient PM 2.5 for inhalation exposure studies in Steubenville, Ohio using highly time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Morishita, Masako; Keeler, Gerald J.; Kamal, Ali S.; Wagner, James G.; Harkema, Jack R.; Rohr, Annette C.

    2011-12-01

    Recent epidemiological and toxicological studies have suggested that short-term elevations of ambient fine particle mass concentrations (aerodynamic diameter <2.5 μm, PM 2.5) can increase cardiac and pulmonary health risks. Thus, examining temporal variations of chemical changes in ambient PM 2.5 that could pose the greatest health risks and identifying its sources is critical so that the most toxic categories can be controlled. In this study we collected detailed air quality data in Steubenville, Ohio in August 2006 with the ultimate goal to evaluate associations between cardiovascular (CV) parameters measured in exposed laboratory animals and the chemical and elemental composition of PM 2.5. Current approaches using radiotelemetry to measure CV parameters in conscious laboratory animals are capable of collecting continuous recordings. To provide a robust and analogous dataset that can be better matched with CV responses, we have incorporated a highly time-resolved sampling method to characterize trace elements and thereby obtain more robust input data to determine potential emission sources. We applied positive matrix factorization (PMF) to trace element concentrations from 30-minute ambient PM 2.5 samples in Steubenville, Ohio, an area designated as a non-attainment area for the PM 2.5 National Ambient Air Quality Standards by the Environmental Protection Agency. The average ambient PM 2.5 filter-based mass concentration during the 8-hour summer exposure study period was 26 ± 11 μg m -3. Results from PMF indicated that six major factors contributed to the ambient PM 2.5 mass during this time: coal combustion/secondary (39 ± 46%), mobile sources (12 ± 14%), metal coating/processing (10 ± 11%), iron and steel manufacturing (5 ± 5%), Pb factor (5 ± 8%), and incineration/smelting (1 ± 3%). The objectives of this paper are (1) to present chemical composition of ambient PM 2.5 and its potential emission sources in Steubenville; and (2) to evaluate the PMF

  17. Inhalation injury: epidemiology, pathology, treatment strategies

    PubMed Central

    2013-01-01

    Lung injury resulting from inhalation of smoke or chemical products of combustion continues to be associated with significant morbidity and mortality. Combined with cutaneous burns, inhalation injury increases fluid resuscitation requirements, incidence of pulmonary complications and overall mortality of thermal injury. While many products and techniques have been developed to manage cutaneous thermal trauma, relatively few diagnosis-specific therapeutic options have been identified for patients with inhalation injury. Several factors explain slower progress for improvement in management of patients with inhalation injury. Inhalation injury is a more complex clinical problem. Burned cutaneous tissue may be excised and replaced with skin grafts. Injured pulmonary tissue must be protected from secondary injury due to resuscitation, mechanical ventilation and infection while host repair mechanisms receive appropriate support. Many of the consequences of smoke inhalation result from an inflammatory response involving mediators whose number and role remain incompletely understood despite improved tools for processing of clinical material. Improvements in mortality from inhalation injury are mostly due to widespread improvements in critical care rather than focused interventions for smoke inhalation. Morbidity associated with inhalation injury is produced by heat exposure and inhaled toxins. Management of toxin exposure in smoke inhalation remains controversial, particularly as related to carbon monoxide and cyanide. Hyperbaric oxygen treatment has been evaluated in multiple trials to manage neurologic sequelae of carbon monoxide exposure. Unfortunately, data to date do not support application of hyperbaric oxygen in this population outside the context of clinical trials. Cyanide is another toxin produced by combustion of natural or synthetic materials. A number of antidote strategies have been evaluated to address tissue hypoxia associated with cyanide exposure. Data

  18. Inhalation toxicity of methyl difluoromalonyl fluoride in rats

    SciTech Connect

    Kennedy, G.L. Jr.; Burgess, B.A.; Chen, H.C.

    1988-06-01

    Methyl 2,2-difluoromalonyl fluoride (MMF) is highly toxic by inhalation producing mortality in rats exposed for 4 hours to 0.55 mg/L. Repeated inhalation exposures of rats to 0.009 mg/L produced irritation but no other signs of a toxic response. Mortality was encountered following repeated exposures to 0.066 mg/L.

  19. Inhalation Injuries

    MedlinePlus

    ... devastating types of trauma resulting from exposure to fire and smoke. PREVENT you and your loved ones! ... people die annually in the United States from fire injuries. • Over half of these deaths result from ...

  20. Inhalation Therapy in Horses.

    PubMed

    Cha, Mandy L; Costa, Lais R R

    2017-04-01

    This article discusses the benefits and limitations of inhalation therapy in horses. Inhalation drug therapy delivers the drug directly to the airways, thereby achieving maximal drug concentrations at the target site. Inhalation therapy has the additional advantage of decreasing systemic side effects. Inhalation therapy in horses is delivered by the use of nebulizers or pressured metered dose inhalers. It also requires the use of a muzzle or nasal mask in horses. Drugs most commonly delivered through inhalation drug therapy in horses include bronchodilators, antiinflammatories, and antimicrobials.

  1. Animal model of sensitization by inhalation.

    PubMed Central

    Barboriak, J J; Knoblock, H W; Hensley, G T; Gombas, O F; Fink, J N

    1976-01-01

    Groups of rats exposed to daily inhalation challenge with aerosolized pigeon serum developed precipitating antibody within 2 weeks and definitive granulomatous inflammatory changes in the lung after 7 weeks of exposure. The dissociation of the two responses to an inhalation challenge indicate that the rat model may serve for screening of the various inhalant antigens for their sensitizing potential, and for investigation of the contributory role of some of the factors involved in the pathogenesis of hypersensitivity pneumonitis. Images FIG. 1 FIG. 2 PMID:939055

  2. Vapor inhalation of alcohol in rats.

    PubMed

    Gilpin, Nicholas W; Richardson, Heather N; Cole, Maury; Koob, George F

    2008-07-01

    Alcohol dependence constitutes a neuroadaptive state critical for understanding alcoholism, and various methods have been utilized to induce alcohol dependence in animals, one of which is alcohol vapor exposure. Alcohol vapor inhalation provides certain advantages over other chronic alcohol exposure procedures that share the ultimate goal of producing alcohol dependence in rats. Chronic alcohol vapor inhalation allows the experimenter to control the dose, duration, and pattern of alcohol exposure. Also, this procedure facilitates testing of somatic and motivational aspects of alcohol dependence. Chronic exposure to alcohol vapor produces increases in alcohol-drinking behavior, increases in anxiety-like behavior, and reward deficits in rats. Alcohol vapor inhalation as a laboratory protocol is flexible, and the parameters of this procedure can be adjusted to accommodate the specific aims of different experiments. This unit describes the options available to investigators using this procedure for dependence induction, when different options are more or less appropriate, and the implications of each.

  3. Effect of Disease Severity in Asthma and Chronic Obstructive Pulmonary Disease on Inhaler-Specific Inhalation Profiles Through the ELLIPTA® Dry Powder Inhaler

    PubMed Central

    de Backer, Wilfried; Hamilton, Melanie; Cahn, Anthony; Preece, Andrew; Kelleher, Dennis; Baines, Amanda; Moore, Alison; Brealey, Noushin; Moynihan, Jackie

    2015-01-01

    Abstract Background: Two studies were undertaken to characterize the maximal effort inhalation profiles of healthy subjects and patients with asthma or chronic obstructive pulmonary disease (COPD) through a moderate-resistance dry powder inhaler (DPI). Correlations between inhaler-specific inhalation characteristics and inhaler-independent lung function parameters were investigated. Methods: Healthy subjects (n = 15), patients with mild, moderate, or severe asthma (n = 45), and patients with mild, moderate, severe, or very-severe COPD (n = 60) were included in the studies. Inhalation pressure drop versus time profiles were recorded using an instrumented ELLIPTA® DPI or bespoke resistor component with equivalent resistivity. Inhaler-independent lung function assessments included pharyngometry, spirometry, plethysmography, and diffusion. Results: For the inhaler-specific inhalation profiles, the mean maximal effort peak inspiratory flow rates (PIFRs) varied across the subgroups from 65.8–110.6 L/min (range: 41.6–142.9). Peak pressure drop, PIFR, inhaled volume, and average inhalation flow rate (primary endpoints) did not differ markedly between healthy subjects and patients with asthma or mild COPD. Moderate, severe, and very-severe COPD patients demonstrated lower mean peak pressure drops, PIFRs and inhaled volumes, which tended to decrease with increasing COPD severity. Severe and very-severe COPD patients demonstrated shorter mean inhalation times compared with all other participants. Inhaler-independent lung function parameters were consistent with disease severity, and statistically significant (p < 0.05) strong correlations (R > 0.7) with components of the inhaler-specific inhalation profiles were observed in the COPD cohort; correlations in the asthma cohort tended to be weaker. Conclusions: All participants achieved a maximal effort PIFR ≥ 41.6 L/min through the moderate resistance of the ELLIPTA inhaler. Patients with asthma

  4. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. )

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance.

  5. Inhalation exposures due to radon and thoron ((222)Rn and (220)Rn): Do they differ in high and normal background radiation areas in India?

    PubMed

    Mishra, Rosaline; Sapra, B K; Prajith, R; Rout, R P; Jalaluddin, S; Mayya, Y S

    2015-09-01

    In India, High Background Radiation Areas (HBRAs) due to enhanced levels of naturally occurring radionuclides in soil (thorium and, to a lesser extent, uranium), are located along some parts of the coastal tracts viz. the coastal belt of Kerala, Tamilnadu and Odisha. It is conjectured that these deposits will result in higher emissions of radon isotopes ((222)Rn and (220)Rn) and their daughter products as compared to Normal Background Radiation Areas (NBRAs). While the annual external dose rates contributed by gamma radiations in these areas are about 5-10 times higher, the extent of increase in the inhalation dose rates attributable to (222)Rn and (220)Rn and their decay products is not well quantified. Towards this, systematic indoor surveys were conducted wherein simultaneous measurements of time integrated (222)Rn and (220)Rn gas and their decay product concentrations was carried out in around 800 houses in the HBRAs of Kerala and Odisha to estimate the inhalation doses. All gas measurements were carried out using pin-hole cup dosimeters while the progeny measurements were with samplers and systems based on the Direct radon/thoron Progeny sensors (DRPS/DTPS). To corroborate these passive measurements of decay products concentrations, active sampling was also carried out in a few houses. The results of the surveys provide a strong evidence to conclude that the inhalation doses due to (222)Rn and (220)Rn gas and their decay products in these HBRAs are in the same range as observed in the NBRAs in India.

  6. Performance Testing of Lidar Components Subjected to Space Exposure in Space via MISSE 7 Mission

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2012-01-01

    .The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

  7. Performance testing of lidar components subjected to exposure in space via MISSE 7 mission

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.

    2012-10-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

  8. Formoterol Oral Inhalation

    MedlinePlus

    ... until you are ready to inhale your dose. Pull off the inhaler cover and twist the mouthpiece open in the direction shown by the arrow on the mouthpiece. Push the buttons on each side to be sure ...

  9. Albuterol Oral Inhalation

    MedlinePlus

    Albuterol is used to prevent and treat difficulty breathing, wheezing, shortness of breath, coughing, and chest tightness ... for oral inhalation is also used to prevent breathing difficulties during exercise. Albuterol inhalation aerosol (Proair HFA, ...

  10. Smoke inhalation injury

    NASA Astrophysics Data System (ADS)

    Birky, M.

    The cause of death by fires was studied. The present results and information are, however, not enough to reduce loss of life or inhalation injury. The magnitude and type of inhalation injury for civilians and firefighters represents the most inadequately defined human element of accidental fires. Little information is available on compounds other than carbon monoxide, which are responsible for respiration injury or toxicological syndrome. Effective treatment methods for inhalation victims and studies on fatalities, inhalation injury and animals are suggested.

  11. Some biotransformation enzymes responsible for polycyclic aromatic hydrocarbon metabolism in rat nasal turbinates: effects on enzyme activities of in vitro modifiers and intraperitoneal and inhalation exposure of rats to inducing agents.

    PubMed

    Bond, J A

    1983-10-01

    Respiratory tract biotransformation of many xenobiotics found in inhaled environmental pollutants is generally considered essential for the mutagenic, carcinogenic, and/or toxic response of lung tissue to these xenobiotics. Typical environmental pollutants contain known carcinogens adsorbed onto particles which can deposit in the nasal pharyngeal region of the respiratory tract. The purpose of this study was to characterize the metabolic capacity of rat nasal tissue. Both oxidative and nonoxidative enzyme activities were investigated which included aryl hydrocarbon hydroxylase (AHH), epoxide hydrolase (EH), uridine 5'-diphosphate-glucuronyltransferase (UDPGT), and glutathione transferase. Specific enzyme activities of AHH, EH, UDPGT, and glutathione transferase were 0.023, 6.4, 20.4, and 24.8 nmol product per mg protein per min, respectively. Benzo(a)pyrene was metabolized by AHH to dihydrodiols, quinones, and phenols in quantities which were about 10 times greater than those reported for rat lung microsomes. Small, but detectable, quantities of benzo(a)pyrene tetrols were also measured in reaction flasks in which rat nasal tissue was incubated with benzo(a)-pyrene. Attempts to increase the microsomal enzyme activities of AHH, EH, and UDPGT by pretreating rats with various inducing agents by both i.p. injection (phenobarbital, 3-methylcholanthrene, Aroclor 1254, and 2,3,7,8-tetrachlorodibenzo-p-dioxine) and inhalation exposure (BaP) resulted in rat nasal monooxygenases only being induced (2-fold) after pretreatment with 2,3,7,8-tetrachlorodibenzo-p-dioxine. Phenobarbital increased enzyme activities of EH and UDPGT by about 50%. These data suggest that rat nasal tissue may contain multiple forms of cytochrome P-450 and of EH and UDPGT. The results from this study support the notion that nasal tissue may be important in determining the metabolic fate of inhaled xenobiotics.

  12. Focus on Inhalants.

    ERIC Educational Resources Information Center

    Challenge: Safe, Disciplines, and Drug-Free Schools, 1994

    1994-01-01

    The use of inhalants is a major health concern among the school-age population. Information presented in this publication dispels the myths about inhalant use and presents common warning signs that alert teachers to a student's use. The short- and long-term effects of inhalant use are described to shed light on the health risks involved. Lesson…

  13. Evaluation of the Tobacco Heating System 2.2. Part 4: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects compared with cigarette smoke.

    PubMed

    Wong, Ee Tsin; Kogel, Ulrike; Veljkovic, Emilija; Martin, Florian; Xiang, Yang; Boue, Stephanie; Vuillaume, Gregory; Leroy, Patrice; Guedj, Emmanuel; Rodrigo, Gregory; Ivanov, Nikolai V; Hoeng, Julia; Peitsch, Manuel C; Vanscheeuwijck, Patrick

    2016-11-30

    The objective of the study was to characterize the toxicity from sub-chronic inhalation of test atmospheres from the candidate modified risk tobacco product (MRTP), Tobacco Heating System version 2.2 (THS2.2), and to compare it with that of the 3R4F reference cigarette. A 90-day nose-only inhalation study on Sprague-Dawley rats was performed, combining classical and systems toxicology approaches. Reduction in respiratory minute volume, degree of lung inflammation, and histopathological findings in the respiratory tract organs were significantly less pronounced in THS2.2-exposed groups compared with 3R4F-exposed groups. Transcriptomics data obtained from nasal epithelium and lung parenchyma showed concentration-dependent differential gene expression following 3R4F exposure that was less pronounced in the THS2.2-exposed groups. Molecular network analysis showed that inflammatory processes were the most affected by 3R4F, while the extent of THS2.2 impact was much lower. Most other toxicological endpoints evaluated did not show exposure-related effects. Where findings were observed, the effects were similar in 3R4F- and THS2.2-exposed animals. In summary, toxicological changes observed in the respiratory tract organs of THS2.2 aerosol-exposed rats were much less pronounced than in 3R4F-exposed rats while other toxicological endpoints either showed no exposure-related effects or were comparable to what was observed in the 3R4F-exposed rats.

  14. The pathological response and fate in the lung and pleura of chrysotile in combination with fine particles compared to amosite asbestos following short-term inhalation exposure: interim results.

    PubMed

    Bernstein, D M; Rogers, R A; Sepulveda, R; Donaldson, K; Schuler, D; Gaering, S; Kunzendorf, P; Chevalier, J; Holm, S E

    2010-09-01

    The pathological response and translocation of a commercial chrysotile product similar to that which was used through the mid-1970s in a joint compound intended for sealing the interface between adjacent wall boards was evaluated in comparison to amosite asbestos. This study was unique in that it presents a combined real-world exposure and was the first study to investigate whether there were differences between chrysotile and amosite asbestos fibers in time course, size distribution, and pathological response in the pleural cavity. Rats were exposed by inhalation 6 h/day for 5 days to either sanded joint compound consisting of both chrysotile fibers and sanded joint compound particles (CSP) or amosite asbestos. Subgroups were examined through 1-year postexposure. No pathological response was observed at any time point in the CSP-exposure group. The long chrysotile fibers (L > 20 microm) cleared rapidly (T(1/2) of 4.5 days) and were not observed in the pleural cavity. In contrast, a rapid inflammatory response occurred in the lung following exposure to amosite resulting in Wagner grade 4 interstitial fibrosis within 28 days. Long amosite fibers had a T(1/2) > 1000 days and were observed in the pleural cavity within 7 days postexposure. By 90 days the long amosite fibers were associated with a marked inflammatory response on the parietal pleural. This study provides support that CSP following inhalation would not initiate an inflammatory response in the lung, and that the chrysotile fibers present do not migrate to, or cause an inflammatory response in the pleural cavity, the site of mesothelioma formation.

  15. Evaluation of a novel inhalation exposure system to determine acute respiratory responses to tobacco and polymer pyrolysate mixtures in Swiss-Webster mice.

    PubMed

    Werley, Michael S; Lee, K Monica; Lemus, Ranulfo

    2009-07-01

    Modern cigarette production processes are highly automated and yield millions of cigarettes per day. The forming cigarette and its components contact many different materials in the production process, some of which may leave minute residues. The potential for small inclusions of non-cigarette materials such as wood, plastic, cardboard and other materials exists from the bulk handling and processing of tobacco, in spite of vigilant workers and numerous online systems designed to keep the tobacco stream clean. Currently, there are no published methods that describe an approach to evaluate the potential toxicological impact of these non-tobacco residues and inclusions on the biological activity from exposure to the complex mixture of tobacco smoke. There are, however, many methods which describe toxicological evaluation approaches for pure materials, particularly synthetic polymers. We used the Deutsche Institute fur Normung (DIN) 53-436 tube furnace and nose-only exposure chamber in combination to conduct pilot studies in Swiss-Webster mice in order to develop a standardized methodology for the evaluation of sensory irritation and other potentially useful biological endpoints for predicting any potential hazards. Sensory and/or pulmonary irritation was assessed based on respiratory function parameters using the ASTM E981-84 method described by Alarie (1966) in mice, exposed to test atmospheres of 100% tobacco pyrolysate or tobacco/polymer pyrolysate mixtures. Other biological evaluations included respiratory function parameters, clinical signs, body weights, bronchoalveolar lavage fluid analysis, carboxyhemoglobin, blood cyanide concentrations and histopathology of the respiratory tract. These pilot studies have demonstrated that such an approach can detect biological changes resulting from exposure to unique tobacco/polymer pyrolysates. Small differences were detected in the sensory irritation responses (respiratory function), activation state of pulmonary

  16. A study to investigate changes in the levels of biomarkers of exposure to selected cigarette smoke constituents in Japanese adult male smokers who switched to a non-combustion inhaler type of tobacco product.

    PubMed

    Miura, Naoki; Yuki, Dai; Minami, Naoki; Kakehi, Aoi; Futamura, Yasuyuki

    2015-04-01

    In a clinical study, changes in 14 biomarkers of exposures (BOEs) from 10 tobacco smoke constituents and mutagens detected by the urine mutagenicity test were investigated using a non-combustion inhaler type of tobacco product (NCIT) by switching from a conventional cigarette. This study was conducted in 80 Japanese healthy adult males with a 4-week residential, controlled, open-label, parallel group design. After randomization, 40 smokers used NCIT with approximately 750 aspirations, other 20 smokers smoked approximately 20 pieces of an assigned 1-mg ISO tar conventional cigarette (CC1) every day. Twenty non-smokers (NS) did not use any tobacco product. Under this study condition, switching from cigarette to NCIT showed significant reduction in all BOEs measured. On day 29, the levels of these BOEs were almost the same as those in the NS group, except BOEs of nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). This suggested that the exposure to 8 constituents and mutagens in the NCIT group was similar to that in the NS group, while the exposure to nicotine was higher. Although the precise exposure level to NNK was not estimated because of the long half-life of its BOE, it would be substantially lower in the NCIT group than in the CC1 group.

  17. Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: A review.

    PubMed

    Cao, Yi; Li, Juan; Liu, Fang; Li, Xiyue; Jiang, Qin; Cheng, Shanshan; Gu, Yuxiu

    2016-09-01

    Nanoparticles (NPs) are increasingly used in food, and the toxicity of NPs following oral exposure should be carefully assessed to ensure the safety. Indeed, a number of studies have shown that oral exposure to NPs, especially solid NPs, may induce toxicological responses both in vivo and in vitro. However, most of the toxicological studies only used NPs for oral exposure, and the potential interaction between NPs and food components in real life was ignored. In this review, we summarized the relevant studies and suggested that the interaction between NPs and food components may exist by that 1) NPs directly affect nutrients absorption through disruption of microvilli or alteration in expression of nutrient transporter genes; 2) food components directly affect NP absorption through physico-chemical modification; 3) the presence of food components affect oxidative stress induced by NPs. All of these interactions may eventually enhance or reduce the toxicological responses induced by NPs following oral exposure. Studies only using NPs for oral exposure may therefore lead to misinterpretation and underestimation/overestimation of toxicity of NPs, and it is necessary to assess the synergistic effects of NPs in a complex system when considering the safety of NPs used in food.

  18. Induction of Food Allergy in Mice by Allergen Inhalation

    DTIC Science & Technology

    2014-10-01

    14. ABSTRACT The purpose of this project is to test the hypothesis that food allergy may develop in response to antigen inhalation. Studies in a...relative timing of antigen ingestion vs. antigen inhalation to lead to food allergy development. We are also testing whether exposure to aerosolized...antigen will reverse or exacerbate established food allergy to that antigen. Studies in year 1 of this project demonstrate that: 1) initial inhalation

  19. Differences in associations between active transportation and built environmental exposures when expressed using different components of individual activity spaces.

    PubMed

    van Heeswijck, Torbjorn; Paquet, Catherine; Kestens, Yan; Thierry, Benoit; Morency, Catherine; Daniel, Mark

    2015-05-01

    This study assessed relationships between built environmental exposures measured within components of individual activity spaces (i.e., travel origins, destinations and paths in-between), and use of active transportation in a metropolitan setting. Individuals (n=37,165) were categorised as using active or sedentary transportation based on travel survey data. Generalised Estimating Equations analysis was used to test relationships with active transportation. Strength and significance of relationships between exposures and active transportation varied for different components of the activity space. Associations were strongest when including travel paths in expression of the built environment. Land use mix and greenness were negatively related to active transportation.

  20. Particle inhalability at low wind speeds.

    PubMed

    Brown, James S

    2005-12-15

    Accurate quantification of the dose delivered by aerosol exposures is essential for estimating the risk of potential adverse health effects. The fraction of airborne particles that can enter the nose or mouth during inhalation is referred to as the inspirable particulate mass fraction. This inhalable fraction is equivalent to delivered dose for particles greater than approximately 25 microm (aerodynamic particle diameter, d(ae)), which deposit completely and almost exclusively in the extrathoracic airways. Particle inhalability at high wind speeds (1-9 m/s) has been well characterized. However, there is a paucity of data describing the inhalability of particles at low wind speeds (< or =0.3 m/s), which are typical of indoor environments. High-wind-speed criteria poorly describe inhalability at low wind speeds. Based on the aspiration efficiencies of blunt and sharp-edged inlets, a function was developed for oral inhalability, P(I(O)), of particles at low wind speeds. This function predicts a slow decline in P(I(O)) from 0.95 at d(ae)= 8 microm, to 0.5 at d(ae) = 74 microm, and 0.1 at d(ae)= 175 microm. Data available from the literature for inhalability at relatively low wind speeds during oral breathing are well described by this logistic function (r(2)= 0.69).

  1. Biomarker Variance Component Estimation for Exposure Surrogate Selection and Toxicokinetic Inference

    EPA Science Inventory

    Biomarkers are useful exposure surrogates given their ability to integrate exposures through all routes and to reflect interindividual differences in toxicokinetic processes. Also, biomarker concentrations tend to vary less than corresponding environmental measurements, making th...

  2. A principal components analysis of the factors effecting personal exposure to air pollution in urban commuters in Dublin, Ireland.

    PubMed

    McNabola, Aonghus; Broderick, Brian M; Gill, Laurence W

    2009-10-01

    Principal component analysis was used to examine air pollution personal exposure data of four urban commuter transport modes for their interrelationships between pollutants and relationships with traffic and meteorological data. Air quality samples of PM2.5 and VOCs were recorded during peak traffic congestion for the car, bus, cyclist and pedestrian between January 2005 and June 2006 on a busy route in Dublin, Ireland. In total, 200 personal exposure samples were recorded each comprising 17 variables describing the personal exposure concentrations, meteorological conditions and traffic conditions. The data reduction technique, principal component analysis (PCA), was used to create weighted linear combinations of the data and these were subsequently examined for interrelationships between the many variables recorded. The results of the PCA found that personal exposure concentrations in non-motorised forms of transport were influenced to a higher degree by wind speed, whereas personal exposure concentrations in motorised forms of transport were influenced to a higher degree by traffic congestion. The findings of the investigation show that the most effective mechanisms of personal exposure reduction differ between motorised and non-motorised modes of commuter transport.

  3. Passive exposure of Earth radiation budget experiment components LDEF experiment AO-147: Post-flight examinations and tests

    NASA Technical Reports Server (NTRS)

    Hickey, John R.

    1991-01-01

    The Passive Exposure of Earth Radiation Budget Experiment Components (PEERBEC) experiment of the Long Duration Exposure Facility (LDEF) mission was composed of sensors and components associated with the measurement of the earth radiation budget (ERB) from satellites. These components included the flight spare sensors from the ERB experiment which operated on Nimbus 6 and 7 satellites. The experiment components and materials as well as the pertinent background and ancillary information necessary for the understanding of the intended mission and the results are described. The extent and timing of the LDEF mission brought the exposure from solar minimum between cycles 21 and 22 through the solar maximum of cycle 22. The orbital decay, coupled with the events of solar maximum, caused the LDEF to be exposed to a broader range of space environmental effects than were anticipated. The mission spanned almost six years concurrent with the 12 year (to date) Nimbus 7 operations. Preliminary information is presented on the following: (1) the changes in transmittance experienced by the interference filters; (2) the results of retesting of the thermopile sensors, which appear to be relatively unaffected by the exposure; and (3) the results of the recalibration of the APEX cavity radiometer. The degradation and recovery of the filters of the Nimbus 7 ERB are also discussed relative to the apparent atomic oxygen cleaning which also applies to the LDEF.

  4. Inferring ultraviolet anatomical exposure patterns while distinguishing the relative contribution of radiation components

    NASA Astrophysics Data System (ADS)

    Vuilleumier, Laurent; Milon, Antoine; Bulliard, Jean-Luc; Moccozet, Laurent; Vernez, David

    2013-05-01

    Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.

  5. Inferring ultraviolet anatomical exposure patterns while distinguishing the relative contribution of radiation components

    SciTech Connect

    Vuilleumier, Laurent; Milon, Antoine; Vernez, David; Bulliard, Jean-Luc; Moccozet, Laurent

    2013-05-10

    Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.

  6. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (Final Report)

    EPA Science Inventory

    EPA has finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. This assessment addresses the potential carcinogenicity from long-term inhalation exposure to ethylene oxide. Now final, this assessment updates the carcinogenicity information in EPA’s 1985 Hea...

  7. IRIS Toxicological Review of Ammonia Noncancer Inhalation (Final Report)

    EPA Science Inventory

    EPA has finalized the Integrated Risk Information System (IRIS) Assessment of Ammonia (Noncancer Inhalation). This assessment addresses the potential noncancer human health effects from long-term inhalation exposure to ammonia. Now final, this assessment will update the ...

  8. Evaluation of the Tobacco Heating System 2.2. Part 6: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of a mentholated version compared with mentholated and non-mentholated cigarette smoke.

    PubMed

    Oviedo, Alberto; Lebrun, Stefan; Kogel, Ulrike; Ho, Jenny; Tan, Wei Teck; Titz, Bjoern; Leroy, Patrice; Vuillaume, Gregory; Bera, Monali; Martin, Florian; Rodrigo, Gregory; Esposito, Marco; Dempsey, Ruth; Ivanov, Nikolai V; Hoeng, Julia; Peitsch, Manuel C; Vanscheeuwijck, Patrick

    2016-11-30

    The toxicity of a mentholated version of the Tobacco Heating System (THS2.2M), a candidate modified risk tobacco product (MRTP), was characterized in a 90-day OECD inhalation study. Differential gene and protein expression analysis of nasal epithelium and lung tissue was also performed to record exposure effects at the molecular level. Rats were exposed to filtered air (sham), to THS2.2M (at 15, 23 and 50 μg nicotine/l), to two mentholated reference cigarettes (MRC) (at 23 μg nicotine/l), or to the 3R4F reference cigarette (at 23 μg nicotine/l). MRCs were designed to meet 3R4F specifications. Test atmosphere analyses demonstrated that aldehydes were reduced by 75%-90% and carbon monoxide by 98% in THS2.2M aerosol compared with MRC smoke; aerosol uptake was confirmed by carboxyhemoglobin and menthol concentrations in blood, and by the quantities of urinary nicotine metabolites. Systemic toxicity and alterations in the respiratory tract were significantly lower in THS2.2M-exposed rats compared with MRC and 3R4F. Pulmonary inflammation and the magnitude of the changes in gene and protein expression were also dramatically lower after THS2.2M exposure compared with MRCs and 3R4F. No menthol-related effects were observed after MRC mainstream smoke-exposure compared with 3R4F.

  9. Hospitalization and Medical Evacuation of Army Personnel Due to Toxic Inhalational Exposure-Operations Iraqi Freedom and Enduring Freedom, 2001 Through Mid 2011

    DTIC Science & Technology

    2012-01-01

    prevalence of self- reported exposure to the smoke and self-reported symp- toms of asthma and bronchitis . That association did not hold when modeled...exposures during military operations is not new, how- ever. In fact, some personnel have received treatment due to environ- mental exposures during...asthma and bronchitis among gulf war veterans. Environ Health Perspect. 2002;110(11):1141-1146. Petruccelli BP, Goldenbaum M, Scott B, et al. 11

  10. IRIS Toxicological Review of Formaldehyde (Inhalation) ...

    EPA Pesticide Factsheets

    UPDATE EPA is currently revising its Integrated Risk Information System (IRIS) assessment of formaldehyde to address the 2011 NAS peer review recommendations. This assessment addresses both noncancer and cancer human health effects that are relevant to assessing the risks from chronic inhalation exposure to formaldehyde. To facilitate discussion of several scientific issues pertinent to the assessment, EPA convened a state-of-the-science workshop on April 30 and May 1, 2014. This workshop focused on the following three themes: Evidence pertaining to the influence of formaldehyde that is produced endogenously (by the body during normal biological processes) on the toxicity of inhaled formaldehyde, and implications for the health assessment; Mechanistic evidence relevant to formaldehyde inhalation exposure and lymphohematopoietic cancers (leukemia and lymphomas); and Epidemiological research examining the potential association between formaldehyde exposure and lymphohematopoietic cancers (leukemia and lymphomas). June 2010: EPA is conducting an independent expert peer review by the National Academy of Sciences and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Formaldehyde-Inhalation that when finalized will appear on the Integrated Risk Information System (IRIS) database. This draft IRIS health assessment addresses both noncancer and cancer human health effects that may result from chronic inhal

  11. Deterioration in brain and heart functions following a single sub-lethal (0.8 LCt50) inhalation exposure of rats to sarin vapor: a putative mechanism of the long term toxicity.

    PubMed

    Allon, N; Chapman, S; Egoz, I; Rabinovitz, I; Kapon, J; Weissman, B A; Yacov, G; Bloch-Shilderman, E; Grauer, E

    2011-05-15

    The main injuries among victims of the terrorist act in the Tokyo subway resulted from sub-lethal inhalation and whole body exposure to sarin vapor. In order to study the long term effects of such exposure and to simulate these conditions, freely moving rats were exposed to sarin vapor (27.2±1.7 μg/l) for 10 min. About 50% of the rats showed no overt symptoms and the rest had mild to moderate clinical symptoms that subsided within 4h following exposure. A reduction of weight was noted during the first 3 days with full recovery on the 4th day. Rat's heart was challenged with epinephrine 1 and 6 months post exposure. A significant reduction in the threshold for epinephrine-induced arrhythmia (EPIA) was noted in rats exposed to sarin. A time dependent increase in the kD and Bmax values of muscarinic auto receptors (M2) was recorded in the rat's cortex and striatum. No changes were recorded in the rats' brain trans locator protein (TSPO) levels, concomitant with no observed changes in the animals' performance in A Morris water maze test. A significant increase in open field activity was noted 6 months following exposure to sarin vapor as well as a significant decrease in prostaglandin E₂ (PGE₂) production in the brain. It is speculated that down regulation of the M2 auto receptor function, caused hyper reactivity of the cholinergic system which leads to the changes described above. The continuous reduction in M2 auto-receptor system through an unknown mechanism may be the cause for long lasting decline in sarin-exposed casualties' health.

  12. Electrical characteristics of single-component ambipolar organic field-effect transistors and effects of air exposure on them

    NASA Astrophysics Data System (ADS)

    Sakanoue, Tomo; Yahiro, Masayuki; Adachi, Chihaya; Takimiya, Kazuo; Toshimitsu, Akio

    2008-05-01

    We investigated the electrical characteristics of single-component ambipolar organic field-effect transistors (OFETs) by controlling the device structure and preparation and the measurement conditions. Six organic semiconductor materials (copper-phthalocyanine, tris-(8-hydroxyquinoline)aluminum (Alq3), alpha-sexithiophene, 4-4'-bis-styrylphenyl, 2,7-diphenyl[1]benzothieno[3,2-b]benzothiophene, or a photopolymerized polydiacethylene derivative (PDA) were used as the active layer, and all were found to transport both holes and electrons. The PDA-based FETs had the highest hole and electron mobilities (0.12 and 0.025 cm2/V s, respectively). We also investigated the effect of air exposure on the OFETs. The hole mobility was barely affected by the exposure while the electron mobility was significantly affected. The threshold voltage for p-channel operation was shifted by the exposure while that for n-channel operation was not, indicating that the hole density in the active layer is increased by air exposure whereas the electron density is independent of air exposure. Furthermore, we prepared an Alq3-based p-channel OFET and investigated the effect of air exposure on it. While its operation was stable in vacuum, air exposure degraded its characteristics. These behaviors indicate that irreversible chemical reactions occur between cationic Alq3 species and oxygen or water molecules.

  13. STIR Version 1.0 User's Guide for Pesticide Inhalation Risk

    EPA Pesticide Factsheets

    STIR estimates inhalation-type exposure based on pesticide-specific information. It also estimates spray droplet exposure using the application method and rate and then compares these exposure estimates to avian and mammalian toxicity data.

  14. [Inhaled therapy in asthma].

    PubMed

    Plaza Moral, Vicente; Giner Donaire, Jordi

    2016-04-01

    Because of its advantages, inhaled administration of aerosolized drugs is the administration route of choice for the treatment of asthma and COPD. Numerous technological advances in the devices used in inhaled therapy in recent decades have boosted the appearance of multiple inhalers and aerosolized drugs. However, this variety also requires that the prescribing physician is aware of their characteristics. The main objective of the present review is to summarize the current state of knowledge on inhalers and inhaled drugs commonly used in the treatment of asthma. The review ranges from theoretical aspects (fundamentals and available devices and drugs) to practical and relevant aspects for asthma care in the clinical setting (therapeutic strategies, education, and adherence to inhalers).

  15. Engineering system for simultaneous inhalation exposures of rodents to fine and ultrafine concentrated ambient particulate matter from a common air source

    EPA Science Inventory

    Exposure to elevated levels of ambient particulate matter (PM) smaller than 2.5 11m (PM2.5) has been associated with adverse health effects in both humans and animals. Specific properties of either fine (0.1-2.5 11m), or ultrafine « 0.1 11m) PM responsible for exposure related he...

  16. Estimating diesel fuel exposure for a plumber repairing an underground pipe.

    PubMed

    Finn, Mary; Stenzel, Mark; Ramachandran, Gurumurthy

    2017-04-01

    We estimated the diesel fuel exposure of a plumber repairing an underground water line leak at a truck stop. The repair work was performed over three days during which the plumber spent most of his time in a pit filled with a mixture of water and diesel fuel. Thus, the plumber was exposed via both the inhalation and dermal routes. While previously asymptomatic, he was diagnosed with acute renal failure 35 days after working at this site. No measurements were available for estimating either inhalation or dermal exposures or the cumulative dose and, therefore, two different approaches were used that were based on simple models of the exposure scenario. The first approach used the ideal gas law with the vapor pressure of the diesel fuel mixture to estimate a saturation vapor concentration, while the second one used a mass balance of the petroleum hydrocarbon component of diesel fuel in conjunction with the Henry's Law constant for this mixture. These inhalation exposure estimates were then adjusted to account for the limited ventilation in a confined space. The inhalation exposure concentrations predicted when handling the water layer alone is much lower than that expected from the organic layer. This case study illustrates the large differences in inhalation exposure associated with volatile organic layers and aqueous solution containing these chemicals. The estimate of dermal exposure was negligible compared to the inhalation exposure because the skin presents a much smaller surface area of exposure to the contaminant compared to the lungs. The methodology presented here is useful for situations where little information is available for more formal mathematical exposure modeling, but where adjustments to the worst-case exposures, estimated simply, can provide reasonable exposure estimates.

  17. Cardio-pulmonary effects of inhaled solvents: computer-assisted measurement and analysis

    SciTech Connect

    Engwall, M.J.

    1986-01-01

    The physiological effects of the inhalation of three solvent vapors were measured on anesthetized dogs. The tested solvents were: acetone, ethanol, and toluene. Measurements of respiratory mechanics, pulmonary and systemic hemodynamics, cardiac output, and gas-exchange were taken while exposing the animals to the vaporized solvents. After the exposures, the animals were terminated and lung tissue and alveolar lining material (ALM) were collected. The ALM was analyzed by high performance liquid chromatography for the amounts of component phospholipids. The tissues were inspected under light microscopy for evidence of acute damage associated with the solvent exposures.

  18. PULMONARY INJURY AND INFLAMMATION FROM REPEATED EXPOSURE TO SOLUBLE COMPONENTS AND SOLID PARTICULATE MATTER (PM)

    EPA Science Inventory

    Pulmonary injury from acute exposures to PM and the role of soluble versus insoluble PM have received considerable attention; however, their long-term impacts are less well understood. This study compared pulmonary injury and inflammatory responses from repeated exposure to solub...

  19. Pneumoconiosis after sericite inhalation

    PubMed Central

    Algranti, E; Handar, A; Dumortier, P; Mendonca, E; Rodrigues, G; Santos, A; Mauad, T; Dolhnikoff, M; De Vuyst, P; Saldiva, P; Bussacos, M

    2005-01-01

    Aims: To investigate and describe the radiological, clinical, and pathological changes in miners and millers exposed to sericite dust with mineralogical characteristics of inhaled dust. Methods: The working premises were visited to examine the sericite processing and to classify the jobs according to make qualitative evaluation. Respirable dust was collected and the amount of crystalline silica and particle size distribution were measured. Forty four workers were examined by a standard questionnaire for respiratory symptoms, spirometry, and chest x ray. Material from an open lung biopsy was reviewed for histopathological and mineralogical analysis, together with sericite samples from the work site to compare the mineral characteristics in lung lesions and work area. Results: Respirable dust contained 4.5–10.0% crystalline silica. Particle size distribution showed a heavy burden of very fine particles (23–55%) with a mean diameter of <0.5 µm. Mean age of sericite miners was 41.0 (11.9) and mean number of years of exposure was 13.5 (10.1). In 52.3% of workers (23/44), chest radiographs presented a median category of 1/0 or above, and 18.2% (8/44) had a reduced FEV1. There was a significant association between exposure indices and x ray category. Histological studies of the lung biopsy showed lesions compatible with mixed dust fibrosis with no silicotic nodules. x Ray diffraction analysis of the lung dust residue and the bulk samples collected from work area showed similar mineralogical characteristics. Muscovite and kaolinite were the major mineral particle inclusions in the lung. Conclusion: Exposure to fine sericite particles is associated with the development of functional and radiological changes in workers inducing mixed dust lesions, which are distinct histologically from silicosis. PMID:15723874

  20. Inhalant allergies in children.

    PubMed

    Mims, James W; Veling, Maria C

    2011-06-01

    Children with chronic or recurrent upper respiratory inflammatory disease (rhinitis) should be considered for inhalant allergies. Risk factors for inhalant allergies in children include a first-degree relative with allergies, food allergy in infancy, and atopic dermatitis. Although inhalant allergies are rare in infancy, inhalant allergies are common in older children and impair quality of life and productivity. Differentiating between viral and allergic rhinitis can be challenging in children, but the child's age, history, and risk factors can provide helpful information. Allergic rhinitis is a risk factor for asthma, and if one is present, medical consideration of the other is warranted.

  1. Inhalant Abuse and Dextromethorphan.

    PubMed

    Storck, Michael; Black, Laura; Liddell, Morgan

    2016-07-01

    Inhalant abuse is the intentional inhalation of a volatile substance for the purpose of achieving an altered mental state. As an important, yet underrecognized form of substance abuse, inhalant abuse crosses all demographic, ethnic, and socioeconomic boundaries, causing significant morbidity and mortality in school-aged and older children. This review presents current perspectives on epidemiology, detection, and clinical challenges of inhalant abuse and offers advice regarding the medical and mental health providers' roles in the prevention and management of this substance abuse problem. Also discussed is the misuse of a specific "over-the-counter" dissociative, dextromethorphan.

  2. Fiber inhalability and head deposition in rats and humans. ...

    EPA Pesticide Factsheets

    Due to their dimensions and long durability, inhaled asbestos fibers clear slowly from lung airways. Retained fibers may injure the epithelium, interact with macrophages, or translocate to the interstitium to result in various respiratory diseases. Therefore, calculations of fiber inhalability, deposition, and retention in respiratory tract regions of both rats and humans are crucial, both to assess the health risk of fiber exposures and to facilitate inferences from rat inhalation studies. Rat inhalation experiments are underway at the EPA and NIEHS. A model of fiber inhalability and initial deposition in the human and rat nasal cavity was developed. Existing models for particles were extended to fibers by replacing particle diameter with an equivalent fiber diameter. Since fiber inhalability into the respiratory tract and deposition in the extra thoracic airways depended mainly on its inertia, equivalent impaction diameters were derived and substituted in expressions for spherical particle diameter to determine fiber inhalability and nasal losses. Fiber impaction diameter depended strongly on its orientation in the air. Highest inhalability was obtained when fibers were aligned perpendicular to the flow streamlines in the inhaled air. However, detailed calculations of fiber transport in slow moving air such as that in the atmosphere and in lung airways showed that fibers stayed primarily aligned (parallel) to the flow. Therefore, for inhalability calculations,

  3. Assessing inhalation injury in the emergency room

    PubMed Central

    Tanizaki, Shinsuke

    2015-01-01

    Respiratory tract injuries caused by inhalation of smoke or chemical products are related to significant morbidity and mortality. While many strategies have been built up to manage cutaneous burn injuries, few logical diagnostic strategies for patients with inhalation injuries exist and almost all treatment is supportive. The goals of initial management are to ensure that the airway allows adequate oxygenation and ventilation and to avoid ventilator-induced lung injury and substances that may complicate subsequent care. Intubation should be considered if any of the following signs exist: respiratory distress, stridor, hypoventilation, use of accessory respiratory muscles, blistering or edema of the oropharynx, or deep burns to the face or neck. Any patients suspected to have inhalation injuries should receive a high concentration of supplemental oxygen to quickly reverse hypoxia and to displace carbon monoxide from protein binding sites. Management of carbon monoxide and cyanide exposure in smoke inhalation patients remains controversial. Absolute indications for hyperbaric oxygen therapy do not exist because there is a low correlation between carboxyhemoglobin levels and the severity of the clinical state. A cyanide antidote should be administered when cyanide poisoning is clinically suspected. Although an ideal approach for respiratory support of patients with inhalation injuries do not exist, it is important that they are supported using techniques that do not further exacerbate respiratory failure. A well-organized strategy for patients with inhalation injury is critical to reduce morbidity and mortality. PMID:27147888

  4. Organizational components and structural features of EPA's new Human Exposure Research Program.

    PubMed

    Akland, G G

    1991-04-01

    Modern technology has brought about a dramatic increase in the production and consumption of man-made chemicals and in their resulting emissions. It is clear that these emissions and their by-products will likely affect our environment and have a health impact on the population exposed to them. Knowledge of exposure is required to document the impact of these emissions on human health. However, measuring, interpreting, and characterizing human exposures are extraordinarily complex processes because exposures may occur by multiple routes, multiple sources, and they are subject to a wide range of temporal, spatial, and source variations often from both anthropogenic and non-anthropogenic sources. The Environmental Protection Agency's approach to exposure research has often been insufficient to understand and mitigate these complex real-word exposures. For example, we do not know the population exposure distributions of most pollutants and the relative contributions of sources to these distributions. Without this knowledge as input into EPA's risk management process, EPA's may not be making the most effective environmental management decisions for reducing human health risks. The Human Exposure Research Program is a direct response to this need to understand how and to what extent humans are exposed to environmental pollutants.

  5. Modeling Deposition of Inhaled Particles

    EPA Science Inventory

    The mathematical modeling of the deposition and distribution of inhaled aerosols within human lungs is an invaluable tool in predicting both the health risks associated with inhaled environmental aerosols and the therapeutic dose delivered by inhaled pharmacological drugs. Howeve...

  6. Photochemical Reaction Altered Cardiac Toxicity of Diesel Exhaust Inhalation

    EPA Science Inventory

    Rationale: Epidemiological studies have indicated an association between urban air pollution exposure and cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of inhaled diesel exhaust and compared with photochemically altered d...

  7. Inhalation of Simulated Smog Affects Cardiac Function in Mice

    EPA Science Inventory

    Rationale: The health effects of individual criteria air pollutants have been well investigated. Little is known about health effects of inhaled multi-pollutant mixtures that more realistically represent environmental exposures. The present study was designed to evaluate the card...

  8. Behavorial effects of subchronic inhalation of toluene in adult rats

    EPA Science Inventory

    Whereas the acute neurobehavioral effects oftoluene are robust and well characterized, evidence for persistent effects ofrepeated exposure to this industrial solvent is less compelling. The present studies sought to determine whether repeated inhalation oftoluene caused persist...

  9. Typewriter correction fluid inhalation: a new substance of abuse.

    PubMed

    Pointer, J

    1982-07-01

    The first known case of inhalation of liquid typewriter correction fluid (TCF) is reported. Respiratory exposure to TCF can produce coma and death. Treatment is mainly supportive. Clinicians should be alerted to this new form of substance abuse.

  10. Airways Hyperresponsiveness Following a Single Inhalation Exposure to Doxorubicin-Induced Heart Failure Prevents Airways Transition Metal-Rich Particulate Matter in Hypertensive Rats

    EPA Science Inventory

    Exposure to particulate matter (PM) air pollution results in airways hyperresponsiveness (AHR), however it also results in adverse cardiovascular effects, particularly in individuals with underlying cardiovascular disease. The impact of pre-existing cardiac deficit on PM-induced ...

  11. Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: an ecological study

    PubMed Central

    Morakinyo, Oyewale Mayowa; Adebowale, Ayo Stephen; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley

    2017-01-01

    Objective To assess the health risks associated with exposure to particulate matter (PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3). Design The study is an ecological study that used the year 2014 hourly ambient pollution data. Setting The study was conducted in an industrial area located in Pretoria West, South Africa. The area accommodates a coal-fired power station, metallurgical industries such as a coke plant and a manganese smelter. Data and method Estimate of possible health risks from exposure to airborne PM10, SO2, NO2, CO and O3 was performed using the US Environmental Protection Agency human health risk assessment framework. A scenario-assessment approach where normal (average exposure) and worst-case (continuous exposure) scenarios were developed for intermediate (24-hour) and chronic (annual) exposure periods for different exposure groups (infants, children, adults). The normal acute (1-hour) exposure to these pollutants was also determined. Outcome measures Presence or absence of adverse health effects from exposure to airborne pollutants. Results Average annual ambient concentration of PM10, NO2 and SO2 recorded was 48.3±43.4, 11.50±11.6 and 18.68±25.4 µg/m3, respectively, whereas the South African National Ambient Air Quality recommended 40, 40 and 50 µg/m3 for PM10, NO2 and SO2, respectively. Exposure to an hour's concentration of NO2, SO2, CO and O3, an 8-hour concentration of CO and O3, and a 24-hour concentration of PM10, NO2 and SO2 will not likely produce adverse effects to sensitive exposed groups. However, infants and children, rather than adults, are more likely to be affected. Moreover, for chronic annual exposure, PM10, NO2 and SO2 posed a health risk to sensitive individuals, with the severity of risk varying across exposed groups. Conclusions Long-term chronic exposure to airborne PM10, NO2 and SO2 pollutants may result in health risks among the study population. PMID:28289048

  12. Assessment of personal exposure to inhalable indoor and outdoor particulate matter for student residents of an academic campus (IIT-Kanpur).

    PubMed

    Devi, J Jai; Gupta, Tarun; Tripathi, S N; Ujinwal, Kamal K

    2009-12-01

    Human exposure to particulate matter can have significant harmful effects on the respiratory and cardiovascular system. These effects vary with number, size, and chemical composition of particulate matter, which vary significantly with space and time. The Indian Institute of Technology-Kanpur (IITK), Kanpur, India, is a relatively clean academic campus in the northwest of a heavily polluted city, Kanpur. The major objectives of the study were to evaluate total exposure of fine and coarse fractions of PM(10) to a typical IITK student resident in different indoor microenvironments within the campus; to evaluate personal exposure to student residents during outdoor trips; and to evaluate personal exposure to a typical student resident carrying out routine activities. In order to account for all the sources of particulate matter exposure, measurements on several different days during the pre-monsoon season were carried out in the most common indoor microenvironments in the campus and during outdoor trips outside the campus. A 15-channel optical particle counter (model 1.108, GRIMM) was used to measure continuous real-time particle size distribution from 0.3 to 20 microm diameter. Using this instrument, exposure for 1 h at different indoor microenvironments was determined. Both the effects of location and activity, which, in turn, account for specific indoor sources and number of occupants, respectively, were carefully evaluated. Re-suspension of particles due to movement of people was found to be a major source of coarse particulate matter exposure. On the other hand, combustion sources led to elevated fine particulate levels. Chalk dust was found to be the major source of fine particulate matter in classrooms. Similar results on other sources of particulate matter are discussed in the paper. To assess the personal average size resolved particulate exposure on a student making a day trip outside the campus, study trips to most common public places in the city in a

  13. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice

    SciTech Connect

    Evans, M.V.; Caldwell, J.C.

    2010-05-01

    Dichloromethane (DCM, methylene chloride) is a lipophilic volatile compound readily absorbed and then metabolized to several metabolites that may lead to chronic toxicity in different target organs. Physiologically based pharmacokinetic (PBPK) models are useful tools for calculation of internal and target organ doses of parent compound and metabolites. PBPK models, coupled with in vivo inhalation gas-uptake data, can be useful to estimate total metabolism. Previously, such an approach was used to make predictions regarding the metabolism and to make subsequent inferences of DCM's mode of action for toxicity. However, current evidence warrants re-examination of this approach. The goal of this work was to examine two different hypotheses for DCM metabolism in mice. One hypothesis describes two metabolic pathways: one involving cytochrome P450 2E1 (CYP2E1) and a second glutathione (GSH). The second metabolic hypothesis describes only one pathway mediated by CYP2E1 that includes multiple binding sites. The results of our analysis show that the in vivo gas-uptake data fit both hypotheses well and the traditional analysis of the chamber concentration data is not sufficient to distinguish between them. Gas-uptake data were re-analyzed by construction of a velocity plot as a function of increasing DCM initial concentration. The velocity (slope) analysis revealed that there are two substantially different phases in velocity, one rate for lower exposures and a different rate for higher exposures. The concept of a 'metabolic switch,' namely that due to conformational changes in the enzyme after one site is occupied - a different metabolic rate is seen - is also consistent with the experimental data. Our analyses raise questions concerning the importance of GSH metabolism for DCM. Recent research results also question the importance of this pathway in the toxicity of DCM. GSH-related DNA adducts were not formed after in vivo DCM exposure in mice and DCM-induced DNA damage has

  14. A survey of occupational exposure to inhalable wood dust among workers in small- and medium-scale wood-processing enterprises in Ethiopia.

    PubMed

    Ayalew, Eyasu; Gebre, Yonas; De Wael, Karolien

    2015-03-01

    A study of wood dust exposure in 20 small- and medium-scale wood-processing enterprises was performed in Ethiopia. Sampling was conducted daily from January to June, 2013 and a total of 360 samples from 113 workers were collected with Institute of Occupational Medicine (IOM) personal samplers. Eight-hour time-weighted average exposure to wood dust ranged from 0.24 to 23.3mg m(-3) with a geometric mean (GM) of 6.82mg m(-3) and a geometric standard deviation of 1.82. Although Ethiopia did not have any defined standard of Occupational Exposure Limit for wood dust exposure, 71% of the measurements exceeded the limit of 5mg m(-3) set by the European Union (EU). Higher than the EU exposure limit was measured while workers perform sanding and sawing activities with a GM of 9.72 and 7.60mg m(-3), respectively. In conclusion, wood workers in the small- and medium-scale enterprises are at a higher risk of developing different respiratory health problems with continuous exposure trends.

  15. LIVE CELL IMAGING OF THE OXIDATIVE EFFECTS OF EXPOSURE TO AN ORGANIC PM COMPONENT

    EPA Science Inventory

    RATIONALE. Exposure to ambient particulate matter (PM) has been associated with adverse health effects, including inflammatory responses in the lung. Diesel exhaust particles (DEP) are a ubiquitous contributor of the fine and ultrafine PM burden in ambient air. Toxicological stud...

  16. Exposure To An Organic PM Component Induces Inflammatory And Adaptive Gene Expression Through Mitochondrial Oxidative Stress

    EPA Science Inventory

    RATIONALE. Exposure to ambient particulate matter (PM) has been associated with adverse health effects including inflammatory responses in the lung. Diesel exhaust particles (DEP) are a ubiquitous contributor to the fine and ultrafine PM burden in ambient air. Toxicological studi...

  17. Comparison of dermal and inhalation routes of entry for organic chemicals

    NASA Technical Reports Server (NTRS)

    Jepson, Gary W.; Mcdougal, James N.; Clewell, Harvey J., III

    1992-01-01

    The quantitative comparison of the chemical concentration inside the body as the result of a dermal exposure versus an inhalation exposure is useful for assessing human health risks and deciding on an appropriate protective posture. In order to describe the relationship between dermal and inhalation routes of exposure, a variety of organic chemicals were evaluated. The types of chemicals chosen for the study were halogenated hydrocarbons, aromatic compounds, non-polar hydrocarbons and inhalation anesthetics. Both dermal and inhalation exposures were conducted in rats and the chemicals were in the form of vapors. Prior to the dermal exposure, rat fur was closely clipped and during the exposure rats were provided fresh breathing air through latex masks. Blood samples were taken during 4-hour exposures and analyzed for the chemical of interest. A physiologically based pharmacokinetic model was used to predict permeability constants (cm/hr) consistent with the observed blood concentrations of the chemical. The ratio of dermal exposure to inhalation exposure required to achieve the same internal dose of chemical was calculated for each test chemical. The calculated ratio in humans ranged from 18 for styrene to 1180 for isoflurane. This methodology can be used to estimate the dermal exposure required to reach the internal dose achieved by a specific inhalation exposure. Such extrapolation is important since allowable exposure standards are often set for inhalation exposures, but occupational exposures may be dermal.

  18. Nonthermal Inhalation Injury.

    DTIC Science & Technology

    1992-01-01

    understand the effects of the various byproducts of combustion on the human body. A thorough knowledge of the physiological mechanisms , relevant...as soon as possible. Overview of Smoke Inhalation Physiology The physiologic mechanisms of injury from smoke inhalation are multiple and complex...to breathe Lower airway obstruction Dyspnea, tachypnea, wheezing, rhonchi, carbonaceous sputum Parenchymal injury Dyspnea, tachypnea, rales Table 1

  19. Inhalation exposure and health risk levels to BTEX and carbonyl compounds of traffic policeman working in the inner city of Bangkok, Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanasiranont, Navaporn; Prueksasit, Tassanee; Morknoy, Daisy

    2017-03-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) and carbonyl compounds (CCs) are recognized traffic-related air pollutants in urban environments and are the focus of this study. In Bangkok, the BTEX and CC concentrations in both ambient air and personal exposure samples were studied during two periods (April-May and August-September 2014) at four different sampling sites around the Pathumwan District (three intersections and one T-junction). Traffic policemen, representing the high-exposure group for these toxic air pollutants, were observed, and the health risk to these workers was evaluated. Toluene was the predominant aromatic compound in the ambient and personal exposure samples. The maximum average ambient concentration of BTEX was 2968.96 μg/m3. Formaldehyde and acetaldehyde were the most abundant CCs at all of the sampling sites, with the greatest mean concentrations of these substances being 21.50 μg/m3 and 64.82 μg/m3, respectively. In the personal exposure samples, the highest levels of BTEX, formaldehyde and acetaldehyde concentrations were 2231.85 μg/m3, 10.61 μg/m3, and 16.03 μg/m3, respectively. In terms of risk assessment, benzene posed the greatest cancer risk (at the 95% CI), followed by toluene, acetaldehyde and formaldehyde (1.15E-02, 5.14E-03, 2.84E-04, and 2.52E-04, respectively). Three risk factors were investigated to reduce the total cancer risk levels: reducing the chemical concentration, exposure time and exposure duration. The use of a mask (chemical concentration) was the best way to reduce the risk to traffic police. However, the risk value of benzene (average 1.57E-05) was still higher than an acceptable value when using a mask.

  20. Inhalants in Peru.

    PubMed

    Lerner, R; Ferrando, D

    1995-01-01

    In Peru, the prevalence and consequences of inhalant abuse appear to be low in the general population and high among marginalized children. Inhalant use ranks third in lifetime prevalence after alcohol and tobacco. Most of the use appears to be infrequent. Among marginalized children, that is, children working in the streets but living at home or children living in the street, the problem of inhalant abuse is a serious problem. Among children working in the streets but living at home, the lifetime prevalence rate for inhalant abuse is high, ranging from 15 to 45 percent depending on the study being cited. For children living in the streets, the use of inhalant is even more severe. As mentioned earlier in this chapter, most of these street children use inhalants on a daily basis. The lack of research on the problem of inhalant abuse is a serious impediment to development of intervention programs and strategies to address this problem in Peru. Epidemiologic and ethnographic research on the nature and extent of inhalant abuse are obvious prerequisites to targeted treatment and preventive intervention programs. The urgent need for current and valid data is underscored by the unique vulnerability of the youthful population at risk and the undisputed harm that results from chronic abuse of inhalants. Nonetheless, it is important to mention several programs that work with street children. Some, such as the Information and Education Center for the Prevention of Drug Abuse, Generation, and Centro Integracion de Menores en Abandono have shelters where street children are offered transition to a less marginal lifestyle. Teams of street educators provide the children with practical solutions and gain their confidence, as well as offer them alternative socialization experiences to help them survive the streets and avoid the often repressive and counterproductive environments typical of many institutions. Most of the children who go through these programs tend to abandon

  1. Preliminary results of accelerated exposure testing of solar cell system components

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples and solar cell sub modules were exposed to an accelerated outdoor environment in Arizona and an accelerated simulated environment in a cyclic ultraviolet exposure tester which included humidity exposure. These tests were for preliminary screening of materials suitable for use in the manufacture of solar cell modules which are to have a 20-year lifetime. The samples were exposed for various times up to six months, equivalent to a real time exposure of four years. Suitable materials were found to be FEP-A, FEP-C, PFA, acrylic, silicone compounds and adhesives and possibly parylene. The method of packaging the sub modules was also found to be important to their performance.

  2. Immediate and long-term effects in the hematopoietic system and the morphology of the respiratory system in experimental animals under chronic combined action of external gamma exposure and inhalation exposure.

    NASA Astrophysics Data System (ADS)

    Tatarkin, Sergey; Moukhamedieva, Lana; Aleksandr, Shafirkin; Barantseva, Maria; Ivanova, Svetlana

    The need to solve hygiene problems valuation of environmental factors in the implementation of the projected manned interplanetary missions, determined the relevance of studying the effect of external gamma-irradiation with inhalation of mixtures of chemicals on the parameters of major critical body systems: hematopoiesis and respiratory (morphological and morphometric parameters) in the short and long periods. The study conducted on 504 male mice F1 (CBA × C57BL6) under chronic fractional gamma-irradiation (within 10 weeks at a total dose 350sGr) and then under inhalation by mixtures of chemicals in low concentrations. Duration of the experiment (124 days) and 90 -day recovery period. Displaying adaptive reorganization in hematopoietic system, which was characterized by a tension of regulatory systems of animals and by a proliferation of bone marrow cells and by dynamic changes in amount of lymphoid cells in peripheral blood, elevated levels of the antioxidant activity of red blood cells, and morphological manifestations of "incomplete recovery " of the spleen, which are retained in the recovery period. Morphological changes in the respiratory organs of animals testified about immunogenesis activation and development of structural changes as a chronic inflammatory process. Increase of fibrous connective tissue in the walls of the trachea, bronchus and lung, against reduction of loose fibrous connective tissue (more pronounced in respiratory parts of the respiratory system) in experimental animals, which may indicate a reduction of the functional reserves of the body and increase the risk of adverse long-term effects.

  3. Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats.

    PubMed

    Gaté, Laurent; Disdier, Clémence; Cosnier, Frédéric; Gagnaire, François; Devoy, Jérôme; Saba, Wadad; Brun, Emilie; Chalansonnet, Monique; Mabondzo, Aloise

    2017-01-04

    The increasing industrial use of nanoparticles (NPs) has raised concerns about their impact on human health. Since aging and exposure to environmental factors are linked to the risk for developing pathologies, we address the question of TiO2 NPs toxicokinetics in the context of a realistic occupational exposure. We report the biodistribution of titanium in healthy young adults (12-13-week-old) and in elderly rats (19-month-old) exposed to 10mg/m(3) of a TiO2 nanostructured aerosol 6h/day, 5days/week for 4 weeks. We measured Ti content in major organs using inductively coupled plasma mass spectrometry immediately and up to 180days after the end of exposure. Large amounts of titanium were initially found in lung which were slowly cleared during the post-exposure period. From day 28, a small increase of Ti was found in the spleen and liver of exposed young adult rats. Such an increase was however never found in their blood, kidneys or brain. In the elderly group, translocation to extra-pulmonary organs was significant at day 90. Ti recovered from the spleen and liver of exposed elderly rats was higher than in exposed young adults. These data suggest that TiO2 NPs may translocate from the lung to extra-pulmonary organs where they could possibly promote systemic health effects.

  4. Health risk assessment of inhalation exposure of irrigation workers and the public to trihalomethanes from reclaimed water in landscape irrigation in Tianjin, North China.

    PubMed

    Wang, Chen-Chen; Niu, Zhi-Guang; Zhang, Ying

    2013-11-15

    To estimate the concentration in air and the cancer risk of irrigation workers and the public exposed to the total trihalomethanes (TTHMs) in reclaimed water used for landscape irrigation, a probabilistic health risk assessment was conducted through the integrated use of one-dimensional (1-D) and two-dimensional (2-D) Monte Carlo simulations. Before the 2-D simulation, a sensitivity analysis corresponding to the 1-D simulation was carried out to identity the factors most affecting the outputs. The results reveal that the TTHM concentration level and cancer risk for workers' exposure is much higher than that for public exposure in landscape irrigation. Moreover, the most influential factors are quite different for workers' exposure and public exposure. The 2-D Monte Carlo risk analysis result for the workers indicated that the lowest-risk, highest-risk and two critical points for irrigation height are 0.7 m, 1.53 m, 1.4m and 1.65 m when the mean value of the risk is selected as the reference statistic for risk management. Based on the risk assessment results, different measures can be suggested for the risk control of different populations. Furthermore, the influential variables should be better characterized to improve the accuracy of health risk assessment.

  5. ASSESSING ASTHMATIC CHILDREN'S EXPOSURES TO TOXIC AIR POLLUTANTS AND THE POTENTIAL INHALED DOSES USING TIME ACTIVITY INFORMATION AND ENERGY EXPENDITURE DATA

    EPA Science Inventory

    Accurately quantifying human exposures and the potential doses of various populations to environmental pollutants is critical for the U.S. Environmental Protection Agency to assess and manage human health risks. The Tampa Asthmatic Children's Study (TACS) was a pilot research stu...

  6. CARDIAC INJURY FROM LONG TERM EPISODIC EXPOSURE TO PARTICULATE MATTER (PM): SOLUBLE COMPONENTS OR SOLID PARTICLES?

    EPA Science Inventory

    Long-term exposure to PM has been associated with cardiac injury in rats. The purpose of this study was to investigate if cardiac injury was due to soluble metals (i.e., zinc), insoluble PM, or pulmonary injury/inflammation. Male Wistar Kyoto rats (n=8) were expose