Accounting for and predicting the influence of spatial autocorrelation in water quality modeling
NASA Astrophysics Data System (ADS)
Miralha, L.; Kim, D.
2017-12-01
Although many studies have attempted to investigate the spatial trends of water quality, more attention is yet to be paid to the consequences of considering and ignoring the spatial autocorrelation (SAC) that exists in water quality parameters. Several studies have mentioned the importance of accounting for SAC in water quality modeling, as well as the differences in outcomes between models that account for and ignore SAC. However, the capacity to predict the magnitude of such differences is still ambiguous. In this study, we hypothesized that SAC inherently possessed by a response variable (i.e., water quality parameter) influences the outcomes of spatial modeling. We evaluated whether the level of inherent SAC is associated with changes in R-Squared, Akaike Information Criterion (AIC), and residual SAC (rSAC), after accounting for SAC during modeling procedure. The main objective was to analyze if water quality parameters with higher Moran's I values (inherent SAC measure) undergo a greater increase in R² and a greater reduction in both AIC and rSAC. We compared a non-spatial model (OLS) to two spatial regression approaches (spatial lag and error models). Predictor variables were the principal components of topographic (elevation and slope), land cover, and hydrological soil group variables. We acquired these data from federal online sources (e.g. USGS). Ten watersheds were selected, each in a different state of the USA. Results revealed that water quality parameters with higher inherent SAC showed substantial increase in R² and decrease in rSAC after performing spatial regressions. However, AIC values did not show significant changes. Overall, the higher the level of inherent SAC in water quality variables, the greater improvement of model performance. This indicates a linear and direct relationship between the spatial model outcomes (R² and rSAC) and the degree of SAC in each water quality variable. Therefore, our study suggests that the inherent level of SAC in response variables can predict improvements in models even before performing spatial regression approaches. We also recognize the constraints of this research and suggest that further studies focus on better ways of defining spatial neighborhoods, considering the differences among stations set in tributaries near to each other and in upstream areas.
NASA Astrophysics Data System (ADS)
Sonam; Jain, Vikrant
2018-03-01
Long profiles of rivers provide a platform to analyse interaction between geological and geomorphic processes operating at different time scales. Identification of an appropriate model for river long profile becomes important in order to establish a quantitative relationship between the profile shape, its geomorphic effectiveness, and inherent geological characteristics. This work highlights the variability in the long profile shape of the Ganga River and its major tributaries, its impact on stream power distribution pattern, and role of the geological controls on it. Long profile shapes are represented by the sum of two exponential functions through the curve fitting method. We have shown that coefficients of river long profile equations are governed by the geological characteristics of subbasins. These equations further define the spatial distribution pattern of stream power and help to understand stream power variability in different geological terrains. Spatial distribution of stream power in different geological terrains successfully explains spatial variability in geomorphic processes within the Himalayan hinterland area. In general, the stream power peaks of larger rivers lie in the Higher Himalaya, and rivers in the eastern hinterland area are characterised by the highest magnitude of stream power.
Soil variability in engineering applications
NASA Astrophysics Data System (ADS)
Vessia, Giovanna
2014-05-01
Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property variability. Can Geotech J, 36(4): 625-639. Terzaghi K. 1943. Theoretical Soil Mechanics. New York: John Wiley and Sons. Turcotte D.L. 1986. Fractals and fragmentation. J Geophys Res, 91: 1921-1926. Vanmarcke E.H. 1977. Probabilistic modeling of soil profiles. J Geotech Eng Div, ASCE, 103: 1227-1246. Vanmarcke E.H. 1983. Random fields: analysis and synthesis. MIT Press, Cambridge.
Brian J. Palik; Robert J. Mitchell; J. Kevin Hiers
2002-01-01
Modeling silviculture after natural disturbance to maintain biodiversity is a popular concept, yet its application remains elusive. We discuss difficulties inherent to this idea, and suggest approaches to facilitate implementation, using longleaf pine (Pinus palustris) as an example. Natural disturbance regimes are spatially and temporally variable. Variability...
Yao, Lei; Chen, Liding; Wei, Wei
2017-01-01
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521
Yao, Lei; Chen, Liding; Wei, Wei
2017-02-28
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.
Eddie L. Shea; Lisa A. Schulte; Brian J. Palik
2017-01-01
Structural complexity is widely recognized as an inherent characteristic of unmanaged forests critical to their function and resilience, but often reduced in their managed counterparts. Variable retention harvesting (VRH) has been proposed as a way to restore or enhance structural complexity in managed forests, and thereby sustain attendant biodiversity and ecosystem...
Dripps, W.R.; Bradbury, K.R.
2010-01-01
Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.
Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling
James A. Thompson; Randall K. Kolka
2005-01-01
Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability...
Section Height Determination Methods of the Isotopographic Surface in a Complex Terrain Relief
ERIC Educational Resources Information Center
Syzdykova, Guldana D.; Kurmankozhaev, Azimhan K.
2016-01-01
A new method for determining the vertical interval of isotopographic surfaces on rugged terrain was developed. The method is based on the concept of determining the differentiated size of the vertical interval using spatial-statistical properties inherent in the modal characteristic, the degree of variability of apical heights and the chosen map…
NASA Astrophysics Data System (ADS)
Mayer, J. M.; Stead, D.
2017-04-01
With the increased drive towards deeper and more complex mine designs, geotechnical engineers are often forced to reconsider traditional deterministic design techniques in favour of probabilistic methods. These alternative techniques allow for the direct quantification of uncertainties within a risk and/or decision analysis framework. However, conventional probabilistic practices typically discretize geological materials into discrete, homogeneous domains, with attributes defined by spatially constant random variables, despite the fact that geological media display inherent heterogeneous spatial characteristics. This research directly simulates this phenomenon using a geostatistical approach, known as sequential Gaussian simulation. The method utilizes the variogram which imposes a degree of controlled spatial heterogeneity on the system. Simulations are constrained using data from the Ok Tedi mine site in Papua New Guinea and designed to randomly vary the geological strength index and uniaxial compressive strength using Monte Carlo techniques. Results suggest that conventional probabilistic techniques have a fundamental limitation compared to geostatistical approaches, as they fail to account for the spatial dependencies inherent to geotechnical datasets. This can result in erroneous model predictions, which are overly conservative when compared to the geostatistical results.
Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C
2015-01-01
Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.
Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol
NASA Astrophysics Data System (ADS)
Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva
2013-04-01
Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.
Nystuen, Jeffrey A; Amitai, Eyal; Anagnostou, Emmanuel N; Anagnostou, Marios N
2008-04-01
An experiment to evaluate the inherent spatial averaging of the underwater acoustic signal from rainfall was conducted in the winter of 2004 in the Ionian Sea southwest of Greece. A mooring with four passive aquatic listeners (PALs) at 60, 200, 1000, and 2000 m was deployed at 36.85 degrees N, 21.52 degrees E, 17 km west of a dual-polarization X-band coastal radar at Methoni, Greece. The acoustic signal is classified into wind, rain, shipping, and whale categories. It is similar at all depths and rainfall is detected at all depths. A signal that is consistent with the clicking of deep-diving beaked whales is present 2% of the time, although there was no visual confirmation of whale presence. Co-detection of rainfall with the radar verifies that the acoustic detection of rainfall is excellent. Once detection is made, the correlation between acoustic and radar rainfall rates is high. Spatial averaging of the radar rainfall rates in concentric circles over the mooring verifies the larger inherent spatial averaging of the rainfall signal with recording depth. For the PAL at 2000 m, the maximum correlation was at 3-4 km, suggesting a listening area for the acoustic rainfall measurement of roughly 30-50 km(2).
NASA Astrophysics Data System (ADS)
Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.
2013-12-01
Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.
Applications of Geostatistics in Plant Nematology
Wallace, M. K.; Hawkins, D. M.
1994-01-01
The application of geostatistics to plant nematology was made by evaluating soil and nematode data acquired from 200 soil samples collected from the Ap horizon of a reed canary-grass field in northern Minnesota. Geostatistical concepts relevant to nematology include semi-variogram modelling, kriging, and change of support calculations. Soil and nematode data generally followed a spherical semi-variogram model, with little random variability associated with soil data and large inherent variability for nematode data. Block kriging of soil and nematode data provided useful contour maps of the data. Change of snpport calculations indicated that most of the random variation in nematode data was due to short-range spatial variability in the nematode population densities. PMID:19279938
Applications of geostatistics in plant nematology.
Wallace, M K; Hawkins, D M
1994-12-01
The application of geostatistics to plant nematology was made by evaluating soil and nematode data acquired from 200 soil samples collected from the A(p) horizon of a reed canary-grass field in northern Minnesota. Geostatistical concepts relevant to nematology include semi-variogram modelling, kriging, and change of support calculations. Soil and nematode data generally followed a spherical semi-variogram model, with little random variability associated with soil data and large inherent variability for nematode data. Block kriging of soil and nematode data provided useful contour maps of the data. Change of snpport calculations indicated that most of the random variation in nematode data was due to short-range spatial variability in the nematode population densities.
NASA Astrophysics Data System (ADS)
WANG, P. T.
2015-12-01
Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.
NASA Astrophysics Data System (ADS)
Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.
2014-12-01
Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2 exchanges.
NASA Astrophysics Data System (ADS)
Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia
2016-08-01
Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.
NASA Astrophysics Data System (ADS)
Larson, T.
2010-12-01
Measuring air pollution concentrations from a moving platform is not a new idea. Historically, however, most information on the spatial variability of air pollutants have been derived from fixed site networks operating simultaneously over space. While this approach has obvious advantages from a regulatory perspective, with the increasing need to understand ever finer scales of spatial variability in urban pollution levels, the use of mobile monitoring to supplement fixed site networks has received increasing attention. Here we present examples of the use of this approach: 1) to assess existing fixed-site fine particle networks in Seattle, WA, including the establishment of new fixed-site monitoring locations; 2) to assess the effectiveness of a regulatory intervention, a wood stove burning ban, on the reduction of fine particle levels in the greater Puget Sound region; and 3) to assess spatial variability of both wood smoke and mobile source impacts in both Vancouver, B.C. and Tacoma, WA. Deducing spatial information from the inherently spatio-temporal measurements taken from a mobile platform is an area that deserves further attention. We discuss the use of “fuzzy” points to address the fine-scale spatio-temporal variability in the concentration of mobile source pollutants, specifically to deduce the broader distribution and sources of fine particle soot in the summer in Vancouver, B.C. We also discuss the use of principal component analysis to assess the spatial variability in multivariate, source-related features deduced from simultaneous measurements of light scattering, light absorption and particle-bound PAHs in Tacoma, WA. With increasing miniaturization and decreasing power requirements of air monitoring instruments, the number of simultaneous measurements that can easily be made from a mobile platform is rapidly increasing. Hopefully the methods used to design mobile monitoring experiments for differing purposes, and the methods used to interpret those measurements will keep pace.
Modeling tree crown dynamics with 3D partial differential equations.
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.
Spatial Inference for Distributed Remote Sensing Data
NASA Astrophysics Data System (ADS)
Braverman, A. J.; Katzfuss, M.; Nguyen, H.
2014-12-01
Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
van Mantgem, P.J.; Schwilk, D.W.
2009-01-01
Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.
Harris, M.S.; Gayes, P.T.; Kindinger, J.L.; Flocks, J.G.; Krantz, D.E.; Donovan, P.
2005-01-01
Coastal landscapes evolve over wide-ranging spatial and temporal scales in response to physical and biological pro-cesses that interact with a wide range of variables. To develop better predictive models for these dynamic areas, we must understand the influence of these variables on coastal morphologies and ultimately how they influence coastal processes. This study defines the influence of geologic framework variability on a classic mixed-energy coastline, and establishes four categorical scales of spatial and temporal influence on the coastal system. The near-surface, geologic framework was delineated using high-resolution seismic profiles, shallow vibracores, detailed geomorphic maps, historical shorelines, aerial photographs, and existing studies, and compared to the long- and short-term development of two coastal compartments near Charleston, South Carolina. Although it is clear that the imprint of a mixed-energy tidal and wave signal (basin-scale) dictates formation of drumstick barriers and that immediate responses to wave climate are dramatic, island size, position, and longer-term dynamics are influenced by a series of inherent, complex near-surface stratigraphic geometries. Major near-surface Tertiary geometries influence inlet placement and drainage development (island-scale) through multiple interglacial cycles and overall channel morphology (local-scale). During the modern marine transgression, the halo of ebb-tidal deltas greatly influence inlet region dynamics, while truncated beach ridges and exposed, differentially erodable Cenozoic deposits in the active system influence historical shoreline dynamics and active shoreface morphologies (blockscale). This study concludes that the mixed-energy imprint of wave and tide theories dominates general coastal morphology, but that underlying stratigraphic influences on the coast provide site-specific, long-standing imprints on coastal evolution.
NASA Astrophysics Data System (ADS)
Naganna, Sujay Raghavendra; Deka, Paresh Chandra
2018-07-01
The hydro-geological properties of streambed together with the hydraulic gradients determine the fluxes of water, energy and solutes between the stream and underlying aquifer system. Dam induced sedimentation affects hyporheic processes and alters substrate pore space geometries in the course of progressive stabilization of the sediment layers. Uncertainty in stream-aquifer interactions arises from the inherent complex-nested flow paths and spatio-temporal variability of streambed hydraulic properties. A detailed field investigation of streambed hydraulic conductivity (Ks) using Guelph Permeameter was carried out in an intermittent stream reach of the Pavanje river basin located in the mountainous, forested tract of western ghats of India. The present study reports the spatial and temporal variability of streambed hydraulic conductivity along the stream reach obstructed by two Vented Dams in sequence. Statistical tests such as Levene's and Welch's t-tests were employed to check for various variability measures. The strength of spatial dependence and the presence of spatial autocorrelation among the streambed Ks samples were tested by using Moran's I statistic. The measures of central tendency and dispersion pointed out reasonable spatial variability in Ks distribution throughout the study reach during two consecutive years 2016 and 2017. The streambed was heterogeneous with regard to hydraulic conductivity distribution with high-Ks zones near the backwater areas of the vented dam and low-Ks zones particularly at the tail water section of vented dams. Dam operational strategies were responsible for seasonal fluctuations in sedimentation and modifications to streambed substrate characteristics (such as porosity, grain size, packing etc.), resulting in heterogeneous streambed Ks profiles. The channel downstream of vented dams contained significantly more cohesive deposits of fine sediment due to the overflow of surplus suspended sediment-laden water at low velocity and pressure head. The statistical test results accept the hypothesis of significant spatial variability of streambed Ks but refuse to accept the temporal variations. The deterministic and geo-statistical approaches of spatial interpolation provided virtuous surface maps of streambed Ks distribution.
Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals
NASA Technical Reports Server (NTRS)
Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel
2014-01-01
To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.
Revilla, Eloy; Wiegand, Thorsten
2008-12-09
The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth-death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.
Optimized growth and reorientation of anisotropic material based on evolution equations
NASA Astrophysics Data System (ADS)
Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus
2018-07-01
Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.
Impulse-variability theory: implications for ballistic, multijoint motor skill performance.
Urbin, M A; Stodden, David F; Fischman, Mark G; Weimar, Wendi H
2011-01-01
Impulse-variability theory (R. A. Schmidt, H. N. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979) accounts for the curvilinear relationship between the magnitude and resulting variability of the muscular forces that influence the success of goal-directed limb movements. The historical roots of impulse-variability theory are reviewed in the 1st part of this article, including the relationship between movement speed and spatial error. The authors then address the relevance of impulse-variability theory for the control of ballistic, multijoint skills, such as throwing, striking, and kicking. These types of skills provide a stark contrast to the relatively simple, minimal degrees of freedom movements that characterized early research. However, the inherent demand for ballistic force generation is a strong parallel between these simple laboratory tasks and multijoint motor skills. Therefore, the authors conclude by recommending experimental procedures for evaluating the adequacy of impulse variability as a theoretical model within the context of ballistic, multijoint motor skill performance. Copyright © Taylor & Francis Group, LLC
NASA Astrophysics Data System (ADS)
Jiang, H.; Lin, T.
2017-12-01
Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.
NASA Astrophysics Data System (ADS)
Wang, L.; Davis, J. L.; Tamisiea, M. E.
2017-12-01
The Antarctic ice sheet (AIS) holds about 60% of all fresh water on the Earth, an amount equivalent to about 58 m of sea-level rise. Observation of AIS mass change is thus essential in determining and predicting its contribution to sea level. While the ice mass loss estimates for West Antarctica (WA) and the Antarctic Peninsula (AP) are in good agreement, what the mass balance over East Antarctica (EA) is, and whether or not it compensates for the mass loss is under debate. Besides the different error sources and sensitivities of different measurement types, complex spatial and temporal variabilities would be another factor complicating the accurate estimation of the AIS mass balance. Therefore, a model that allows for variabilities in both melting rate and seasonal signals would seem appropriate in the estimation of present-day AIS melting. We present a stochastic filter technique, which enables the Bayesian separation of the systematic stripe noise and mass signal in decade-length GRACE monthly gravity series, and allows the estimation of time-variable seasonal and inter-annual components in the signals. One of the primary advantages of this Bayesian method is that it yields statistically rigorous uncertainty estimates reflecting the inherent spatial resolution of the data. By applying the stochastic filter to the decade-long GRACE observations, we present the temporal variabilities of the AIS mass balance at basin scale, particularly over East Antarctica, and decipher the EA mass variations in the past decade, and their role in affecting overall AIS mass balance and sea level.
NASA Astrophysics Data System (ADS)
Musselman, K. N.; Molotch, N. P.; Margulis, S. A.
2012-12-01
Forest architecture dictates sub-canopy solar irradiance and the resulting patterns can vary seasonally and over short spatial distances. These radiation dynamics are thought to have significant implications on snowmelt processes, regional hydrology, and remote sensing signatures. The variability calls into question many assumptions inherent in traditional canopy models (e.g. Beer's Law) when applied at high resolution (i.e. 1 m). We present a method of estimating solar canopy transmissivity using airborne LiDAR data. The canopy structure is represented in 3-D voxel space (i.e. a cubic discretization of a 3-D domain analogous to a pixel representation of a 2-D space). The solar direct beam canopy transmissivity (DBT) is estimated with a ray-tracing algorithm and the diffuse component is estimated from LiDAR-derived effective LAI. Results from one year at five-minute temporal and 1 m spatial resolutions are presented from Sequoia National Park. Compared to estimates from 28 hemispherical photos, the ray-tracing model estimated daily mean DBT with a 10% average error, while the errors from a Beer's-type DBT estimate exceeded 20%. Compared to the ray-tracing estimates, the Beer's-type transmissivity method was unable to resolve complex spatial patterns resulting from canopy gaps, individual tree canopies and boles, and steep variable terrain. The snowmelt model SNOWPACK was applied at locations of ultrasonic snow depth sensors. Two scenarios were tested; 1) a nominal case where canopy model parameters were obtained from hemispherical photographs, and 2) an explicit scenario where the model was modified to accept LiDAR-derived time-variant DBT. The bulk canopy treatment was generally unable to simulate the sub-canopy snowmelt dynamics observed at the depth sensor locations. The explicit treatment reduced error in the snow disappearance date by one week and both positive and negative melt-season SWE biases were reduced. The results highlight the utility of LiDAR canopy measurements and physically based snowmelt models to simulate spatially distributed stand- and slope-scale snowmelt dynamics at resolutions necessary to capture the inherent underlying variability.iDAR-derived solar direct beam canopy transmissivity computed as the daily average for March 1st and May 1st.
Nicol, Samuel; Roach, Jennifer K.; Griffith, Brad
2013-01-01
Over the past 50 years, the number and size of high-latitude lakes have decreased throughout many regions; however, individual lake trends have been variable in direction and magnitude. This spatial heterogeneity in lake change makes statistical detection of temporal trends challenging, particularly in small analysis areas where weak trends are difficult to separate from inter- and intra-annual variability. Factors affecting trend detection include inherent variability, trend magnitude, and sample size. In this paper, we investigated how the statistical power to detect average linear trends in lake size of 0.5, 1.0 and 2.0 %/year was affected by the size of the analysis area and the number of years of monitoring in National Wildlife Refuges in Alaska. We estimated power for large (930–4,560 sq km) study areas within refuges and for 2.6, 12.9, and 25.9 sq km cells nested within study areas over temporal extents of 4–50 years. We found that: (1) trends in study areas could be detected within 5–15 years, (2) trends smaller than 2.0 %/year would take >50 years to detect in cells within study areas, and (3) there was substantial spatial variation in the time required to detect change among cells. Power was particularly low in the smallest cells which typically had the fewest lakes. Because small but ecologically meaningful trends may take decades to detect, early establishment of long-term monitoring will enhance power to detect change. Our results have broad applicability and our method is useful for any study involving change detection among variable spatial and temporal extents.
NASA Astrophysics Data System (ADS)
Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.
2017-12-01
Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Mahanama, Sarith P.
2012-01-01
The inherent soil moisture-evaporation relationships used in today 's land surface models (LSMs) arguably reflect a lot of guesswork given the lack of contemporaneous evaporation and soil moisture observations at the spatial scales represented by regional and global models. The inherent soil moisture-runoff relationships used in the LSMs are also of uncertain accuracy. Evaluating these relationships is difficult but crucial given that they have a major impact on how the land component contributes to hydrological and meteorological variability within the climate system. The relationships, it turns out, can be examined efficiently and effectively with a simple water balance model framework. The simple water balance model, driven with multi-decadal observations covering the conterminous United States, shows how different prescribed relationships lead to different manifestations of hydrological variability, some of which can be compared directly to observations. Through the testing of a wide suite of relationships, the simple model provides estimates for the underlying relationships that operate in nature and that should be operating in LSMs. We examine the relationships currently used in a number of different LSMs in the context of the simple water balance model results and make recommendations for potential first-order improvements to these LSMs.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.
2015-01-01
The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.
NASA Astrophysics Data System (ADS)
Rose, K.; Glosser, D.; Bauer, J. R.; Barkhurst, A.
2015-12-01
The products of spatial analyses that leverage the interpolation of sparse, point data to represent continuous phenomena are often presented without clear explanations of the uncertainty associated with the interpolated values. As a result, there is frequently insufficient information provided to effectively support advanced computational analyses and individual research and policy decisions utilizing these results. This highlights the need for a reliable approach capable of quantitatively producing and communicating spatial data analyses and their inherent uncertainties for a broad range of uses. To address this need, we have developed the Variable Grid Method (VGM), and associated Python tool, which is a flexible approach that can be applied to a variety of analyses and use case scenarios where users need a method to effectively study, evaluate, and analyze spatial trends and patterns while communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations, etc. We will present examples of our research utilizing the VGM to quantify key spatial trends and patterns for subsurface data interpolations and their uncertainties and leverage these results to evaluate storage estimates and potential impacts associated with underground injection for CO2 storage and unconventional resource production and development. The insights provided by these examples identify how the VGM can provide critical information about the relationship between uncertainty and spatial data that is necessary to better support their use in advance computation analyses and informing research, management and policy decisions.
Frank, Richard A; Milestone, Craig B; Rowland, Steve J; Headley, John V; Kavanagh, Richard J; Lengger, Sabine K; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Hewitt, L Mark
2016-10-01
The acid-extractable organic compounds (AEOs), including naphthenic acids (NAs), present within oil sands process-affected water (OSPW) receive great attention due to their known toxicity. While recent progress in advanced separation and analytical methodologies for AEOs has improved our understanding of the composition of these mixtures, little is known regarding any variability (i.e., spatial, temporal) inherent within, or between, tailings ponds. In this study, 5 samples were collected from the same location of one tailings pond over a 2-week period. In addition, 5 samples were collected simultaneously from different locations within a tailings pond from a different mine site, as well as its associated recycling pond. In both cases, the AEOs were analyzed using SFS, ESI-MS, HRMS, GC×GC-ToF/MS, and GC- & LC-QToF/MS (GC analyses following conversion to methyl esters). Principal component analysis of HRMS data was able to distinguish the ponds from each other, while data from GC×GC-ToF/MS, and LC- and GC-QToF/MS were used to differentiate samples from within the temporal and spatial sample sets, with the greater variability associated with the latter. Spatial differences could be attributed to pond dynamics, including differences in inputs of tailings and surface run-off. Application of novel chemometric data analyses of unknown compounds detected by LC- and GC-QToF/MS allowed further differentiation of samples both within and between data sets, providing an innovative approach for future fingerprinting studies. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Jongho; Dwelle, M. Chase; Kampf, Stephanie K.; Fatichi, Simone; Ivanov, Valeriy Y.
2016-06-01
This study advances mechanistic interpretation of predictability challenges in hydro-geomorphology related to the role of soil moisture spatial variability. Using model formulations describing the physics of overland flow, variably saturated subsurface flow, and erosion and sediment transport, this study explores (1) why a basin with the same mean soil moisture can exhibit distinctly different spatial moisture distributions, (2) whether these varying distributions lead to non-unique hydro-geomorphic responses, and (3) what controls non-uniqueness in relation to the response type. Two sets of numerical experiments are carried out with two physically-based models, HYDRUS and tRIBS+VEGGIE+FEaST, and their outputs are analyzed with respect to pre-storm moisture state. The results demonstrate that distinct spatial moisture distributions for the same mean wetness arise because near-surface soil moisture dynamics exhibit different degrees of coupling with deeper-soil moisture and the process of subsurface drainage. The consequences of such variations are different depending on the type of hydrological response. Specifically, if the predominant runoff response is of infiltration excess type, the degree of non-uniqueness is related to the spatial distribution of near-surface moisture. If runoff is governed by subsurface stormflow, the extent of deep moisture contributing area and its "readiness to drain" determine the response characteristics. Because the processes of erosion and sediment transport superimpose additional controls over factors governing runoff generation and overland flow, non-uniqueness of the geomorphic response can be highly dampened or enhanced. The explanation is sediment composed by multi-size particles can alternate states of mobilization or surface shielding and the transient behavior is inherently intertwined with the availability of mobile particles. We conclude that complex nonlinear dynamics of hydro-geomorphic processes are inherent expressions of physical interactions. As complete knowledge of watershed properties, states, or forcings will always present the ultimate, if ever resolvable, challenge, deterministic predictability will remain handicapped. Coupling of uncertainty quantification methods and space-time physics-based approaches will need to evolve to facilitate mechanistic interpretations and informed practical applications.
Pattern detection in stream networks: Quantifying spatialvariability in fish distribution
Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.
2004-01-01
Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.
Schaffrath, David; Bernhofer, Christian
2013-01-01
Grasslands in Inner Mongolia are important for livestock farming while ecosystem functioning and water consumption are dominated by evapotranspiration (ET). In this paper we studied the spatiotemporal distribution and variability of ET and its components in Inner Mongolian grasslands over a period of 10 years, from 2002 to 2011. ET was modelled pixel-wise for more than 3000 1 km(2) pixels with the physically-based hydrological model BROOK90. The model was parameterised from eddy-covariance measurements and daily input was generated from MODIS leaf area index and surface temperatures. Modelled ET was also compared with the ET provided by the MODIS MOD16 ET data. The study showed ET to be highly variable in both time and space in Inner Mongolian grasslands. The mean coefficient of variation of 8-day ET in the study area varied between 25% and 40% and was up to 75% for individual pixels indicating a high innerannual variability of ET. Generally, ET equals or exceeds P during the vegetation period, but high precipitation in 2003 clearly exceeded ET in this year indicating a recharge of soil moisture and groundwater. Despite the high interannual and innerannual variations of spatial ET, the study also showed the existence of an intrinsic long-term spatial pattern of ET distribution, which can be explained partly by altitude and longitude (R(2) = 0.49). In conclusion, the results of this research suggest the development of dynamic and productive rangeland management systems according to the inherent variability of rainfall, productivity and ET in order to restore and protect Inner Mongolian grasslands.
Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros
2012-09-01
Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.
Synaptic connectivity and spatial memory: a topological approach
NASA Astrophysics Data System (ADS)
Milton, Russell; Babichev, Andrey; Dabaghian, Yuri
2015-03-01
In the hippocampus, a network of place cells generates a cognitive map of space, in which each cell is responsive to a particular area of the environment - its place field. The peak response of each cell and the size of each place field have considerable variability. Experimental evidence suggests that place cells encode a topological map of space that serves as a basis of spatial memory and spatial awareness. Using a computational model based on Persistent Homology Theory we demonstrate that if the parameters of the place cells spiking activity fall inside of the physiological range, the network correctly encodes the topological features of the environment. We next introduce parameters of synaptic connectivity into the model and demonstrate that failures in synapses that detect coincident neuronal activity lead to spatial learning deficiencies similar to the ones that are observed in rodent models of neurodegenerative diseases. Moreover, we show that these learning deficiencies may be mitigated by increasing the number of active cells and/or by increasing their firing rate, suggesting the existence of a compensatory mechanism inherent to the cognitive map.
Ji, Lei; Peters, Albert J.
2004-01-01
The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.
Mainhagu, Jon; Morrison, C.; Truex, Michael J.; ...
2014-08-05
A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. Amore » well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.« less
Learning a common dictionary for subject-transfer decoding with resting calibration.
Morioka, Hiroshi; Kanemura, Atsunori; Hirayama, Jun-ichiro; Shikauchi, Manabu; Ogawa, Takeshi; Ikeda, Shigeyuki; Kawanabe, Motoaki; Ishii, Shin
2015-05-01
Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. Copyright © 2015 Elsevier Inc. All rights reserved.
Predicting the spatial extent of liquefaction from geospatial and earthquake specific parameters
Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.; Wald, David J.; Knudsen, Keith L.; Deodatis, George; Ellingwood, Bruce R.; Frangopol, Dan M.
2014-01-01
The spatially extensive damage from the 2010-2011 Christchurch, New Zealand earthquake events are a reminder of the need for liquefaction hazard maps for anticipating damage from future earthquakes. Liquefaction hazard mapping as traditionally relied on detailed geologic mapping and expensive site studies. These traditional techniques are difficult to apply globally for rapid response or loss estimation. We have developed a logistic regression model to predict the probability of liquefaction occurrence in coastal sedimentary areas as a function of simple and globally available geospatial features (e.g., derived from digital elevation models) and standard earthquake-specific intensity data (e.g., peak ground acceleration). Some of the geospatial explanatory variables that we consider are taken from the hydrology community, which has a long tradition of using remotely sensed data as proxies for subsurface parameters. As a result of using high resolution, remotely-sensed, and spatially continuous data as a proxy for important subsurface parameters such as soil density and soil saturation, and by using a probabilistic modeling framework, our liquefaction model inherently includes the natural spatial variability of liquefaction occurrence and provides an estimate of spatial extent of liquefaction for a given earthquake. To provide a quantitative check on how the predicted probabilities relate to spatial extent of liquefaction, we report the frequency of observed liquefaction features within a range of predicted probabilities. The percentage of liquefaction is the areal extent of observed liquefaction within a given probability contour. The regional model and the results show that there is a strong relationship between the predicted probability and the observed percentage of liquefaction. Visual inspection of the probability contours for each event also indicates that the pattern of liquefaction is well represented by the model.
CELL5M: A geospatial database of agricultural indicators for Africa South of the Sahara.
Koo, Jawoo; Cox, Cindy M; Bacou, Melanie; Azzarri, Carlo; Guo, Zhe; Wood-Sichra, Ulrike; Gong, Queenie; You, Liangzhi
2016-01-01
Recent progress in large-scale georeferenced data collection is widening opportunities for combining multi-disciplinary datasets from biophysical to socioeconomic domains, advancing our analytical and modeling capacity. Granular spatial datasets provide critical information necessary for decision makers to identify target areas, assess baseline conditions, prioritize investment options, set goals and targets and monitor impacts. However, key challenges in reconciling data across themes, scales and borders restrict our capacity to produce global and regional maps and time series. This paper provides overview, structure and coverage of CELL5M-an open-access database of geospatial indicators at 5 arc-minute grid resolution-and introduces a range of analytical applications and case-uses. CELL5M covers a wide set of agriculture-relevant domains for all countries in Africa South of the Sahara and supports our understanding of multi-dimensional spatial variability inherent in farming landscapes throughout the region.
Effects of spatial and temporal variability of turbidity on phytoplankton blooms
May, Christine L.; Koseff, Jeffrey R.; Lucas, Lisa; Cloern, James E.; Schoellhamer, David H.
2003-01-01
A central challenge of coastal ecology is sorting out the interacting spatial and temporal components of environmental variability that combine to drive changes in phytoplankton biomass. For 2 decades, we have combined sustained observation and experimentation in South San Francisco Bay (SSFB) with numerical modeling analyses to search for general principles that define phytoplankton population responses to physical dynamics characteristic of shallow, nutrient-rich coastal waters having complex bathymetry and influenced by tides, wind and river flow. This study is the latest contribution where we investigate light-limited phytoplankton growth using a numerical model, by modeling turbidity as a function of suspended sediment concentrations (SSC). The goal was to explore the sensitivity of estuarine phytoplankton dynamics to spatial and temporal variations in turbidity, and to synthesize outcomes of simulation experiments into a new conceptual framework for defining the combinations of physical-biological forcings that promote or preclude development of phytoplankton blooms in coastal ecosystems. The 3 main conclusions of this study are: (1) The timing of the wind with semidiurnal tides and the spring-neap cycle can significantly enhance spring-neap variability in turbidity and phytoplankton biomass; (2) Fetch is a significant factor potentially affecting phytoplankton dynamics by enhancing and/or creating spatial variability in turbidity; and (3) It is possible to parameterize the combined effect of the processes influencing turbidity‹and thus affecting potential phytoplankton bloom development‹with 2 indices for vertical and horizontal clearing of the water column. Our conceptual framework is built around these 2 indices, providing a means to determine under what conditions a phytoplankton bloom can occur, and whether a potential bloom is only locally supported or system-wide in scale. This conceptual framework provides a tool for exploring the inherent light climate attributes of shallow estuarine ecosystems and helps determine susceptibility to the harmful effects of nutrient enrichment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yan; Piao, Shilong; Huang, Mengtian
Our aim is to investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUE t) and transpiration-based inherent water-use efficiency (IWUE t). LocationGlobal terrestrial ecosystems. We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6g C m -2mm -1 lowermore » than the simulations from four process-based models (2.0 ± 0.3g C m -2mm -1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50 degrees N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUE t shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUE t, the product of WUE t and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. In conclusion, WUE, WUE t and IWUE t produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.« less
A hierarchical spatial model of avian abundance with application to Cerulean Warblers
Thogmartin, Wayne E.; Sauer, John R.; Knutson, Melinda G.
2004-01-01
Surveys collecting count data are the primary means by which abundance is indexed for birds. These counts are confounded, however, by nuisance effects including observer effects and spatial correlation between counts. Current methods poorly accommodate both observer and spatial effects because modeling these spatially autocorrelated counts within a hierarchical framework is not practical using standard statistical approaches. We propose a Bayesian approach to this problem and provide as an example of its implementation a spatial model of predicted abundance for the Cerulean Warbler (Dendroica cerulea) in the Prairie-Hardwood Transition of the upper midwestern United States. We used an overdispersed Poisson regression with fixed and random effects, fitted by Markov chain Monte Carlo methods. We used 21 years of North American Breeding Bird Survey counts as the response in a loglinear function of explanatory variables describing habitat, spatial relatedness, year effects, and observer effects. The model included a conditional autoregressive term representing potential correlation between adjacent route counts. Categories of explanatory habitat variables in the model included land cover composition and configuration, climate, terrain heterogeneity, and human influence. The inherent hierarchy in the model was from counts occurring, in part, as a function of observers within survey routes within years. We found that the percentage of forested wetlands, an index of wetness potential, and an interaction between mean annual precipitation and deciduous forest patch size best described Cerulean Warbler abundance. Based on a map of relative abundance derived from the posterior parameter estimates, we estimated that only 15% of the species' population occurred on federal land, necessitating active engagement of public landowners and state agencies in the conservation of the breeding habitat for this species. Models of this type can be applied to any data in which the response is counts, such as animal counts, activity (e.g.,nest) counts, or species richness. The most noteworthy practical application of this spatial modeling approach is the ability to map relative species abundance. The functional relationships that we elucidated for the Cerulean Warbler provide a basis for the development of management programs and may serve to focus management and monitoring on areas and habitat variables important to Cerulean Warblers.
Sun, Yan; Piao, Shilong; Huang, Mengtian; ...
2015-12-23
Our aim is to investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUE t) and transpiration-based inherent water-use efficiency (IWUE t). LocationGlobal terrestrial ecosystems. We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6g C m -2mm -1 lowermore » than the simulations from four process-based models (2.0 ± 0.3g C m -2mm -1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50 degrees N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUE t shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUE t, the product of WUE t and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. In conclusion, WUE, WUE t and IWUE t produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carle, S F
Compositional data are represented as vector variables with individual vector components ranging between zero and a positive maximum value representing a constant sum constraint, usually unity (or 100 percent). The earth sciences are flooded with spatial distributions of compositional data, such as concentrations of major ion constituents in natural waters (e.g. mole, mass, or volume fractions), mineral percentages, ore grades, or proportions of mutually exclusive categories (e.g. a water-oil-rock system). While geostatistical techniques have become popular in earth science applications since the 1970s, very little attention has been paid to the unique mathematical properties of geostatistical formulations involving compositional variables.more » The book 'Geostatistical Analysis of Compositional Data' by Vera Pawlowsky-Glahn and Ricardo Olea (Oxford University Press, 2004), unlike any previous book on geostatistics, directly confronts the mathematical difficulties inherent to applying geostatistics to compositional variables. The book righteously justifies itself with prodigious referencing to previous work addressing nonsensical ranges of estimated values and error, spurious correlation, and singular cross-covariance matrices.« less
Unleashing spatially distributed ecohydrology modeling using Big Data tools
NASA Astrophysics Data System (ADS)
Miles, B.; Idaszak, R.
2015-12-01
Physically based spatially distributed ecohydrology models are useful for answering science and management questions related to the hydrology and biogeochemistry of prairie, savanna, forested, as well as urbanized ecosystems. However, these models can produce hundreds of gigabytes of spatial output for a single model run over decadal time scales when run at regional spatial scales and moderate spatial resolutions (~100-km2+ at 30-m spatial resolution) or when run for small watersheds at high spatial resolutions (~1-km2 at 3-m spatial resolution). Numerical data formats such as HDF5 can store arbitrarily large datasets. However even in HPC environments, there are practical limits on the size of single files that can be stored and reliably backed up. Even when such large datasets can be stored, querying and analyzing these data can suffer from poor performance due to memory limitations and I/O bottlenecks, for example on single workstations where memory and bandwidth are limited, or in HPC environments where data are stored separately from computational nodes. The difficulty of storing and analyzing spatial data from ecohydrology models limits our ability to harness these powerful tools. Big Data tools such as distributed databases have the potential to surmount the data storage and analysis challenges inherent to large spatial datasets. Distributed databases solve these problems by storing data close to computational nodes while enabling horizontal scalability and fault tolerance. Here we present the architecture of and preliminary results from PatchDB, a distributed datastore for managing spatial output from the Regional Hydro-Ecological Simulation System (RHESSys). The initial version of PatchDB uses message queueing to asynchronously write RHESSys model output to an Apache Cassandra cluster. Once stored in the cluster, these data can be efficiently queried to quickly produce both spatial visualizations for a particular variable (e.g. maps and animations), as well as point time series of arbitrary variables at arbitrary points in space within a watershed or river basin. By treating ecohydrology modeling as a Big Data problem, we hope to provide a platform for answering transformative science and management questions related to water quantity and quality in a world of non-stationary climate.
Annual economic impacts of seasonal influenza on US counties: Spatial heterogeneity and patterns
2012-01-01
Economic impacts of seasonal influenza vary across US counties, but little estimation has been conducted at the county level. This research computed annual economic costs of seasonal influenza for 3143 US counties based on Census 2010, identified inherent spatial patterns, and investigated cost-benefits of vaccination strategies. The computing model modified existing methods for national level estimation, and further emphasized spatial variations between counties, in terms of population size, age structure, influenza activity, and income level. Upon such a model, four vaccination strategies that prioritize different types of counties were simulated and their net returns were examined. The results indicate that the annual economic costs of influenza varied from $13.9 thousand to $957.5 million across US counties, with a median of $2.47 million. Prioritizing vaccines to counties with high influenza attack rates produces the lowest influenza cases and highest net returns. This research fills the current knowledge gap by downscaling the estimation to a county level, and adds spatial variability into studies of influenza economics and interventions. Compared to the national estimates, the presented statistics and maps will offer detailed guidance for local health agencies to fight against influenza. PMID:22594494
Aoki, Kenichi; Feldman, Marcus W.
2013-01-01
The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change – coevolutionary, two-timescale, and information decay – are compared and shown to sometimes yield contradictory results. The so-called Rogers’ paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers’ paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. PMID:24211681
Aoki, Kenichi; Feldman, Marcus W
2014-02-01
The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change--coevolutionary, two-timescale, and information decay--are compared and shown to sometimes yield contradictory results. The so-called Rogers' paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers' paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ardanuy, Phillip E.; Hucek, Richard R.; Groveman, Brian S.; Kyle, H. Lee
1987-01-01
A deconvolution technique is employed that permits recovery of daily averaged earth radiation budget (ERB) parameters at the top of the atmosphere from a set of the Nimbus 7 ERB wide field of view (WFOV) measurements. Improvements in both the spatial resolution of the resultant fields and in the fidelity of the time averages is obtained. The algorithm is evaluated on a set of months during the period 1980-1983. The albedo, outgoing long-wave radiation, and net radiation parameters are analyzed. The amplitude and phase of the quasi-stationary patterns that appear in the spatially deconvolved fields describe the radiation budget components for 'normal' as well as the El Nino/Southern Oscillation (ENSO) episode years. They delineate the seasonal development of large-scale features inherent in the earth's radiation budget as well as the natural variability of interannual differences. These features are underscored by the powerful emergence of the 1982-1983 ENSO event in the fields displayed. The conclusion is that with this type of resolution enhancement, WFOV radiometers provide a useful tool for the observation of the contemporary climate and its variability.
Social vulnerability and climate variability in southern Brazil: a TerraPop case study
NASA Astrophysics Data System (ADS)
Adamo, S. B.; Fitch, C. A.; Kugler, T.; Doxsey-Whitfield, E.
2014-12-01
Climate variability is an inherent characteristic of the Earth's climate, including but not limited to climate change. It affects and impacts human society in different ways, depending on the underlying socioeconomic vulnerability of specific places, social groups, households and individuals. This differential vulnerability presents spatial and temporal variations, and is rooted in historical patterns of development and relations between human and ecological systems. This study aims to assess the impact of climate variability on livelihoods and well-being, as well as their changes over time and across space, and for rural and urban populations. The geographic focus is Southern Brazil-the states of Parana, Santa Catarina and Rio Grande do Sul-- and the objectives include (a) to identify and map critical areas or hotspots of exposure to climate variability (temperature and precipitation), and (b) to identify internal variation or differential vulnerability within these areas and its evolution over time (1980-2010), using newly available integrated data from the Terra Populus project. These data include geo-referenced climate and agricultural data, and data describing demographic and socioeconomic characteristics of individuals, households and places.
Lee, Steven R.; Berlow, Eric L.; Ostoja, Steven M.; Brooks, Matthew L.; Génin, Alexandre; Matchett, John R.; Hart, Stephen C.
2017-01-01
We evaluated the influence of pack stock (i.e., horse and mule) use on meadow plant communities in Sequoia and Yosemite National Parks in the Sierra Nevada of California. Meadows were sampled to account for inherent variability across multiple scales by: 1) controlling for among-meadow variability by using remotely sensed hydro-climatic and geospatial data to pair stock use meadows with similar non-stock (reference) sites, 2) accounting for within-meadow variation in the local hydrology using in-situ soil moisture readings, and 3) incorporating variation in stock use intensity by sampling across the entire available gradient of pack stock use. Increased cover of bare ground was detected only within “dry” meadow areas at the two most heavily used pack stock meadows (maximum animals per night per hectare). There was no difference in plant community composition for any level of soil moisture or pack stock use. Increased local-scale spatial variability in plant community composition (species dispersion) was detected in “wet” meadow areas at the two most heavily used meadows. These results suggest that at the meadow scale, plant communities are generally resistant to the contemporary levels of recreational pack stock use. However, finer-scale within-meadow responses such as increased bare ground or spatial variability in the plant community can be a function of local-scale hydrological conditions. Wilderness managers can improve monitoring of disturbance in Sierra Nevada meadows by adopting multiple plant community indices while simultaneously considering local moisture regimes.
Eddy-driven low-frequency variability: physics and observability through altimetry
NASA Astrophysics Data System (ADS)
Penduff, Thierry; Sérazin, Guillaume; Arbic, Brian; Mueller, Malte; Richman, James G.; Shriver, Jay F.; Morten, Andrew J.; Scott, Robert B.
2015-04-01
Model studies have revealed the propensity of the eddying ocean circulation to generate strong low-frequency variability (LFV) intrinsically, i.e. without low-frequency atmospheric variability. In the present study, gridded satellite altimeter products, idealized quasi-geostrophic (QG) turbulent simulations, and realistic high-resolution global ocean simulations are used to study the spontaneous tendency of mesoscale (relatively high frequency and high wavenumber) kinetic energy to non-linearly cascade towards larger time and space scales. The QG model reveals that large-scale variability, arising from the well-known spatial inverse cascade, is associated with low frequencies. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing (by large-scale shear) and friction playing secondary roles. In realistic simulations, nonlinearities also generally drive kinetic energy to low frequencies and low wavenumbers. In some, but not all, regions of the gridded altimeter product, surface kinetic energy is also found to cascade toward low frequencies. Exercises conducted with the realistic model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies seen in some regions between the direction of frequency cascade in models versus gridded altimeter maps. Finally, the range of frequencies that are highly energized and engaged these cascades appears much greater than the range of highly energized and engaged wavenumbers. Global eddying simulations, performed in the context of the CHAOCEAN project in collaboration with the CAREER project, provide estimates of the range of timescales that these oceanic nonlinearities are likely to feed without external variability.
Climate-based archetypes for the environmental fate assessment of chemicals.
Ciuffo, Biagio; Sala, Serenella
2013-11-15
Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits that influence their spatial variability. This hypothesis was tested by comparing the variability of the output of MAPPE for four different climatic zones on four different continents for four different chemicals (which represent different combinations of physical and chemical properties). Results showed the high suitability of climate-based archetypes in assessing the impacts of chemicals released in air. However, further research work is still necessary to test these findings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dissociable effects of practice variability on learning motor and timing skills.
Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline
2018-01-01
Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a dissociable effect of practice variability on learning complex skills that involve both motor and timing constraints.
Dynamic and Inherent B0 Correction for DTI Using Stimulated Echo Spiral Imaging
Avram, Alexandru V.; Guidon, Arnaud; Truong, Trong-Kha; Liu, Chunlei; Song, Allen W.
2013-01-01
Purpose To present a novel technique for high-resolution stimulated echo (STE) diffusion tensor imaging (DTI) with self-navigated interleaved spirals (SNAILS) readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware instabilities. Methods The Hahn spin echo formed by the first two 90° radio-frequency pulses is balanced to consecutively acquire two additional images with different echo times (TE) and generate an inherent field map, while the diffusion-prepared STE signal remains unaffected. For every diffusion-encoding direction, an intrinsically registered field map is estimated dynamically and used to effectively and inherently correct for off-resonance artifacts in the reconstruction of the corresponding diffusion-weighted image (DWI). Results After correction with the dynamically acquired field maps, local blurring artifacts are specifically removed from individual STE DWIs and the estimated diffusion tensors have significantly improved spatial accuracy and larger fractional anisotropy. Conclusion Combined with the SNAILS acquisition scheme, our new method provides an integrated high-resolution short-TE DTI solution with inherent and dynamic correction for both motion-induced phase errors and off-resonance effects. PMID:23630029
NASA Astrophysics Data System (ADS)
Ammann, Christof; Voglmeier, Karl; Jocher, Markus
2017-04-01
Grazed pastures are considered as strong sources of the greenhouse gas nitrous oxide (N2O) with local hot-spots resulting from the uneven spatial distribution of the excretion of the grazing animals. Especially urine patches can result in a high local nitrogen (N) surplus, which can cause large deviations from average soil conditions. The strong spatial and temporal variability of the gaseous emissions represents an inherent problem for the quantification, interpretation and modelling. Micrometeorological methods integrating over a larger domain like the eddy covariance method are well suited to quantify the integrated ecosystem emissions of N2O. In contrast, chamber methods are more useful to investigate specific underlying processes and their dependences on driving parameters. We present results of a pasture experiment in western Switzerland where eddy covariance and chamber measurements of N2O fluxes have been performed using a very sensitive and fast response quantum cascade laser (QCL) instrument. Small scale emissions of N2O from dung and urine patches as well as from other "background" pasture surface areas were quantified using an optimized 'fast-box' chamber system. Variable and partly high N2O emissions of the pasture were observed during all seasons. Beside management factors (grazing phases, fertiliser application), temperature and soil moisture showed a large effect on the fluxes. Fresh urine patches from grazing cows were found to be main emission sources and their temporal dynamics was studied in detail. We present a first approach to up-scale the chamber measurements to the field-scale and compare the results with the eddy covariance measurements.
Long range stress correlations in the inherent structures of liquids at rest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Sadrul; Abraham, Sneha; Hudson, Toby
2016-03-28
Simulation studies of the atomic shear stress in the local potential energy minima (inherent structures) are reported for binary liquid mixtures in 2D and 3D. These inherent structure stresses are fundamental to slow stress relaxation and high viscosity in supercooled liquids. We find that the atomic shear stress in the inherent structures (IS’s) of both liquids at rest exhibits slowly decaying anisotropic correlations. We show that the stress correlations contribute significantly to the variance of the total shear stress of the IS configurations and consider the origins of the anisotropy and spatial extent of the stress correlations.
Attribution of soil information associated with modeling background clutter
NASA Astrophysics Data System (ADS)
Mason, George; Melloh, Rae
2006-05-01
This paper examines the attribution of data fields required to generate high resolution soil profiles for support of Computational Test Bed (CTB) used for countermine research. The countermine computational test bed is designed to realistically simulate the geo-environment to support the evaluation of sensors used to locate unexploded ordnance. The goal of the CTB is to derive expected moisture, chemical compounds, and measure heat migration over time, from which we expect to optimize sensor performance. Several tests areas were considered for the collection of soils data to populate the CTB. Collection of bulk soil properties has inherent spatial resolution limits. Novel techniques are therefore required to populate a high resolution model. This paper presents correlations between spatial variability in texture as related to hydraulic permeability and heat transfer properties of the soil. The extracted physical properties are used to exercise models providing a signature of subsurface media and support the simulation of detection by various sensors of buried and surface ordnance.
Berlow, Eric L.; Ostoja, Steven M.; Brooks, Matthew L.; Génin, Alexandre; Matchett, John R.; Hart, Stephen C.
2017-01-01
We evaluated the influence of pack stock (i.e., horse and mule) use on meadow plant communities in Sequoia and Yosemite National Parks in the Sierra Nevada of California. Meadows were sampled to account for inherent variability across multiple scales by: 1) controlling for among-meadow variability by using remotely sensed hydro-climatic and geospatial data to pair stock use meadows with similar non-stock (reference) sites, 2) accounting for within-meadow variation in the local hydrology using in-situ soil moisture readings, and 3) incorporating variation in stock use intensity by sampling across the entire available gradient of pack stock use. Increased cover of bare ground was detected only within “dry” meadow areas at the two most heavily used pack stock meadows (maximum animals per night per hectare). There was no difference in plant community composition for any level of soil moisture or pack stock use. Increased local-scale spatial variability in plant community composition (species dispersion) was detected in “wet” meadow areas at the two most heavily used meadows. These results suggest that at the meadow scale, plant communities are generally resistant to the contemporary levels of recreational pack stock use. However, finer-scale within-meadow responses such as increased bare ground or spatial variability in the plant community can be a function of local-scale hydrological conditions. Wilderness managers can improve monitoring of disturbance in Sierra Nevada meadows by adopting multiple plant community indices while simultaneously considering local moisture regimes. PMID:28609464
Geographic information system-based spatial analysis of sawmill wood procurement
Nathaniel M. Anderson; Rene H. Germain; Eddie Bevilacqua
2011-01-01
In the sawmill sector of the forest products industry, the clustering of mills and wide variation in forest stocking and ownership result in sawlog markets that are complex and spatially differentiated. Despite the inherent spatial attributes of markets for stumpage and logs, few studies have used geospatial methods to examine wood procurement in detail across...
The natural neighbor series manuals and source codes
NASA Astrophysics Data System (ADS)
Watson, Dave
1999-05-01
This software series is concerned with reconstruction of spatial functions by interpolating a set of discrete observations having two or three independent variables. There are three components in this series: (1) nngridr: an implementation of natural neighbor interpolation, 1994, (2) modemap: an implementation of natural neighbor interpolation on the sphere, 1998 and (3) orebody: an implementation of natural neighbor isosurface generation (publication incomplete). Interpolation is important to geologists because it can offer graphical insights into significant geological structure and behavior, which, although inherent in the data, may not be otherwise apparent. It also is the first step in numerical integration, which provides a primary avenue to detailed quantification of the observed spatial function. Interpolation is implemented by selecting a surface-generating rule that controls the form of a `bridge' built across the interstices between adjacent observations. The cataloging and classification of the many such rules that have been reported is a subject in itself ( Watson, 1992), and the merits of various approaches have been debated at length. However, for practical purposes, interpolation methods are usually judged on how satisfactorily they handle problematic data sets. Sparse scattered data or traverse data, especially if the functional values are highly variable, generally tests interpolation methods most severely; but one method, natural neighbor interpolation, usually does produce preferable results for such data.
Longo, Alessia; Federolf, Peter; Haid, Thomas; Meulenbroek, Ruud
2018-06-01
In many daily jobs, repetitive arm movements are performed for extended periods of time under continuous cognitive demands. Even highly monotonous tasks exhibit an inherent motor variability and subtle fluctuations in movement stability. Variability and stability are different aspects of system dynamics, whose magnitude may be further affected by a cognitive load. Thus, the aim of the study was to explore and compare the effects of a cognitive dual task on the variability and local dynamic stability in a repetitive bimanual task. Thirteen healthy volunteers performed the repetitive motor task with and without a concurrent cognitive task of counting aloud backwards in multiples of three. Upper-body 3D kinematics were collected and postural reconfigurations-the variability related to the volunteer's postural change-were determined through a principal component analysis-based procedure. Subsequently, the most salient component was selected for the analysis of (1) cycle-to-cycle spatial and temporal variability, and (2) local dynamic stability as reflected by the largest Lyapunov exponent. Finally, end-point variability was evaluated as a control measure. The dual cognitive task proved to increase the temporal variability and reduce the local dynamic stability, marginally decrease endpoint variability, and substantially lower the incidence of postural reconfigurations. Particularly, the latter effect is considered to be relevant for the prevention of work-related musculoskeletal disorders since reduced variability in sustained repetitive tasks might increase the risk of overuse injuries.
Some Remarks on Navajo Geometry and Piagetian Genetic Theory.
ERIC Educational Resources Information Center
Pinxten, Rik
1991-01-01
Examines aspects of Navajo cosmology relevant to understanding Navajo spatial representations. Compares Navajo children's spatial knowledge with Piaget's findings about the development of geometric concepts in Swiss children. Describes classroom activities whereby Navajo children explore the geometry inherent in their cultural and physical…
A metadata template for ocean acidification data
NASA Astrophysics Data System (ADS)
Jiang, L.
2014-12-01
Metadata is structured information that describes, explains, and locates an information resource (e.g., data). It is often coarsely described as data about data, and documents information such as what was measured, by whom, when, where, and how it was sampled, analyzed, with what instruments. Metadata is inherent to ensure the survivability and accessibility of the data into the future. With the rapid expansion of biological response ocean acidification (OA) studies, the lack of a common metadata template to document such type of data has become a significant gap for ocean acidification data management efforts. In this paper, we present a metadata template that can be applied to a broad spectrum of OA studies, including those studying the biological responses of organisms on ocean acidification. The "variable metadata section", which includes the variable name, observation type, whether the variable is a manipulation condition or response variable, and the biological subject on which the variable is studied, forms the core of this metadata template. Additional metadata elements, such as principal investigators, temporal and spatial coverage, platforms for the sampling, data citation are essential components to complete the template. We explain the structure of the template, and define many metadata elements that may be unfamiliar to researchers. For that reason, this paper can serve as a user's manual for the template.
Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales.
Lantschner, M Victoria; Corley, Juan C
2015-01-01
Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.
Soil internal drainage: temporal stability and spatial variability in succession bean-black oat
NASA Astrophysics Data System (ADS)
Salvador, M. M. S.; Libardi, P. L.; Moreira, N. B.; Sousa, H. H. F.; Neiverth, C. A.
2012-04-01
There are a variety of studies considering the soil water content, but those who consider the flow of water, which are translated by deep drainage and capillary rise are scarce, especially those who assess their spatio-temporal variability, due to its laborious obtaining. Large areas have been considered homogeneous, but show considerable spatial variability inherent in the soil, causing the appearance of zones of distinct physical properties. In deep, sandy soils where the groundwater level is far below the root zone of interference, internal drainage is one of the factors limiting the supply of water to the soil surface, and possibly one of the biggest factors that determines what kinds satisfactory development of plants present in a given landscape. The forms of relief may also be indicators of changes in soil properties, because this variability is caused by small changes that affect the slope of the pedogenetic processes and the transport and storage of water in the soil profile, i.e., the different trajectories of water flow in different forms of the landscape, is the cause of variability. The objectives of this research were: i) evaluate the spatial and temporal stability of internal soil water drainage in a place near and another distant from the root system in a bean-black-oat succession and ii) verify their spatial variability in relation to relief. With the hydraulic conductivity obtained by the instantaneous profile method and the total potential gradient obtained from the difference in readings of tensiometers installed at depths of 0.35 and 0.45 and 0.75 and 0.85 m in 60 sampling points totaling 1680 and 1200 observations during the cultivation of beans and oats, respectively, was obtained so the internal drainage / capillary rise through the Darcy-Buckingham equation. To evaluate the temporal stability the method used was the relative difference and Spearman correlation test and the spatial variability was analyzed as geostatistical methodology. During the period when the water flow in soil is higher, there is strong temporal stability in the depth of 0.40 m, which is the opposite for the periods of drying. The lowest relative difference and standard deviation for the internal drainage obtained during the cultivation of beans and depth of 0.40 m confirm the hypothesis that the research carried out during periods of soil water recharge have less variability than those in the drying period. Temporal stability was due to the topographic position of selected points, since the points chosen for the depth of 0.40 m in both growing seasons, are located on the lower portion of the relief, and the nominees for the depth of 0,80 m, the highest portion. There were differences in the spatial pattern of water flow in the soil along the crop succession, i.e. the seasonal demand for water by plants and evaporation from the soil at the time of drying, changed their distribution model with internal drainage phases and stages capillary rise.
Paracrine communication maximizes cellular response fidelity in wound signaling
Handly, L Naomi; Pilko, Anna; Wollman, Roy
2015-01-01
Population averaging due to paracrine communication can arbitrarily reduce cellular response variability. Yet, variability is ubiquitously observed, suggesting limits to paracrine averaging. It remains unclear whether and how biological systems may be affected by such limits of paracrine signaling. To address this question, we quantify the signal and noise of Ca2+ and ERK spatial gradients in response to an in vitro wound within a novel microfluidics-based device. We find that while paracrine communication reduces gradient noise, it also reduces the gradient magnitude. Accordingly we predict the existence of a maximum gradient signal to noise ratio. Direct in vitro measurement of paracrine communication verifies these predictions and reveals that cells utilize optimal levels of paracrine signaling to maximize the accuracy of gradient-based positional information. Our results demonstrate the limits of population averaging and show the inherent tradeoff in utilizing paracrine communication to regulate cellular response fidelity. DOI: http://dx.doi.org/10.7554/eLife.09652.001 PMID:26448485
Precise calibration of spatial phase response nonuniformity arising in liquid crystal on silicon.
Xu, Jingquan; Qin, SiYi; Liu, Chen; Fu, Songnian; Liu, Deming
2018-06-15
In order to calibrate the spatial phase response nonuniformity of liquid crystal on silicon (LCoS), we propose to use a Twyman-Green interferometer to characterize the wavefront distortion, due to the inherent curvature of the device. During the characterization, both the residual carrier frequency introduced by the Fourier transform evaluation method and the lens aberration are error sources. For the tilted phase error introduced by residual carrier frequency, the least mean square fitting method is used to obtain the tilted phase error. Meanwhile, we use Zernike polynomials fitting based on plane mirror calibration to mitigate the lens aberration. For a typical LCoS with 1×12,288 pixels after calibration, the peak-to-valley value of the inherent wavefront distortion is approximately 0.25λ at 1550 nm, leading to a half-suppression of wavefront distortion. All efforts can suppress the root mean squares value of the inherent wavefront distortion to approximately λ/34.
When and How Are Spatial Perceptions Scaled?
ERIC Educational Resources Information Center
Witt, Jessica K.; Proffitt, Dennis R.; Epstein, William
2010-01-01
This research was designed to test the predictions of 2 approaches to perception. By most traditional accounts, people are thought to derive general-purpose spatial perceptions that are scaled in arbitrary, unspecified units. In contrast, action-specific approaches propose that the angular information inherent in optic flow and ocular-motor…
Frelat, Romain; Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A; Möllmann, Christian
2017-01-01
Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.
Snäll, Tord; Lehtomäki, Joona; Arponen, Anni; Elith, Jane; Moilanen, Atte
2016-02-01
There is high-level political support for the use of green infrastructure (GI) across Europe, to maintain viable populations and to provide ecosystem services (ES). Even though GI is inherently a spatial concept, the modern tools for spatial planning have not been recognized, such as in the recent European Environment Agency (EEA) report. We outline a toolbox of methods useful for GI design that explicitly accounts for biodiversity and ES. Data on species occurrence, habitats, and environmental variables are increasingly available via open-access internet platforms. Such data can be synthesized by statistical species distribution modeling, producing maps of biodiversity features. These, together with maps of ES, can form the basis for GI design. We argue that spatial conservation prioritization (SCP) methods are effective tools for GI design, as the overall SCP goal is cost-effective allocation of conservation efforts. Corridors are currently promoted by the EEA as the means for implementing GI design, but they typically target the needs of only a subset of the regional species pool. SCP methods would help to ensure that GI provides a balanced solution for the requirements of many biodiversity features (e.g., species, habitat types) and ES simultaneously in a cost-effective manner. Such tools are necessary to make GI into an operational concept for combating biodiversity loss and promoting ES.
NASA Astrophysics Data System (ADS)
Snäll, Tord; Lehtomäki, Joona; Arponen, Anni; Elith, Jane; Moilanen, Atte
2016-02-01
There is high-level political support for the use of green infrastructure (GI) across Europe, to maintain viable populations and to provide ecosystem services (ES). Even though GI is inherently a spatial concept, the modern tools for spatial planning have not been recognized, such as in the recent European Environment Agency (EEA) report. We outline a toolbox of methods useful for GI design that explicitly accounts for biodiversity and ES. Data on species occurrence, habitats, and environmental variables are increasingly available via open-access internet platforms. Such data can be synthesized by statistical species distribution modeling, producing maps of biodiversity features. These, together with maps of ES, can form the basis for GI design. We argue that spatial conservation prioritization (SCP) methods are effective tools for GI design, as the overall SCP goal is cost-effective allocation of conservation efforts. Corridors are currently promoted by the EEA as the means for implementing GI design, but they typically target the needs of only a subset of the regional species pool. SCP methods would help to ensure that GI provides a balanced solution for the requirements of many biodiversity features (e.g., species, habitat types) and ES simultaneously in a cost-effective manner. Such tools are necessary to make GI into an operational concept for combating biodiversity loss and promoting ES.
NASA Technical Reports Server (NTRS)
Ludwig, David A.; Convertino, Victor A.; Goldwater, Danielle J.; Sandler, Harold
1987-01-01
Small sample size (n less than 1O) and inappropriate analysis of multivariate data have hindered previous attempts to describe which physiologic and demographic variables are most important in determining how long humans can tolerate acceleration. Data from previous centrifuge studies conducted at NASA/Ames Research Center, utilizing a 7-14 d bed rest protocol to simulate weightlessness, were included in the current investigation. After review, data on 25 women and 22 men were available for analysis. Study variables included gender, age, weight, height, percent body fat, resting heart rate, mean arterial pressure, Vo(sub 2)max and plasma volume. Since the dependent variable was time to greyout (failure), two contemporary biostatistical modeling procedures (proportional hazard and logistic discriminant function) were used to estimate risk, given a particular subject's profile. After adjusting for pro-bed-rest tolerance time, none of the profile variables remained in the risk equation for post-bed-rest tolerance greyout. However, prior to bed rest, risk of greyout could be predicted with 91% accuracy. All of the profile variables except weight, MAP, and those related to inherent aerobic capacity (Vo(sub 2)max, percent body fat, resting heart rate) entered the risk equation for pro-bed-rest greyout. A cross-validation using 24 new subjects indicated a very stable model for risk prediction, accurate within 5% of the original equation. The result for the inherent fitness variables is significant in that a consensus as to whether an increased aerobic capacity is beneficial or detrimental has not been satisfactorily established. We conclude that tolerance to +Gz acceleration before and after simulated weightlessness is independent of inherent aerobic fitness.
NASA Astrophysics Data System (ADS)
Kassem, Hussein A.; Chehab, Ghassan R.; Najjar, Shadi S.
2017-08-01
Advanced material characterization of asphalt concrete is essential for realistic and accurate performance prediction of flexible pavements. However, such characterization requires rigorous testing regimes that involve mechanical testing of a large number of laboratory samples at various conditions and set-ups. Advanced measurement instrumentation in addition to meticulous and accurate data analysis and analytical representation are also of high importance. Such steps as well as the heterogeneous nature of asphalt concrete (AC) constitute major factors of inherent variability. Thus, it is imperative to model and quantify the variability of the needed asphalt material's properties, mainly the linear viscoelastic response functions such as: relaxation modulus, E(t), and creep compliance, D(t). The objective of this paper is to characterize the inherent uncertainty of both E(t) and D(t) over the time domain of their master curves. This is achieved through a probabilistic framework using Monte Carlo simulations and First Order approximations, utilizing E^{*} data for six AC mixes with at least eight replicates per mix. The study shows that the inherent variability, presented by the coefficient of variation (COV), in E(t) and D(t) is low at small reduced times, and increases with the increase in reduced time. At small reduced times, the COV in E(t) and D(t) are similar in magnitude; however, differences become significant at large reduced times. Additionally, the probability distributions and COVs of E(t) and D(t) are mix dependent. Finally, a case study is considered in which the inherent uncertainty in D(t) is forward propagated to assess the effect of variability on the predicted number of cycles to fatigue failure of an asphalt mix.
Reducing inherent biases introduced during DNA viral metagenome analyses of municipal wastewater
Metagenomics is a powerful tool for characterizing viral composition within environmental samples, but sample and molecular processing steps can bias the estimation of viral community structure. The objective of this study is to understand the inherent variability introduced when...
Understanding the Spatiotemporal Variability of Inherent Water Use Efficiency
NASA Astrophysics Data System (ADS)
Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus
2015-04-01
The global carbon and water cycles are coupled via plant physiology. However, the resulting spatial and temporal covariability of both fluxes on a global scale lacks sufficient understanding. This is required to estimate the impact of atmospheric drought on photosynthesis in water-limited ecosystems. Water use efficiency (WUE) is an essential ecosystem diagnostic defined as the ratio between gross primary productivity (GPP) and transpiration (T). WUE is known to vary with vapour-pressure deficit (VPD) and therefore also in time. The inherent water use efficiency (iWUE) accounts for the VPD effect on WUE and aims at representing a largely time-invariant ecosystem property. However, different ways of describing the functional response of iWUE to VPD are found in the literature. One established iWUE definition was proposed by Beer et al. (2009) and takes the form of iWUE = GPP--VPD- . T (1) A similar definition can be derived from stomatal conductance theories such as Katul et al. (2010) and takes the form of √ -- GPP---VPD- iWUE = T . (2) Here, we use eddy covariance measurements from the FLUXNET database to evaluate both approaches for a globally representative set of biomes including tropical, temperate and semi-arid ecosystems. Testing both definitions in a model-data fusion setup indicated that (2) is more consistent with FLUXNET observations than (1). However, there still remains considerable temporal variability of iWUE which is linked to seasonal changes in VPD. To explore up to which extent the temporal variability of iWUE may be related to the prescribed functional responses to VPD, we treated the exponent of VPD as a global parameter, here termed γ. When γ = 1 the functional response is equivalent to (1), while when γ = 0.5 it corresponds to formulation of model (2)). The global estimate was found to be significantly lower than 0.5, which would have been expected from stomatal conductance theory at leaf level. We assessed whether adding γ as site-specific parameter could be justified. The additional model complexity was warranted by an increased goodness-of-fit as quantified by the Akaike information criterion. However, temporal variations in iWUE persist. The structural adequacy of the models was assessed via the correlation structure of the residuals. Ultimately, changing γ in the definition impacts the between-site variability of iWUE. The iWUE estimates with γ = 1.0 were only weakly correlated with those with γ = 0.5. This has crucial implications for spatial analyses on the drought response of water-limited ecosystems. We discuss uncertainties involved in the analysis and highlight possible mechanisms responsible for the remaining temporal variability of iWUE. The consequences of differing iWUE definitions for the analysis of global carbon and water cycles are explored.
NASA Astrophysics Data System (ADS)
Yusop, Syazwani Mohd; Mustapha, Muzzneena Ahmad
2018-04-01
The coupling of fishing locations for R. kanagurta obtained from SEAFDEC and multi-sensor satellite imageries of oceanographic variables; sea surface temperature (SST), sea surface height (SSH) and chl-a concentration (chl-a) were utilized to evaluate the performance of maximum entropy (MaxEnt) models for R. kanagurta fishing ground for prediction. Besides, this study was conducted to identify the relative percentage contribution of each environmental variable considered in order to describe the effects of the oceanographic factors on the species distribution in the study area. The potential fishing grounds during intermonsoon periods; April and October 2008-2009 were simulated separately and covered the near-coast of Kelantan, Terengganu, Pahang and Johor. The oceanographic conditions differed between regions by the inherent seasonal variability. The seasonal and spatial extents of potential fishing grounds were largely explained by chl-a concentration (0.21-0.99 mg/m3 in April and 0.28-1.00 mg/m3 in October), SSH (77.37-85.90 cm in April and 107.60-108.97 cm in October) and SST (30.43-33.70 °C in April and 30.48-30.97 °C in October). The constructed models were applicable and therefore they were suitable for predicting the potential fishing zones of R. kanagurta in EEZ. The results from this study revealed MaxEnt's potential for predicting the spatial distribution of R. kanagurta and highlighted the use of multispectral satellite images for describing the seasonal potential fishing grounds.
Silva, D P; Nogueira, D S; De Marco, P
2017-06-01
Landscape structure is an important determinant of biological fluxes and species composition, but species do not respond equally to landscape features or spatial extents. Evaluating "multi-scale" responses of species to landscape structure is an important framework to be considered, allowing insights about habitat requirements for different groups. We evaluated the response of Brazilian Cerrado's bees (eusocial vs. solitary ones) to both the amount and isolation of remnant vegetation in eight nested multiple-local scales. Response variables included abundance, observed, and estimated species richness, and beta diversity (split into nestedness and turnover resultant dissimilarities). Eusocial species' abundance responded to landscape structure at narrow scales of fragment isolation (250 m of radius from sampling sites), while solitary species' abundance responded to broader scales to fragment area (2000 m). Eusocial species nestedness also responded to landscape features in broader scales (1500 m), especially to increasing fragment isolation. However, all the remaining response variables did not respond to any other landscape variables in any spatial scale considered. Such contrasting responses of the abundances of eusocial vs. solitary species are related to the inherent life-history traits of each group. Important attributes in this context are different requirements on food resources, population features, and flight abilities. Species-specific dispersal abilities may be the main determinants of the nested patterns found for eusocial species at 1500 m. Considering these results, we suggest that different bee groups are considered separately in further landscape analyses, especially in other Brazilian biomes, for a better understanding of landscape effects on these organisms.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Borak, Jordan S.
2008-01-01
Many earth science modeling applications employ continuous input data fields derived from satellite data. Environmental factors, sensor limitations and algorithmic constraints lead to data products of inherently variable quality. This necessitates interpolation of one form or another in order to produce high quality input fields free of missing data. The present research tests several interpolation techniques as applied to satellite-derived leaf area index, an important quantity in many global climate and ecological models. The study evaluates and applies a variety of interpolation techniques for the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf-Area Index Product over the time period 2001-2006 for a region containing the conterminous United States. Results indicate that the accuracy of an individual interpolation technique depends upon the underlying land cover. Spatial interpolation provides better results in forested areas, while temporal interpolation performs more effectively over non-forest cover types. Combination of spatial and temporal approaches offers superior interpolative capabilities to any single method, and in fact, generation of continuous data fields requires a hybrid approach such as this.
Scattered Light Polarimetry of Exoplanets
NASA Astrophysics Data System (ADS)
Wiktorowicz, S.
2014-12-01
The last decade has witnessed an explosion in atmospheric characterization of spatially unresolved exoplanets using transmission spectra of transiting planets, but understanding has been hampered by degeneracies resolvable through blue optical observations. Here, scattered light is more important than the Wien tail of re-radiated thermal emission. Therefore, the next frontier in exoplanet characterization lies in the direct detection of scattered light. The polarization state of starlight scattered by a planetary atmosphere distinguishes it from the direct light from the host star, and the inherently differential nature of polarimetry reduces systematic effects to the point where ground-based detections are possible. Furthermore, polarimetry is uniquely sensitive to the size distribution, shape, and chemical composition of atmospheric cloud particles as well as to the scattering optical depth. I will review the current state of exoplanet polarimetry, which is dominated not by photon noise but by non-Gaussian systematic effects. Ground-based detection of order ten exoplanet photons relative to the host star's million requires dense orbital phase coverage and therefore long observing programs. However, variability inherent in the host star, interstellar medium, Earth's atmosphere, the telescope, and the instrument at all timescales must be measured and subtracted in order to definitively uncover scattered light from the exoplanet. While polarimetry is in principle sensitive to exoplanets regardless of orbital inclination, repeated observations of transiting exoplanet systems during secondary eclipse events are required to measure the polarimetric variability of the system that cannot be due to the planet. The emergence of scattered light polarimetry as a robust tool for the study of exoplanet atmospheres, and eventually surfaces, therefore requires diligent attention to the role of systematic effects.
Multi-scale assimilation of remotely sensed snow observations for hydrologic estimation
NASA Astrophysics Data System (ADS)
Andreadis, K.; Lettenmaier, D.
2008-12-01
Data assimilation provides a framework for optimally merging model predictions and remote sensing observations of snow properties (snow cover extent, water equivalent, grain size, melt state), ideally overcoming limitations of both. A synthetic twin experiment is used to evaluate a data assimilation system that would ingest remotely sensed observations from passive microwave and visible wavelength sensors (brightness temperature and snow cover extent derived products, respectively) with the objective of estimating snow water equivalent. Two data assimilation techniques are used, the Ensemble Kalman filter and the Ensemble Multiscale Kalman filter (EnMKF). One of the challenges inherent in such a data assimilation system is the discrepancy in spatial scales between the different types of snow-related observations. The EnMKF represents the sample model error covariance with a tree that relates the system state variables at different locations and scales through a set of parent-child relationships. This provides an attractive framework to efficiently assimilate observations at different spatial scales. This study provides a first assessment of the feasibility of a system that would assimilate observations from multiple sensors (MODIS snow cover and AMSR-E brightness temperatures) and at different spatial scales for snow water equivalent estimation. The relative value of the different types of observations is examined. Additionally, the error characteristics of both model and observations are discussed.
Characterizing local biological hotspots in the Gulf of Maine using remote sensing data
NASA Astrophysics Data System (ADS)
Ribera, Marta M.
Researchers increasingly advocate the use of ecosystem-based management (EBM) for managing complex marine ecosystems. This approach requires managers to focus on processes and cross-scale interactions, rather than individual components. However, they often lack appropriate tools and data sources to pursue this change in management approach. One method that has been proposed to understand the ecological complexity inherent in marine ecosystems is the study of biological hotspots. Biological hotspots are locations where organisms from different trophic levels aggregate to feed on abundant supplies, and they are considered a first step toward understanding the processes driving spatial and temporal heterogeneity in marine systems. Biological hotspots are supported by phytoplankton aggregations, which are characterized by high spatial and temporal variability. As a result, methods developed to locate biological hotspots in relatively stable terrestrial systems are not well suited for more dynamic marine ecosystems. The main objective of this thesis is thus to identify and characterize local-scale biological hotspots in the western side of the Gulf of Maine. The first chapter describes a new methodological framework with the steps needed to locate these types of hotspots in marine ecosystems using remote sensing datasets. Then, in the second chapter these hotspots are characterized using a novel metric that uses time series information and spatial statistics to account for both the temporal variability and spatial structure of these marine aggregations. This metric redefines biological hotspots as areas with a high probability of exhibiting positive anomalies of productivity compared to the expected regional seasonal pattern. Finally, the third chapter compares the resulting biological hotspots to fishery-dependent abundance indices of surface and benthic predators to determine the effect of the location and magnitude of phytoplankton aggregations on the rest of the ecosystem. Analyses indicate that the spatial scale and magnitude of biological hotspots in the Gulf of Maine depend on the location and time of the year. Results also show that these hotspots change over time in response to both short-term oceanographic processes and long-term climatic cycles. Finally, the new metric presented here facilitates the spatial comparison between different trophic levels, thus allowing interdisciplinary ecosystem-wide studies.
NASA Astrophysics Data System (ADS)
Heim, B.; Beamish, A. L.; Walker, D. A.; Epstein, H. E.; Sachs, T.; Chabrillat, S.; Buchhorn, M.; Prakash, A.
2016-12-01
Ground data for the validation of satellite-derived terrestrial Essential Climate Variables (ECVs) at high latitudes are sparse. Also for regional model evaluation (e.g. climate models, land surface models, permafrost models), we lack accurate ranges of terrestrial ground data and face the problem of a large mismatch in scale. Within the German research programs `Regional Climate Change' (REKLIM) and the Environmental Mapping and Analysis Program (EnMAP), we conducted a study on ground data representativeness for vegetation-related variables within a monitoring grid at the Toolik Lake Long-Term Ecological Research station; the Toolik Lake station lies in the Kuparuk River watershed on the North Slope of the Brooks Mountain Range in Alaska. The Toolik Lake grid covers an area of 1 km2 containing Eight five grid points spaced 100 meters apart. Moist acidic tussock tundra is the most dominant vegetation type within the grid. Eight five permanent 1 m2 plots were also established to be representative of the individual gridpoints. Researchers from the University of Alaska Fairbanks have undertaken assessments at these plots, including Leaf Area Index (LAI) and field spectrometry to derive the Normalized Difference Vegetation Index (NDVI). During summer 2016, we conducted field spectrometry and LAI measurements at selected plots during early, peak and late summer. We experimentally measured LAI on more spatially extensive Elementary Sampling Units (ESUs) to investigate the spatial representativeness of the permanent 1 m2 plots and to map ESUs for various tundra types. LAI measurements are potentially influenced by landscape-inherent microtopography, sparse vascular plant cover, and dead woody matter. From field spectrometer measurements, we derived a clear-sky mid-day Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). We will present the first data analyses comparing FAPAR and LAI, and maps of biophysically-focused ESUs for evaluation of the use of remote sensing data to estimate these ecosystem properties.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks.
Navarro Jimenez, M; Le Maître, O P; Knio, O M
2016-12-28
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.
2016-12-23
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes thatmore » the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. Here, a sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.« less
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
NASA Astrophysics Data System (ADS)
Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.
2016-12-01
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
NASA Astrophysics Data System (ADS)
Steger, Stefan; Brenning, Alexander; Bell, Rainer; Glade, Thomas
2016-12-01
There is unanimous agreement that a precise spatial representation of past landslide occurrences is a prerequisite to produce high quality statistical landslide susceptibility models. Even though perfectly accurate landslide inventories rarely exist, investigations of how landslide inventory-based errors propagate into subsequent statistical landslide susceptibility models are scarce. The main objective of this research was to systematically examine whether and how inventory-based positional inaccuracies of different magnitudes influence modelled relationships, validation results, variable importance and the visual appearance of landslide susceptibility maps. The study was conducted for a landslide-prone site located in the districts of Amstetten and Waidhofen an der Ybbs, eastern Austria, where an earth-slide point inventory was available. The methodological approach comprised an artificial introduction of inventory-based positional errors into the present landslide data set and an in-depth evaluation of subsequent modelling results. Positional errors were introduced by artificially changing the original landslide position by a mean distance of 5, 10, 20, 50 and 120 m. The resulting differently precise response variables were separately used to train logistic regression models. Odds ratios of predictor variables provided insights into modelled relationships. Cross-validation and spatial cross-validation enabled an assessment of predictive performances and permutation-based variable importance. All analyses were additionally carried out with synthetically generated data sets to further verify the findings under rather controlled conditions. The results revealed that an increasing positional inventory-based error was generally related to increasing distortions of modelling and validation results. However, the findings also highlighted that interdependencies between inventory-based spatial inaccuracies and statistical landslide susceptibility models are complex. The systematic comparisons of 12 models provided valuable evidence that the respective error-propagation was not only determined by the degree of positional inaccuracy inherent in the landslide data, but also by the spatial representation of landslides and the environment, landslide magnitude, the characteristics of the study area, the selected classification method and an interplay of predictors within multiple variable models. Based on the results, we deduced that a direct propagation of minor to moderate inventory-based positional errors into modelling results can be partly counteracted by adapting the modelling design (e.g. generalization of input data, opting for strongly generalizing classifiers). Since positional errors within landslide inventories are common and subsequent modelling and validation results are likely to be distorted, the potential existence of inventory-based positional inaccuracies should always be considered when assessing landslide susceptibility by means of empirical models.
Pitfalls in statistical landslide susceptibility modelling
NASA Astrophysics Data System (ADS)
Schröder, Boris; Vorpahl, Peter; Märker, Michael; Elsenbeer, Helmut
2010-05-01
The use of statistical methods is a well-established approach to predict landslide occurrence probabilities and to assess landslide susceptibility. This is achieved by applying statistical methods relating historical landslide inventories to topographic indices as predictor variables. In our contribution, we compare several new and powerful methods developed in machine learning and well-established in landscape ecology and macroecology for predicting the distribution of shallow landslides in tropical mountain rainforests in southern Ecuador (among others: boosted regression trees, multivariate adaptive regression splines, maximum entropy). Although these methods are powerful, we think it is necessary to follow a basic set of guidelines to avoid some pitfalls regarding data sampling, predictor selection, and model quality assessment, especially if a comparison of different models is contemplated. We therefore suggest to apply a novel toolbox to evaluate approaches to the statistical modelling of landslide susceptibility. Additionally, we propose some methods to open the "black box" as an inherent part of machine learning methods in order to achieve further explanatory insights into preparatory factors that control landslides. Sampling of training data should be guided by hypotheses regarding processes that lead to slope failure taking into account their respective spatial scales. This approach leads to the selection of a set of candidate predictor variables considered on adequate spatial scales. This set should be checked for multicollinearity in order to facilitate model response curve interpretation. Model quality assesses how well a model is able to reproduce independent observations of its response variable. This includes criteria to evaluate different aspects of model performance, i.e. model discrimination, model calibration, and model refinement. In order to assess a possible violation of the assumption of independency in the training samples or a possible lack of explanatory information in the chosen set of predictor variables, the model residuals need to be checked for spatial auto¬correlation. Therefore, we calculate spline correlograms. In addition to this, we investigate partial dependency plots and bivariate interactions plots considering possible interactions between predictors to improve model interpretation. Aiming at presenting this toolbox for model quality assessment, we investigate the influence of strategies in the construction of training datasets for statistical models on model quality.
High Resolution Aerosol Data from MODIS Satellite for Urban Air Quality Studies
NASA Technical Reports Server (NTRS)
Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Tang, C.; Schwartz, J.; Koutrakis, P.
2013-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(sub 2.5) as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R(exp 2) =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM(sub 2.5) ground concentrations. Finally, we studied the relationship between PM(sub 2.5) and AOD at the intra-urban scale (10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM(sub 2.5) relationship does not depend on relative humidity and air temperatures below approximately 7 C. The correlation improves for temperatures above 7 - 16 C. We found no dependence on the boundary layer height except when the former was in the range 250-500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM(sub 2.5) concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations (out-of-sample R(exp 2) of 0.86). Therefore, adjustment for the daily variability in the AOD-PM(sub 2.5) relationship provides a means for obtaining spatially-resolved PM(sub 2.5) concentrations.
A New Variable Weighting and Selection Procedure for K-Means Cluster Analysis
ERIC Educational Resources Information Center
Steinley, Douglas; Brusco, Michael J.
2008-01-01
A variance-to-range ratio variable weighting procedure is proposed. We show how this weighting method is theoretically grounded in the inherent variability found in data exhibiting cluster structure. In addition, a variable selection procedure is proposed to operate in conjunction with the variable weighting technique. The performances of these…
A new numerical benchmark for variably saturated variable-density flow and transport in porous media
NASA Astrophysics Data System (ADS)
Guevara, Carlos; Graf, Thomas
2016-04-01
In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.
NASA Astrophysics Data System (ADS)
Feyen, Luc; Caers, Jef
2006-06-01
In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport predictions.
Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O.; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A.; Möllmann, Christian
2017-01-01
Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs. PMID:29136658
Relating Solar Resource Variability to Cloud Type
NASA Astrophysics Data System (ADS)
Hinkelman, L. M.; Sengupta, M.
2012-12-01
Power production from renewable energy (RE) resources is rapidly increasing. Generation of renewable energy is quite variable since the solar and wind resources that form the inputs are, themselves, inherently variable. There is thus a need to understand the impact of renewable generation on the transmission grid. Such studies require estimates of high temporal and spatial resolution power output under various scenarios, which can be created from corresponding solar resource data. Satellite-based solar resource estimates are the best source of long-term solar irradiance data for the typically large areas covered by transmission studies. As satellite-based resource datasets are generally available at lower temporal and spatial resolution than required, there is, in turn, a need to downscale these resource data. Downscaling in both space and time requires information about solar irradiance variability, which is primarily a function of cloud types and properties. In this study, we analyze the relationship between solar resource variability and satellite-based cloud properties. One-minute resolution surface irradiance data were obtained from a number of stations operated by the National Oceanic and Atmospheric Administration (NOAA) under the Surface Radiation (SURFRAD) and Integrated Surface Irradiance Study (ISIS) networks as well as from NREL's Solar Radiation Research Laboratory (SRRL) in Golden, Colorado. Individual sites were selected so that a range of meteorological conditions would be represented. Cloud information at a nominal 4 km resolution and half hour intervals was derived from NOAA's Geostationary Operation Environmental Satellite (GOES) series of satellites. Cloud class information from the GOES data set was then used to select and composite irradiance data from the measurement sites. The irradiance variability for each cloud classification was characterized using general statistics of the fluxes themselves and their variability in time, as represented by ramps computed for time scales from 10 s to 0.5 hr. The statistical relationships derived using this method will be presented, comparing and contrasting the statistics computed for the different cloud types. The implications for downscaling irradiances from satellites or forecast models will also be discussed.
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2016-12-01
Any analysis that wants to use a GCM-based scenario of future climate benefits from knowing how much uncertainty the GCM's inherent variability adds to the development of climate change predictions. This is extra relevant in the polar regions due to the potential of global impacts (e.g., sea level rise) from local (ice sheet) climate changes such as more frequent/intense surface melting. High-resolution, regional-scale models using GCMs for boundary/initial conditions in future scenarios inherit a measure of GCM-derived externally-driven uncertainty. We investigate these uncertainties for the Greenland ice sheet using the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Recent simulations are skill-tested against the ERA-Interim reanalysis and AWS observations with results informing future scenarios. We focus on key variables influencing surface melting through decadal climatologies, nonlinear analysis of variability with self-organizing maps (SOMs), regional-scale modeling (Polar WRF), and simple melt models. Relative to the ensemble average, spatially averaged climatological July temperature anomalies over a Greenland ice-sheet/ocean domain are mostly between +/- 0.2 °C. The spatial average hides larger local anomalies of up to +/- 2 °C. The ensemble average itself is 2 °C cooler than ERA-Interim. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. For CESMLE, the SOM patterns summarize the variability of multiple realizations of climate. Changes in pattern frequency by ensemble member show the influence of initial conditions. For example, basic statistical analysis of pattern frequency yields interquartile ranges of 2-4% for individual patterns across the ensemble. In climate terms, this tells us about climate state variability through the range of the ensemble, a potentially significant source of melt-prediction uncertainty. SOMs can also capture the different trajectories of climate due to intramodel variability over time. Polar WRF provides higher resolution regional modeling with improved, polar-centric model physics. Simple melt models allow us to characterize impacts of the upstream uncertainties on estimates of surface melting.
Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2006-01-01
Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.
Cooke, Steven J.; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Powers, Michael H.; Doka, Susan E.; Dettmers, John M.; Crook, David A; Lucas, Martyn C.; Holbrook, Christopher; Krueger, Charles C.
2016-01-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points. PMID:26807579
Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C
2016-04-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Emerging Technologies for Assessing Physical Activity Behaviors in Space and Time
Hurvitz, Philip M.; Moudon, Anne Vernez; Kang, Bumjoon; Saelens, Brian E.; Duncan, Glen E.
2014-01-01
Precise measurement of physical activity is important for health research, providing a better understanding of activity location, type, duration, and intensity. This article describes a novel suite of tools to measure and analyze physical activity behaviors in spatial epidemiology research. We use individual-level, high-resolution, objective data collected in a space-time framework to investigate built and social environment influences on activity. First, we collect data with accelerometers, global positioning system units, and smartphone-based digital travel and photo diaries to overcome many limitations inherent in self-reported data. Behaviors are measured continuously over the full spectrum of environmental exposures in daily life, instead of focusing exclusively on the home neighborhood. Second, data streams are integrated using common timestamps into a single data structure, the “LifeLog.” A graphic interface tool, “LifeLog View,” enables simultaneous visualization of all LifeLog data streams. Finally, we use geographic information system SmartMap rasters to measure spatially continuous environmental variables to capture exposures at the same spatial and temporal scale as in the LifeLog. These technologies enable precise measurement of behaviors in their spatial and temporal settings but also generate very large datasets; we discuss current limitations and promising methods for processing and analyzing such large datasets. Finally, we provide applications of these methods in spatially oriented research, including a natural experiment to evaluate the effects of new transportation infrastructure on activity levels, and a study of neighborhood environmental effects on activity using twins as quasi-causal controls to overcome self-selection and reverse causation problems. In summary, the integrative characteristics of large datasets contained in LifeLogs and SmartMaps hold great promise for advancing spatial epidemiologic research to promote healthy behaviors. PMID:24479113
A multi-scalar approach for modelling river channel change in the Anthropocene
NASA Astrophysics Data System (ADS)
Downs, Peter; Piégay, Hervé; Piffady, Jeremy; Valette, Laurent; Vaudor, Lise
2017-04-01
Adjustments in river channel morphology during the 'Anthropocene' arise as a cumulative impact from the influence of numerous natural and human stressors operating at multiple spatial and temporal scales. However, the research requirement for data on impacts at multiple scales, and at sufficiently high spatial and temporal resolution to determine reach-level effect, largely prevented such studies until recent improvements in digital technologies and data availability. A meta-analysis of recent cumulative impact studies indicates that the analytical component is still overwhelmingly interpretative, with cause-and-effect reasoning based largely on temporal synchronicity and spatial proximity, whereas our conceptual understanding of adjustment processes is far more nuanced. We propose, instead, that studies of cumulative impact should be underpinned by an analytical model of cause and effect, partly to test and enhance our predictive capabilities and allow scenario setting, but also to learn about the relative sensitivities involved in different parts of the model and thus to prioritize future research endeavours. Our requirements are that the model should be inherently designed to detect reach-level changes over Anthropocene timescales, be capable of integrating co-existing and hierarchical human and natural pressures on fluvial systems, be able to accommodate time-lagged effects and upstream-downstream connectivity, and be based on an explicit conceptual model that can be refined as our process understanding improves. Bayesian Belief Networks (BBNs) offer some potential in this regard and are becoming an increasingly popular option for dealing with complex, multi-scalar relationships in ecology and other environmental sciences. BBNs consist of a conceptual model of nodes and edges (i.e., graph theory) that qualitatively describe the structure of causal relationships between chains of variables, and a quantitative expression of the relative strength of the hypothesized relationships, described by probability distributions. BBNs offer the flexibility of incorporating different variables taken at various scales from within the catchment (thus accommodating geographical and historical differences in climate and human occupation), can be implemented even when there is some missing data, and can be rapidly optimised to improve data fit by modifying individual parts of the internal probability distributions. They are particularly well-suited to hierarchical cause and effect structuring because data uncertainties are inherently 'internalised' in the development of the model's structure, thus potentially mediating the overall error in a complex chain of relationships. We detail tests in progress to develop models for channel width and depth changes for the main stem of the Santa Clara River, which drains a 4,200 km2 catchment in coastal Southern California.
Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.
Levick, Shaun R; Asner, Gregory P; Smit, Izak P J
2012-12-01
Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.
Cecala, Kristen K.; Maerz, John C.; Halstead, Brian J.; Frisch, John R.; Gragson, Ted L.; Hepinstall-Cymerman, Jeffrey; Leigh, David S.; Jackson, C. Rhett; Peterson, James T.; Pringle, Catherine M.
2018-01-01
Understanding how factors that vary in spatial scale relate to population abundance is vital to forecasting species responses to environmental change. Stream and river ecosystems are inherently hierarchical, potentially resulting in organismal responses to fine‐scale changes in patch characteristics that are conditional on the watershed context. Here, we address how populations of two salamander species are affected by interactions among hierarchical processes operating at different scales within a rapidly changing landscape of the southern Appalachian Mountains. We modeled reach‐level occupancy of larval and adult black‐bellied salamanders (Desmognathus quadramaculatus) and larval Blue Ridge two‐lined salamanders (Eurycea wilderae) as a function of 17 different terrestrial and aquatic predictor variables that varied in spatial extent. We found that salamander occurrence varied widely among streams within fully forested catchments, but also exhibited species‐specific responses to changes in local conditions. While D. quadramaculatus declined predictably in relation to losses in forest cover, larval occupancy exhibited the strongest negative response to forest loss as well as decreases in elevation. Conversely, occupancy of E. wilderae was unassociated with watershed conditions, only responding negatively to higher proportions of fast‐flowing stream habitat types. Evaluation of hierarchical relationships demonstrated that most fine‐scale variables were closely correlated with broad watershed‐scale variables, suggesting that local reach‐scale factors have relatively smaller effects within the context of the larger landscape. Our results imply that effective management of southern Appalachian stream salamanders must first focus on the larger scale condition of watersheds before management of local‐scale conditions should proceed. Our findings confirm the results of some studies while refuting the results of others, which may indicate that prescriptive recommendations for range‐wide management of species or the application of a single management focus across large geographic areas is inappropriate.
A Subband Coding Method for HDTV
NASA Technical Reports Server (NTRS)
Chung, Wilson; Kossentini, Faouzi; Smith, Mark J. T.
1995-01-01
This paper introduces a new HDTV coder based on motion compensation, subband coding, and high order conditional entropy coding. The proposed coder exploits the temporal and spatial statistical dependencies inherent in the HDTV signal by using intra- and inter-subband conditioning for coding both the motion coordinates and the residual signal. The new framework provides an easy way to control the system complexity and performance, and inherently supports multiresolution transmission. Experimental results show that the coder outperforms MPEG-2, while still maintaining relatively low complexity.
Variability in Non-Target Terrestrial Plant Studies Should Inform Endpoint Selection.
Staveley, J P; Green, J W; Nusz, J; Edwards, D; Henry, K; Kern, M; Deines, A M; Brain, R; Glenn, B; Ehresman, N; Kung, T; Ralston-Hooper, K; Kee, F; McMaster, S
2018-05-04
Inherent variability in Non-Target Terrestrial Plant (NTTP) testing of pesticides creates challenges for using and interpreting these data for risk assessment. Standardized NTTP testing protocols were initially designed to calculate the application rate causing a 25% effect (ER25, used in the U.S.) or a 50% effect (ER50, used in Europe) for various measures based on the observed dose-response. More recently, the requirement to generate a no-observed-effect rate (NOER), or, in the absence of a NOER, the rate causing a 5% effect (ER05), has raised questions about the inherent variability in, and statistical detectability of, these tests. Statistically significant differences observed between test and control groups may be a product of this inherent variability and may not represent biological relevance. Attempting to derive an ER05 and the associated risk assessment conclusions drawn from these values can overestimate risk. To address these concerns, we evaluated historical data from approximately 100 seedling emergence and vegetative vigor guideline studies on pesticides to assess the variability of control results across studies for each plant species, examined potential causes for the variation in control results, and defined the minimum percent effect that can be reliably detected. The results indicate that with current test design and implementation, the ER05 cannot be reliably estimated. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The importance of normalisation in the construction of deprivation indices.
Gilthorpe, M S
1995-12-01
Measuring socio-economic deprivation is a major challenge usually addressed through the use of composite indices. This paper aims to clarify the technical details regarding composite index construction. The distribution of some variables, for example unemployment, varies over time, and these variations must be considered when composite indices are periodically re-evaluated. The process of normalisation is examined in detail and particular attention is paid to the importance of symmetry and skewness of the composite variable distributions. Four different solutions of the Townsend index of socioeconomic deprivation are compared to reveal the effects that differing transformation processes have on the meaning or interpretation of the final index values. Differences in the rank order and the relative separation between values are investigated. Constituent variables which have been transformed to yield a more symmetric distribution provide indices that behave similarly, irrespective of the actual transformation methods adopted. Normalisation is seen to be of less importance than the removal of variable skewness. Furthermore, the degree of success of the transformation in removing skewness has a major effect in determining the variation between the individual electoral ward scores. Constituent variables undergoing no transformation produce an index that is distorted by the inherent variable skewness, and this index is not consistent between re-evaluations, either temporally or spatially. Effective transformation of constituent variables should always be undertaken when generating a composite index. The most important aspect is the removal of variable skewness. There is no need for the transformed variables to be normally distributed, only symmetrically distributed, before standardisation. Even where additional parameter weights are to be applied, which significantly alter the final index, appropriate transformation procedures should be adopted for the purpose of consistency over time and between different geographical areas.
Yu, Peiqiang
2007-01-01
Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less
No inherent left and right side in human 'mental number line': evidence from right brain damage.
Aiello, Marilena; Jacquin-Courtois, Sophie; Merola, Sheila; Ottaviani, Teresa; Tomaiuolo, Francesco; Bueti, Domenica; Rossetti, Yves; Doricchi, Fabrizio
2012-08-01
Spatial reasoning has a relevant role in mathematics and helps daily computational activities. It is widely assumed that in cultures with left-to-right reading, numbers are organized along the mental equivalent of a ruler, the mental number line, with small magnitudes located to the left of larger ones. Patients with right brain damage can disregard smaller numbers while mentally setting the midpoint of number intervals. This has been interpreted as a sign of spatial neglect for numbers on the left side of the mental number line and taken as a strong argument for the intrinsic left-to-right organization of the mental number line. Here, we put forward the understanding of this cognitive disability by discovering that patients with right brain damage disregard smaller numbers both when these are mapped on the left side of the mental number line and on the right side of an imagined clock face. This shows that the right hemisphere supports the representation of small numerical magnitudes independently from their mapping on the left or the right side of a spatial-mental layout. In addition, the study of the anatomical correlates through voxel-based lesion-symptom mapping and the mapping of lesion peaks on the diffusion tensor imaging-based reconstruction of white matter pathways showed that the rightward bias in the imagined clock-face was correlated with lesions of high-level middle temporal visual areas that code stimuli in object-centred spatial coordinates, i.e. stimuli that, like a clock face, have an inherent left and right side. In contrast, bias towards higher numbers on the mental number line was linked to white matter damage in the frontal component of the parietal-frontal number network. These anatomical findings show that the human brain does not represent the mental number line as an object with an inherent left and right side. We conclude that the bias towards higher numbers in the mental bisection of number intervals does not depend on left side spatial, imagery or object-centred neglect and that it rather depends on disruption of an abstract non-spatial representation of small numerical magnitudes.
Pattern formation--A missing link in the study of ecosystem response to environmental changes.
Meron, Ehud
2016-01-01
Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.
Joint spatial-spectral hyperspectral image clustering using block-diagonal amplified affinity matrix
NASA Astrophysics Data System (ADS)
Fan, Lei; Messinger, David W.
2018-03-01
The large number of spectral channels in a hyperspectral image (HSI) produces a fine spectral resolution to differentiate between materials in a scene. However, difficult classes that have similar spectral signatures are often confused while merely exploiting information in the spectral domain. Therefore, in addition to spectral characteristics, the spatial relationships inherent in HSIs should also be considered for incorporation into classifiers. The growing availability of high spectral and spatial resolution of remote sensors provides rich information for image clustering. Besides the discriminating power in the rich spectrum, contextual information can be extracted from the spatial domain, such as the size and the shape of the structure to which one pixel belongs. In recent years, spectral clustering has gained popularity compared to other clustering methods due to the difficulty of accurate statistical modeling of data in high dimensional space. The joint spatial-spectral information could be effectively incorporated into the proximity graph for spectral clustering approach, which provides a better data representation by discovering the inherent lower dimensionality from the input space. We embedded both spectral and spatial information into our proposed local density adaptive affinity matrix, which is able to handle multiscale data by automatically selecting the scale of analysis for every pixel according to its neighborhood of the correlated pixels. Furthermore, we explored the "conductivity method," which aims at amplifying the block diagonal structure of the affinity matrix to further improve the performance of spectral clustering on HSI datasets.
Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter
2017-11-01
Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012-2014. Total fluxes of 17 PAHs were 587-32,300 ng m -2 day -1 , with a geometric mean of 2600 ng m -2 day -1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km -2 ) with a range of 2.5-10 tons (0.4-1.6 kg km -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.
Mabey, S.; Watts, B.; Paxton, B.; Smith, F.; Truitt, B.; Dawson, D.
2005-01-01
Many conservation organizations and initiatives including Partners-in-Flight and the U.S. Fish and Wildlife Service's regional Joint Ventures have identified migratory songbird stopover habitat as a priority conservation target. However, the spatial and temporal variability inherent in migration presents a number of challenges to both identifying and characterizing stopover habitat. Scarce conservation resources further demand that stopover sites be classified on a scale of priority so that conservation action can proceed according to ecological value. We are applying weather surveillance radar data collected from the National Weather Service WSR-88D at Wakefield, VA, and NASA's Doppler radar, NPOL, in Oyster, VA, to identify passerine stopover sites in the lower Chesapeake Bay region and develop spatial models to characterize these sites based on relative migrant abundance and consistency of use between and within seasons. We are using the stopover patterns to generate hypotheses regarding the habitat, geographic, and stochastic factors contributing to the distribution of migrants at a regional scale. We are testing these hypotheses with detailed habitat data and ground surveys of migrating birds with the goal of creating a generalized prioritization system for stopover site conservation.
Inherent losses induced absorptive acoustic rainbow trapping with a gradient metasurface
NASA Astrophysics Data System (ADS)
Liu, Tuo; Liang, Shanjun; Chen, Fei; Zhu, Jie
2018-03-01
Acoustic rainbow trapping represents the phenomenon of strong acoustic dispersion similar to the optical "trapped rainbow," which allows spatial-spectral modulation and broadband trapping of sound. It can be realized with metamaterials that provide the required strong dispersion absent in natural materials. However, as the group velocity cannot be reduced to exactly zero before the forward mode being coupled to the backward mode, such trapping is temporary and the local sound oscillation ultimately radiates backward. Here, we propose a gradient metasurface, a rigid surface structured with gradient perforation along the wave propagation direction, in which the inherent thermal and viscous losses inside the holes are considered. We show that the gradually diminished group velocity of the structure-induced surface acoustic waves (SSAWs) supported by the metasurface becomes anomalous at the trapping position, induced by the existence of the inherent losses, which implies that the system's absorption reaches its maximum. Together with the progressively increased attenuation of the SSAWs along the gradient direction, reflectionless spatial-spectral modulation and sound enhancement are achieved in simulation. Such phenomenon, which we call as absorptive trapped rainbow, results from the balanced interplay among the local resonance inside individual holes, the mutual coupling of adjacent unit cells, and the inherent losses due to thermal conductivity and viscosity. This study deepens the understanding of the SSAWs propagation at a lossy metasurface and may contribute to the practical design of acoustic devices for high performance sensing and filtering.
Quantifying Forest Soil Physical Variables Potentially Important for Site Growth Analyses
John S. Kush; Douglas G. Pitt; Phillip J. Craul; William D. Boyer
2004-01-01
Accurate mean plot values of forest soil factors are required for use as independent variables in site-growth analyses. Adequate accuracy is often difficult to attain because soils are inherently widely variable. Estimates of the variability of appropriate soil factors influencing growth can be used to determine the sampling intensity required to secure accurate mean...
A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise
Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang
2014-01-01
In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method. PMID:24573313
A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise.
Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang
2014-02-25
In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.
Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Sawano, Seishi
2012-01-01
Detailed information on anatomy and hemodynamics in cerebrovascular disorders such as AVM and Moyamoya disease is mandatory for defined diagnosis and treatment planning. Arterial spin labeling technique has come to be applied to magnetic resonance angiography (MRA) and perfusion imaging in recent years. However, those non-contrast techniques are mostly limited to single frame images. Recently we have proposed a non-contrast time-resolved MRA technique termed contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency (CINEMA-STAR). CINEMA-STAR can extract the blood flow in the major intracranial arteries at an interval of 70 ms and thus permits us to observe vascular construction in full by preparing MIP images of axial acquisitions with high spatial resolution. This preliminary study demonstrates the usefulness of the CINEMA-STAR technique in evaluating the cerebral vasculature.
Arctic sea ice trends, variability and implications for seasonal ice forecasting
Serreze, Mark C.; Stroeve, Julienne
2015-01-01
September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. PMID:26032315
Brierley, Gary; Reid, Helen; Fryirs, Kirstie; Trahan, Nadine
2010-04-01
Monitoring and assessment are integral components in adaptive management programmes that strive to improve the condition of river systems. Unfortunately, these procedures are generally applied with an emphasis upon biotic attributes and water quality, with limited regard for the geomorphic structure, function and evolutionary trajectory of a river system. Geomorphic principles convey an understanding of the landscape context within which ecohydrologic processes interact. Collectively, geo-eco-hydrologic understanding presents a coherent biophysical template that can be used to frame spatially and temporally rigorous approaches to monitoring that respect the inherent diversity, variability and complexity of any given river system. This understanding aids the development of management programmes that 'work with nature.' Unless an integrative perspective is used to monitor river condition, conservation and rehabilitation plans are unlikely to reach their true potential. (c) 2010 Elsevier B.V. All rights reserved.
Localized Hotspots Drive Continental Geography of Abnormal Amphibians on U.S. Wildlife Refuges
Reeves, Mari K.; Medley, Kimberly A.; Pinkney, Alfred E.; Holyoak, Marcel; Johnson, Pieter T. J.; Lannoo, Michael J.
2013-01-01
Amphibians with missing, misshapen, and extra limbs have garnered public and scientific attention for two decades, yet the extent of the phenomenon remains poorly understood. Despite progress in identifying the causes of abnormalities in some regions, a lack of knowledge about their broader spatial distribution and temporal dynamics has hindered efforts to understand their implications for amphibian population declines and environmental quality. To address this data gap, we conducted a nationwide, 10-year assessment of 62,947 amphibians on U.S. National Wildlife Refuges. Analysis of a core dataset of 48,081 individuals revealed that consistent with expected background frequencies, an average of 2% were abnormal, but abnormalities exhibited marked spatial variation with a maximum prevalence of 40%. Variance partitioning analysis demonstrated that factors associated with space (rather than species or year sampled) captured 97% of the variation in abnormalities, and the amount of partitioned variance decreased with increasing spatial scale (from site to refuge to region). Consistent with this, abnormalities occurred in local to regional hotspots, clustering at scales of tens to hundreds of kilometers. We detected such hotspot clusters of high-abnormality sites in the Mississippi River Valley, California, and Alaska. Abnormality frequency was more variable within than outside of hotspot clusters. This is consistent with dynamic phenomena such as disturbance or natural enemies (pathogens or predators), whereas similarity of abnormality frequencies at scales of tens to hundreds of kilometers suggests involvement of factors that are spatially consistent at a regional scale. Our characterization of the spatial and temporal variation inherent in continent-wide amphibian abnormalities demonstrates the disproportionate contribution of local factors in predicting hotspots, and the episodic nature of their occurrence. PMID:24260103
Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo
2016-04-01
Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.
Density estimation in a wolverine population using spatial capture-recapture models
Royle, J. Andrew; Magoun, Audrey J.; Gardner, Beth; Valkenbury, Patrick; Lowell, Richard E.; McKelvey, Kevin
2011-01-01
Classical closed-population capture-recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture-recapture models that accommodate the spatial attribute inherent in capture-recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000-km2(95% Bayesian CI: 5.9-15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies.
Accounting for small scale heterogeneity in ecohydrologic watershed models
NASA Astrophysics Data System (ADS)
Bhaskar, A.; Fleming, B.; Hogan, D. M.
2016-12-01
Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach including characterizing urban vegetation and storm water management features and their impact on watershed scale hydrology and biogeochemical cycling.
Accounting for small scale heterogeneity in ecohydrologic watershed models
NASA Astrophysics Data System (ADS)
Burke, W.; Tague, C.
2017-12-01
Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach including characterizing urban vegetation and storm water management features and their impact on watershed scale hydrology and biogeochemical cycling.
NASA Astrophysics Data System (ADS)
Sonam, Sonam; Jain, Vikrant
2017-04-01
River long profile is one of the fundamental geomorphic parameters which provides a platform to study interaction of geological and geomorphic processes at different time scales. Long profile shape is governed by geological processes at 10 ^ 5 - 10 ^ 6 years' time scale and it controls the modern day (10 ^ 0 - 10 ^ 1 years' time scale) fluvial processes by controlling the spatial variability of channel slope. Identification of an appropriate model for river long profile may provide a tool to analyse the quantitative relationship between basin geology, profile shape and its geomorphic effectiveness. A systematic analysis of long profiles has been carried for the Himalayan tributaries of the Ganga River basin. Long profile shape and stream power distribution pattern is derived using SRTM DEM data (90 m spatial resolution). Peak discharge data from 34 stations is used for hydrological analysis. Lithological variability and major thrusts are marked along the river long profile. The best fit of long profile is analysed for power, logarithmic and exponential function. Second order exponential function provides the best representation of long profiles. The second order exponential equation is Z = K1*exp(-β1*L) + K2*exp(-β2*L), where Z is elevation of channel long profile, L is the length, K and β are coefficients of the exponential function. K1 and K2 are the proportion of elevation change of the long profile represented by β1 (fast) and β2 (slow) decay coefficients of the river long profile. Different values of coefficients express the variability in long profile shapes and is related with the litho-tectonic variability of the study area. Channel slope of long profile is estimated taking the derivative of exponential function. Stream power distribution pattern along long profile is estimated by superimposing the discharge and long profile slope. Sensitivity analysis of stream power distribution with decay coefficients of the second order exponential equation is evaluated for a range of coefficient values. Our analysis suggests that the amplitude of stream power peak value is dependent on K1, the proportion of elevation change coming under the fast decay exponent and the location of stream power peak is dependent of the long profile decay coefficient (β1). Different long profile shapes owing to litho-tectonic variability across the Himalayas are responsible for spatial variability of stream power distribution pattern. Most of the stream power peaks lie in the Higher Himalaya. In general, eastern rivers have higher stream power in hinterland area and low stream power in the alluvial plains. This is responsible for, 1) higher erosion rate and sediment supply in hinterland of eastern rivers, 2) the incised and stable nature of channels in the western alluvial plains and 3) aggrading channels with dynamic nature in the eastern alluvial plains. Our study shows that the spatial variability of litho-units defines the coefficients of long profile function which in turn controls the position and magnitude of stream power maxima and hence the geomorphic variability in a fluvial system.
Ecker, Christine; Marquand, Andre; Mourão-Miranda, Janaina; Johnston, Patrick; Daly, Eileen M; Brammer, Michael J; Maltezos, Stefanos; Murphy, Clodagh M; Robertson, Dene; Williams, Steven C; Murphy, Declan G M
2010-08-11
Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively. However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e.g., attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional, and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology of the condition.
Intelligibility of clear speech: effect of instruction.
Lam, Jennifer; Tjaden, Kris
2013-10-01
The authors investigated how clear speech instructions influence sentence intelligibility. Twelve speakers produced sentences in habitual, clear, hearing impaired, and overenunciate conditions. Stimuli were amplitude normalized and mixed with multitalker babble for orthographic transcription by 40 listeners. The main analysis investigated percentage-correct intelligibility scores as a function of the 4 conditions and speaker sex. Additional analyses included listener response variability, individual speaker trends, and an alternate intelligibility measure: proportion of content words correct. Relative to the habitual condition, the overenunciate condition was associated with the greatest intelligibility benefit, followed by the hearing impaired and clear conditions. Ten speakers followed this trend. The results indicated different patterns of clear speech benefit for male and female speakers. Greater listener variability was observed for speakers with inherently low habitual intelligibility compared to speakers with inherently high habitual intelligibility. Stable proportions of content words were observed across conditions. Clear speech instructions affected the magnitude of the intelligibility benefit. The instruction to overenunciate may be most effective in clear speech training programs. The findings may help explain the range of clear speech intelligibility benefit previously reported. Listener variability analyses suggested the importance of obtaining multiple listener judgments of intelligibility, especially for speakers with inherently low habitual intelligibility.
The Use of Race-Related Variables in Counseling Research
ERIC Educational Resources Information Center
Strom, Thad Q.; Lee, D. John; Trahan, Emily; Kaufman, Aimee; Pritchett, Tiffany
2009-01-01
This study provides a detailed analysis of all race-related articles published in prominent counseling journals between 1995 and 2004. Findings indicate that 75% of articles did not define race variables and in the absence of an operational definition, authors tended to conceptualize race as an inherent biological variable. (Contains 3 tables.)
USDA-ARS?s Scientific Manuscript database
In vitro neutral detergent fiber (NDF) digestibility (NDFD) is an empirical measurement used to describe fermentability of NDF by rumen microbes. Variability is inherent in assays and affects the precision that can be expected for replicated samples. The study objective was to evaluate variability w...
USDA-ARS?s Scientific Manuscript database
In vitro neutral detergent fiber (NDF) digestibility (NDFD) is an empirical measurement used to describe fermentability of NDF by rumen microbes. Variability is inherent in assays and affects the precision that can be expected for replicated samples. The study objective was to evaluate variability w...
NASA Astrophysics Data System (ADS)
Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.
2015-12-01
A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel plates set at an angle. The HS analogy is extended to power-law fluid flow in porous media with variable properties parallel or transverse to the flow direction. Comparison with experimental results show that the proposed models capture the propagation of the current front and the current profile at intermediate and late time.
NASA Astrophysics Data System (ADS)
Becker, M.; Karpytchev, M.; Hu, A.; Deser, C.; Lennartz-Sassinek, S.
2017-12-01
Today, the Climate models (CM) are the main tools for forecasting sea level rise (SLR) at global and regional scales. The CM forecasts are accompanied by inherent uncertainties. Understanding and reducing these uncertainties is becoming a matter of increasing urgency in order to provide robust estimates of SLR impact on coastal societies, which need sustainable choices of climate adaptation strategy. These CM uncertainties are linked to structural model formulation, initial conditions, emission scenario and internal variability. The internal variability is due to complex non-linear interactions within the Earth Climate System and can induce diverse quasi-periodic oscillatory modes and long-term persistences. To quantify the effects of internal variability, most studies used multi-model ensembles or sea level projections from a single model ran with perturbed initial conditions. However, large ensembles are not generally available, or too small, and computationally expensive. In this study, we use a power-law scaling of sea level fluctuations, as observed in many other geophysical signals and natural systems, which can be used to characterize the internal climate variability. From this specific statistical framework, we (1) use the pre-industrial control run of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM) to test the robustness of the power-law scaling hypothesis; (2) employ the power-law statistics as a tool for assessing the spread of regional sea level projections due to the internal climate variability for the 21st century NCAR-CCSM; (3) compare the uncertainties in predicted sea level changes obtained from a NCAR-CCSM multi-member ensemble simulations with estimates derived for power-law processes, and (4) explore the sensitivity of spatial patterns of the internal variability and its effects on regional sea level projections.
Weather variability and adaptive management for rangeland restoration
USDA-ARS?s Scientific Manuscript database
Inherent weather variability in upland rangeland systems requires relatively long-term goal setting, and contingency planning for partial success or failure in any given year. Rangeland plant communities are dynamic systems and successional planning is essential for achieving and maintaining system...
The role of internal climate variability for interpreting climate change scenarios
NASA Astrophysics Data System (ADS)
Maraun, Douglas
2013-04-01
When communicating information on climate change, the use of multi-model ensembles has been advocated to sample uncertainties over a range as wide as possible. To meet the demand for easily accessible results, the ensemble is often summarised by its multi-model mean signal. In rare cases, additional uncertainty measures are given to avoid loosing all information on the ensemble spread, e.g., the highest and lowest projected values. Such approaches, however, disregard the fundamentally different nature of the different types of uncertainties and might cause wrong interpretations and subsequently wrong decisions for adaptation. Whereas scenario and climate model uncertainties are of epistemic nature, i.e., caused by an in principle reducible lack of knowledge, uncertainties due to internal climate variability are aleatory, i.e., inherently stochastic and irreducible. As wisely stated in the proverb "climate is what you expect, weather is what you get", a specific region will experience one stochastic realisation of the climate system, but never exactly the expected climate change signal as given by a multi model mean. Depending on the meteorological variable, region and lead time, the signal might be strong or weak compared to the stochastic component. In cases of a low signal-to-noise ratio, even if the climate change signal is a well defined trend, no trends or even opposite trends might be experienced. Here I propose to use the time of emergence (TOE) to quantify and communicate when climate change trends will exceed the internal variability. The TOE provides a useful measure for end users to assess the time horizon for implementing adaptation measures. Furthermore, internal variability is scale dependent - the more local the scale, the stronger the influence of internal climate variability. Thus investigating the TOE as a function of spatial scale could help to assess the required spatial scale for implementing adaptation measures. I exemplify this proposal with a recently published study on the TOE for mean and heavy precipitation trends in Europe. In some regions trends emerge only late in the 21st century or even later, suggesting that in these regions adaptation to internal variability rather than to climate change is required. Yet in other regions the climate change signal is strong, urging for timely adaptation. Douglas Maraun, When at what scale will trends in European mean and heavy precipitation emerge? Env. Res. Lett., in press, 2013.
Translating climate data for business decisions
NASA Astrophysics Data System (ADS)
Steinberg, N.
2015-12-01
Businesses are bound to play an integral role in global and local climate change adaptation efforts, and integrating climate science into business decision-making can help protect companies' bottom-line and the communities which they depend upon. Yet many companies do not have good means to measure and manage climate risks. There are inherent limiting factors to incorporating climate data into existing operations and sourcing strategies. Spatial and temporal incongruities between climate and business models can make integration cumbersome. Even when such incongruities are resolved, raw climate data must undergo multiple transformations until the data is deemed actionable or otherwise translatable in dollar terms. However, the predictability of future impacts is advancing along with the use of second-order variables such as Cooling Degree Days and Water-Limited Crop productivity, helping business managers make better decisions about future energy and water demand requirements under the prospect of rising temperatures and more variable rainfall. This presentation will discuss the methods and opportunities for transforming raw climate data into business metrics. Results for the 2015 Corporate Adaptation Survey, led by Four Twenty Seven and in partnership with Notre Dame Global Adaptation Index, will also be presented to illustrate existing gaps between climate science and its application in the business context.
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
NASA Technical Reports Server (NTRS)
Herskovits, Edward H.; Gerring, Joan P.
2003-01-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.
Validity of flowmeter data in heterogeneous alluvial aquifers
NASA Astrophysics Data System (ADS)
Bianchi, Marco
2017-04-01
Numerical simulations are performed to evaluate the impact of medium-scale sedimentary architecture and small-scale heterogeneity on the validity of the borehole flowmeter test, a widely used method for measuring hydraulic conductivity (K) at the scale required for detailed groundwater flow and solute transport simulations. Reference data from synthetic K fields representing the range of structures and small-scale heterogeneity typically observed in alluvial systems are compared with estimated values from numerical simulations of flowmeter tests. Systematic errors inherent in the flowmeter K estimates are significant when the reference K field structure deviates from the hypothetical perfectly stratified conceptual model at the basis of the interpretation method of flowmeter tests. Because of these errors, the true variability of the K field is underestimated and the distributions of the reference K data and log-transformed spatial increments are also misconstrued. The presented numerical analysis shows that the validity of flowmeter based K data depends on measureable parameters defining the architecture of the hydrofacies, the conductivity contrasts between the hydrofacies and the sub-facies-scale K variability. A preliminary geological characterization is therefore essential for evaluating the optimal approach for accurate K field characterization.
Ecologic Niche Modeling and Spatial Patterns of Disease Transmission
2006-01-01
Ecologic niche modeling (ENM) is a growing field with many potential applications to questions regarding the geography and ecology of disease transmission. Specifically, ENM has the potential to inform investigations concerned with the geography, or potential geography, of vectors, hosts, pathogens, or human cases, and it can achieve fine spatial resolution without the loss of information inherent in many other techniques. Potential applications and current frontiers and challenges are reviewed. PMID:17326931
Towards an integrated forecasting system for fisheries on habitat-bound stocks
NASA Astrophysics Data System (ADS)
Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.
2013-03-01
First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.
Spatial vulnerability assessments by regression kriging
NASA Astrophysics Data System (ADS)
Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor
2016-04-01
Two fairly different complex environmental phenomena, causing natural hazard were mapped based on a combined spatial inference approach. The behaviour is related to various environmental factors and the applied approach enables the inclusion of several, spatially exhaustive auxiliary variables that are available for mapping. Inland excess water (IEW) is an interrelated natural and human induced phenomenon causes several problems in the flat-land regions of Hungary, which cover nearly half of the country. The term 'inland excess water' refers to the occurrence of inundations outside the flood levee that originate from sources differing from flood overflow, it is surplus surface water forming due to the lack of runoff, insufficient absorption capability of soil or the upwelling of groundwater. There is a multiplicity of definitions, which indicate the complexity of processes that govern this phenomenon. Most of the definitions have a common part, namely, that inland excess water is temporary water inundation that occurs in flat-lands due to both precipitation and groundwater emerging on the surface as substantial sources. Radon gas is produced in the radioactive decay chain of uranium, which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on soil physical and meteorological parameters and can enter and accumulate in the buildings. Health risk originating from indoor radon concentration attributed to natural factors is characterized by geogenic radon potential (GRP). In addition to geology and meteorology, physical soil properties play significant role in the determination of GRP. Identification of areas with high risk requires spatial modelling, that is mapping of specific natural hazards. In both cases external environmental factors determine the behaviour of the target process (occurrence/frequncy of IEW and grade of GRP respectively). Spatial auxiliary information representing IEW or GRP forming environmental factors were taken into account to support the spatial inference of the locally experienced IEW frequency and measured GRP values respectively. An efficient spatial prediction methodology was applied to construct reliable maps, namely regression kriging (RK) using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Application of RK also provides the possibility of inherent accuracy assessment. The resulting maps are characterized by global and local measures of its accuracy. Additionally the method enables interval estimation for spatial extension of the areas of predefined risk categories. All of these outputs provide useful contribution to spatial planning, action planning and decision making. Acknowledgement: Our work was partly supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).
NASA Astrophysics Data System (ADS)
Mobilia, M.; Surge, D.
2008-12-01
The Medieval Warm Period (700-1100 YBP) represents a recent period of warm climate, and as such provides a powerful comparison to today's continuing warming trend. However, the spatial and temporal variability inherent in the Medieval Warm Period (MWP) makes it difficult to differentiate between global climate trends and regional variability. The continued study of this period will allow for the better understanding of temperature variability, both regional and global, during this climate interval. Our study is located in the Orkney Islands, Scotland, which is a critical area to understand climate dynamics. The North Atlantic Oscillation and Gulf Stream heavily influence climate in this region, and the study of climate intervals during the MWP will improve our understanding of the behavior of these climate mechanisms during this interval. Furthermore, the vast majority of the climate archive has been derived from either deep marine or arctic environments. Studying a coastal environment will offer valuable insight into the behavior of maritime climate during the MWP. Estimated seasonal sea surface temperature data were derived through isotopic analysis of limpet shells (Patella vulgata). Analysis of modern shells confirms that growth temperature tracks seasonal variation in ambient water temperature. Preliminary data from MWP shells record a seasonal temperature range comparable to that observed in the modern temperature data. We will extend the range of temperature data from the 10th through 14th centuries to advance our knowledge of seasonal temperature variability during the late Holocene.
Modeling photovoltaic diffusion: an analysis of geospatial datasets
NASA Astrophysics Data System (ADS)
Davidson, Carolyn; Drury, Easan; Lopez, Anthony; Elmore, Ryan; Margolis, Robert
2014-07-01
This study combines address-level residential photovoltaic (PV) adoption trends in California with several types of geospatial information—population demographics, housing characteristics, foreclosure rates, solar irradiance, vehicle ownership preferences, and others—to identify which subsets of geospatial information are the best predictors of historical PV adoption. Number of rooms, heating source and house age were key variables that had not been previously explored in the literature, but are consistent with the expected profile of a PV adopter. The strong relationship provided by foreclosure indicators and mortgage status have less of an intuitive connection to PV adoption, but may be highly correlated with characteristics inherent in PV adopters. Next, we explore how these predictive factors and model performance varies between different Investor Owned Utility (IOU) regions in California, and at different spatial scales. Results suggest that models trained with small subsets of geospatial information (five to eight variables) may provide similar explanatory power as models using hundreds of geospatial variables. Further, the predictive performance of models generally decreases at higher resolution, i.e., below ZIP code level since several geospatial variables with coarse native resolution become less useful for representing high resolution variations in PV adoption trends. However, for California we find that model performance improves if parameters are trained at the regional IOU level rather than the state-wide level. We also find that models trained within one IOU region are generally representative for other IOU regions in CA, suggesting that a model trained with data from one state may be applicable in another state.
Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.
2017-01-01
Long-term PM2.5 exposure has been associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of the spatiotemporally continuous distribution of PM2.5 concentrations are important. Satellite-retrieved aerosol optical depth (AOD) has been increasingly used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, previous studies indicated that an inherent disadvantage of many AOD products is their coarse spatial resolution. For instance, the available spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) AOD products are 10 and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm based on MODIS measurements was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5–AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US centered at the Atlanta metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted annually, and we obtained model fitting R2 ranging from 0.71 to 0.85, mean prediction error (MPE) from 1.73 to 2.50 μg m−3, and root mean squared prediction error (RMSPE) from 2.75 to 4.10 μg m−3. In addition, we found cross-validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 μgm−3, and RMSPE from 3.12 to 5.00 μgm−3, indicating a good agreement between the estimated and observed values. Spatial trends showed that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. Our time-series analysis showed that, for the 10-year study period, the PM2.5 levels in the southeastern US have decreased by ∼20 %. The annual decrease has been relatively steady from 2001 to 2007 and from 2008 to 2010 while a significant drop occurred between 2007 and 2008. An observed increase in PM2.5 levels in year 2005 is attributed to elevated sulfate concentrations in the study area in warm months of 2005. PMID:28966656
Bispo, Polyanna da Conceição; dos Santos, João Roberto; Valeriano, Márcio de Morisson; Graça, Paulo Maurício Lima de Alencastro; Balzter, Heiko; França, Helena; Bispo, Pitágoras da Conceição
2016-01-01
Surveying primary tropical forest over large regions is challenging. Indirect methods of relating terrain information or other external spatial datasets to forest biophysical parameters can provide forest structural maps at large scales but the inherent uncertainties need to be evaluated fully. The goal of the present study was to evaluate relief characteristics, measured through geomorphometric variables, as predictors of forest structural characteristics such as average tree basal area (BA) and height (H) and average percentage canopy openness (CO). Our hypothesis is that geomorphometric variables are good predictors of the structure of primary tropical forest, even in areas, with low altitude variation. The study was performed at the Tapajós National Forest, located in the Western State of Pará, Brazil. Forty-three plots were sampled. Predictive models for BA, H and CO were parameterized based on geomorphometric variables using multiple linear regression. Validation of the models with nine independent sample plots revealed a Root Mean Square Error (RMSE) of 3.73 m2/ha (20%) for BA, 1.70 m (12%) for H, and 1.78% (21%) for CO. The coefficient of determination between observed and predicted values were r2 = 0.32 for CO, r2 = 0.26 for H and r2 = 0.52 for BA. The models obtained were able to adequately estimate BA and CO. In summary, it can be concluded that relief variables are good predictors of vegetation structure and enable the creation of forest structure maps in primary tropical rainforest with an acceptable uncertainty. PMID:27089013
Bispo, Polyanna da Conceição; Dos Santos, João Roberto; Valeriano, Márcio de Morisson; Graça, Paulo Maurício Lima de Alencastro; Balzter, Heiko; França, Helena; Bispo, Pitágoras da Conceição
2016-01-01
Surveying primary tropical forest over large regions is challenging. Indirect methods of relating terrain information or other external spatial datasets to forest biophysical parameters can provide forest structural maps at large scales but the inherent uncertainties need to be evaluated fully. The goal of the present study was to evaluate relief characteristics, measured through geomorphometric variables, as predictors of forest structural characteristics such as average tree basal area (BA) and height (H) and average percentage canopy openness (CO). Our hypothesis is that geomorphometric variables are good predictors of the structure of primary tropical forest, even in areas, with low altitude variation. The study was performed at the Tapajós National Forest, located in the Western State of Pará, Brazil. Forty-three plots were sampled. Predictive models for BA, H and CO were parameterized based on geomorphometric variables using multiple linear regression. Validation of the models with nine independent sample plots revealed a Root Mean Square Error (RMSE) of 3.73 m2/ha (20%) for BA, 1.70 m (12%) for H, and 1.78% (21%) for CO. The coefficient of determination between observed and predicted values were r2 = 0.32 for CO, r2 = 0.26 for H and r2 = 0.52 for BA. The models obtained were able to adequately estimate BA and CO. In summary, it can be concluded that relief variables are good predictors of vegetation structure and enable the creation of forest structure maps in primary tropical rainforest with an acceptable uncertainty.
Development of Fire Emissions Inventory Using Satellite Data
There are multiple satellites observing and reporting fire imagery at various spatial and temporal resolutions and each system has inherent merits and deficiencies. In our study, data are acquired from the Moderate Resolution Imaging Spectro-radiometer (MODIS) aboard the Nationa...
Chen, Nan-kuei; Guidon, Arnaud; Chang, Hing-Chiu; Song, Allen W.
2013-01-01
Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3 Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies. PMID:23370063
Spatial Variability of Snowpack Properties On Small Slopes
NASA Astrophysics Data System (ADS)
Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.
The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, David; Collados-Lara, Antonio-Juan; Alcalá, Francisco J.
2017-04-01
This research proposes and applies a method to assess potential impacts of future climatic scenarios on aquifer rainfall recharge in wide and varied regions. The continental Spain territory was selected to show the application. The method requires to generate future series of climatic variables (precipitation, temperature) in the system to simulate them within a previously calibrated hydrological model for the historical data. In a previous work, Alcalá and Custodio (2014) used the atmospheric chloride mass balance (CMB) method for the spatial evaluation of average aquifer recharge by rainfall over the whole of continental Spain, by assuming long-term steady conditions of the balance variables. The distributed average CMB variables necessary to calculate recharge were estimated from available variable-length data series of variable quality and spatial coverage. The CMB variables were regionalized by ordinary kriging at the same 4976 nodes of a 10 km x 10 km grid. Two main sources of uncertainty affecting recharge estimates (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables and from mapping were segregated. Based on these stationary results we define a simple empirical rainfall-recharge model. We consider that spatiotemporal variability of rainfall and temperature are the most important climatic feature and variables influencing potential aquifer recharge in natural regime. Changes in these variables can be important in the assessment of future potential impacts of climatic scenarios over spatiotemporal renewable groundwater resource. For instance, if temperature increases, actual evapotranspitration (EA) will increases reducing the available water for others groundwater balance components, including the recharge. For this reason, instead of defining an infiltration rate coefficient that relates precipitation (P) and recharge we propose to define a transformation function that allows estimating the spatial distribution of recharge (both average value and its uncertainty) from the difference in P and EA in each area. A complete analysis of potential short-term (2016-2045) future climate scenarios in continental Spain has been performed by considering different sources of uncertainty. It is based on the historical climatic data for the period 1976-2005 and the climatic models simulations (for the control [1976-2005] and future scenarios [2016-2045]) performed in the frame of the CORDEX EU project. The most pessimistic emission scenario (RCP8.5) has been considered. For the RCP8.5 scenario we have analyzed the time series generated by simulating with 5 Regional Climatic models (CCLM4-8-17, RCA4, HIRHAM5, RACMO22E, and WRF331F) nested to 4 different General Circulation Models (GCMs). Two different conceptual approaches (bias correction and delta change techniques) have been applied to generate potential future climate scenarios from these data. Different ensembles of obtained time series have been proposed to obtain more representative scenarios by considering all the simulations or only those providing better approximations to the historical statistics based on a multicriteria analysis. This was a step to analyze future potential impacts on the aquifer recharge by simulating them within a rainfall-recharge model. This research has been supported by the CGL2013-48424-C2-2-R (MINECO) and the PMAFI/06/14 (UCAM) projects.
Arctic sea ice trends, variability and implications for seasonal ice forecasting.
Serreze, Mark C; Stroeve, Julienne
2015-07-13
September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson Manukure; Ephraim, James
2017-01-01
The rapidly increasing annual global volume of e-waste, and of its inherently valuable fraction, has created an opportunity for individuals in Agbogbloshie, Accra, Ghana to make a living by using unconventional, uncontrolled, primitive and crude procedures to recycle and recover valuable metals from this waste. The current form of recycling procedures releases hazardous fractions, such as heavy metals, into the soil, posing a significant risk to the environment and human health. Using a handheld global positioning system, 132 soil samples based on 100 m grid intervals were collected and analysed for cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn). Using geostatistical techniques and sediment quality guidelines, this research seeks to assess the potential risk these heavy metals posed to the proposed Korle Ecological Restoration Zone by informal e-waste processing site in Agbogbloshie, Accra, Ghana. Analysis of heavy metals revealed concentrations exceeded the regulatory limits of both Dutch and Canadian soil quality and guidance values, and that the ecological risk posed by the heavy metals extended beyond the main burning and dismantling sites of the informal recyclers to the school, residential, recreational, clinic, farm and worship areas. The heavy metals Cr, Cu, Pb and Zn had normal distribution, spatial variability, and spatial autocorrelation. Further analysis revealed the decreasing order of toxicity, Hg>Cd>Pb> Cu>Zn>Cr, of contributing significantly to the potential ecological risk in the study area.
Construction of an integrated social vulnerability index in urban areas prone to flash flooding
NASA Astrophysics Data System (ADS)
Aroca-Jimenez, Estefania; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres
2017-09-01
Among the natural hazards, flash flooding is the leading cause of weather-related deaths. Flood risk management (FRM) in this context requires a comprehensive assessment of the social risk component. In this regard, integrated social vulnerability (ISV) can incorporate spatial distribution and contribution and the combined effect of exposure, sensitivity and resilience to total vulnerability, although these components are often disregarded. ISV is defined by the demographic and socio-economic characteristics that condition a population's capacity to cope with, resist and recover from risk and can be expressed as the integrated social vulnerability index (ISVI). This study describes a methodological approach towards constructing the ISVI in urban areas prone to flash flooding in Castilla y León (Castile and León, northern central Spain, 94 223 km2, 2 478 376 inhabitants). A hierarchical segmentation analysis (HSA) was performed prior to the principal components analysis (PCA), which helped to overcome the sample size limitation inherent in PCA. ISVI was obtained from weighting vulnerability factors based on the tolerance statistic. In addition, latent class cluster analysis (LCCA) was carried out to identify spatial patterns of vulnerability within the study area. Our results show that the ISVI has high spatial variability. Moreover, the source of vulnerability in each urban area cluster can be identified from LCCA. These findings make it possible to design tailor-made strategies for FRM, thereby increasing the efficiency of plans and policies and helping to reduce the cost of mitigation measures.
Greve, Klaus; Atiemo, Sampson Manukure
2017-01-01
The rapidly increasing annual global volume of e-waste, and of its inherently valuable fraction, has created an opportunity for individuals in Agbogbloshie, Accra, Ghana to make a living by using unconventional, uncontrolled, primitive and crude procedures to recycle and recover valuable metals from this waste. The current form of recycling procedures releases hazardous fractions, such as heavy metals, into the soil, posing a significant risk to the environment and human health. Using a handheld global positioning system, 132 soil samples based on 100 m grid intervals were collected and analysed for cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn). Using geostatistical techniques and sediment quality guidelines, this research seeks to assess the potential risk these heavy metals posed to the proposed Korle Ecological Restoration Zone by informal e-waste processing site in Agbogbloshie, Accra, Ghana. Analysis of heavy metals revealed concentrations exceeded the regulatory limits of both Dutch and Canadian soil quality and guidance values, and that the ecological risk posed by the heavy metals extended beyond the main burning and dismantling sites of the informal recyclers to the school, residential, recreational, clinic, farm and worship areas. The heavy metals Cr, Cu, Pb and Zn had normal distribution, spatial variability, and spatial autocorrelation. Further analysis revealed the decreasing order of toxicity, Hg>Cd>Pb> Cu>Zn>Cr, of contributing significantly to the potential ecological risk in the study area. PMID:29056034
NASA Astrophysics Data System (ADS)
Roostaee, M.; Deng, Z.
2017-12-01
The states' environmental agencies are required by The Clean Water Act to assess all waterbodies and evaluate potential sources of impairments. Spatial and temporal distributions of water quality parameters are critical in identifying Critical Source Areas (CSAs). However, due to limitations in monetary resources and a large number of waterbodies, available monitoring stations are typically sparse with intermittent periods of data collection. Hence, scarcity of water quality data is a major obstacle in addressing sources of pollution through management strategies. In this study spatiotemporal Bayesian Maximum Entropy method (BME) is employed to model the inherent temporal and spatial variability of measured water quality indicators such as Dissolved Oxygen (DO) concentration for Turkey Creek Watershed. Turkey Creek is located in northern Louisiana and has been listed in 303(d) list for DO impairment since 2014 in Louisiana Water Quality Inventory Reports due to agricultural practices. BME method is proved to provide more accurate estimates than the methods of purely spatial analysis by incorporating space/time distribution and uncertainty in available measured soft and hard data. This model would be used to estimate DO concentration at unmonitored locations and times and subsequently identifying CSAs. The USDA's crop-specific land cover data layers of the watershed were then used to determine those practices/changes that led to low DO concentration in identified CSAs. Primary results revealed that cultivation of corn and soybean as well as urban runoff are main contributing sources in low dissolved oxygen in Turkey Creek Watershed.
Large-scale derived flood frequency analysis based on continuous simulation
NASA Astrophysics Data System (ADS)
Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno
2016-04-01
There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several drawbacks reported in traditional approaches for the derived flood frequency analysis and therefore is recommended for large scale flood risk case studies.
Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Faria, Nuno; Bielejec, Filip; Baele, Guy; Russell, Colin A; Smith, Derek J; Pybus, Oliver G; Brockmann, Dirk; Suchard, Marc A
2014-02-01
Information on global human movement patterns is central to spatial epidemiological models used to predict the behavior of influenza and other infectious diseases. Yet it remains difficult to test which modes of dispersal drive pathogen spread at various geographic scales using standard epidemiological data alone. Evolutionary analyses of pathogen genome sequences increasingly provide insights into the spatial dynamics of influenza viruses, but to date they have largely neglected the wealth of information on human mobility, mainly because no statistical framework exists within which viral gene sequences and empirical data on host movement can be combined. Here, we address this problem by applying a phylogeographic approach to elucidate the global spread of human influenza subtype H3N2 and assess its ability to predict the spatial spread of human influenza A viruses worldwide. Using a framework that estimates the migration history of human influenza while simultaneously testing and quantifying a range of potential predictive variables of spatial spread, we show that the global dynamics of influenza H3N2 are driven by air passenger flows, whereas at more local scales spread is also determined by processes that correlate with geographic distance. Our analyses further confirm a central role for mainland China and Southeast Asia in maintaining a source population for global influenza diversity. By comparing model output with the known pandemic expansion of H1N1 during 2009, we demonstrate that predictions of influenza spatial spread are most accurate when data on human mobility and viral evolution are integrated. In conclusion, the global dynamics of influenza viruses are best explained by combining human mobility data with the spatial information inherent in sampled viral genomes. The integrated approach introduced here offers great potential for epidemiological surveillance through phylogeographic reconstructions and for improving predictive models of disease control.
Uncertainty evaluation of a regional real-time system for rain-induced landslides
NASA Astrophysics Data System (ADS)
Kirschbaum, Dalia; Stanley, Thomas; Yatheendradas, Soni
2015-04-01
A new prototype regional model and evaluation framework has been developed over Central America and the Caribbean region using satellite-based information including precipitation estimates, modeled soil moisture, topography, soils, as well as regionally available datasets such as road networks and distance to fault zones. The algorithm framework incorporates three static variables: a susceptibility map; a 24-hr rainfall triggering threshold; and an antecedent soil moisture variable threshold, which have been calibrated using historic landslide events. The thresholds are regionally heterogeneous and are based on the percentile distribution of the rainfall or antecedent moisture time series. A simple decision tree algorithm framework integrates all three variables with the rainfall and soil moisture time series and generates a landslide nowcast in real-time based on the previous 24 hours over this region. This system has been evaluated using several available landslide inventories over the Central America and Caribbean region. Spatiotemporal uncertainty and evaluation metrics of the model are presented here based on available landslides reports. This work also presents a probabilistic representation of potential landslide activity over the region which can be used to further refine and improve the real-time landslide hazard assessment system as well as better identify and characterize the uncertainties inherent in this type of regional approach. The landslide algorithm provides a flexible framework to improve hazard estimation and reduce uncertainty at any spatial and temporal scale.
Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei
2012-04-07
We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.
Vulnerability of Forests in India: A National Scale Assessment.
Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N H
2017-09-01
Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.
Vulnerability of Forests in India: A National Scale Assessment
NASA Astrophysics Data System (ADS)
Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N. H.
2017-09-01
Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.
ASSESSMENT OF SPATIAL AUTOCORRELATION IN EMPIRICAL MODELS IN ECOLOGY
Statistically assessing ecological models is inherently difficult because data are autocorrelated and this autocorrelation varies in an unknown fashion. At a simple level, the linking of a single species to a habitat type is a straightforward analysis. With some investigation int...
Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.
2016-01-01
India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092
Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S
2016-01-01
India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.
RNAi control of aflatoxins in peanut plants, a multifactorial system
USDA-ARS?s Scientific Manuscript database
RNA-interference (RNAi)-mediated control of aflatoxin contamination in peanut plants is a multifactorial and hyper variable system. The use of RNAi biotechnology to silence single genes in plants has inherently high-variability among transgenic events. Also the level of expression of small interfe...
MODIS land cover uncertainty in regional climate simulations
NASA Astrophysics Data System (ADS)
Li, Xue; Messina, Joseph P.; Moore, Nathan J.; Fan, Peilei; Shortridge, Ashton M.
2017-12-01
MODIS land cover datasets are used extensively across the climate modeling community, but inherent uncertainties and associated propagating impacts are rarely discussed. This paper modeled uncertainties embedded within the annual MODIS Land Cover Type (MCD12Q1) products and propagated these uncertainties through the Regional Atmospheric Modeling System (RAMS). First, land cover uncertainties were modeled using pixel-based trajectory analyses from a time series of MCD12Q1 for Urumqi, China. Second, alternative land cover maps were produced based on these categorical uncertainties and passed into RAMS. Finally, simulations from RAMS were analyzed temporally and spatially to reveal impacts. Our study found that MCD12Q1 struggles to discriminate between grasslands and croplands or grasslands and barren in this study area. Such categorical uncertainties have significant impacts on regional climate model outputs. All climate variables examined demonstrated impact across the various regions, with latent heat flux affected most with a magnitude of 4.32 W/m2 in domain average. Impacted areas were spatially connected to locations of greater land cover uncertainty. Both biophysical characteristics and soil moisture settings in regard to land cover types contribute to the variations among simulations. These results indicate that formal land cover uncertainty analysis should be included in MCD12Q1-fed climate modeling as a routine procedure.
The Challenge of Reproducibility and Accuracy in Nutrition Research: Resources and Pitfalls1234
Kuszak, Adam J; Williamson, John S; Hopp, D Craig; Betz, Joseph M
2016-01-01
Inconsistent and contradictory results from nutrition studies conducted by different investigators continue to emerge, in part because of the inherent variability of natural products, as well as the unknown and therefore uncontrolled variables in study populations and experimental designs. Given these challenges inherent in nutrition research, it is critical for the progress of the field that researchers strive to minimize variability within studies and enhance comparability between studies by optimizing the characterization, control, and reporting of products, reagents, and model systems used, as well as the rigor and reporting of experimental designs, protocols, and data analysis. Here we describe some recent developments relevant to research on plant-derived products used in nutrition research, highlight some resources for optimizing the characterization and reporting of research using these products, and describe some of the pitfalls that may be avoided by adherence to these recommendations. PMID:26980822
NASA Technical Reports Server (NTRS)
Pahlevan, Nima; Sarkar, Sudipta; Devadiga, Sadashiva; Wolfe, Robert E.; Roman, Miguel; Vermote, Eric; Lin, Guoqing; Xiong, Xiaoxiong
2016-01-01
With the increasing need to construct long-term climate-quality data records to understand, monitor, and predict climate variability and change, it is vital to continue systematic satellite measurements along with the development of new technology for more quantitative and accurate observations. The Suomi National Polar-orbiting Partnership mission provides continuity in monitoring the Earths surface and its atmosphere in a similar fashion as the heritage MODIS instruments onboard the National Aeronautics and Space Administrations Terra and Aqua satellites. In this paper, we aim at quantifying the consistency of Aqua MODIS and Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Reflectance (LSR) and NDVI products as related to their inherent spatial sampling characteristics. To avoid interferences from sources of measurement and/or processing errors other than spatial sampling, including calibration, atmospheric correction, and the effects of the bidirectional reflectance distribution function, the MODIS and VIIRSLSR products were simulated using the Landsat-8s Operational Land Imager (OLI) LSR products. The simulations were performed using the instruments point spread functions on a daily basis for various OLI scenes over a 16-day orbit cycle. It was found that the daily mean differences due to discrepancies in spatial sampling remain below 0.0015 (1) in absolute surface reflectance at subgranule scale (i.e., OLI scene size).We also found that the MODISVIIRS product intercomparisons appear to be minimally impacted when differences in the corresponding view zenith angles (VZAs) are within the range of -15deg to -35deg (VZA(sub v) - VZA(sub m)), where VIIRS and MODIS footprints resemble in size. In general, depending on the spatial heterogeneity of the OLI scene contents, per-grid-cell differences can reach up to 20.Further spatial analysis of the simulated NDVI and LSR products revealed that, depending on the user accuracy requirements for product intercomparisons, spatial aggregations may be used. It was found that if per-grid-cell differences on the order of 10(in LSR or NDVI) are tolerated, the product intercomparisons are expected to be immune from differences in spatial sampling.
Bi, Zedong; Zhou, Changsong
2016-01-01
In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons). Neurons (including the post-synaptic neuron) in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV) induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV, (2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our work important for understanding functional processes of neuronal networks (such as memory) and neural development. PMID:26941634
NASA Technical Reports Server (NTRS)
Wang, Weile; Nemani, Ramakrishna R.; Michaelis, Andrew; Hashimoto, Hirofumi; Dungan, Jennifer L.; Thrasher, Bridget L.; Dixon, Keith W.
2016-01-01
The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset is comprised of downscaled climate projections that are derived from 21 General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and across two of the four greenhouse gas emissions scenarios (RCP4.5 and RCP8.5). Each of the climate projections includes daily maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2100 and the spatial resolution is 0.25 degrees (approximately 25 km x 25 km). The GDDP dataset has received warm welcome from the science community in conducting studies of climate change impacts at local to regional scales, but a comprehensive evaluation of its uncertainties is still missing. In this study, we apply the Perfect Model Experiment framework (Dixon et al. 2016) to quantify the key sources of uncertainties from the observational baseline dataset, the downscaling algorithm, and some intrinsic assumptions (e.g., the stationary assumption) inherent to the statistical downscaling techniques. We developed a set of metrics to evaluate downscaling errors resulted from bias-correction ("quantile-mapping"), spatial disaggregation, as well as the temporal-spatial non-stationarity of climate variability. Our results highlight the spatial disaggregation (or interpolation) errors, which dominate the overall uncertainties of the GDDP dataset, especially over heterogeneous and complex terrains (e.g., mountains and coastal area). In comparison, the temporal errors in the GDDP dataset tend to be more constrained. Our results also indicate that the downscaled daily precipitation also has relatively larger uncertainties than the temperature fields, reflecting the rather stochastic nature of precipitation in space. Therefore, our results provide insights in improving statistical downscaling algorithms and products in the future.
Saleh, Ziad H.; Apte, Aditya P.; Sharp, Gregory C.; Shusharina, Nadezhda P.; Wang, Ya; Veeraraghavan, Harini; Thor, Maria; Muren, Ludvig P.; Rao, Shyam S.; Lee, Nancy Y.; Deasy, Joseph O.
2014-01-01
Previous methods to estimate the inherent accuracy of deformable image registration (DIR) have typically been performed relative to a known ground truth, such as tracking of anatomic landmarks or known deformations in a physical or virtual phantom. In this study, we propose a new approach to estimate the spatial geometric uncertainty of DIR using statistical sampling techniques that can be applied to the resulting deformation vector fields (DVFs) for a given registration. The proposed DIR performance metric, the distance discordance metric (DDM), is based on the variability in the distance between corresponding voxels from different images, which are co-registered to the same voxel at location (X) in an arbitrarily chosen “reference” image. The DDM value, at location (X) in the reference image, represents the mean dispersion between voxels, when these images are registered to other images in the image set. The method requires at least four registered images to estimate the uncertainty of the DIRs, both for inter-and intra-patient DIR. To validate the proposed method, we generated an image set by deforming a software phantom with known DVFs. The registration error was computed at each voxel in the “reference” phantom and then compared to DDM, inverse consistency error (ICE), and transitivity error (TE) over the entire phantom. The DDM showed a higher Pearson correlation (Rp) with the actual error (Rp ranged from 0.6 to 0.9) in comparison with ICE and TE (Rp ranged from 0.2 to 0.8). In the resulting spatial DDM map, regions with distinct intensity gradients had a lower discordance and therefore, less variability relative to regions with uniform intensity. Subsequently, we applied DDM for intra-patient DIR in an image set of 10 longitudinal computed tomography (CT) scans of one prostate cancer patient and for inter-patient DIR in an image set of 10 planning CT scans of different head and neck cancer patients. For both intra- and inter-patient DIR, the spatial DDM map showed large variation over the volume of interest (the pelvis for the prostate patient and the head for the head and neck patients). The highest discordance was observed in the soft tissues, such as the brain, bladder, and rectum, due to higher variability in the registration. The smallest DDM values were observed in the bony structures in the pelvis and the base of the skull. The proposed metric, DDM, provides a quantitative tool to evaluate the performance of DIR when a set of images is available. Therefore, DDM can be used to estimate and visualize the uncertainty of intra- and/or inter-patient DIR based on the variability of the registration rather than the absolute registration error. PMID:24440838
Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
2012-01-01
Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.
Spatial and temporal variability of soil moisture on the field with and without plants*
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Usowicz, J. B.
2012-04-01
Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil moisture runs in particular objects and of precipitation distribution shows clearly that rainfall has an effect on the soil moisture. The amount of precipitation water that increased the soil moisture depended on the strength of the rainfall, on the hydrological properties of the soil (primarily the soil density), the status of the plant cover, and surface runoff. Basing on the precipitation distribution and on the soil moisture runs, an attempt was made at finding a temporal and spatial relationship between those variables, employing for the purpose the geostatistical methods which permit time and space to be included in the analysis. The geostatistical parameters determined showed the temporal dependence of moisture distribution in the soil profile, with the autocorrelation radius increasing with increasing depth in the profile. The highest values of the radius were observed in the plots with plant cover below the arable horizon, and the lowest in the arable horizon on the barley and fallow plots. The fractal dimensions showed a clear decrease in values with increasing depth in the plots with plant cover, while in the bare plots they were relatively constant within the soil profile under study. Therefore, they indicated that the temporal distribution of soil moisture within the soil profile in the bare field was more random in character than in the plots with plants. The results obtained and the analyses indicate that the moisture in the soil profile, its variability and determination, are significantly affected by the type and condition of plant canopy. The differentiation in moisture content between the plots studied resulted from different precipitation interception and different intensity of water uptake by the roots. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO-3275.
Michell L. Thomey
2012-01-01
Although the Earth's climate system has always been inherently variable, the magnitude and rate of anthropogenic climate change is subjecting ecosystems and the populations that they contain to novel environmental conditions. Because water is the most limiting resource, arid-semiarid ecosystems are likely to be highly responsive to future climate variability. The...
Cross-coherent vector sensor processing for spatially distributed glider networks.
Nichols, Brendan; Sabra, Karim G
2015-09-01
Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.
NASA Astrophysics Data System (ADS)
Ruffault, Julien; Mouillot, Florent; Moebius, Flavia
2013-04-01
Understanding the contribution of biophysical and human drivers to the spatial distribution of fires at regional scale has many ecological and economical implications in a context of on-going global changes. However these fire drivers often interact in complex ways, such that disentangling and assessing the relative contribution of human vs. biophysical factors remains a major challenge. Indeed, the identification of biophysical conditions that promote fires are confused by the inherent stochasticity in fire occurrences and fire spread on the one hand and, by the influence of human factors -through both fire ignition and suppression - on the other. Moreover, different factors may drive fire ignition and fire spread, in such a way that the areas with the highest density of ignitions may not coincide with those where large fires occur. In the present study, we investigated the drivers of fires ignition and spread in a Mediterranean area of southern France. We used a 17 years fire database (the PROMETHEE database from 1989-2006) combined with a set of 8 explanatory variables describing the spatial pattern in ignitions, vegetation and fire weather. We first isolated the weather conditions affecting the fire occurrence and their spread using a statistical model of the weather/fuel water status for each fire event.. The results of these statistical models were used to map the fire weather in terms of average number of days with suitable conditions for burning. Then, we used Boosted regression trees (BRT) models to assess the relative importance of the different variables on the distribution of wildfire with different sizes and to assess the relationship between each variables and fire occurrence and spread probabilities. We found that human activities explained up to 50 % of the spatial distribution of fire ignitions (SDI). The distribution of large fire was chiefly explained by fuel characteristics (about 40%). Surprisingly, the weather indices explained only 20 % of the SDI and its contribution does no vary according to the size of considered fire events. These results suggest that changes in fuel characteristics and human settlements/ activities, rather than weather conditions are the most likely to modify the future distribution of fires in this Mediterranean area. These conclusions provide useful information on the scenarios that could arise from the interaction of changes in climate and land cover for the Mediterranean area in the near future.
USDA-ARS?s Scientific Manuscript database
Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...
Reducing fugitive emissions of hazardous air pollutants from industrial facilities is an ongoing priority for the U.S. Environmental Protection Agency (EPA). Unlike stack emissions, fugitive releases are difficult to detect due to their spatial extent and inherent temporal variab...
Real-time motion-based H.263+ frame rate control
NASA Astrophysics Data System (ADS)
Song, Hwangjun; Kim, JongWon; Kuo, C.-C. Jay
1998-12-01
Most existing H.263+ rate control algorithms, e.g. the one adopted in the test model of the near-term (TMN8), focus on the macroblock layer rate control and low latency under the assumptions of with a constant frame rate and through a constant bit rate (CBR) channel. These algorithms do not accommodate the transmission bandwidth fluctuation efficiently, and the resulting video quality can be degraded. In this work, we propose a new H.263+ rate control scheme which supports the variable bit rate (VBR) channel through the adjustment of the encoding frame rate and quantization parameter. A fast algorithm for the encoding frame rate control based on the inherent motion information within a sliding window in the underlying video is developed to efficiently pursue a good tradeoff between spatial and temporal quality. The proposed rate control algorithm also takes the time-varying bandwidth characteristic of the Internet into account and is able to accommodate the change accordingly. Experimental results are provided to demonstrate the superior performance of the proposed scheme.
Functional Imaging Biomarkers: Potential to Guide an Individualised Approach to Radiotherapy.
Prestwich, R J D; Vaidyanathan, S; Scarsbrook, A F
2015-10-01
The identification of robust prognostic and predictive biomarkers would transform the ability to implement an individualised approach to radiotherapy. In this regard, there has been a surge of interest in the use of functional imaging to assess key underlying biological processes within tumours and their response to therapy. Importantly, functional imaging biomarkers hold the potential to evaluate tumour heterogeneity/biology both spatially and temporally. An ever-increasing range of functional imaging techniques is now available primarily involving positron emission tomography and magnetic resonance imaging. Small-scale studies across multiple tumour types have consistently been able to correlate changes in functional imaging parameters during radiotherapy with disease outcomes. Considerable challenges remain before the implementation of functional imaging biomarkers into routine clinical practice, including the inherent temporal variability of biological processes within tumours, reproducibility of imaging, determination of optimal imaging technique/combinations, timing during treatment and design of appropriate validation studies. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Twenty-Five Centuries of Quantum Physics: From Pythagoras to Us, and from Subjectivism to Realism
NASA Astrophysics Data System (ADS)
Bunge, Mario
Three main theses are proposed. The first is that the idea of a quantum or minimal unit is not peculiar to quantum theory, since it already occurs in the classical theories of elasticity and electrolysis. Second, the peculiarities of the objects described by quantum theory are the following: their basic laws are probabilistic; some of their properties, such as position and energy, are blunt rather than sharp; two particles that were once together continue to be associated even after becoming spatially separated; and the vacuum has physical properties, so that it is a kind of matter. Third, the orthodox or Copenhagen interpretation of the theory is false, and may conveniently be replaced with a realist (though not classicist) interpretation. Heisenberg's inequality, Schrödinger's cat and Zeno's quantum paradox are discussed in the light of the two rival interpretations. It is also shown that the experiments that falsified Bell's inequality do not refute realism but the classicism inherent in hidden variables theories.
Resolution of ab initio shapes determined from small-angle scattering.
Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I
2016-11-01
Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.
Resolution of ab initio shapes determined from small-angle scattering
Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.
2016-01-01
Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683
Pérez-Rodríguez, Gael; Dias, Sónia; Pérez-Pérez, Martín; Fdez-Riverola, Florentino; Azevedo, Nuno F; Lourenço, Anália
2018-03-08
Experimental incapacity to track microbe-microbe interactions in structures like biofilms, and the complexity inherent to the mathematical modelling of those interactions, raises the need for feasible, alternative modelling approaches. This work proposes an agent-based representation of the diffusion of N-acyl homoserine lactones (AHL) in a multicellular environment formed by Pseudomonas aeruginosa and Candida albicans. Depending on the spatial location, C. albicans cells were variably exposed to AHLs, an observation that might help explain why phenotypic switching of individual cells in biofilms occurred at different time points. The simulation and algebraic results were similar for simpler scenarios, although some statistical differences could be observed (p < 0.05). The model was also successfully applied to a more complex scenario representing a small multicellular environment containing C. albicans and P. aeruginosa cells encased in a 3-D matrix. Further development of this model may help create a predictive tool to depict biofilm heterogeneity at the single-cell level.
Approaches to advancescientific understanding of macrosystems ecology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, Ofir; Ball, Becky; Bond-Lamberty, Benjamin
Macrosystem ecological studies inherently investigate processes that interact across multiple spatial and temporal scales, requiring intensive sampling and massive amounts of data from diverse sources to incorporate complex cross-scale and hierarchical interactions. Inherent challenges associated with these characteristics include high computational demands, data standardization and assimilation, identification of important processes and scales without prior knowledge, and the need for large, cross-disciplinary research teams that conduct long-term studies. Therefore, macrosystem ecology studies must utilize a unique set of approaches that are capable of encompassing these methodological characteristics and associated challenges. Several case studies demonstrate innovative methods used in current macrosystem ecologymore » studies.« less
Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre
2014-12-05
Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.
Processes governing phytoplankton blooms in estuaries. II: The role of horizontal transport
Lucas, L.V.; Koseff, Jeffrey R.; Monismith, Stephen G.; Cloern, J.E.; Thompson, J.K.
1999-01-01
The development and distribution of phytoplankton blooms in estuaries are functions of both local conditions (i.e. the production-loss balance for a water column at a particular spatial location) and large-scale horizontal transport. In this study, the second of a 2-paper series, we use a depth-averaged hydrodynamic-biological model to identify transport-related mechanisms impacting phytoplankton biomass accumulation and distribution on a system level. We chose South San Francisco Bay as a model domain, since its combination of a deep channel surrounded by broad shoals is typical of drowned-river estuaries. Five general mechanisms involving interaction of horizontal transport with variability in local conditions are discussed. Residual (on the order of days to weeks) transport mechanisms affecting bloom development and location include residence time/export, import, and the role of deep channel regions as conduits for mass transport. Interactions occurring on tidal time scales, i.e. on the order of hours) include the phasing of lateral oscillatory tidal flow relative to temporal changes in local net phytoplankton growth rates, as well as lateral sloshing of shoal-derived biomass into deep channel regions during ebb and back into shallow regions during flood tide. Based on these results, we conclude that: (1) while local conditions control whether a bloom is possible, the combination of transport and spatial-temporal variability in local conditions determines if and where a bloom will actually occur; (2) tidal-time-scale physical-biological interactions provide important mechanisms for bloom development and evolution. As a result of both subtidal and tidal-time-scale transport processes, peak biomass may not be observed where local conditions are most favorable to phytoplankton production, and inherently unproductive areas may be regions of high biomass accumulation.
Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains
NASA Astrophysics Data System (ADS)
Gallen, Sean F.
2018-07-01
Determining factors that modify Earth's topography is essential for understanding continental mass and nutrient fluxes, and the evolution and diversity of species. Contrary to the paradigm of slow, steady topographic decay after orogenesis ceases, nearly all ancient mountain belts exhibit evidence of unsteady landscape evolution at large spatial scales. External forcing from uplift from dynamic mantle processes or climate change is commonly invoked to explain the unexpected dynamics of dead orogens, yet direct evidence supporting such inferences is generally lacking. Here I use quantitative analysis of fluvial topography in the southern Appalachian Mountains to show that the exhumation of rocks of variable erosional resistance exerts a fundamental, autogenic control on the evolution of post-orogenic landscapes that continually reshapes river networks. I characterize the spatial pattern of erodibility associated with individual rock-types, and use inverse modeling of river profiles to document a ∼150 m base level fall event at 9 ± 3 Ma in the Upper Tennessee drainage basin. This analysis, combined with existing geological and biological data, demonstrates that base level fall was triggered by capture of the Upper Tennessee River basin by the Lower Tennessee River basin in the Late Miocene. I demonstrate that rock-type triggered changes in river network topology gave rise to the modern Tennessee River system and enhanced erosion rates, changed sediment flux and dispersal patterns, and altered bio-evolutionary pathways in the southeastern U.S.A., a biodiversity hotspot. These findings suggest that variability observed in the stratigraphic, geomorphic, and biologic archives of tectonically quiescent regions does not require external drivers, such as geodynamic or climate forcing, as is typically the interpretation. Rather, my findings lead to a new model of inherently unsteady evolution of ancient mountain landscapes due to the geologic legacy of plate tectonics.
A Novel Weighted Kernel PCA-Based Method for Optimization and Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Chen, X.; Tong, C. H.
2016-12-01
It has been demonstrated that machine learning methods can be successfully applied to uncertainty quantification for geophysical systems through the use of the adjoint method coupled with kernel PCA-based optimization. In addition, it has been shown through weighted linear PCA how optimization with respect to both observation weights and feature space control variables can accelerate convergence of such methods. Linear machine learning methods, however, are inherently limited in their ability to represent features of non-Gaussian stochastic random fields, as they are based on only the first two statistical moments of the original data. Nonlinear spatial relationships and multipoint statistics leading to the tortuosity characteristic of channelized media, for example, are captured only to a limited extent by linear PCA. With the aim of coupling the kernel-based and weighted methods discussed, we present a novel mathematical formulation of kernel PCA, Weighted Kernel Principal Component Analysis (WKPCA), that both captures nonlinear relationships and incorporates the attribution of significance levels to different realizations of the stochastic random field of interest. We also demonstrate how new instantiations retaining defining characteristics of the random field can be generated using Bayesian methods. In particular, we present a novel WKPCA-based optimization method that minimizes a given objective function with respect to both feature space random variables and observation weights through which optimal snapshot significance levels and optimal features are learned. We showcase how WKPCA can be applied to nonlinear optimal control problems involving channelized media, and in particular demonstrate an application of the method to learning the spatial distribution of material parameter values in the context of linear elasticity, and discuss further extensions of the method to stochastic inversion.
Burdett, Heidi L.; Donohue, Penelope J. C.; Hatton, Angela D.; Alwany, Magdy A.; Kamenos, Nicholas A.
2013-01-01
Oceanic pH is projected to decrease by up to 0.5 units by 2100 (a process known as ocean acidification, OA), reducing the calcium carbonate saturation state of the oceans. The coastal ocean is expected to experience periods of even lower carbonate saturation state because of the inherent natural variability of coastal habitats. Thus, in order to accurately project the impact of OA on the coastal ocean, we must first understand its natural variability. The production of dimethylsulphoniopropionate (DMSP) by marine algae and the release of DMSP’s breakdown product dimethylsulphide (DMS) are often related to environmental stress. This study investigated the spatiotemporal response of tropical macroalgae (Padina sp., Amphiroa sp. and Turbinaria sp.) and the overlying water column to natural changes in reefal carbonate chemistry. We compared macroalgal intracellular DMSP and water column DMSP+DMS concentrations between the environmentally stable reef crest and environmentally variable reef flat of the fringing Suleman Reef, Egypt, over 45-hour sampling periods. Similar diel patterns were observed throughout: maximum intracellular DMSP and water column DMS/P concentrations were observed at night, coinciding with the time of lowest carbonate saturation state. Spatially, water column DMS/P concentrations were highest over areas dominated by seagrass and macroalgae (dissolved DMS/P) and phytoplankton (particulate DMS/P) rather than corals. This research suggests that macroalgae may use DMSP to maintain metabolic function during periods of low carbonate saturation state. In the reef system, seagrass and macroalgae may be more important benthic producers of dissolved DMS/P than corals. An increase in DMS/P concentrations during periods of low carbonate saturation state may become ecologically important in the future under an OA regime, impacting larval settlement and increasing atmospheric emissions of DMS. PMID:23724073
Domingues, Carla P.; Nolasco, Rita; Dubert, Jesus; Queiroga, Henrique
2012-01-01
Background Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings In this study we test whether dispersal and connectivity patterns generated from a bio-physical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p<0.05) and strong, ranging from 0.34 to 0.81 at time lags of −6 to +5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p<0.001, and r = 0.79, p<0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provide meaningful predictions of the patterns and causes of fine-scale variability in larval supply to marine populations. PMID:22558225
Detection and Attribution of Temperature Trends in the Presence of Natural Variability
NASA Astrophysics Data System (ADS)
Wallace, J. M.
2014-12-01
The fingerprint of human-induced global warming stands out clearly above the noise In the time series of global-mean temperature, but not local temperature. At extratropical latitudes over land the standard error of 50-year linear temperature trends at a fixed point is as large as the cumulative rise in global-mean temperature over the past century. Much of the samping variability in local temperature trends is "dynamically-induced", i.e., attributable to the fact that the seasonally-varying mean circulation varies substantially from one year to the next and anomalous circulation patterns are generally accompanied by anomalous temperature patterns. In the presence of such large sampling variability it is virtually impossible to identify the spatial signature of greenhouse warming based on observational data or to partition observed local temperature trends into natural and human-induced components. It follows that previous IPCC assessments, which have focused on the deterministic signature of human-induced climate change, are inherently limited as to what they can tell us about the attribution of the past record of local temperature change or about how much the temperature at a particular place is likely to rise in the next few decades in response to global warming. To obtain more informative assessments of regional and local climate variability and change it will be necessary to take a probabilistic approach. Just as the use of the ensembles has contributed to more informative extended range weather predictions, large ensembles of climate model simulations can provide a statistical context for interpreting observed climate change and for framing projections of future climate. For some purposes, statistics relating to the interannual variability in the historical record can serve as a surrogate for statistics relating to the diversity of climate change scenarios in large ensembles.
Rios Piedra, Edgar A; Taira, Ricky K; El-Saden, Suzie; Ellingson, Benjamin M; Bui, Alex A T; Hsu, William
2016-02-01
Brain tumor analysis is moving towards volumetric assessment of magnetic resonance imaging (MRI), providing a more precise description of disease progression to better inform clinical decision-making and treatment planning. While a multitude of segmentation approaches exist, inherent variability in the results of these algorithms may incorrectly indicate changes in tumor volume. In this work, we present a systematic approach to characterize variability in tumor boundaries that utilizes equivalence tests as a means to determine whether a tumor volume has significantly changed over time. To demonstrate these concepts, 32 MRI studies from 8 patients were segmented using four different approaches (statistical classifier, region-based, edge-based, knowledge-based) to generate different regions of interest representing tumor extent. We showed that across all studies, the average Dice coefficient for the superset of the different methods was 0.754 (95% confidence interval 0.701-0.808) when compared to a reference standard. We illustrate how variability obtained by different segmentations can be used to identify significant changes in tumor volume between sequential time points. Our study demonstrates that variability is an inherent part of interpreting tumor segmentation results and should be considered as part of the interpretation process.
Plant community variability on a small area in southeastern Montana
James G. MacCracken; Daniel W. Uresk; Richard M. Hansen
1984-01-01
Plant communities are inherently variable due to a number of environmental and biological forces. Canopy cover and aboveground biomass were determined for understory vegetation in plant communities of a prairie grassland-forest ecotone in southeastern Montana. Vegetation units were described using polar ordination and stepwise discriminant analysis. Nine of a total of...
China's Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model.
Cao, Qilong; Liang, Ying; Niu, Xueting
2017-09-18
Background : Air pollution has become an important factor restricting China's economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods : Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM 2.5 . Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results : It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM 2.5 pollutions in the control of other variables. Conclusions : Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables.
"Urban" Schooling and "Urban" Families: The Role of Context and Place
ERIC Educational Resources Information Center
Gadsden, Vivian L.; Dixon-Román, Ezekiel J.
2017-01-01
Conceptualizations of urban context and place in research, practice, and policy are relational, ranging from spatial dimensions to cultural practices of children, families, and communities in metropolitan areas. In this article, we focus on the inherent complexity of these conceptualizations and long-standing debates in education and social…
Beller, Sieghard; Singmann, Henrik; Hüther, Lisa; Bender, Andrea
2015-01-01
When referring to an object in relation to another, speakers of many languages can adopt a relative frame of reference (FoR). Following Levinson (2003), this kind of FoR can be established by projecting an observer's perspective onto the ground object either by translation, reflection, or rotation. So far, research on spatial FoRs has largely ignored the extent of variation in which of these projections are preferred generally, and specifically what kind of FoR is established for spatial arrays in one's back. This may seem justified by assumptions on “natural” preferences: for reflection in frontal settings (Canonical Encounter Hypothesis), and for converting dorsal into frontal situations by a turn of the observer before a reference is made (Turn Hypothesis). We scrutinize these assumptions by comparing the FoRs adopted for small-scale, static spatial arrays by speakers of four languages (German, US-English, Mandarin Chinese, and Tongan). Addressing the problem of inherent ambiguities on the item level when assessing FoRs from spatial prepositions, we use a multinomial processing tree (MPT) model for estimating probabilities of referencing strategies across sets of items. Substantial differences in frontal settings, both between and within languages, disprove the Canonical Encounter Hypothesis—translation occurs as frequently as reflection across samples. In dorsal settings, in contrast, the same type of response dominates in all samples. We suggest that this response is produced by a backward projection of the observer's coordinate system in correspondence with the two main FoR preferences for frontal settings. However, none of these strategies involves a turn of the observer, thus also disproving the Turn Hypothesis. In conclusion, we discuss possible causes of the observed variability, explore links between the domains of space and time, and reflect the relation between language, communication, and culture. PMID:26388802
Relationship between gaseous N dynamics and the hydraulic state of hierarchically structured soils
NASA Astrophysics Data System (ADS)
Schlüter, Steffen; Dörsch, Peter; Vogel, Hans-Jörg
2017-04-01
The inherent spatial heterogeneity of soil generates spatially distributed micro-sites with different local N gas (NO, N2O, N2) production and release rates. Moreover, local micro-site conditions and the pathways between them depend on soil moisture which itself is highly dynamic close to the soil surface. These relationships need to be taken into account for a quantitative understanding of soil denitrification and associated N gas dynamics. Soil structure has been recognized as a key factor to understand the high spatial variability of N gas emissions. In particular gaseous N release from soils depends on: i) the total denitrification rate, which is related to the spatial extent and distribution of anaerobic sites and ii) the probability of N2O to escape from the soil without being further reduced to N2. This impact of soil structure is typically ignored in studies with soil slurries or repacked soil. In this project we run well-defined mesocosm experiments on N gas dynamics with hierarchically structured, artificial soils in which the spatial distribution of substrate and denitrifiers is known exactly. Sintered, porous glass pellets are inoculated with strains of Paracoccus denitrificans and/or Agrobacterium tumefaciens and amended with nutrient solution. These pellets are embedded in coarse-grained sand within gas-tight columns under O2/He atmosphere. The pellets are either places in layers or randomly to create different patterns of N gas production sites and diffusion pathways. Denitrification occurs in the anaerobic centers of the porous pellets, while the partially saturated sand matrix controls the diffusive transport of N gases towards the headspace, where all relevant gas concentrations are monitored with gas chromatography. Water saturations are adjusted such that the diffusive pathways are either fully continuous or partially discontinuous. Preliminary results indicate that the water content exert a major control on the magnitude of denitrification, whereas the onset and dynamics are mainly controlled by the position of the substrate and the denitrifiers.
NASA Astrophysics Data System (ADS)
Greiner, Lucie; Nussbaum, Madlene; Papritz, Andreas; Zimmermann, Stephan; Gubler, Andreas; Grêt-Regamey, Adrienne; Keller, Armin
2018-05-01
Spatial information on soil function fulfillment (SFF) is increasingly being used to inform decision-making in spatial planning programs to support sustainable use of soil resources. Soil function maps visualize soils abilities to fulfill their functions, e.g., regulating water and nutrient flows, providing habitats, and supporting biomass production based on soil properties. Such information must be reliable for informed and transparent decision-making in spatial planning programs. In this study, we add to the transparency of soil function maps by (1) indicating uncertainties arising from the prediction of soil properties generated by digital soil mapping (DSM) that are used for soil function assessment (SFA) and (2) showing the response of different SFA methods to the propagation of uncertainties through the assessment. For a study area of 170 km2 in the Swiss Plateau, we map 10 static soil sub-functions for agricultural soils for a spatial resolution of 20 × 20 m together with their uncertainties. Mapping the 10 soil sub-functions using simple ordinal assessment scales reveals pronounced spatial patterns with a high variability of SFF scores across the region, linked to the inherent properties of the soils and terrain attributes and climate conditions. Uncertainties in soil properties propagated through SFA methods generally lead to substantial uncertainty in the mapped soil sub-functions. We propose two types of uncertainty maps that can be readily understood by stakeholders. Cumulative distribution functions of SFF scores indicate that SFA methods respond differently to the propagated uncertainty of soil properties. Even where methods are comparable on the level of complexity and assessment scale, their comparability in view of uncertainty propagation might be different. We conclude that comparable uncertainty indications in soil function maps are relevant to enable informed and transparent decisions on the sustainable use of soil resources.
A Low Cost High Density Sensor Network for Air Quality at London Heathrow Airport
NASA Astrophysics Data System (ADS)
Bright, V.; Mead, M. I.; Popoola, O. A.; Baron, R. P.; Saffell, J.; Stewart, G.; Kaye, P.; Jones, R.
2012-12-01
Atmospheric composition within urban areas has a direct effect on the air quality of an environment in which a large majority of people live and work. Atmospheric pollutants including ozone (O3), nitrogen dioxide (NO2), volatile organic compounds (VOCs) and particulate matter (PM) can have a significant effect on human health. As such it is important to determine the potential exposure of individuals to these atmospheric constituents and investigate the processes that lead to the degradation of air quality within the urban environment. Whilst modelled pollutant levels on the local scale often suggest high degrees of spatial and temporal variability, the relatively sparse fixed site automated urban networks only provide low spatial resolution data that do not appear adequate in detecting such small scale variability. In this paper we demonstrate that measurements can now be made using networks of low-cost sensors that utilise a variety of techniques, including electrochemical and optical, to measure concentrations of atmospheric species. Once equipped with GPS and GPRS to determine position and transmit data respectively, these networks have the potential to provide valuable insights into pollutant variability inherent on the local or micro-scale. The methodology has been demonstrated successfully in field campaigns carried out in cities including London and Valencia, and is now being deployed as part of the Sensor Networks for Air Quality currently deployed at London Heathrow airport (SNAQ-Heathrow) which is outlined in the partner paper presented by Mead et al. (this conference). The SNAQ-Heathrow network of 50 sensor nodes will provide an unprecedented data set that includes measurements of O3, NO, NO2, CO, CO2, SO2, total VOCs, size-speciated PM as well as meteorological variables that include temperature, relative humidity, wind speed and direction. This network will provide high temporal (20 second intervals) and spatial (50 sites within the airport area) resolution data over a 12 month period with data transmitted back to a server every 2 hours. In this paper we present the data capture and storage, data accessibility, data mining and visualisation techniques applied to the measurements of the SNAQ Heathrow high density sensor network, the preliminary results of which provide an insight into the potential use of such networks in characterising air quality, emissions and validating dispersion models on local scales. We also present a web based interface developed for the sensor network that allows users to access archived data and assess meteorological conditions, atmospheric dispersion, pollutant levels and emission rates.
1999-10-01
instrument, and was deemed unsuitable because it was altered by several variables (patient condition, planned surgical procedure, experience and skill...index of anesthetic risk could be developed. Variables in addition to the patient physical status ( experience of the surgeon, anesthetist, and hospital...and other concurrent illnesses), but also by risk inherent to the specific surgery. Surgical risks include experience of the surgical team, the
NASA Astrophysics Data System (ADS)
Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn
2017-02-01
The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.
Multi-objective four-dimensional vehicle motion planning in large dynamic environments.
Wu, Paul P-Y; Campbell, Duncan; Merz, Torsten
2011-06-01
This paper presents Multi-Step A∗ (MSA∗), a search algorithm based on A∗ for multi-objective 4-D vehicle motion planning (three spatial and one time dimensions). The research is principally motivated by the need for offline and online motion planning for autonomous unmanned aerial vehicles (UAVs). For UAVs operating in large dynamic uncertain 4-D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and a grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles, and the rules of the air. It is shown that MSA∗ finds a cost optimal solution using variable length, angle, and velocity trajectory segments. These segments are approximated with a grid-based cell sequence that provides an inherent tolerance to uncertainty. The computational efficiency is achieved by using variable successor operators to create a multiresolution memory-efficient lattice sampling structure. The simulation studies on the UAV flight planning problem show that MSA∗ meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of a vector neighborhood-based A∗.
Liu, Jin; Liao, Xuhong; Xia, Mingrui; He, Yong
2018-02-01
The human brain is a large, interacting dynamic network, and its architecture of coupling among brain regions varies across time (termed the "chronnectome"). However, very little is known about whether and how the dynamic properties of the chronnectome can characterize individual uniqueness, such as identifying individuals as a "fingerprint" of the brain. Here, we employed multiband resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 105) and a sliding time-window dynamic network analysis approach to systematically examine individual time-varying properties of the chronnectome. We revealed stable and remarkable individual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and variability), which was mainly distributed in three higher order cognitive systems (i.e., default mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimotor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could successfully identify individuals with high accuracy and could further significantly predict individual higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily contributed by the higher order cognitive systems. Together, our findings highlight that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.
2013-01-01
Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 g m3, and RMSPE from 2.75 to 4.10 g m3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 g m3, and RMSPE from 3.12 to 5.00 g m3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The results showed that the PM2.5 levels in the study area followed a generally declining trend from 2001 to 2010 and decreased about 20 during the period. However, there was an exception of an increase in year 2005, which is attributed to elevated sulfate concentrations in the study area in warm months of 2005. An investigation of the impact of wild and prescribed fires on PM2.5 levels in 2007 suggests a positive relationship between them.
Evaluation of downscaled, gridded climate data for the conterminous United States
Robert J. Behnke,; Stephen J. Vavrus,; Andrew Allstadt,; Thomas P. Albright,; Thogmartin, Wayne E.; Volker C. Radeloff,
2016-01-01
Weather and climate affect many ecological processes, making spatially continuous yet fine-resolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this shortcoming by focusing on four major questions: (1) How accurate are downscaled, gridded climate data sets in terms of temperature and precipitation estimates?, (2) Are there significant regional differences in accuracy among data sets?, (3) How accurate are their mean values compared with extremes?, and (4) Does their accuracy depend on spatial resolution? We compared eight widely used downscaled data sets that provide gridded daily weather data for recent decades across the United States. We found considerable differences among data sets and between downscaled and weather station data. Temperature is represented more accurately than precipitation, and climate averages are more accurate than weather extremes. The data set exhibiting the best agreement with station data varies among ecoregions. Surprisingly, the accuracy of the data sets does not depend on spatial resolution. Although some inherent differences among data sets and weather station data are to be expected, our findings highlight how much different interpolation methods affect downscaled weather data, even for local comparisons with nearby weather stations located inside a grid cell. More broadly, our results highlight the need for careful consideration among different available data sets in terms of which variables they describe best, where they perform best, and their resolution, when selecting a downscaled weather data set for a given ecological application.
How does spatial variability of climate affect catchment streamflow predictions?
Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-07-01
In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.
Can high resolution topographic surveys provide reliable grain size estimates?
NASA Astrophysics Data System (ADS)
Pearson, Eleanor; Smith, Mark; Klaar, Megan; Brown, Lee
2017-04-01
High resolution topographic surveys contain a wealth of information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular, several authors have related sub-grid scale topographic variability (or 'surface roughness') to particle grain size by deriving empirical relationships between the two. Such relationships would permit rapid analysis of the spatial distribution of grain size over entire river reaches, providing data to drive distributed hydraulic models and revolutionising monitoring of river restoration projects. However, comparison of previous roughness-grain-size relationships shows substantial variability between field sites and do not take into account differences in patch-scale facies. This study explains this variability by identifying the factors that influence roughness-grain-size relationships. Using 275 laboratory and field-based Structure-from-Motion (SfM) surveys, we investigate the influence of: inherent survey error; irregularity of natural gravels; particle shape; grain packing structure; sorting; and form roughness on roughness-grain-size relationships. A suite of empirical relationships is presented in the form of a decision tree which improves estimations of grain size. Results indicate that the survey technique itself is capable of providing accurate grain size estimates. By accounting for differences in patch facies, R2 was seen to improve from 0.769 to R2 > 0.9 for certain facies. However, at present, the method is unsuitable for poorly sorted gravel patches. In future, a combination of a surface roughness proxy with photosieving techniques using SfM-derived orthophotos may offer improvements on using either technique individually.
Short-term memory for spatial configurations in the tactile modality: a comparison with vision.
Picard, Delphine; Monnier, Catherine
2009-11-01
This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.
Housing price prediction: parametric versus semi-parametric spatial hedonic models
NASA Astrophysics Data System (ADS)
Montero, José-María; Mínguez, Román; Fernández-Avilés, Gema
2018-01-01
House price prediction is a hot topic in the economic literature. House price prediction has traditionally been approached using a-spatial linear (or intrinsically linear) hedonic models. It has been shown, however, that spatial effects are inherent in house pricing. This article considers parametric and semi-parametric spatial hedonic model variants that account for spatial autocorrelation, spatial heterogeneity and (smooth and nonparametrically specified) nonlinearities using penalized splines methodology. The models are represented as a mixed model that allow for the estimation of the smoothing parameters along with the other parameters of the model. To assess the out-of-sample performance of the models, the paper uses a database containing the price and characteristics of 10,512 homes in Madrid, Spain (Q1 2010). The results obtained suggest that the nonlinear models accounting for spatial heterogeneity and flexible nonlinear relationships between some of the individual or areal characteristics of the houses and their prices are the best strategies for house price prediction.
Attributing spatial and temporal changes in soil C in the UK to environmental drivers
NASA Astrophysics Data System (ADS)
Thomas, Amy; Cosby, Bernard; Quin, Sam; Henrys, Pete; Robinson, David; Emmett, Bridget
2015-04-01
The largest terrestrial pool of carbon is found in soils. Understanding how soil C responds to drivers of change (land use and management, atmospheric deposition, climate change) and how these responses are modified by inherent soil properties is crucial if we are to manage soils more sustainably in the future. Here we attempt to attribute spatial and temporal changes in UK soil C to environmental drivers using data from the UK Countryside Survey (CS), a national soil survey across England, Scotland and Wales repeated in 1978, 1998 and 2007. A mixed model approach was used to model soil C concentration (g C kg-1) and density (t C ha-1) and their absolute changes for the time periods 1978-1998, 1998-2007 and 1978-2007 across the CS sites using a variety of explanatory variables: soil (parent material, pH, moisture, Olsen-P, Shannon Diversity Index); atmospheric deposition (nitrogen and sulphur); climate (growing degree days and rain); and land use (aggregate vegetation class). Spatially, prediction of soil C concentration was good; soil moisture, pH, vegetation class and dominant grain size were all significant predictors. Field capacity also appeared to be important; however this data was only collected for a fraction of sites. N% was also strongly related to soil C concentration and density, as would be expected due to coupling of C and N in soil OM pools. Although N may drive soil C through impact on plant productivity, this cannot be separated from correlated C and N losses with OM decomposition, and hence N was not included as a driver for modelling. Predictive power for C density is not as strong as for concentration, which may reflect nonlinear relationships not represented by the modelling approach. Temporally, change in soil C is more difficult to explain, and model predictive power was lower. Change in soil pH was important in explaining change in C concentration and density, along with change in atmospheric deposition; decrease in deposition and associated soil acidity (increase in pH) was associated with a decrease in soil C concentration and density. Change in soil moisture or rainfall was also important. Inherent soil and site properties such as soil texture, vegetation class and parent material appeared to contribute most to the prediction of soil C change through modulation of the relationship between change in soil C and change in pH. Including anthropogenic and natural drivers in models of soil C stocks and changes in the UK enables assessment of the relative importance of each across the UK CS sites, however interactions among the drivers are more difficult to disentangle. Given the statistical significance of a number of drivers and soil variables in predicting soil C stocks and changes in the UK, it is important that these continue to be measured to allow better model development and more reliable predictions of future soil C conditions.
geophylobuilder 1.0: an arcgis extension for creating 'geophylogenies'.
Kidd, David M; Liu, Xianhua
2008-01-01
Evolution is inherently a spatiotemporal process; however, despite this, phylogenetic and geographical data and models remain largely isolated from one another. Geographical information systems provide a ready-made spatial modelling, analysis and dissemination environment within which phylogenetic models can be explicitly linked with their associated spatial data and subsequently integrated with other georeferenced data sets describing the biotic and abiotic environment. geophylobuilder 1.0 is an extension for the arcgis geographical information system that builds a 'geophylogenetic' data model from a phylogenetic tree and associated geographical data. Geophylogenetic database objects can subsequently be queried, spatially analysed and visualized in both 2D and 3D within a geographical information systems. © 2007 The Authors.
The gut microbiome: Connecting spatial organization to function
Tropini, Carolina; Earle, Kristen A.; Huang, Kerwyn Casey; Sonnenburg, Justin L.
2017-01-01
The first rudimentary evidence that the human body harbors a microbiota hinted at the complexity of host-associated microbial ecosystems. Now, almost 400 years later, a renaissance in the study of microbiota spatial organization, driven by coincident revolutions in imaging and sequencing technologies, is revealing functional relationships between biogeography and health, particularly in the vertebrate gut. In this review, we present our current understanding of principles governing the localization of intestinal bacteria, and spatial relationships between bacteria and their hosts. We further discuss important emerging directions that will enable progressing from the inherently descriptive nature of localization and –omics technologies to provide functional, quantitative, and mechanistic insight into this complex ecosystem. PMID:28407481
Spatio-Temporal Variability of Groundwater Storage in India
NASA Technical Reports Server (NTRS)
Bhanja, Soumendra; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit
2016-01-01
Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Ground water storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent).In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.
Spatio-temporal variability of groundwater storage in India.
Bhanja, Soumendra N; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit
2017-01-01
Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Groundwater storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent). In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.
Spatial Variance in Resting fMRI Networks of Schizophrenia Patients: An Independent Vector Analysis
Gopal, Shruti; Miller, Robyn L.; Michael, Andrew; Adali, Tulay; Cetin, Mustafa; Rachakonda, Srinivas; Bustillo, Juan R.; Cahill, Nathan; Baum, Stefi A.; Calhoun, Vince D.
2016-01-01
Spatial variability in resting functional MRI (fMRI) brain networks has not been well studied in schizophrenia, a disease known for both neurodevelopmental and widespread anatomic changes. Motivated by abundant evidence of neuroanatomical variability from previous studies of schizophrenia, we draw upon a relatively new approach called independent vector analysis (IVA) to assess this variability in resting fMRI networks. IVA is a blind-source separation algorithm, which segregates fMRI data into temporally coherent but spatially independent networks and has been shown to be especially good at capturing spatial variability among subjects in the extracted networks. We introduce several new ways to quantify differences in variability of IVA-derived networks between schizophrenia patients (SZs = 82) and healthy controls (HCs = 89). Voxelwise amplitude analyses showed significant group differences in the spatial maps of auditory cortex, the basal ganglia, the sensorimotor network, and visual cortex. Tests for differences (HC-SZ) in the spatial variability maps suggest, that at rest, SZs exhibit more activity within externally focused sensory and integrative network and less activity in the default mode network thought to be related to internal reflection. Additionally, tests for difference of variance between groups further emphasize that SZs exhibit greater network variability. These results, consistent with our prediction of increased spatial variability within SZs, enhance our understanding of the disease and suggest that it is not just the amplitude of connectivity that is different in schizophrenia, but also the consistency in spatial connectivity patterns across subjects. PMID:26106217
Demand, Support, and Perception in Family-Related Stress among Protestant Clergy.
ERIC Educational Resources Information Center
Lee, Cameron; Iverson-Gilbert, Judith
2003-01-01
Studies of clergy have emphasized the effects of stressors inherent to the profession and the impact of these on the minister's personal and family life. A model of family stress was employed to extend the focus to include three classes of variables: demands, social support, and perception. Results indicated that perception variables are more…
Jamie M. Lydersen; Brandon M. Collins; Eric E. Knapp; Gary B. Roller; Scott Stephens
2015-01-01
Although knowledge of surface fuel loads is critical for evaluating potential fire behaviour and effects, their inherent variability makes these difficult to quantify. Several studies relate fuel loads to vegetation type, topography and spectral imaging, but little work has been done examining relationships between forest overstorey variables and surface fuel...
China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model
Cao, Qilong; Liang, Ying; Niu, Xueting
2017-01-01
Background: Air pollution has become an important factor restricting China’s economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods: Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM2.5. Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results: It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM2.5 pollutions in the control of other variables. Conclusions: Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables. PMID:28927016
Baldissera, Ronei; Rodrigues, Everton N L; Hartz, Sandra M
2012-01-01
The distribution of beta diversity is shaped by factors linked to environmental and spatial control. The relative importance of both processes in structuring spider metacommunities has not yet been investigated in the Atlantic Forest. The variance explained by purely environmental, spatially structured environmental, and purely spatial components was compared for a metacommunity of web spiders. The study was carried out in 16 patches of Atlantic Forest in southern Brazil. Field work was done in one landscape mosaic representing a slight gradient of urbanization. Environmental variables encompassed plot- and patch-level measurements and a climatic matrix, while principal coordinates of neighbor matrices (PCNMs) acted as spatial variables. A forward selection procedure was carried out to select environmental and spatial variables influencing web-spider beta diversity. Variation partitioning was used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta-diversity patterns, and to estimate the relative importance of selected environmental variables. Three environmental variables (bush density, land use in the surroundings of patches, and shape of patches) and two spatial variables were selected by forward selection procedures. Variation partitioning revealed that 15% of the variation of beta diversity was explained by a combination of environmental and PCNM variables. Most of this variation (12%) corresponded to pure environmental and spatially environmental structure. The data indicated that (1) spatial legacy was not important in explaining the web-spider beta diversity; (2) environmental predictors explained a significant portion of the variation in web-spider composition; (3) one-third of environmental variation was due to a spatial structure that jointly explains variation in species distributions. We were able to detect important factors related to matrix management influencing the web-spider beta-diversity patterns, which are probably linked to historical deforestation events.
Shifts of environmental and phytoplankton variables in a regulated river: A spatial-driven analysis.
Sabater-Liesa, Laia; Ginebreda, Antoni; Barceló, Damià
2018-06-18
The longitudinal structure of the environmental and phytoplankton variables was investigated in the Ebro River (NE Spain), which is heavily affected by water abstraction and regulation. A first exploration indicated that the phytoplankton community did not resist the impact of reservoirs and barely recovered downstream of them. The spatial analysis showed that the responses of the phytoplankton and environmental variables were not uniform. The two set of variables revealed spatial variability discontinuities and river fragmentation upstream and downstream from the reservoirs. Reservoirs caused the replacement of spatially heterogeneous habitats by homogeneous spatially distributed water bodies, these new environmental conditions downstream benefiting the opportunist and cosmopolitan algal taxa. The application of a spatial auto-regression model to algal biomass (chlorophyll-a) permitted to capture the relevance and contribution of extra-local influences in the river ecosystem. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Net ecosystem metabolism (NEM) is becoming a commonly used ecological indicator of estuarine ecosystem metabolic rates. Estuarine ecosystem processes are spatially and temporally variable, but the corresponding variability in NEM has not been properly assessed. Spatial and temp...
Yu, Ke; Wang, Yue; Shen, Kaiquan; Li, Xiaoping
2013-01-01
The common spatial pattern analysis (CSP), a frequently utilized feature extraction method in brain-computer-interface applications, is believed to be time-invariant and sensitive to noises, mainly due to an inherent shortcoming of purely relying on spatial filtering. Therefore, temporal/spectral filtering which can be very effective to counteract the unfavorable influence of noises is usually used as a supplement. This work integrates the CSP spatial filters with complex channel-specific finite impulse response (FIR) filters in a natural and intuitive manner. Each hybrid spatial-FIR filter is of high-order, data-driven and is unique to its corresponding channel. They are derived by introducing multiple time delays and regularization into conventional CSP. The general framework of the method follows that of CSP but performs better, as proven in single-trial classification tasks like event-related potential detection and motor imagery.
Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)
NASA Astrophysics Data System (ADS)
Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto
2017-04-01
The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.
Kristen K. Cecala; John C. Maerz; Brian J. Halstead; John R. Frisch; Ted L. Gragson; Jeffrey Hepinstall-Cymerman; David S. Leigh; C. Rhett Jackson; James T. Peterson; Catherine M. Pringle
2018-01-01
Understanding how factors that vary in spatial scale relate to population abundance is vital to forecasting species responses to environmental change. Stream and river ecosystems are inherently hierarchical, potentially resulting in organismal responses to fineâscale changes in patch characteristics that are conditional on the watershed context. Here, we...
Virtual Cerebral Ventricular System: An MR-Based Three-Dimensional Computer Model
ERIC Educational Resources Information Center
Adams, Christina M.; Wilson, Timothy D.
2011-01-01
The inherent spatial complexity of the human cerebral ventricular system, coupled with its deep position within the brain, poses a problem for conceptualizing its anatomy. Cadaveric dissection, while considered the gold standard of anatomical learning, may be inadequate for learning the anatomy of the cerebral ventricular system; even with…
Landscape connectivity influences the establishment of Phytophthora ramorum
Emiko T. Condeso; Ross K. Meentemeyer
2008-01-01
As the emergence of invasive pathogens and their impacts on ecological communities increases, so has the interest in understanding how landscape pattern (in other words the configuration and composition of suitable habitat) affects their establishment and spread. Plant pathogen invasions are inherently spatial, but few studies have demonstrated the role of landscape...
Place-People-Practice-Process: Using Sociomateriality in University Physical Spaces Research
ERIC Educational Resources Information Center
Acton, Renae
2017-01-01
Pedagogy is an inherently spatial practice. Implicit in much of the rhetoric of physical space designed for teaching and learning is an ontological position that assumes material space as distinct from human practice, often conceptualising space as causally (and simplistically) impacting upon people's behaviours. An alternative, and growing,…
Lu, Qiang; Sheng, Lei; Zeng, Fei; Gao, Shijie; Qiao, Yanfeng
2016-10-01
Liquid crystal on silicon (LCoS) devices usually show spatial phase nonuniformity (SPNU) in applications of phase modulation, which comprises the phase retardance nonuniformity (PRNU) as a function of the applied voltage and inherent wavefront distortion (WFD) introduced by the device itself. We propose a multipoint calibration method utilizing a Fizeau interferometer to compensate SPNU of the device. Calibration of PRNU is realized by defining a grid of 3×6 cells onto the aperture and then calculating phase retardance of each cell versus a gradient gray pattern. With designing an adjusted gray pattern calculated by the calibrated multipoint phase retardance function, compensation of inherent WFD is achieved. The peak-to-valley (PV) value of the residual WFD compensated by the multipoint calibration method is significantly reduced from 2.5λ to 0.140λ, while the PV value of the residual WFD after global calibration is reduced to 0.364λ. Experimental results of the generated finite-energy 2D Airy beams in Fourier space demonstrate the effectiveness of this multipoint calibration method.
NASA Astrophysics Data System (ADS)
Smajgl, A.; Larson, S.; Hug, B.; De Freitas, D. M.
2010-12-01
SummaryThis paper presents a tool for documenting and monitoring water use benefits in the Great Barrier Reef catchments that allows temporal and spatial comparison along the region. Water, water use benefits and water allocations are currently receiving much attention from Australian policy makers and conservation practitioners. Because of the inherent complexity and variability in water quality, it is essential that scientific information is presented in a meaningful way to policy makers, managers and ultimately, to the general public who have to live with the consequences of the decisions. We developed an inexpensively populated and easily understandable water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region. The index is developed based on a comparative list of selected water-related indices integrating attributes across physico-chemical, economic, social, and ecological domains currently used in the assessment of water quality, water quantity and water use benefits in Australia. Our findings indicate that the proposed index allows the identification of water performance indicators by temporal and spatial comparisons. Benefits for decision makers and conservation practitioners include a flexible way of prioritization towards the domain with highest concern. The broader community benefits from a comprehensive and user-friendly tool, communicating changes in water quality trends more effectively.
Graham, Daniel J; Field, David J
2008-01-01
Two recent studies suggest that natural scenes and paintings show similar statistical properties. But does the content or region of origin of an artwork affect its statistical properties? We addressed this question by having judges place paintings from a large, diverse collection of paintings into one of three subject-matter categories using a forced-choice paradigm. Basic statistics for images whose caterogization was agreed by all judges showed no significant differences between those judged to be 'landscape' and 'portrait/still-life', but these two classes differed from paintings judged to be 'abstract'. All categories showed basic spatial statistical regularities similar to those typical of natural scenes. A test of the full painting collection (140 images) with respect to the works' place of origin (provenance) showed significant differences between Eastern works and Western ones, differences which we find are likely related to the materials and the choice of background color. Although artists deviate slightly from reproducing natural statistics in abstract art (compared to representational art), the great majority of human art likely shares basic statistical limitations. We argue that statistical regularities in art are rooted in the need to make art visible to the eye, not in the inherent aesthetic value of natural-scene statistics, and we suggest that variability in spatial statistics may be generally imposed by manufacture.
Simulating maize yield and biomass with spatial variability of soil field capacity
USDA-ARS?s Scientific Manuscript database
Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...
Modelling space of spread Dengue Hemorrhagic Fever (DHF) in Central Java use spatial durbin model
NASA Astrophysics Data System (ADS)
Ispriyanti, Dwi; Prahutama, Alan; Taryono, Arkadina PN
2018-05-01
Dengue Hemorrhagic Fever is one of the major public health problems in Indonesia. From year to year, DHF causes Extraordinary Event in most parts of Indonesia, especially Central Java. Central Java consists of 35 districts or cities where each region is close to each other. Spatial regression is an analysis that suspects the influence of independent variables on the dependent variables with the influences of the region inside. In spatial regression modeling, there are spatial autoregressive model (SAR), spatial error model (SEM) and spatial autoregressive moving average (SARMA). Spatial Durbin model is the development of SAR where the dependent and independent variable have spatial influence. In this research dependent variable used is number of DHF sufferers. The independent variables observed are population density, number of hospitals, residents and health centers, and mean years of schooling. From the multiple regression model test, the variables that significantly affect the spread of DHF disease are the population and mean years of schooling. By using queen contiguity and rook contiguity, the best model produced is the SDM model with queen contiguity because it has the smallest AIC value of 494,12. Factors that generally affect the spread of DHF in Central Java Province are the number of population and the average length of school.
NASA Astrophysics Data System (ADS)
Schymanski, Stanislaus J.; McDonnell, Jeffrey; Or, Dani
2013-04-01
The behaviour of a catchment is sensitive to the pattern and organisation of its components (hillslopes, land cover etc.). Explaining observed organisation and emergence of pattern requires understanding of key organising principles, recognising that albeit similarities, the larger scale behaviour is likely to differ from that of individual components. In other words, the whole does not necessarily behave like the sum of its parts, because the arrangement of the parts matters. For example, hillslopes involve complex and hydrologically interacting elements (rapid flow pathways, depression storage, slope, and variable soil thickness) that shape hillslope hydrologic response in ways that cannot be represented by a collection of pores as implied by standard hydraulic functions. Additionally, inherent spatial and temporal variability of vegetation prohibits detailed and mechanistic parameterisation of root water uptake and evapotranspiration. The interplay of hydrologic hillslope function, climatic forcing and vegetation dynamics translates into complex catchment behaviour at the outlet. Vegetation, one of the most dynamic determinants of catchment behaviour, may interact with its environment by varying different elements such as root system properties, foliage properties and spatial arrangement. These interactions span different temporal scales from minutes (stomatal conductance) to decades (spatial arrangement) all of which may shape evapotranspiration and hence catchment behaviour. Evidence suggests that vegetation adapts to its environment in a self-organised, predictable way, guided by some overarching goal function, such as maximum net carbon profit or maximum entropy production. Appropriate optimality considerations under prevailing constraints enabled predictions of spatial heterogeneity of vegetation cover, or temporal dynamics of root distribution, canopy properties and water use. The hydrologic hillslope behaviour (e.g., surface and subsurface water fluxes and storage) is a powerful ingredient that defines boundary conditions for vegetation self-organisation. To systematically evaluate the role of this element, we propose a Hillslope Hydraulic Response Function (HHRF) a standardised parameterisation framework based on simplified and analytical representation of a prototypic hillslope. The HHRF uses a few geometrical parameters and intrinsic parameters to represent hillslope response in terms of fluxes and storage dynamics. Such an approach has been instrumental in deducing hydrologic response of watersheds (Kirchner, 2009, WRR) but has not been used for systematic parameterisation of HHRF. Here we separate out the biotic and abiotic components of catchment behaviour and test the sensitivity of vegetation and the catchment water balance to different hypothetical parameterisations of the HHRF.
The spatial structure and temporal synchrony of water quality in stream networks
NASA Astrophysics Data System (ADS)
Abbott, Benjamin; Gruau, Gerard; Zarneske, Jay; Barbe, Lou; Gu, Sen; Kolbe, Tamara; Thomas, Zahra; Jaffrezic, Anne; Moatar, Florentina; Pinay, Gilles
2017-04-01
To feed nine billion people in 2050 while maintaining viable aquatic ecosystems will require an understanding of nutrient pollution dynamics throughout stream networks. Most regulatory frameworks such as the European Water Framework Directive and U.S. Clean Water Act, focus on nutrient concentrations in medium to large rivers. This strategy is appealing because large rivers integrate many small catchments and total nutrient loads drive eutrophication in estuarine and oceanic ecosystems. However, there is growing evidence that to understand and reduce downstream nutrient fluxes we need to look upstream. While headwater streams receive the bulk of nutrients in river networks, the relationship between land cover and nutrient flux often breaks down for small catchments, representing an important ecological unknown since 90% of global stream length occurs in catchments smaller than 15 km2. Though continuous monitoring of thousands of small streams is not feasible, what if we could learn what we needed about where and when to implement monitoring and conservation efforts with periodic sampling of headwater catchments? To address this question we performed repeat synoptic sampling of 56 nested catchments ranging in size from 1 to 370 km2 in western France. Spatial variability in carbon and nutrient concentrations decreased non-linearly as catchment size increased, with thresholds in variance for organic carbon and nutrients occurring between 36 and 68 km2. While it is widely held that temporal variance is higher in smaller streams, we observed consistent temporal variance across spatial scales and the ranking of catchments based on water quality showed strong synchrony in the water chemistry response to seasonal variation and hydrological events. We used these observations to develop two simple management frameworks. The subcatchment leverage concept proposes that mitigation and restoration efforts are more likely to succeed when implemented at spatial scales expressing high variability in the target parameter, which indicates decreased system inertia and demonstrates that alternative system responses are possible. The subcatchment synchrony concept suggests that periodic sampling of headwaters can provide valuable information about pollutant sources and inherent resilience in subcatchments and that if agricultural activity were redistributed based on this assessment of catchment vulnerability to nutrient loading, water quality could be improved while maintaining crop yields.
Roberti, Joshua A.; SanClements, Michael D.; Loescher, Henry W.; Ayres, Edward
2014-01-01
Even though fine-root turnover is a highly studied topic, it is often poorly understood as a result of uncertainties inherent in its sampling, e.g., quantifying spatial and temporal variability. While many methods exist to quantify fine-root turnover, use of minirhizotrons has increased over the last two decades, making sensor errors another source of uncertainty. Currently, no standardized methodology exists to test and compare minirhizotron camera capability, imagery, and performance. This paper presents a reproducible, laboratory-based method by which minirhizotron cameras can be tested and validated in a traceable manner. The performance of camera characteristics was identified and test criteria were developed: we quantified the precision of camera location for successive images, estimated the trueness and precision of each camera's ability to quantify root diameter and root color, and also assessed the influence of heat dissipation introduced by the minirhizotron cameras and electrical components. We report detailed and defensible metrology analyses that examine the performance of two commercially available minirhizotron cameras. These cameras performed differently with regard to the various test criteria and uncertainty analyses. We recommend a defensible metrology approach to quantify the performance of minirhizotron camera characteristics and determine sensor-related measurement uncertainties prior to field use. This approach is also extensible to other digital imagery technologies. In turn, these approaches facilitate a greater understanding of measurement uncertainties (signal-to-noise ratio) inherent in the camera performance and allow such uncertainties to be quantified and mitigated so that estimates of fine-root turnover can be more confidently quantified. PMID:25391023
Chander, G.; Helder, D.L.; Aaron, David; Mishra, N.; Shrestha, A.K.
2013-01-01
Cross-calibration of satellite sensors permits the quantitative comparison of measurements obtained from different Earth Observing (EO) systems. Cross-calibration studies usually use simultaneous or near-simultaneous observations from several spaceborne sensors to develop band-by-band relationships through regression analysis. The investigation described in this paper focuses on evaluation of the uncertainties inherent in the cross-calibration process, including contributions due to different spectral responses, spectral resolution, spectral filter shift, geometric misregistrations, and spatial resolutions. The hyperspectral data from the Environmental Satellite SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY and the EO-1 Hyperion, along with the relative spectral responses (RSRs) from the Landsat 7 Enhanced Thematic Mapper (TM) Plus and the Terra Moderate Resolution Imaging Spectroradiometer sensors, were used for the spectral uncertainty study. The data from Landsat 5 TM over five representative land cover types (desert, rangeland, grassland, deciduous forest, and coniferous forest) were used for the geometric misregistrations and spatial-resolution study. The spectral resolution uncertainty was found to be within 0.25%, spectral filter shift within 2.5%, geometric misregistrations within 0.35%, and spatial-resolution effects within 0.1% for the Libya 4 site. The one-sigma uncertainties presented in this paper are uncorrelated, and therefore, the uncertainties can be summed orthogonally. Furthermore, an overall total uncertainty was developed. In general, the results suggested that the spectral uncertainty is more dominant compared to other uncertainties presented in this paper. Therefore, the effect of the sensor RSR differences needs to be quantified and compensated to avoid large uncertainties in cross-calibration results.
X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability
Gres, Anna T.; Kirby, Karen A.; KewalRamani, Vineet N.; ...
2015-06-04
The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. In this paper, we report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtlymore » altering interhexamer interfaces remote to the ligand-binding site. Finally, inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.« less
NASA Astrophysics Data System (ADS)
Hanke, John R.; Fischer, Mark P.; Pollyea, Ryan M.
2018-03-01
In this study, the directional semivariogram is deployed to investigate the spatial variability of map-scale fracture network attributes in the Paradox Basin, Utah. The relative variability ratio (R) is introduced as the ratio of integrated anisotropic semivariogram models, and R is shown to be an effective metric for quantifying the magnitude of spatial variability for any two azimuthal directions. R is applied to a GIS-based data set comprising roughly 1200 fractures, in an area which is bounded by a map-scale anticline and a km-scale normal fault. This analysis reveals that proximity to the fault strongly influences the magnitude of spatial variability for both fracture intensity and intersection density within 1-2 km. Additionally, there is significant anisotropy in the spatial variability, which is correlated with trends of the anticline and fault. The direction of minimum spatial correlation is normal to the fault at proximal distances, and gradually rotates and becomes subparallel to the fold axis over the same 1-2 km distance away from the fault. We interpret these changes to reflect varying scales of influence of the fault and the fold on fracture network development: the fault locally influences the magnitude and variability of fracture network attributes, whereas the fold sets the background level and structure of directional variability.
Spatial patterns of throughfall isotopic composition at the event and seasonal timescales
Scott T. Allen; Richard F. Keim; Jeffrey J. McDonnell
2015-01-01
Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability...
An Automated Method to Identify Mesoscale Convective Complexes (MCCs) Implementing Graph Theory
NASA Astrophysics Data System (ADS)
Whitehall, K. D.; Mattmann, C. A.; Jenkins, G. S.; Waliser, D. E.; Rwebangira, R.; Demoz, B.; Kim, J.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Joyce, M. J.; Loikith, P.; Lee, H.; Khudikyan, S.; Boustani, M.; Goodman, A.; Zimdars, P. A.; Whittell, J.
2013-12-01
Mesoscale convective complexes (MCCs) are convectively-driven weather systems with a duration of ~10 - 12 hours and contributions of large amounts to the rainfall daily and monthly totals. More than 400 MCCs occur annually over various locations on the globe. In West Africa, ~170 MCCs occur annually during the 180 days representing the summer months (June - November), and contribute ~75% of the annual wet season rainfall. The main objective of this study is to improve automatic identification of MCC over West Africa. The spatial expanse of MCCs and the spatio-temporal variability in their convective characteristics make them difficult to characterize even in dense networks of radars and/or surface gauges. As such there exist criteria for identifying MCCs with satellite images - mostly using infrared (IR) data. Automated MCC identification methods are based on forward and/or backward in time spatial-temporal analysis of the IR satellite data and characteristically incorporate a manual component as these algorithms routinely falter with merging and splitting cloud systems between satellite images. However, these algorithms are not readily transferable to voluminous data or other satellite-derived datasets (e.g. TRMM), thus hindering comprehensive studies of these features both at weather and climate timescales. Recognizing the existing limitations of automated methods, this study explores the applicability of graph theory to creating a fully automated method for deriving a West African MCC dataset from hourly infrared satellite images between 2001- 2012. Graph theory, though not heavily implemented in the atmospheric sciences, has been used for the predicting (nowcasting) of thunderstorms from radar and satellite data by considering the relationship between atmospheric variables at a given time, or for the spatial-temporal analysis of cloud volumes. From these few studies, graph theory appears to be innately applicable to the complexity, non-linearity and inherent chaos of the atmospheric system. Our preliminary results show that the use of graph theory improves data management thus allowing for longer periods to be studied, and creates a transferable method that allows for other data to be utilized.
Sea-level variability in the Common Era along the Atlantic coast of North America
NASA Astrophysics Data System (ADS)
Kemp, A.; Kopp, R. E.; Horton, B.; Little, C. M.; Engelhart, S. E.; Mitrovica, J. X.
2017-12-01
Common Era relative sea-level trends on the margins of the North Atlantic Ocean vary through time and across space as a result of simultaneous global (basin-wide)-, regional- (linear and non-linear), and local-scale processes. A growing suite of relative sea-level reconstructions derived from dated salt-marsh (and mangrove) sediment on the Atlantic coast of North America provides an opportunity to quantify the contributions from several physical processes to Common Era sea-level trends. In particular, this coastline is susceptible to relative sea-level changes caused by melting of the Greenland Ice Sheet and redistribution of existing ocean mass on timescales of days to centuries by evolving patterns and strengths of atmospheric and oceanic circulation. Using a case study from Newfoundland, Canada, we demonstrate how high-resolution (decadal- and decimeter-scale) relative sea level reconstructions are produced from sequences of salt-marsh sediment that were deposited under conditions of long-term sea-level rise. We use an expanded database of Common Era relative sea-level reconstructions from the Atlantic coast of North America that spans locations from Newfoundland to the southern Florida to identify spatial and temporal patterns of change. A spatio-temporal statistical model enables us to decompose each reconstruction (with uncertainty) into contributions from global-, regional- (linear and non-linear), and local-scale processes. This analysis shows that spatially-variable glacio-isostatic adjustment was the primary driver of sea-level change. The global signal is dominated by the onset of anthropogenic sea-level rise in the late 19th century, which caused the 20th century to experience a faster rate of rise than any of the preceding 26 centuries. Differentiating between regional non-linear and local-scale processes is a challenging using an inherently sparse network of reconstructions. However, we show that sites south of Cape Hatteras have sea-level histories distinct to those from more northward locations and propose that this spatial pattern is best explained by dynamic processes that could include century-scale NAO-driven circulation changes. Complementary paleoenvironmental reconstructions from diverse proxies support this interpretation.
NASA Technical Reports Server (NTRS)
Peters, C.; Kampe, F. (Principal Investigator)
1980-01-01
The mathematical description and implementation of the statistical estimation procedure known as the Houston integrated spatial/spectral estimator (HISSE) is discussed. HISSE is based on a normal mixture model and is designed to take advantage of spectral and spatial information of LANDSAT data pixels, utilizing the initial classification and clustering information provided by the AMOEBA algorithm. The HISSE calculates parametric estimates of class proportions which reduce the error inherent in estimates derived from typical classify and count procedures common to nonparametric clustering algorithms. It also singles out spatial groupings of pixels which are most suitable for labeling classes. These calculations are designed to aid the analyst/interpreter in labeling patches with a crop class label. Finally, HISSE's initial performance on an actual LANDSAT agricultural ground truth data set is reported.
Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)
NASA Technical Reports Server (NTRS)
Leisawitz, David T.; Juanola-Parramon, Roser; Bolcar, Matthew; Iacchetta, Alexander S.; Maher, Stephen F.; Rinehart, Stephen A.
2016-01-01
The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data.
Empirical spatial econometric modelling of small scale neighbourhood
NASA Astrophysics Data System (ADS)
Gerkman, Linda
2012-07-01
The aim of the paper is to model small scale neighbourhood in a house price model by implementing the newest methodology in spatial econometrics. A common problem when modelling house prices is that in practice it is seldom possible to obtain all the desired variables. Especially variables capturing the small scale neighbourhood conditions are hard to find. If there are important explanatory variables missing from the model, the omitted variables are spatially autocorrelated and they are correlated with the explanatory variables included in the model, it can be shown that a spatial Durbin model is motivated. In the empirical application on new house price data from Helsinki in Finland, we find the motivation for a spatial Durbin model, we estimate the model and interpret the estimates for the summary measures of impacts. By the analysis we show that the model structure makes it possible to model and find small scale neighbourhood effects, when we know that they exist, but we are lacking proper variables to measure them.
ERIC Educational Resources Information Center
den Besten, Olga
2010-01-01
This article argues that a sense of local belonging and emotional attitudes to one's neighbourhood are inherently interconnected. It explores immigrant children's emotional experiences of their neighbourhoods in Paris and Berlin through subjective maps drawn by the children. The article highlights the social and spatial nature of immigrant…
Modeling, Simulation, and Characterization of Distributed Multi-Agent Systems
2012-01-01
capabilities (vision, LIDAR , differential global positioning, ultrasonic proximity sensing, etc.), the agents comprising a MAS tend to have somewhat lesser...on the simultaneous localization and mapping ( SLAM ) problem [19]. SLAM acknowledges that externally-provided localization information is not...continually-updated mapping databases, generates a comprehensive representation of the spatial and spectral environment. Many times though, inherent SLAM
NASA Astrophysics Data System (ADS)
Lo Celso, Fabrizio; Triolo, Alessandro; Gontrani, Lorenzo; Russina, Olga
2018-06-01
One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization.
J. H. Scott; D. J. Helmbrecht; M. P. Thompson
2014-01-01
Characterizing wildfire risk to a fire-adapted ecosystem presents particular challenges due to its broad spatial extent, inherent complexity, and the difficulty in defining wildfire-induced losses and benefits. Our approach couples stochastic wildfire simulation with a vegetation condition assessment framework to estimate the conditional and expected response of...
The Patterns of Music: Young Children Learning Mathematics through Beat, Rhythm, and Melody
ERIC Educational Resources Information Center
Geist, Kamile; Geist, Eugene A.; Kuznik, Kathleen
2012-01-01
Research on music and music therapy suggests that math and music are related in the brain from very early in life. Musical elements such as steady beat, rhythm, melody, and tempo possess inherent mathematical principles such as spatial properties, sequencing, counting, patterning, and one-to-one correspondence. With new understanding about the…
Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A
2015-01-06
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.
Crawford, John T.; Loken, Luke C.; Casson, Nora J.; Smith, Collin; Stone, Amanda G.; Winslow, Luke A.
2015-01-01
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h–1) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial–aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.
The underlying processes of a soil mite metacommunity on a small scale.
Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin
2017-01-01
Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.
The underlying processes of a soil mite metacommunity on a small scale
Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin
2017-01-01
Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906
Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R
2015-04-01
Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.
NASA Astrophysics Data System (ADS)
Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.
2017-12-01
Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.
Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning
NASA Astrophysics Data System (ADS)
Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.
Spatial Variability of Dissolved Organic Carbon in Headwater Wetlands in Central Pennsylvania
NASA Astrophysics Data System (ADS)
Reichert-Eberhardt, A. J.; Wardrop, D.; Boyer, E. W.
2011-12-01
Dissolved organic carbon (DOC) is known to be of an important factor in many microbially mediated biochemical processes, such as denitrification, that occur in wetlands. The spatial variability of DOC within a wetland could impact the microbes that fuel these processes, which in turn can affect the ecosystem services provided by wetlands. However, the amount of spatial variability of DOC in wetlands is generally unknown. Furthermore, it is unknown how disturbance to wetlands can affect spatial variability of DOC. Previous research in central Pennsylvania headwater wetland soils has shown that wetlands with increased human disturbance had decreased heterogeneity in soil biochemistry. To address groundwater chemical variability 20 monitoring wells were installed in a random pattern in a 400 meter squared plot in a low-disturbance headwater wetland and a high-disturbance headwater wetland in central Pennsylvania. Water samples from these wells will be analyzed for DOC, dissolved inorganic carbon, nitrate, ammonia, and sulfate concentrations, as well as pH, conductivity, and temperature on a seasonal basis. It is hypothesized that there will be greater spatial variability of groundwater chemistry in the low disturbance wetland than the high disturbance wetland. This poster will present the initial data concerning DOC spatial variability in both the low and high impact headwater wetlands.
Tropospheric emissions: monitoring of pollution (TEMPO)
NASA Astrophysics Data System (ADS)
Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David E.; Al-Saadi, Jassim; Janz, Scott J.
2013-09-01
TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch circa 2018. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2 km N/S×4.5 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with European Sentinel-4 and Korean GEMS.
NASA Technical Reports Server (NTRS)
Brunet, Y.; Vauclin, M.
1985-01-01
The correct interpretation of thermal and hydraulic soil parameters infrared from remotely sensed data (thermal infrared, microwaves) implies a good understanding of the causes of their temporal and spatial variability. Given this necessity, the sensitivity of the surface variables (temperature, moisture) to the spatial variability of hydraulic soil properties is tested with a numerical model of heat and mass transfer between bare soil and atmosphere. The spatial variability of hydraulic soil properties is taken into account in terms of the scaling factor. For a given soil, the knowledge of its frequency distribution allows a stochastic use of the model. The results are treated statistically, and the part of the variability of soil surface parameters due to that of soil hydraulic properties is evaluated quantitatively.
Lisa M. Ellsworth; Creighton M. Litton; Andrew D. Taylor; J. Boone Kauffman
2013-01-01
Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass (...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halvorson, J.J.; Smith, J.L.; Bolton, H. Jr.
1995-09-01
Geostatistics are often calculated for a single variable at a time, even though many natural phenomena are functions of several variables. The objective of this work was to demonstrate a nonparametric approach for assessing the spatial characteristics of multiple-variable phenomena. Specifically, we analyzed the spatial characteristics of resource islands in the soil under big sagebrush (Artemisia tridentala Nutt.), a dominant shrub in the intermountain western USA. For our example, we defined resource islands as a function of six soil variables representing concentrations of soil resources, populations of microorganisms, and soil microbial physiological variables. By collectively evaluating the indicator transformations ofmore » these individual variables, we created a new data set, termed a multiple-variable indicator transform or MVIT. Alternate MVITs were obtained by varying the selection criteria. Each MVIT was analyzed with variography to characterize spatial continuity, and with indicator kriging to predict the combined probability of their occurrence at unsampled locations in the landscape. Simple graphical analysis and variography demonstrated spatial dependence for all individual soil variables. Maps derived from ordinary kriging of MVITs suggested that the combined probabilities for encountering zones of above-median resources were greatest near big sagebrush. 51 refs., 5 figs., 1 tab.« less
Floodplain complexity and surface metrics: influences of scale and geomorphology
Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.
2015-01-01
Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different scales would improve our understanding of the role that different environmental variables play at different scales and in different geomorphic settings.
Nijhof, Carl O P; Huijbregts, Mark A J; Golsteijn, Laura; van Zelm, Rosalie
2016-04-01
We compared the influence of spatial variability in environmental characteristics and the uncertainty in measured substance properties of seven chemicals on freshwater fate factors (FFs), representing the residence time in the freshwater environment, and on exposure factors (XFs), representing the dissolved fraction of a chemical. The influence of spatial variability was quantified using the SimpleBox model in which Europe was divided in 100 × 100 km regions, nested in a regional (300 × 300 km) and supra-regional (500 × 500 km) scale. Uncertainty in substance properties was quantified by means of probabilistic modelling. Spatial variability and parameter uncertainty were expressed by the ratio k of the 95%ile and 5%ile of the FF and XF. Our analysis shows that spatial variability ranges in FFs of persistent chemicals that partition predominantly into one environmental compartment was up to 2 orders of magnitude larger compared to uncertainty. For the other (less persistent) chemicals, uncertainty in the FF was up to 1 order of magnitude larger than spatial variability. Variability and uncertainty in freshwater XFs of the seven chemicals was negligible (k < 1.5). We found that, depending on the chemical and emission scenario, accounting for region-specific environmental characteristics in multimedia fate modelling, as well as accounting for parameter uncertainty, can have a significant influence on freshwater fate factor predictions. Therefore, we conclude that it is important that fate factors should not only account for parameter uncertainty, but for spatial variability as well, as this further increases the reliability of ecotoxicological impacts in LCA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola
2018-03-01
There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.
Panarchy and environmental policy
Environmental law plays a key role in shaping policy for sustainability. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in socio-ecological systems is critical. Sustainability likely must occur via the institutions...
Resilience and environmental management
Environmental law plays a key role in shaping policy for sustainability. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in socio-ecological systems is critical. Sustainability likely must occur via the institutions...
State-and-transition simulation models: a framework for forecasting landscape change
Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée
2016-01-01
SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of landscape dynamics.
Shive, Kristen L; Preisler, Haiganoush K; Welch, Kevin R; Safford, Hugh D; Butz, Ramona J; O'Hara, Kevin L; Stephens, Scott L
2018-05-29
Shifting disturbance regimes can have cascading effects on many ecosystems processes. This is particularly true when the scale of the disturbance no longer matches the regeneration strategy of the dominant vegetation. In the yellow pine and mixed conifer forests of California, over a century of fire exclusion and the warming climate are increasing the incidence and extent of stand-replacing wildfire; such changes in severity patterns are altering regeneration dynamics by dramatically increasing the distance from live tree seed sources. This has raised concerns about limitations to natural reforestation and the potential for conversion to non-forested vegetation types, which in turn has implications for shifts in many ecological processes and ecosystem services. We used a California region-wide dataset with 1,848 plots across 24 wildfires in yellow pine and mixed conifer forests to build a spatially-explicit habitat suitability model for forecasting postfire forest regeneration. To model the effect of seed availability, the critical initial biological filter for regeneration, we used a novel approach to predicting spatial patterns of seed availability by estimating annual seed production from existing basal area and burn severity maps. The probability of observing any conifer seedling in a 60m 2 area (the field plot scale) was highly dependent on 30-year average annual precipitation, burn severity and seed availability. We then used this model to predict regeneration probabilities across the entire extent of a "new' fire (the 2014 King Fire), which highlights the spatial variability inherent in postfire regeneration patterns. Such accurate forecasts of postfire regeneration patterns are of importance to land managers and conservationists interested in maintaining forest cover on the landscape. Our tool can also help anticipate shifts in ecosystem properties, supporting researchers interested in investigating questions surrounding alternative stable states, and the interaction of altered disturbance regimes and the changing climate. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Golf in the Wind: Exploring the Effect of Wind on the Accuracy of Golf Shots
NASA Astrophysics Data System (ADS)
Yaghoobian, Neda; Mittal, Rajat
2015-11-01
Golf play is highly dependent on the weather conditions with wind being the most significant factor in the unpredictability of the ball landing position. The direction and strength of the wind alters the aerodynamic forces on a ball in flight, and consequently its speed, distance and direction of travel. The fact that local wind conditions on any particular hole change over times-scales ranging all the way from a few seconds to minutes, hours and days introduces an element of variability in the ball trajectory that is not understood. Any such analysis is complicated by the effect of the local terrestrial and vegetation topology, as well as the inherent complexity of golf-ball aerodynamics. In the current study, we use computational modeling to examine the unpredictability of the shots under different wind conditions over Hole-12 at the Augusta National Golf Club, where the Masters Golf Tournament takes place every year. Despite this being the shortest hole on the course, the presence of complex vegetation canopy around this hole introduces a spatial and temporal variability in wind conditions that evokes uncertainty and even fear among professional golfers. We use our model to examine the effect of wind direction and wind-speed on the accuracy of the golf shots at this hole and use the simulations to determine the key aerodynamic factors that affect the accuracy of the shot.
Estimating labile particulate iron concentrations in coastal waters from remote sensing data
NASA Astrophysics Data System (ADS)
McGaraghan, Anna R.; Kudela, Raphael M.
2012-02-01
Owing to the difficulties inherent in measuring trace metals and the importance of iron as a limiting nutrient for biological systems, the ability to monitor particulate iron concentration remotely is desirable. This study examines the relationship between labile particulate iron, described here as weak acid leachable particulate iron or total dissolvable iron, and easily obtained bio-optical measurements. We develop a bio-optical proxy that can be used to estimate large-scale patterns of labile iron concentrations in surface waters, and we extend this by including other environmental variables in a multiple linear regression statistical model. By utilizing a ratio of optical backscatter and fluorescence obtained by satellite, we identify patterns in iron concentrations confirmed by traditional shipboard sampling. This basic relationship is improved with the addition of other environmental parameters in the statistical linear regression model. The optical proxy detects known temporal and spatial trends in average surface iron concentrations in Monterey Bay. The proxy is robust in that similar performance was obtained using two independent particulate iron data sets, but it exhibits weaker correlations than the full statistical model. This proxy will be a valuable tool for oceanographers seeking to monitor iron concentrations in coastal regions and allows for better understanding of the variability of labile particulate iron in surface waters to complement direct measurement of leachable particulate or total dissolvable iron.
User-based representation of time-resolved multimodal public transportation networks.
Alessandretti, Laura; Karsai, Márton; Gauvin, Laetitia
2016-07-01
Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments.
User-based representation of time-resolved multimodal public transportation networks
Alessandretti, Laura; Gauvin, Laetitia
2016-01-01
Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments. PMID:27493773
50th Anniversary of Radiation Budget Measurements from Satellites
NASA Astrophysics Data System (ADS)
Raschke, Ehrhard, ,, Dr.; Kinne, Stefan, ,, Dr.
2010-05-01
The "space race" between the USA and the Soviet Union supported rapid developments of instruments to measure properties of the atmosphere from satellite platforms. The satellite Explorer 7 (launch on 13 October 1959) was the first to carry sensors which were sensitive to the fluxes of solar (shortwave) and terrestrial (longwave) radiation leaving the Earth to space. Improved versions of those sensors and more complicated radiometers were flown on various operational and experimental satellites of the Nimbus, ESSA, TIROS, COSMOS, and NOAA series. There results, although often inherent to strong sampling insufficiencies, provided already a general picture on the spatial distribution and seasonal variability of radiation budget components at the Top of the Atmosphere, which finally could be refined with the more recent and more accurate and complete data sets of the experiments ERBE, CERES and ScRaB. Numerical analyses of climate data complemented such measurements to obtain a complete picture on the radiation budget at various levels within the atmosphere and at ground. These data is now used to validate the performance of climate models.
Jensen, Mette H; Sukumaran, Madhav; Johnson, Christopher M; Greger, Ingo H; Neuweiler, Hannes
2011-11-18
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the central nervous system and play key roles in brain development and disease. iGluRs have two distinct extracellular domains, but the functional role of the distal N-terminal domain (NTD) is poorly understood. Crystal structures of the NTD from some non-N-methyl-d-aspartate (NMDA) iGluRs are consistent with a rigid body that facilitates receptor assembly but suggest an additional dynamic role that could modulate signaling. Here, we moved beyond spatial and temporal limitations of conventional protein single-molecule spectroscopy by employing correlation analysis of extrinsic oxazine fluorescence fluctuations. We observed nanosecond (ns)-to-microsecond (μs) motions of loop segments and helices within a region of an AMPA-type iGluR NTD, which has been identified previously to be structurally variable. Our data reveal that the AMPA receptor NTD undergoes rapid conformational fluctuations, suggesting an inherent allosteric capacity for this domain in addition to its established assembly function. Copyright © 2011 Elsevier Ltd. All rights reserved.
Stratospheric mountain wave attenuation in positive and negative ambient wind shear
NASA Astrophysics Data System (ADS)
Kruse, C. G.; Smith, R. B.
2016-12-01
Recently, much has been learned about the vertical propagation and attenuation of mountain waves launched by the Southern Alps of New Zealand (NZ) from the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. Over NZ, approximately half of mountain wave events are strongly attenuated in a lower-stratospheric "valve layer," defined as a layer of reduced wind with no critical levels. Within a valve layer, negative wind shear causes mountain waves steepen and attenuate, with the amount of transmitted momentum flux controlled by the minimum wind speed within the layer. The other half of wave events are deep (propagating to 35+ km), usually with positive wind shear. Within these deep events, increasing amplitude with decreasing density causes mountain waves to attenuate gradually (after spatial/temporal averaging). Global reanalyses indicate that this valve layer is a climatological feature in the wintertime mid-latitudes above the subtropical jet, while deep events and gradual attenuation occur over higher latitudes below the polar stratospheric jet. The local physics of mountain wave attenuation in positive and negative ambient wind shear are investigated using realistic winter-long (JJA) 6-km resolution Weather Research and Forecasting (WRF) model simulations over the Andes. Attention is given to the spatiotemporal variability of wave attenuation and the various factors driving this variability (e.g. variability in wave generation, ambient conditions at attenuation level, inherent wave-induced instabilities). Mesoscale potential vorticity generation is used as an indicator of wave attenuation. Additionally, regionally integrated wave momentum flux and gravity wave drag (GWD) within WRF are quantified and compared with parameterized quantities in the MERRA1 and 2 reanalyses.
Health and household air pollution from solid fuel use: the need for improved exposure assessment.
Clark, Maggie L; Peel, Jennifer L; Balakrishnan, Kalpana; Breysse, Patrick N; Chillrud, Steven N; Naeher, Luke P; Rodes, Charles E; Vette, Alan F; Balbus, John M
2013-10-01
Nearly 3 billion people worldwide rely on solid fuel combustion to meet basic household energy needs. The resulting exposure to air pollution causes an estimated 4.5% of the global burden of disease. Large variability and a lack of resources for research and development have resulted in highly uncertain exposure estimates. We sought to identify research priorities for exposure assessment that will more accurately and precisely define exposure-response relationships of household air pollution necessary to inform future cleaner-burning cookstove dissemination programs. As part of an international workshop in May 2011, an expert group characterized the state of the science and developed recommendations for exposure assessment of household air pollution. The following priority research areas were identified to explain variability and reduce uncertainty of household air pollution exposure measurements: improved characterization of spatial and temporal variability for studies examining both short- and long-term health effects; development and validation of measurement technology and approaches to conduct complex exposure assessments in resource-limited settings with a large range of pollutant concentrations; and development and validation of biomarkers for estimating dose. Addressing these priority research areas, which will inherently require an increased allocation of resources for cookstove research, will lead to better characterization of exposure-response relationships. Although the type and extent of exposure assessment will necessarily depend on the goal and design of the cookstove study, without improved understanding of exposure-response relationships, the level of air pollution reduction necessary to meet the health targets of cookstove interventions will remain uncertain.
Non-monotonic resonance in a spatially forced Lengyel-Epstein model
Haim, Lev; Hagberg, Aric; Meron, Ehud
2015-06-02
Here, we study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. Furthermore, we show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcationmore » can be reversed. Finally, we attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.« less
A sparse equivalent source method for near-field acoustic holography.
Fernandez-Grande, Efren; Xenaki, Angeliki; Gerstoft, Peter
2017-01-01
This study examines a near-field acoustic holography method consisting of a sparse formulation of the equivalent source method, based on the compressive sensing (CS) framework. The method, denoted Compressive-Equivalent Source Method (C-ESM), encourages spatially sparse solutions (based on the superposition of few waves) that are accurate when the acoustic sources are spatially localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is addressed. Numerical and experimental results on a classical guitar and on a highly reactive dipole-like source are presented. C-ESM is valid beyond the conventional sampling limits, making wide-band reconstruction possible. Spatially extended sources can also be addressed with C-ESM, although in this case the obtained solution does not recover the spatial extent of the source.
Terza, Joseph V; Bradford, W David; Dismuke, Clara E
2008-01-01
Objective To investigate potential bias in the use of the conventional linear instrumental variables (IV) method for the estimation of causal effects in inherently nonlinear regression settings. Data Sources Smoking Supplement to the 1979 National Health Interview Survey, National Longitudinal Alcohol Epidemiologic Survey, and simulated data. Study Design Potential bias from the use of the linear IV method in nonlinear models is assessed via simulation studies and real world data analyses in two commonly encountered regression setting: (1) models with a nonnegative outcome (e.g., a count) and a continuous endogenous regressor; and (2) models with a binary outcome and a binary endogenous regressor. Principle Findings The simulation analyses show that substantial bias in the estimation of causal effects can result from applying the conventional IV method in inherently nonlinear regression settings. Moreover, the bias is not attenuated as the sample size increases. This point is further illustrated in the survey data analyses in which IV-based estimates of the relevant causal effects diverge substantially from those obtained with appropriate nonlinear estimation methods. Conclusions We offer this research as a cautionary note to those who would opt for the use of linear specifications in inherently nonlinear settings involving endogeneity. PMID:18546544
Testing of a variable-stroke Stirling engine
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Allen, David J.
1986-01-01
Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the DOE Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hours total with both He and H2 as working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke (VS) and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent with the VS concept but do emphasize the need for careful design in the area of the crossheads.
Testing of a variable-stroke Stirling engine
NASA Technical Reports Server (NTRS)
Thieme, L. G.; Allen, D. J.
1986-01-01
Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the DOE Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hours total with both He and H2 working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke (VS) and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent with the VS concept but do emphasize the need for careful design in the area of the crossheads.
Can APEX Represent In-Field Spatial Variability and Simulate Its Effects On Crop Yields?
USDA-ARS?s Scientific Manuscript database
Precision agriculture, from variable rate nitrogen application to precision irrigation, promises improved management of resources by considering the spatial variability of topography and soil properties. Hydrologic models need to simulate the effects of this variability if they are to inform about t...
2017-01-01
The magnitude of diffusive carbon dioxide (CO2) and methane (CH4) emission from man-made reservoirs is uncertain because the spatial variability generally is not well-represented. Here, we examine the spatial variability and its drivers for partial pressure, gas-exchange velocity (k), and diffusive flux of CO2 and CH4 in three tropical reservoirs using spatially resolved measurements of both gas concentrations and k. We observed high spatial variability in CO2 and CH4 concentrations and flux within all three reservoirs, with river inflow areas generally displaying elevated CH4 concentrations. Conversely, areas close to the dam are generally characterized by low concentrations and are therefore not likely to be representative for the whole system. A large share (44–83%) of the within-reservoir variability of gas concentration was explained by dissolved oxygen, pH, chlorophyll, water depth, and within-reservoir location. High spatial variability in k was observed, and kCH4 was persistently higher (on average, 2.5 times more) than kCO2. Not accounting for the within-reservoir variability in concentrations and k may lead to up to 80% underestimation of whole-system diffusive emission of CO2 and CH4. Our findings provide valuable information on how to develop field-sampling strategies to reliably capture the spatial heterogeneity of diffusive carbon fluxes from reservoirs. PMID:29257874
Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl
2016-01-01
The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.
Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl
2016-01-01
The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lan; Hill, K. W.; Bitter, M.
Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
NASA Astrophysics Data System (ADS)
Krishnaswami, Venkataraman; De Luca, Giulia M. R.; Breedijk, Ronald M. P.; Van Noorden, Cornelis J. F.; Manders, Erik M. M.; Hoebe, Ron A.
2017-02-01
Fluorescence microscopy is an important tool in biomedical imaging. An inherent trade-off lies between image quality and photodamage. Recently, we have introduced rescan confocal microscopy (RCM) that improves the lateral resolution of a confocal microscope down to 170 nm. Previously, we have demonstrated that with controlled-light exposure microscopy, spatial control of illumination reduces photodamage without compromising image quality. Here, we show that the combination of these two techniques leads to high resolution imaging with reduced photodamage without compromising image quality. Implementation of spatially-controlled illumination was carried out in RCM using a line scanning-based approach. Illumination is spatially-controlled for every line during imaging with the help of a prediction algorithm that estimates the spatial profile of the fluorescent specimen. The estimation is based on the information available from previously acquired line images. As a proof-of-principle, we show images of N1E-115 neuroblastoma cells, obtained by this new setup with reduced illumination dose, improved resolution and without compromising image quality.
NASA Astrophysics Data System (ADS)
Gong, Jun; Zhu, Qing
2006-10-01
As the special case of VGE in the fields of AEC (architecture, engineering and construction), Virtual Building Environment (VBE) has been broadly concerned. Highly complex, large-scale 3d spatial data is main bottleneck of VBE applications, so 3d spatial data organization and management certainly becomes the core technology for VBE. This paper puts forward 3d spatial data model for VBE, and the performance to implement it is very high. Inherent storage method of CAD data makes data redundant, and doesn't concern efficient visualization, which is a practical bottleneck to integrate CAD model, so An Efficient Method to Integrate CAD Model Data is put forward. Moreover, Since the 3d spatial indices based on R-tree are usually limited by their weakness of low efficiency due to the severe overlap of sibling nodes and the uneven size of nodes, a new node-choosing algorithm of R-tree are proposed.
Zhao, Hui; Chen, Chuansheng; Zhang, Hongchuan; Zhou, Xinlin; Mei, Leilei; Chen, Chunhui; Chen, Lan; Cao, Zhongyu; Dong, Qi
2012-01-01
Using an artificial-number learning paradigm and the ERP technique, the present study investigated neural mechanisms involved in the learning of magnitude and spatial order. 54 college students were divided into 2 groups matched in age, gender, and school major. One group was asked to learn the associations between magnitude (dot patterns) and the meaningless Gibson symbols, and the other group learned the associations between spatial order (horizontal positions on the screen) and the same set of symbols. Results revealed differentiated neural mechanisms underlying the learning processes of symbolic magnitude and spatial order. Compared to magnitude learning, spatial-order learning showed a later and reversed distance effect. Furthermore, an analysis of the order-priming effect showed that order was not inherent to the learning of magnitude. Results of this study showed a dissociation between magnitude and order, which supports the numerosity code hypothesis of mental representations of magnitude. PMID:23185363
Beyond the Mental Number Line: A Neural Network Model of Number-Space Interactions
ERIC Educational Resources Information Center
Chen, Qi; Verguts, Tom
2010-01-01
It is commonly assumed that there is an interaction between the representations of number and space (e.g., [Dehaene et al., 1993] and [Walsh, 2003]), typically ascribed to a mental number line. The exact nature of this interaction has remained elusive, however. Here we propose that spatial aspects are not inherent to number representations, but…
Steven P. Norman; Danny C. Lee; Sandra Jacobson; Christine Damiani
2010-01-01
The tradeoffs that surround forest management are inherently complex, often involving multiple temporal and spatial scales. For example, conflicts may result when fuel treatments are designed to mediate long-term fuel hazards, but activities could impair sensitive aquatic habitat or degrade wildlife habitat in the short term. This complexity makes it hard for managers...
Harold S.J. Zald; Thomas A. Spies; Rupert Seidl; Robert J. Pabst; Keith A. Olsen; Ashley Steel
2016-01-01
Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and...
Spatial memory in foraging games.
Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T
2016-03-01
Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging. Copyright © 2015 Elsevier B.V. All rights reserved.
Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride
NASA Technical Reports Server (NTRS)
Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.
1989-01-01
Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.
Panarchy, adaptive management and environmental policy
Environmental law plays a key role in shaping policy for sustainability. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in socio-ecological systems is critical. Sustainability likely must occur via the institutions...
Peixoto, Roberta B.; Machado-Silva, Fausto; Marotta, Humberto; Enrich-Prast, Alex; Bastviken, David
2015-01-01
Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period. CH4 flux was dominated by frequent and ubiquitous ebullition. A strong but predictable spatial variability (decreasing flux with increasing distance to the shore or to littoral vegetation) was found, and this pattern can be addressed by sampling along transects from the shore to the center. Although no distinct day-to-day variability were found, a significant increase in flux was identified from measurement day 1 to measurement day 5, which was likely attributable to a simultaneous increase in temperature. Our study demonstrates that representative emission assessments requires consideration of spatial variability, but also that spatial variability patterns are predictable for lakes of this type and may therefore be addressed through limited sampling efforts if designed properly (e.g., fewer chambers may be used if organized along transects). Such optimized assessments of spatial variability are beneficial by allowing more of the available sampling resources to focus on assessing temporal variability, thereby improving overall flux assessments. PMID:25860229
NASA Astrophysics Data System (ADS)
Veiga, P.; Rubal, M.; Vieira, R.; Arenas, F.; Sousa-Pinto, I.
2013-03-01
Natural assemblages are variable in space and time; therefore, quantification of their variability is imperative to identify relevant scales for investigating natural or anthropogenic processes shaping these assemblages. We studied the variability of intertidal macroalgal assemblages on the North Portuguese coast, considering three spatial scales (from metres to 10 s of kilometres) following a hierarchical design. We tested the hypotheses that (1) spatial pattern will be invariant at all the studied scales and (2) spatial variability of macroalgal assemblages obtained by using species will be consistent with that obtained using functional groups. This was done considering as univariate variables: total biomass and number of taxa as well as biomass of the most important species and functional groups and as multivariate variables the structure of macroalgal assemblages, both considering species and functional groups. Most of the univariate results confirmed the first hypothesis except for the total number of taxa and foliose macroalgae that showed significant variability at the scale of site and area, respectively. In contrast, when multivariate patterns were examined, the first hypothesis was rejected except at the scale of 10 s of kilometres. Both uni- and multivariate results indicated that variation was larger at the smallest scale, and thus, small-scale processes seem to have more effect on spatial variability patterns. Macroalgal assemblages, both considering species and functional groups as surrogate, showed consistent spatial patterns, and therefore, the second hypothesis was confirmed. Consequently, functional groups may be considered a reliable biological surrogate to study changes on macroalgal assemblages at least along the investigated Portuguese coastline.
NASA Astrophysics Data System (ADS)
Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé
2017-09-01
Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.
Parsons, Jessica E; Cain, Charles A; Fowlkes, J Brian
2007-03-01
Spatial variability in acoustic backscatter is investigated as a potential feedback metric for assessment of lesion morphology during cavitation-mediated mechanical tissue disruption ("histotripsy"). A 750-kHz annular array was aligned confocally with a 4.5 MHz passive backscatter receiver during ex vivo insonation of porcine myocardium. Various exposure conditions were used to elicit a range of damage morphologies and backscatter characteristics [pulse duration = 14 micros, pulse repetition frequency (PRF) = 0.07-3.1 kHz, average I(SPPA) = 22-44 kW/cm2]. Variability in backscatter spatial localization was quantified by tracking the lag required to achieve peak correlation between sequential RF A-lines received. Mean spatial variability was observed to be significantly higher when damage morphology consisted of mechanically disrupted tissue homogenate versus mechanically intact coagulation necrosis (2.35 +/- 1.59 mm versus 0.067 +/- 0.054 mm, p < 0.025). Statistics from these variability distributions were used as the basis for selecting a threshold variability level to identify the onset of homogenate formation via an abrupt, sustained increase in spatially dynamic backscatter activity. Specific indices indicative of the state of the homogenization process were quantified as a function of acoustic input conditions. The prevalence of backscatter spatial variability was observed to scale with the amount of homogenate produced for various PRFs and acoustic intensities.
Predictor variable resolution governs modeled soil types
USDA-ARS?s Scientific Manuscript database
Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...
All-optical liquid crystal spatial light modulators
NASA Astrophysics Data System (ADS)
Tabiryan, Nelson; Grozhik, Vladimir; Khoo, Iam Choon; Nersisyan, Sarik R.; Serak, Svetlana
2003-12-01
Nonlinear optical processes in liquid crystals (LC) can be used for construction of all-optical spatial light modulators (SLM) where the photosensitivity and phase modulating functions are integrated into a single layer of an LC-material. Such spatial light integrated modulators (SLIMs) cost only a fraction of the conventional LC-SLM and can be used with high power laser radiation due to high transparency of LC materials and absence of light absorbing electrodes on the substrates of the LC-cell constituting the SLIM. Recent development of LC materials the photosensitivity of which is comparable to that of semiconductors has led to using SLIM in schemes of optical anti-jamming, sensor protection, and image processing. All-optical processes add remarkable versatility to the operation of SLIM harnessing the wealth inherent to light-matter interaction phenomena.
Influences on Group Productivity 1: Factors Inherent in the Task. A bibliographic Synopsis
1983-04-15
organization structure and job attitudes and job behavior . Variables: Structure defined as the positions and parts of k-ganizations and their systematic and...relatively enduring relationship to each other. Attitudes defined in the broadest sense of "opinion concerning some object." Job behavior is...theory specifying the relations among task structure, leadership behavior and group performance. Indeoendent variables: Degree of structure of task (ac
NASA Technical Reports Server (NTRS)
Curran, R. J.; Kropfil, R.; Hallett, J.
1984-01-01
Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.
NASA Astrophysics Data System (ADS)
Wang, Jun; Wang, Yang; Zeng, Hui
2016-01-01
A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.
Emma Vakili; Chad M. Hoffman; Robert E. Keane; Wade T. Tinkham; Yvette Dickinson
2016-01-01
There is growing consensus that spatial variability in fuel loading at scales down to 0.5 m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels treatment in the...
Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman
2015-01-01
This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...
Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications
Gao, Lan; Hill, K. W.; Bitter, M.; ...
2016-08-23
Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
Burstiness in Viral Bursts: How Stochasticity Affects Spatial Patterns in Virus-Microbe Dynamics
NASA Astrophysics Data System (ADS)
Lin, Yu-Hui; Taylor, Bradford P.; Weitz, Joshua S.
Spatial patterns emerge in living systems at the scale of microbes to metazoans. These patterns can be driven, in part, by the stochasticity inherent to the birth and death of individuals. For microbe-virus systems, infection and lysis of hosts by viruses results in both mortality of hosts and production of viral progeny. Here, we study how variation in the number of viral progeny per lysis event affects the spatial clustering of both viruses and microbes. Each viral ''burst'' is initially localized at a near-cellular scale. The number of progeny in a single lysis event can vary in magnitude between tens and thousands. These perturbations are not accounted for in mean-field models. Here we developed individual-based models to investigate how stochasticity affects spatial patterns in virus-microbe systems. We measured the spatial clustering of individuals using pair correlation functions. We found that increasing the burst size of viruses while maintaining the same production rate led to enhanced clustering. In this poster we also report on preliminary analysis on the evolution of the burstiness of viral bursts given a spatially distributed host community.
NASA Astrophysics Data System (ADS)
Dyer, M. I.; Turner, C. L.; Seastedt, T. R.
1998-04-01
During 1987 and 1988 First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) studies conducted in the tallgrass prairie of central Kansas, variations in ungulate grazing intensity produced a patchy spatial and temporal distribution of remaining vegetation. Equally variable plant regrowth patterns contributed further to a broad array of total primary production that resulted in a pronounced mosaic of grazing impacts. This regrowth potential, derived from a relative growth rate (RGR) equation comparing ungrazed and grazed plants, determines much of the ecosystem dynamics within and among the grazed pastures and between years. Rates of change in new plant growth (RGRg) ranged from 100% to +40%; however, 78% of the time in 1987 and 71% in 1988, productivity increased as a function of grazing intensity. Since plant growth potential in ungrazed (RGRug) and grazed systems (RGRg) have inherently different attributes, interactions with the abiotic environment may develop many uncertainties. Thus, changes in growth rates in grazed areas compared to ungrazed areas (RGRg) may impose major controls over system productivity and associated biological processes currently not accounted for in ecosystem models.Because FIFE microsite atmospheric boundary layer (ABL) studies did not directly incorporate grazing intensity into their design, Type I and Type II statistical errors may introduce significant uncertainties for understanding cause and effect in surface flux dynamics. As a consequence these uncertainties compromise the ability to extrapolate microsite ABL biophysical findings to other spatial and temporal scales.
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.
Hongqing Wanga; Charles A.S. Halla; Frederick N. Scatenab; Ned Fetcherc; Wei Wua
2003-01-01
There are few studies that have examined the spatial variability of forest productivity over an entire tropical forested landscape. In this study, we used a spatially-explicit forest productivity model, TOPOPROD, which is based on the FORESTBGC model, to simulate spatial patterns of gross primary productivity (GPP), net primary productivity (NPP), and respiration over...
J. Rojas-Sandoval; E. J. Melendez-Ackerman; NO-VALUE
2013-01-01
Aims The spatial distribution of biotic and abiotic factors may play a dominant role in determining the distribution and abundance of plants in arid and semiarid environments. In this study, we evaluated how spatial patterns of microhabitat variables and the degree of spatial dependence of these variables influence the distribution and abundance of the endangered...
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
Zhang, Houxi; Zhuang, Shunyao; Qian, Haiyan; Wang, Feng; Ji, Haibao
2015-01-01
Understanding the spatial variability of soil organic carbon (SOC) must be enhanced to improve sampling design and to develop soil management strategies in terrestrial ecosystems. Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) forests have a high SOC storage potential; however, they also vary significantly spatially. This study investigated the spatial variability of SOC (0-20 cm) in association with other soil properties and with spatial variables in the Moso bamboo forests of Jian’ou City, which is a typical bamboo hometown in China. 209 soil samples were collected from Moso bamboo stands and then analyzed for SOC, bulk density (BD), pH, cation exchange capacity (CEC), and gravel content (GC) based on spatial distribution. The spatial variability of SOC was then examined using geostatistics. A Kriging map was produced through ordinary interpolation and required sample numbers were calculated by classical and Kriging methods. An aggregated boosted tree (ABT) analysis was also conducted. A semivariogram analysis indicated that ln(SOC) was best fitted with an exponential model and that it exhibited moderate spatial dependence, with a nugget/sill ratio of 0.462. SOC was significantly and linearly correlated with BD (r = −0.373**), pH (r = −0.429**), GC (r = −0.163*), CEC (r = 0.263**), and elevation (r = 0.192**). Moreover, the Kriging method requires fewer samples than the classical method given an expected standard error level as per a variance analysis. ABT analysis indicated that the physicochemical variables of soil affected SOC variation more significantly than spatial variables did, thus suggesting that the SOC in Moso bamboo forests can be strongly influenced by management practices. Thus, this study provides valuable information in relation to sampling strategy and insight into the potential of adjustments in agronomic measure, such as in fertilization for Moso bamboo production. PMID:25789615
Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport
NASA Astrophysics Data System (ADS)
Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike
2017-04-01
Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters spatially explicit including different directions and b) to use random-field stochastic models to assess the possible effects for gas-exchange models.
Energy and carbon accounting to compare bioenergy crops
USDA-ARS?s Scientific Manuscript database
To compare the utility of current and future biofuels and biofuel feedstocks in an objective manner can be extremely challenging. This challenge exists because agricultural data are inherently variable, experimental techniques are cropdependent,and the literatures usually report relative, rather tha...
LeBouf, Ryan; Yesse, Liesel; Rossner, Alan
2008-05-01
It is well known that characterization of airborne bioaerosols in indoor environments is a challenge because of inherent irregularity in concentrations, which are influenced by many environmental factors. The primary aim of this study was to quantify the day-to-day variability of airborne fungal levels in a single residential environment over multiple seasons. Indoor air quality practitioners must recognize the inherent variability in airborne bio-aerosol measurements during data analysis of mold investigations. Changes in airborne fungi due to varying season and day is important to recognize when considering health impacts of these contaminants and when establishing effective controls. Using an Andersen N6 impactor, indoor and outdoor bioaerosol samples were collected on malt extract agar plates for 18 weekdays and 19 weekdays in winter and summer, respectively. Interday and intraday variability for the bioaerosols were determined for each sampler. Average fungal concentrations were 26 times higher during the summer months. Day-to-day fungal samples showed a relatively high inconsistency suggesting airborne fungal levels are very episodic and are influenced by several environmental factors. Summer bio-aerosol variability ranged from 7 to 36% and winter variability from 24 to 212%; these should be incorporated into results of indoor mold investigations. The second objective was to observe the relationship between biological and nonbiological particulate matter (PM). No correlation was observed between biological and nonbiological PM. Six side-by-side particulate samplers collected coarse PM (PM10) and fine PM (PM2.5) levels in both seasons. PM2.5 particulate concentrations were found to be statistically higher during summer months. Interday variability observed during this study suggests that indoor air quality practitioners must adjust their exposure assessment strategies to reflect the temporal variability in bioaerosol concentrations.
The experimental basis for interpreting particle and magnetic fabrics of sheared till
Iverson, N.R.; Hooyer, T.S.; Thomason, J.F.; Graesch, M.; Shumway, J.R.
2008-01-01
Particle fabrics of basal tills may allow testing of the bed-deformation model of glacier flow, which requires high bed shear strains (>100). Field studies, however, have not yielded a systematic relationship between shear-strain magnitude and fabric development. To isolate this relationship four basal tills and viscous putty were sheared in a ring-shear device to strains as high as 714. Fabric was characterized within a zone of shear deformation using the long-axis orientations of fine-gravel and sand particles and the anisotropy of magnetic susceptibility (AMS) of small (???5-8 cm3) intact samples. Results indicate that till particles rotate toward the plane of shearing with long-axis orientations that become tightly clustered in the direction of shear (0??78 < S1 < 0??94 for three-dimensional data). These strong, steady-state fabrics are attained at shear strains of 7-30, with no evidence of fabric weakening with further strain, regardless of the specific till or particle-size fraction under consideration. These results do not support the Jeffery model of particle rotation, which correctly describes particle rotation in the viscous putty but not in the tills, owing to fluid-mechanical assumptions of the model that are violated in till. The sensitivity of fabric development to shear-strain magnitude indicates that, for most till units where shear-strain magnitude is poorly known, attributing fabric variations to spatial differences in other variables, such as till thickness or water content, will be inherently speculative. Attributing fabric characteristics to particular basal till facies is uncertain because shear-strain magnitude is unlikely to be closely correlated to till facies. Weak or spatially variable fabrics, in the absence of post-depositional disturbance or major deviations from unidirectional simple shear, indicate that till has not been pervasively sheared to the high strains required by the bed-deformation model. Strong flow-parallel fabrics are a necessary but insufficient criterion for confirming the model. Copyright ?? 2008 John Wiley & Sons, Ltd.
NetCDF file of the SREF standard deviation of wind speed and direction that was used to inject variability in the FDDA input.variable U_NDG_OLD contains standard deviation of wind speed (m/s)variable V_NDG_OLD contains the standard deviation of wind direction (deg)This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).
Cyclic additional optical true time delay for microwave beam steering with spectral filtering.
Cao, Z; Lu, R; Wang, Q; Tessema, N; Jiao, Y; van den Boom, H P A; Tangdiongga, E; Koonen, A M J
2014-06-15
Optical true time delay (OTTD) is an attractive way to realize microwave beam steering (MBS) due to its inherent features of broadband, low-loss, and compactness. In this Letter, we propose a novel OTTD approach named cyclic additional optical true time delay (CAO-TTD). It applies additional integer delays of the microwave carrier frequency to achieve spectral filtering but without disturbing the spatial filtering (beam steering). Based on such concept, a broadband MBS scheme for high-capacity wireless communication is proposed, which allows the tuning of both spectral filtering and spatial filtering. The experimental results match well with the theoretical analysis.
Analog nonlinear MIMO receiver for optical mode division multiplexing transmission.
Spalvieri, Arnaldo; Boffi, Pierpaolo; Pecorino, Simone; Barletta, Luca; Magarini, Maurizio; Gatto, Alberto; Martelli, Paolo; Martinelli, Mario
2013-10-21
The complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes. The paper shows that the nonlinear crosstalk can be dealt with by a low-complexity and non-adaptive detection scheme, at least in the cases presented in the paper.
A hierarchical structure for automatic meshing and adaptive FEM analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Saxena, Mukul; Perucchio, Renato
1987-01-01
A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.
Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria
NASA Astrophysics Data System (ADS)
Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.
2018-03-01
Basement aquifers, which occur within the weathered and fractured zones of crystalline bedrocks, are important groundwater resources in tropical and subtropical regions. The development of basement aquifers is complex owing to their high spatial variability. Geophysical techniques are used to obtain information about the hydrologic characteristics of the weathered and fractured zones of the crystalline basement rocks, which relates to the occurrence of groundwater in the zones. The spatial distributions of these hydrologic characteristics are then used to map the spatial variability of the basement aquifers. Thus, knowledge of the spatial variability of basement aquifers is useful in siting wells and boreholes for optimal and perennial yield. Geoelectrical resistivity is one of the most widely used geophysical methods for assessing the spatial variability of the weathered and fractured zones in groundwater exploration efforts in basement complex terrains. The presented study focuses on combining vertical electrical sounding with two-dimensional (2D) geoelectrical resistivity imaging to characterise the weathered and fractured zones in a crystalline basement complex terrain in southwestern Nigeria. The basement aquifer was delineated, and the nature, extent and spatial variability of the delineated basement aquifer were assessed based on the spatial variability of the weathered and fractured zones. The study shows that a multiple-gradient array for 2D resistivity imaging is sensitive to vertical and near-surface stratigraphic features, which have hydrological implications. The integration of resistivity sounding with 2D geoelectrical resistivity imaging is efficient and enhances near-surface characterisation in basement complex terrain.
Exploring the spatial variability of soil properties in an Alfisol Catena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosemary, F.; Vitharana, U. W. A.; Indraratne, S. P.
Detailed digital soil maps showing the spatial heterogeneity of soil properties consistent with the landscape are required for site-specific management of plant nutrients, land use planning and process-based environmental modeling. We characterized the short-scale spatial heterogeneity of soil properties in an Alfisol catena in a tropical landscape of Sri Lanka. The impact of different land-uses (paddy, vegetable and un-cultivated) was examined to assess the impact of anthropogenic activities on the variability of soil properties at the catenary level. Conditioned Latin hypercube sampling was used to collect 58 geo-referenced topsoil samples (0–30 cm) from the study area. Soil samples were analyzedmore » for pH, electrical conductivity (EC), organic carbon (OC), cation exchange capacity (CEC) and texture. The spatial correlation between soil properties was analyzed by computing crossvariograms and subsequent fitting of theoretical model. Spatial distribution maps were developed using ordinary kriging. The range of soil properties, pH: 4.3–7.9; EC: 0.01–0.18 dS m –1 ; OC: 0.1–1.37%; CEC: 0.44– 11.51 cmol (+) kg –1 ; clay: 1.5–25% and sand: 59.1–84.4% and their coefficient of variations indicated a large variability in the study area. Electrical conductivity and pH showed a strong spatial correlation which was reflected by the cross-variogram close to the hull of the perfect correlation. Moreover, cross-variograms calculated for EC and Clay, CEC and OC, CEC and clay and CEC and pH indicated weak positive spatial correlation between these properties. Relative nugget effect (RNE) calculated from variograms showed strongly structured spatial variability for pH, EC and sand content (RNE < 25%) while CEC, organic carbon and clay content showed moderately structured spatial variability (25% < RNE < 75%). Spatial dependencies for examined soil properties ranged from 48 to 984 m. The mixed effects model fitting followed by Tukey's post-hoc test showed significant effect of land use on the spatial variability of EC. Our study revealed a structured variability of topsoil properties in the selected tropical Alfisol catena. Except for EC, observed variability was not modified by the land uses. Investigated soil properties showed distinct spatial structures at different scales and magnitudes of strength. Our results will be useful for digital soil mapping, site specific management of soil properties, developing appropriate land use plans and quantifying anthropogenic impacts on the soil system.« less
The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.
Congdon, Peter
2011-01-01
Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.
Rethinking "normal": The role of stochasticity in the phenology of a synchronously breeding seabird.
Youngflesh, Casey; Jenouvrier, Stephanie; Hinke, Jefferson T; DuBois, Lauren; St Leger, Judy; Trivelpiece, Wayne Z; Trivelpiece, Susan G; Lynch, Heather J
2018-05-01
Phenological changes have been observed in a variety of systems over the past century. There is concern that, as a consequence, ecological interactions are becoming increasingly mismatched in time, with negative consequences for ecological function. Significant spatial heterogeneity (inter-site) and temporal variability (inter-annual) can make it difficult to separate intrinsic, extrinsic and stochastic drivers of phenological variability. The goal of this study was to understand the timing and variability in breeding phenology of Adélie penguins under fixed environmental conditions and to use those data to identify a "null model" appropriate for disentangling the sources of variation in wild populations. Data on clutch initiation were collected from both wild and captive populations of Adélie penguins. Clutch initiation in the captive population was modelled as a function of year, individual and age to better understand phenological patterns observed in the wild population. Captive populations displayed as much inter-annual variability in breeding phenology as wild populations, suggesting that variability in breeding phenology is the norm and thus may be an unreliable indicator of environmental forcing. The distribution of clutch initiation dates was found to be moderately asymmetric (right skewed) both in the wild and in captivity, consistent with the pattern expected under social facilitation. The role of stochasticity in phenological processes has heretofore been largely ignored. However, these results suggest that inter-annual variability in breeding phenology can arise independent of any environmental or demographic drivers and that synchronous breeding can enhance inherent stochasticity. This complicates efforts to relate phenological variation to environmental variability in the wild. Accordingly, we must be careful to consider random forcing in phenological processes, lest we fit models to data dominated by random noise. This is particularly true for colonial species where breeding synchrony may outweigh each individual's effort to time breeding with optimal environmental conditions. Our study highlights the importance of identifying appropriate null models for studying phenology. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
NASA Astrophysics Data System (ADS)
Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.
2017-12-01
Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.
Variability of the raindrop size distribution at small spatial scales
NASA Astrophysics Data System (ADS)
Berne, A.; Jaffrain, J.
2010-12-01
Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.
Alvin L. Medina; Jonathan W. Long
2012-01-01
Streamside environments are inherently dynamic, yet streamside vegetation plays a key stabilizing role on riparian and aquatic habitats (Van Devender and Spaulding 1979; Van Devender and others 1987). Because of its dynamism, streamside vegetation is rarely the subject of classification analyses, yet it is a focal point for land managers regulating land uses, such as...
Submesoscale Sea Surface Temperature Variability from UAV and Satellite Measurements
NASA Astrophysics Data System (ADS)
Castro, S. L.; Emery, W. J.; Tandy, W., Jr.; Good, W. S.
2017-12-01
Technological advances in spatial resolution of observations have revealed the importance of short-lived ocean processes with scales of O(1km). These submesoscale processes play an important role for the transfer of energy from the meso- to small scales and for generating significant spatial and temporal intermittency in the upper ocean, critical for the mixing of the oceanic boundary layer. Submesoscales have been observed in sea surface temperatures (SST) from satellites. Satellite SST measurements are spatial averages over the footprint of the satellite. When the variance of the SST distribution within the footprint is small, the average value is representative of the SST over the whole pixel. If the variance is large, the spatial heterogeneity is a source of uncertainty in satellite derived SSTs. Here we show evidence that the submesoscale variability in SSTs at spatial scales of 1km is responsible for the spatial variability within satellite footprints. Previous studies of the spatial variability in SST, using ship-based radiometric data suggested that variability at scales smaller than 1 km is significant and affects the uncertainty of satellite-derived skin SSTs. We examine data collected by a calibrated thermal infrared radiometer, the Ball Experimental Sea Surface Temperature (BESST), flown on a UAV over the Arctic Ocean and compare them with coincident measurements from the MODIS spaceborne radiometer to assess the spatial variability of SST within 1 km pixels. By taking the standard deviation of all the BESST measurements within individual MODIS pixels we show that significant spatial variability exists within the footprints. The distribution of the surface variability measured by BESST shows a peak value of O(0.1K) with 95% of the pixels showing σ < 0.45K. More importantly, high-variability pixels are located at density fronts in the marginal ice zone, which are a primary source of submesoscale intermittency near the surface in the Arctic Ocean. Wavenumber spectra of the BESST SSTs indicate a spectral slope of -2, consistent with the presence of submesoscale processes. Furthermore, not only is the BESST wavenumber spectra able to match the MODIS SST spectra well, but also extends the spectral slope of -2 by 2 decades relative to MODIS, from wavelengths of 8km to 0.08km.
NASA Astrophysics Data System (ADS)
Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric
2002-12-01
The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.
Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.
2017-01-01
The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, L; Braunstein, S; Chiu, J
2016-06-15
Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive anmore » EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.« less
Panarchy, Adaptive Management and Governance: Policy Options for Building Resilience
Environmental law plays a key role in shaping policy for sustainability. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in socio-ecological systems is critical. Environmental protection has typically involved a com...
DESIGN AND COST REDUCTION OF REMEDIATION TECHNOLOGY PILOT TESTING
In order to effectively address the inherent variability of MTBE concentrations at a small fuel contamination site chosen for an in-situ remedial technology test demonstration, curtain walls for metering mixtures of conservative and non-conservative tracers into an aquifer were u...
Spatial heterogeneity of within-stream methane concentrations
NASA Astrophysics Data System (ADS)
Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.
2017-05-01
Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4 and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.
Examining Impulse-Variability in Kicking.
Chappell, Andrew; Molina, Sergio L; McKibben, Jonathon; Stodden, David F
2016-07-01
This study examined variability in kicking speed and spatial accuracy to test the impulse-variability theory prediction of an inverted-U function and the speed-accuracy trade-off. Twenty-eight 18- to 25-year-old adults kicked a playground ball at various percentages (50-100%) of their maximum speed at a wall target. Speed variability and spatial error were analyzed using repeated-measures ANOVA with built-in polynomial contrasts. Results indicated a significant inverse linear trajectory for speed variability (p < .001, η2= .345) where 50% and 60% maximum speed had significantly higher variability than the 100% condition. A significant quadratic fit was found for spatial error scores of mean radial error (p < .0001, η2 = .474) and subject-centroid radial error (p < .0001, η2 = .453). Findings suggest variability and accuracy of multijoint, ballistic skill performance may not follow the general principles of impulse-variability theory or the speed-accuracy trade-off.
Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé
2016-01-01
The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.
Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé
2016-01-01
The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. PMID:27074044
Potgieter, Sarah; Pinto, Ameet; Sigudu, Makhosazana; du Preez, Hein; Ncube, Esper; Venter, Stephanus
2018-08-01
Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However, temporal variations were consistently stronger as compared to spatial changes at individual sampling locations and demonstrated seasonality. This study emphasises the need for long-term studies to comprehensively understand the temporal patterns that would otherwise be missed in short-term investigations. Furthermore, systematic long-term investigations are particularly critical towards determining the impact of changes in source water quality, environmental conditions, and process operations on the changes in microbial community composition in the drinking water distribution system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Opfer, Roland; Suppa, Per; Kepp, Timo; Spies, Lothar; Schippling, Sven; Huppertz, Hans-Jürgen
2016-05-01
Fully-automated regional brain volumetry based on structural magnetic resonance imaging (MRI) plays an important role in quantitative neuroimaging. In clinical trials as well as in clinical routine multiple MRIs of individual patients at different time points need to be assessed longitudinally. Measures of inter- and intrascanner variability are crucial to understand the intrinsic variability of the method and to distinguish volume changes due to biological or physiological effects from inherent noise of the methodology. To measure regional brain volumes an atlas based volumetry (ABV) approach was deployed using a highly elastic registration framework and an anatomical atlas in a well-defined template space. We assessed inter- and intrascanner variability of the method in 51 cognitively normal subjects and 27 Alzheimer dementia (AD) patients from the Alzheimer's Disease Neuroimaging Initiative by studying volumetric results of repeated scans for 17 compartments and brain regions. Median percentage volume differences of scan-rescans from the same scanner ranged from 0.24% (whole brain parenchyma in healthy subjects) to 1.73% (occipital lobe white matter in AD), with generally higher differences in AD patients as compared to normal subjects (e.g., 1.01% vs. 0.78% for the hippocampus). Minimum percentage volume differences detectable with an error probability of 5% were in the one-digit percentage range for almost all structures investigated, with most of them being below 5%. Intrascanner variability was independent of magnetic field strength. The median interscanner variability was up to ten times higher than the intrascanner variability. Copyright © 2016 Elsevier Inc. All rights reserved.
Spatial patterns of development drive water use
Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.
2018-01-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.
Spatial Patterns of Development Drive Water Use
NASA Astrophysics Data System (ADS)
Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.
2018-03-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.
Measuring spatial variability in soil characteristics
Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard
2002-01-01
The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.
NASA Astrophysics Data System (ADS)
Li, Lianfa; Wu, Anna H.; Cheng, Iona; Chen, Jiu-Chiuan; Wu, Jun
2017-10-01
Monitoring of fine particulate matter with diameter <2.5 μm (PM2.5) started from 1999 in the US and even later in many other countries. The lack of historical PM2.5 data limits epidemiological studies of long-term exposure of PM2.5 and health outcomes such as cancer. In this study, we aimed to design a flexible approach to reliably estimate historical PM2.5 concentrations by incorporating spatial effect and the measurements of existing co-pollutants such as particulate matter with diameter <10 μm (PM10) and meteorological variables. Monitoring data of PM10, PM2.5, and meteorological variables covering the entire state of California were obtained from 1999 through 2013. We developed a spatiotemporal model that quantified non-linear associations between PM2.5 concentrations and the following predictor variables: spatiotemporal factors (PM10 and meteorological variables), spatial factors (land-use patterns, traffic, elevation, distance to shorelines, and spatial autocorrelation), and season. Our model accounted for regional-(county) scale spatial autocorrelation, using spatial weight matrix, and local-scale spatiotemporal variability, using local covariates in additive non-linear model. The spatiotemporal model was evaluated, using leaving-one-site-month-out cross validation. Our final daily model had an R2 of 0.81, with PM10, meteorological variables, and spatial autocorrelation, explaining 55%, 10%, and 10% of the variance in PM2.5 concentrations, respectively. The model had a cross-validation R2 of 0.83 for monthly PM2.5 concentrations (N = 8170) and 0.79 for daily PM2.5 concentrations (N = 51,421) with few extreme values in prediction. Further, the incorporation of spatial effects reduced bias in predictions. Our approach achieved a cross validation R2 of 0.61 for the daily model when PM10 was replaced by total suspended particulate. Our model can robustly estimate historical PM2.5 concentrations in California when PM2.5 measurements were not available.
Food plant toxicants and safety Risk assessment and regulation of inherent toxicants in plant foods.
Essers, A J; Alink, G M; Speijers, G J; Alexander, J; Bouwmeister, P J; van den Brandt, P A; Ciere, S; Gry, J; Herrman, J; Kuiper, H A; Mortby, E; Renwick, A G; Shrimpton, D H; Vainio, H; Vittozzi, L; Koeman, J H
1998-05-01
The ADI as a tool for risk management and regulation of food additives and pesticide residues is not readily applicable to inherent food plant toxicants: The margin between actual intake and potentially toxic levels is often small; application of the default uncertainty factors used to derive ADI values, particularly when extrapolating from animal data, would prohibit the utilisation of the food, which may have an overall beneficial health effect. Levels of inherent toxicants are difficult to control; their complete removal is not always wanted, due to their function for the plant or for human health. The health impact of the inherent toxicant is often modified by factors in the food, e.g. the bioavailability from the matrix and interaction with other inherent constituents. Risk-benefit analysis should be made for different consumption scenarios, without the use of uncertainty factors. Crucial in this approach is analysis of the toxicity of the whole foodstuff. The relationship between the whole foodstuff and the pure toxicant is expressed in the `product correction factor' (PCF). Investigations in humans are essential so that biomarkers of exposure and for effect can be used to analyse the difference between animals and humans and between the food and the pure toxicant. A grid of the variables characterising toxicity is proposed, showing their inter-relationships. A flow diagram for risk estimate is provided, using both toxicological and epidemiological studies.
Inherent uncertainties in meteorological parameters for wind turbine design
NASA Technical Reports Server (NTRS)
Doran, J. C.
1982-01-01
Major difficulties associated with meteorological measurments such as the inability to duplicate the experimental conditions from one day to the next are discussed. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. Some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.
Khademi, Maryam; Hondori, Hossein Mousavi; Dodakian, Lucy; Cramer, Steve; Lopes, Cristina V
2013-01-01
Introducing computer games to the rehabilitation market led to development of numerous Virtual Reality (VR) training applications. Although VR has provided tremendous benefit to the patients and caregivers, it has inherent limitations, some of which might be solved by replacing it with Augmented Reality (AR). The task of pick-and-place, which is part of many activities of daily living (ADL's), is one of the major affected functions stroke patients mainly expect to recover. We developed an exercise consisting of moving an object between various points, following a flash light that indicates the next target. The results show superior performance of subjects in spatial AR versus non-immersive VR setting. This could be due to the extraneous hand-eye coordination which exists in VR whereas it is eliminated in spatial AR.
Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui
2016-11-15
Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.
Temporal and spatial variability in North Carolina piedmont stream temperature
J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer
2009-01-01
Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...
Li, Yan; Wagner, Tyler; Jiao, Yan; Lorantas, Robert M.; Murphy, Cheryl
2018-01-01
Understanding the spatial and temporal variability in life-history traits among populations is essential for the management of recreational fisheries. However, valuable freshwater recreational fish species often suffer from a lack of catch information. In this study, we demonstrated the use of an approach to estimate the spatial and temporal variability in growth and mortality in the absence of catch data and apply the method to riverine smallmouth bass (Micropterus dolomieu) populations in Pennsylvania, USA. Our approach included a growth analysis and a length-based analysis that estimates mortality. Using a hierarchical Bayesian approach, we examined spatial variability in growth and mortality by assuming parameters vary spatially but remain constant over time and temporal variability by assuming parameters vary spatially and temporally. The estimated growth and mortality of smallmouth bass showed substantial variability over time and across rivers. We explored the relationships of the estimated growth and mortality with spring water temperature and spring flow. Growth rate was likely to be positively correlated with these two factors, while young mortality was likely to be positively correlated with spring flow. The spatially and temporally varying growth and mortality suggest that smallmouth bass populations across rivers may respond differently to management plans and disturbance such as environmental contamination and land-use change. The analytical approach can be extended to other freshwater recreational species that also lack of catch data. The approach could also be useful in developing population assessments with erroneous catch data or be used as a model sensitivity scenario to verify traditional models even when catch data are available.
Balint, Lajos; Dome, Peter; Daroczi, Gergely; Gonda, Xenia; Rihmer, Zoltan
2014-02-01
In the last century Hungary had astonishingly high suicide rates characterized by marked regional within-country inequalities, a spatial pattern which has been quite stable over time. To explain the above phenomenon at the level of micro-regions (n=175) in the period between 2005 and 2011. Our dependent variable was the age and gender standardized mortality ratio (SMR) for suicide while explanatory variables were factors which are supposed to influence suicide risk, such as measures of religious and political integration, travel time accessibility of psychiatric services, alcohol consumption, unemployment and disability pensionery. When applying the ordinary least squared regression model, the residuals were found to be spatially autocorrelated, which indicates the violation of the assumption on the independence of error terms and - accordingly - the necessity of application of a spatial autoregressive (SAR) model to handle this problem. According to our calculations the SARlag model was a better way (versus the SARerr model) of addressing the problem of spatial autocorrelation, furthermore its substantive meaning is more convenient. SMR was significantly associated with the "political integration" variable in a negative and with "lack of religious integration" and "disability pensionery" variables in a positive manner. Associations were not significant for the remaining explanatory variables. Several important psychiatric variables were not available at the level of micro-regions. We conducted our analysis on aggregate data. Our results may draw attention to the relevance and abiding validity of the classic Durkheimian suicide risk factors - such as lack of social integration - apropos of the spatial pattern of Hungarian suicides. © 2013 Published by Elsevier B.V.
Ather, Jennifer L.; Chung, Michael; Hoyt, Laura R.; Randall, Matthew J.; Georgsdottir, Anna; Daphtary, Nirav A.; Aliyeva, Minara I.; Suratt, Benjamin T.; Bates, Jason H. T.; Irvin, Charles G.; Russell, Sheila R.; Forgione, Patrick M.; Dixon, Anne E.
2016-01-01
Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery–induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma. PMID:27064658
Remote sensing using MIMO systems
Bikhazi, Nicolas; Young, William F; Nguyen, Hung D
2015-04-28
A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.
NASA Astrophysics Data System (ADS)
Houben, Peter
2008-10-01
Agricultural landscapes with a millennial-scale history of cultivation are common in many loess areas of central Europe. Over time, patterns of erosion and sedimentation have been continually modified via the variable imposition of anthropogenic discontinuities and linkages on fragmented hillslope sediment cascades, which eventually caused the complicated soilscape pattern. These field records challenge topographically oriented models of hillslope erosion and simple predictions of longer-term change of spatial soilscape by cultivation activities. A thorough understanding how soilscape patterns form in the long-term, however, is essential to develop spatial concepts of the sediment budget, particularly for the spatial modeling of anthropogenic hillslope sediment flux using GIS. In this study I used extensive datasets of anthropogenic soil truncation and burial in a typical undulating loess watershed in southern Germany (10 km 2, Wetterau Basin, N of Frankfurt a.M.). Spatial soilscape properties and historic sediment flux, as caused by cultivation over seven millennia, were evaluated by these data. The soilscape pattern on the low-gradient hillslopes of the study area was found to be marked by a statistical near-random pattern of varying depth (thickness) of truncation and overthickened burial. Moreover, it was shown that truncation and burial had developed independently from each other and did not correlate with either hillslope gradient or downslope curvature. Hence, in the field any combination of (few) nearly preserved, severely truncated or completely removed soil profiles with either no, some or a thick sediment cover is present, thereby lacking an obvious spatial pattern. Here, I suggest putting long-term change of the soilscape into a contextual anthropogeomorphic systems perspective, that accommodates components of human-induced soil erosion operating at different spatial scales to interpret the longer-term spatial consequences at the hillslope-system level. In the study area, system scale linkages are marked by the spatial intersection of a finer-scaled managed field system with a broader hillslope-scale framework of 'natural' erosion controls. In the low-gradient study area, field borders exert control over the spatial reference of soil erosion and sedimentation sites. Over time, this brought about a growing historical and spatial contingency change to the soilscape, because of arbitrary spatial changes of the field system which are inherent in its socio-agricultural maintenance. Thus, the very low-gradient and low-erosivity setting of the study area have singled out the agency of human-induced spatial and connectivity controls and contingency for long-term spatial hillslope sediment flux. Although these findings may be less true for different settings, they allow for deriving a generic conceptual model of the linkages between 'natural' and anthropogenic subsystems to interpret the effects of long-term human-induced sediment flux. Accordingly, the resulting balance between on-hillslope net storage and net delivery to streams is scaling with basic physiographic properties of erosivity and sedimentation as well as the degree of anthropogenic hillslope fragmentation. For loess areas in Europe variable fields are fundamental anthropogeomorphic units that determine appropriate system scaling for historic sediment flux analysis and constrain retrodiction and prediction of changing fluxes at a point and a time at watershed scales. Methodical implications address adequate sampling strategies to record soilscape change, as a result of which a critical review of the applicability of the catena concept to long-cultivated hillslopes in central Europe was included. Finally, the suggested refined generic model of long-term, human-controlled sediment flux involves a number of research opportunities, particularly for linking modeling approaches to long-term field records of cultivation-related change in the soilscape.
The effect of short-range spatial variability on soil sampling uncertainty.
Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko
2008-11-01
This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.
Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.
Liu, Da; Li, Jianxun
2016-12-16
Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.
When compared to traditional approaches, the utilization of molecular and genomic techniques to soil and groundwater cleanup investigations can reduce inherent parameter variability when conducting bench and pilot-scale investigations or carrying out full-scale field applications...
New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently ...
Panarchy, adaptive management and governance: policy options for building resilience
Environmental law plays a key role in shaping policy for sustainability. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in socio-ecological systems are critical. Environmental protection has typically involved a c...
Field oriented control of induction motors
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen
1990-01-01
Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.
Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique
2012-01-01
We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254
Bautista-de Los Santos, Quyen Melina; Schroeder, Joanna L; Blakemore, Oliver; Moses, Jonathan; Haffey, Mark; Sloan, William; Pinto, Ameet J
2016-03-01
High-throughput and deep DNA sequencing, particularly amplicon sequencing, is being increasingly utilized to reveal spatial and temporal dynamics of bacterial communities in drinking water systems. Whilst the sampling and methodological biases associated with PCR and sequencing have been studied in other environments, they have not been quantified for drinking water. These biases are likely to have the greatest effect on the ability to characterize subtle spatio-temporal patterns influenced by process/environmental conditions. In such cases, intra-sample variability may swamp any underlying small, systematic variation. To evaluate this, we undertook a study with replication at multiple levels including sampling sites, sample collection, PCR amplification, and high throughput sequencing of 16S rRNA amplicons. The variability inherent to the PCR amplification and sequencing steps is significant enough to mask differences between bacterial communities from replicate samples. This was largely driven by greater variability in detection of rare bacteria (relative abundance <0.01%) across PCR/sequencing replicates as compared to replicate samples. Despite this, we captured significant changes in bacterial community over diurnal time-scales and find that the extent and pattern of diurnal changes is specific to each sampling location. Further, we find diurnal changes in bacterial community arise due to differences in the presence/absence of the low abundance bacteria and changes in the relative abundance of dominant bacteria. Finally, we show that bacterial community composition is significantly different across sampling sites for time-periods during which there are typically rapid changes in water use. This suggests hydraulic changes (driven by changes in water demand) contribute to shaping the bacterial community in bulk drinking water over diurnal time-scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
Teixeira, Sara; Assis, Jorge; Serrão, Ester A.; Gonçalves, Emanuel J.; Borges, Rita
2016-01-01
Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrábida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long- and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations. PMID:27911952
NASA Technical Reports Server (NTRS)
DSa, E. J.; Miller, R. L.; DelCastillo, C.
2003-01-01
The Mississippi River Bight is a highly dynamic region influenced by the seasonally variable outflow from the Mississippi River. In an effort to characterize the distribution of particulate and dissolved organic matter in the region, we conducted a two-year field program in the spring and fall (high and low flow river discharge) of 2000 and 2002. We collected a comprehensive set of bio-optical measurements consisting of vertical profiles (absorption, scattering, chlorophyll fluorescence and radiometry) and discrete measurements (pigment concentrations, particulate and CDOM absorption) that enabled us to obtain better insight into the seasonal and spatial variability of some important biogeochemical parameters. Our field measurements generally showed higher phytoplankton clorophyll concentrations in the plume waters (associated with lower surface salinities) and confirmed the high biological activity abserved in other studies. The seasonal flow of river discharge and advective currents due to wind forcing exerted a strong influence on the biological and optical properties of the region. An examination of absorption at 440 nm by the algal and non-algal fraction of the particulate pool and of CDOM revealed that at nearshore stations, contributions by the non-algal particles were high (about 40%) and decresed with increasing salinities. While CDOM absorption exhibited conservative mixing, its relative contribution to the total absorption was variable. Surface waters at most stations had lower salinities that generalliy increased with dept. Particulate matter and CDOM also decreased with depth as evidenced by absorption and scattering measurements. Good correlations in surface waters between concentrations of particulate and dissolved matter, the inherent optical properties of absorption and ackscattering and remote sensing reflectance values has allowed the development of robust empirical algorithms for phytoplankton chlorophyll and CDOM absorption.
Gokhale, Tanmay A; Kim, Jong M; Kirkton, Robert D; Bursac, Nenad; Henriquez, Craig S
2017-01-01
To understand how excitable tissues give rise to arrhythmias, it is crucially necessary to understand the electrical dynamics of cells in the context of their environment. Multicellular monolayer cultures have proven useful for investigating arrhythmias and other conduction anomalies, and because of their relatively simple structure, these constructs lend themselves to paired computational studies that often help elucidate mechanisms of the observed behavior. However, tissue cultures of cardiomyocyte monolayers currently require the use of neonatal cells with ionic properties that change rapidly during development and have thus been poorly characterized and modeled to date. Recently, Kirkton and Bursac demonstrated the ability to create biosynthetic excitable tissues from genetically engineered and immortalized HEK293 cells with well-characterized electrical properties and the ability to propagate action potentials. In this study, we developed and validated a computational model of these excitable HEK293 cells (called "Ex293" cells) using existing electrophysiological data and a genetic search algorithm. In order to reproduce not only the mean but also the variability of experimental observations, we examined what sources of variation were required in the computational model. Random cell-to-cell and inter-monolayer variation in both ionic conductances and tissue conductivity was necessary to explain the experimentally observed variability in action potential shape and macroscopic conduction, and the spatial organization of cell-to-cell conductance variation was found to not impact macroscopic behavior; the resulting model accurately reproduces both normal and drug-modified conduction behavior. The development of a computational Ex293 cell and tissue model provides a novel framework to perform paired computational-experimental studies to study normal and abnormal conduction in multidimensional excitable tissue, and the methodology of modeling variation can be applied to models of any excitable cell.
Yee, Donald A.; Abuzeineh, Alisa A.; Ezeakacha, Nnaemeka F.; Schelble, Stephanie S.; Glasgow, William C.; Flanagan, Stephen D.; Skiff, Jeffrey J.; Reeves, Ashton; Kuehn, Kevin
2015-01-01
Container systems, including discarded vehicle tires, which support populations of mosquitoes, have been of interest for understanding the variables that produce biting adults that serve as both nuisances and as public health threats. We sampled tires in six sites at three times in 2012 across the state of Mississippi to understand the biotic and abiotic variables responsible for explaining patterns of larvae of common species, species richness, and total abundance of mosquitoes. From 498 tires sampled, we collected >58,000 immatures representing 16 species, with the most common species including Aedes albopictus (Skuse), Culex quinquefasciatus (L.), Orthopodomyia signifera (Coquillett), Aedes triseriatus (Say), Toxorhynchites rutilus septentrionalis (Coquillett), and Culex territans (Walker) accounting for ∼97% of all larvae. We also documented 32 new county records for resident species and recent arrivals in the state, including Aedes japonicus japonicus (Theobald) and Culex coronator (Dyar & Knab). Cluster analysis, which was used to associate sites and time periods based on similar mosquito composition, did reveal patterns across the state; however, there also were more general patterns between species and genera and environmental factors. Broadly, Aedes was often associated with factors related to detritus, whereas Culex was frequently associated with habitat variables (e.g., tire size and water volume) and microorganisms. Some Culex did lack factors connecting variation in early and late instars, suggesting differences between environmental determinants of oviposition and survival. General patterns between the tire environment and mosquito larvae do appear to exist, especially at the generic level, and point to inherent differences between genera that may aid in predicting vector locations and populations. PMID:26334813
Van der Laan, Carina; Verweij, Pita A; Quiñones, Marcela J; Faaij, André Pc
2014-12-01
Land use and land cover change occurring in tropical forest landscapes contributes substantially to carbon emissions. Better insights into the spatial variation of aboveground biomass is therefore needed. By means of multiple statistical tests, including geographically weighted regression, we analysed the effects of eight variables on the regional spatial variation of aboveground biomass. North and East Kalimantan were selected as the case study region; the third largest carbon emitting Indonesian provinces. Strong positive relationships were found between aboveground biomass and the tested variables; altitude, slope, land allocation zoning, soil type, and distance to the nearest fire, road, river and city. Furthermore, the results suggest that the regional spatial variation of aboveground biomass can be largely attributed to altitude, distance to nearest fire and land allocation zoning. Our study showed that in this landscape, aboveground biomass could not be explained by one single variable; the variables were interrelated, with altitude as the dominant variable. Spatial analyses should therefore integrate a variety of biophysical and anthropogenic variables to provide a better understanding of spatial variation in aboveground biomass. Efforts to minimise carbon emissions should incorporate the identified factors, by 1) the maintenance of lands with high AGB or carbon stocks, namely in the identified zones at the higher altitudes; and 2) regeneration or sustainable utilisation of lands with low AGB or carbon stocks, dependent on the regeneration capacity of the vegetation. Low aboveground biomass densities can be found in the lowlands in burned areas, and in non-forest zones and production forests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrington, Stephen P.
Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2017-03-01
The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lan, E-mail: lgao@pppl.gov; Hill, K. W.; Bitter, M.
A high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ{sub 2} rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystal (p)more » and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
Basis-neutral Hilbert-space analyzers
Martin, Lane; Mardani, Davood; Kondakci, H. Esat; Larson, Walker D.; Shabahang, Soroush; Jahromi, Ali K.; Malhotra, Tanya; Vamivakas, A. Nick; Atia, George K.; Abouraddy, Ayman F.
2017-01-01
Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode multiplexing and quantum communication – basis-specific principles are invoked that are altogether distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis. PMID:28344331
Kliegl, Reinhold; Wei, Ping; Dambacher, Michael; Yan, Ming; Zhou, Xiaolin
2011-01-01
Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. PMID:21833292
NASA Astrophysics Data System (ADS)
Wheeler, David C.; Waller, Lance A.
2009-03-01
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian model.
Svenning, J.-C.; Engelbrecht, B.M.J.; Kinner, D.A.; Kursar, T.A.; Stallard, R.F.; Wright, S.J.
2006-01-01
We used regression models and information-theoretic model selection to assess the relative importance of environment, local dispersal and historical contingency as controls of the distributions of 26 common plant species in tropical forest on Barro Colorado Island (BCI), Panama. We censused eighty-eight 0.09-ha plots scattered across the landscape. Environmental control, local dispersal and historical contingency were represented by environmental variables (soil moisture, slope, soil type, distance to shore, old-forest presence), a spatial autoregressive parameter (??), and four spatial trend variables, respectively. We built regression models, representing all combinations of the three hypotheses, for each species. The probability that the best model included the environmental variables, spatial trend variables and ?? averaged 33%, 64% and 50% across the study species, respectively. The environmental variables, spatial trend variables, ??, and a simple intercept model received the strongest support for 4, 15, 5 and 2 species, respectively. Comparing the model results to information on species traits showed that species with strong spatial trends produced few and heavy diaspores, while species with strong soil moisture relationships were particularly drought-sensitive. In conclusion, history and local dispersal appeared to be the dominant controls of the distributions of common plant species on BCI. Copyright ?? 2006 Cambridge University Press.
Achieving pattern uniformity in plasmonic lithography by spatial frequency selection
NASA Astrophysics Data System (ADS)
Liang, Gaofeng; Chen, Xi; Zhao, Qing; Guo, L. Jay
2018-01-01
The effects of the surface roughness of thin films and defects on photomasks are investigated in two representative plasmonic lithography systems: thin silver film-based superlens and multilayer-based hyperbolic metamaterial (HMM). Superlens can replicate arbitrary patterns because of its broad evanescent wave passband, which also makes it inherently vulnerable to the roughness of the thin film and imperfections of the mask. On the other hand, the HMM system has spatial frequency filtering characteristics and its pattern formation is based on interference, producing uniform and stable periodic patterns. In this work, we show that the HMM system is more immune to such imperfections due to its function of spatial frequency selection. The analyses are further verified by an interference lithography system incorporating the photoresist layer as an optical waveguide to improve the aspect ratio of the pattern. It is concluded that a system capable of spatial frequency selection is a powerful method to produce deep-subwavelength periodic patterns with high degree of uniformity and fidelity.
Ha, S; Matej, S; Ispiryan, M; Mueller, K
2013-02-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.
NASA Astrophysics Data System (ADS)
Ha, S.; Matej, S.; Ispiryan, M.; Mueller, K.
2013-02-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.
Spatial heterogeneity of within-stream methane concentrations
Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.
2017-01-01
Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.
Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions
Yu, Peiqiang
2006-01-01
Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in biological tissues at ultraspatial resolutions.« less
NASA Astrophysics Data System (ADS)
Stockdale, James; Ineson, Philip
2016-04-01
Modelled predictions of the response of terrestrial systems to climate change are highly variable, yet the response of net ecosystem exchange (NEE) is a vital ecosystem behaviour to understand due to its inherent feedback to the carbon cycle. The establishment and subsequent monitoring of replicated experimental manipulations are a direct method to reveal these responses, yet are difficult to achieve as they typically resource-heavy and labour intensive. We actively manipulated the temperature at three agricultural grasslands in southern England and deployed novel 'SkyLine' systems, recently developed at the University of York, to continuously monitor GHG fluxes. Each 'SkyLine' is a low-cost and fully autonomous technology yet produces fluxes at a near-continuous temporal frequency and across a wide spatial area. The results produced by 'SkyLine' enable the detail response of each system to increased temperature over diurnal and seasonal timescales. Unexpected differences in NEE are shown between superficially similar ecosystems which, upon investigation, suggest that interactions between a variety of environmental variables are key and that knowledge of pre-existing environmental conditions help to predict a systems response to future climate. For example, the prevailing hydrological conditions at each site appear to affect its response to changing temperature. The high-frequency data shown here, combined with the fully-replicated experimental design reveal complex interactions which must be understood to improve predictions of ecosystem response to a changing climate.
Fisher, Joseph A
2016-06-01
Cerebrovascular reactivity (CVR) studies have elucidated the physiology and pathophysiology of cerebral blood flow regulation. A non-invasive, high spatial resolution approach uses carbon dioxide (CO2) as the vasoactive stimulus and magnetic resonance techniques to estimate the cerebral blood flow response. CVR is assessed as the ratio response change to stimulus change. Precise control of the stimulus is sought to minimize CVR variability between tests, and show functional differences. Computerized methods targeting end-tidal CO2 partial pressures are precise, but expensive. Simpler, improvised methods that fix the inspired CO2 concentrations have been recommended as less expensive, and so more widely accessible. However, these methods have drawbacks that have not been previously presented by those that advocate their use, or those that employ them in their studies. As one of the developers of a computerized method, I provide my perspective on the trade-offs between these two methods. The main concern is that declaring the precision of fixed inspired concentration of CO2 is misleading: it does not, as implied, translate to precise control of the actual vasoactive stimulus - the arterial partial pressure of CO2 The inherent test-to-test, and therefore subject-to-subject variability, precludes clinical application of findings. Moreover, improvised methods imply widespread duplication of development, assembly time and costs, yet lack uniformity and quality control. A tabular comparison between approaches is provided. © The Author(s) 2016.
Christina Lyons-Tinsley; David L. Peterson
2012-01-01
Previous studies have debated the flammability of young regenerating stands, especially those in a matrix of mature forest, and no consensus has emerged as to whether young stands are inherently prone to high-severity wildfire. This topic has recently been addressed using spatial imagery, and weak inferences were made given the scale mismatch between the coarse...
Roger D. Ottmar; John I. Blake; William T. Crolly
2012-01-01
The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...
Chlorine Incorporation in the CH3NH3PbI3 Perovskite: Small Concentration, Big Effect.
Quarti, Claudio; Mosconi, Edoardo; Umari, Paolo; De Angelis, Filippo
2017-01-03
The role of chlorine doping in CH 3 NH 3 PbI 3 represents an important open issue in the use of hybrid perovskites for photovoltaic applications. In particular, even if a positive role of chlorine doping on perovskite film formation and on material morphology has been demonstrated, an inherent positive effect on the electronic and photovoltaic properties cannot be excluded. Here we carried out periodic density functional theory and Car-Parrinello molecular dynamics simulations, going down to ∼1% doping, to investigate the effect of chlorine on CH 3 NH 3 PbI 3 . We found that such a small doping has important effects on the dynamics of the crystalline structure, both with respect to the inorganic framework and with respect to the cation libration motion. Together, we observe a dynamic spatial localization of the valence and conduction states in separated spatial material regions, which takes place in the 10 -1 ps time scale and which could be the key to ease of exciton dissociation and, likely, to small charge recombination in hybrid perovskites. Moreover, such localization is enhanced by chlorine doping, demonstrating an inherent positive role of chlorine doping on the electronic properties of this class of materials.
Yang, Weidong; Musser, Siegfried M.
2008-01-01
The utility of single molecule fluorescence (SMF) for understanding biological reactions has been amply demonstrated by a diverse series of studies over the last decade. In large part, the molecules of interest have been limited to those within a small focal volume or near a surface to achieve the high sensitivity required for detecting the inherently weak signals arising from individual molecules. Consequently, the investigation of molecular behavior with high time and spatial resolution deep within cells using SMF has remained challenging. Recently, we demonstrated that narrow-field epifluorescence microscopy allows visualization of nucleocytoplasmic transport at the single cargo level. We describe here the methodological approach that yields 2 ms and ∼15 nm resolution for a stationary particle. The spatial resolution for a mobile particle is inherently worse, and depends on how fast the particle is moving. The signal-to-noise ratio is sufficiently high to directly measure the time a single cargo molecule spends interacting with the nuclear pore complex. Particle tracking analysis revealed that cargo molecules randomly diffuse within the nuclear pore complex, exiting as a result of a single rate-limiting step. We expect that narrow-field epifluorescence microscopy will be useful for elucidating other binding and trafficking events within cells. PMID:16879979
Quantifying Landscape Spatial Pattern: What Is the State of the Art?
Eric J. Gustafson
1998-01-01
Landscape ecology is based on the premise that there are strong links between ecological pattern and ecological function and process. Ecological systems are spatially heterogeneous, exhibiting consid-erable complexity and variability in time and space. This variability is typically represented by categorical maps or by a collection of samples taken at specific spatial...
Nolen, Matthew S.; Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Wagner, Brian K.
2014-01-01
We found that a range of environmental variables were important in predicting crayfish distribution and abundance at multiple spatial scales and their importance was species-, response variable- and scale dependent. We would encourage others to examine the influence of spatial scale on species distribution and abundance patterns.
ERIC Educational Resources Information Center
Rakitin, Brian C.
2005-01-01
Five experiments examined the relations between timing and attention using a choice time production task in which the latency of a spatial choice response is matched to a target interval (3 or 5 s). Experiments 1 and 2 indicated that spatial stimulus-response incompatibility increased nonscalar timing variability without affecting timing accuracy…
Spatial patterns of throughfall isotopic composition at the event and seasonal timescales
NASA Astrophysics Data System (ADS)
Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.
2015-03-01
Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Jessica; Denholm, Paul; Pless, Jacquelyn
Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants, and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions inmore » these areas.« less
Keys and seats: Spatial response coding underlying the joint spatial compatibility effect.
Dittrich, Kerstin; Dolk, Thomas; Rothe-Wulf, Annelie; Klauer, Karl Christoph; Prinz, Wolfgang
2013-11-01
Spatial compatibility effects (SCEs) are typically observed when participants have to execute spatially defined responses to nonspatial stimulus features (e.g., the color red or green) that randomly appear to the left and the right. Whereas a spatial correspondence of stimulus and response features facilitates response execution, a noncorrespondence impairs task performance. Interestingly, the SCE is drastically reduced when a single participant responds to one stimulus feature (e.g., green) by operating only one response key (individual go/no-go task), whereas a full-blown SCE is observed when the task is distributed between two participants (joint go/no-go task). This joint SCE (a.k.a. the social Simon effect) has previously been explained by action/task co-representation, whereas alternative accounts ascribe joint SCEs to spatial components inherent in joint go/no-go tasks that allow participants to code their responses spatially. Although increasing evidence supports the idea that spatial rather than social aspects are responsible for joint SCEs emerging, it is still unclear to which component(s) the spatial coding refers to: the spatial orientation of response keys, the spatial orientation of responding agents, or both. By varying the spatial orientation of the responding agents (Exp. 1) and of the response keys (Exp. 2), independent of the spatial orientation of the stimuli, in the present study we found joint SCEs only when both the seating and the response key alignment matched the stimulus alignment. These results provide evidence that spatial response coding refers not only to the response key arrangement, but also to the-often neglected-spatial orientation of the responding agents.
Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi
2014-11-01
Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Application of a liquid crystal spatial light modulator to laser marking.
Parry, Jonathan P; Beck, Rainer J; Shephard, Jonathan D; Hand, Duncan P
2011-04-20
Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface. © 2011 Optical Society of America
A novel framework of tissue membrane systems for image fusion.
Zhang, Zulin; Yi, Xinzhong; Peng, Hong
2014-01-01
This paper proposes a tissue membrane system-based framework to deal with the optimal image fusion problem. A spatial domain fusion algorithm is given, and a tissue membrane system of multiple cells is used as its computing framework. Based on the multicellular structure and inherent communication mechanism of the tissue membrane system, an improved velocity-position model is developed. The performance of the fusion framework is studied with comparison of several traditional fusion methods as well as genetic algorithm (GA)-based and differential evolution (DE)-based spatial domain fusion methods. Experimental results show that the proposed fusion framework is superior or comparable to the other methods and can be efficiently used for image fusion.
Spray drift and off-target loss reduction with a precision air-assisted sprayer
USDA-ARS?s Scientific Manuscript database
Spray drift and off-target losses are inherent problems of conventional air-assisted sprayers. Their low efficiencies cause environmental pollutions resulting in public anxieties. A new drift reduction technology incorporating laser scanning capabilities with a variable-rate air-assisted sprayer w...
The Dynamic Model and Inherent Variability: The Case of Northern France.
ERIC Educational Resources Information Center
Hornsby, David
1999-01-01
Explores the claims of the "dynamic" model of variation by testing against data recorded in Avion, Northern France. Parallels are drawn between "langue d'oil" areas of France and decreolization situations in which proponents of the dynamic model have generally worked. (Author/VWL)
Site-specific variable rate irrigation a means to enhance water use efficiency
USDA-ARS?s Scientific Manuscript database
The majority of irrigated cropland in the US is watered with sprinkler irrigation systems. These systems are inherently more efficient in distributing water than furrow or flood irrigation. Appropriate system design of sprinkler irrigation equipment, application methods, and farming practices (e.g. ...
Site-specific variable rate irrigation as a means to enhance water use efficiency
USDA-ARS?s Scientific Manuscript database
The majority of irrigated cropland in the US is watered with sprinkler irrigation systems. These systems are inherently more efficient in distributing water than furrow or flood irrigation. Appropriate system design of sprinkler irrigation equipment, application methods, and farming practices (e.g. ...
NASA Astrophysics Data System (ADS)
Brustolin, Marco C.; Thomas, Micheli C.; Mafra, Luiz L.; Lana, Paulo da Cunha
2014-08-01
Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons - (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.
NASA Astrophysics Data System (ADS)
Szymanowski, Mariusz; Kryza, Maciej
2017-02-01
Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly correlated auxiliary variables does not improve the quality of the spatial model. The effects of introduction of certain variables into the model were not climatologically justified and were seen on maps as unexpected and undesired artefacts. The results confirm, in accordance with previous studies, that in the case of air temperature distribution, the spatial process is non-stationary; thus, the local GWR model performs better than the global MLR if they are specified using the same set of auxiliary variables. If only GWR residuals are autocorrelated, the geographically weighted regression-kriging (GWRK) model seems to be optimal for air temperature spatial interpolation.
Spatial correlation of probabilistic earthquake ground motion and loss
Wesson, R.L.; Perkins, D.M.
2001-01-01
Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.
Radinger, Johannes; Wolter, Christian; Kail, Jochem
2015-01-01
Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species’ presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the importance of considering habitat at spatial scales larger than the sampling site, and (iii) that the importance of (river morphological) habitat characteristics differs depending on the spatial scale. PMID:26569119
NASA Astrophysics Data System (ADS)
Zhao, Yongcun; Xu, Xianghua; Darilek, Jeremy Landon; Huang, Biao; Sun, Weixia; Shi, Xuezheng
2009-05-01
Topsoil samples (0-20 cm) ( n = 237) were collected from Rugao County, China. Geostatistical variogram analysis, sequential Gaussian simulation (SGS), and principal component (PC) analysis were applied to assess spatial variability of soil nutrients, identify the possible areas of nutrient deficiency, and explore spatial scale of variability of soil nutrients in the county. High variability of soil nutrient such as soil organic matter (SOM), total nitrogen (TN), available P, K, Fe, Mn, Cu, Zn, and B concentrations were observed. Soil nutrient properties displayed significant differences in their spatial structures, with available Cu having strong spatial dependence, SOM and available P having weak spatial dependence, and other nutrient properties having moderate spatial dependence. The soil nutrient deficiency, defined here as measured nutrient concentrations which do not meet the advisory threshold values specific to the county for dominant crops, namely rice, wheat, and rape seeds, was observed in available K and Zn, and the deficient areas covered 38 and 11%, respectively. The first three PCs of the nine soil nutrient properties explained 62.40% of the total variance. TN and SOM with higher loadings on PC1 are closely related to soil texture derived from different parent materials. The PC2 combined intermediate response variables such as available Zn and P that are likely to be controlled by land use and soil pH. Available B has the highest loading on PC3 and its variability of concentrations may be primarily ascribed to localized anthropogenic influence. The amelioration of soil physical properties (i.e. soil texture) and soil pH may improve the availability of soil nutrients and the sustainability of the agricultural system of Rugao County.
Temporal and spatial characteristics of annual and seasonal rainfall in Malawi
NASA Astrophysics Data System (ADS)
Ngongondo, Cosmo; Xu, Chong-Yu; Gottschalk, Lars; Tallaksen, Lena M.; Alemaw, Berhanu
2010-05-01
An understanding of the temporal and spatial characteristics of rainfall is central to water resources planning and management. However, such information is often limited in many developing countries like Malawi. In an effort to bridge the information gap, this study examined the temporal and spatial charecteristics of rainfall in Malawi. Rainfall readings from 42 stations across Malawi from 1960 to 2006 were analysed at monthly, annual and seasonal scales. The Malawian rainfall season lasts from November to April. The data were firstly subjected to quality checks through the cumulative deviations test and the Standard Normal Homogeinity Test (SNHT). Monthly distribution in a typical year, called heterogeneity, was investigated using the Precipitation Concentration Index (PCI). Further, normalized precipitation anomaly series of annual rainfall series (AR) and the PCI (APCI) were used to test for interannual rainfall variability. Spatial variability was characterised by fitting the Spatial Correlation function (SCF). The nonparametric Mann-Kendall statistic was used to investigate the temporal trends of the various rainfall variables. The results showed that 40 of the stations passed both data quality tests. For the two stations that failed, the data were adjusted using nearby stations. Annual and seasonal rainfall were found to be characterised by high spatial variation. The country mean annual rainfall was 1095 mm with mean interannual variability of 26%. The highland areas to the north and southeast of the country exhibited the highest rainfall and lowest interannual variability. Lowest rainfall coupled with high interannual variability was found in the Lower Shire basin, in the southern part of Malawi. This simillarity is the pattern of annual and seasonal rainfall should be expected because all stations had over 90% of their observed annual rainfall in the six month period between November and April. Monthly rainfall was found to be highly variable both temporally and spatially. None of the stations have stable monthly rainfall regimes (mean PCI of less than 10). Stations with the highest mean rainfall were found to have a lower interannual variability. The rainfall stations showed low spatial correlations for annual, monthly as well as seasonal timescales indicating that the data may not be suitable for spatial interpolation. However, some structure (i.e. lower correlation with distance) could be observed when aggregating the data at 50 mile intervals. The annual and seasonal rainfall series were dominated by negative trends. The spatial distribution of the trends can be described as heterogeneous, although most of the stations in the southern region have negative trends. At the monthly timescale, 37 of the stations show a negative trend with four of the stations, all in the south, showing significant negative trends. On the other hand, only 5 stations show positive trends with only one significant trend in the south. Keywords: Malawi, rainfall trends, spatial variation
Density-functional theory based on the electron distribution on the energy coordinate
NASA Astrophysics Data System (ADS)
Takahashi, Hideaki
2018-03-01
We developed an electronic density functional theory utilizing a novel electron distribution n(ɛ) as a basic variable to compute ground state energy of a system. n(ɛ) is obtained by projecting the electron density n({\\boldsymbol{r}}) defined on the space coordinate {\\boldsymbol{r}} onto the energy coordinate ɛ specified with the external potential {\\upsilon }ext}({\\boldsymbol{r}}) of interest. It was demonstrated that the Kohn-Sham equation can also be formulated with the exchange-correlation functional E xc[n(ɛ)] that employs the density n(ɛ) as an argument. It turned out an exchange functional proposed in our preliminary development suffices to describe properly the potential energies of several types of chemical bonds with comparable accuracies to the corresponding functional based on local density approximation. As a remarkable feature of the distribution n(ɛ) it inherently involves the spatially non-local information of the exchange hole at the bond dissociation limit in contrast to conventional approximate functionals. By taking advantage of this property we also developed a prototype of the static correlation functional E sc including no empirical parameters, which showed marked improvements in describing the dissociations of covalent bonds in {{{H}}}2,{{{C}}}2{{{H}}}4 and {CH}}4 molecules.
Practical protocols for fast histopathology by Fourier transform infrared spectroscopic imaging
NASA Astrophysics Data System (ADS)
Keith, Frances N.; Reddy, Rohith K.; Bhargava, Rohit
2008-02-01
Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation.
NASA Astrophysics Data System (ADS)
Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.
2015-06-01
This study is a contribution to development of a heterogeneity characterisation facility for "next generation" sampling aimed at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop a fit-for-purpose heterogeneity characterization approach. All parameters were assessed in large-scale profile (1-100 m) vs. small-scale (0.1-1 m) replication sampling pattern. Variographic profiles of experimental analytical results concludes that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among soils types. This study has a significant carrying-over potential for related research areas e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.
A CATALOG OF NEW SPECTROSCOPICALLY CONFIRMED MASSIVE OB STARS IN CARINA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Michael J.; Hanes, Richard J.; McSwain, M. Virginia
2016-12-01
The Carina star-forming region is one of the largest in the Galaxy, and its massive star population is still being unveiled. The large number of stars combined with high, and highly variable, interstellar extinction makes it inherently difficult to find OB stars in this type of young region. We present the results of a spectroscopic campaign to study the massive star population of the Carina Nebula, with the primary goal to confirm or reject previously identified Carina OB star candidates. A total of 141 known O- and B-type stars and 94 candidates were observed, of which 73 candidates had highmore » enough signal-to-noise ratio to classify. We find 23 new OB stars within the Carina Nebula, a 32% confirmation rate. One of the new OB stars has blended spectra and is suspected to be a double-lined spectroscopic binary (SB2). We also reclassify the spectral types of the known OB stars and discover nine new SB2s among this population. Finally, we discuss the spatial distribution of these new OB stars relative to known structures in the Carina Nebula.« less
Robust geographically weighted regression of modeling the Air Polluter Standard Index (APSI)
NASA Astrophysics Data System (ADS)
Warsito, Budi; Yasin, Hasbi; Ispriyanti, Dwi; Hoyyi, Abdul
2018-05-01
The Geographically Weighted Regression (GWR) model has been widely applied to many practical fields for exploring spatial heterogenity of a regression model. However, this method is inherently not robust to outliers. Outliers commonly exist in data sets and may lead to a distorted estimate of the underlying regression model. One of solution to handle the outliers in the regression model is to use the robust models. So this model was called Robust Geographically Weighted Regression (RGWR). This research aims to aid the government in the policy making process related to air pollution mitigation by developing a standard index model for air polluter (Air Polluter Standard Index - APSI) based on the RGWR approach. In this research, we also consider seven variables that are directly related to the air pollution level, which are the traffic velocity, the population density, the business center aspect, the air humidity, the wind velocity, the air temperature, and the area size of the urban forest. The best model is determined by the smallest AIC value. There are significance differences between Regression and RGWR in this case, but Basic GWR using the Gaussian kernel is the best model to modeling APSI because it has smallest AIC.
Parallel Tensor Compression for Large-Scale Scientific Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolda, Tamara G.; Ballard, Grey; Austin, Woody Nathan
As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memorymore » parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.« less
Simulation of the ocean's spectral radiant thermal source and boundary conditions
NASA Astrophysics Data System (ADS)
Merzlikin, Vladimir; Krass, Maxim; Cheranev, Svyatoslav; Aloric, Aleksandra
2013-05-01
This article considers the analysis of radiant heat transfer for semitransparent natural and polluted seawaters and its physical interpretations. Technogenic or natural pollutions are considered as ensembles of selective scattering, absorbing and emitting particles with complex refractive indices in difference spectral ranges of external radiation. Simulation of spectral radiant thermal sources within short wavelength of solar penetrating radiation for upper oceanic depth was carried out for deep seawater on regions from ˜ 300 to ˜ 600 nm and for subsurface layers (not more ˜ 1 m) - on one ˜ 600 - 1200 nm. Model boundary conditions on exposed oceanic surface are defined by (1) emittance of atmosphere and seawater within long wavelength radiation ˜ 9000 nm, (2) convection, and (3) thermal losses due to evaporation. Spatial and temporal variability of inherent optical properties, temperature distributions of the upper overheated layer of seawater, the appearance of a subsurface temperature maximum and a cool surface skin layer in response to penetrating solar radiation are explained first of all by the effects of volumetric scattering (absorption) and surface cooling of polluted seawater. The suggested analysis can become an important and useful subject of research for oceanographers and climatologists.
Natural Disasters and Cholera Outbreaks: Current Understanding and Future Outlook.
Jutla, Antarpreet; Khan, Rakibul; Colwell, Rita
2017-03-01
Diarrheal diseases remain a serious global public health threat, especially for those populations lacking access to safe water and sanitation infrastructure. Although association of several diarrheal diseases, e.g., cholera, shigellosis, etc., with climatic processes has been documented, the global human population remains at heightened risk of outbreak of diseases after natural disasters, such as earthquakes, floods, or droughts. In this review, cholera was selected as a signature diarrheal disease and the role of natural disasters in triggering and transmitting cholera was analyzed. Key observations include identification of an inherent feedback loop that includes societal structure, prevailing climatic processes, and spatio-temporal seasonal variability of natural disasters. Data obtained from satellite-based remote sensing are concluded to have application, although limited, in predicting risks of a cholera outbreak(s). We argue that with the advent of new high spectral and spatial resolution data, earth observation systems should be seamlessly integrated in a decision support mechanism to be mobilize resources when a region suffers a natural disaster. A framework is proposed that can be used to assess the impact of natural disasters with response to outbreak of cholera, providing assessment of short- and long-term influence of climatic processes on disease outbreaks.
Using satellite-based measurements to explore ...
New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently spatially averaged) measurements of atmospheric conditions to diagnose the occurrence of NPF and NPF characteristics. We demonstrate the potential for using satellite-measurements of insolation (UV), trace gas concentrations (sulfur dioxide (SO2), nitrogen dioxide (NO2), ammonia (NH3), formaldehyde (HCHO), ozone (O3)), aerosol optical properties (aerosol optical depth (AOD), Ångström exponent (AE)), and a proxy of biogenic volatile organic compound emissions (leaf area index (LAI), temperature (T)) as predictors for NPF characteristics: formation rates, growth rates, survival probabilities, and ultrafine particle (UFP) concentrations at five locations across North America. NPF at all sites is most frequent in spring, exhibits a one-day autocorrelation, and is associated with low condensational sink (AOD×AE) and HCHO concentrations, and high UV. However, there are important site-to-site variations in NPF frequency and characteristics, and in which of the predictor variables (particularly gas concentrations) significantly contribute to the explanatory power of regression models built to predict those characteristics. This finding may provide a partial explanation for the reported spatia
Rigby, Cassandra L.; White, William T.; Simpfendorfer, Colin A.
2016-01-01
The deepwater chondrichthyan fauna of the Great Barrier Reef is poorly known and life history information is required to enable their effective management as they are inherently vulnerable to exploitation. The chondrichthyan bycatch from the deepwater eastern king prawn fishery at the Swain Reefs in the southern Great Barrier Reef was examined to determine the species present and provide information on their life histories. In all, 1533 individuals were collected from 11 deepwater chondrichthyan species, with the Argus skate Dipturus polyommata, piked spurdog Squalus megalops and pale spotted catshark Asymbolus pallidus the most commonly caught. All but one species is endemic to Australia with five species restricted to waters offshore from Queensland. The extent of life history information available for each species varied but the life history traits across all species were characteristic of deep water chondrichthyans with relatively large length at maturity, small litters and low ovarian fecundity; all indicative of low biological productivity. However, variability among these traits and spatial and bathymetric distributions of the species suggests differing degrees of resilience to fishing pressure. To ensure the sustainability of these bycatch species, monitoring of their catches in the deepwater eastern king prawn fishery is recommended. PMID:27218654
NASA Astrophysics Data System (ADS)
Vanwalleghem, T.; Román, A.; Giraldez, J. V.
2016-12-01
There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.
Spatial variation in attributable risks.
Congdon, Peter
2015-01-01
The attributable risk (AR) measures the contribution of a particular risk factor to a disease, and allows estimation of disease rates specific to that risk. While previous studies consider variability in ARs over demographic categories, this paper considers the extent of spatial variability in ARs estimated from multilevel data with confounders both at individual and geographic levels. A case study considers the AR for diabetes in relation to elevated BMI, and area rates for diabetes attributable to excess weight. Contextual adjustment includes known area variables, and unobserved spatially clustered influences, while spatial heterogeneity (effect modification) is considered in terms of varying effects of elevated BMI by neighbourhood deprivation category. The application is to patient register data in London, with clear evidence of spatial variation in ARs, and in small area diabetes rates attributable to excess weight. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of spatial variability in visible and near-infrared spectral images
Chavez, P.S.
1992-01-01
The visible and near-infrared bands of the Landsat Thematic Mapper (TM) and the Satellite Pour l'Observation de la Terre (SPOT) were analyzed to determine which band contained more spatial variability. It is important for applications that require spatial information, such as those dealing with mapping linear features and automatic image-to-image correlation, to know which spectral band image should be used. Statistical and visual analyses were used in the project. The amount of variance in an 11 by 11 pixel spatial filter and in the first difference at the six spacings of 1, 5, 11, 23, 47, and 95 pixels was computed for the visible and near-infrared bands. The results indicate that the near-infrared band has more spatial variability than the visible band, especially in images covering densely vegetated areas. -Author
Melisa L. Holman; David L. Peterson
2006-01-01
We compared annual basal area increment (BAI) at different spatial scales among all size classes and species at diverse locations in the wet western and dry northeastern Olympic Mountains. Weak growth correlations at small spatial scales (average R = 0.084-0.406) suggest that trees are responding to local growth conditions. However, significant...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.
Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combinedmore » with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.« less
Optimization techniques for integrating spatial data
Herzfeld, U.C.; Merriam, D.F.
1995-01-01
Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.
Preliminary results of spatial modeling of selected forest health variables in Georgia
Brock Stewart; Chris J. Cieszewski
2009-01-01
Variables relating to forest health monitoring, such as mortality, are difficult to predict and model. We present here the results of fitting various spatial regression models to these variables. We interpolate plot-level values compiled from the Forest Inventory and Analysis National Information Management System (FIA-NIMS) data that are related to forest health....
Perspective taking in language: integrating the spatial and action domains.
Beveridge, Madeleine E L; Pickering, Martin J
2013-09-17
Language is an inherently social behavior. In this paper, we bring together two research areas that typically occupy distinct sections of the literature: perspective taking in spatial language (whether people represent a scene from their own or a different spatial perspective), and perspective taking in action language (the extent to which they simulate an action as though they were performing that action). First, we note that vocabulary is used inconsistently across the spatial and action domains, and propose a more transparent vocabulary that will allow researchers to integrate action- and spatial-perspective taking. Second, we note that embodied theories of language comprehension often make the narrow assumption that understanding action descriptions involves adopting the perspective of an agent carrying out that action. We argue that comprehenders can adopt embodied action-perspectives other than that of the agent, including those of the patient or an observer. Third, we review evidence showing that perspective taking in spatial language is a flexible process. We argue that the flexibility of spatial-perspective taking provides a means for conversation partners engaged in dialogue to maximize similarity between their situation models. These situation models can then be used as the basis for action language simulations, in which language users adopt a particular action-perspective.
Perspective taking in language: integrating the spatial and action domains
Beveridge, Madeleine E. L.; Pickering, Martin J.
2013-01-01
Language is an inherently social behavior. In this paper, we bring together two research areas that typically occupy distinct sections of the literature: perspective taking in spatial language (whether people represent a scene from their own or a different spatial perspective), and perspective taking in action language (the extent to which they simulate an action as though they were performing that action). First, we note that vocabulary is used inconsistently across the spatial and action domains, and propose a more transparent vocabulary that will allow researchers to integrate action- and spatial-perspective taking. Second, we note that embodied theories of language comprehension often make the narrow assumption that understanding action descriptions involves adopting the perspective of an agent carrying out that action. We argue that comprehenders can adopt embodied action-perspectives other than that of the agent, including those of the patient or an observer. Third, we review evidence showing that perspective taking in spatial language is a flexible process. We argue that the flexibility of spatial-perspective taking provides a means for conversation partners engaged in dialogue to maximize similarity between their situation models. These situation models can then be used as the basis for action language simulations, in which language users adopt a particular action-perspective. PMID:24062676
Added-values of high spatiotemporal remote sensing data in crop yield estimation
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.
2017-12-01
Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.
Gender, culture, and architecture in Ahmedabad and Berlin.
Kakad, K
2000-01-01
Spatial and social processes are inextricably linked. Hence gender relations as an inherent part of social relations get built into the spatial forms of any society. Spatial segregation by sex was a mark of traditional societies. This has diminished somewhat in contemporary societies due to various factors, perhaps the most important being the entry of women into the public sphere and their participation in income-earning activities. This paper looks at traditional, modern and postmodern housing in two cities--Ahmedabad and Berlin--through the lens of gender and culture. While there have been changes in housing over time, these changes have not been in proportion with the changes in gender relations in society which, in turn, have not kept pace with the way women's needs and priorities have changed. Housing must necessarily reflect the current needs of a society, and that entails reflecting the needs of both women and men equally.
Uni-directional optical pulses, temporal propagation, and spatial and temporal dispersion
NASA Astrophysics Data System (ADS)
Kinsler, P.
2018-02-01
I derive a temporally propagated uni-directional optical pulse equation valid in the few cycle limit. Temporal propagation is advantageous because it naturally preserves causality, unlike the competing spatially propagated models. The exact coupled bi-directional equations that this approach generates can be efficiently approximated down to a uni-directional form in cases where an optical pulse changes little over one optical cycle. They also permit a direct term-to-term comparison of the exact bi-directional theory with its corresponding approximate uni-directional theory. Notably, temporal propagation handles dispersion in a different way, and this difference serves to highlight existing approximations inherent in spatially propagated treatments of dispersion. Accordingly, I emphasise the need for future work in clarifying the limitations of the dispersion conversion required by these types of approaches; since the only alternative in the few cycle limit may be to resort to the much more computationally intensive full Maxwell equation solvers.
Ren, Yongxiong; Wang, Zhe; Xie, Guodong; Li, Long; Cao, Yinwen; Liu, Cong; Liao, Peicheng; Yan, Yan; Ahmed, Nisar; Zhao, Zhe; Willner, Asher; Ashrafi, Nima; Ashrafi, Solyman; Linquist, Roger D; Bock, Robert; Tur, Moshe; Molisch, Andreas F; Willner, Alan E
2015-09-15
We explore the potential of combining the advantages of multiple-input multiple-output (MIMO)-based spatial multiplexing with those of orbital angular momentum (OAM) multiplexing to increase the capacity of free-space optical (FSO) communications. We experimentally demonstrate an 80 Gbit/s FSO system with a 2×2 aperture architecture, in which each transmitter aperture contains two multiplexed data-carrying OAM modes. Inter-channel crosstalk effects are minimized by the OAM beams' inherent orthogonality and by the use of 4×4 MIMO signal processing. Our experimental results show that the bit-error rates can reach below the forward error correction limit of 3.8×10(-3) and the power penalties are less than 3.6 dB for all channels after MIMO processing. This indicates that OAM and MIMO-based spatial multiplexing could be simultaneously utilized, thereby providing the potential to enhance system performance.
Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials
NASA Astrophysics Data System (ADS)
Shalin, Alexander S.; Ginzburg, Pavel; Orlov, Alexey A.; Iorsh, Ivan; Belov, Pavel A.; Kivshar, Yuri S.; Zayats, Anatoly V.
2015-03-01
Concealing objects by making them invisible to an external electromagnetic probe is coined by the term "cloaking." Cloaking devices, having numerous potential applications, are still facing challenges in realization, especially in the visible spectral range. In particular, inherent losses and extreme parameters of metamaterials required for the cloak implementation are the limiting factors. Here, we numerically demonstrate nearly perfect suppression of scattering from arbitrary-shaped objects in spatially dispersive metamaterial acting as an alignment-free concealing cover. We consider a realization of a metamaterial as a metal-dielectric multilayer and demonstrate suppression of scattering from an arbitrary object in forward and backward directions with perfectly preserved wave fronts and less than 10% absolute intensity change, despite spatial dispersion effects present in the composite metamaterial. Beyond the usual scattering suppression applications, the proposed configuration may be used for a simple realization of scattering-free detectors and sensors.
Spatially selective hydrogen irradiation of dilute nitride semiconductors: a brief review
NASA Astrophysics Data System (ADS)
Felici, Marco; Pettinari, Giorgio; Biccari, Francesco; Capizzi, Mario; Polimeni, Antonio
2018-05-01
We provide a brief survey of the most recent results obtained by performing spatially selective hydrogen irradiation of dilute nitride semiconductors. The striking effects of the formation of stable N–H complexes in these compounds—coupled to the ultrasharp diffusion profile of H therein—can be exploited to tailor the structural (lattice constant) and optoelectronic (energy gap, refractive index, electron effective mass) properties of the material in the growth plane, with a spatial resolution of a few nm. This can be applied to the fabrication of site-controlled quantum dots (QDs) and wires, but also to the realization of the optical elements required for the on-chip manipulation and routing of qubits in fully integrated photonic circuits. The fabricated QDs—which have shown the ability to emit single photons—can also be deterministically coupled with photonic crystal microcavities, proving their inherent suitability to act as integrated light sources in complex nanophotonic devices.
Environmental law plays a key role in shaping policy for sustainability. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in social-ecological systems is critical. Sustainability likely must occur via the institution...
Connecting Achievement Motivation to Performance in General Chemistry
ERIC Educational Resources Information Center
Ferrell, Brent; Phillips, Michael M.; Barbera, Jack
2016-01-01
Student success in chemistry is inherently tied to motivational and other affective processes. We investigated three distinct constructs tied to motivation: self-efficacy, interest, and effort beliefs. These variables were measured twice over the course of a semester in three sections of a first-semester general chemistry course (n = 170). We…
Relative radiometric calibration of LANDSAT TM reflective bands
NASA Technical Reports Server (NTRS)
Barker, J. L.
1984-01-01
A common scientific methodology and terminology is outlined for characterizing the radiometry of both TM sensors. The magnitude of the most significant sources of radiometric variability are discussed and methods are recommended for achieving the exceptional potential inherent in the radiometric precision and accuracy of the TM sensors.
Environmental law plays a key role in shaping approaches to sustainability. In particular, the role of legal instruments, institutions, and the relationship of law to the inherent variability in social-ecological systems is critical. Sustainability likely must occur via the insti...
Minimizing field time to get reasonable greenhouse gas flux estimates from many chambers
USDA-ARS?s Scientific Manuscript database
Greenhouse gas measurements from soil are typically derived from static chambers placed in several replicate field plots and in multiple locations within a plot. Inherent variability in emissions is due to a number of known and unknown factors. Getting robust emission estimates from numerous chamber...
Theory of Mind Predicts Emotion Knowledge Development in Head Start Children
ERIC Educational Resources Information Center
Seidenfeld, Adina M.; Johnson, Stacy R.; Cavadel, Elizabeth Woodburn; Izard, Carroll E.
2014-01-01
Research Findings: Emotion knowledge (EK) enables children to identify emotions in themselves and others, and its development facilitates emotion recognition in complex social situations. Sociocognitive processes, such as theory of mind (ToM), may contribute to developing EK by helping children realize the inherent variability associated with…
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Satellite Analysis of Ocean Biogeochemistry and Mesoscale Variability in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, D. A.; Micheals, A. F.; Nelson, N. B.
1997-01-01
The objective of this study was to analyze the impact of spatial variability on the time-series of biogeochemical measurements made at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site. Originally the study was planned to use SeaWiFS as well as AVHRR high-resolution data. Despite the SeaWiFS delays we were able to make progress on the following fronts: (1) Operational acquisition, processing, and archive of HRPT data from a ground station located in Bermuda; (2) Validation of AVHRR SST data using BATS time-series and spatial validation cruise CTD data; (3) Use of AVHRR sea surface temperature imagery and ancillary data to assess the impact of mesoscale spatial variability on P(CO2) and carbon flux in the Sargasso Sea; (4) Spatial and temporal extent of tropical cyclone induced surface modifications; and (5) Assessment of eddy variability using TOPEX/Poseidon data.
McHugh, Stuart
1976-01-01
The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.
NASA Astrophysics Data System (ADS)
Balasis, George; Donner, Reik V.; Donges, Jonathan F.; Radebach, Alexander; Eftaxias, Konstantinos; Kurths, Jürgen
2013-04-01
The dynamics of many complex systems is characterized by the same universal principles. In particular, systems which are otherwise quite different in nature show striking similarities in their behavior near tipping points (bifurcations, phase transitions, sudden regime shifts) and associated extreme events. Such critical phenomena are frequently found in diverse fields such as climate, seismology, or financial markets. Notably, the observed similarities include a high degree of organization, persistent behavior, and accelerated energy release, which are common to (among others) phenomena related to geomagnetic variability of the terrestrial magnetosphere (intense magnetic storms), seismic activity (electromagnetic emissions prior to earthquakes), solar-terrestrial physics (solar flares), neurophysiology (epileptic seizures), and socioeconomic systems (stock market crashes). It is an open question whether the spatial and temporal complexity associated with extreme events arises from the system's structural organization (geometry) or from the chaotic behavior inherent to the nonlinear equations governing the dynamics of these phenomena. On the one hand, the presence of scaling laws associated with earthquakes and geomagnetic disturbances suggests understanding these events as generalized phase transitions similar to nucleation and critical phenomena in thermal and magnetic systems. On the other hand, because of the structural organization of the systems (e.g., as complex networks) the associated spatial geometry and/or topology of interactions plays a fundamental role in the emergence of extreme events. Here, a few aspects of the interplay between geometry and dynamics (critical phase transitions) that could result in the emergence of extreme events, which is an open problem, will be discussed.
Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium
NASA Astrophysics Data System (ADS)
Mi, XiaoCheng; Higgins, Andrew J.; Ng, Hoi Dick; Kiyanda, Charles B.; Nikiforakis, Nikolaos
2017-05-01
Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium and thus a constant Chapman-Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatiotemporal averaged structure of the waves in these systems is analyzed via a Favre-averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical nonequilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed.
Using infrared thermography for understanding and quantifying soil surface processes
NASA Astrophysics Data System (ADS)
de Lima, João L. M. P.
2017-04-01
At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.
Dynamic stress changes during earthquake rupture
Day, S.M.; Yu, G.; Wald, D.J.
1998-01-01
We assess two competing dynamic interpretations that have been proposed for the short slip durations characteristic of kinematic earthquake models derived by inversion of earthquake waveform and geodetic data. The first interpretation would require a fault constitutive relationship in which rapid dynamic restrengthening of the fault surface occurs after passage of the rupture front, a hypothesized mechanical behavior that has been referred to as "self-healing." The second interpretation would require sufficient spatial heterogeneity of stress drop to permit rapid equilibration of elastic stresses with the residual dynamic friction level, a condition we refer to as "geometrical constraint." These interpretations imply contrasting predictions for the time dependence of the fault-plane shear stresses. We compare these predictions with dynamic shear stress changes for the 1992 Landers (M 7.3), 1994 Northridge (M 6.7), and 1995 Kobe (M 6.9) earthquakes. Stress changes are computed from kinematic slip models of these earthquakes, using a finite-difference method. For each event, static stress drop is highly variable spatially, with high stress-drop patches embedded in a background of low, and largely negative, stress drop. The time histories of stress change show predominantly monotonic stress change after passage of the rupture front, settling to a residual level, without significant evidence for dynamic restrengthening. The stress change at the rupture front is usually gradual rather than abrupt, probably reflecting the limited resolution inherent in the underlying kinematic inversions. On the basis of this analysis, as well as recent similar results obtained independently for the Kobe and Morgan Hill earthquakes, we conclude that, at the present time, the self-healing hypothesis is unnecessary to explain earthquake kinematics.
Distributed multi-criteria model evaluation and spatial association analysis
NASA Astrophysics Data System (ADS)
Scherer, Laura; Pfister, Stephan
2015-04-01
Model performance, if evaluated, is often communicated by a single indicator and at an aggregated level; however, it does not embrace the trade-offs between different indicators and the inherent spatial heterogeneity of model efficiency. In this study, we simulated the water balance of the Mississippi watershed using the Soil and Water Assessment Tool (SWAT). The model was calibrated against monthly river discharge at 131 measurement stations. Its time series were bisected to allow for subsequent validation at the same gauges. Furthermore, the model was validated against evapotranspiration which was available as a continuous raster based on remote sensing. The model performance was evaluated for each of the 451 sub-watersheds using four different criteria: 1) Nash-Sutcliffe efficiency (NSE), 2) percent bias (PBIAS), 3) root mean square error (RMSE) normalized to standard deviation (RSR), as well as 4) a combined indicator of the squared correlation coefficient and the linear regression slope (bR2). Conditions that might lead to a poor model performance include aridity, a very flat and steep relief, snowfall and dams, as indicated by previous research. In an attempt to explain spatial differences in model efficiency, the goodness of the model was spatially compared to these four phenomena by means of a bivariate spatial association measure which combines Pearson's correlation coefficient and Moran's index for spatial autocorrelation. In order to assess the model performance of the Mississippi watershed as a whole, three different averages of the sub-watershed results were computed by 1) applying equal weights, 2) weighting by the mean observed river discharge, 3) weighting by the upstream catchment area and the square root of the time series length. Ratings of model performance differed significantly in space and according to efficiency criterion. The model performed much better in the humid Eastern region than in the arid Western region which was confirmed by the high spatial association with the aridity index (ratio of mean annual precipitation to mean annual potential evapotranspiration). This association was still significant when controlling for slopes which manifested the second highest spatial association. In line with these findings, overall model efficiency of the entire Mississippi watershed appeared better when weighted with mean observed river discharge. Furthermore, the model received the highest rating with regards to PBIAS and was judged worst when considering NSE as the most comprehensive indicator. No universal performance indicator exists that considers all aspects of a hydrograph. Therefore, sound model evaluation must take into account multiple criteria. Since model efficiency varies in space which is masked by aggregated ratings spatially explicit model goodness should be communicated as standard praxis - at least as a measure of spatial variability of indicators. Furthermore, transparent documentation of the evaluation procedure also with regards to weighting of aggregated model performance is crucial but often lacking in published research. Finally, the high spatial association between model performance and aridity highlights the need to improve modelling schemes for arid conditions as priority over other aspects that might weaken model goodness.
NASA Technical Reports Server (NTRS)
Gille, Jennifer; Martin, Russel; Lubin, Jeffrey; Larimer, James
1995-01-01
In a series of papers presented in 1994, we examined the grayscale/resolution trade-off for natural images displayed on devices with discrete pixellation, such as AMLCD's. In the present paper we extend this study by examining the grayscale/resolution trade-off for text images on discrete-pixel displays. Halftoning in printing is an example of the grayscale/resolution trade-off. In printing, spatial resolution is sacrificed to produce grayscale. Another example of this trade-off is the inherent low-pass spatial filter of a CRT, caused by the point-spread function of the electron beam in the phosphor layer. On a CRT, sharp image edges are blurred by this inherent low-pass filtering, and the block noise created by spatial quantization is greatly reduced. A third example of this trade-off is text anti-aliasing, where grayscale is used to improve letter shape, size and location when rendered at a low spatial resolution. There are additional implications for display system design from the grayscale/resolution trade-off. For example, reduced grayscale can reduce system costs by requiring less complexity in the framestore, allowing the use of lower cost drivers, potentially increasing data transfer rates in the image subsystem, and simplifying the manufacturing processes that are used to construct the active matrix for AMLCD (active-matrix liquid-crystal display) or AMTFEL (active-matrix thin-film electroluminescent) devices. Therefore, the study of these trade-offs is important for display designers and manufacturing and systems engineers who wish to create the highest performance, lowest cost device possible. Our strategy for investigating this trade-off is to generate a set of simple test images, manipulate grayscale and resolution, predict discrimination performance using the ViDEOS(Sarnoff) Human Vision Model, conduct an empirical study of discrimination using psychophysical procedures, and verify the computational results using the psychophysical results.
NASA Astrophysics Data System (ADS)
Tisseyre, Bruno
2015-04-01
For more than 15 years, research projects are conducted in the precision viticulture (PV) area around the world. These research projects have provided new insights into the within-field variability in viticulture. Indeed, access to high spatial resolution data (remote sensing, embedded sensors, etc.) changes the knowledge we have of the fields in viticulture. In particular, the field which was until now considered as a homogeneous management unit, presents actually a high spatial variability in terms of yield, vigour an quality. This knowledge will lead (and is already causing) changes on how to manage the vineyard and the quality of the harvest at the within field scale. From the experimental results obtained in various countries of the world, the goal of the presentation is to provide figures on: - the spatial variability of the main parameters (yield, vigor, quality), and how this variability is organized spatially, - the temporal stability of the observed spatial variability and the potential link with environmental parameters like soil, topography, soil water availability, etc. - information sources available at a high spatial resolution conventionally used in precision agriculture likely to highlight this spatial variability (multi-spectral images, soil electrical conductivity, etc.) and the limitations that these information sources are likely to present in viticulture. Several strategies are currently being developed to take into account the within field variability in viticulture. They are based on the development of specific equipments, sensors, actuators and site specific strategies with the aim of adapting the vineyard operations at the within-field level. These strategies will be presented briefly in two ways : - Site specific operations (fertilization, pruning, thinning, irrigation, etc.) in order to counteract the effects of the environment and to obtain a final product with a controlled and consistent wine quality, - Differential harvesting with the objective to take advantage of the observed spatial variability to produce different quality of wines. These later approach tends to produce very different quality wines which will be blended to control the final quality and/or marketed differently. These applications show that the environment and its spatial variability can be valued with the goal of controlling the final quality of the wine produced. Technologies to characterize the spatial variability of vine fields are currently in rapid evolution. They will significantly impact production methods and management strategies of the vineyard. In its last part, the presentation will summarize the technologies likely to impact the knowledge and the vineyard management either at the field level, at the vineyard level or at the regional level. A brief overview of the needs in terms of information processing will be also performed. A reflection on the difficulties that might limit the adoption of precision viticulture technologies (PV) will be done. Indeed, although very informative, PV entails high costs of information acquisition and data processing. Cost is one of the major obstacles to the dissemination of these tools and services to the majority of wine producers. In this context, the pooling of investments is a choke point to make the VP accessible to the highest number of growers. Thus, to be adopted, the VP will necessarily satisfy the operational requirements at the field level, but also throughout the whole production area (at the regional level). This working scale raises new scientific questions to be addressed.
NASA Astrophysics Data System (ADS)
Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William
2017-04-01
Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.
Perceiving numbers does not cause automatic shifts of spatial attention.
Fattorini, Enrico; Pinto, Mario; Rotondaro, Francesca; Doricchi, Fabrizio
2015-12-01
It is frequently assumed that the brain codes number magnitudes according to an inherent left-to-right spatial organization. In support of this hypothesis it has been reported that in humans, perceiving small numbers induces automatic shifts of attention toward the left side of space whereas perceiving large numbers automatically shifts attention to the right side of space (i.e., Attentional SNARC: Att-SNARC; Fischer, Castel, Dodd, & Pratt, 2003). Nonetheless, the Att-SNARC has been often not replicated and its reliability never tested. To ascertain whether the mere perception of numbers causes shifts of spatial attention or whether number-space interaction takes place at a different stage of cognitive processing, we re-assessed the consistency and reliability of the Att-SNARC and investigated its role in the production of SNARC effects in Parity Judgement (PJ) and Magnitude Comparison (MC) tasks. In a first study in 60 participants, we found no Att-SNARC, despite finding strong PJ- and MC-SNARC effects. No correlation was present between the Att-SNARC and the SNARC. Split-half tests showed no reliability of the Att-SNARC and high reliability of the PJ- and MC-SNARC. In a second study, we re-assessed the Att-SNARC and tested its direct influence on a MC-SNARC task with laterally presented targets. No Att-SNARC and no influence of the Att-SNARC on the MC-SNARC were found. Also in this case, the SNARC was reliable whereas the Att-SNARC task was not. Finally, in a third study we observed a significant Att-SNARC when participants were asked to recall the position occupied on a ruler by the numbers presented in each trial: however the Att-SNARC task was not reliable. These results show that perceiving numbers does not cause automatic shifts of spatial attention and that whenever present, these shifts do not modulate the SNARC. The same results suggest that numbers have no inherent mental left-to-right organization and that, whenever present, this organization can have both response-related and strategically driven memory-related origins. Nonetheless, response-related factors generate more reliable and stable spatial representations of numbers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.
2010-01-01
This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.
NASA Astrophysics Data System (ADS)
Redolfi, M.; Bertoldi, W.; Tubino, M.; Welber, M.
2018-02-01
Measurement and estimation of bed load transport in gravel bed rivers are highly affected by its temporal fluctuations. Such variability is primarily driven by the flow regime but is also associated with a variety of inherent channel processes, such as flow turbulence, grain entrainment, and bed forms migration. These internal and external controls often act at comparable time scales, and are therefore difficult to disentangle, thus hindering the study of bed load variability under unsteady flow regime. In this paper, we report on laboratory experiments performed in a large, mobile bed flume where typical hydromorphological conditions of gravel bed rivers were reproduced. Data from a large number of replicated runs, including triangular and square-wave hydrographs, were used to build a statistically sound description of sediment transport processes. We found that the inherent variability of bed load flux strongly depends on the sampling interval, and it is significantly higher in complex, wandering or braided channels. This variability can be filtered out by computing the mean response over the experimental replicates, which allows us to highlight two distinctive phenomena: (i) an overshooting (undershooting) response of the mean bed load flux to a sudden increase (decrease) of discharge, and (ii) a clockwise hysteresis in the sediment rating curve. We then provide an interpretation of these findings through a conceptual mathematical model, showing how both phenomena are associated with a lagging morphological adaptation to unsteady flow. Overall, this work provides basic information for evaluating, monitoring, and managing gravel transport in morphologically active rivers.
Field-scale apparent soil electrical conductivity
USDA-ARS?s Scientific Manuscript database
Soils are notoriously spatially heterogeneous and many soil properties (e.g., salinity, water content, trace element concentration, etc.) are temporally variable, making soil a complex media. Spatial variability of soil properties has a profound influence on agricultural and environmental processes ...
NASA Astrophysics Data System (ADS)
Danesh-Yazdi, Mohammad; Botter, Gianluca; Foufoula-Georgiou, Efi
2017-05-01
Lack of hydro-bio-chemical data at subcatchment scales necessitates adopting an aggregated system approach for estimating water and solute transport properties, such as residence and travel time distributions, at the catchment scale. In this work, we show that within-catchment spatial heterogeneity, as expressed in spatially variable discharge-storage relationships, can be appropriately encapsulated within a lumped time-varying stochastic Lagrangian formulation of transport. This time (variability) for space (heterogeneity) substitution yields mean travel times (MTTs) that are not significantly biased to the aggregation of spatial heterogeneity. Despite the significant variability of MTT at small spatial scales, there exists a characteristic scale above which the MTT is not impacted by the aggregation of spatial heterogeneity. Extensive simulations of randomly generated river networks reveal that the ratio between the characteristic scale and the mean incremental area is on average independent of river network topology and the spatial arrangement of incremental areas.
Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.
2013-01-01
In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.
Prediction of hourly PM2.5 using a space-time support vector regression model
NASA Astrophysics Data System (ADS)
Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang
2018-05-01
Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.
Food web heterogeneity and succession in created saltmarshes
Nordstrom, M C; Demopoulos, Amanda W.J.; Whitcraft, CR; Rismondo, A.; McMillan, P.; Gonzales, J P; Levin, L A
2015-01-01
1. Ecological restoration must achieve functional as well as structural recovery. Functional metrics for reestablishment of trophic interactions can be used to complement traditional monitoring of structural attributes. In addition, topographic effects on food web structure provide added information within a restoration context; often, created sites may require spatial heterogeneity to effectively match structure and function of natural habitats. 2. We addressed both of these issues in our study of successional development of benthic food web structure, with focus on bottom–up driven changes in macroinvertebrate consumer assemblages in the salt marshes of the Venice Lagoon, Italy. We combined quantified estimates of the changing community composition with stable isotope data (13C:12C and 15N:14N) to compare the general trophic structure between created (2–14 years) marshes and reference sites and along topographic elevation gradients within salt marshes. 3. Macrofaunal invertebrate consumers exhibited local, habitat-specific trophic patterns. Stable isotope-based trophic structure changed with increasing marsh age, in particular with regards to mid-elevation (Salicornia) habitats. In young marshes, the mid-elevation consumer signatures resembled those of unvegetated ponds. The mid elevation of older and natural marshes had a more distinct Salicornia-zone food web, occasionally resembling that of the highest (Sarcocornia-dominated) elevation. In summary, this indicates that primary producers and availability of vascular plant detritus structure consumer trophic interactions and the flow of carbon. 4. Functionally different consumers, subsurface-feeding detritivores (Oligochaeta) and surface grazers (Hydrobia sp.), showed distinct but converging trajectories of isotopic change over time, indicating that successional development may be asymmetric between ‘brown’ (detrital) guilds and ‘green’ (grazing) guilds in the food web. 5. Synthesis and applications. Created marsh food webs converged into a natural state over about a decade, with successional shifts seen in both consumer community composition and stable isotope space. Strong spatial effects were noted, highlighting the utility of stable isotopes to evaluate functional equivalence in spatially heterogeneous systems. Understanding the recovery of functional properties such as food web support, and their inherent spatial variability, is key to planning and managing successful habitat restoration.
NASA Astrophysics Data System (ADS)
Martin, D. J.
2013-12-01
Large woody debris (LWD) is universally recognized as a key component of the geomorphological and ecological function of fluvial systems and has been increasingly incorporated into stream restoration and watershed management projects. However, 'natural' processes of recruitment and the subsequent arrangement of LWD within the river network are poorly understood and are thus, rarely a management consideration. Additionally, LWD research tends to be regionally biased toward mountainous regions, and scale biased toward the micro-scale. In many locations, the lack of understanding has led to the failure of restoration/rehabilitation projects that involved the use of LWD. This research uses geographic information systems and spatial analysis techniques to investigate longitudinal arrangement patterns of LWD in a low-gradient, Midwestern river. A large-scale GPS inventory of LWD was performed on the Big River, located in the eastern Missouri Ozarks resulting in over 5,000 logged positions of LWD along seven river segments covering nearly 100 km of the 237 km river system. A time series analysis framework was used to statistically identify longitudinal spatial patterns of LWD arrangement along the main stem of the river, and correlation analyses were performed to help identify physical controls of those patterns. Results indicate that upstream segments have slightly lower densities than downstream segments, with the exception of the farthest upstream segment. Results also show lack of an overall longitudinal trend in LWD density; however, periodogram analysis revealed an inherent periodicity in LWD arrangement. Periodicities were most evident in the downstream segments with frequencies ranging from 3 km to 7 km. Additionally, Pearson correlation analysis, performed within the segment displaying the strongest periodic behavior, show that LWD densities are correlated with channel sinuosity (r=0.25). Ongoing research is investigating further relationships between arrangement patterns and geomorphic and riparian variables. Understanding these spatial patterns and relationships will provide valuable insight into the application of LWD-related stream and watershed management practices, and fill a necessary regional knowledge gap in our understanding of LWD's role in fluvial processes.
NASA Astrophysics Data System (ADS)
Meixner, J.; Grimmer, J. C.; Becker, A.; Schill, E.; Kohl, T.
2018-03-01
GIS-based remote sensing techniques and lineament mapping provide additional information on the spatial arrangement of faults and fractures in large areas with variable outcrop conditions. Due to inherent censoring and truncation bias mapping of lineaments is still a challenging task. In this study we show how statistical evaluations help to improve the reliability of lineament mappings by comparing two digital elevation models (ASTER, LIDAR) and satellite imagery data sets in the seismically active southern Black Forest. A statistical assessment of the orientation, average length, and the total length of mapped lineaments reveals an impact of the different resolutions of the data sets that allow to define maximum (censoring bias) and minimum (truncation bias) observable lineament length for each data set. The increase of the spatial resolution of the digital elevation model from 30 m × 30 m to 5 m × 5 m results in a decrease of total lineament length by about 40% whereby the average lineament lengths decrease by about 60%. Lineament length distributions of both data sets follow a power law distribution as documented elsewhere for fault and fracture systems. Predominant NE-, N-, NNW-, and NW-directions of the lineaments are observed in all data sets and correlate with well-known, mappable large-scale structures in the southern Black Forest. Therefore, mapped lineaments can be correlated with faults and hence display geological significance. Lineament density in the granite-dominated areas is apparently higher than in the gneiss-dominated areas. Application of a slip- and dilation tendency analysis on the fault pattern reveals largest reactivation potentials for WNW-ESE and N-S striking faults as strike-slip faults whereas normal faulting may occur along NW-striking faults within the ambient stress field. Remote sensing techniques in combination with highly resolved digital elevation models and a slip- and dilation tendency analysis thus can be used to quickly get first order results of the spatial arrangement of critically stressed faults in crystalline basement rocks.
NASA Astrophysics Data System (ADS)
Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar
2014-08-01
As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.
The need for spatially explicit quantification of benefits in invasive-species management.
Januchowski-Hartley, Stephanie R; Adams, Vanessa M; Hermoso, Virgilio
2018-04-01
Worldwide, invasive species are a leading driver of environmental change across terrestrial, marine, and freshwater environments and cost billions of dollars annually in ecological damages and economic losses. Resources limit invasive-species control, and planning processes are needed to identify cost-effective solutions. Thus, studies are increasingly considering spatially variable natural and socioeconomic assets (e.g., species persistence, recreational fishing) when planning the allocation of actions for invasive-species management. There is a need to improve understanding of how such assets are considered in invasive-species management. We reviewed over 1600 studies focused on management of invasive species, including flora and fauna. Eighty-four of these studies were included in our final analysis because they focused on the prioritization of actions for invasive species management. Forty-five percent (n = 38) of these studies were based on spatial optimization methods, and 35% (n = 13) accounted for spatially variable assets. Across all 84 optimization studies considered, 27% (n = 23) explicitly accounted for spatially variable assets. Based on our findings, we further explored the potential costs and benefits to invasive species management when spatially variable assets are explicitly considered or not. To include spatially variable assets in decision-making processes that guide invasive-species management there is a need to quantify environmental responses to invasive species and to enhance understanding of potential impacts of invasive species on different natural or socioeconomic assets. We suggest these gaps could be filled by systematic reviews, quantifying invasive species impacts on native species at different periods, and broadening sources and enhancing sharing of knowledge. © 2017 Society for Conservation Biology.
Analysis of shifts in the spatial distribution of vegetation due to climate change
NASA Astrophysics Data System (ADS)
del Jesus, Manuel; Díez-Sierra, Javier; Rinaldo, Andrea; Rodríguez-Iturbe, Ignacio
2017-04-01
Climate change will modify the statistical regime of most climatological variables, inducing changes on average values and in the natural variability of environmental variables. These environmental variables may be used to explain the spatial distribution of functional types of vegetation in arid and semiarid watersheds through the use of plant optimization theories. Therefore, plant optimization theories may be used to approximate the response of the spatial distribution of vegetation to a changing climate. Predicting changes in these spatial distributions is important to understand how climate change may affect vegetated ecosystems, but it is also important for hydrological engineering applications where climate change effects on water availability are assessed. In this work, Maximum Entropy Production (MEP) is used as the plant optimization theory that describes the spatial distribution of functional types of vegetation. Current climatological conditions are obtained from direct observations from meteorological stations. Climate change effects are evaluated for different temporal horizons and different climate change scenarios using numerical model outputs from the CMIP5. Rainfall estimates are downscaled by means of a stochastic point process used to model rainfall. The study is carried out for the Rio Salado watershed, located within the Sevilleta LTER site, in New Mexico (USA). Results show the expected changes in the spatial distribution of vegetation and allow to evaluate the expected variability of the changes. The updated spatial distributions allow to evaluate the vegetated ecosystem health and its updated resilience. These results can then be used to inform the hydrological modeling part of climate change assessments analyzing water availability in arid and semiarid watersheds.
Spatial scaling of net primary productivity using subpixel landcover information
NASA Astrophysics Data System (ADS)
Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.
2008-10-01
Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.
Robin M. Reich; C. Aguirre-Bravo; M.S. Williams
2006-01-01
A statistical strategy for spatial estimation and modeling of natural and environmental resource variables and indicators is presented. This strategy is part of an inventory and monitoring pilot study that is being carried out in the Mexican states of Jalisco and Colima. Fine spatial resolution estimates of key variables and indicators are outputs that will allow the...
Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method
2010-01-25
2010 / Accepted: 19 January 2010 / Published: 25 January 2010 Abstract: Spatial and temporal soil moisture dynamics are critically needed to...scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial... dynamics is essential in the hydrological and meteorological modeling, improves our understanding of land surface–atmosphere interactions. Spatial and
Veiga, Puri; Torres, Ana Catarina; Aneiros, Fernando; Sousa-Pinto, Isabel; Troncoso, Jesús S; Rubal, Marcos
2016-09-01
Spatial variability of environmental factors and macrobenthos, using species and functional groups, was examined over the same scales (100s of cm to >100 km) in intertidal sediments of two transitional water systems. The objectives were to test if functional groups were a good species surrogate and explore the relationship between environmental variables and macrobenthos. Environmental variables, diversity and the multivariate assemblage structure showed the highest variability at the scale of 10s of km. However, abundance was more variable at 10s of m. Consistent patterns were achieved using species and functional groups therefore, these may be a good species surrogate. Total carbon, salinity and silt/clay were the strongest correlated with macrobenthic assemblages. Results are valuable for design and interpretation of future monitoring programs including detection of anthropogenic disturbances in transitional systems and propose improvements in environmental variable sampling to refine the assessment of their relationship with biological data across spatial scales. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Houborg, Rasmus; McCabe, Matthew F.
2018-01-01
With an increasing volume and dimensionality of Earth observation data, enhanced integration of machine-learning methodologies is needed to effectively analyze and utilize these information rich datasets. In machine-learning, a training dataset is required to establish explicit associations between a suite of explanatory 'predictor' variables and the target property. The specifics of this learning process can significantly influence model validity and portability, with a higher generalization level expected with an increasing number of observable conditions being reflected in the training dataset. Here we propose a hybrid training approach for leaf area index (LAI) estimation, which harnesses synergistic attributes of scattered in-situ measurements and systematically distributed physically based model inversion results to enhance the information content and spatial representativeness of the training data. To do this, a complimentary training dataset of independent LAI was derived from a regularized model inversion of RapidEye surface reflectances and subsequently used to guide the development of LAI regression models via Cubist and random forests (RF) decision tree methods. The application of the hybrid training approach to a broad set of Landsat 8 vegetation index (VI) predictor variables resulted in significantly improved LAI prediction accuracies and spatial consistencies, relative to results relying on in-situ measurements alone for model training. In comparing the prediction capacity and portability of the two machine-learning algorithms, a pair of relatively simple multi-variate regression models established by Cubist performed best, with an overall relative mean absolute deviation (rMAD) of ∼11%, determined based on a stringent scene-specific cross-validation approach. In comparison, the portability of RF regression models was less effective (i.e., an overall rMAD of ∼15%), which was attributed partly to model saturation at high LAI in association with inherent extrapolation and transferability limitations. Explanatory VIs formed from bands in the near-infrared (NIR) and shortwave infrared domains (e.g., NDWI) were associated with the highest predictive ability, whereas Cubist models relying entirely on VIs based on NIR and red band combinations (e.g., NDVI) were associated with comparatively high uncertainties (i.e., rMAD ∼ 21%). The most transferable and best performing models were based on combinations of several predictor variables, which included both NDWI- and NDVI-like variables. In this process, prior screening of input VIs based on an assessment of variable relevance served as an effective mechanism for optimizing prediction accuracies from both Cubist and RF. While this study demonstrated benefit in combining data mining operations with physically based constraints via a hybrid training approach, the concept of transferability and portability warrants further investigations in order to realize the full potential of emerging machine-learning techniques for regression purposes.
Allen, David T; Cardoso-Saldaña, Felipe J; Kimura, Yosuke
2017-10-17
A gridded inventory for emissions of methane, ethane, propane, and butanes from oil and gas sources in the Barnett Shale production region has been developed. This inventory extends previous spatially resolved inventories of emissions by characterizing the overall variability in emission magnitudes and the composition of emissions at an hourly time resolution. The inventory is divided into continuous and intermittent emission sources. Sources are defined as continuous if hourly averaged emissions are greater than zero in every hour; otherwise, they are classified as intermittent. In the Barnett Shale, intermittent sources accounted for 14-30% of the mean emissions for methane and 10-34% for ethane, leading to spatial and temporal variability in the location of hourly emissions. The combined variability due to intermittent sources and variability in emission factors can lead to wide confidence intervals in the magnitude and composition of time and location-specific emission inventories; therefore, including temporal and spatial variability in emission inventories is important when reconciling inventories and observations. Comparisons of individual aircraft measurement flights conducted in the Barnett Shale region versus the estimated emission rates for each flight from the emission inventory indicate agreement within the expected variability of the emission inventory for all flights for methane and for all but one flight for ethane.
Quantifying and mapping spatial variability in simulated forest plots
Gavin R. Corral; Harold E. Burkhart
2016-01-01
We used computer simulations to test the efficacy of multivariate statistical methods to detect, quantify, and map spatial variability of forest stands. Simulated stands were developed of regularly-spaced plantations of loblolly pine (Pinus taeda L.). We assumed no affects of competition or mortality, but random variability was added to individual tree characteristics...
Spatial variability in forest growthclimate relationships in the Olympic Mountains, Washington.
Jill M. Nakawatase; David L. Peterson
2006-01-01
For many Pacific Northwest forests, little is known about the spatial and temporal variability in tree growth - climate relationships, yet it is this information that is needed to predict how forests will respond to future climatic change. We studied the effects of climatic variability on forest growth at 74 plots in the western and northeastern Olympic Mountains....
NASA Astrophysics Data System (ADS)
Eshonkulov, Ravshan; Poyda, Arne; Ingwersen, Joachim; Streck, Thilo
2017-04-01
Assessing the spatial variability of soil physical properties is crucial for agricultural land management. We determined the spatial variability within two agricultural fields in the regions of Kraichgau and Swabian Jura in Southwest Germany. We determined soil physical properties and recorded the temporal development of soil mineral nitrogen (N) and water content as well as that of plant variables (phenology, biomass, leaf area index (LAI), N content, green vegetation fraction (GVF). The work was conducted during the vegetation periods of 2015 and 2016 in winter wheat, and winter rapeseed in Kraichgau and winter barley and silage maize on Swabian Jura. Measurements were taken in three-weekly intervals. On each field, we identified three plots with reduced plant development using high-resolution (RapidEye) satellite images ("cold spots"). Measurements taken on these cold spots were compared to those from five established (long-term) reference plots representing the average field variability. The software EXPERT-N was used to simulate the soil crop system at both cold spots and reference plots. Sensitivity analyses were conducted to identify the most important parameters for the determination of spatial variability in crop growth dynamics.
NASA Astrophysics Data System (ADS)
Provo, Judy; Lamar, Carlton; Newby, Timothy
2002-01-01
A cross section was used to enhance three-dimensional knowledge of anatomy of the canine head. All veterinary students in two successive classes (n = 124) dissected the head; experimental groups also identified structures on a cross section of the head. A test assessing spatial knowledge of the head generated 10 dependent variables from two administrations. The test had content validity and statistically significant interrater and test-retest reliability. A live-dog examination generated one additional dependent variable. Analysis of covariance controlling for performance on course examinations and quizzes revealed no treatment effect. Including spatial skill as a third covariate revealed a statistically significant effect of spatial skill on three dependent variables. Men initially had greater spatial skill than women, but spatial skills were equal after 8 months. A qualitative analysis showed the positive impact of this experience on participants. Suggestions for improvement and future research are discussed.
NASA Astrophysics Data System (ADS)
Agee, E.; Ivanov, V. Y.; Oliveira, R. S.; Brum, M., Jr.; Saleska, S. R.; Bisht, G.; Prohaska, N.; Taylor, T.; Oliveira Junior, R. C.; Restrepo-Coupe, N.
2017-12-01
The increased intensity and severity of droughts within the Amazon Basin region has emphasized the question of vulnerability and resilience of tropical forests to water limitation. During the recent 2015-2016 drought caused by the anomalous El Nino episode, we monitored a large, diverse sample of trees within the Tapajos National Forest, Brazil, in the footprint of the K67 eddy covariance tower. The observed trees exhibited differential responses in terms of stem water potential and sap flow among species: their regulation of ecophysiological strategies varied from very conservative (`isohydric') behavior, to much less restrained, atmosphere-controlled (`anisohydric') type of response. While much attention has been paid to forest canopies, it remains unclear how the regulation of individual tree root system and root spatial interactions contribute to the emergent individual behavior and the ecosystem-scale characterization of drought resilience. Given the inherent difficulty in monitoring below-ground phenomena, physically-based models are valuable for examining different strategies and properties to reduce the uncertainty of characterization. We use a modified version of the highly parallel DOE PFLOTRAN model to simulate the three-dimensional variably saturated flows and root water uptake for over one thousand individuals within a two-hectare area. Root morphology and intrinsic hydraulic properties are assigned based on statistical distributions developed for tropical trees, which account for the broad spectrum of hydraulic strategies in biodiverse environments. The results demonstrate the dynamic nature of active zone of root water uptake based on local soil water potential gradients. The degree of the corresponding shifts in uptake and root collar potential depend not only on assigned hydraulic properties but also on spatial orientation and size relative to community members. This response highlights the importance of not only tree individual hydraulic traits, but also dynamic spatial interactions in assessing forest drought resilience.
Implementation of Tropospheric Emissions: Monitoring of Pollution (TEMPO)
NASA Astrophysics Data System (ADS)
Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.
2014-12-01
The updated status of TEMPO, as it proceeds from formulation phase into implementation phase is presented. TEMPO, the first NASA Earth Venture Instrument, will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. GEO-CAPE is not planned for implementation this decade. However, instruments from Europe (Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, with a major focus on intercontinental pollution transport. TEMPO will launch at a prime time to be a component of this constellation
Zeid, Elias Abou; Sereshkeh, Alborz Rezazadeh; Chau, Tom
2016-12-01
In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have attempted single trial classification of RP via spatial and temporal filtering methods, or by combining the RP with event-related desynchronization. However, RP feature extraction remains challenging due to the slow non-oscillatory nature of the potential, its variability among participants and the inherent noise in EEG signals. Here, we propose a participant-specific, individually optimized pipeline of spatio-temporal filtering (PSTF) to improve RP feature extraction for laterality prediction. PSTF applies band-pass filtering on RP signals, followed by Fisher criterion spatial filtering to maximize class separation, and finally temporal window averaging for feature dimension reduction. Optimal parameters are simultaneously found by cross-validation for each participant. Using EEG data from 14 participants performing self-initiated left or right key presses as well as two benchmark BCI datasets, we compared the performance of PSTF to two popular methods: common spatial subspace decomposition, and adaptive spatio-temporal filtering. On the BCI benchmark data sets, PSTF performed comparably to both existing methods. With the key press EEG data, PSTF extracted more discriminative features, thereby leading to more accurate (74.99% average accuracy) predictions of RP laterality than that achievable with existing methods. Naturalistic and volitional interaction with the world is an important capacity that is lost with traditional system-paced BCIs. We demonstrated a significant improvement in fine movement laterality prediction from RP features alone. Our work supports further study of RP-based BCI for intuitive asynchronous control of the environment, such as augmentative communication or wheelchair navigation.
NASA Astrophysics Data System (ADS)
Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Chau, Tom
2016-12-01
Objective. In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have attempted single trial classification of RP via spatial and temporal filtering methods, or by combining the RP with event-related desynchronization. However, RP feature extraction remains challenging due to the slow non-oscillatory nature of the potential, its variability among participants and the inherent noise in EEG signals. Here, we propose a participant-specific, individually optimized pipeline of spatio-temporal filtering (PSTF) to improve RP feature extraction for laterality prediction. Approach. PSTF applies band-pass filtering on RP signals, followed by Fisher criterion spatial filtering to maximize class separation, and finally temporal window averaging for feature dimension reduction. Optimal parameters are simultaneously found by cross-validation for each participant. Using EEG data from 14 participants performing self-initiated left or right key presses as well as two benchmark BCI datasets, we compared the performance of PSTF to two popular methods: common spatial subspace decomposition, and adaptive spatio-temporal filtering. Main results. On the BCI benchmark data sets, PSTF performed comparably to both existing methods. With the key press EEG data, PSTF extracted more discriminative features, thereby leading to more accurate (74.99% average accuracy) predictions of RP laterality than that achievable with existing methods. Significance. Naturalistic and volitional interaction with the world is an important capacity that is lost with traditional system-paced BCIs. We demonstrated a significant improvement in fine movement laterality prediction from RP features alone. Our work supports further study of RP-based BCI for intuitive asynchronous control of the environment, such as augmentative communication or wheelchair navigation.
On the uncertainties associated with using gridded rainfall data as a proxy for observed
NASA Astrophysics Data System (ADS)
Tozer, C. R.; Kiem, A. S.; Verdon-Kidd, D. C.
2011-09-01
Gridded rainfall datasets are used in many hydrological and climatological studies, in Australia and elsewhere, including for hydroclimatic forecasting, climate attribution studies and climate model performance assessments. The attraction of the spatial coverage provided by gridded data is clear, particularly in Australia where the spatial and temporal resolution of the rainfall gauge network is sparse. However, the question that must be asked is whether it is suitable to use gridded data as a proxy for observed point data, given that gridded data is inherently "smoothed" and may not necessarily capture the temporal and spatial variability of Australian rainfall which leads to hydroclimatic extremes (i.e. droughts, floods)? This study investigates this question through a statistical analysis of three monthly gridded Australian rainfall datasets - the Bureau of Meteorology (BOM) dataset, the Australian Water Availability Project (AWAP) and the SILO dataset. To demonstrate the hydrological implications of using gridded data as a proxy for gauged data, a rainfall-runoff model is applied to one catchment in South Australia (SA) initially using gridded data as the source of rainfall input and then gauged rainfall data. The results indicate a markedly different runoff response associated with each of the different sources of rainfall data. It should be noted that this study does not seek to identify which gridded dataset is the "best" for Australia, as each gridded data source has its pros and cons, as does gauged or point data. Rather the intention is to quantify differences between various gridded data sources and how they compare with gauged data so that these differences can be considered and accounted for in studies that utilise these gridded datasets. Ultimately, if key decisions are going to be based on the outputs of models that use gridded data, an estimate (or at least an understanding) of the uncertainties relating to the assumptions made in the development of gridded data and how that gridded data compares with reality should be made.
Trade-offs across space, time, and ecosystem services
Rodriguez, J.P.; Beard, T.D.; Bennett, E.M.; Cumming, Graeme S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D.
2006-01-01
Ecosystem service (ES) trade-offs arise from management choices made by humans, which can change the type, magnitude, and relative mix of services provided by ecosystems. Trade-offs occur when the provision of one ES is reduced as a consequence of increased use of another ES. In some cases, a trade-off may be an explicit choice; but in others, trade-offs arise without premeditation or even awareness that they are taking place. Trade-offs in ES can be classified along three axes: spatial scale, temporal scale, and reversibility. Spatial scale refers to whether the effects of the trade-off are felt locally or at a distant location. Temporal scale refers to whether the effects take place relatively rapidly or slowly. Reversibility expresses the likelihood that the perturbed ES may return to its original state if the perturbation ceases. Across all four Millennium Ecosystem Assessment scenarios and selected case study examples, trade-off decisions show a preference for provisioning, regulating, or cultural services (in that order). Supporting services are more likely to be "taken for granted." Cultural ES are almost entirely unquantified in scenario modeling; therefore, the calculated model results do not fully capture losses of these services that occur in the scenarios. The quantitative scenario models primarily capture the services that are perceived by society as more important - provisioning and regulating ecosystem services - and thus do not fully capture trade-offs of cultural and supporting services. Successful management policies will be those that incorporate lessons learned from prior decisions into future management actions. Managers should complement their actions with monitoring programs that, in addition to monitoring the short-term provisions of services, also monitor the long-term evolution of slowly changing variables. Policies can then be developed to take into account ES trade-offs at multiple spatial and temporal scales. Successful strategies will recognize the inherent complexities of ecosystem management and will work to develop policies that minimize the effects of ES trade-offs. Copyright ?? 2006 by the author(s).
Klimstra, J.D.; O'Connell, A.F.; Pistrang, M.J.; Lewis, L.M.; Herrig, J.A.; Sauer, J.R.
2007-01-01
Science-based monitoring of biological resources is important for a greater understanding of ecological systems and for assessment of the target population using theoretic-based management approaches. When selecting variables to monitor, managers first need to carefully consider their objectives, the geographic and temporal scale at which they will operate, and the effort needed to implement the program. Generally, monitoring can be divided into two categories: index and inferential. Although index monitoring is usually easier to implement, analysis of index data requires strong assumptions about consistency in detection rates over time and space, and parameters are often biasednot accounting for detectability and spatial variation. In most cases, individuals are not always available for detection during sampling periods, and the entire area of interest cannot be sampled. Conversely, inferential monitoring is more rigorous because it is based on nearly unbiased estimators of spatial distribution. Thus, we recommend that detectability and spatial variation be considered for all monitoring programs that intend to make inferences about the target population or the area of interest. Application of these techniques is especially important for the monitoring of Threatened and Endangered (T&E) species because it is critical to determine if population size is increasing or decreasing with some level of certainty. Use of estimation-based methods and probability sampling will reduce many of the biases inherently associated with index data and provide meaningful information with respect to changes that occur in target populations. We incorporated inferential monitoring into protocols for T&E species spanning a wide range of taxa on the Cherokee National Forest in the Southern Appalachian Mountains. We review the various approaches employed for different taxa and discuss design issues, sampling strategies, data analysis, and the details of estimating detectability using site occupancy. These techniques provide a science-based approach for monitoring and can be of value to all resource managers responsible for management of T&E species.
Strategies Influencing Spatial Heterogeneity of Microbial Life in a Soil Lysimeter
NASA Astrophysics Data System (ADS)
Sengupta, A.; Neilson, J. W.; Meira, A.; Wang, Y.; Meza, M.; Chorover, J.; Maier, R. M.; Troch, P. A. A.
2016-12-01
Soil microorganisms are critical drivers of biogeochemical processes. These microbes, in conjunction with their physical and chemical environment, contribute to ecosystem functioning and services of the landscape, have a profound impact on soil formation, and are of particular importance in oligotrophic environments; ecosystems that are characterized by low biotic diversity due to extremely low nutrient levels. Here, we present a study of microbial heterogeneity in a soil lysimeter under incipient conditions. The key questions asked were: 1) what is the spatial heterogeneity of microbes over a new and evolving landscape with inherent oligotrophic conditions, and 2) can patterns in diversity translate to patterns in microbe-mediated weathering processes and soil formation? We hypothesized that stratification of environmental conditions, brought about by varying water potential, flow paths, and redox conditions, will drive the heterogeneity of microbial life in a sub-meter scale. A suite of traditional and current microbiological tools were employed to study community characteristics. These included isolation on R2A media, quantitative polymerase chain reactions targeted at 16S rRNA bacterial and archaeal genes, and 18S fungal genes, and iTAG phylogenetic gene amplification. Illumina Mi-Seq platform generated sequences were analyzed using various bioinformatics pipelines to identify community patterns, classify microbial metabolic functions, and identify variables affecting the community dynamics. Numerous phyla (Verrucomicrobia, Actinobacteria, Planctomycetes, Proteobacteria, and Euryarchaeota) were identified. The surface layer had distinctly different distribution of communities compared to the other layers. Metabolically heterogeneous groups were found with respect to depth, with metabolic functions further confirmed by predictive functional profiling of the microbial communities. Therefore, despite being highly oligotrophic, the system was rich in species and functional diversity. Alongside physical and chemical data, the patterns observed in spatial and functional heterogeneity of microbes under incipient conditions is unique, and allows us to predict strategies undertaken by these microbes to survive in, and influence their oligotrophic environments.
NASA Astrophysics Data System (ADS)
Smith, Tony E.; Lee, Ka Lok
2012-01-01
There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce "spurious correlation" that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.
Developing a model for hospital inherent safety assessment: Conceptualization and validation.
Yari, Saeed; Akbari, Hesam; Gholami Fesharaki, Mohammad; Khosravizadeh, Omid; Ghasemi, Mohammad; Barsam, Yalda; Akbari, Hamed
2018-01-01
Paying attention to the safety of hospitals, as the most crucial institute for providing medical and health services wherein a bundle of facilities, equipment, and human resource exist, is of significant importance. The present research aims at developing a model for assessing hospitals' safety based on principles of inherent safety design. Face validity (30 experts), content validity (20 experts), construct validity (268 examples), convergent validity, and divergent validity have been employed to validate the prepared questionnaire; and the items analysis, the Cronbach's alpha test, ICC test (to measure reliability of the test), composite reliability coefficient have been used to measure primary reliability. The relationship between variables and factors has been confirmed at 0.05 significance level by conducting confirmatory factor analysis (CFA) and structural equations modeling (SEM) technique with the use of Smart-PLS. R-square and load factors values, which were higher than 0.67 and 0.300 respectively, indicated the strong fit. Moderation (0.970), simplification (0.959), substitution (0.943), and minimization (0.5008) have had the most weights in determining the inherent safety of hospital respectively. Moderation, simplification, and substitution, among the other dimensions, have more weight on the inherent safety, while minimization has the less weight, which could be due do its definition as to minimize the risk.
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard
2017-04-01
Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.
Spatial analysis of soil organic carbon in Zhifanggou catchment of the Loess Plateau.
Li, Mingming; Zhang, Xingchang; Zhen, Qing; Han, Fengpeng
2013-01-01
Soil organic carbon (SOC) reflects soil quality and plays a critical role in soil protection, food safety, and global climate changes. This study involved grid sampling at different depths (6 layers) between 0 and 100 cm in a catchment. A total of 1282 soil samples were collected from 215 plots over 8.27 km(2). A combination of conventional analytical methods and geostatistical methods were used to analyze the data for spatial variability and soil carbon content patterns. The mean SOC content in the 1282 samples from the study field was 3.08 g · kg(-1). The SOC content of each layer decreased with increasing soil depth by a power function relationship. The SOC content of each layer was moderately variable and followed a lognormal distribution. The semi-variograms of the SOC contents of the six different layers were fit with the following models: exponential, spherical, exponential, Gaussian, exponential, and exponential, respectively. A moderate spatial dependence was observed in the 0-10 and 10-20 cm layers, which resulted from stochastic and structural factors. The spatial distribution of SOC content in the four layers between 20 and 100 cm exhibit were mainly restricted by structural factors. Correlations within each layer were observed between 234 and 562 m. A classical Kriging interpolation was used to directly visualize the spatial distribution of SOC in the catchment. The variability in spatial distribution was related to topography, land use type, and human activity. Finally, the vertical distribution of SOC decreased. Our results suggest that the ordinary Kriging interpolation can directly reveal the spatial distribution of SOC and the sample distance about this study is sufficient for interpolation or plotting. More research is needed, however, to clarify the spatial variability on the bigger scale and better understand the factors controlling spatial variability of soil carbon in the Loess Plateau region.
Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama
Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.
2008-01-01
Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K and Mg is mainly influenced by lithology. ?? 2007 Elsevier B.V. All rights reserved.
Space Transportation System Availability Requirements and Its Influencing Attributes Relationships
NASA Technical Reports Server (NTRS)
Rhodes, Russel E.; Adams, TImothy C.
2008-01-01
It is essential that management and engineering understand the need for an availability requirement for the customer's space transportation system as it enables the meeting of his needs, goal, and objectives. There are three types of availability, e.g., operational availability, achieved availability, or inherent availability. The basic definition of availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. The major difference is the inclusiveness of the functions within the mean downtime and the mean uptime. This paper will address tIe inherent availability which only addresses the mean downtime as that mean time to repair or the time to determine the failed article, remove it, install a replacement article and verify the functionality of the repaired system. The definitions of operational availability include the replacement hardware supply or maintenance delays and other non-design factors in the mean downtime. Also with inherent availability the mean uptime will only consider the mean time between failures (other availability definitions consider this as mean time between maintenance - preventive and corrective maintenance) that requires the repair of the system to be functional. It is also essential that management and engineering understand all influencing attributes relationships to each other and to the resultant inherent availability requirement. This visibility will provide the decision makers with the understanding necessary to place constraints on the design definition for the major drivers that will determine the inherent availability, safety, reliability, maintainability, and the life cycle cost of the fielded system provided the customer. This inherent availability requirement may be driven by the need to use a multiple launch approach to placing humans on the moon or the desire to control the number of spare parts required to support long stays in either orbit or on the surface of the moon or mars. It is the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability, but also provide the capability to bound the variables providing engineering the insight required to control the system's engineering solution. An example of this visibility will be the need to provide integration of similar discipline functions to allow control of the total parts count of the space transportation system. Also the relationship visibility of selecting a reliability requirement will place a constraint on parts count to achieve a given inherent availability requirement or accepting a larger parts count with the resulting higher reliability requirement. This paper will provide an understanding for the relationship of mean repair time (mean downtime) to maintainability, e.g., accessibility for repair, and both mean time between failure, e.g., reliability of hardware and the system inherent availability. Having an understanding of these relationships and resulting requirements before starting the architectural design concept definition will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable increased life cycle cost of the fielded space transportation system.
Bermejo, Ricardo; de la Fuente, Gina; Ramírez-Romero, Eduardo; Vergara, Juan J; Hernández, Ignacio
2016-04-15
The Cystoseira ericaefolia group is conformed by three species: C. tamariscifolia, C. mediterranea and C. amentacea. These species are among the most important habitat forming species of the upper sublittoral rocky shores of the Mediterranean Sea and adjacent Atlantic coast. This species group is sensitive to human pressures and therefore is currently suffering important losses. This study aimed to assess the influence of anthropogenic pressures, oceanographic conditions and local spatial variability in assemblages dominated by C. ericaefolia in the Alboran Sea. The results showed the absence of significant effects of anthropogenic pressures or its interactions with environmental conditions in the Cystoseira assemblages. This fact was attributed to the high spatial variability, which is most probably masking the impact of anthropogenic pressures. The results also showed that most of the variability occurred on at local levels. A relevant spatial variability was observed at regional level, suggesting a key role of oceanographic features in these assemblages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Controls on the variability of net infiltration to desert sandstone
Heilweil, Victor M.; McKinney, Tim S.; Zhdanov, Michael S.; Watt, Dennis E.
2007-01-01
As populations grow in arid climates and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration becomes critically important for accurately inventorying water resources and mapping contamination vulnerability. This paper presents a conceptual model of net infiltration to desert sandstone and then develops an empirical equation for its spatial quantification at the watershed scale using linear least squares inversion methods for evaluating controlling parameters (independent variables) based on estimated net infiltration rates (dependent variables). Net infiltration rates used for this regression analysis were calculated from environmental tracers in boreholes and more than 3000 linear meters of vadose zone excavations in an upland basin in southwestern Utah underlain by Navajo sandstone. Soil coarseness, distance to upgradient outcrop, and topographic slope were shown to be the primary physical parameters controlling the spatial variability of net infiltration. Although the method should be transferable to other desert sandstone settings for determining the relative spatial distribution of net infiltration, further study is needed to evaluate the effects of other potential parameters such as slope aspect, outcrop parameters, and climate on absolute net infiltration rates.
Latychevskaia, Tatiana; Wicki, Flavio; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner
2016-09-14
Visualizing individual charges confined to molecules and observing their dynamics with high spatial resolution is a challenge for advancing various fields in science, ranging from mesoscopic physics to electron transfer events in biological molecules. We show here that the high sensitivity of low-energy electrons to local electric fields can be employed to directly visualize individual charged adsorbates and to study their behavior in a quantitative way. This makes electron holography a unique probing tool for directly visualizing charge distributions with a sensitivity of a fraction of an elementary charge. Moreover, spatial resolution in the nanometer range and fast data acquisition inherent to lens-less low-energy electron holography allows for direct visual inspection of charge transfer processes.