Science.gov

Sample records for inhibit ligand-dependent transactivation

  1. Reconstruction of ligand-dependent transactivation of Choristoneura fumiferana ecdysone receptor in yeast.

    PubMed

    Tran, H T; Askari, H B; Shaaban, S; Price, L; Palli, S R; Dhadialla, T S; Carlson, G R; Butt, T R

    2001-07-01

    Ecdysteroids play an important role in regulating development and reproduction in insects. Interaction of 20-hydroxyecdysone (20E) with ecdysone receptor (EcR) as a heterodimer with ultraspiracle (USP) protein triggers the activation of 20E-responsive genes. In this paper we describe a ligand-mediated transactivation system in yeast using the spruce budworm Choristoneura fumiferana ecdysone receptor (CfEcR). Coexpression of C. fumiferana USP (CfUSP) with CfEcR in yeast led to constitutive transcription of the reporter gene. However, deletion of the A/B domain of CfUSP abolished constitutive activity observed for the CfUSP:CfEcR complex. Replacement of USP with its mammalian homolog retinoid X receptors (RXRs) abolished the constitutive activity of the heterodimer but it did not restore EcR ligand-mediated transactivation. These data suggest that USP and its A/B domain play a role in the constitutive function of CfEcR:USP in yeast. A ligand-mediated transactivation was observed when GRIP1, a mouse coactivator gene, was added to EcR:RXR or EcR:DeltaA/BUSP complexes. Deletion of the A/B domain of EcR in the context of DeltaA/BEcR:RXR:GRIP1 or DeltaA/BEcR:DeltaA/BUSP:GRIP1 dramatically improved the ligand-dependent transactivation. This is the first example of highly efficient ligand-dependent transactivation of insect EcR in yeast. Analysis of transactivation activity of different ecdysteroidal compounds showed that the yeast system remarkably mimics the response observed in insect tissue culture cells and whole insect systems. The results open the way to develop assays that can be used to screen novel species-specific ecdysone agonist/antagonist insecticides.

  2. The Orphan Nuclear Receptor SHP Inhibits Hepatocyte Nuclear Factor 4 and Retinoid X Receptor Transactivation: Two Mechanisms for Repression

    PubMed Central

    Lee, Yoon-Kwang; Dell, Helen; Dowhan, Dennis H.; Hadzopoulou-Cladaras, Margarita; Moore, David D.

    2000-01-01

    The orphan nuclear hormone receptor SHP interacts with a number of other nuclear hormone receptors and inhibits their transcriptional activity. Several mechanisms have been suggested to account for this inhibition. Here we show that SHP inhibits transactivation by the orphan receptor hepatocyte nuclear factor 4 (HNF-4) and the retinoid X receptor (RXR) by at least two mechanisms. SHP interacts with the same HNF-4 surface recognized by transcriptional coactivators and competes with them for binding in vivo. The minimal SHP sequences previously found to be required for interaction with other receptors are sufficient for interaction with HNF-4, although deletion results indicate that additional C-terminal sequences are necessary for full binding and coactivator competition. These additional sequences include those associated with direct transcriptional repressor activity of SHP. SHP also competes with coactivators for binding to ligand-activated RXR, and based on the ligand-dependent interaction with other nuclear receptors, it is likely that coactivator competition is a general feature of SHP-mediated repression. The minimal receptor interaction domain of SHP is sufficient for full interaction with RXR, as previously described. This domain is also sufficient for full coactivator competition. Functionally, however, full inhibition of RXR transactivation requires the presence of the C-terminal repressor domain, with only weak inhibition associated with this receptor interaction domain. Overall, these results suggest that SHP represses nuclear hormone receptor-mediated transactivation via two separate steps: first by competition with coactivators and then by direct effects of its transcriptional repressor function. PMID:10594021

  3. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  4. Rapid Glucocorticoid Feedback Inhibition of ACTH Secretion Involves Ligand-Dependent Membrane Association of Glucocorticoid Receptors

    PubMed Central

    Deng, Qiong; Riquelme, Denise; Trinh, Loc; Low, Malcolm J.; Tomić, Melanija; Stojilkovic, Stanko

    2015-01-01

    The hypothesis that rapid glucocorticoid inhibition of pituitary ACTH secretion mediates a feedforward/feedback mechanism responsible for the hourly glucocorticoid pulsatility was tested in cultured pituitary cells. Perifusion with 30 pM CRH caused sustained the elevation of ACTH secretion. Superimposed corticosterone pulses inhibited CRH-stimulated ACTH release, depending on prior glucocorticoid clearance. When CRH perifusion started after 2 hours of glucocorticoid-free medium, corticosterone levels in the stress range (1 μM) caused a delayed (25 min) and prolonged inhibition of CRH-stimulated ACTH secretion, up to 60 minutes after corticosterone withdrawal. In contrast, after 6 hours of glucocorticoid-free medium, basal corticosterone levels inhibited CRH-stimulated ACTH within 5 minutes, after rapid recovery 5 minutes after corticosterone withdrawal. The latter effect was insensitive to actinomycin D but was prevented by the glucocorticoid receptor antagonist, RU486, suggesting nongenomic effects of the classical glucocorticoid receptor. In hypothalamic-derived 4B cells, 10 nM corticosterone increased immunoreactive glucocorticoid receptor content in membrane fractions, with association and clearance rates paralleling the effects on ACTH secretion from corticotrophs. Corticosterone did not affect CRH-stimulated calcium influx, but in AtT-20 cells, it had biphasic effects on CRH-stimulated Src phosphorylation, with early inhibition and late stimulation, suggesting a role for Src phosphorylation on the rapid glucocorticoid feedback. The data suggest that the nongenomic/membrane effects of classical GR mediate rapid and reversible glucocorticoid feedback inhibition at the pituitary corticotrophs downstream of calcium influx. The sensitivity and kinetics of these effects is consistent with the hypothesis that pituitary glucocorticoid feedback is part of the mechanism for adrenocortical ultradian pulse generation. PMID:26121342

  5. Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase.

    PubMed

    Tan, Wei-Qi; Wang, Kun; Lv, Dao-Yuan; Li, Pei-Feng

    2008-10-31

    The forkhead transcription factor Foxo3a is able to inhibit cardiomyocyte hypertrophy. However, its underlying molecular mechanism remains to be fully understood. Our present study demonstrates that Foxo3a can regulate cardiomyocyte hypertrophy through transactivating catalase. Insulin was able to induce cardiomyocyte hypertrophy with an elevated level of reactive oxygen species (ROS). The antioxidant agents, including catalase and N-acetyl-L-cysteine, could inhibit cardiomyocyte hypertrophy induced by insulin, suggesting that ROS is necessary for insulin to induce hypertrophy. Strikingly, we observed that the levels of catalase were decreased in response to insulin treatment. The transcriptional activity of Foxo3a depends on its phosphorylation status with the nonphosphorylated but not phosphorylated form to be functional. Insulin treatment led to an increase in the phosphorylated levels of Foxo3a. To understand the relationship between Foxo3a and catalase in the hypertrophic pathway, we characterized that catalase was a transcriptional target of Foxo3a. Foxo3a bound to the promoter region of catalase and stimulated its activity. The inhibitory effect of Foxo3a on cardiomyocyte hypertrophy depended on its transcriptional regulation of catalase. Finally, we identified that myocardin was a downstream mediator of ROS in conveying the hypertrophic signal of insulin or insulin-like growth factor-1. Foxo3a could negatively regulate myocardin expression levels through up-regulating catalase and the consequent reduction of ROS levels. Taken together, our results reveal that Foxo3a can inhibit hypertrophy by transcriptionally targeting catalase.

  6. Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear.

    PubMed

    Petrovic, Jelena; Formosa-Jordan, Pau; Luna-Escalante, Juan C; Abelló, Gina; Ibañes, Marta; Neves, Joana; Giraldez, Fernando

    2014-06-01

    During inner ear development, Notch exhibits two modes of operation: lateral induction, which is associated with prosensory specification, and lateral inhibition, which is involved in hair cell determination. These mechanisms depend respectively on two different ligands, jagged 1 (Jag1) and delta 1 (Dl1), that rely on a common signaling cascade initiated after Notch activation. In the chicken otocyst, expression of Jag1 and the Notch target Hey1 correlates well with lateral induction, whereas both Jag1 and Dl1 are expressed during lateral inhibition, as are Notch targets Hey1 and Hes5. Here, we show that Jag1 drives lower levels of Notch activity than Dl1, which results in the differential expression of Hey1 and Hes5. In addition, Jag1 interferes with the ability of Dl1 to elicit high levels of Notch activity. Modeling the sensory epithelium when the two ligands are expressed together shows that ligand regulation, differential signaling strength and ligand competition are crucial to allow the two modes of operation and for establishing the alternate pattern of hair cells and supporting cells. Jag1, while driving lateral induction on its own, facilitates patterning by lateral inhibition in the presence of Dl1. This novel behavior emerges from Jag1 acting as a competitive inhibitor of Dl1 for Notch signaling. Both modeling and experiments show that hair cell patterning is very robust. The model suggests that autoactivation of proneural factor Atoh1, upstream of Dl1, is a fundamental component for robustness. The results stress the importance of the levels of Notch signaling and ligand competition for Notch function. © 2014. Published by The Company of Biologists Ltd.

  7. MEF/ELF4 transactivation by E2F1 is inhibited by p53.

    PubMed

    Taura, Manabu; Suico, Mary Ann; Fukuda, Ryosuke; Koga, Tomoaki; Shuto, Tsuyoshi; Sato, Takashi; Morino-Koga, Saori; Okada, Seiji; Kai, Hirofumi

    2011-01-01

    Myeloid elf-1-like factor (MEF) or Elf4 is an E-twenty-six (ETS)-related transcription factor with strong transcriptional activity that influences cellular senescence by affecting tumor suppressor p53. MEF downregulates p53 expression and inhibits p53-mediated cellular senescence by transcriptionally activating MDM2. However, whether p53 reciprocally opposes MEF remains unexplored. Here, we show that MEF is modulated by p53 in human cells and mice tissues. MEF expression and promoter activity were suppressed by p53. While we found that MEF promoter does not contain p53 response elements, intriguingly, it contains E2F consensus sites. Subsequently, we determined that E2F1 specifically binds to MEF promoter and transactivates MEF. Nevertheless, E2F1 DNA binding and transactivation of MEF promoter was inhibited by p53 through the association between p53 and E2F1. Furthermore, we showed that activation of p53 in doxorubicin-induced senescent cells increased E2F1 and p53 interaction, diminished E2F1 recruitment to MEF promoter and reduced MEF expression. These observations suggest that p53 downregulates MEF by associating with and inhibiting the binding activity of E2F1, a novel transcriptional activator of MEF. Together with previous findings, our present results indicate that a negative regulatory mechanism exists between p53 and MEF.

  8. Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation.

    PubMed

    Cai, Yi; Brophy, Patrick D; Levitan, Inna; Stifani, Stefano; Dressler, Gregory R

    2003-10-15

    Pax proteins are DNA-binding transcription factors that regulate embryonic development through the activation and repression of downstream target genes. The Pax2 gene is absolutely required for kidney development and for patterning specific regions of the nervous system such as the eye, ear and hindbrain. The Pax2/5/8 family of proteins contains both transcription activation and repression domains. The activation domain of Pax2 is phosphorylated by the c-Jun N-terminal kinase (JNK) to enhance Pax2-dependent transcription. In this report, we demonstrate that the Groucho/TLE family protein, Grg4, interacts with Pax2 to suppress transactivation. Grg4 is able to specifically inhibit phosphorylation of the Pax2 activation domain, even in the presence of activated JNK. Furthermore, the Grg4 interaction and suppression of phosphorylation depends on Pax2 binding to its target DNA sequence and is independent of histone deacetylation. These data suggest a new model for Groucho mediated suppression of transcription through the specific inhibition of modifications in the activation domain of a transactivator.

  9. Hydroxyurea inhibits the transactivation of the HIV-long-terminal repeat (LTR) promoter

    PubMed Central

    Calzado, M A; Macho, A; Lucena, C; Muñoz, E

    2000-01-01

    HIV-1 gene expression is regulated by the promoter/enhancer located within the U3 region of the proviral 5′ LTR that contains multiple potential cis-acting regulatory sites. Here we describe that the inhibitor of the cellular ribonucleoside reductase, hydroxyurea (HU), inhibited phorbol myristate acetate- or tumour necrosis factor-alpha-induced HIV-1-LTR transactivation in both lymphoid and non-lymphoid cells in a dose-dependent manner within the first 6 h of treatment, with a 50% inhibitory concentration of 0·5 mm. This inhibition was found to be specific for the HIV-1-LTR since transactivation of either an AP-1-dependent promoter or the CD69 gene promoter was not affected by the presence of HU. Moreover, gel-shift assays in 5.1 cells showed that HU prevented the binding of the NF-κB to the κB sites located in the HIV-1-LTR region, but it did not affect the binding of both the AP-1 and the Sp-1 transcription factors. By Western blots and cell cycle analyses we detected that HU induced a rapid dephosphorylation of the pRB, the product of the retinoblastoma tumour suppressor gene, and the cell cycle arrest was evident after 24 h of treatment. Thus, HU inhibits HIV-1 promoter activity by a novel pathway that implies an inhibition of the NF-κB binding to the LTR promoter. The present study suggests that HU may be useful as a potential therapeutic approach for inhibition of HIV-1 replication through different pathways. PMID:10792382

  10. Four-and-a-Half LIM Domain Proteins Inhibit Transactivation by Hypoxia-inducible Factor 1*

    PubMed Central

    Hubbi, Maimon E.; Gilkes, Daniele M.; Baek, Jin H.; Semenza, Gregg L.

    2012-01-01

    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that promotes angiogenesis, metabolic reprogramming, and other critical aspects of cancer biology. The four-and-a-half LIM domain (FHL) proteins are a family of LIM domain-only proteins implicated in transcriptional regulation and suppression of tumor growth. Here we describe functional interactions between the FHL proteins and HIF-1. FHL1–3 inhibit HIF-1 transcriptional activity and HIF-1α transactivation domain function by oxygen-independent mechanisms. FHL2 directly interacts with HIF-1α to repress transcriptional activity. FHL1 binds to the p300/CBP co-activators and disrupts binding with HIF-1α. FHL3 does not bind to HIF-1α or p300, indicating that it regulates transactivation by a novel molecular mechanism. Expression of the FHL proteins increased upon HIF-1α induction, suggesting the existence of a feedback loop. These results identify FHL proteins as negative regulators of HIF-1 activity, which may provide a mechanism by which they suppress tumor growth. PMID:22219185

  11. The MHC-II transactivator CIITA inhibits Tat function and HIV-1 replication in human myeloid cells.

    PubMed

    Forlani, Greta; Turrini, Filippo; Ghezzi, Silvia; Tedeschi, Alessandra; Poli, Guido; Accolla, Roberto S; Tosi, Giovanna

    2016-04-18

    We previously demonstrated that the HLA class II transactivator CIITA inhibits HIV-1 replication in T cells by competing with the viral transactivator Tat for the binding to Cyclin T1 subunit of the P-TEFb complex. Here, we analyzed the anti-viral function of CIITA in myeloid cells, another relevant HIV-1 target cell type. We sinvestigated clones of the U937 promonocytic cell line, either permissive (Plus) or non-permissive (Minus) to HIV-1 replication. This different phenotype has been associated with the expression of TRIM22 in U937 Minus but not in Plus cells. U937 Plus cells stably expressing CIITA were generated and HLA-II positive clones were selected by cell sorting and cloning. HLA and CIITA proteins were analyzed by cytofluorometry and western blotting, respectively. HLA-II DR and CIITA mRNAs were quantified by qRT-PCR. Tat-dependent transactivation was assessed by performing the HIV-1 LTR luciferase gene reporter assay. Cells were infected with HIV-1 and viral replication was evaluated by measuring the RT activity in culture supernatants. CIITA was expressed only in HLA-II-positive U937 Minus cells, and this was strictly correlated with inhibition of Tat-dependent HIV-1 LTR transactivation in Minus but not in Plus cells. Overexpression of CIITA in Plus cells restored the suppression of Tat transactivation, confirming the inhibitory role of CIITA. Importantly, HIV-1 replication was significantly reduced in Plus-CIITA cells with respect to Plus parental cells. This effect was independent of TRIM22 as CIITA did not induce TRIM22 expression in Plus-CIITA cells. U937 Plus and Minus cells represent an interesting model to study the role of CIITA in HIV-1 restriction in the monocytic/macrophage cell lineage. The differential expression of CIITA in CIITA-negative Plus and CIITA-positive Minus cells correlated with their capacity to support or not HIV-1 replication, respectively. In Minus cells CIITA targeted the viral transactivator Tat to inhibit HIV-1

  12. CI-988 Inhibits EGFR Transactivation and Proliferation Caused by Addition of CCK/Gastrin to Lung Cancer Cells.

    PubMed

    Moody, Terry W; Nuche-Berenguer, Bernardo; Moreno, Paola; Jensen, Robert T

    2015-07-01

    Cholecystokinin (CCK) receptors are G-protein coupled receptors (GPCR) which are present on lung cancer cells. CCK-8 stimulates the proliferation of lung cancer cells, whereas the CCK2R receptor antagonist CI-988 inhibits proliferation. GPCR for some gastrointestinal hormones/neurotransmitters mediate lung cancer growth by causing epidermal growth factor receptor (EGFR) transactivation. Here, the role of CCK/gastrin and CI-988 on EGFR transactivation and lung cancer proliferation was investigated. Addition of CCK-8 or gastrin-17 (100 nM) to NCI-H727 human lung cancer cells increased EGFR Tyr(1068) phosphorylation after 2 min. The ability of CCK-8 to cause EGFR tyrosine phosphorylation was blocked by CI-988, gefitinib (EGFR tyrosine kinase inhibitor), PP2 (Src inhibitor), GM6001 (matrix metalloprotease inhibitor), and tiron (superoxide scavenger). CCK-8 nonsulfated and gastrin-17 caused EGFR transactivation and bound with high affinity to NCI-H727 cells, suggesting that the CCK2R is present. CI-988 inhibited the ability of CCK-8 to cause ERK phosphorylation and elevate cytosolic Ca(2+). CI-988 or gefitinib inhibited the basal growth of NCI-H727 cells or that stimulated by CCK-8. The results indicate that CCK/gastrin may increase lung cancer proliferation in an EGFR-dependent manner.

  13. Expression of an RNA glycosidase inhibits HIV-1 transactivation of transcription.

    PubMed

    Kutky, Meherzad; Hudak, Katalin A

    2017-10-05

    HIV-1 (human immunodeficiency virus) transcription is primarily controlled by the virally encoded Tat (transactivator of transcription) protein and its interaction with the viral TAR (transcription response element) RNA element. Specifically, binding of a Tat-containing complex to TAR recruits cellular factors that promote elongation of the host RNA polymerase engaging the viral DNA template. Disruption of this interaction halts viral RNA transcription. In the present study, we investigated the effect of pokeweed antiviral protein (PAP), an RNA glycosidase (EC#: 3.2.2.22) synthesized by the pokeweed plant (Phytolacca americana), on transcription of HIV-1 mRNA. We show that co-expression of PAP with a proviral clone in culture cells resulted in a Tat-dependent decrease in viral mRNA levels. PAP reduced HIV-1 transcriptional activity by inhibiting Tat protein synthesis. The effects of PAP expression on host factors AP-1 (activator protein 1), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B-cells) and specificity protein 1, which modulate HIV-1 transcription by binding to the viral LTR (5'-long terminal repeat), were also investigated. Only AP-1 showed a modest JNK pathway-dependent increase in activity in the presence of PAP; however, this activation was not sufficient to significantly enhance transcription from a partial viral LTR containing AP-1 binding sites. Therefore, the primary effect of PAP on HIV-1 transcription is to reduce viral RNA synthesis by decreasing the abundance of Tat. These findings provide a mechanistic explanation for the observed decrease in viral RNAs in cells expressing PAP and contribute to our understanding of the antiviral effects of this plant protein. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation.

    PubMed Central

    Kuzhandaivelu, N; Cong, Y S; Inouye, C; Yang, W M; Seto, E

    1996-01-01

    The hepatitis B virus X protein is a promiscuous transcriptional transactivator. Transactivation by the X protein is most likely mediated through binding to different cellular factors. Using the yeast two-hybrid method, we have isolated a clone that encodes a novel X-associated cellular protein: XAP2. X and XAP2 interactions also occur in vitro. Antiserum raised against XAP2 recognizes a cytoplasmic protein with an apparent molecular mass of 36 kDa. The interaction between X and XAP2 requires a small region on X containing amino acids 13-26. From Northern blot analyses, XAP2 is ubiquitously expressed in both liver-derived and non-liver-derived cell lines as well as in normal non-liver tissues. In contrast, XAP2 is expressed in very low level in the normal human liver. In transfection assays, overexpression of XAP2 abolishes transactivation by the X protein. Based on these results, we suggest that XAP2 is an important cellular negative regulator of the X protein, and that X-XAP2 interaction may play a role in HBV pathology. PMID:8972861

  15. Nitric oxide inhibits apoptosis via AP-1-dependent CD95L transactivation.

    PubMed

    Melino, G; Bernassola, F; Catani, M V; Rossi, A; Corazzari, M; Sabatini, S; Vilbois, F; Green, D R

    2000-05-01

    Several inducers of cytotoxic stress promote apoptotic cell death, which, at least in some cases, involves the CD95/CD95 ligand (CD95L) pathway. The induction of the CD95/CD95L pathway can be activated by the activator protein-1 (AP-1)-mediated up-regulation of the CD95L promoter, which is responsible for the induction of apoptosis elicited by stimuli such as etoposide. We show that nitric oxide (NO) represents a regulatory element able to block apoptosis by interfering with this loop. Etoposide- and C6-ceramide-induced apoptosis in Jurkat T cells with different kinetics. Cell death was accompanied by an increase in DNA-binding activity of the transcription factor AP-1, transactivation of the AP-1 site-containing CD95L promoter, and caspase 3-like protease activation. Using different NO-releasing compounds, we found that apoptosis was prevented in a dose-dependent manner. Furthermore, in both models of apoptosis, NO-releasing compounds dose-dependently reduced: (a) the number of the titratable thiol groups (cysteine residues) of c-Jun; (b) induction of AP-1 DNA-binding activity; (c) AP-1-driven transactivation of the CD95L promoter; and (d) caspase activation. In conclusion, our data demonstrate that NO can modulate cell death at an upstream level, by interfering with the ability of AP-1 to induce CD95L expression.

  16. Caffeic acid phenethyl ester downregulates phospholipase D1 via direct binding and inhibition of NFκB transactivation

    SciTech Connect

    Park, Mi Hee; Kang, Dong Woo; Jung, Yunjin; Choi, Kang-Yell; Min, Do Sik

    2013-12-06

    Highlights: •We found CAFÉ, a natural product that suppresses expression and activity of PLD1. •CAPE decreased PLD1 expression by inhibiting NFκB transactivation. •CAPE rapidly inhibited PLD activity via its binding to a Cys837 of PLD1. •PLD1 downregulation by CAPE inhibited invasion and proliferation of glioma cells. -- Abstract: Upregulation of phospholipase D (PLD) is functionally linked with oncogenic signals and tumorigenesis. Caffeic acid phenethyl ester (CAPE) is an active compound of propolis extract that exhibits anti-proliferative, anti-inflammatory, anti-oxidant, and antineoplastic properties. In this study, we demonstrated that CAPE suppressed the expression of PLD1 at the transcriptional level via inhibition of binding of NFκB to PLD1 promoter. Moreover, CAPE, but not its analogs, bound to a Cys837 residue of PLD1 and inhibited enzymatic activity of PLD. CAPE also decreased activation of matrix metalloproteinases-2 induced by phosphatidic acid, a product of PLD activity. Ultimately, CAPE-induced downregulation of PLD1 suppressed invasion and proliferation of glioma cells. Taken together, the results of this study indicate that CAPE might contribute to anti-neoplastic effect by targeting PLD1.

  17. Transcriptional Corepressor SMILE Recruits SIRT1 to Inhibit Nuclear Receptor Estrogen Receptor-related Receptor γ Transactivation*

    PubMed Central

    Xie, Yuan-Bin; Park, Jeong-Hoh; Kim, Don-Kyu; Hwang, Jung Hwan; Oh, Sangmi; Park, Seung Bum; Shong, Minho; Lee, In-Kyu; Choi, Hueng-Sik

    2009-01-01

    SMILE (small heterodimer partner interacting leucine zipper protein) has been identified as a corepressor of the glucocorticoid receptor, constitutive androstane receptor, and hepatocyte nuclear factor 4α. Here we show that SMILE also represses estrogen receptor-related receptor γ (ERRγ) transactivation. Knockdown of SMILE gene expression increases ERRγ activity. SMILE directly interacts with ERRγ in vitro and in vivo. Domain mapping analysis showed that SMILE binds to the AF2 domain of ERRγ. SMILE represses ERRγ transactivation partially through competition with coactivators PGC-1α, PGC-1β, and GRIP1. Interestingly, the repression of SMILE on ERRγ is released by SIRT1 inhibitors, a catalytically inactive SIRT1 mutant, and SIRT1 small interfering RNA but not by histone protein deacetylase inhibitor. In vivo glutathione S-transferase pulldown and coimmunoprecipitation assays validated that SMILE physically interacts with SIRT1. Furthermore, the ERRγ inverse agonist GSK5182 enhances the interaction of SMILE with ERRγ and SMILE-mediated repression. Knockdown of SMILE or SIRT1 blocks the repressive effect of GSK5182. Moreover, chromatin immunoprecipitation assays revealed that GSK5182 augments the association of SMILE and SIRT1 on the promoter of the ERRγ target PDK4. GSK5182 and adenoviral overexpression of SMILE cooperate to repress ERRγ-induced PDK4 gene expression, and this repression is released by overexpression of a catalytically defective SIRT1 mutant. Finally, we demonstrated that ERRγ regulates SMILE gene expression, which in turn inhibits ERRγ. Overall, these findings implicate SMILE as a novel corepressor of ERRγ and recruitment of SIRT1 as a novel repressive mechanism for SMILE and ERRγ inverse agonist. PMID:19690166

  18. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  19. APOBEC3G Inhibits HIV-1 RNA Elongation by Inactivating the Viral Trans-Activation Response Element

    PubMed Central

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-01-01

    Deamination of cytidine residues in viral DNA (vDNA) is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient HIV-1 replication. dC to dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here we demonstrate that A3G provides an additional layer of defence against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. Finally, we show that free ssDNA termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3′+5′ ends is sufficient for A3G deamination, identifying A3G as an efficient mutator, and that deamination of (−)SSDNA results in an early block of HIV-1 transcription. PMID:24859335

  20. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    PubMed

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Transactivation of ErbB Family of Receptor Tyrosine Kinases Is Inhibited by Angiotensin-(1-7) via Its Mas Receptor

    PubMed Central

    Akhtar, Saghir; Chandrasekhar, Bindu; Attur, Sreeja; Dhaunsi, Gursev S.; Yousif, Mariam H. M.; Benter, Ibrahim F.

    2015-01-01

    Transactivation of the epidermal growth factor receptor (EGFR or ErbB) family members, namely EGFR and ErbB2, appears important in the development of diabetes-induced vascular dysfunction. Angiotensin-(1–7) [Ang-(1–7)] can prevent the development of hyperglycemia-induced vascular complications partly through inhibiting EGFR transactivation. Here, we investigated whether Ang-(1–7) can inhibit transactivation of ErbB2 as well as other ErbB receptors in vivo and in vitro. Streptozotocin-induced diabetic rats were chronically treated with Ang-(1–7) or AG825, a selective ErbB2 inhibitor, for 4 weeks and mechanistic studies performed in the isolated mesenteric vasculature bed as well as in cultured vascular smooth muscle cells (VSMCs). Ang-(1–7) or AG825 treatment inhibited diabetes-induced phosphorylation of ErbB2 receptor at tyrosine residues Y1221/22, Y1248, Y877, as well as downstream signaling via ERK1/2, p38 MAPK, ROCK, eNOS and IkB-α in the mesenteric vascular bed. In VSMCs cultured in high glucose (25 mM), Ang-(1–7) inhibited src-dependent ErbB2 transactivation that was opposed by the selective Mas receptor antagonist, D-Pro7-Ang-(1–7). Ang-(1–7) via Mas receptor also inhibited both Angiotensin II- and noradrenaline/norephinephrine-induced transactivation of ErbB2 and/or EGFR receptors. Further, hyperglycemia-induced transactivation of ErbB3 and ErbB4 receptors could be attenuated by Ang-(1–7) that could be prevented by D-Pro7-Ang-(1–7) in VSMC. These data suggest that Ang-(1–7) via its Mas receptor acts as a pan-ErbB inhibitor and might represent a novel general mechanism by which Ang-(1–7) exerts its beneficial effects in many disease states including diabetes-induced vascular complications. PMID:26536590

  2. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation

    PubMed Central

    Li, Zichong; Guo, Jia; Wu, Yuntao; Zhou, Qiang

    2013-01-01

    Latent HIV reservoirs are the primary hurdle to eradication of infection. Identification of agents, pathways and molecular mechanisms that activate latent provirus may, in the presence of highly active antiretroviral therapy, permit clearance of infected cells by the immune system. Promoter-proximal pausing of RNA polymerase (Pol) II is a major rate-limiting step in HIV gene expression. The viral Tat protein recruits human Super Elongation Complex (SEC) to paused Pol II to overcome this limitation. Here, we identify the bromodomain protein Brd4 and its inhibition of Tat-transactivation as a major impediment to latency reactivation. Brd4 competitively blocks the Tat–SEC interaction on HIV promoter. The BET bromodomain inhibitor JQ1 dissociates Brd4 from the HIV promoter to allow Tat recruitment of SEC to stimulate HIV elongation. JQ1 synergizes with another latency activator prostratin, which promotes Pol II loading onto the viral promoter. Because JQ1 activates viral latency without inducing global T cell activation, this and other closely related compounds and their antagonization of Brd4 to promote Tat–SEC interaction merit further investigations as effective agents/strategies for eliminating latent HIV. PMID:23087374

  3. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    SciTech Connect

    Park, Choa; Lee, YoungJoo

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  4. Inhibition of {beta}-catenin-mediated transactivation by flavanone in AGS gastric cancer cells

    SciTech Connect

    Park, Chi Hoon; Hahm, Eun Ryeong; Lee, Ju Hyung; Jung, Kyung Chae; Yang, Chul Hak . E-mail: chulyang@plaza.snu.ac.kr

    2005-06-17

    Recently, data which prove that Wnt pathway activation may be an early event in multistep carcinogenesis in the stomach have been accumulating. We examined the effect of flavanone against {beta}-catenin/Tcf signaling in AGS gastric cancer cells. Reporter gene assay showed that flavanone inhibited {beta}-catenin/Tcf signaling efficiently. In addition, the inhibition of {beta}-catenin/Tcf signaling by flavanone in HEK293 cells transiently transfected with constitutively mutant {beta}-catenin gene, whose product is not phosphorylated by GSK3{beta}, indicates that its inhibitory mechanism was related to {beta}-catenin itself or downstream components. To investigate the precise inhibitory mechanism, we performed immunofluorescence, Western blot, and EMSA. As a result, our data revealed that there is no change of {beta}-catenin distribution and of nuclear {beta}-catenin levels through flavanone. In addition, the binding of Tcf complexes to DNA is not influenced by flavanone. The {beta}-catenin/Tcf transcriptional target gene cyclinD1 was downregulated by flavanone. These data suggest that flavanone inhibits the transcription of {beta}-catenin/Tcf responsive genes, by modulating Tcf activity without disrupting {beta}-catenin/Tcf complex formation.

  5. The MHC-II transactivator CIITA, a restriction factor against oncogenic HTLV-1 and HTLV-2 retroviruses: similarities and differences in the inhibition of Tax-1 and Tax-2 viral transactivators

    PubMed Central

    Forlani, Greta; Abdallah, Rawan; Accolla, Roberto S.; Tosi, Giovanna

    2013-01-01

    The activation of CD4+ T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolution. PMID:23986750

  6. CREB trans-activation of disruptor of telomeric silencing-1 mediates forskolin inhibition of CTGF transcription in mesangial cells.

    PubMed

    Yu, Zhiyuan; Kong, Qun; Kone, Bruce C

    2010-03-01

    Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

  7. Brk/PTK6 Sustains Activated EGFR Signaling through Inhibiting EGFR Degradation and Transactivating EGFR

    PubMed Central

    Li, X; Lu, Y; Liang, K; Hsu, J -M.; Albarracin, C; Mills, G B; Hung, M-C; Fan, Z

    2011-01-01

    Epidermal growth factor receptor (EGFR)-mediated cell signaling is critical for mammary epithelial cell growth and survival; however, targeting EGFR has shown no or only minimal therapeutic benefit in patients with breast cancer. Here, we report a novel regulatory mechanism of EGFR signaling that may explain the low response rates. We found that breast tumor kinase (Brk)/protein-tyrosine kinase 6 (PTK6), a nonreceptor protein tyrosine kinase highly expressed in most human breast tumors, interacted with EGFR and sustained ligand-induced EGFR signaling. We demonstrate that Brk inhibits ligand-induced EGFR degradation through uncoupling activated EGFR from Cbl-mediated EGFR ubiquitination. In addition, upon activation by EGFR, Brk directly phosphorylated Y845 in the EGFR kinase domain, thereby further potentiating EGFR kinase activity. Experimental elevation of Brk conferred resistance of breast cancer cells to cetuximab (an EGFR-blocking antibody)-induced inhibition of cell signaling and proliferation, whereas knockdown of Brk sensitized the cells to cetuximab by inducing apoptosis. Our findings reveal a previously unknown role of Brk in EGFR-targeted therapy. PMID:22231447

  8. Brk/PTK6 sustains activated EGFR signaling through inhibiting EGFR degradation and transactivating EGFR.

    PubMed

    Li, X; Lu, Y; Liang, K; Hsu, J-M; Albarracin, C; Mills, G B; Hung, M-C; Fan, Z

    2012-10-04

    Epidermal growth factor receptor (EGFR)-mediated cell signaling is critical for mammary epithelial cell growth and survival; however, targeting EGFR has shown no or only minimal therapeutic benefit in patients with breast cancer. Here, we report a novel regulatory mechanism of EGFR signaling that may explain the low response rates. We found that breast tumor kinase (Brk)/protein-tyrosine kinase 6 (PTK6), a nonreceptor protein-tyrosine kinase highly expressed in most human breast tumors, interacted with EGFR and sustained ligand-induced EGFR signaling. We demonstrate that Brk inhibits ligand-induced EGFR degradation through uncoupling activated EGFR from casitas B-lineage lymphoma-mediated EGFR ubiquitination. In addition, upon activation by EGFR, Brk directly phosphorylated Y845 in the EGFR kinase domain, thereby further potentiating EGFR kinase activity. Experimental elevation of Brk conferred resistance of breast cancer cells to cetuximab (an EGFR-blocking antibody)-induced inhibition of cell signaling and proliferation, whereas knockdown of Brk sensitized the cells to cetuximab by inducing apoptosis. Our findings reveal a previously unknown role of Brk in EGFR-targeted therapy.

  9. Inhibition of cyclin A/Cdk2 phosphorylation impairs B-Myb transactivation function without affecting interactions with DNA or the CBP coactivator.

    PubMed

    Bessa, M; Saville, M K; Watson, R J

    2001-06-07

    Expression of the B-Myb transcription factor is directed by an E2F-dependent transcriptional mechanism to late G1 and S phases of the cell cycle, where its transactivation properties are enhanced post-translationally by cyclin A/Cdk2-mediated phosphorylation. Other experiments have shown that removal of the B-Myb C-terminus constitutively activates both transactivation and DNA-binding activities, suggesting that autoregulation by this inhibitory domain is counteracted by phosphorylation. We report here on further experiments to examine this hypothesis. The importance of this modification was first emphasized by showing that co-transfected dominant-negative Cdk2 (Cdk2DN) substantially reduced B-Myb transactivation activity. We then attempted to map the autoregulatory domain by analysing a series of progressively deleted C-terminal B-Myb mutants. Removal of just 29 C-terminal aa increased transactivation appreciably, however, maximal activity required removal of 143 amino acids (as in B-Myb + 561). Enhanced B-Myb + 561 function correlated with the acquisition of DNA binding activity to a single Myb binding site (MBS) oligonucleotide as determined by bandshift assays, however, further assays showed that even wt B-Myb could bind a DNA fragment containing three MBS. Although transactivation by B-Myb was severely dependent on hyperphosphorylation, neither inhibiting this activity by co-transfecting Cdk2DN nor augmenting it with cyclin A resulted in significant effects on DNA-binding. We also found that B-Myb could synergize with the CBP coactivator and that this cooperativity was cyclin A/Cdk2-dependent. Despite this, the physical association between these proteins was not influenced by the B-Myb phosphorylation status. We discuss these findings in relation to the autoregulation of B-Myb by the C-terminal domain.

  10. A peptide nucleic acid-aminosugar conjugate targeting transactivation response element of HIV-1 RNA genome shows a high bioavailability in human cells and strongly inhibits tat-mediated transactivation of HIV-1 transcription.

    PubMed

    Das, Indrajit; Désiré, Jérôme; Manvar, Dinesh; Baussanne, Isabelle; Pandey, Virendra N; Décout, Jean-Luc

    2012-07-12

    The 6-aminoglucosamine ring of the aminoglycoside antibiotic neomycin B (ring II) was conjugated to a 16-mer peptide nucleic acid (PNA) targeting HIV-1 TAR RNA. For this purpose, we prepared the aminoglucosamine monomer 15 and attached it to the protected PNA prior to its cleavage from the solid support. We found that the resulting PNA-aminoglucosamine conjugate is stable under acidic conditions, efficiently taken up by the human cells and fairly distributed in both cytosol and nucleus without endosomal entrapment because cotreatment with endosome-disrupting agent had no effect on its cellular distribution. The conjugate displayed very high target specificity in vitro and strongly inhibited Tat mediated transactivation of HIV-1 LTR transcription in a cell culture system. The unique properties of this new class of PNA conjugate suggest it to be a potential candidate for therapeutic application.

  11. A Peptide Nucleic Acid-Aminosugar Conjugate Targeting Transactivation Response Element of HIV-1 RNA Genome Shows a High Bioavailability in Human Cells and Strongly Inhibits Tat-mediated Transactivation of HIV-1 Transcription

    PubMed Central

    Das, Indrajit; Désiré, Jérôme; Manvar, Dinesh; Baussanne, Isabelle; Pandey, Virendra N.; Décout, Jean-Luc

    2012-01-01

    The 6-aminoglucosamine ring of the aminoglycoside antibiotic neomycin B (ring II) was conjugated to a 16 mer peptide nucleic acid (PNA) targeting HIV-1 TAR RNA. For this purpose we prepared the aminoglucosamine monomer 15 and attached it to the protected PNA prior to its cleavage from the solid support. We found that the resulting PNA-aminoglucosamine conjugate is stable under acidic condition, efficiently taken up by the human cells and fairly distributed in both cytosol and nucleus without endosomal entrapment since co-treatment with endosome-disrupting agent had no effect on its cellular distribution. The conjugate displayed very high target specificity in vitro and strongly inhibited Tat mediated transactivation of HIV-1 LTR transcription in cell culture system. The unique properties of this new class of PNA conjugate suggest it to be a potential candidate for therapeutic application. PMID:22698070

  12. Growth differentiation factor (GDF)-15 blocks norepinephrine-induced myocardial hypertrophy via a novel pathway involving inhibition of epidermal growth factor receptor transactivation.

    PubMed

    Xu, Xin-ye; Nie, Ying; Wang, Fang-fang; Bai, Yan; Lv, Zhi-zhen; Zhang, You-yi; Li, Zi-jian; Gao, Wei

    2014-04-04

    Accumulating evidence suggests that growth differentiation factor 15 (GDF-15) is associated with the severity and prognosis of various cardiovascular diseases. However, the effect of GDF-15 on the regulation of cardiac remodeling is still poorly understood. In this present study, we demonstrate that GDF-15 blocks norepinephrine (NE)-induced myocardial hypertrophy through a novel pathway involving inhibition of EGFR transactivation. Both in vivo and in vitro assay indicate that NE was able to stimulate the synthesis of GDF-15. The up-regulation of GDF-15 feedback inhibits NE-induced myocardial hypertrophy, including quantitation of [(3)H]leucine incorporation, protein/DNA ratio, cell surface area, and ANP mRNA level. Further research shows that GDF-15 could inhibit the phosphorylation of EGF receptor and downstream kinases (AKT and ERK1/2) induced by NE. Clinical research also shows that serum GDF-15 levels in hypertensive patients were significant higher than in healthy volunteers and were positively correlated with the thickness of the posterior wall of the left ventricle, interventricular septum, and left ventricular mass, as well as the serum level of norepinephrine. In conclusion, NE induces myocardial hypertrophy and up-regulates GDF-15, and this up-regulation of GDF-15 negatively regulates NE-induced myocardial hypertrophy by inhibiting EGF receptor transactivation following NE stimulation.

  13. Lysine 246 of the vitamin D receptor is crucial for ligand-dependent interaction with coactivators and transcriptional activity.

    PubMed

    Jiménez-Lara, A M; Aranda, A

    1999-05-07

    Mutant K246A in the predicted helix 3 of the ligand-binding domain, as well as mutants L417S and E420Q in helix 12, which contains the core ligand-dependent transcriptional activation domain (AF-2), were generated to examine AF-2 activity of the vitamin D receptor (VDR). These mutations abolished vitamin D-dependent transactivation. In addition, VDR mediates a ligand-dependent repression of the response of the retinoic acid receptor beta2 promoter to retinoic acid, and the helix 3 and helix 12 mutants were unable to mediate transrepression. Furthermore, the VDR mutants, but not the native receptor, enhanced phorbol ester induction of the activator protein-1-containing collagenase promoter. The helix 3 and helix 12 mutations strikingly reduced the ability of VDR to interact with the coactivators steroid receptor coactivator-1, ACTR, and the CREB-binding protein. As a consequence, overexpression of steroid receptor coactivator-1 increased vitamin D-dependent transactivation by VDR but not by the K246A mutant. These results indicate that the lysine 246 participates, together with residues in helix 12, in the recruitment of coactivators and that AF-2 activity is involved both in ligand-dependent transactivation and in transrepression by VDR.

  14. PIAS3 induction of PRB sumoylation represses PRB transactivation by destabilizing its retention in the nucleus

    PubMed Central

    Man, Jiang-Hong; Li, Hui-Yan; Zhang, Pei-Jing; Zhou, Tao; He, Kun; Pan, Xin; Liang, Bing; Li, Ai-Ling; Zhao, Jie; Gong, Wei-Li; Jin, Bao-Feng; Xia, Qing; Yu, Ming; Shen, Bei-Fen; Zhang, Xue-Min

    2006-01-01

    Progesterone receptor (PR) plays a critical role in cell proliferation and differentiation, and its transcriptional activity is known to be modulated by cofactor proteins. In the present study, we demonstrated that in the presence of progesterone, protein inhibitor of activated STAT-3 (PIAS3) significantly inhibited the PR transcriptional activity and the expression of progesterone-responsive genes. Reduction of endogenous PIAS3 by PIAS3 small-interfering RNA enhanced PR transactivation in a ligand-dependent manner. PIAS3 interacted with PR both in vitro and in vivo and the interaction was enhanced by progesterone. Furthermore, our findings suggested that PIAS3 strongly induced PRB sumoylation at three sites, Lys-7, Lys-388 and Lys-531. In addition, novel roles in PRB nuclear retention and transactivation were identified for these sites. Our data also suggested that PIAS3 was recruited in a largely hormone-dependent manner in response to a progesterone-responsive promoter. Finally, we demonstrated that PIAS3 inhibited the DNA-binding activity of PR and influenced its nuclear export as well as PR transactivation. Taken together, these data strongly suggested that PIAS3 played an important physiological role in PR function. PMID:17020914

  15. Specific inhibition of gene expression and transactivation functions of hepatitis B virus X protein and c-myc by small interfering RNAs.

    PubMed

    Hung, Le; Kumar, Vijay

    2004-02-27

    With a view to developing therapeutic strategies against hepatocellular carcinoma (HCC), we have recently shown that co-expression of c-myc and the X protein of hepatitis B virus (HBx) resulted in the development of HCC in the X-myc transgenic mice. We now show in cell culture-based studies that small interfering RNA (siRNA) corresponding to HBx and c-myc can regulate expression and transactivation of the target genes. Expression vectors for small hairpin RNAs (shRNAs) against two different regions each of the HBx and c-myc open reading frames were constructed and their regulatory effects were investigated in COS-1 cells. A dose-dependent specific inhibition in the expression levels of HBx and c-myc was observed with individual shRNAs. Further, the recombinantly expressed shRNAs also blocked the transactivation functions of their cognate genes. Though each shRNA worked at a different efficiency, the inhibitory effects with two different shRNAs were cumulative. These results appear promising for developing a siRNA-based therapy for HCC.

  16. Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA.

    PubMed Central

    Zink, D; Paro, R

    1995-01-01

    The genes of the Polycomb-group (Pc-G) are responsible for maintaining the inactive expression state of homeotic genes. They act through specific cis-regulatory DNA elements termed PREs (Pc-G Response Elements). Multimeric complexes containing the Pc-G proteins are thought to induce heterochromatin-like structures, which stably and heritably inactivate transcription. We have tested the functional role of the FAB fragment, a PRE of the bithorax complex. We find that this element behaves as an orientation dependent silencer, capable of inducing mosaic gene expression on neighboring genes. Transgenic fly lines were constructed containing a PRE adjacent to a reporter gene inducible by the yeast GAL4 trans-activator. The competition between the activator and Pc-G-containing chromatin was visualized on polytene chromosomes using immunocytochemistry. The Pc-G protein Polycomb and GAL4 have mutually exclusive binding patterns, supporting the notion that Pc-G-induced chromatin structures can prevent activators from binding to their target sequences. However, this antagonistic function can be overcome by high doses of GAL4, even in the absence of DNA replication. Images PMID:8521823

  17. Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2

    PubMed Central

    Stuart, Jennifer H.; Sumner, Rebecca P.; Lu, Yongxu

    2016-01-01

    The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion. PMID:27907166

  18. Cooperation of Spi-1/PU.1 with an activated erythropoietin receptor inhibits apoptosis and Epo-dependent differentiation in primary erythroblasts and induces their Kit ligand-dependent proliferation.

    PubMed Central

    Quang, C T; Wessely, O; Pironin, M; Beug, H; Ghysdael, J

    1997-01-01

    Spi-1/PU.1 is a myeloid- and B-cell specific transcription factor which is also involved in Friend virus-induced murine erythroleukemia. The pre-leukemic phase of Friend erythroleukemia results from activation of the erythropoietin receptor (EpoR) by the spleen focus forming virus (SFFV) envelope glycoprotein, followed by the emergence of leukemic clones characterized by overexpression of Spi-1 and mutation of the p53 tumor suppressor gene. We developed a heterologous system to analyze the contribution of these alterations to the induction of primary erythroblast transformation. Avian erythroblasts expressing the activated mouse EpoR(R129C) differentiated into erythrocytes in response to hEpo. Expression of Spi-1 in these cells inhibited this ability to differentiate and rescued the cells from the apoptotic cell death program normally induced upon hEpo withdrawal. Although devoid of any effect by itself, a mutant p53 cooperated with Spi-1 and EpoR(R129C) to reinforce both phenotypes. Analysis of erythroblasts co-expressing Spi-1 and the wild-type mouse EpoR showed that differentiation arrest and inhibition of apoptosis depended on specific cooperation between Spi-1 and EpoR(R129C). This cooperation was also required to induce the sustained proliferation of differentiation-blocked erythroblasts in response to ligand activation of the endogenous tyrosine kinase receptor c-Kit. These results show that Spi-1/PU.1 requires signals emanating from specific cytokine and growth factor receptors to affect the survival, proliferation and differentiation control of primary erythroblasts. They also suggest that the function of Spi-1/PU.1 in the late phase of Friend leukemia requires specific signaling from the gp55-modified EpoR generated during the early phase of the disease. PMID:9312023

  19. Nickel(II) Complex of Polyhydroxybenzaldehyde N4-Thiosemicarbazone Exhibits Anti-Inflammatory Activity by Inhibiting NF-κB Transactivation

    PubMed Central

    Loh, Sheng Wei; Looi, Chung Yeng; Hassandarvish, Pouya; Phan, Alicia Yi Ling; Wong, Won Fen; Wang, Hao; Paterson, Ian C.; Ea, Chee Kwee; Mustafa, Mohd Rais; Maah, Mohd Jamil

    2014-01-01

    Background The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity. Methodology/Principal Findings Four ligands (1–4) and their respective nickel-containing complexes (5–8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis. Conclusions/Significance Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects. PMID:24977407

  20. Role of the essential yeast protein PSU1 in p6anscriptional enhancement by the ligand-dependent activation function AF-2 of nuclear receptors.

    PubMed Central

    Gaudon, C; Chambon, P; Losson, R

    1999-01-01

    Nuclear receptors (NRs) can function as ligandinducible transregulators in both mammalian and yeast cells, indicating that important features of transcriptional control have been conserved throughout evolution. We report here the isolation and characterization of an essential yeast protein of unknown function, PSU1, which exhibits properties expected for a co-activator/mediator of the ligand-dependent activation function AF-2 present in the ligand-binding domain (LBD, region E) of NRs. PSU1 interacts in a ligand-dependent manner with the LBD of several NRs, including retinoic acid (RARalpha), retinoid X (RXRalpha), thyroid hormone (TRalpha), vitamin D3 (VDR) and oestrogen (ERalpha) receptors. Importantly, both in yeast and in vitro, these interactions require the integrity of the AF-2 activating domain. When tethered to a heterologous DNA-binding domain, PSU1 can activate transcription on its own. By using yeast reporter cells that express PSU1 conditionally, we show that PSU1 is required for transactivation by the AF-2 of ERalpha. Taken together these data suggest that in yeast, PSU1 is involved in ligand-dependent transactivation by NRs. Sequence analysis revealed that in addition to a highly conserved motif found in a family of MutT-related proteins, PSU1 contains several alpha-helical leucine-rich motifs sharing the consensus sequence LLxPhiL (x, any amino acid; Phi, hydrophobic amino acid) in regions that elicit either transactivation or NR-binding activity. PMID:10205176

  1. Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-κB DNA-binding activity.

    PubMed

    Lin, Yung-Wei; Lee, Liang-Ming; Lee, Wei-Jiunn; Chu, Chih-Ying; Tan, Peng; Yang, Yi-Chieh; Chen, Wei-Yu; Yang, Shun-Fa; Hsiao, Michael; Chien, Ming-Hsien

    2016-04-01

    Renal cell carcinoma (RCC) is the most lethal of all urological malignancies because of its potent metastasis potential. Melatonin exerts multiple tumor-suppressing activities through antiproliferative, proapoptotic, and anti-angiogenic actions and has been tested in clinical trials. However, the antimetastastic effect of melatonin and its underlying mechanism in RCC are unclear. In this study, we demonstrated that melatonin at the pharmacologic concentration (0.5-2 mm) considerably reduced the migration and invasion of RCC cells (Caki-1 and Achn). Furthermore, we found that melatonin suppressed metastasis of Caki-1 cells in spontaneous and experimental metastasis animal models. Mechanistic investigations revealed that melatonin transcriptionally inhibited MMP-9 by reducing p65- and p52-DNA-binding activities. Moreover, the Akt-mediated JNK1/2 and ERK1/2 signaling pathways were involved in melatonin-regulated MMP-9 transactivation and cell motility. Clinical samples revealed an inverse correlation between melatonin receptor 1A (MTNR1A) and MMP-9 expression in normal kidney and RCC tissues. In addition, a higher survival rate was found in MTNR1A(high) /MMP-9(low) patients than in MTNR1A(low) /MMP-9(high) patients. Overall, our results provide new insights into the role of melatonin-induced molecular regulation in suppressing RCC metastasis and suggest that melatonin has potential therapeutic applications for metastastic RCC.

  2. A Conserved Face of the Jagged/Serrate DSL Domain is Involved in Notch Trans-Activation and Cis-Inhibition

    PubMed Central

    Cordle, Jemima; Johnson, Steven; Tay, Joyce Zi Yan; Roversi, Pietro; Wilkin, Marian; Hernandez-Diaz, Beatriz; Shimizu, Hideyuki; Jensen, Sacha; Whiteman, Pat; Jin, Boquan; Redfield, Christina; Baron, Martin; Lea, Susan M.; Handford, Penny A.

    2009-01-01

    The Notch receptor and its ligands are key components in a core metazoan signalling pathway which regulates the spatial patterning, timing and outcome of many cell-fate decisions. Ligands contain a disulphide-rich Delta/Serrate/LAG-2 (DSL) domain required for Notch trans-activation or cis-inhibition. Here we report the first X-ray structure of a functional fragment of a Notch ligand, the DSL-EGF3 domains of human Jagged-1 (J-1DSL-EGF3). The structure identifies a highly conserved face of the DSL domain and we show, by functional analysis of Drosophila ligand mutants, that this surface is required for both cis- and trans-regulatory interactions with Notch. We also identify, using NMR, a surface of Notch-1 involved in J-1DSL-EGF3 binding. Our data imply that cis- and trans-regulation may occur through formation of structurally distinct complexes which, unexpectedly, involve the same surfaces on both ligand and receptor. PMID:18660822

  3. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition.

    PubMed

    Cordle, Jemima; Johnson, Steven; Tay, Joyce Zi Yan; Roversi, Pietro; Wilkin, Marian B; de Madrid, Beatriz Hernández; Shimizu, Hideyuki; Jensen, Sacha; Whiteman, Pat; Jin, Boquan; Redfield, Christina; Baron, Martin; Lea, Susan M; Handford, Penny A

    2008-08-01

    The Notch receptor and its ligands are key components in a core metazoan signaling pathway that regulates the spatial patterning, timing and outcome of many cell-fate decisions. Ligands contain a disulfide-rich Delta/Serrate/LAG-2 (DSL) domain required for Notch trans-activation or cis-inhibition. Here we report the X-ray structure of a receptor binding region of a Notch ligand, the DSL-EGF3 domains of human Jagged-1 (J-1(DSL-EGF3)). The structure reveals a highly conserved face of the DSL domain, and we show, by functional analysis of Drosophila melanogster ligand mutants, that this surface is required for both cis- and trans-regulatory interactions with Notch. We also identify, using NMR, a surface of Notch-1 involved in J-1(DSL-EGF3) binding. Our data imply that cis- and trans-regulation may occur through the formation of structurally distinct complexes that, unexpectedly, involve the same surfaces on both ligand and receptor.

  4. Major Histocompatibility Complex Class II Transactivator CIITA Is a Viral Restriction Factor That Targets Human T-Cell Lymphotropic Virus Type 1 Tax-1 Function and Inhibits Viral Replication▿

    PubMed Central

    Tosi, Giovanna; Forlani, Greta; Andresen, Vibeke; Turci, Marco; Bertazzoni, Umberto; Franchini, Genoveffa; Poli, Guido; Accolla, Roberto S.

    2011-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of an aggressive malignancy of CD4+ T lymphocytes. Since the viral transactivator Tax-1 is a major player in T-cell transformation, targeting Tax-1 protein is regarded as a possible strategy to arrest viral replication and to counteract neoplastic transformation. We demonstrate that CIITA, the master regulator of major histocompatibility complex class II gene transcription, inhibits HTLV-1 replication by blocking the transactivating function of Tax-1 both when exogenously transfected in 293T cells and when endogenously expressed by a subset of U937 promonocytic cells. Tax-1 and CIITA physically interact in vivo via the first 108 amino acids of Tax-1 and two CIITA adjacent regions (amino acids 1 to 252 and 253 to 410). Interestingly, only CIITA 1-252 mediated Tax-1 inhibition, in agreement with the fact that CIITA residues from positions 64 to 124 were required to block Tax-1 transactivation. CIITA inhibitory action on Tax-1 correlated with the nuclear localization of CIITA and was independent of the transcription factor NF-YB, previously involved in CIITA-mediated inhibition of Tax-2 of HTLV-2. Instead, CIITA severely impaired the physical and functional interaction of Tax-1 with the cellular coactivators p300/CBP-associated factor (PCAF), cyclic AMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1), which are required for the optimal activation of HTLV-1 promoter. Accordingly, the overexpression of PCAF, CREB, and ATF1 restored Tax-1-dependent transactivation of the viral long-terminal-repeat promoter inhibited by CIITA. These findings strongly support our original observation that CIITA, beside increasing the antigen-presenting function for pathogen antigens, acts as an endogenous restriction factor against human retroviruses by blocking virus replication and spreading. PMID:21813598

  5. Triptonide Effectively Inhibits Wnt/β-Catenin Signaling via C-terminal Transactivation Domain of β-catenin

    PubMed Central

    Chinison, Jessica; Aguilar, Jose S.; Avalos, Alan; Huang, Ying; Wang, Zhijun; Cameron, D. Joshua; Hao, Jijun

    2016-01-01

    Abnormal activation of canonical Wnt/β-catenin signaling is implicated in many diseases including cancer. As a result, therapeutic agents that disrupt this signaling pathway have been highly sought after. Triptonide is a key bioactive small molecule identified in a traditional Chinese medicine named Tripterygium wilfordii Hook F., and it has a broad spectrum of biological functions. Here we show that triptonide can effectively inhibit canonical Wnt/β-catenin signaling by targeting the downstream C-terminal transcription domain of β-catenin or a nuclear component associated with β-catenin. In addition, triptonide treatment robustly rescued the zebrafish “eyeless” phenotype induced by GSK-3β antagonist 6-bromoindirubin-30-oxime (BIO) for Wnt signaling activation during embryonic gastrulation. Finally, triptonide effectively induced apoptosis of Wnt-dependent cancer cells, supporting the therapeutic potential of triptonide. PMID:27596363

  6. Inhibition of aryl hydrocarbon receptor transactivation and DNA adduct formation by CYP1 isoform-selective metabolic deactivation of benzo[a]pyrene

    SciTech Connect

    Endo, Kaori; Uno, Shigeyuki; Seki, Taiichiro; Ariga, Toyohiko; Kusumi, Yoshiaki; Mitsumata, Masako; Yamada, Sachiko; Makishima, Makoto

    2008-07-15

    Benzo[a]pyrene (BaP), a polyaromatic hydrocarbon produced by the combustion of cigarettes and coke ovens, is a known procarcinogen. BaP activates the aryl hydrocarbon receptor (AhR) and induces the expression of a battery of genes, including CYP1A1, which metabolize BaP to toxic compounds. The possible role of CYP1 enzymes in mediating BaP detoxification or metabolic activation remains to be elucidated. In this study, we assessed the effects of CYP1 enzymes (CYP1A1, CYP1A2 and CYP1B1) on BaP-induced AhR transactivation and DNA adduct formation in HEK293 cells and HepG2 cells. Transfection of CYP1A1 and CYP1B1, but not CYP1A2, suppressed BaP-induced activation of AhR. Expression of CYP1A1 and CYP1A2, but not CYP1B1, inhibited DNA adduct formation in BaP-treated HepG2 cells. These results indicate that CYP1A1 and CYP1B1 play a role in deactivation of BaP on AhR and that CYP1A1 and CYP1A2 are involved in BaP detoxification by suppressing DNA adduct formation. BaP treatment did not induce DNA adduct formation in HEK293 cells, even after transfection of CYP1 enzymes, suggesting that expression of CYP1 enzymes is not sufficient for DNA adduct formation. Lower expression of epoxide hydrolase and higher expression of glutathione S-transferase P1 (GSTP1) and GSTM1/M2 were observed in HEK293 cells compared with HepG2 cells. Dynamic expression of CYP1A1, CYP1A2 and CYP1B1 along with expression of other enzymes such as epoxide hydrolase and phase II enzymes may determine the detoxification or metabolic activation of BaP.

  7. Inhibition of aryl hydrocarbon receptor transactivation and DNA adduct formation by CYP1 isoform-selective metabolic deactivation of benzo[a]pyrene.

    PubMed

    Endo, Kaori; Uno, Shigeyuki; Seki, Taiichiro; Ariga, Toyohiko; Kusumi, Yoshiaki; Mitsumata, Masako; Yamada, Sachiko; Makishima, Makoto

    2008-07-15

    Benzo[a]pyrene (BaP), a polyaromatic hydrocarbon produced by the combustion of cigarettes and coke ovens, is a known procarcinogen. BaP activates the aryl hydrocarbon receptor (AhR) and induces the expression of a battery of genes, including CYP1A1, which metabolize BaP to toxic compounds. The possible role of CYP1 enzymes in mediating BaP detoxification or metabolic activation remains to be elucidated. In this study, we assessed the effects of CYP1 enzymes (CYP1A1, CYP1A2 and CYP1B1) on BaP-induced AhR transactivation and DNA adduct formation in HEK293 cells and HepG2 cells. Transfection of CYP1A1 and CYP1B1, but not CYP1A2, suppressed BaP-induced activation of AhR. Expression of CYP1A1 and CYP1A2, but not CYP1B1, inhibited DNA adduct formation in BaP-treated HepG2 cells. These results indicate that CYP1A1 and CYP1B1 play a role in deactivation of BaP on AhR and that CYP1A1 and CYP1A2 are involved in BaP detoxification by suppressing DNA adduct formation. BaP treatment did not induce DNA adduct formation in HEK293 cells, even after transfection of CYP1 enzymes, suggesting that expression of CYP1 enzymes is not sufficient for DNA adduct formation. Lower expression of epoxide hydrolase and higher expression of glutathione S-transferase P1 (GSTP1) and GSTM1/M2 were observed in HEK293 cells compared with HepG2 cells. Dynamic expression of CYP1A1, CYP1A2 and CYP1B1 along with expression of other enzymes such as epoxide hydrolase and phase II enzymes may determine the detoxification or metabolic activation of BaP.

  8. Regulation of the Ligand-dependent Activation of the Epidermal Growth Factor Receptor by Calmodulin*

    PubMed Central

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep; Ruano, María J.; Sánchez-González, Pablo; la Cour, Jonas M.; Stephan, Alexander; Olesen, Uffe H.; Berchtold, Martin W.; Villalobo, Antonio

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins. In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited ligand-dependent EGFR auto(trans)phosphorylation. This occurred also in the presence of inhibitors of protein kinase C, CaM-dependent protein kinase II and calcineurin, which are known Ca2+- and/or Ca2+/CaM-dependent EGFR regulators, pointing to a direct effect of Ca2+/CaM on the receptor. Furthermore, we demonstrate that down-regulation of CaM in conditional CaM knock out cells stably transfected with the human EGFR decreased its ligand-dependent phosphorylation. Substitution of six basic amino acid residues within the CaM-binding domain (CaM-BD) of the EGFR by alanine resulted in a decreased phosphorylation of the receptor and of its downstream substrate phospholipase Cγ1. These results support the hypothesis that Ca2+/CaM regulates the EGFR activity by directly interacting with the CaM-BD of the receptor located at its cytosolic juxtamembrane region. PMID:22157759

  9. Inflammatory stimuli inhibit glucocorticoid-dependent transactivation in human pulmonary epithelial cells: rescue by long-acting beta2-adrenoceptor agonists.

    PubMed

    Rider, Christopher F; King, Elizabeth M; Holden, Neil S; Giembycz, Mark A; Newton, Robert

    2011-09-01

    By repressing inflammatory gene expression, glucocorticoids are the most effective treatment for chronic inflammatory diseases such as asthma. However, in some patients with severe disease, or who smoke or suffer from chronic obstructive pulmonary disease, glucocorticoids are poorly effective. Although many investigators focus on defects in the repression of inflammatory gene expression, glucocorticoids also induce (transactivate) the expression of numerous genes to elicit anti-inflammatory effects. Using human bronchial epithelial (BEAS-2B) and pulmonary (A549) cells, we show that cytokines [tumor necrosis factor α (TNFα) and interleukin 1β], mitogens [fetal calf serum (FCS) and phorbol ester], cigarette smoke, and a G(q)-linked G protein-coupled receptor agonist attenuate simple glucocorticoid response element (GRE)-dependent transcription. With TNFα and FCS, this effect was not overcome by increasing concentrations of dexamethasone, budesonide, or fluticasone propionate. Thus, the maximal ability of the glucocorticoid to promote GRE-dependent transcription was reduced, and this was shown additionally for the glucocorticoid-induced gene p57(KIP2). The long-acting β(2)-adrenoceptor agonists (LABAs) formoterol fumarate and salmeterol xinafoate enhanced simple GRE-dependent transcription to a level that could not be achieved by glucocorticoid alone. In the presence of TNFα or FCS, which repressed glucocorticoid responsiveness, these LABAs restored glucocorticoid-dependent transcription to levels that were achieved by glucocorticoid alone. Given the existence of genes, such as p57(KIP2), which may mediate anti-inflammatory actions of glucocorticoids, we propose that repression of transactivation represents a mechanism for glucocorticoid resistance and for understanding the clinical benefit of LABAs as an add-on therapy in asthma and chronic obstructive pulmonary disease.

  10. Active FOXO1 is a Key Determinant of Isoform-Specific Progesterone Receptor Transactivation and Senescence Programming

    PubMed Central

    Diep, Caroline H.; Knutson, Todd P.; Lange, Carol A.

    2015-01-01

    Progesterone promotes differentiation coupled to proliferation and pro-survival in the breast, but inhibits estrogen-driven growth in the reproductive tract and ovaries. Herein, it is demonstrated, using progesterone receptor (PR) isoform-specific ovarian cancer model systems, that PR-A and PR-B promote distinct gene expression profiles that differ from PR-driven genes in breast cancer cells. In ovarian cancer models, PR-A primarily regulates genes independently of progestin, while PR-B is the dominant ligand-dependent isoform. Notably, FOXO1 and the PR/FOXO1 target-gene p21 (CDKN1A) are repressed by PR-A, but induced by PR-B. In the presence of progestin, PR-B, but not PR-A, robustly induced cellular senescence via FOXO1-dependent induction of p21 and p15 (CDKN2B). Chromatin immunoprecipitation (ChIP) assays performed on PR-isoform specific cells demonstrated that while each isoform is recruited to the same PRE-containing region of the p21 promoter in response to progestin, only PR-B elicits active chromatin marks. Overexpression of constitutively active FOXO1 in PR-A-expressing cells conferred robust ligand-dependent upregulation of the PR-B target genes GZMA, IGFBP1, and p21, and induced cellular senescence. In the presence of endogenous active FOXO1, PR-A was phosphorylated on Ser294 and transactivated PR-B at PR-B target genes; these events were blocked by the FOXO1 inhibitor (AS1842856). PR isoform-specific regulation of the FOXO1/p21 axis recapitulated in human primary ovarian tumor explants treated with progestin; loss of progestin sensitivity correlated with high AKT activity. PMID:26577046

  11. Oxidative Stress Promotes Ligand-independent and Enhanced Ligand-dependent Tumor Necrosis Factor Receptor Signaling*

    PubMed Central

    Ozsoy, Hatice Z.; Sivasubramanian, Natarajan; Wieder, Eric D.; Pedersen, Steen; Mann, Douglas L.

    2008-01-01

    Tumor necrosis factor (TNF) receptor 1 (TNFR1, p55) and 2 (TNFR2, p75) are characterized by several cysteine-rich modules in the extracellular domain, raising the possibility that redox-induced modifications of these cysteine residues might alter TNFR function. To test this possibility, we examined fluorescence resonance energy transfer (FRET) in 293T cells transfected with CFP- and YFP-tagged TNFRs exposed to the thiol oxidant diamide. Treatment with high concentrations of diamide (1 mm) resulted in an increase in the FRET signal that was sensitive to inhibition with the reducing agent dithiothreitol, suggesting that oxidative stress resulted in TNFR self-association. Treatment of cells with low concentrations of diamide (1 μm) that was not sufficient to provoke TNFR self-association resulted in increased TNF-induced FRET signals relative to the untreated cells, suggesting that oxidative stress enhanced ligand-dependent TNFR signaling. Similar findings were obtained when the TNFR1- and TNFR2-transfected cells were pretreated with a cell-impermeable oxidase, DsbA, that catalyzes disulfide bond formation between thiol groups on cysteine residues. The changes in TNFR self-association were functionally significant, because pretreating the HeLa cells and 293T cells resulted in increased TNF-induced NF-κB activation and TNF-induced expression of IκB and syndecan-4 mRNA levels. Although pretreatment with DsbA did not result in an increase in TNF binding to TNFRs, it resulted in increased TNF-induced activation of NF-κB, consistent with an allosteric modification of the TNFRs. Taken together, these results suggest that oxidative stress promotes TNFR receptor self-interaction and ligand-independent and enhanced ligand-dependent TNF signaling. PMID:18544535

  12. Crosstalk between the peroxisome proliferator-activated receptor γ (PPARγ) and the vitamin D receptor (VDR) in human breast cancer cells: PPARγ binds to VDR and inhibits 1α,25-dihydroxyvitamin D3 mediated transactivation.

    PubMed

    Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang; Mehta, Rajeshwari R; von Knethen, Andreas; Choubey, Divaker; Mehta, Rajendra G

    2012-11-15

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ERα) physically binds to peroxisome proliferator-activated receptor gamma (PPARγ) and inhibits its transcriptional activity. The interaction between PPARγ and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPARγ and VDR signaling, and for the first time we show that PPARγ physically associates with VDR in human breast cancer cells. We found that overexpression of PPARγ decreased 1α,25-dihydroxyvitamin D(3) (1,25D(3)) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPARγ's hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPARγ's AF2 domain attenuated its repressive action on 1,25D(3) transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPARγ was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXRα). Overexpression of RXRα blocked PPARγ's suppressive effect on 1,25D(3) action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPARγ and VDR pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription through its intact core and cysteine-rich domains inhibits Wnt/β-catenin signaling in astrocytes: relevance to HIV neuropathogenesis.

    PubMed

    Henderson, Lisa J; Sharma, Amit; Monaco, Maria Chiara G; Major, Eugene O; Al-Harthi, Lena

    2012-11-14

    Wnt/β-catenin is a neuroprotective pathway regulating cell fate commitment in the CNS and many vital functions of neurons and glia. Its dysregulation is linked to a number of neurodegenerative diseases. Wnt/β-catenin is also a repressor of HIV transcription in multiple cell types, including astrocytes, which are dysregulated in HIV-associated neurocognitive disorder. Given that HIV proteins can overcome host restriction factors and that perturbations of Wnt/β-catenin signaling can compromise astrocyte function, we evaluated the impact of HIV transactivator of transcription (Tat) on Wnt/β-catenin signaling in astrocytes. HIV clade B Tat, in primary progenitor-derived astrocytes and U87MG cells, inhibited Wnt/β-catenin signaling as demonstrated by its inhibition of active β-catenin, TOPflash reporter activity, and Axin-2 (a downstream target of Wnt/β-catenin signaling). Point mutations in either the core region (K41A) or the cysteine-rich region (C30G) of Tat abrogated its ability to inhibit β-catenin signaling. Clade C Tat, which lacks the dicysteine motif, did not alter β-catenin signaling, confirming that the dicysteine motif is critical for Tat inhibition of β-catenin signaling. Tat coprecipitated with TCF-4 (a transcription factor that partners with β-catenin), suggesting a physical interaction between these two proteins. Furthermore, knockdown of β-catenin or TCF-4 enhanced docking of Tat at the TAR region of the HIV long terminal repeat. These findings highlight a bidirectional interference between Tat and Wnt/β-catenin that negatively impacts their cognate target genes. The consequences of this interaction include alleviation of Wnt/β-catenin-mediated suppression of HIV and possible astrocyte dysregulation contributing to HIV neuropathogenesis.

  14. The Major Histocompatibility Complex Class II Transactivator CIITA Inhibits the Persistent Activation of NF-κB by the Human T Cell Lymphotropic Virus Type 1 Tax-1 Oncoprotein

    PubMed Central

    Forlani, Greta; Abdallah, Rawan

    2016-01-01

    ABSTRACT Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. IMPORTANCE HTLV-1 is the causative agent of human adult T cell leukemia

  15. Ligand-dependent regulation of NPR-A gene expression in inner medullary collecting duct cells.

    PubMed

    Cao, L; Chen, S C; Cheng, T; Humphreys, M H; Gardner, D G

    1998-07-01

    Atrial natriuretic peptide (ANP) interacts with high-affinity, guanylyl cyclase-linked receptors in the inner medullary collecting duct (IMCD), where it exerts important regulatory control over sodium handling. We sought to determine whether receptor activity in these cells would be modulated (downregulated) by prolonged exposure to ligand. A number of natriuretic peptides (ANP, brain natriuretic peptide, and urodilatin) were found to decrease ligand-dependent natriuretic peptide receptor A (NPR-A) activity in IMCD cells. This inhibition was in direct proportion to their capacity to increase basal cGMP levels in this cell population. The reduction in receptor activity was accompanied by a dose- and time-dependent reduction in NPR-A mRNA levels in these cells. The decrease in transcript levels arose, in part, from a reduction in NPR-A gene transcription. ANP reduced NPR-A gene promoter activity in a transiently transfected IMCD cell population. 8-Bromo-cGMP was also effective in inhibiting NPR-A mRNA levels and NPR-A promoter activity, suggesting that the second messenger (i.e., cGMP) rather than ANP, itself, is responsible for downregulation of NPR-A gene expression.

  16. The Inhibition of Stat5 by a Peptide Aptamer Ligand Specific for the DNA Binding Domain Prevents Target Gene Transactivation and the Growth of Breast and Prostate Tumor Cells

    PubMed Central

    Weber, Axel; Borghouts, Corina; Brendel, Christian; Moriggl, Richard; Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd

    2013-01-01

    The signal transducer and activator of transcription Stat5 is transiently activated by growth factor and cytokine signals in normal cells, but its persistent activation has been observed in a wide range of human tumors. Aberrant Stat5 activity was initially observed in leukemias, but subsequently also found in carcinomas. We investigated the importance of Stat5 in human tumor cell lines. shRNA mediated downregulation of Stat5 revealed the dependence of prostate and breast cancer cells on the expression of this transcription factor. We extended these inhibition studies and derived a peptide aptamer (PA) ligand, which directly interacts with the DNA-binding domain of Stat5 in a yeast-two-hybrid screen. The Stat5 specific PA sequence is embedded in a thioredoxin (hTRX) scaffold protein. The resulting recombinant protein S5-DBD-PA was expressed in bacteria, purified and introduced into tumor cells by protein transduction. Alternatively, S5-DBD-PA was expressed in the tumor cells after infection with a S5-DBD-PA encoding gene transfer vector. Both strategies impaired the DNA-binding ability of Stat5, suppressed Stat5 dependent transactivation and caused its intracellular degradation. Our experiments describe a peptide based inhibitor of Stat5 protein activity which can serve as a lead for the development of a clinically useful compound for cancer treatment. PMID:24276378

  17. Upregulating endogenous genes by an RNA-programmable artificial transactivator

    PubMed Central

    Fimiani, Cristina; Goina, Elisa; Mallamaci, Antonello

    2015-01-01

    To promote expression of endogenous genes ad libitum, we developed a novel, programmable transcription factor prototype. Kept together via an MS2 coat protein/RNA interface, it includes a fixed, polypeptidic transactivating domain and a variable RNA domain that recognizes the desired gene. Thanks to this device, we specifically upregulated five genes, in cell lines and primary cultures of murine pallial precursors. Gene upregulation was small, however sufficient to robustly inhibit neuronal differentiation. The transactivator interacted with target gene chromatin via its RNA cofactor. Its activity was restricted to cells in which the target gene is normally transcribed. Our device might be useful for specific applications. However for this purpose, it will require an improvement of its transactivation power as well as a better characterization of its target specificity and mechanism of action. PMID:26152305

  18. Sigma-1 receptor activation inhibits osmotic swelling of rat retinal glial (Müller) cells by transactivation of glutamatergic and purinergic receptors.

    PubMed

    Vogler, Stefanie; Winters, Helge; Pannicke, Thomas; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2016-01-01

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Sigma (σ) receptor activation is known to have neuroprotective effects in the retina. Here, we show that the nonselective σ receptor agonist ditolylguanidine, and the selective σ1 receptor agonist PRE-084, inhibit the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices with a hypoosmotic solution containing barium ions. In contrast, PRE-084 did not inhibit the osmotic swelling of bipolar cell somata. The effects of σ receptor agonists on the Müller cell swelling were abrogated in the presence of blockers of metabotropic glutamate and purinergic P2Y1 receptors, respectively, suggesting that σ receptor activation triggers activation of a glutamatergic-purinergic signaling cascade which is known to prevent the osmotic Müller cell swelling. The swelling-inhibitory effect of 17β-estradiol was prevented by the σ1 receptor antagonist BD1047, suggesting that the effect is mediated by σ1 receptor activation. The data may suggest that the neuroprotective effect of σ receptor activation in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial cells.

  19. Targeting Ligand-Dependent and Ligand-Independent Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    sub 10nM range efficacy. Our primary objective was to establish a series of compounds blocking the AR ligand-dependent and ligand-independent gene ...of AR driven genes to be more comprehensive and more in line with what is currently known about AR-driven signaling in prostate cancer. We have...developed a robust panel of genes for AR signaling that is reflective of the clinical findings in both ligand dependent and ligand-independent androgen

  20. Multiple, Ligand-Dependent Routes from the Active Site of Cytochrome P450 2C9

    SciTech Connect

    Cojocaru, Vlad; Winn, Peter J.; Wade, Rebecca C.

    2012-02-13

    The active site of liver-specific, drug-metabolizing cytochrome P450 (CYP) monooxygenases is deeply buried in the protein and is connected to the protein surface through multiple tunnels, many of which were found open in different CYP crystal structures. It has been shown that different tunnels could serve as ligand passage routes in different CYPs. However, it is not understood whether one CYP uses multiple routes for substrate access and product release and whether these routes depend on ligand properties. From 300 ns of molecular dynamics simulations of CYP2C9, the second most abundant CYP in the human liver we found four main ligand exit routes, the occurrence of each depending on the ligand type and the conformation of the F-G loop, which is likely to be affected by the CYP-membrane interaction. A non-helical F-G loop favored exit towards the putative membrane-embedded region. Important protein features that direct ligand exit include aromatic residues that divide the active site and whose motions control access to two pathways. The ligands interacted with positively charged residues on the protein surface through hydrogen bonds that appear to select for acidic substrates. The observation of multiple, ligand-dependent routes in a CYP aids understanding of how CYP mutations affect drug metabolism and provides new possibilities for CYP inhibition.

  1. NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition

    PubMed Central

    Garcia-Rendueles, Maria E.R.; Ricarte-Filho, Julio C.; Untch, Brian R.; Landa, Iňigo; Knauf, Jeffrey A.; Voza, Francesca; Smith, Vicki E.; Ganly, Ian; Taylor, Barry S.; Persaud, Yogindra; Oler, Gisele; Fang, Yuqiang; Jhanwar, Suresh C.; Viale, Agnes; Heguy, Adriana; Huberman, Kety H.; Giancotti, Filippo; Ghossein, Ronald; Fagin, James A.

    2015-01-01

    Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation are insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacological disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling, and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. PMID:26359368

  2. Role of ligand-dependent GR phosphorylation and half-life in determination of ligand-specific transcriptional activity.

    PubMed

    Avenant, Chanel; Ronacher, Katharina; Stubsrud, Elisabeth; Louw, Ann; Hapgood, Janet P

    2010-10-07

    A central question in glucocorticoid mechanism of action via the glucocorticoid receptor (GR) is what determines ligand-selective transcriptional responses. Using a panel of 12 GR ligands, we show that the extent of GR phosphorylation at S226 and S211, GR half-life and transcriptional response, occur in a ligand-selective manner. While GR phosphorylation at S226 was shown to inhibit maximal transcription efficacy, phosphorylation at S211 is required for maximal transactivation, but not for transrepression efficacy. Both ligand-selective GR phosphorylation and half-life correlated with efficacy for transactivation and transrepression. For both expressed and endogenous GR, in two different cell lines, agonists resulted in the greatest extent of phosphorylation and the greatest extent of GR downregulation, suggesting a link between these functions. However, using phosphorylation-deficient GR mutants we established that phosphorylation of the GR at S226 or S211 does not determine the rank order of ligand-selective GR transactivation. These results are consistent with a model whereby ligand-selective GR phosphorylation and half-life are a consequence of upstream events, such as ligand-specific GR conformations, which are maintained in the phosphorylation mutants.

  3. NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition.

    PubMed

    Garcia-Rendueles, Maria E R; Ricarte-Filho, Julio C; Untch, Brian R; Landa, Iňigo; Knauf, Jeffrey A; Voza, Francesca; Smith, Vicki E; Ganly, Ian; Taylor, Barry S; Persaud, Yogindra; Oler, Gisele; Fang, Yuqiang; Jhanwar, Suresh C; Viale, Agnes; Heguy, Adriana; Huberman, Kety H; Giancotti, Filippo; Ghossein, Ronald; Fagin, James A

    2015-11-01

    Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation is insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacologic disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. Intensification of mutant RAS signaling through copy-number imbalances is commonly associated with transformation. We show that NF2/merlin inactivation augments mutant RAS signaling by promoting YAP/TEAD-driven transcription of oncogenic and wild-type RAS, resulting in greater MAPK output and increased sensitivity to MEK inhibitors. ©2015 American Association for Cancer Research.

  4. Inhibition of Src Kinase Blocks High Glucose–Induced EGFR Transactivation and Collagen Synthesis in Mesangial Cells and Prevents Diabetic Nephropathy in Mice

    PubMed Central

    Taniguchi, Kanta; Xia, Ling; Goldberg, Howard J.; Lee, Ken W.K.; Shah, Anu; Stavar, Laura; Masson, Elodie A.Y.; Momen, Abdul; Shikatani, Eric A.; John, Rohan; Husain, Mansoor; Fantus, I. George

    2013-01-01

    Chronic exposure to high glucose leads to diabetic nephropathy characterized by increased mesangial matrix protein (e.g., collagen) accumulation. Altered cell signaling and gene expression accompanied by oxidative stress have been documented. The contribution of the tyrosine kinase, c-Src (Src), which is sensitive to oxidative stress, was examined. Cultured rat mesangial cells were exposed to high glucose (25 mmol/L) in the presence and absence of Src inhibitors (PP2, SU6656), Src small interfering RNA (siRNA), and the tumor necrosis factor-α–converting enzyme (TACE) inhibitor, TAPI-2. Src was investigated in vivo by administration of PP2 to streptozotocin (STZ)-induced diabetic DBA2/J mice. High glucose stimulated Src, TACE, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), extracellular signal–regulated kinase (ERK1/2, p38), and collagen IV accumulation in mesangial cells. PP2 and SU6656 blocked high glucose–stimulated phosphorylation of Src Tyr-416, EGFR, and MAPKs. These inhibitors and Src knockdown by siRNA, as well as TAPI-2, also abrogated high glucose–induced phosphorylation of these targets and collagen IV accumulation. In STZ-diabetic mice, albuminuria, increased Src pTyr-416, TACE activation, ERK and EGFR phosphorylation, glomerular collagen accumulation, and podocyte loss were inhibited by PP2. These data indicate a role for Src in a high glucose-Src-TACE-heparin-binding epidermal growth factor-EGFR-MAPK–signaling pathway to collagen accumulation. Thus, Src may provide a novel therapeutic target for diabetic nephropathy. PMID:23942551

  5. H11-H12 loop retinoic acid receptor mutants exhibit distinct trans-activating and trans-repressing activities in the presence of natural or synthetic retinoids.

    PubMed

    Lefebvre, B; Mouchon, A; Formstecher, P; Lefebvre, P

    1998-06-30

    Retinoids, such as the naturally occurring all-trans-retinoic acid (atRA) and synthetic ligand CD367 modulate ligand-dependent transcription through retinoic acid receptors (RARs). Retinoid binding to RAR is believed to trigger structural transitions in the ligand-binding domain (LBD), leading to helix H1 and helix H12 repositioning and coactivator recruitment and corepressor release. Here, we carried out a detailed mutagenesis analysis of the H11-H12 loop (designated the L box) to study its contribution to hRARalpha activation process. Point mutations that reduced transactivation by atRA also reduced atRA-induced transrepression of AP1 transcription, correlating ligand-induced activation and repression. However, a correlation was not observed with these mutations when tested with another ligand CD367, a synthetic agonist with binding properties identical to those of atRA. Transcription was strongly inhibited in the presence of CD367 for some mutants, thus leading to an inverse agonist activity of this ligand. None of these mutations significantly altered binding affinity for either ligand, indicating that altered transcription was not caused by altered ligand binding by these mutations. Although simple correlations with transcriptional activities were not found, these mutations were also characterized by altered ligand-induced structural transitions, which were distinct for the atRA-hRARalpha or CD367-hRARalpha complexes. These results indicate that amino acids in the L box are involved in specifying trans-repressive and trans-activating properties of the hRARalpha, and support the notion that different agonists induce distinct conformations in the LBD of the receptor.

  6. EGFR transactivation: mechanisms, pathophysiology and potential therapies in cardiovascular system

    PubMed Central

    Forrester, Steven J.; Kawai, Tatsuo; Elliott, Katherine J.; O’Brien, Shannon; Thomas, Walter; Harris, Raymond C.; Eguchi, Satoru

    2017-01-01

    Accumulating studies suggest that the epidermal growth factor receptor (EGFR) activation is associated with the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases, including hypertension, cardiac hypertrophy, renal fibrosis and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is well described – a process termed EGFR “transactivation” – yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight the recent advancement of the signaling cascades and downstream consequences of EGFR transactivation within the cardiovascular renal system in vitro and in vivo. We will also focus on linking EGFR transactivation to animal models of the disease as well as the potential therapeutic applications. PMID:26566153

  7. Targeting Ligand Dependent and Ligand Independent Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    or replace the effect of a natural peptide. A classic example is the human analogue of insulin , admin- istered to patients with insulin - dependent ... diabetes . Initially purified from bovine and porcine (44), insulin is now routinely manufactured via recombinant methods as pro- insulin (45). However...2014 4. TITLE AND SUBTITLE Targeting Ligand Dependent and Ligand Independent Androgen Receptor Signaling in Prostate Cancer 5a. CONTRACT NUMBER

  8. EGFR Transactivation by Peptide G Protein-Coupled Receptors in Cancer.

    PubMed

    Moody, Terry W; Nuche-Berenguer, Bernardo; Nakamura, Taichi; Jensen, Robert T

    2016-01-01

    Lung cancer kills approximately 1.3 million citizens in the world annually. The tyrosine kinase inhibitors (TKI) erlotinib and gefitinib are effective anti-tumor agents especially in lung cancer patients with epidermal growth factor receptor (EGFR) mutations. The goal is to increase the potency of TKI in lung cancer patients with wild type EGFR. G protein-coupled receptors (GPCR) transactivate the wild type EGFR in lung cancer cells. The GPCR can be activated by peptide agonists causing phosphatidylinositol turnover or stimulation of adenylylcyclase. Recently, nonpeptide antagonists were found to inhibit the EGFR transactivation caused by peptides. Nonpeptide antagonists for bombesin (BB), neurotensin (NTS) and cholecystokinin (CCK) inhibit lung cancer growth and increase the cytotoxicity of gefitinib. The results suggest that GPCR transactivation of the EGFR may play an important role in cancer cell proliferation.

  9. The Shine-Dalgarno sequence of riboswitch-regulated single mRNAs shows ligand-dependent accessibility bursts

    PubMed Central

    Rinaldi, Arlie J.; Lund, Paul E.; Blanco, Mario R.; Walter, Nils G.

    2016-01-01

    In response to intracellular signals in Gram-negative bacteria, translational riboswitches—commonly embedded in messenger RNAs (mRNAs)—regulate gene expression through inhibition of translation initiation. It is generally thought that this regulation originates from occlusion of the Shine-Dalgarno (SD) sequence upon ligand binding; however, little direct evidence exists. Here we develop Single Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) to investigate the ligand-dependent accessibility of the SD sequence of an mRNA hosting the 7-aminomethyl-7-deazaguanine (preQ1)-sensing riboswitch. Spike train analysis reveals that individual mRNA molecules alternate between two conformational states, distinguished by ‘bursts' of probe binding associated with increased SD sequence accessibility. Addition of preQ1 decreases the lifetime of the SD's high-accessibility (bursting) state and prolongs the time between bursts. In addition, ligand-jump experiments reveal imperfect riboswitching of single mRNA molecules. Such complex ligand sensing by individual mRNA molecules rationalizes the nuanced ligand response observed during bulk mRNA translation. PMID:26781350

  10. Ligand-Independent Activation of Platelet-Derived Growth Factor Receptor β during Human Immunodeficiency Virus-Transactivator of Transcription and Cocaine-Mediated Smooth Muscle Hyperplasia.

    PubMed

    Dalvi, Pranjali N; Gupta, Vijayalaxmi G; Griffin, Brooke R; O'Brien-Ladner, Amy; Dhillon, Navneet K

    2015-09-01

    Our previous study supports an additive effect of cocaine to human immunodeficiency virus infection in the development of pulmonary arteriopathy through enhancement of proliferation of pulmonary smooth muscle cells (SMCs), while also suggesting involvement of platelet-derived growth factor receptor (PDGFR) activation in the absence of further increase in PDGF-BB ligand. Redox-related signaling pathways have been shown to regulate tyrosine kinase receptors independent of ligand binding, so we hypothesized that simultaneous treatment of SMCs with transactivator of transcription (Tat) and cocaine may be able to indirectly activate PDGFR through modulation of reactive oxygen species (ROS) without the need for PDGF binding. We found that blocking the binding of ligand using suramin or monoclonal IMC-3G3 antibody significantly reduced ligand-induced autophosphorylation of Y1009 without affecting ligand-independent transphosphorylation of Y934 residue on PDGFRβ in human pulmonary arterial SMCs treated with both cocaine and Tat. Combined treatment of human pulmonary arterial SMCs with cocaine and Tat resulted in augmented production of superoxide radicals and hydrogen peroxide when compared with either treatment alone. Inhibition of this ROS generation prevented cocaine- and Tat-mediated Src activation and transphosphorylation of PDGFRβ at Y934 without any changes in phosphorylation of Y1009, in addition to attenuation of smooth muscle hyperplasia. Furthermore, pretreatment with an Src inhibitor, PP2, also suppressed cocaine- and Tat-mediated enhanced Y934 phosphorylation and smooth muscle proliferation. Finally, we report total abrogation of cocaine- and Tat-mediated synergistic increase in cell proliferation on inhibition of both ligand-dependent and ROS/Src-mediated ligand-independent phosphorylation of PDGFRβ.

  11. Ligand-Dependent Modulation of G Protein Conformation Alters Drug Efficacy.

    PubMed

    Furness, Sebastian George Barton; Liang, Yi-Lynn; Nowell, Cameron James; Halls, Michelle Louise; Wookey, Peter John; Dal Maso, Emma; Inoue, Asuka; Christopoulos, Arthur; Wootten, Denise; Sexton, Patrick Michael

    2016-10-20

    G protein-coupled receptor (GPCR) signaling, mediated by hetero-trimeric G proteins, can be differentially controlled by agonists. At a molecular level, this is thought to occur principally via stabilization of distinct receptor conformations by individual ligands. These distinct conformations control subsequent recruitment of transducer and effector proteins. Here, we report that ligand efficacy at the calcitonin GPCR (CTR) is also correlated with ligand-dependent alterations to G protein conformation. We observe ligand-dependent differences in the sensitivity of the G protein ternary complex to disruption by GTP, due to conformational differences in the receptor-bound G protein hetero-trimer. This results in divergent agonist-dependent receptor-residency times for the hetero-trimeric G protein and different accumulation rates for downstream second messengers. This study demonstrates that factors influencing efficacy extend beyond receptor conformation(s) and expands understanding of the molecular basis for how G proteins control/influence efficacy. This has important implications for the mechanisms that underlie ligand-mediated biased agonism. VIDEO ABSTRACT.

  12. Transrepression and transactivation potencies of inhaled glucocorticoids.

    PubMed

    Dirks, N L; Li, S; Huth, B; Hochhaus, G; Yates, C R; Meibohm, B

    2008-12-01

    The anti-inflammatory activity of inhaled glucocorticoids is primarily mediated through transrepression of pro-inflammatory transcription factors such as AP-1 and NF-kappaB, while systemic side effects are largely attributed to transactivation via glucocorticoid response elements (GRE) in the promoter region of responsive genes. The objective of this study is to investigate whether inhaled corticosteroids exhibit differences in their transactivation and transrepression potencies. A549 human alveolar epithelial type II like cells, stably transfected with a reporter plasmid containing an AP-1, NF-kappaB or GRE induced secreted alkaline phosphatase reporter gene (SEAP), were exposed to a panel of concentrations of the six inhaled and three systemic glucocorticoids. Glucocorticoid-induced changes in SEAP expression were quantified by chemiluminescence. For eight glucocorticoids (budesonide, desisobutyryl-cicle-sonide, dexamethasone, flunisolide, fluocortolone, fluticasone propionate, mometasone furoate, prednisolone) the EC50 for NF-kappaB mediated transrepression was significantly larger than that for both transactivation and transrepression via AP-1. For the remaining glucocorticoid (triamcinolone acetonide), it was greater than that for transactivation. It is concluded that, within the studied cell system, inhaled corticosteroids did not exhibit preferential transrepression, but had higher potencies for transactivation than for transrepression via NF-kappaB and had differential potencies for the two transrepression pathways.

  13. Conformational dynamics of ligand-dependent alternating access in LeuT.

    PubMed

    Kazmier, Kelli; Sharma, Shruti; Quick, Matthias; Islam, Shahidul M; Roux, Benoît; Weinstein, Harel; Javitch, Jonathan A; McHaourab, Hassane S

    2014-05-01

    The leucine transporter (LeuT) from Aquifex aeolicus is a bacterial homolog of neurotransmitter/sodium symporters (NSSs) that catalyze reuptake of neurotransmitters at the synapse. Crystal structures of wild-type and mutants of LeuT have been interpreted as conformational states in the coupled transport cycle. However, the mechanistic identities inferred from these structures have not been validated, and the ligand-dependent conformational equilibrium of LeuT has not been defined. Here, we used distance measurements between spin-label pairs to elucidate Na(+)- and leucine-dependent conformational changes on the intracellular and extracellular sides of the transporter. The results identify structural motifs that underlie the isomerization of LeuT between outward-facing, inward-facing and occluded states. The conformational changes reported here present a dynamic picture of the alternating-access mechanism of LeuT and NSSs that is different from the inferences reached from currently available structural models.

  14. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  15. Ligand dependent restoration of human TLR3 signaling and death in p53 mutant cells

    PubMed Central

    Menendez, Daniel; Lowe, Julie M.; Snipe, Joyce; Resnick, Michael A.

    2016-01-01

    Diversity within the p53 transcriptional network can arise from a matrix of changes that include target response element sequences and p53 expression level variations. We previously found that wild type p53 (WT p53) can regulate expression of most innate immune-related Toll-like-receptor genes (TLRs) in human cells, thereby affecting immune responses. Since many tumor-associated p53 mutants exhibit change-of-spectrum transactivation from various p53 targets, we examined the ability of twenty-five p53 mutants to activate endogenous expression of the TLR gene family in p53 null human cancer cell lines following transfection with p53 mutant expression vectors. While many mutants retained the ability to drive TLR expression at WT levels, others exhibited null, limited, or change-of-spectrum transactivation of TLR genes. Using TLR3 signaling as a model, we show that some cancer-associated p53 mutants amplify cytokine, chemokine and apoptotic responses after stimulation by the cognate ligand poly(I:C). Furthermore, restoration of WT p53 activity for loss-of-function p53 mutants by the p53 reactivating drug RITA restored p53 regulation of TLR3 gene expression and enhanced DNA damage-induced apoptosis via TLR3 signaling. Overall, our findings have many implications for understanding the impact of WT and mutant p53 in immunological responses and cancer therapy. PMID:27533082

  16. Ligand-dependent corepressor (LCoR) represses the transcription factor C/EBPβ during early adipocyte differentiation.

    PubMed

    Cao, Hongchao; Zhang, Shengjie; Shan, Shifang; Sun, Chao; Li, Yan; Wang, Hui; Yu, Shuxian; Liu, Yi; Guo, Feifan; Zhai, Qiwei; Wang, Yu-Cheng; Jiang, Jingjing; Wang, Hui; Yan, Jun; Liu, Wei; Ying, Hao

    2017-09-26

    Nuclear receptors (NRs) regulate gene transcription by recruiting coregulators, involved in chromatin remodeling and assembly of the basal transcription machinery. The NR-associated protein ligand-dependent corepressor (LCoR) has previously been shown to suppress hepatic lipogenesis by decreasing the binding of steroid receptor coactivators to thyroid hormone receptor. However, the role of LCoR in adipogenesis has not been established. Here, we show that LCoR expression is reduced in the early stage of adipogenesis in vitro. LCoR overexpression inhibited 3T3L1 adipocyte differentiation, while LCoR knockdown promoted it. Using an unbiased affinity purification approach, we identified CCAAT/enhancer-binding protein β (C/EBPβ), a key transcriptional regulator in early adipogenesis, and corepressor C-terminal-binding proteins (CtBPs) as potential components of a LCoR-containing complex in 3T3L1 adipocytes. We found that LCoR directly interacts with C/EBPβ through its C-terminal HTH domain, required for LCoR's the inhibitory effects on adipogenesis. LCoR overexpression also inhibited C/EBPβ transcriptional activity, leading to inhibition of mitotic clonal expansion and transcriptional repression of C/EBPα and peroxisome proliferator- activated receptor γ2 (PPARγ2). However, LCoR overexpression did not affect the recruitment of C/EBPβ to the promoters of C/EBPα and PPARγ2 in 3T3L1 adipocytes. Of note, restoration of PPARγ2 or C/EBPα expression attenuated the inhibitory effect of LCoR on adipogenesis. Mechanistically, LCoR suppressed C/EBPβ-mediated transcription by recruiting CtBPs to the C/EBPα and PPARγ2 promoters and by modulating histone modifications. Taken together, our results indicate that LCoR negatively regulates early adipogenesis by repressing C/EBPβ transcriptional activity and add LCoR to the growing list of transcriptional corepressors of adipogenesis. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  17. Ligand-dependent and -independent regulation of human hepatic sphingomyelin phosphodiesterase acid-like 3A expression by pregnane X receptor and crosstalk with liver X receptor.

    PubMed

    Jeske, Judith; Bitter, Andreas; Thasler, Wolfgang E; Weiss, Thomas S; Schwab, Matthias; Burk, Oliver

    2017-07-15

    Pregnane X receptor (PXR) mainly regulates xenobiotic metabolism and detoxification. Additionally, it exerts pleiotropic effects on liver physiology, which in large parts depend on transrepression of other liver-enriched transcription factors. Based on the hypothesis that lower expression levels of PXR may reduce the extent of this inhibition, an exploratory genome-wide transcriptomic profiling was performed using HepG2 cell clones with different expression levels of PXR. This screen and confirmatory real-time RT-PCR identified sphingomyelin phosphodiesterase acid-like (SMPDL) 3A, a novel nucleotide phosphodiesterase and phosphoramidase, as being up-regulated by PXR-deficiency. Transient siRNA-mediated knock-down of PXR in HepG2 cells and primary human hepatocytes similarly induced mRNA up-regulation, which translated into increased intracellular and secreted extracellular protein levels. Interestingly, ligand-dependent PXR activation also induced SMPDL3A in HepG2 cells and primary human hepatocytes. Electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated binding of PXR to the previously identified liver X receptor (LXR)-binding DR4 motif as well as to an adjacent ER8 motif in intron 1 of SMPDL3A. Constitutive binding of the unliganded receptor to the intron 1 chromatin indicated ligand-independent repression of SMPDL3A by PXR. Transient transfection and reporter gene analysis confirmed the specific role of these motifs in PXR- and LXR-dependent activation of the SMPDL3A intronic enhancer. PXR inhibited LXR mainly by competition for binding sites. In conclusion, this study describes that a decrease in PXR expression levels and ligand-dependent activation of PXR and LXR increase hepatic SMPDL3A levels, which possibly connects these receptors to hepatic purinergic signaling and phospholipid metabolism and may result in drug-drug interactions with phosphoramidate pro-drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1

    SciTech Connect

    Pei, Xin-Hong; Lv, Xin-Quan; Li, Hui-Xiang

    2014-03-28

    Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cells and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression.

  19. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  20. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites.

    PubMed

    Weber-Boyvat, Marion; Kentala, Henriikka; Peränen, Johan; Olkkonen, Vesa M

    2015-05-01

    Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.

  1. A Potent HER3 Monoclonal Antibody That Blocks Both Ligand-Dependent and -Independent Activities: Differential Impacts of PTEN Status on Tumor Response.

    PubMed

    Xiao, Zhan; Carrasco, Rosa A; Schifferli, Kevin; Kinneer, Krista; Tammali, Ravinder; Chen, Hong; Rothstein, Ray; Wetzel, Leslie; Yang, Chunning; Chowdhury, Partha; Tsui, Ping; Steiner, Philipp; Jallal, Bahija; Herbst, Ronald; Hollingsworth, Robert E; Tice, David A

    2016-04-01

    HER3/ERBB3 is a kinase-deficient member of the EGFR family receptor tyrosine kinases (RTK) that is broadly expressed and activated in human cancers. HER3 is a compelling cancer target due to its important role in activation of the oncogenic PI3K/AKT pathway. It has also been demonstrated to confer tumor resistance to a variety of cancer therapies, especially targeted drugs against EGFR and HER2. HER3 can be activated by its ligand (heregulin/HRG), which induces HER3 heterodimerization with EGFR, HER2, or other RTKs. Alternatively, HER3 can be activated in a ligand-independent manner through heterodimerization with HER2 in HER2-amplified cells. We developed a fully human mAb against HER3 (KTN3379) that efficiently suppressed HER3 activity in both ligand-dependent and independent settings. Correspondingly, KTN3379 inhibited tumor growth in divergent tumor models driven by either ligand-dependent or independent mechanisms in vitro and in vivo Most intriguingly, while investigating the mechanistic underpinnings of tumor response to KTN3379, we discovered an interesting dichotomy in that PTEN loss, a frequently occurring oncogenic lesion in a broad range of cancer types, substantially blunted the tumor response in HER2-amplified cancer, but not in the ligand-driven cancer. To our knowledge, this represents the first study ascertaining the impact of PTEN loss on the antitumor efficacy of a HER3 mAb. KTN3379 is currently undergoing a phase Ib clinical trial in patients with advanced solid tumors. Our current study may help us optimize patient selection schemes for KTN3379 to maximize its clinical benefits. Mol Cancer Ther; 15(4); 689-701. ©2016 AACR.

  2. Ligand-dependent conformational equilibria of serum albumin revealed by tryptophan fluorescence quenching.

    PubMed Central

    Chadborn, N; Bryant, J; Bain, A J; O'Shea, P

    1999-01-01

    Ligand-dependent structural changes in serum albumin are suggested to underlie its role in physiological solute transport and receptor-mediated cellular selection. Evidence of ligand-induced (oleic acid) structural changes in serum albumin are shown in both time-resolved and steady-state fluorescence quenching and anisotropy measurements of tryptophan 214 (Trp214). These studies were augmented with column chromatography separations. It was found that both the steady-state and time-resolved Stern-Volmer collisional quenching studies of Trp214 with acrylamide pointed to the existence of an oleate-dependent structural transformation. The bimolecular quenching rate constant of defatted human serum albumin, 1.96 x 10(9) M-1 s-1, decreased to 0.94 x 10(9) M-1 s-1 after incubation with oleic acid (9:1). Furthermore, Stern-Volmer quenching studies following fractionation of the structural forms by hydrophobic interaction chromatography were in accordance with this interpretation. Time-resolved fluorescence anisotropy measurements of the Trp214 residue yielded information of motion within the protein together with the whole protein molecule. Characteristic changes in these motions were observed after the binding of oleate to albumin. The addition of oleate was accompanied by an increase in the rotational diffusion time of the albumin molecule from approximately 22 to 33.6 ns. Within the body of the protein, however, the rotational diffusion time for Trp214 exhibited a slight decrease from 191 to 182 ps and was accompanied by a decrease in the extent of the angular motion of Trp214, indicating a transition after oleate binding to a more spatially restricted but less viscous environment. PMID:10096914

  3. Pin1 promotes GR transactivation by enhancing recruitment to target genes.

    PubMed

    Poolman, Toryn M; Farrow, Stuart N; Matthews, Laura; Loudon, Andrew S; Ray, David W

    2013-10-01

    The glucocorticoid receptor (GR) is a ligand activated transcription factor, serving to regulate both energy metabolism and immune functions. Factors that influence cellular sensitivity to glucocorticoids (GC) are therefore of great interest. The N-terminal of the GR contains numerous potential proline-directed phosphorylation sites, some of which can regulate GR transactivation. Unrestricted proline isomerisation can be inhibited by adjacent serine phosphorylation and requires a prolyl isomerise, Pin1. Pin1 therefore determines the functional outcome of proline-directed kinases acting on the GR, as cis/trans isomers are distinct pools with different interacting proteins. We show that Pin1 mediates GR transactivation, but not GR trans-repression. Two N-terminal GR serines, S203 and S211, are targets for Pin1 potentiation of GR transactivation, establishing a direct link between Pin1 and the GR. We also demonstrate GC-activated co-recruitment of GR and Pin1 to the GILZ gene promoter. The Pin1 effect required both its WW and catalytic domains, and GR recruitment to its GRE was Pin1-dependent. Therefore, Pin1 is a selective regulator of GR transactivation, acting through N-terminal phospho-serine residues to regulate GR recruitment to its target sites in the genome. As Pin1 is dysregulated in disease states, this interaction may contribute to altered GC action in inflammatory conditions.

  4. ERK2 phosphorylation of EBNA1 serine 383 residue is important for EBNA1-dependent transactivation.

    PubMed

    Noh, Ka-Won; Park, Jihyun; Joo, Eun Hye; Lee, Eun Kyung; Choi, Eun Young; Kang, Myung-Soo

    2016-05-03

    Functional inhibition of Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) can cause the death of EBV infected cells. In this study, a bioinformatics tool predicted the existence of putative extracellular signal-regulated kinase (ERK) docking and substrate consensus sites on EBNA1, suggesting that ERK2 could bind to and phosphorylate EBNA1. In accordance, ERK2 was found to phosphorylate EBNA1 serine 383 in a reaction suppressed by H20 (a structural congener of the ERK inhibitor), U0126 (an inhibitor of MEK kinase), and mutations at substrate (S383A) or putative ERK docking sites. Wild-type (S383) and phosphomimetic (S383D) EBNA1 demonstrated comparable transactivation function, which was suppressed by H20 or U0126. In contrast, non-phosphorylated EBNA1 mutants displayed significantly impaired transactivation activity. ERK2 knock-down by siRNA, or treatment with U0126 or H20 repressed EBNA1-dependent transactivation.Collectively, these data indicate that blocking ERK2-directed phosphorylation can suppress EBNA1-transactivation function in latent EBV-infected cells, validating ERK2 as a drug target for EBV-associated disorders.

  5. ERK2 phosphorylation of EBNA1 serine 383 residue is important for EBNA1-dependent transactivation

    PubMed Central

    Lee, Eun Kyung; Choi, Eun Young; Kang, Myung-Soo

    2016-01-01

    Functional inhibition of Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) can cause the death of EBV infected cells. In this study, a bioinformatics tool predicted the existence of putative extracellular signal-regulated kinase (ERK) docking and substrate consensus sites on EBNA1, suggesting that ERK2 could bind to and phosphorylate EBNA1. In accordance, ERK2 was found to phosphorylate EBNA1 serine 383 in a reaction suppressed by H20 (a structural congener of the ERK inhibitor), U0126 (an inhibitor of MEK kinase), and mutations at substrate (S383A) or putative ERK docking sites. Wild-type (S383) and phosphomimetic (S383D) EBNA1 demonstrated comparable transactivation function, which was suppressed by H20 or U0126. In contrast, non-phosphorylated EBNA1 mutants displayed significantly impaired transactivation activity. ERK2 knock-down by siRNA, or treatment with U0126 or H20 repressed EBNA1-dependent transactivation. Collectively, these data indicate that blocking ERK2-directed phosphorylation can suppress EBNA1-transactivation function in latent EBV-infected cells, validating ERK2 as a drug target for EBV-associated disorders. PMID:27009860

  6. G-protein alpha-s and -12 subunits are involved in androgen-stimulated PI3K activation and androgen receptor transactivation in prostate cancer cells

    PubMed Central

    Liu, Jianjun; Youn, Hyewon; Yang, Jun; Du, Ningchao; Liu, Jihong; Liu, Hongwei; Li, Benyi

    2011-01-01

    BACKGROUND The androgen receptor (AR) is a ligand-dependent transcription factor that mediates androgenic hormone action in cells. We recently demonstrated the involvement of phosphoinositide 3-OH kinase (PI3K) p110beta in AR transactivation and gene expression. In this study, we determined the upstream signals that lead to PI3K/p110beta activation and AR transactivation after androgen stimulation. METHODS Human prostate cancer LAPC-4 and 22Rv1 cell lines were used for the experiments. AR transactivation was assessed using an androgen responsive element-driven luciferase (ARE-LUC) assay. Cell proliferation was examined using BrdU incorporation and MTT assays. Target genes were silenced using small interfering RNA (siRNA) approach. Gene expression was evaluated at the mRNA level (real-time RT-PCR) and protein level (Western blot). PI3K kinase activities were measured using immunoprecipitation-based in vitro kinase assay. The AR-DNA binding activity was determined using Chromatin-immunoprecipitation (ChIP) assay. RESULTS First, at the cellular plasma membrane, disrupting the integrity of caveolae microdomain with methyl-β- cyclodextrin (M-β-CD) abolished androgen-induced AR transactivation and gene expression. Then, knocking down caveolae structural proteins caveolin-1 or -2 with the gene-specific siRNAs significantly reduced androgen-induced AR transactivation. Next, silencing Gαs and Gα12 genes but not other G-proteins blocked androgen-induced AR transactivation and cell proliferation. Consistently, overexpression of Gαs or Gα12 active mutants enhanced androgen-induced AR transactivation, of which Gαs active mutant sensitized the AR to castration-level of androgen (R1881). Most interestingly, knocking down Gαs but not Gα12 subunit significantly suppressed androgen-stimulated PI3K p110beta activation. However, chromatin-immunoprecipitation (ChIP) analysis revealed that both Gαs or Gα12 subunits are involved in androgen-induced AR interaction with the AR

  7. ATP-Mediated Transactivation of the Epidermal Growth Factor Receptor in Airway Epithelial Cells Involves DUOX1-Dependent Oxidation of Src and ADAM17

    PubMed Central

    Sham, Derek; Wesley, Umadevi V.; Hristova, Milena; van der Vliet, Albert

    2013-01-01

    The respiratory epithelium is subject to continuous environmental stress and its responses to injury or infection are largely mediated by transactivation of the epidermal growth factor receptor (EGFR) and downstream signaling cascades. Based on previous studies indicating involvement of ATP-dependent activation of the NADPH oxidase homolog DUOX1 in epithelial wound responses, the present studies were performed to elucidate the mechanisms by which DUOX1-derived H2O2 participates in ATP-dependent redox signaling and EGFR transactivation. ATP-mediated EGFR transactivation in airway epithelial cells was found to involve purinergic P2Y2 receptor stimulation, and both ligand-dependent mechanisms as well as ligand-independent EGFR activation by the non-receptor tyrosine kinase Src. Activation of Src was also essential for ATP-dependent activation of the sheddase ADAM17, which is responsible for liberation and activation of EGFR ligands. Activation of P2Y2R results in recruitment of Src and DUOX1 into a signaling complex, and transient siRNA silencing or stable shRNA transfection established a critical role for DUOX1 in ATP-dependent activation of Src, ADAM17, EGFR, and downstream wound responses. Using thiol-specific biotin labeling strategies, we determined that ATP-dependent EGFR transactivation was associated with DUOX1-dependent oxidation of cysteine residues within Src as well as ADAM17. In aggregate, our findings demonstrate that DUOX1 plays a central role in overall epithelial defense responses to infection or injury, by mediating oxidative activation of Src and ADAM17 in response to ATP-dependent P2Y2R activation as a proximal step in EGFR transactivation and downstream signaling. PMID:23349873

  8. Constitutive activity and ligand-dependent activation of the nuclear receptor CAR-insights from molecular dynamics simulations.

    PubMed

    Windshügel, Björn; Poso, Antti

    2011-01-01

    The constitutive androstane receptor (CAR) possesses, unlike most other nuclear receptors, a pronounced basal activity in vitro whose structural basis is still not fully understood. Using comparative molecular dynamics simulations of CAR X-ray crystal structures, we evaluated the molecular basis for constitutive activity and ligand-dependent receptor activation. Our results suggest that a combination of van der Waals interactions and hydrogen bonds is required to maintain the activation helix in the active conformation also in absence of a ligand. Furthermore, we identified conformational rearrangements within the ligand-binding pocket upon agonist binding and an influence of CAR inducers pregnanedione and CITCO on the helical conformation of the activation helix. Based on the results a model for ligand-dependent CAR activation is suggested. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Differential regulation of cyclooxygenase-2 and inducible nitric oxide synthase by 4-hydroxynonenal in human osteoarthritic chondrocytes through ATF-2/CREB-1 transactivation and concomitant inhibition of NF-kappaB signaling cascade.

    PubMed

    Vaillancourt, France; Morquette, Barbara; Shi, Qin; Fahmi, Hassan; Lavigne, Patrick; Di Battista, John A; Fernandes, Julio C; Benderdour, Mohamed

    2007-04-01

    4-hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues and was recently identified as a potent catabolic factor in OA cartilage. In this study, we provide additional evidence that HNE acts as an inflammatory mediator by elucidating the signaling cascades targeted in OA chondrocytes leading to cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression. HNE induced COX-2 protein and mRNA levels with accompanying increases in prostaglandin E2 (PGE(2)) production. In contrast, HNE had no effect on basal iNOS expression or nitric oxide (NO) release. However, HNE strongly inhibited IL-1beta-induced iNOS or NO production. Transient transfection experiments revealed that the ATF/CRE site (-58/-53) is essential for HNE-induced COX-2 promoter activation and indeed HNE induced ATF-2 and CREB-1 phosphorylation as well as ATF/CRE binding activity. Overexpression of p38 MAPK enhanced the HNE-induced ATF/CRE luciferase reporter plasmid activation, COX-2 synthesis and promoter activity. HNE abrogated IL-1beta-induced iNOS expression and promoter activity mainly through NF-kappaB site (-5,817/-5,808) possibly via suppression of IKKalpha-induced IkappaBalpha phosphorylation and NF-kappaB/p65 nuclear translocation. Upon examination of upstream signaling components, we found that IKKalpha was inactivated through HNE/IKKalpha adduct formation. Taken together, these findings illustrate the central role played by HNE in the regulation of COX-2 and iNOS in OA. The aldehyde induced selectively COX-2 expression via ATF/CRE activation and inhibited iNOS via IKKalpha inactivation. c 2006 Wiley-Liss, Inc.

  10. Targeting the Sheddase Activity of ADAM17 by an Anti-ADAM17 Antibody D1(A12) Inhibits Head and Neck Squamous Cell Carcinoma Cell Proliferation and Motility via Blockage of Bradykinin Induced HERs Transactivation

    PubMed Central

    Huang, Yanchao; Benaich, Nathan; Tape, Christopher; Kwok, Hang Fai; Murphy, Gillian

    2014-01-01

    A disintegrin and metalloproteinase 17 (ADAM17) regulates key cellular processes including proliferation and migration through the shedding of a diverse array of substrates such as epidermal growth factor receptor (EGFR) ligands. ADAM17 is implicated in the pathogenesis of many diseases including rheumatoid arthritis and cancers such as head and neck squamous cell carcinoma (HNSCC). As a central mediator of cellular events, overexpressed EGFR is a validated molecular target in HNSCC. However, EGFR inhibition constantly leads to tumour resistance. One possible mechanism of resistance is the activation of alternative EGFR family receptors and downstream pathways via the release of their ligands. Here, we report that treating human HNSCC cells in vitro with a human anti-ADAM17 inhibitory antibody, D1(A12), suppresses proliferation and motility in the absence or presence of the EGFR tyrosine kinase inhibitor (TKI) gefitinib. Treatment with D1(A12) decreases both the endogenous and the bradykinin (BK)-stimulated shedding of HER ligands, accompanied by a reduction in the phosphorylation of HER receptors and downstream signalling pathways including STAT3, AKT and ERK. Knockdown of ADAM17, but not ADAM10, also suppresses HNSCC cell proliferation and migration. Furthermore, we show that heregulin (HRG) and heparin-binding epidermal growth factor like growth factor (HB-EGF) predominantly participate in proliferation and migration, respectively. Taken together, these results demonstrate that D1(A12)-mediated inhibition of cell proliferation, motility, phosphorylation of HER receptors and downstream signalling is achieved via reduced shedding of ADAM17 ligands. These findings underscore the importance of ADAM17 and suggest that D1(A12) might be an effective targeted agent for treating EGFR TKI-resistant HNSCC. PMID:25013379

  11. Crosstalk between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and the vitamin D receptor (VDR) in human breast cancer cells: PPAR{gamma} binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} mediated transactivation

    SciTech Connect

    Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang; Mehta, Rajeshwari R.; Knethen, Andreas von; Choubey, Divaker; Mehta, Rajendra G.

    2012-11-15

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ER{alpha}) physically binds to peroxisome proliferator-activated receptor gamma (PPAR{gamma}) and inhibits its transcriptional activity. The interaction between PPAR{gamma} and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPAR{gamma} and VDR signaling, and for the first time we show that PPAR{gamma} physically associates with VDR in human breast cancer cells. We found that overexpression of PPAR{gamma} decreased 1{alpha},25-dihydroxyvitamin D{sub 3} (1,25D{sub 3}) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPAR{gamma}'s hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPAR{gamma}'s AF2 domain attenuated its repressive action on 1,25D{sub 3} transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPAR{gamma} was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXR{alpha}). Overexpression of RXR{alpha} blocked PPAR{gamma}'s suppressive effect on 1,25D{sub 3} action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPAR{gamma} and VDR pathways. -- Highlights: PPAR{gamma}'s role on 1{alpha},25-dihydroxyvitamin D{sub 3} transcriptional activity is examined. Black-Right-Pointing-Pointer PPAR{gamma} physically binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} action. Black-Right-Pointing-Pointer PPAR{gamma}'s hinge and ligand binding domains are important for this inhibitory effect. Black-Right-Pointing-Pointer PPAR{gamma} competes with VDR for the availability of their binding partner, RXR{alpha}.

  12. ATF2 impairs glucocorticoid receptor–mediated transactivation in human CD8+ T cells

    PubMed Central

    Li, Ling-bo; Leung, Donald Y. M.; Strand, Matthew J.

    2007-01-01

    Chronic inflammatory diseases often have residual CD8+ T-cell infiltration despite treatment with systemic corticosteroids, which suggests divergent steroid responses between CD4+ and CD8+ cells. To examine steroid sensitivity, dexamethasone (DEX)–induced histone H4 lysine 5 (K5) acetylation and glucocorticoid receptor α (GCRα) translocation were evaluated. DEX treatment for 6 hours significantly induced histone H4 K5 acetylation in normal CD4+ cells (P = .001) but not in CD8+ cells. DEX responses were functionally impaired in CD8+ compared with CD4+ cells when using mitogen-activated protein kinase phosphatase (1 hour; P = .02) and interleukin 10 mRNA (24 hours; P = .004) induction as a readout of steroid-induced transactivation. Normal DEX-induced GCRα nuclear translocation and no significant difference in GCRα and GCRβ mRNA expression were observed in both T-cell types. In addition, no significant difference in SRC-1, p300, or TIP60 expression was found. However, activating transcription factor-2 (ATF2) expression was significantly lower in CD8+ compared with CD4+ cells (P = .009). Importantly, inhibition of ATF2 expression by small interfering RNA in CD4+ cells resulted in inhibition of DEX-induced transactivation in CD4+ cells. The data indicate refractory steroid-induced transactivation but similar steroid-induced transrepression of CD8+ cells compared with CD4+ cells caused by decreased levels of the histone acetyltransferase ATF2. PMID:17525285

  13. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    PubMed Central

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; De Marinis, Marta; Tafuri, Domenico; Cinelli, Mariapia; Ammendola, Rosario

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we

  14. Biofunction-assisted aptasensors based on ligand-dependent 3' processing of a suppressor tRNA in a wheat germ extract.

    PubMed

    Ogawa, Atsushi; Tabuchi, Junichiro

    2015-06-28

    We have developed a novel type of biofunction-assisted aptasensor that harnesses ligand-dependent 3' processing of a premature amber suppressor tRNA and the subsequent amber suppression of a reporter gene in a wheat germ extract.

  15. Correction: Biofunction-assisted aptasensors based on ligand-dependent 3' processing of a suppressor tRNA in a wheat germ extract.

    PubMed

    Ogawa, Atsushi; Tabuchi, Junichiro

    2015-08-14

    Correction for 'Biofunction-assisted aptasensors based on ligand-dependent 3' processing of a suppressor tRNA in a wheat germ extract' by Atsushi Ogawa et al., Org. Biomol. Chem., 2015, 13, 6681-6685.

  16. Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors.

    PubMed

    Ogawa, Atsushi

    2011-03-01

    Riboswitches are RNA elements in mRNA that control gene expression in cis in response to their specific ligands. Because artificial riboswitches make it possible to regulate any gene with an arbitrary molecule, they are expected to function as biosensors, in which the output is easily detectable protein expression. I report herein a fully rational design strategy for artificially constructing novel riboswitches that work in a eukaryotic cell-free translation system (wheat germ extract). In these riboswitches, translation mediated by an internal ribosome entry site (IRES) is promoted only in the presence of a specific ligand (ON), while it is inhibited in the absence of the ligand (OFF). The first rationally designed riboswitch, which is regulated by theophylline, showed a high switching efficiency and dependency on theophylline. In addition, based on the design of the theophylline-dependent riboswitch, other three kinds of riboswitches controlled by FMN, tetracycline, and sulforhodamine B, were constructed only by calculating the ΔG value of one stem-loop structure. The rational design strategy described herein is therefore useful for easily producing various ligand-dependent riboswitches, which are available as biosensors for detecting their ligands.

  17. Bradykinin-mediated cell proliferation depends on transactivation of EGF receptor in corneal fibroblasts.

    PubMed

    Cheng, Ching-Yi; Tseng, Hui-Ching; Yang, Chuen-Mao

    2012-04-01

    In previous studies, bradykinin (BK) has been shown to induce cell proliferation through BK B2 receptor (B2R) via p42/p44 MAPK in Statens Seruminstitut Rabbit Corneal Cells (SIRCs). In addition to this pathway, EGFR transactivation pathway has been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we further investigate whether these transactivation mechanisms participating in BK-induced cell proliferation in SIRCs. Using an immunofluorescence staining and RT-PCR, we initially characterize that SIRCs were corneal fibroblasts and predominantly expressed B2R by BK. Inhibition of p42/p44 MAPK by the inhibitors of Src, EGFR, and Akt or transfection with respective siRNAs prevents BK-induced DNA synthesis in SIRCs. The mechanisms underlying these responses were mediated through phosphorylation of Src and EGFR via the formation of Src/EGFR complex which was attenuated by PP1 and AG1478. Moreover, BK-induced p42/p44 MAPK and Akt activation was mediated through EGFR transactivation, which was diminished by the inhibitors of MMP-2/9 and heparin-binding EGF-like factor (HB-EGF). Finally, increased nuclear translocation of Akt and p42/p44 MAPK turns on early gene expression leading to cell proliferation. These results suggest that BK-induced cell proliferation is mediated through c-Src-dependent transactivation of EGFR via MMP2/9-dependent pro-HB-EGF shedding linking to activation of Akt and p42/p44 MAPK in corneal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  18. Functional differences between the Oct2 transactivation domains determine the transactivation potential of individual Oct2 isoforms.

    PubMed Central

    Annweiler, A; Zwilling, S; Wirth, T

    1994-01-01

    The lymphocyte specific transcription factor Oct2 is involved in mediating the B-cell specific transcriptional activity of the octamer motif. Mutational analyses in the context of the complete Oct2 protein had indicated that Oct2 contains two transactivation domains. These two domains appeared to be redundant for activation from a promoter proximal position, whereas stimulation from a remote enhancer position specifically required the C-terminal transactivation domain and an additional B-cell restricted activity. We have generated fusion proteins between the DNA binding domain of the yeast Gal4 transcription factor and individual Oct2 protein domains to analyze their transactivation potential separately. We show that both N- and C-terminal domains can stimulate transcription from a promoter proximal position independently. However, only the C-terminal transactivation domain activates from a distance and it can only do so in B-cells. The C-terminal transactivation domain represents a composite transactivation domain. Whereas removal of just 9 aminoacids from the extreme C-terminus lead to a complete inactivation of this domain deletions from the other side resulted in a gradual loss of activity. We also characterized the transactivation potential of different N-terminal regions of Oct2 generated by alternative splicing. We show that the N-terminus of one of the isoforms, Oct2.3, contains a negative regulatory domain (NRD), which can inactivate the neighbouring glutamine-rich transactivation in cis. The presence of this NRD affects the overall phosphorylation state of the Oct2 protein. This result suggests that the mechanism of inactivation might involve differential protein phosphorylation. Images PMID:7937153

  19. Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis.

    PubMed

    Sayan, Berna S; Sayan, A Emre; Yang, Ai Li; Aqeilan, Rami I; Candi, Eleonora; Cohen, Gerald M; Knight, Richard A; Croce, Carlo M; Melino, Gerry

    2007-06-26

    p63 is a p53-related transcription factor. Utilization of two different promoters and alternative splicing at the C terminus lead to generation of six isoforms. The alpha isoforms of TAp63 and DeltaNp63 contain a transactivation-inhibitory (TI) domain at the C termini, which can bind to the transactivation (TA) domain and inhibit its transcriptional activity. Consequently, TAp63alpha can directly inhibit its activity through an intramolecular interaction; similarly, DeltaNp63alpha can inhibit the activity of the active TAp63 isoforms through an intermolecular interaction. In this work, we demonstrate that after induction of apoptosis, the TI domain of the p63alpha isoforms is cleaved by activated caspases. Cleavage of DeltaNp63alpha relieves its inhibitory effect on the transcriptionally active p63 proteins, and the cleavage of TAp63alpha results in production of a TAp63 protein with enhanced transcriptional activity. In agreement with these data, generation of the N-terminal TAp63 fragment has a role in apoptosis because stable cell lines expressing wild-type TAp63 are more sensitive to apoptosis compared with cells expressing the noncleavable mutant. We also used a model system in which TAp63 expression was induced by trichostatin-A treatment in HCT116 cells. Trichostatin-A sensitized these cells to apoptosis, and this sensitization was associated with cleavage of up-regulated p63.

  20. Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation.

    PubMed

    Wang, Chenguang; Pattabiraman, Nagarajan; Zhou, Jian Nian; Fu, Maofu; Sakamaki, Toshiyuki; Albanese, Chris; Li, Zhiping; Wu, Kongming; Hulit, James; Neumeister, Peter; Novikoff, Phyllis M; Brownlee, Michael; Scherer, Philipp E; Jones, Joan G; Whitney, Kathleen D; Donehower, Lawrence A; Harris, Emily L; Rohan, Thomas; Johns, David C; Pestell, Richard G

    2003-09-01

    The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPAR gamma induces hepatic steatosis, and liganded PPAR gamma promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPAR gamma function, transactivation, expression, and promoter activity. PPAR gamma transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPAR gamma ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPAR gamma-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1(-/-) fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPAR gamma ligands of PPAR gamma and PPAR gamma-responsive genes, and cyclin D1(-/-) mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPAR gamma in vivo. The inhibition of PPAR gamma function by cyclin D1 is a new mechanism of signal transduction cross talk between PPAR gamma ligands and mitogenic signals that induce cyclin D1.

  1. Glycogen Synthase Kinase-3β Is Involved in Ligand-Dependent Activation of Transcription and Cellular Localization of the Glucocorticoid Receptor

    PubMed Central

    Rubio-Patiño, Camila; Palmeri, Claudia M.; Pérez-Perarnau, Alba; Cosialls, Ana M.; Moncunill-Massaguer, Cristina; González-Gironès, Diana M.; Pons-Hernández, Lluís; López, José M.; Ventura, Francesc; Gil, Joan; Iglesias-Serret, Daniel

    2012-01-01

    Glucocorticoids (GC) induce cell cycle arrest and apoptosis in different cell types and therefore are widely used to treat a variety of diseases including autoimmune disorders and cancer. This effect is mediated by the GC receptor (GR), a ligand-activated transcription factor that translocates into the nucleus where it modulates transcription of target genes in a promoter-specific manner. Glycogen synthase kinase-3 (GSK3) regulates GR response by genomic and nongenomic mechanisms, although the specific role of each isoform is not well defined. We used GSK3 pharmacological inhibitors and isoform-specific small interfering RNA to evaluate the role of GSK3 in the genomic regulation induced by GC. GSK3 inhibition resulted in the reduction of GC-induced mRNA expression of GC-induced genes such as BIM, HIAP1, and GILZ. Knockdown of GSK3β but not GSK3α reduced endogenous GILZ induction in response to dexamethasone and GR-dependent reporter gene activity. Chromatin immunoprecipitation experiments revealed that GSK3 inhibition impaired the dexamethasone-mediated binding of GR and RNA polymerase II to endogenous GILZ promoter. These results indicate that GSK3β is important for GR transactivation activity and that GSK3β inhibition suppresses GC-stimulated gene expression. Furthermore, we show that genomic regulation by the GR is independent of known GSK3β phosphorylation sites. We propose that GC-dependent transcriptional activation requires functional GSK3β signaling and that altered GSK3β activity influences cell response to GC. PMID:22771494

  2. Localization of the c-ets-2 transactivation domain.

    PubMed Central

    Chumakov, A M; Chen, D L; Chumakova, E A; Koeffler, H P

    1993-01-01

    The human ets-2 proto-oncogene is one of the homologs of the v-ets gene, found in avian acutely transforming retrovirus E26 (D. Leprince, A. Gegonne, J. Call, C. de Taisne, A. Schneeberger, C. Lagrou, and D. Stehelin, Nature [London] 306:395-397, 1983; M. F. Nunn, P. H. Seeburg, C. Moscovici, and P. H. Duesberg, Nature [London] 306:391-395, 1983), which causes leukemia in chickens. We used the DNA-binding domain of yeast transcriptional activator GAL4 to locate the transactivation region of human ets-2. The transactivation domain of ets-2 was found in the N-terminal part of the protein, which is homologous to ets-1, and can be disrupted by deletion of a stretch of acidic amino acid residues. A transactivation-deficient mutant of ets-2 failed to transform Rat-1 cells and suppressed the transforming activity of coexpressed wild-type ets-2. A mutation in the putative DNA-binding region of ets-2 abolished transforming activity. We show that the motif crucial for ets-2 transactivation capability is necessary for transforming activity in Rat-1 cells. Mutant ets-2 protein that lacks the transactivation domain has a dominant negative effect on transformation by wild-type ets-2. We were unable to detect ets-2-dependent transcriptional regulation of several enhancers containing ets-binding motifs. Images PMID:8445738

  3. Proximal human FOXP3 promoter transactivated by NF-kappaB and negatively controlled by feedback loop and SP3.

    PubMed

    Eckerstorfer, Paul; Novy, Michael; Burgstaller-Muehlbacher, Sebastian; Paster, Wolfgang; Schiller, Herbert B; Mayer, Herbert; Stockinger, Hannes

    2010-07-01

    Forkhead box protein 3 (Foxp3) is indispensable for the development of CD4(+)CD25(+) regulatory T cells (Tregs). Here we analyzed three prominent evolutionary conserved regions (ECRs) upstream of the transcription start site of the human FOXP3 gene. We show that ECR2 and ECR3 fragments derived from positions -1.3 to -2.0 kb and -5.0 to -6.0 kb, respectively, display basal transcriptional activity. Reporter constructs derived from ECR1, located between -0.6 and +0.23 kb and thus the most proximal ECR in respect of transcription initiation, remained almost inactive. However, ECR1 was transactivated by the NF-kappaB subunit p65 in HEK 293 cells. In Jurkat and primary T cells, in addition to p65, a second stimulus delivered by either T-cell receptor stimulation or addition of PMA was needed. Co-expression of I kappaB alpha inhibited p65-mediated FOXP3 proximal promoter transactivation, and the NF-kappaB inhibitor curcumin reduced Foxp3 neoexpression in IL-2/CD3/CD28/TGF-beta stimulated PBMCs. Moreover, proximal FOXP3 promoter transactivation was inhibited by Foxp3 and the SP transcription factor family member SP3. Thus, the human proximal FOXP3 promoter is controlled by activation through the TCR involving PKC and the NF-kappaB subunit p65 and by inhibition through a negative feedback loop and SP3. (c) 2010 Elsevier Ltd. All rights reserved.

  4. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    SciTech Connect

    Ebi, Masahide; Kataoka, Hiromi; Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi; Higashiyama, Shigeki; Joh, Takashi

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  5. p38αMAPK interacts with and inhibits RARα: suppression of the kinase enhances the therapeutic activity of retinoids in acute myeloid leukemia cells.

    PubMed

    Gianni, M; Peviani, M; Bruck, N; Rambaldi, A; Borleri, G; Terao, M; Kurosaki, M; Paroni, G; Rochette-Egly, C; Garattini, E

    2012-08-01

    All-trans retinoic acid (ATRA) is the only clinically useful differentiating agent, being used in the treatment of acute promyelocytic leukemia (APL). The use of ATRA in other types of acute myelogenous leukemia (AML) calls for the identification of novel strategies aimed at increasing its therapeutic activity. Here, we provide evidence that pharmacological inhibition of the mitogen-activated protein kinase, p38α, or silencing of the corresponding gene sensitizes APL and AML cell lines, as well as primary cultures of AML blasts to the anti-proliferative and cyto-differentiating activity of ATRA and synthetic retinoids. P38α inhibits ligand-dependent transactivation of the nuclear retinoic acid receptor, RARα, and the derived chimeric protein expressed in the majority of APL cases, PML-RARα. Inhibition is the consequence of ligand-independent binding of p38α, which results in stabilization of RARα and PML-RARα via blockade of their constitutive degradation by the proteasome. The inhibitory effect requires a catalytically active p38α and direct physical interaction with RARα and PML-RARα. Ser-369 in the E-region of RARα is essential for the binding of p38α and the ensuing functional effects on the activity of the receptor.

  6. Antisense regulation of expression and transactivation functions of the tumorigenic HBx and c-myc genes.

    PubMed

    Hung, Le; Kumar, Vijay

    2006-05-26

    Earlier we have shown that the X-myc transgenic mice develop hepatocellular carcinoma (HCC) due to co-expression of c-Myc and HBx protein of hepatitis B virus [R. Lakhtakia, V. Kumar, H. Reddi, M. Mathur, S. Dattagupta, S.K. Panda, Hepatocellular carcinoma in a hepatitis B 'x' transgenic mouse model: a sequential pathological evaluation. J. Gastroenterol. Hepatol. 18 (2003) 80-91]. With the aim to develop therapeutic strategies for HCC, we constructed several mono- and bicistronic antisense recombinants against HBx and c-myc genes to regulate their expression as well as transactivation function in a human hepatoma cell line. A dose-dependent inhibition in the expression levels of HBx and c-Myc was observed with monocistronic constructs. Likewise, the bicistronic recombinants also blocked the expression as well as transactivation functions of cognate genes with equal efficacy. Further, expression of the constituent genes from the X-myc transgene could also be inhibited by these antisense constructs in cell culture. Thus, our study points towards clinical implications of antisense regulation of tumor-promoting genes in the management of HCC.

  7. Suppression of estrogen receptor-alpha transactivation by thyroid transcription factor-2 in breast cancer cells

    SciTech Connect

    Park, Eunsook; Gong, Eun-Yeung; Romanelli, Maria Grazia; Lee, Keesook

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer TTF-2 was expressed in mammary glands and breast cancer cells. Black-Right-Pointing-Pointer TTF-2 repressed ER{alpha} transactivation. Black-Right-Pointing-Pointer TTF-2 inhibited the proliferation of breast cancer cells. -- Abstract: Estrogen receptors (ERs), which mediate estrogen actions, regulate cell growth and differentiation of a variety of normal tissues and hormone-responsive tumors through interaction with cellular factors. In this study, we show that thyroid transcription factor-2 (TTF-2) is expressed in mammary gland and acts as ER{alpha} co-repressor. TTF-2 inhibited ER{alpha} transactivation in a dose-dependent manner in MCF-7 breast cancer cells. In addition, TTF-2 directly bound to and formed a complex with ER{alpha}, colocalizing with ER{alpha} in the nucleus. In MCF-7/TTF-2 stable cell lines, TTF-2 repressed the expression of endogenous ER{alpha} target genes such as pS2 and cyclin D1 by interrupting ER{alpha} binding to target promoters and also significantly decreased cell proliferation. Taken together, these data suggest that TTF-2 may modulate the function of ER{alpha} as a corepressor and play a role in ER-dependent proliferation of mammary cells.

  8. EGFR trans-activation mediates pleiotrophin-induced activation of Akt and Erk in cultured osteoblasts.

    PubMed

    Fan, Jian-Bo; Liu, Wei; Yuan, Kun; Zhu, Xin-Hui; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming

    2014-05-09

    Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts' functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. MCRS2 represses the transactivation activities of Nrf1

    PubMed Central

    Wu, Jia-Long; Lin, Young-Sun; Yang, Chi-Chiang; Lin, Yu-Jen; Wu, Shan-Fu; Lin, Ying-Ting; Huang, Chien-Fu

    2009-01-01

    Background Nrf1 [p45 nuclear factor-erythroid 2 (p45 NF-E2)-related factor 1], a member of the CNC-bZIP (CNC basic region leucine zipper) family, is known to be a transcriptional activator by dimerization with distinct partners, such as Maf, FosB, c-Jun, JunD, etc. The transcriptional roles of CNC-bZIP family are demonstrated to be involved in globin gene expression as well as the antioxidant response. For example, CNC-bZIP factors can regulate the expression of detoxification proteins through AREs, such as expression of human gamma-glutamylcysteine synthetases (GCS), glutathione S-transferases (GST), UDP-glucuronosyl transferase (UDP-GT), NADP (H) quinone oxidoreductase (NQOs), etc. To further explore other factor(s) in cells related to the function of Nrf1, we performed a yeast two-hybrid screening assay to identify any Nrf1-interacting proteins. In this study, we isolated a cDNA encoding residues 126–475 of MCRS2 from the HeLa cell cDNA library. Some functions of MCRS1 and its splice variant-MSP58 and MCRS2 have been previously identified, such as transforming, nucleolar sequestration, ribosomal gene regulation, telomerase inhibition activities, etc. Here, we demonstrated MCRS2 can function as a repressor on the Nrf1-mediated transactivation using both in vitro and in vivo systems. Results To find other proteins interacting with the CNC bZIP domain of Nrf1, the CNC-bZIP region of Nrf1 was used as a bait in a yeast two-hybrid screening assay. MCRS2, a splicing variant of p78/MCRS1, was isolated as the Nrf1-interacting partner from the screenings. The interaction between Nrf1 and MCRS2 was confirmed in vitro by GST pull-down assays and in vivo by co-immunoprecipitation. Further, the Nrf1-MCRS2 interaction domains were mapped to the residues 354–447 of Nrf1 as well as the residues 314–475 of MCRS2 respectively, by yeast two-hybrid and GST pull-down assays. By immunofluorescence, MCRS2-FLAG was shown to colocalize with HA-Nrf1 in the nucleus and didn't result

  10. Gli2 protein expression level is a feasible marker of ligand-dependent hedgehog activation in pancreatic neoplasms.

    PubMed

    Sugiyama, Y; Sasajima, J; Mizukami, Y; Koizumi, K; Kawamoto, T; Ono, Y; Karasaki, H; Tanabe, H; Fujiya, M; Kohgo, Y

    2016-06-01

    The hedgehog pathway is known to promote proliferation of pancreatic ductal adenocarcinoma (PDA) and has been shown to restrain tumor progression. To understand how hedgehog causes these effects, we sought to carefully examine protein expression of hedgehog signaling components during different tumor stages. Genetically engineered mice, Pdx1-Cre;LSL-KrasG12D and Pdx1-Cre;LSL-KrasG12D;p53lox/+, were utilized to model distinct phases of tumorigenesis, pancreatic intraepithelial neoplasm (PanIN) and PDA. Human pancreatic specimens of intraductal papillary mucinous neoplasm (IPMN) and PDA were also employed. PanIN and IPMN lesions highly express Sonic Hedgehog, at a level that is slightly higher than that observed in PDA. GLI2 protein is also expressed in both PanIN/IPMN and PDA. Although there was no difference in the nuclear staining, the cytoplasmic GLI2 level in PDA was modest in comparison to that in PanIN/IPMN. Hedgehog interacting protein was strongly expressed in the precursors, whereas the level in PDA was significantly attenuated. There were no differences in expression of Patched1 at early and late stages. Finally, a strong correlation between Sonic Hedgehog and GLI2 staining was found in both human and murine pancreatic tumors. The results indicate that the GLI2 protein level could serve as a feasible marker of ligand-dependent hedgehog activation in pancreatic neoplasms.

  11. The strength and cooperativity of KIT ectodomain contacts determine normal ligand-dependent stimulation or oncogenic activation in cancer.

    PubMed

    Reshetnyak, Andrey V; Opatowsky, Yarden; Boggon, Titus J; Folta-Stogniew, Ewa; Tome, Francisco; Lax, Irit; Schlessinger, Joseph

    2015-01-08

    The receptor tyrosine kinase KIT plays an important role in development of germ cells, hematopoietic cells, and interstitial pacemaker cells. Oncogenic KIT mutations play an important "driver" role in gastrointestinal stromal tumors, acute myeloid leukemias, and melanoma, among other cancers. Here we describe the crystal structure of a recurring somatic oncogenic mutation located in the C-terminal Ig-like domain (D5) of the ectodomain, rendering KIT tyrosine kinase activity constitutively activated. The structural analysis, together with biochemical and biophysical experiments and detailed analyses of the activities of a variety of oncogenic KIT mutations, reveals that the strength of homotypic contacts and the cooperativity in the action of D4D5 regions determines whether KIT is normally regulated or constitutively activated in cancers. We propose that cooperative interactions mediated by multiple weak homotypic contacts between receptor molecules are responsible for regulating normal ligand-dependent or oncogenic RTK activation via a "zipper-like" mechanism for receptor activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Anti-inflammatory and PPAR transactivational properties of flavonoids from the roots of Sophora flavescens.

    PubMed

    Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Minh, Chau Van; Kiem, Phan Van; Tai, Bui Huu; Nhiem, Nguyen Xuan; Thao, Nguyen Phuong; Luyen, Bui Thi Thuy; Yang, Seo Young; Kim, Young Ho

    2013-09-01

    Anti-inflammatory and peroxisome proliferator-activated receptors (PPARs) transactivational effects of nine compounds (1 - 9) from the roots of Sophora flavescens were evaluated using NF-κB-luciferase, reverse transcriptase polymerase chain reaction, peroxisome proliferator response element (PPRE)-luciferase, and GAL-4-PPAR chimera assays. Compounds 4 and 8 significantly inhibited TNFα-induced NF-κB transcriptional activity in HepG2 cells in a dose-dependent manner, with IC₅₀ values of 4.0 and 4.4 μM, respectively. Furthermore, the transcriptional inhibitory function of these compounds was confirmed by a decrease in cyclooxgenase 2 and inducible nitric oxide synthase gene expression levels in HepG2 cells. Compounds 1, 3, 5, 6, 8, and 9 significantly activated the transcription of PPARs in a dose-dependent manner, with EC₅₀ values ranging from 1.1 to 13.0 μM. Compounds 1, 3, 5, 6, 8, and 9 exhibited dose-dependent PPARα transactivational activity, with EC₅₀ values in a range of 0.9 - 16.0 μM. Compounds 1, 3, 8, and 9 also significantly upregulated PPARγ activity in a dose-dependent manner, with EC₅₀ values of 10.5, 6.6, 15.7, and 1.6 μM, whereas compounds 1, 8, and 9 demonstrated transactivational PPARβ(δ) effects with EC₅₀ values of 11.4, 10.3, and 1.5 μM, respectively. These results provide a scientific rationale for the use of the roots of S. flavescens and warrant further studies to develop new agents for the prevention and treatment of inflammatory and metabolic diseases.

  13. Nine-amino-acid transactivation domain: establishment and prediction utilities.

    PubMed

    Piskacek, Simona; Gregor, Martin; Nemethova, Maria; Grabner, Martin; Kovarik, Pavel; Piskacek, Martin

    2007-06-01

    Here we describe the establishment and prediction utilities for a novel nine-amino-acid transactivation domain, 9aa TAD, that is common to the transactivation domains of a large number of yeast and animal transcription factors. We show that the 9aa TAD motif is required for the function of the transactivation domain of Gal4 and the related transcription factors Oaf1 and Pip2. The 9aa TAD possesses an autonomous transactivation activity in yeast and mammalian cells. Using sequence alignment and experimental data we derived a pattern that can be used for 9aa TAD prediction. The pattern allows the identification of 9aa TAD in other Gal4 family members or unrelated yeast, animal, and viral transcription factors. Thus, the 9aa TAD represents the smallest known denominator for a broad range of transcription factors. The wide occurrence of the 9aa TAD suggests that this domain mediates conserved interactions with general transcriptional cofactors. A computational search for the 9aa TAD is available online from National EMBnet-Node Austria at http://www.at.embnet.org/toolbox/9aatad/.

  14. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype

    PubMed Central

    Zheng, Feimeng; Yue, Caifeng; Li, Guohui; He, Bin; Cheng, Wei; Wang, Xi; Yan, Min; Long, Zijie; Qiu, Wanshou; Yuan, Zhongyu; Xu, Jie; Liu, Bing; Shi, Qian; Lam, Eric W.-F.; Hung, Mien-Chie; Liu, Quentin

    2016-01-01

    Centrosome-localized mitotic Aurora kinase A (AURKA) facilitates G2/M events. Here we show that AURKA translocates to the nucleus and causes distinct oncogenic properties in malignant cells by enhancing breast cancer stem cell (BCSC) phenotype. Unexpectedly, this function is independent of its kinase activity. Instead, AURKA preferentially interacts with heterogeneous nuclear ribonucleoprotein K (hnRNP K) in the nucleus and acts as a transcription factor in a complex that induces a shift in MYC promoter usage and activates the MYC promoter. Blocking AURKA nuclear localization inhibits this newly discovered transactivating function of AURKA, sensitizing resistant BCSC to kinase inhibition. These findings identify a previously unknown oncogenic property of the spatially deregulated AURKA in tumorigenesis and provide a potential therapeutic opportunity to overcome kinase inhibitor resistance. PMID:26782714

  15. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor.

    PubMed

    Di Florio, Alessia; Sancho, Veronica; Moreno, Paola; Delle Fave, Gianfranco; Jensen, Robert T

    2013-03-01

    Foregut neuroendocrine tumors [NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor (EGFR) by growth factors, gastrointestinal (GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid,BON, the somatostatinoma QGP-1 and the rat islet tumor,Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr(1068) EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs.

  16. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor

    PubMed Central

    Di Florio, Alessia; Sancho, Veronica; Moreno, Paola; Fave, Gianfranco Delle; Jensen, Robert T.

    2012-01-01

    Foregut Neuroendocrine Tumors[NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor(EGFR) by growth factors, gastrointestinal(GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid, BON, the somatostatinoma QGP-1 and the rat islet tumor, Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr1068 EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs. PMID:23220008

  17. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    PubMed

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  18. Ligand-Dependent Disorder of Loop Observed in Extended-Spectrum SHV-Type beta-Lactamase

    SciTech Connect

    J Sampson; W Ke; C Bethel; S Pagadala; M Nottingham; R Bonomo; J Buynak; F van den Akker

    2011-12-31

    Among Gram-negative bacteria, resistance to {beta}-lactams is mediated primarily by {beta}-lactamases (EC 3.2.6.5), periplasmic enzymes that inactivate {beta}-lactam antibiotics. Substitutions at critical amino acid positions in the class A {beta}-lactamase families result in enzymes that can hydrolyze extended-spectrum cephalosporins, thus demonstrating an 'extended-spectrum' {beta}-lactamase (ESBL) phenotype. Using SHV ESBLs with substitutions in the {Omega} loop (R164H and R164S) as target enzymes to understand this enhanced biochemical capability and to serve as a basis for novel {beta}-lactamase inhibitor development, we determined the spectra of activity and crystal structures of these variants. We also studied the inactivation of the R164H and R164S mutants with tazobactam and SA2-13, a unique {beta}-lactamase inhibitor that undergoes a distinctive reaction chemistry in the active site. We noted that the reduced K{sub i} values for the R164H and R164S mutants with SA2-13 are comparable to those with tazobactam (submicromolar). The apo enzyme crystal structures of the R164H and R164S SHV variants revealed an ordered {Omega} loop architecture that became disordered when SA2-13 was bound. Important structural alterations that result from the binding of SA2-13 explain the enhanced susceptibility of these ESBL enzymes to this inhibitor and highlight ligand-dependent {Omega} loop flexibility as a mechanism for accommodating and hydrolyzing {beta}-lactam substrates.

  19. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2.

    PubMed

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V; Khelashvili, George; Weinstein, Harel

    2014-11-12

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT(2A)R) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT(2A)R is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT(2A)R agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT(2A)R interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. The findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT(2A)R activation.

  20. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2

    DOE PAGES

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.; ...

    2014-10-14

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT2AR) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT2ARmore » is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT2AR activation.« less

  1. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2

    SciTech Connect

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.; Khelashvili, George; Weinstein, Harel

    2014-10-14

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT2AR) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT2AR activation.

  2. Tyrosine kinase receptor transactivation associated to G protein-coupled receptors.

    PubMed

    Almendro, Vanessa; García-Recio, Susana; Gascón, Pedro

    2010-09-01

    G protein-coupled receptors (GPCRs) comprise a large family of membrane receptors involved in signal transduction. These receptors are linked to a variety of physiological and biological processes such as regulation of neurotransmission, growth, cell differentiation and oncogenesis among others. Some of the effects of GPCRs are known to be mediated by the activation of MAPK pathways. Several GPCRs are also able to transactivate receptors with tyrosine kinase activity (TKR) such as EGFR and HER2 and thus to control DNA synthesis and cell proliferation. The interaction between these receptors not only plays an important physiological role but its disregulation can induce pathological states such as cancer. For this reason, the crosstalk between these two types of receptors can be considered a possible mechanism for cell transformation, tumor progression, reactivation of the metastatic disease, and the acquisition of resistance to therapies targeting TKR receptors. The transactivation of some TKRs by GPCRs is related to the lost of response of TKRs to inhibitors of TK activity, mainly by the activation of the c-Src protein which can directly phosphorylate and activate the cytoplasmic domain of a TKR. For these reason, the dual inhibition of GPCRs and TKRs in some types of cancer has been proposed as a better strategy to kill tumor cells. Increased understanding of the mechanisms that interconnect the two pathways regulated by GPCRs and TKRs may facilitate the design of new therapeutic strategies.

  3. Functional interaction between the HIV transactivator Tat and the transcriptional coactivator PC4 in T cells.

    PubMed

    Holloway, A F; Occhiodoro, F; Mittler, G; Meisterernst, M; Shannon, M F

    2000-07-14

    The human immunodeficiency virus (HIV) transactivator Tat is a potent activator of transcription from the HIV long terminal repeat and is essential for efficient viral gene expression and replication. Tat has been shown to interact with components of the basal transcription machinery and transcriptional activators. Here we identify the cellular coactivator PC4 as a Tat-interacting protein using the yeast two-hybrid system and confirmed this interaction both in vitro and in vivo by coimmunoprecipitation. We found that this interaction has a functional outcome in that PC4 overexpression enhanced activation of the HIV long terminal repeat in transient transfection studies in a Tat-dependent manner. The domains of PC4 and Tat required for the interaction were mapped. In vitro binding studies showed that the basic transactivation-responsive binding domain of Tat is required for the interaction with PC4. The minimum region of PC4 required for Tat binding was amino acids 22-91, whereas mutation of the lysine-rich domain between amino acids 22 and 43 prevented interaction with Tat. Tat-PC4 interactions may be controlled by phosphorylation, because phosphorylation of PC4 by casein kinase II inhibited interactions with Tat both in vivo and in vitro. We propose that PC4 may be involved in linking Tat to the basal transcription machinery.

  4. Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity

    NASA Astrophysics Data System (ADS)

    Guasch, Laura; Sala, Esther; Valls, Cristina; Blay, Mayte; Mulero, Miquel; Arola, Lluís; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2011-08-01

    Peroxisome Proliferator-Activated Receptor γ (PPARγ) full agonists are molecules with powerful insulin-sensitizing action that are used as antidiabetic drugs. Unfortunately, these compounds also present various side effects. Recent results suggest that effective PPARγ agonists should show a low transactivation activity but a high binding affinity to inhibit phosphorylation at Ser273. We use several structure activity relationship studies of synthetic PPARγ agonists to explore the different binding features of full and partial PPARγ agonists with the aim of differentiating the features needed for binding and those needed for the transactivation activity of PPARγ. Our results suggest that effective partial agonists should have a hydrophobic moiety and an acceptor site with an appropriate conformation to interact with arm II and establish a hydrogen bond with Ser342 or an equivalent residue at arm III. Despite the fact that interactions with arm I increase the binding affinity, this region should be avoided in order to not increase the transactivation activity of potential PPARγ partial agonists.

  5. Identification, organ expression and ligand-dependent expression levels of peroxisome proliferator activated receptors in grass carp (Ctenopharyngodon idella).

    PubMed

    He, Shan; Liang, Xu-Fang; Qu, Chun-Mei; Huang, Wei; Shen, Dan; Zhang, Wen-Bing; Mai, Kang-Sen

    2012-03-01

    The peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors belonging to the nuclear receptor family, and can regulate various genes involved in lipid metabolism. The aim of the present study was to investigate the tissue distribution patterns of PPARs and their ligand specificities in grass carp. We cloned three PPAR isotypes of the species and evaluated their organ distribution patterns using real-time PCR. Through analyzing the deduced amino acid sequences identities between the products cloned in grass carp and those described in other species, we concluded that the same type of PPAR amino acid sequences in different species were with high homology, and different subtypes of PPAR in the same species were with low homology. The mRNA constitutive expression level of PPARα predominated in the liver, but was weak in other tested tissues. PPARβ was present in all tested organs, and particularly abundant in heart, liver and muscle. PPARγ was only detected in the liver, and to a lesser extent in brain, muscle and visceral adipose tissue. Grass carp were intraperitoneally injected with 50 mg kg(-1) body mass (bw) dose of clofibrate, 42 mg kg(-1) bw dose of 2-bromo palmitate and 1 mg kg(-1) bw dose of 15-deoxy-Δ(12,14) prostaglandin J2 (15d-PGJ2), respectively, and the relative changes of the mRNA abundance of PPARs in liver were analyzed by real-time PCR. Clofibrate was able to increase the expressions of both PPARα and β, but was not able to for PPARγ. 2-bromo palmitate could affect the expressions of both PPARβ and γ, but was not able to for PPARα. 15d-PGJ2 was able to induce PPARβ expression, but PPARα and γ were not enhanced. Consequently, these results indicate that clofibrate, 2-bromo palmitate and 15d-PGJ2 could be applied as the activators of grass carp PPARs. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARγ dysregulation.

    PubMed

    Al Sharif, Merilin; Tsakovska, Ivanka; Pajeva, Ilza; Alov, Petko; Fioravanzo, Elena; Bassan, Arianna; Kovarich, Simona; Yang, Chihae; Mostrag-Szlichtyng, Aleksandra; Vitcheva, Vessela; Worth, Andrew P; Richarz, Andrea-N; Cronin, Mark T D

    2016-02-04

    The aim of this paper was to provide a proof of concept demonstrating that molecular modelling methodologies can be employed as a part of an integrated strategy to support toxicity prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken in which molecular modelling methodologies were employed to predict the activation of the peroxisome proliferator-activated nuclear receptor γ (PPARγ) as a potential molecular initiating event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches (virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was developed to screen for PPARγ full agonists and to predict their transactivation activity (EC50). The performance metrics of the classification model to predict PPARγ full agonists were balanced accuracy=81%, sensitivity=85% and specificity=76%. The 3D QSAR model developed to predict EC50 of PPARγ full agonists had the following statistical parameters: q(2)cv=0.610, Nopt=7, SEPcv=0.505, r(2)pr=0.552. To support the linkage of PPARγ agonism predictions to prosteatotic potential, molecular modelling was combined with independently performed mechanistic mining of available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. NLRC5: a newly discovered MHC class I transactivator (CITA).

    PubMed

    Meissner, Torsten B; Li, Amy; Kobayashi, Koichi S

    2012-06-01

    Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator), is a master regulator of MHC class II gene expression as well as of some of the genes involved in MHC class II antigen presentation. It has recently been discovered that another member of the NLR protein family, NLRC5, transcriptionally activates MHC class I genes, and thus acts as "CITA" (MHC class I transactivator), a counterpart to CIITA. In addition to MHC class I genes, NLRC5 can induce the expression of β2M, TAP1 and LMP2, essential components of MHC class I antigen presentation. These findings indicate that NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and MHC class II pathways, respectively.

  8. Transactivation of programmed ribosomal frameshifting by a viral protein

    PubMed Central

    Li, Yanhua; Treffers, Emmely E.; Napthine, Sawsan; Tas, Ali; Zhu, Longchao; Sun, Zhi; Bell, Susanne; Mark, Brian L.; van Veelen, Peter A.; van Hemert, Martijn J.; Firth, Andrew E.; Brierley, Ian; Snijder, Eric J.; Fang, Ying

    2014-01-01

    Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection. PMID:24825891

  9. Tristetraprolin Represses Estrogen Receptor α Transactivation in Breast Cancer Cells*

    PubMed Central

    Barrios-García, Tonatiuh; Tecalco-Cruz, Angeles; Gómez-Romero, Vania; Reyes-Carmona, Sandra; Meneses-Morales, Iván; León-Del-Río, Alfonso

    2014-01-01

    Estrogen receptor α (ERα) mediates the effects of 17β-estradiol (E2) in normal mammary gland, and it is a key participant in breast cancer tumor development. ERα transactivation activity is mediated by the synergistic interaction of two domains designated AF1 and AF2. The function of AF2 is to recruit coactivator and corepressor proteins that allow ERα to oscillate between the roles of transcriptional activator and repressor. In contrast, the mechanism responsible for AF-1 transcriptional activity is not completely understood. In this study, we identified tristetraproline (TTP) as a novel ERα-associated protein. TTP expression in MCF7 cells repressed ERα transactivation and reduced MCF7 cell proliferation and the ability of the cells to form tumors in a mouse model. We show that TTP transcriptional activity is mediated through its recruitment to the promoter region of ERα target genes and its interaction with histone deacetylases, in particular with HDAC1. TTP expression attenuates the coactivating activity of SRC-1, suggesting that exchange between TTP and other coactivators may play an important role in fine-tuning ERα transactivation. These results indicate that TTP acts as a bona fide ERα corepressor and suggest that this protein may be a contributing factor in the development of E2-dependent tumors in breast cancer. PMID:24737323

  10. Transactivation by the p65 subunit of NF-kappaB in response to interleukin-1 (IL-1) involves MyD88, IL-1 receptor-associated kinase 1, TRAF-6, and Rac1.

    PubMed

    Jefferies, C; Bowie, A; Brady, G; Cooke, E L; Li, X; O'Neill, L A

    2001-07-01

    We have examined the involvement of components of the interleukin-1 (IL-1) signaling pathway in the transactivation of gene expression by the p65 subunit of NF-kappaB. Transient transfection of cells with plasmids encoding wild-type MyD88, IL-1 receptor-associated kinase 1 (IRAK-1), and TRAF-6 drove p65-mediated transactivation. In addition, dominant negative forms of MyD88, IRAK-1, and TRAF-6 inhibited the IL-1-induced response. In cells lacking MyD88 or IRAK-1, no effect of IL-1 was observed. Together, these results indicate that MyD88, IRAK-1, and TRAF-6 are important downstream regulators of IL-1-mediated p65 transactivation. We have previously shown that the low-molecular-weight G protein Rac1 is involved in this response. Constitutively active RacV12-mediated transactivation was not inhibited by dominant negative MyD88, while dominant negative RacN17 inhibited the MyD88-driven response, placing Rac1 downstream of MyD88 on this pathway. Dominant negative RacN17 inhibited wild-type IRAK-1- and TRAF-6-induced transactivation, and in turn, dominant negative IRAK-1 and TRAF-6 inhibited the RacV12-driven response, suggesting a mutual codependence of Rac1, IRAK-1, and TRAF-6 in regulating this pathway. Finally, Rac1 was found to associate with the receptor complex via interactions with both MyD88 and the IL-1 receptor accessory protein. A pathway emanating from MyD88 and involving IRAK-1, TRAF-6, and Rac1 is therefore involved in transactivation of gene expression by the p65 subunit of NF-kappaB in response to IL-1.

  11. Comparative Effects of R- and S-equol and Implication of Transactivation Functions (AF-1 and AF-2) in Estrogen Receptor-Induced Transcriptional Activity

    PubMed Central

    Shinkaruk, Svitlana; Carreau, Charlotte; Flouriot, Gilles; Bennetau-Pelissero, Catherine; Potier, Mylène

    2010-01-01

    Equol, one of the main metabolites of daidzein, is a chiral compound with pleiotropic effects on cellular signaling. This property may induce activation/inhibition of the estrogen receptors (ER) a or b, and therefore, explain the beneficial/deleterious effects of equol on estrogen-dependent diseases. With its asymmetric centre at position C-3, equol can exist in two enantiomeric forms (R- and S-equol). To elucidate the yet unclear mechanisms of ER activation/inhibition by equol, we performed a comprehensive analysis of ERa and ERb transactivation by racemic equol, as well as by enantiomerically pure forms. Racemic equol was prepared by catalytic hydrogenation from daidzein and separated into enantiomers by chiral HPLC. The configuration assignment was performed by optical rotatory power measurements. The ER-induced transactivation by R- and S-equol (0.1–10 µM) and 17b-estradiol (E2, 10 nM) was studied using transient transfections of ERα and ERβ in CHO, HepG2 and HeLa cell lines. R- and S-equol induce ER transactivation in an opposite fashion according to the cellular context. R-equol and S-equol are more potent in inducing ERα in an AF-2 and AF-1 permissive cell line, respectively. Involvement of ERα transactivation functions (AF-1 and AF-2) in these effects has been examined. Both AF-1 and AF-2 are involved in racemic equol, R-equol and S-equol induced ERα transcriptional activity. These results could be of interest to find a specific ligand modulating ER transactivation and could contribute to explaining the diversity of equol actions in vivo. PMID:22254026

  12. The Anrep effect requires transactivation of the epidermal growth factor receptor.

    PubMed

    Villa-Abrille, María C; Caldiz, Claudia I; Ennis, Irene L; Nolly, Mariela B; Casarini, María J; Chiappe de Cingolani, Gladys E; Cingolani, Horacio E; Pérez, Néstor G

    2010-05-01

    Myocardial stretch elicits a biphasic contractile response: the Frank-Starling mechanism followed by the slow force response (SFR) or Anrep effect. In this study we hypothesized that the SFR depends on epidermal growth factor receptor (EGFR) transactivation after the myocardial stretch-induced angiotensin II (Ang II)/endothelin (ET) release. Experiments were performed in isolated cat papillary muscles stretched from 92 to 98% of the length at which maximal twitch force was developed (L(max)). The SFR was 123 +/- 1% of the immediate rapid phase (n = 6, P < 0.05) and was blunted by preventing EGFR transactivation with the Src-kinase inhibitor PP1 (99 +/- 2%, n = 4), matrix metalloproteinase inhibitor MMPI (108 +/- 4%, n = 11), the EGFR blocker AG1478 (98 +/- 2%, n = 6) or the mitochondrial transition pore blocker clyclosporine (99 +/- 3%, n = 6). Stretch increased ERK1/2 phosphorylation by 196 +/- 17% of control (n = 7, P < 0.05), an effect that was prevented by PP1 (124 +/- 22%, n = 7) and AG1478 (131 +/- 17%, n = 4). In myocardial slices, Ang II (which enhances ET mRNA) or endothelin-1 (ET-1)-induced increase in O(2)() production (146 +/- 14%, n = 9, and 191 +/- 17%, n = 13, of control, respectively, P < 0.05) was cancelled by AG1478 (94 +/- 5%, n = 12, and 98 +/- 15%, n = 8, respectively) or PP1 (100 +/- 4%, n = 6, and 99 +/- 8%, n = 3, respectively). EGF increased O(2)() production by 149 +/- 4% of control (n = 9, P < 0.05), an effect cancelled by inhibiting NADPH oxidase with apocynin (110 +/- 6% n = 7), mKATP channels with 5-hydroxydecanoic acid (5-HD; 105 +/- 5%, n = 8), the respiratory chain with rotenone (110 +/- 7%, n = 7) or the mitochondrial permeability transition pore with cyclosporine (111 +/- 10%, n = 6). EGF increased ERK1/2 phosphorylation (136 +/- 8% of control, n = 9, P < 0.05), which was blunted by 5-HD (97 +/- 5%, n = 4), suggesting that ERK1/2 activation is downstream of mitochondrial oxidative stress. Finally, stretch increased Ser703 Na

  13. GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness.

    PubMed

    Zajac, Mateusz; Law, Jeffrey; Cvetkovic, Dragana Donna; Pampillo, Macarena; McColl, Lindsay; Pape, Cynthia; Di Guglielmo, Gianni M; Postovit, Lynne M; Babwah, Andy V; Bhattacharya, Moshmi

    2011-01-01

    Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, β-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness.

  14. Establishment of transactivation assay systems using fish, amphibian, reptilian and human thyroid hormone receptors.

    PubMed

    Oka, Tomohiro; Mitsui-Watanabe, Naoko; Tatarazako, Norihisa; Onishi, Yuta; Katsu, Yoshinao; Miyagawa, Shinichi; Ogino, Yukiko; Yatsu, Ryohei; Kohno, Satomi; Takase, Minoru; Kawashima, Yukio; Ohta, Yasuhiko; Aoki, Yasunobu; Guillette, Louis J; Iguchi, Taisen

    2013-09-01

    Thyroid hormones are essential for the regulation of a wide range of biological processes associated with normal development and metabolism in vertebrates. For the screening of chemicals with a potential thyroid hormone and anti-thyroid hormone activities, we have established transient transactivation assay systems using thyroid hormone receptors (TRα and TRβ) from three frog species (Xenopus laevis, Silurana tropicalis and Rana rugosa), a fish (Oryzias latipes), an alligator (Alligator mississippiensis) and a human (Homo sapiens). In all species examined, similar transcriptional activities were found for triiodothyronine (T3 : 10(-11) M in TRα and 10(-10) M in TRβ) and thyroxine (T4 : 10(-9) M in TRα and 10(-8) M in TRβ). Analogs of thyroid hormone (3,5,3',-triiodothyroacetic acid and 3,3',5,5'-tetraiodothyroacetic acid) exhibited weaker activity, requiring 10-fold higher concentrations for induction of activity when compared with T3 and T4 . These results provide support for the usefulness of in vitro screening assay systems as part of an approach to test chemicals for potential thyroid hormone receptor activity. In addition, we observed that T3 -stimulated transcriptional activity of the O. latipes TRα was inhibited by 10(-5) M tetrabromobisphenol A (TBBPA). In contrast, TR antagonist activities on TRα were not encountered in other species, even with TBBPA concentrations at 10(-5) M. In vitro transactivation assay systems using TRs from various species can be used for the screening of chemicals with thyroid-receptor agonist and antagonist activities. They also can be used for studies that examine evolutionary differences among species in the potency of TR activation. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Identification of protein interaction antagonists using the repressed transactivator two-hybrid system.

    PubMed

    Joshi, Phalgun B; Hirst, Martin; Malcolm, Tom; Parent, Jennifer; Mitchell, David; Lund, Karen; Sadowski, Ivan

    2007-05-01

    The repressed transactivator (RTA) yeast two-hybrid system was developed to enable genetic identification of interactions with transcriptional activator proteins. We have devised modifications of this system that enable its use in screening for inhibitors of protein interactions from small molecule compound libraries. We show that inhibition of protein interactions can be measured by monitoring growth in selective medium containing 3-aminotriazole (3-AT) and using this assay have identified inhibitors of four independent protein interactions in screens with a 23,000 small molecule compound library. Compounds found to inhibit one of the tested interactions between FKBP12 and the transforming growth factor beta receptor (TGFbeta-R) were validated in vivo and found to inhibit calcineurin-dependent signaling in T cells. One of these compounds was also found to cause elevated basal expression of a TGFbeta-R/SMAD-dependent reporter gene. These results demonstrate the capability of the RTA small molecule screening assay for discovery of potentially novel therapeutic compounds.

  16. Insulin Protects Cardiac Myocytes from Doxorubicin Toxicity by Sp1-Mediated Transactivation of Survivin

    PubMed Central

    Lee, Beom Seob; Oh, Jaewon; Kang, Sung Ku; Park, Sungha; Lee, Sang-Hak; Choi, Donghoon; Chung, Ji Hyung; Chung, Youn Wook; Kang, Seok-Min

    2015-01-01

    Insulin inhibits ischemia/reperfusion-induced myocardial apoptosis through the PI3K/Akt/mTOR pathway. Survivin is a key regulator of anti-apoptosis against doxorubicin-induced cardiotoxicity. Insulin increases survivin expression in cardiac myocytes to mediate cytoprotection. However, the mechanism by which survivin mediates the protective effect of insulin against doxorubicin-associated injury remains to be determined. In this study, we demonstrated that pretreatment of H9c2 cardiac myocytes with insulin resulted in a significant decrease in doxorubicin-induced apoptotic cell death by reducing cytochrome c release and caspase-3 activation. Doxorubicin-induced reduction of survivin mRNA and protein levels was also significantly perturbed by insulin pretreatment. Reducing survivin expression with survivin siRNA abrogated insulin-mediated inhibition of caspase-3 activation, suggesting that insulin signals to survivin inhibited caspase-3 activation. Interestingly, pretreatment of H9c2 cells with insulin or MG132, a proteasome inhibitor, inhibited doxorubicin-induced degradation of the transcription factor Sp1. ChIP assay showed that pretreatment with insulin inhibited doxorubicin-stimulated Sp1 dissociation from the survivin promoter. Finally using pharmacological inhibitors of the PI3K pathway, we showed that insulin-mediated activation of the PI3K/Akt/mTORC1 pathway prevented doxorubicin-induced proteasome-mediated degradation of Sp1. Taken together, insulin pretreatment confers a protective effect against doxorubicin-induced cardiotoxicity by promoting Sp1-mediated transactivation of survivin to inhibit apoptosis. Our study is the first to define a role for survivin in cellular protection by insulin against doxorubicin-associated injury and show that Sp1 is a critical factor in the transcriptional regulation of survivin. PMID:26271039

  17. Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells.

    PubMed

    Andresen, Bradley T; Linnoila, Jenny J; Jackson, Edwin K; Romero, Guillermo G

    2003-03-01

    Angiotensin (Ang) II promotes the phosphorylation of extracellular regulated kinase (ERK); however, the mechanisms leading to Ang II-induced ERK phosphorylation are debated. The currently accepted theory involves transactivation of epidermal growth factor receptor (EGFR). We have shown that generation of phosphatidic acid (PA) is required for the recruitment of Raf to membranes and the activation of ERK by multiple agonists, including Ang II. In the present report, we confirm that phospholipase D-dependent generation of PA is required for Ang II-mediated phosphorylation of ERK in Wistar-Kyoto and spontaneously hypertensive rat preglomerular smooth muscle cells (PGSMCs). However, EGF stimulation does not activate phospholipase D or generate PA. These observations indicate that EGF recruits Raf to membranes via a mechanism that does not involve PA, and thus, Ang II-mediated phosphorylation of ERK is partially independent of EGFR-mediated signaling cascades. We hypothesized that phosphoinositide-3-kinase (PI3K) can also act to recruit Raf to membranes; therefore, inhibition of PI3K should inhibit EGF signaling to ERK. Wortmannin, a PI3K inhibitor, inhibited EGF-mediated phosphorylation of ERK (IC50, approximately 14 nmol/L). To examine the role of the EGFR in Ang II-mediated phosphorylation of ERK we utilized 100 nmol/L wortmannin to inhibit EGFR signaling to ERK and T19N RhoA to block Ang II-mediated ERK phosphorylation. Wortmannin treatment inhibited EGF-mediated but not Ang II-mediated phosphorylation of ERK. Furthermore, T19N RhoA inhibited Ang II-mediated ERK phosphorylation, whereas T19N RhoA had significantly less effect on EGF-mediated ERK phosphorylation. We conclude that transactivation of the EGFR is not primarily responsible for Ang II-mediated activation of ERK in PGSMCs.

  18. Novel mutants of NAB corepressors enhance activation by Egr transactivators.

    PubMed Central

    Svaren, J; Sevetson, B R; Golda, T; Stanton, J J; Swirnoff, A H; Milbrandt, J

    1998-01-01

    The NGFI-A binding corepressors NAB1 and NAB2 interact with a conserved domain (R1 domain) within the Egr1/NGFI-A and Egr2/Krox20 transactivators, and repress the transcription of Egr target promoters. Using a novel adaptation of the yeast two-hybrid screen, we have identified several point mutations in NAB corepressors that interfere with their ability to bind to the Egr1 R1 domain. Surprisingly, NAB proteins bearing some of these mutations increased Egr1 activity dramatically. The mechanism underlying the unexpected behavior of these mutants was elucidated by the discovery that NAB conserved domain 1 (NCD1) not only binds to Egr proteins but also mediates multimerization of NAB molecules. The activating mutants exert a dominant negative effect on NAB repression by multimerizing with native NAB proteins and preventing binding of endogenous NAB proteins with Egr transactivators. To examine NAB repression of a native Egr target gene, we show that NAB2 represses Egr2/Krox20-mediated activation of the bFGF/FGF-2 promoter, and that repression is reversed by coexpression of dominant negative NAB2. Because of their specific ability to alleviate NAB repression of Egr target genes, the dominant negative NAB mutants will be useful in elucidating the mechanism and function of NAB corepressors. PMID:9774344

  19. The Chicken Ovalbumin Upstream Promoter-Transcription Factor II Negatively Regulates the Transactivation of Androgen Receptor in Prostate Cancer Cells

    PubMed Central

    Song, Chin-Hee; Lee, Hyun Joo; Park, Eunsook; Lee, Keesook

    2012-01-01

    Androgen receptor (AR) is involved in the development and progression of prostate cancers. However, the mechanisms by which this occurs remain incompletely understood. In previous reports, chicken ovalbumin upstream promoter-transcription factor II (COUP-TF II) has been suggested to play a role in the development of cancers. In the present study, we explored a putative role of COUP-TF II in prostate cancers by investigating its effect on cell proliferation and a cross-talk between COUP-TF II and AR. Overexpression of COUP-TF II results in the inhibition of androgen-dependent proliferation of prostate cancer cells. Further studies show that COUP-TF II functions as a corepressor of AR. It represses AR transactivation on target promoters containing the androgen response element (ARE) in a dose-dependent manner. In addition, COUP-TF II interacts physically with AR in vitro and in vivo. It binds to both the DNA binding domain (DBD) and the ligand-binding domain (LBD) of AR and disrupts the N/C terminal interaction of AR. Furthermore, COUP-TF II competes with coactivators such as ARA70, SRC-1, and GRIP1 to modulate AR transactivation as well as inhibiting the recruitment of AR to its ARE-containing target promoter. Taken together, our findings suggest that COUP-TF II is a novel corepressor of AR, and provide an insight into the role of COUP-TF II in prostate cancers. PMID:23145053

  20. trans-Activation of a globin promoter in nonerythroid cells.

    PubMed Central

    Evans, T; Felsenfeld, G

    1991-01-01

    We show that expression in fibroblasts of a single cDNA, encoding the erythroid DNA-binding protein Eryf1 (GF-1, NF-E1), very efficiently activates transcription of a chicken alpha-globin promoter, trans-Activation in these cells occurred when Eryf1 bound to a single site within a minimal globin promoter. In contrast, efficient activation in erythroid cells required multiple Eryf1 binding sites. Our results indicate that mechanisms exist that are capable of modulating the trans-acting capabilities of Eryf1 in a cell-specific manner, without affecting DNA binding. The response of the minimal globin promoter to Eryf1 in fibroblasts was at least as great as for optimal constructions in erythroid cells. Therefore, the assay provides a very simple and sensitive system with which to study gene activation by a tissue-specific factor. Images PMID:1990287

  1. ADAM17 Transactivates EGFR Signaling during Embryonic Eyelid Closure

    PubMed Central

    Hassemer, Eryn L.; Endres, Bradley; Toonen, Joseph A.; Ronchetti, Adam; Dubielzig, Richard; Sidjanin, Duska J.

    2013-01-01

    Purpose. During mammalian embryonic eyelid closure ADAM17 has been proposed to play a role as a transactivator of epidermal growth factor receptor (EGFR) signaling by shedding membrane bound EGFR ligands. However, ADAM17 also sheds numerous other ligands, thus implicating ADAM17 in additional molecular pathways. The goal of this study was to experimentally establish the role of ADAM17 and determine ADAM17-mediated pathways essential for the embryonic eyelid closure. Methods. Wild-type (WT) and woe mice, carrying a hypomorphic mutation in Adam17, were evaluated using H&E and scanning electron microscopy. Expressions of ADAM17, EGFR, and the phosphorylated form EGFR-P were evaluated using immunohistochemistry. BrdU and TUNEL assays were used to evaluate cell proliferation and apoptosis, respectively. In vitro scratch assays of primary cultures were used to evaluate cell migration. Clinical and histologic analyses established if the hypermorphic EgfrDsk5 allele can rescue the woe embryonic eyelid closure. Results. woe mice exhibited a failure to develop the leading edge of the eyelid and consequently failure of the embryonic eyelid closure. Expression of ADAM17 was identified in the eyelid epithelium in the cells of the leading edge. ADAM17 is essential for epithelial cell migration, but does not play a role in proliferation and apoptosis. EGFR was expressed in both WT and woe eyelid epithelium, but the phosphorylated EGFR-P form was detected only in WT. The EgfrDsk5 allele rescued woe eyelid closure defects, but also rescued woe anterior segment defects and the absence of meibomian glands. Conclusions. We provide in vivo genetic evidence that the role of ADAM17 during embryonic eyelid closure is to transactivate EGFR signaling. PMID:23211830

  2. Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation.

    PubMed

    Luppi, F; Longo, A M; de Boer, W I; Rabe, K F; Hiemstra, P S

    2007-04-01

    Interleukin-8 (IL-8; CXCL8) is a cytokine of the CXC chemokine family that is involved in neutrophil recruitment and activation. In addition, IL-8 has been implicated in a wide variety of other processes, including angiogenesis and metastasis in lung cancer. Lung adenocarcinoma and muco-epidermoid carcinoma cells produce substantial amounts of IL-8, and express both CXCR1 and CXCR2 IL-8 receptors. We hypothesized that IL-8 stimulates proliferation of non-small cell lung cancer cells, involving transactivation of the epidermal growth factor receptor (EGFR). The EGFR plays a central role in regulating cell proliferation and it has been therefore implicated in lung cancer. Both EGFR ligands and transactivation of the receptor may lead to downstream signalling events, including mitogen-activated protein kinase (MAPK) activation. Transactivation of the EGFR has been shown to occur in response to ligands of various G-protein coupled receptors (GPCRs) and involves metalloproteinase-mediated release of membrane bound EGFR ligands. The aim of the present study was to investigate the effect of IL-8 on proliferation of lung adenocarcinoma and muco-epidermoid carcinoma cells, and to explore the mechanisms leading to this proliferation in two different non-small cell lung cancer cell lines (A549 and NCI-H292). In both NSCLC cell lines, we observed that IL-8 stimulates epithelial cell proliferation in a dose-dependent manner. The ability of IL-8 to increase cell proliferation was blocked both by an inhibitor of EGFR tyrosine kinase, by a specific anti-EGFR blocking antibody and by a panmetalloproteinase inhibitor. Similar results were obtained using the GPCR inhibitor pertussis toxin. Inhibition of the MAPK p42/44 (ERK1/2) also blocked the mitogenic effect of IL-8, while a p38 MAPK inhibitor did not affect IL-8-induced cell proliferation. These results suggest that IL-8 increases cell proliferation in NSCLC cell lines via transactivation of the EGFR and that this mechanism

  3. Idiopathic pulmonary fibrosis fibroblasts become resistant to Fas ligand-dependent apoptosis via the alteration of decoy receptor 3.

    PubMed

    Im, Jintaek; Kim, Kyutae; Hergert, Polla; Nho, Richard Seonghun

    2016-09-01

    Idiopathic pulmonary fibrosis (IPF) is an irreversible lethal lung disease with an unknown etiology. IPF patients' lung fibroblasts express inappropriately high Akt activity, protecting them in response to an apoptosis-inducing type I collagen matrix. FasL, a ligand for Fas, is known to be increased in the lung tissues of patients with IPF, implicated with the progression of IPF. Expression of Decoy Receptor3 (DcR3), which binds to FasL, thereby subsequently suppressing the FasL-Fas-dependent apoptotic pathway, is frequently altered in various human disease. However, the role of DcR3 in IPF fibroblasts in regulating their viability has not been examined. We found that enhanced DcR3 expression exists in the majority of IPF fibroblasts on collagen matrices, resulting in the protection of IPF fibroblasts from FasL-induced apoptosis. Abnormally high Akt activity suppresses GSK-3β function, thereby accumulating the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) in the nucleus, increasing DcR3 expression in IPF fibroblasts. This alteration protects IPF cells from FasL-induced apoptosis on collagen. However, the inhibition of Akt or NFATc1 decreases DcR3 mRNA and protein levels, which sensitizes IPF fibroblasts to FasL-mediated apoptosis. Furthermore, enhanced DcR3 and NFATc1 expression is mainly present in myofibroblasts in the fibroblastic foci of lung tissues derived from IPF patients. Our results showed that when IPF cells interact with collagen matrix, aberrantly activated Akt increases DcR3 expression via GSK-3β-NFATc1 and protects IPF cells from the FasL-dependent apoptotic pathway. These findings suggest that the inhibition of DcR3 function may be an effective approach for sensitizing IPF fibroblasts in response to FasL, limiting the progression of lung fibrosis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. Biochemical Analysis of Pathogenic Ligand-Dependent FGFR2 Mutations Suggests Distinct Pathophysiological Mechanisms for Craniofacial and Limb Abnormalities in Human Skeletal Disorders

    SciTech Connect

    Ibrahimi,O.; Zhang, F.; Eliseenkova, A.; Itoh, N.; Linhardt, R.; Mohammadi, M.

    2004-01-01

    Gain-of-function missense mutations in FGF receptor 2 (FGFR2) are responsible for a variety of craniosynostosis syndromes including Apert syndrome (AS), Pfeiffer syndrome (PS) and Crouzon syndrome (CS). Unlike the majority of FGFR2 mutations, S252W and P253R AS mutations and a D321A PS mutation retain ligand-dependency and are also associated with severe limb pathology. In addition, a recently identified ligand-dependent S252L/A315S double mutation in FGFR2 was shown to cause syndactyly in the absence of craniosynostosis. Here, we analyze the effect of the canonical AS mutations, the D321A PS mutation and the S252L/A315S double mutation on FGFR2 ligand binding affinity and specificity using surface plasmon resonance. Both AS mutations and the D321A PS mutation, but not the S252L/A315S double mutation, increase the binding affinity of FGFR2c to multiple FGFs expressed in the cranial suture. Additionally, all four pathogenic mutations also violate FGFR2c ligand binding specificity and enable this receptor to bind FGF10. Based on our data, we propose that an increase in mutant FGFR2c binding to multiple FGFs results in craniosynostosis, whereas binding of mutant FGFR2c to FGF10 results in severe limb pathology. Structural and biophysical analysis shows that AS mutations in FGFR2b also enhance and violate FGFR2b ligand binding affinity and specificity, respectively. We suggest that elevated AS mutant FGFR2b signaling may account for the dermatological manifestations of AS.

  5. In situ autoradiography and ligand-dependent tyrosine kinase activity reveal insulin receptors and insulin-like growth factor I receptors in prepancreatic chicken embryos.

    PubMed Central

    Girbau, M; Bassas, L; Alemany, J; de Pablo, F

    1989-01-01

    We previously reported specific cross-linking of 125I-labeled insulin and 125I-labeled insulin-like growth factor I (IGF-I) to the alpha subunit of their respective receptors in chicken embryos of 20 somites and older. To achieve adequate sensitivity and localize spatially the receptors in younger embryos, we adapted an autoradiographic technique using whole-mounted chicken blastoderms. Insulin receptors and IGF-I receptors were expressed and could be localized as early as gastrulation, before the first somite is formed. Relative density was analyzed by a computer-assisted image system, revealing overall slightly higher binding of IGF-I than of insulin. Structures rich in both types of receptors were predominantly of ectodermal origin: Hensen's node in gastrulating embryos and neural folds, neural tube and optic vesicles during neurulation. The signal transduction capability of the receptors in early organogenesis was assessed by their ability to phosphorylate the exogenous substrate poly(Glu80Tyr20). Ligand-dependent tyrosine phosphorylation was demonstrable with both insulin and IGF-I in glycoprotein-enriched preparations from embryos at days 2 through 6 of embryogenesis. There was a developmentally regulated change in ligand-dependent tyrosine kinase activity, with a sharp increase from day 2 to day 4, in contrast with a small increase in the ligand binding. Binding of 125I-labeled IGF-I was, with the solubilized receptors, severalfold higher than binding of 125I-labeled insulin. However, the insulin-dependent phosphorylation was as high as the IGF-I-dependent phosphorylation at each developmental stage. Images PMID:2548191

  6. A previously functional tetracycline-regulated transactivator fails to target gene expression to the bone

    PubMed Central

    2011-01-01

    Background The tetracycline-controlled transactivator system is a powerful tool to control gene expression in vitro and to generate consistent and conditional transgenic in vivo model organisms. It has been widely used to study gene function and to explore pathological mechanisms involved in human diseases. The system permits the regulation of the expression of a target gene, both temporally and quantitatively, by the application of tetracycline or its derivative, doxycycline. In addition, it offers the possibility to restrict gene expression in a spatial fashion by utilizing tissue-specific promoters to drive the transactivator. Findings In this study, we report our problems using a reverse tetracycline-regulated transactivator (rtTA) in a transgenic mouse model system for the bone-specific expression of the Hutchinson-Gilford progeria syndrome mutation. Even though prior studies have been successful utilizing the same rtTA, expression analysis of the transactivator revealed insufficient activity for regulating the transgene expression in our system. The absence of transactivator could not be ascribed to differences in genetic background because mice in a mixed genetic background and in congenic mouse lines showed similar results. Conclusions The purpose of this study is to report our negative experience with previously functional transactivator mice, to raise caution in the use of tet-based transgenic mouse lines and to reinforce the need for controls to ensure the stable functionality of generated tetracycline-controlled transactivators over time. PMID:21835026

  7. Zinc Finger and X-Linked Factor (ZFX) Binds to Human SET Transcript 2 Promoter and Transactivates SET Expression.

    PubMed

    Xu, Siliang; Duan, Ping; Li, Jinping; Senkowski, Tristan; Guo, Fengbiao; Chen, Haibin; Romero, Alberto; Cui, Yugui; Liu, Jiayin; Jiang, Shi-Wen

    2016-10-20

    SET (SE Translocation) protein carries out multiple functions including those for protein phosphatase 2A (PP2A) inhibition, histone modification, DNA repair, and gene regulation. SET overexpression has been detected in brain neurons of patients suffering Alzheimer's disease, follicle theca cells of Polycystic Ovary Syndrome (PCOS) patients, and ovarian cancer cells, indicating that SET may play a pathological role for these disorders. SET transcript 2, produced by a specific promoter, represents a major transcript variant in different cell types. In this study, we characterized the transcriptional activation of human SET transcript 2 promoter in HeLa cells. Promoter deletion experiments and co-transfection assays indicated that ZFX, the Zinc finger and X-linked transcription factor, was able to transactivate the SET promoter. A proximal promoter region containing four ZFX-binding sites was found to be critical for the ZFX-mediated transactivation. Mutagenesis study indicated that the ZFX-binding site located the closest to the transcription start site accounted for most of the ZFX-mediated transactivity. Manipulation of ZFX levels by overexpression or siRNA knockdown confirmed the significance and specificity of the ZFX-mediated SET promoter activation. Chromatin immunoprecipitation results verified the binding of ZFX to its cognate sites in the SET promoter. These findings have led to identification of ZFX as an upstream factor regulating SET gene expression. More studies are required to define the in vivo significance of this mechanism, and specifically, its implication for several benign and malignant diseases related to SET dysregulation.

  8. Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation

    PubMed Central

    Zhang, Linsheng; Fried, Florence B.; Guo, Hong

    2008-01-01

    RUNX1/AML1 regulates lineage-specific genes during hematopoiesis and stimulates G1 cell-cycle progression. Within RUNX1, S48, S303, and S424 fit the cyclin-dependent kinase (cdk) phosphorylation consensus, (S/T)PX(R/K). Phosphorylation of RUNX1 by cdks on serine 303 was shown to mediate destabilization of RUNX1 in G2/M. We now use an in vitro kinase assay, phosphopeptide-specific antiserum, and the cdk inhibitor roscovitine to demonstrate that S48 and S424 are also phosphorylated by cdk1 or cdk6 in hematopoietic cells. S48 phosphorylation of RUNX1 paralleled total RUNX1 levels during cell-cycle progression, S303 was more effectively phosphorylated in G2/M, and S424 in G1. Single, double, and triple mutation of the cdk sites to the partially phosphomimetic aspartic acid mildly reduced DNA affinity while progressively increasing transactivation of a model reporter. Mutation to alanine increased DNA affinity, suggesting that in other gene or cellular contexts phosphorylation of RUNX1 by cdks may reduce transactivation. The tripleD RUNX1 mutant rescued Ba/F3 cells from inhibition of proliferation by CBFβ-SMMHC more effectively than the tripleA mutant. Together these findings indicate that cdk phosphorylation of RUNX1 potentially couples stem/progenitor proliferation and lineage progression. PMID:18003885

  9. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18.

    PubMed Central

    Le Douarin, B; Zechel, C; Garnier, J M; Lutz, Y; Tora, L; Pierrat, P; Heery, D; Gronemeyer, H; Chambon, P; Losson, R

    1995-01-01

    Nuclear receptors (NRs) bound to response elements mediate the effects of cognate ligands on gene expression. Their ligand-dependent activation function, AF-2, presumably acts on the basal transcription machinery through intermediary proteins/mediators. We have isolated a mouse nuclear protein, TIF1, which enhances RXR and RAR AF-2 in yeast and interacts in a ligand-dependent manner with several NRs in yeast and mammalian cells, as well as in vitro. Remarkably, these interactions require the amino acids constituting the AF-2 activating domain conserved in all active NRs. Moreover, the oestrogen receptor (ER) AF-2 antagonist hydroxytamoxifen cannot promote ER-TIF1 interaction. We propose that TIF1, which contains several conserved domains found in transcriptional regulatory proteins, is a mediator of ligand-dependent AF-2. Interestingly, the TIF1 N-terminal moiety is fused to B-raf in the mouse oncoprotein T18. Images PMID:7744009

  10. Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor.

    PubMed

    Berghuis, Paul; Dobszay, Marton B; Wang, Xinyu; Spano, Sabrina; Ledda, Fernanda; Sousa, Kyle M; Schulte, Gunnar; Ernfors, Patrik; Mackie, Ken; Paratcha, Gustavo; Hurd, Yasmin L; Harkany, Tibor

    2005-12-27

    In utero exposure to Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the active component from marijuana, induces cognitive deficits enduring into adulthood. Although changes in synaptic structure and plasticity may underlie Delta(9)-THC-induced cognitive impairments, the neuronal basis of Delta(9)-THC-related developmental deficits remains unknown. Using a Boyden chamber assay, we show that agonist stimulation of the CB(1) cannabinoid receptor (CB(1)R) on cholecystokinin-expressing interneurons induces chemotaxis that is additive with brain-derived neurotrophic factor (BDNF)-induced interneuron migration. We find that Src kinase-dependent TrkB receptor transactivation mediates endocannabinoid (eCB)-induced chemotaxis in the absence of BDNF. Simultaneously, eCBs suppress the BDNF-dependent morphogenesis of interneurons, and this suppression is abolished by Src kinase inhibition in vitro. Because sustained prenatal Delta(9)-THC stimulation of CB(1)Rs selectively increases the density of cholecystokinin-expressing interneurons in the hippocampus in vivo, we conclude that prenatal CB(1)R activity governs proper interneuron placement and integration during corticogenesis. Moreover, eCBs use TrkB receptor-dependent signaling pathways to regulate subtype-selective interneuron migration and specification.

  11. The paradigm of G protein receptor transactivation: a mechanistic definition and novel example.

    PubMed

    Little, Peter J; Burch, Micah L; Al-aryahi, Sefaa; Zheng, Wenhua

    2011-03-22

    Seven transmembrane G protein-coupled receptors are among the most common in biology and they transduce cellular signals from a plethora of hormones. As well as their own well-characterized signaling pathways, they can also transactivate tyrosine kinase growth factor receptors to greatly expand their own cellular repertoire of responses. Recent data in vascular smooth muscle cells have expanded the breadth of transactivation to include serine/threonine kinase receptors, specifically the receptor for transforming growth factor beta (TGF-beta). Stimulation with endothelin and thrombin leads to the rapid formation of C-terminal phosphorylated Smad2, which is the immediate product of activation of the TGF-beta receptor. Additionally, it appears that no definition of transactivation based on mechanism is available, so we have provided a definition involving temporal aspects and the absence of de novo protein synthesis. The phenomenon of transactivation is an important biochemical mechanism and potential drug target in multiple diseases.

  12. Pigment-cell-specific genes from fibroblasts are transactivated after chromosomal transfer into melanoma cells.

    PubMed Central

    Powers, T P; Shows, T B; Davidson, R L

    1994-01-01

    Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells. Images PMID:8289799

  13. Pigment-cell-specific genes from fibroblasts are transactivated after chromosomal transfer into melanoma cells

    SciTech Connect

    Powers, T.P.; Davidson, R.L.; Shows, T.B.

    1994-02-01

    Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells. 46 refs., 5 figs., 2 tabs.

  14. A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation

    PubMed Central

    George, Amee J.; Purdue, Brooke W.; Gould, Cathryn M.; Thomas, Daniel W.; Handoko, Yanny; Qian, Hongwei; Quaife-Ryan, Gregory A.; Morgan, Kylie A.; Simpson, Kaylene J.; Thomas, Walter G.; Hannan, Ross D.

    2013-01-01

    Summary The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R–EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R–EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R–EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR–EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer. PMID:24046455

  15. Chimeras of the native form or achondroplasia mutant (G375C) of human fibroblast growth factor receptor 3 induce ligand-dependent differentiation of PC12 cells.

    PubMed Central

    Thompson, L M; Raffioni, S; Wasmuth, J J; Bradshaw, R A

    1997-01-01

    Mutations in the gene for human fibroblast growth factor receptor 3 (hFGFR3) cause a variety of skeletal dysplasias, including the most common genetic form of dwarfism, achondroplasia (ACH). Evidence indicates that these phenotypes are not due to simple haploinsufficiency of FGFR3 but are more likely related to a role in negatively regulating skeletal growth. The effects of one of these mutations on FGFR3 signaling were examined by constructing chimeric receptors composed of the extracellular domain of human platelet-derived growth factor receptor beta (hPDGFR beta) and the transmembrane and intracellular domains of hFGFR3 or of an ACH (G375C) mutant. Following stable transfection in PC12 cells, which lack platelet-derived growth factor (PDGF) receptors, all clonal cell lines, with either type of chimera, showed strong neurite outgrowth in the presence of PDGF but not in its absence. Antiphosphotyrosine immunoblots showed ligand-dependent autophosphorylation, and both receptor types stimulated strong phosphorylation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase, an event associated with the differentiative response of these cells. In addition, ligand-dependent phosphorylation of phospholipase Cgamma and Shc was also observed. All of these responses were comparable to those observed from ligand activation, such as by nerve growth factor, of the native PC12 cells used to prepare the stable transfectants. The cells with the chimera bearing the ACH mutation were more rapidly responsive to ligand with less sustained MAPK activation, indicative of a preactivated or primed condition and consistent with the view that these mutations weaken ligand control of FGFR3 function. However, the full effect of the mutation likely depends in part on structural features of the extracellular domain. Although FGFR3 has been suggested to act as a negative regulator of long-bone growth in chrondrocytes, it produces differentiative signals similar to

  16. Gi-DREADD Expression in Peripheral Nerves Produces Ligand-Dependent Analgesia, as well as Ligand-Independent Functional Changes in Sensory Neurons.

    PubMed

    Saloman, Jami L; Scheff, Nicole N; Snyder, Lindsey M; Ross, Sarah E; Davis, Brian M; Gold, Michael S

    2016-10-19

    Designer receptors exclusively activated by designer drugs (DREADDs) are an advanced experimental tool that could potentially provide a novel approach to pain management. In particular, expression of an inhibitory (Gi-coupled) DREADD in nociceptors might enable ligand-dependent analgesia. To test this possibility, TRPV1-cre mice were used to restrict expression of Gi-DREADDs to predominantly C-fibers. Whereas baseline heat thresholds in both male and female mice expressing Gi-DREADD were normal, 1 mg/kg clozapine-N-oxide (CNO) produced a significant 3 h increase in heat threshold that returned to baseline by 5 h after injection. Consistent with these behavioral results, CNO decreased action potential firing in isolated sensory neurons from Gi-DREADD mice. Unexpectedly, however, the expression of Gi-DREADD in sensory neurons caused significant changes in voltage-gated Ca(2+) and Na(+) currents in the absence of CNO, as well as an increase in Na(+) channel (NaV1.7) expression. Furthermore, CNO-independent excitatory and inhibitory second-messenger signaling was also altered in these mice, which was associated with a decrease in the analgesic effect of endogenous inhibitory G-protein-coupled receptor activation. These results highlight the potential of this exciting technology, but also its limitations, and that it is essential to identify the underlying mechanisms for any observed behavioral phenotypes. DREADD technology is a powerful tool enabling manipulation of activity and/or transmitter release from targeted cell populations. The purpose of this study was to determine whether inhibitory DREADDs in nociceptive afferents could be used to produce analgesia, and if so, how. DREADD activation produced a ligand-dependent analgesia to heat in vivo and a decrease in neuronal firing at the single-cell level. However, we observed that expression of Gi-DREADD also causes ligand-independent changes in ion channel activity and second-messenger signaling. These findings

  17. Genus Beta Human Papillomavirus E6 Proteins Vary in Their Effects on the Transactivation of p53 Target Genes

    PubMed Central

    White, Elizabeth A.; Walther, Johanna; Javanbakht, Hassan

    2014-01-01

    ABSTRACT The genus beta human papillomaviruses (beta HPVs) cause cutaneous lesions and are thought to be involved in the initiation of some nonmelanoma skin cancers (NMSCs), particularly in patients with the genetic disorder epidermodysplasia verruciformis (EV). We have previously reported that at least two of the genus beta HPV E6 proteins bind to and/or increase the steady-state levels of p53 in squamous epithelial cells. This is in contrast to a well-characterized ability of the E6 proteins of cancer-associated HPVs of genus alpha HPV, which inactivate p53 by targeting its ubiquitin-mediated proteolysis. In this study, we have investigated the ability of genus beta E6 proteins from eight different HPV types to block the transactivation of p53 target genes following DNA damage. We find that the E6 proteins from diverse beta HPV species and types vary in their capacity to block the induction of MDM2, p21, and proapoptotic genes after genotoxic stress. We conclude that some genus beta HPV E6 proteins inhibit at least some p53 target genes, although perhaps not by the same mechanism or to the same degree as the high-risk genus alpha HPV E6 proteins. IMPORTANCE This study addresses the ability of various human papillomavirus E6 proteins to block the activation of p53-responsive cellular genes following DNA damage in human keratinocytes, the normal host cell for HPVs. The E6 proteins encoded by the high-risk, cancer-associated HPV types of genus alpha HPV have a well-established activity to target p53 degradation and thereby inhibit the response to DNA damage. In this study, we have investigated the ability of genus beta HPV E6 proteins from eight different HPV types to block the ability of p53 to transactivate downstream genes following DNA damage. We find that some, but not all, genus beta HPV E6 proteins can block the transactivation of some p53 target genes. This differential response to DNA damage furthers the understanding of cutaneous HPV biology and may help

  18. Genus beta human papillomavirus E6 proteins vary in their effects on the transactivation of p53 target genes.

    PubMed

    White, Elizabeth A; Walther, Johanna; Javanbakht, Hassan; Howley, Peter M

    2014-08-01

    The genus beta human papillomaviruses (beta HPVs) cause cutaneous lesions and are thought to be involved in the initiation of some nonmelanoma skin cancers (NMSCs), particularly in patients with the genetic disorder epidermodysplasia verruciformis (EV). We have previously reported that at least two of the genus beta HPV E6 proteins bind to and/or increase the steady-state levels of p53 in squamous epithelial cells. This is in contrast to a well-characterized ability of the E6 proteins of cancer-associated HPVs of genus alpha HPV, which inactivate p53 by targeting its ubiquitin-mediated proteolysis. In this study, we have investigated the ability of genus beta E6 proteins from eight different HPV types to block the transactivation of p53 target genes following DNA damage. We find that the E6 proteins from diverse beta HPV species and types vary in their capacity to block the induction of MDM2, p21, and proapoptotic genes after genotoxic stress. We conclude that some genus beta HPV E6 proteins inhibit at least some p53 target genes, although perhaps not by the same mechanism or to the same degree as the high-risk genus alpha HPV E6 proteins. This study addresses the ability of various human papillomavirus E6 proteins to block the activation of p53-responsive cellular genes following DNA damage in human keratinocytes, the normal host cell for HPVs. The E6 proteins encoded by the high-risk, cancer-associated HPV types of genus alpha HPV have a well-established activity to target p53 degradation and thereby inhibit the response to DNA damage. In this study, we have investigated the ability of genus beta HPV E6 proteins from eight different HPV types to block the ability of p53 to transactivate downstream genes following DNA damage. We find that some, but not all, genus beta HPV E6 proteins can block the transactivation of some p53 target genes. This differential response to DNA damage furthers the understanding of cutaneous HPV biology and may help to explain the

  19. Runx2 Trans-Activation Mediated by the Msx2-Interacting Nuclear Target Requires Homeodomain Interacting Protein Kinase-3

    PubMed Central

    Sierra, Oscar L.; Towler, Dwight A.

    2010-01-01

    Runt-related transcription factor 2 (Runx2) and muscle segment homeobox homolog 2-interacting nuclear target (MINT) (Spen homolog) are transcriptional regulators critical for mammalian development. MINT enhances Runx2 activation of osteocalcin (OC) fibroblast growth factor (FGF) response element in an FGF2-dependent fashion in C3H10T1/2 cells. Although the MINT N-terminal RNA recognition motif domain contributes, the muscle segment homeobox homolog 2-interacting domain is sufficient for Runx2 activation. Intriguingly, Runx1 cannot replace Runx2 in this assay. To better understand this Runx2 signaling cascade, we performed structure-function analysis of the Runx2-MINT trans-activation relationship. Systematic truncation and domain swapping in Runx1:Runx2 chimeras identified that the unique Runx2 activation domain 3 (AD3), encompassed by residues 316–421, conveys MINT+FGF2 trans-activation in transfection assays. Ala mutagenesis of Runx2 Ser/Thr residues identified that S301 and T326 in AD3 are necessary for full MINT+FGF2 trans-activation. Conversely, phosphomimetic Asp substitution of these AD3 Ser/Thr residues enhanced activation by MINT. Adjacent Pro residues implicated regulation by a proline-directed protein kinase (PDPK). Systematic screening with PDPK inhibitors identified that the casein kinase-2/homeodomain-interacting protein kinase (HIPK)/dual specificity tyrosine phosphorylation regulated kinase inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), but not ERK, c-Jun N-terminal kinase, p38MAPK, or other casein kinase-2 inhibitors, abrogated Runx2-, MINT-, and FGF2-activation. Systematic small interfering RNA-mediated silencing of DMAT-inhibited PDPKs revealed that HIPK3 depletion reduced MINT+FGF2-dependent activation of Runx2. HIPK3 and Runx2 coprecipitate after in vitro transcription-translation, and recombinant HIPK3 recognizes Runx2 AD3 as kinase substrate. Furthermore, DMAT treatment and HIPK3 RNAi inhibited MINT+FGF2 activation of

  20. Ligand-dependent responses of the silkworm prothoracicotropic hormone receptor, Torso, are maintained by unusual intermolecular disulfide bridges in the transmembrane region

    PubMed Central

    Konogami, Tadafumi; Yang, Yiwen; Ogihara, Mari H.; Hikiba, Juri; Kataoka, Hiroshi; Saito, Kazuki

    2016-01-01

    The insect membrane-protein, Torso, is a member of the receptor-tyrosine-kinase family, and is activated by its ligand, prothoracicotropic hormone (PTTH). Although PTTH is one of the most important regulators of insect development, the mechanism of Torso activation by the hormone has remained elusive. In this study, using heterologous expression in cultured Drosophila S2 cells, we detected ligand-independent dimerization of silkworm Torso, and found that the receptor molecules in the dimer were linked by intermolecular disulfide bridges. By examining the oligomerization states of several truncation and substitution mutants of Torso, atypical cysteine residues in the transmembrane region were identified as being responsible for the intermolecular linkage in the dimer. The replacement of all of the cysteines in the region with phenylalanines abolished the disulfide-bond-mediated dimerization; however, non-covalent dimerization of the mutant was detected using a cross-linking reagent, both with and without ligand stimulation. This non-covalent dimerization caused apparent receptor autophosphorylation independently of the ligand stimulation, but did not promote the ERK phosphorylation in the downstream signaling pathway. The unique Torso structure with the intermolecular disulfide bridges in the transmembrane region is necessary to maintain the ligand-dependent receptor functions of autophosphorylation and downstream activation. PMID:26928300

  1. Ligand-dependent responses of the silkworm prothoracicotropic hormone receptor, Torso, are maintained by unusual intermolecular disulfide bridges in the transmembrane region.

    PubMed

    Konogami, Tadafumi; Yang, Yiwen; Ogihara, Mari H; Hikiba, Juri; Kataoka, Hiroshi; Saito, Kazuki

    2016-03-01

    The insect membrane-protein, Torso, is a member of the receptor-tyrosine-kinase family, and is activated by its ligand, prothoracicotropic hormone (PTTH). Although PTTH is one of the most important regulators of insect development, the mechanism of Torso activation by the hormone has remained elusive. In this study, using heterologous expression in cultured Drosophila S2 cells, we detected ligand-independent dimerization of silkworm Torso, and found that the receptor molecules in the dimer were linked by intermolecular disulfide bridges. By examining the oligomerization states of several truncation and substitution mutants of Torso, atypical cysteine residues in the transmembrane region were identified as being responsible for the intermolecular linkage in the dimer. The replacement of all of the cysteines in the region with phenylalanines abolished the disulfide-bond-mediated dimerization; however, non-covalent dimerization of the mutant was detected using a cross-linking reagent, both with and without ligand stimulation. This non-covalent dimerization caused apparent receptor autophosphorylation independently of the ligand stimulation, but did not promote the ERK phosphorylation in the downstream signaling pathway. The unique Torso structure with the intermolecular disulfide bridges in the transmembrane region is necessary to maintain the ligand-dependent receptor functions of autophosphorylation and downstream activation.

  2. Kinetic analysis of aptazyme-regulated gene expression in a cell-free translation system: modeling of ligand-dependent and -independent expression.

    PubMed

    Kobori, Shungo; Ichihashi, Norikazu; Kazuta, Yasuaki; Matsuura, Tomoaki; Yomo, Tetsuya

    2012-08-01

    Aptazymes are useful as RNA-based switches of gene expression responsive to several types of compounds. One of the most important properties of the switching ability is the signal/noise (S/N) ratio, i.e., the ratio of gene expression in the presence of ligand to that in the absence of ligand. The present study was performed to gain a quantitative understanding of how the aptazyme S/N ratio is determined by factors involved in gene expression, such as transcription, RNA self-cleavage, RNA degradation, protein translation, and their ligand dependencies. We performed switching of gene expression using two on-switch aptazymes with different properties in a cell-free translation system, and constructed a kinetic model that quantitatively describes the dynamics of RNA and protein species involved in switching. Both theoretical and experimental analyses consistently demonstrated that factors determining both the absolute value and the dynamics of the S/N ratio are highly dependent on the routes of translation in the absence of ligand: translation from the ligand-independently cleaved RNA or leaky translation from the noncleaved RNA. The model obtained here is useful to assess the factors that restrict the S/N ratio and to improve aptazymes more efficiently.

  3. Polycomb recruitment at the Class II transactivator gene.

    PubMed

    Boyd, Nathaniel H; Morgan, Julie E; Greer, Susanna F

    2015-10-01

    The Class II Transactivator (CIITA) is the master regulator of Major Histocompatibility Class II (MHC II) genes. Transcription of CIITA through the IFN-γ inducible CIITA promoter IV (CIITA pIV) during activation is characterized by a decrease in trimethylation of histone H3 lysine 27 (H3K27me3), catalyzed by the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2). While EZH2 is the known catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) and is present at the inactive CIITA pIV, the mechanism of PRC2 recruitment to mammalian promoters remains unknown. Here we identify two DNA-binding proteins, which interact with and regulate PRC2 recruitment to CIITA pIV. We demonstrate Yin Yang 1 (YY1) and Jumonji domain containing protein 2 (JARID2) are binding partners along with EZH2 in mammalian cells. Upon IFN-γ stimulation, YY1 dissociates from CIITA pIV while JARID2 binding to CIITA pIV increases, suggesting novel roles for these proteins in regulating expression of CIITA pIV. Knockdown of YY1 and JARID2 yields decreased binding of EZH2 and H3K27me3 at CIITA pIV, suggesting important roles for YY1 and JARID2 at CIITA pIV. JARID2 knockdown also results in significantly elevated levels of CIITA mRNA upon IFN-γ stimulation. This study is the first to identify novel roles of YY1 and JARID2 in the epigenetic regulation of the CIITA pIV by recruitment of PRC2. Our observations indicate the importance of JARID2 in CIITA pIV silencing, and also provide a novel YY1-JARID2-PRC2 regulatory complex as a possible explanation of differential PRC2 recruitment at inducible versus permanently silenced genes.

  4. Noncanonical DNA Motifs as Transactivation Targets by Wild Type and Mutant p53

    PubMed Central

    Jordan, Jennifer J.; Menendez, Daniel; Inga, Alberto; Nourredine, Maher; Bell, Douglas; Resnick, Michael A.

    2008-01-01

    Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0–13 nucleotides (nt), originally defined by the consensus RRRCWWGYYY (n = 0–13) RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs) by wild type (WT) and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi–in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical ½-(a single decamer) and ¾-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of ½- and ¾-site REs greatly expands the p53 master regulatory network. PMID:18714371

  5. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    SciTech Connect

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  6. The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity

    SciTech Connect

    Meissner, Torsten B.; Li, Amy; Liu, Yuen-Joyce; Gagnon, Etienne; Kobayashi, Koichi S.

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known, NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.

  7. Endogenous endothelin 1 mediates angiotensin II-induced hypertrophy in electrically paced cardiac myocytes through EGFR transactivation, reactive oxygen species and NHE-1.

    PubMed

    Correa, María V; Nolly, Mariela B; Caldiz, Claudia I; de Cingolani, Gladys E Chiappe; Cingolani, Horacio E; Ennis, Irene L

    2014-09-01

    Emerging evidence supports a key role for endothelin-1 (ET-1) and the transactivation of the epidermal growth factor receptor (EGFR) in angiotensin II (Ang II) action. We aim to determine the potential role played by endogenous ET-1, EGFR transactivation and redox-dependent sodium hydrogen exchanger-1 (NHE-1) activation in the hypertrophic response to Ang II of cardiac myocytes. Electrically paced adult cat cardiomyocytes were placed in culture and stimulated with 1 nmol l(-1) Ang II or 5 nmol l(-1) ET-1. Ang II increased ~45 % cell surface area (CSA) and ~37 % [(3)H]-phenylalanine incorporation, effects that were blocked not only by losartan (Los) but also by BQ123 (AT1 and ETA receptor antagonists, respectively). Moreover, Ang II significantly increased ET-1 messenger RNA (mRNA) expression. ET-1 similarly increased myocyte CSA and protein synthesis, actions prevented by the reactive oxygen species scavenger MPG or the NHE-1 inhibitor cariporide (carip). ET-1 increased the phosphorylation of the redox-sensitive ERK1/2-p90(RSK) kinases, main activators of the NHE-1. This effect was prevented by MPG and the antagonist of EGFR, AG1478. Ang II, ET-1 and EGF increased myocardial superoxide production (187 ± 9 %, 149 ± 8 % and 163.7 ± 6 % of control, respectively) and AG1478 inhibited these effects. Interestingly, Los inhibited only Ang II whilst BQ123 cancelled both Ang II and ET-1 actions, supporting the sequential and unidirectional activation of AT1, ETA and EGFR. Based on the present evidence, we propose that endogenous ET-1 mediates the hypertrophic response to Ang II by a mechanism that involves EGFR transactivation and redox-dependent activation of the ERK1/2-p90(RSK) and NHE-1 in adult cardiomyocytes.

  8. Secretion of the human T cell leukemia virus type I transactivator protein tax.

    PubMed

    Alefantis, Timothy; Mostoller, Kate; Jain, Pooja; Harhaj, Edward; Grant, Christian; Wigdahl, Brian

    2005-04-29

    Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. The HTLV-I protein Tax is well known as a transcriptional transactivator and inducer of cellular transformation. However, it is also known that extracellular Tax induces the production and release of cytokines, such as tumor necrosis factor-alpha and interleukin-6, which have adverse effects on cells of the central nervous system. The cellular process by which Tax exits the cell into the extracellular environment is currently unknown. In most cell types, Tax has been shown to localize primarily to the nucleus. However, Tax has also been found to accumulate in the cytoplasm. The results contained herein begin to characterize the process of Tax secretion from the cell. Specifically, cytoplasmic Tax was demonstrated to localize to organelles associated with the cellular secretory process including the endoplasmic reticulum and Golgi complex. Additionally, it was demonstrated that full-length Tax was secreted from both baby hamster kidney cells and a human kidney tumor cell line, suggesting that Tax enters the secretory pathway in a leaderless manner. Tax secretion was partially inhibited by brefeldin A, suggesting that Tax migrated from the endoplasmic reticulum to the Golgi complex. In addition, combined treatment of Tax-transfected BHK-21 cells with phorbol myristate acetate and ionomycin resulted in a small increase in the amount of Tax secreted, suggesting that a fraction of cytoplasmic Tax was present in the regulated secretory pathway. These studies begin to provide a link between Tax localization to the cytoplasm, the detection of Tax in the extracellular environment, its possible role as an extracellular effector molecule, and a potential role in neurodegenerative disease associated with HTLV-I infection.

  9. Serine 249 phosphorylation by ATM protein kinase regulates hepatocyte nuclear factor-1α transactivation.

    PubMed

    Zhao, Long; Chen, Hui; Zhan, Yi-Qun; Li, Chang-Yan; Ge, Chang-Hui; Zhang, Jian-Hong; Wang, Xiao-Hui; Yu, Miao; Yang, Xiao-Ming

    2014-07-01

    Hepatocyte nuclear factor-1 alpha (HNF1α) exerts important effects on gene expression in multiple tissues. Several studies have directly or indirectly supported the role of phosphorylation processes in the activity of HNF1α. However, the molecular mechanism of this phosphorylation remains largely unknown. Using microcapillary liquid chromatography MS/MS and biochemical assays, we identified a novel phosphorylation site in HNF1α at Ser249. We also found that the ATM protein kinase phosphorylated HNF1α at Ser249 in vitro in an ATM-dependent manner and that ATM inhibitor KU55933 treatment inhibited phosphorylation of HNF1α at Ser249 in vivo. Coimmunoprecipitation assays confirmed the association between HNF1α and ATM. Moreover, ATM enhanced HNF1α transcriptional activity in a dose-dependent manner, whereas the ATM kinase-inactive mutant did not. The use of KU55933 confirmed our observation. Compared with wild-type HNF1α, a mutation in Ser249 resulted in a pronounced decrease in HNF1α transactivation, whereas no dominant-negative effect was observed. The HNF1αSer249 mutant also exhibited normal nuclear localization but decreased DNA-binding activity. Accordingly, the functional studies of HNF1αSer249 mutant revealed a defect in glucose metabolism. Our results suggested that ATM regulates the activity of HNF1α by phosphorylation of serine 249, particularly in glucose metabolism, which provides valuable insights into the undiscovered mechanisms of ATM in the regulation of glucose homeostasis.

  10. Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays.

    PubMed

    Fuhrmann, U; Slater, E P; Fritzemeier, K H

    1995-01-01

    Gestodene is a novel progestin used in oral contraceptives with an increased separation of progestogenic versus androgenic activity and a distinct antimineralocorticoid activity. This specific pharmacological profile of gestodene is defined by its pattern of binding affinities to a variety of steroid hormone receptors. In the present study the affinity of gestodene to the progesterone receptor (PR), the androgen receptor (AR), the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR) and the estrogen receptor (ER) was re-evaluated by steroid binding assays and compared to those obtained for 3-keto-desogestrel and progesterone. The two synthetic progestins displayed identical high affinity to rabbit PR and similar marked binding to rat AR and GR, while progesterone showed high affinity to PR but only low binding to AR and GR. Furthermore, 3-keto-desogestrel exhibited almost no binding to MR, whereas gestodene, similar to progesterone, showed marked affinity to this receptor. In addition to receptor binding studies, transactivation assays were carried out to investigate the effects of gestodene on AR-, GR- and MR-mediated induction of transcription. In contrast to progesterone, which showed antiandrogenic activity, gestodene and 3-keto-desogestrel both exhibited androgenic activity. Furthermore, all three progestins exhibited weak GR-mediated antagonistic activity. In contrast to progesterone, which showed almost no glucocorticoid activity, gestodene and 3-keto-desogestrel showed weak glucocorticoid action. In addition, gestodene inhibited the aldosterone-induced reporter gene transcription, similar to progesterone, whereas unlike progesterone, gestodene did not induce reporter gene transcription. 3-Keto-desogestrel showed neither antimineralocorticoid nor mineralocorticoid action.

  11. Stimulation of Inducible Nitric Oxide by Hepatitis B Virus Transactivator Protein HBx Requires MTA1 Coregulator*

    PubMed Central

    Bui-Nguyen, Tri M.; Pakala, Suresh B.; Sirigiri, Divijendranatha Reddy; Martin, Emil; Murad, Ferid; Kumar, Rakesh

    2010-01-01

    Nitric oxide has been implicated in the pathogenesis of inflammatory disorders, including hepatitis B virus-associated hepatocellular carcinoma. Transactivator protein HBx, a major regulator of cellular responses of hepatitis B virus, is known to induce the expression of MTA1 (metastasis-associated protein 1) coregulator via NF-κB signaling in hepatic cells. However, the underlying mechanism of HBx regulation of the inducible nitric-oxide synthase (iNOS) pathway remains unknown. Here we provide evidence that MTA1 is a positive regulator of iNOS transcription and plays a mechanistic role in HBx stimulation of iNOS expression and activity. We found that the HBx-MTA1 complex is recruited onto the human iNOS promoter in an NF-κB-dependent manner. Pharmacological inhibition of the NF-κB signaling prevented the ability of HBx to stimulate the transcription, the expression, and the activity of iNOS; nevertheless, these effects could be substantially rescued by MTA1 dysregulation. We further discovered that HBx-mediated stimulation of MTA1 is paralleled by the suppression of miR-661, a member of the small noncoding RNAs, recently shown to target MTA1. We observed that miR-661 controls of MTA1 expression contributed to the expression and activity of iNOS in HBx-expressing HepG2 cells. Accordingly, depletion of MTA1 by either miR-661 or siRNA in HBx-expressing cells severely impaired the ability of HBx to modulate the endogenous levels of iNOS and nitrite production. Together, these findings reveal an inherent role of MTA1 in HBx regulation of iNOS expression and consequently its function in the liver cancer cells. PMID:20022949

  12. Detection of anabolic steroid abuse using a yeast transactivation system.

    PubMed

    Zierau, Oliver; Lehmann, Sylvi; Vollmer, Günter; Schänzer, Willhelm; Diel, Patrick

    2008-10-01

    The classical analytical method for detection of anabolic steroid abuse is gas chromatography followed by mass spectrometry (GC/MS). However, even molecules with a chemical structure typical for this class of substances, are sometimes not identified in routine screening by GC/MS when their precise chemical structure is still unknown. A supplementary approach to identify anabolic steroid abuse could be a structure-independent identification of anabolic steroids based on their biological activity. To test the suitability of such a system, we have analyzed the yeast androgen receptor (AR) reporter gene system to identify anabolic steroids in human urine samples. Analysis of different anabolic steroids dissolved in buffer demonstrated that the yeast reporter gene system is able to detect a variety of different anabolic steroids and their metabolites with high specificity, including the so-called 'designer steroid' tetrahydrogestrinone. In contrast, other non-androgenic steroids, like glucocordicoids, progestins, mineralocordicoids and estrogens had a low potency to stimulate transactivation. To test whether the system would also allow the detection of androgens in urine, experiments with spiked urine samples were performed. The androgen reporter gene in yeast responds very sensitive to 5alpha-dihydrotestosterone (DHT), even at high urine concentrations. To examine whether the test system would also be able to detect anabolic steroids in the urine of anabolic steroid abusers, anonymous urine samples previously characterized by GCMS were analyzed with the reporter gene assay. Even when the concentration of the anabolic metabolites was comparatively low in some positive samples it was possible to identify the majority of positive samples by their biological activity. In conclusion, our results demonstrate that the yeast reporter gene system detects anabolic steroids and corresponding metabolites with high sensitivity even in urine of anabolic steroid abusing athletes

  13. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography

    DOE PAGES

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; ...

    2015-02-10

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. In this paper, we used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop withmore » various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. Finally, the results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.« less

  14. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography

    SciTech Connect

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N.; Nishida, Clinton R.; de Montellano, Paul R. Ortiz

    2015-02-10

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. In this paper, we used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. Finally, the results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.

  15. Recipient Myeloid-derived Immunomodulatory Cells Induce PD-1 Ligand-Dependent Donor CD4+Foxp3+ Treg Proliferation and Donor-Recipient Immune Tolerance After Murine Non-myeloablative Bone Marrow Transplantation§

    PubMed Central

    van der Merwe, Marie; Abdelsamed, Hossam A.; Seth, Aman; Ong, Taren; Vogel, Peter; Pillai, Asha B.

    2013-01-01

    We have previously shown that non-myeloablative total lymphoid irradiation/rabbit anti-thymocyte serum (TLI/ATS) conditioning facilitates potent donor-recipient immune tolerance following bone marrow transplantation (BMT) across major histocompatibility complex (MHC) barriers via recipient invariant natural killer T cell (iNKT cell)-derived IL-4-dependent expansion of donor Foxp3+ naturally occurring Treg (nTreg). Here we report a more specific mechanism. Wild-type (WT) BALB/c (H-2d) hosts were administered TLI/ATS and BMT from WT or STAT6−/− C57BL/6 (H-2b) donors. Donor nTreg following STAT6−/− BMT demonstrated no loss of proliferation in vivo, indicating that an IL-4 responsive population in the recipient rather than the donor drives donor nTreg proliferation. In GVHD target organs, three recipient CD11b+ cell subsets (Gr-1highCD11cneg; Gr-1intCD11cneg; and Gr-1lowCD11c+) were enriched early after TLI/ATS + BMT versus TBI/ATS + BMT. Gr-1lowCD11c+ cells induced potent H-2Kb+CD4+Foxp3+ nTreg proliferation in vitro in 72-hr MLR. Gr-1lowCD11c+ cells were significantly reduced in STAT6−/− and iNKT cell-deficient Jα18−/− BALB/c recipients after TLI/ATS + BMT. Depletion of CD11b+ cells resulted in severe acute GVHD, and adoptive transfer of WT Gr-1lowCD11c+ cells to Jα18−/− BALB/c recipients of TLI/ATS + BMT restored day 6 donor Foxp3+ nTreg proliferation and protection from CD8 effector T cell-mediated GVHD. Blockade of PD-L1 or PD-L2, but not CD40, TGF-β, Arginase 1, or iNOS inhibited nTreg proliferation in co-cultures of recipient-derived Gr-1lowCD11c+ cells with donor nTreg. Through iNKT-dependent Th2 polarization, myeloid-derived immunomodulatory DCs are expanded after non-myeloablative TLI/ATS conditioning and allogeneic BMT, induce PD-1 ligand dependent donor nTreg proliferation, and maintain potent graft-versus-host immune tolerance. PMID:24190658

  16. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors

    PubMed Central

    Harun-Or-Rashid, Mohammad; Konjusha, Dardan; Galindo-Romero, Caridad

    2016-01-01

    Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR) system and extracellular signal-regulated kinase (ERK) signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173) EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2), EGFR-inhibitor (AG1478), EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001), consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in which endothelins

  17. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors.

    PubMed

    Harun-Or-Rashid, Mohammad; Konjusha, Dardan; Galindo-Romero, Caridad; Hallböök, Finn

    2016-01-01

    Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR) system and extracellular signal-regulated kinase (ERK) signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173) EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2), EGFR-inhibitor (AG1478), EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001), consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in which endothelins

  18. Effects of the mango components mangiferin and quercetin and the putative mangiferin metabolite norathyriol on the transactivation of peroxisome proliferator-activated receptor isoforms.

    PubMed

    Wilkinson, Ashley S; Monteith, Gregory R; Shaw, P Nicholas; Lin, Chun-Nam; Gidley, Michael J; Roberts-Thomson, Sarah J

    2008-05-14

    Mangos are a source of bioactive compounds with potential health-promoting activity. This study evaluated the abilities of the mango components quercetin and mangiferin and the aglycone derivative of mangiferin, norathyriol, to modulate the transactivation of peroxisome proliferator-activated receptor isoforms (PPARs). PPARs are transcription factors important in many human diseases. Through the use of a gene reporter assay it was shown that quercetin inhibited the activation of all three isoforms of PPARs (PPARgamma IC(50) = 56.3 microM; PPARalpha IC(50) = 59.6 microM; PPARbeta IC(50) = 76.9 microM) as did norathyriol (PPARgamma IC(50) = 153.5 microM; PPARalpha IC(50) = 92.8 microM; PPARbeta IC(50) = 102.4 microM), whereas mangiferin did not inhibit the transactivation of any isoform. These findings suggest that mango components and metabolites may alter transcription and could contribute to positive health benefits via this or similar mechanisms.

  19. Limited temperature-sensitive transactivation by mutant adenovirus type 2 E1a proteins.

    PubMed Central

    Fahnestock, M L; Lewis, J B

    1989-01-01

    A series of linker-scanning and deletion mutations was generated in the transactivating domain of the larger, 289-amino-acid-residue E1a protein of adenovirus type 2. Mutant genes were recombined into virus to assay the ability of the variant E1a proteins to activate expression of an E1a-dependent viral gene during infection. Results of assays performed at 32, 37, and 40 degrees C indicated that at least 2 of the 10 mutants tested showed limited temperature sensitivity for transactivation. Images PMID:2523001

  20. Phosphorylation of Serine422 increases the stability and transactivation activities of human Osterix.

    PubMed

    Xu, Yuexin; Yao, Bing; Shi, Kaikai; Lu, Jianlei; Jin, Yucui; Qi, Bing; Li, Hongwei; Pan, Shiyang; Chen, Li; Ma, Changyan

    2015-03-24

    Osterix (Osx) is an essential regulator for osteoblast differentiation and bone formation. Although phosphorylation has been reported to be involved in the regulation of Osx activity, the precise underlying mechanisms remain to be elucidated. Here we identified S422 as a novel phosphorylation site of Osx and demonstrated that GSK-3β interacted and co-localized with Osx. GSK-3β increased the stability and transactivation activity of Osx through phosphorylation of the newly identified site. These findings expanded our understanding of the mechanisms of posttranslational regulation of Osx and the role of GSK-3β in the control of Osx transactivation activity.

  1. Transactivation of the ApoCIII promoter by ATF-2 and repression by members of the Jun family.

    PubMed

    Hadzopoulou-Cladaras, M; Lavrentiadou, S N; Zannis, V I; Kardassis, D

    1998-10-06

    It was shown previously that cytokines such as tumor necrosis factor-alpha that stimulate signal transduction pathways involving transcription factors ATF-2 and Jun repress apoCIII promoter activity in HepG2 cells. In the present study, DNase I footprinting analysis established that ATF-2 protected three regions in the apoCIII promoter. One region (-747/-726) present in the apoCIII enhancer is within the previously identified footprint I and has overlapping boundaries with the binding sites of Sp1 (-764/-742) and HNF-4 (-736/-714). The other two regions represent new footprints and have been designated D/E (-219/-199) and B/C (-102/-75). The B/C region overlaps with the previously identified footprint B which contains an HNF-4 binding site (-87/-63). Cotransfection experiments in HepG2 cells showed that ATF-2 transactivated the -890/+24 apoCIII promoter 1.6-fold. In addition, mutations in the proximal D/E (-219/-199) and distal I (-747/-726) ATF-2-binding sites reduced the apoCIII promoter strength to 33 and 9% of control, respectively, indicating that ATF-2 is a positive regulator of apoCIII gene transcription. Cotransfections with ATF-2 and HNF-4 expression plasmids resulted in additive transactivation of the apoCIII promoter. Furthermore, apoCIII promoter constructs bearing mutations in the D/E and I ATF-2 binding sites were efficiently transactivated by HNF-4, suggesting that these two factors contribute independently to the apoCIII promoter strength. Members of the Jun family (c-Jun, JunB, and JunD) caused a dose-dependent inhibition of the -890/+24 apoCIII promoter activity. A synthetic promoter containing the apoCIII enhancer in front of the minimal AdML promoter was also repressed by Jun. In contrast, apoCIII promoter segments lacking the enhancer region were transactivated by Jun. The findings suggest that homodimers of Jun or heterodimers of Jun with other AP-1 subunits could be responsible for the observed repression by interfering with the function

  2. Molecular Basis of Ligand-Dependent Regulation of NadR, the Transcriptional Repressor of Meningococcal Virulence Factor NadA.

    PubMed

    Liguori, Alessia; Malito, Enrico; Lo Surdo, Paola; Fagnocchi, Luca; Cantini, Francesca; Haag, Andreas F; Brier, Sébastien; Pizza, Mariagrazia; Delany, Isabel; Bottomley, Matthew J

    2016-04-01

    Neisseria adhesin A (NadA) is present on the meningococcal surface and contributes to adhesion to and invasion of human cells. NadA is also one of three recombinant antigens in the recently-approved Bexsero vaccine, which protects against serogroup B meningococcus. The amount of NadA on the bacterial surface is of direct relevance in the constant battle of host-pathogen interactions: it influences the ability of the pathogen to engage human cell surface-exposed receptors and, conversely, the bacterial susceptibility to the antibody-mediated immune response. It is therefore important to understand the mechanisms which regulate nadA expression levels, which are predominantly controlled by the transcriptional regulator NadR (Neisseria adhesin A Regulator) both in vitro and in vivo. NadR binds the nadA promoter and represses gene transcription. In the presence of 4-hydroxyphenylacetate (4-HPA), a catabolite present in human saliva both under physiological conditions and during bacterial infection, the binding of NadR to the nadA promoter is attenuated and nadA expression is induced. NadR also mediates ligand-dependent regulation of many other meningococcal genes, for example the highly-conserved multiple adhesin family (maf) genes, which encode proteins emerging with important roles in host-pathogen interactions, immune evasion and niche adaptation. To gain insights into the regulation of NadR mediated by 4-HPA, we combined structural, biochemical, and mutagenesis studies. In particular, two new crystal structures of ligand-free and ligand-bound NadR revealed (i) the molecular basis of 'conformational selection' by which a single molecule of 4-HPA binds and stabilizes dimeric NadR in a conformation unsuitable for DNA-binding, (ii) molecular explanations for the binding specificities of different hydroxyphenylacetate ligands, including 3Cl,4-HPA which is produced during inflammation, (iii) the presence of a leucine residue essential for dimerization and conserved in

  3. Molecular Basis of Ligand-Dependent Regulation of NadR, the Transcriptional Repressor of Meningococcal Virulence Factor NadA

    PubMed Central

    Liguori, Alessia; Malito, Enrico; Lo Surdo, Paola; Fagnocchi, Luca; Cantini, Francesca; Haag, Andreas F.; Brier, Sébastien; Pizza, Mariagrazia; Delany, Isabel; Bottomley, Matthew J.

    2016-01-01

    Neisseria adhesin A (NadA) is present on the meningococcal surface and contributes to adhesion to and invasion of human cells. NadA is also one of three recombinant antigens in the recently-approved Bexsero vaccine, which protects against serogroup B meningococcus. The amount of NadA on the bacterial surface is of direct relevance in the constant battle of host-pathogen interactions: it influences the ability of the pathogen to engage human cell surface-exposed receptors and, conversely, the bacterial susceptibility to the antibody-mediated immune response. It is therefore important to understand the mechanisms which regulate nadA expression levels, which are predominantly controlled by the transcriptional regulator NadR (Neisseria adhesin A Regulator) both in vitro and in vivo. NadR binds the nadA promoter and represses gene transcription. In the presence of 4-hydroxyphenylacetate (4-HPA), a catabolite present in human saliva both under physiological conditions and during bacterial infection, the binding of NadR to the nadA promoter is attenuated and nadA expression is induced. NadR also mediates ligand-dependent regulation of many other meningococcal genes, for example the highly-conserved multiple adhesin family (maf) genes, which encode proteins emerging with important roles in host-pathogen interactions, immune evasion and niche adaptation. To gain insights into the regulation of NadR mediated by 4-HPA, we combined structural, biochemical, and mutagenesis studies. In particular, two new crystal structures of ligand-free and ligand-bound NadR revealed (i) the molecular basis of ‘conformational selection’ by which a single molecule of 4-HPA binds and stabilizes dimeric NadR in a conformation unsuitable for DNA-binding, (ii) molecular explanations for the binding specificities of different hydroxyphenylacetate ligands, including 3Cl,4-HPA which is produced during inflammation, (iii) the presence of a leucine residue essential for dimerization and conserved in

  4. Sox10 is an active nucleocytoplasmic shuttle protein, and shuttling is crucial for Sox10-mediated transactivation.

    PubMed

    Rehberg, Stephan; Lischka, Peter; Glaser, Gabi; Stamminger, Thomas; Wegner, Michael; Rosorius, Olaf

    2002-08-01

    Sox10 belongs to a family of transcription regulators characterized by a DNA-binding domain known as the HMG box. It plays fundamental roles in neural crest development, peripheral gliogenesis, and terminal differentiation of oligodendrocytes. In accord with its function as transcription factor, Sox10 contains two nuclear localization signals and is most frequently detected in the nucleus. In this study, we report that Sox10 is an active nucleocytoplasmic shuttle protein, competent of both entering and exiting the nucleus. We identified a functional Rev-type nuclear export signal within the DNA-binding domain of Sox10. Mutational inactivation of this nuclear export signal or treatment of cells with the CRM1-specific export inhibitor leptomycin B inhibited nuclear export and consequently nucleocytoplasmic shuttling of Sox10. Importantly, the inhibition of the nuclear export of Sox10 led to decreased transactivation of transfected reporters and endogenous target genes, arguing that continuous nucleocytoplasmic shuttling is essential for the function of Sox10. To our knowledge this is the first time that nuclear export has been reported and shown to be functionally relevant for any Sox protein.

  5. Gentian violet induces wtp53 transactivation in cancer cells.

    PubMed

    Garufi, Alessia; D'Orazi, Valerio; Arbiser, Jack L; D'Orazi, Gabriella

    2014-04-01

    Recent studies suggest that gentian violet (GV) may have anticancer activity by inhibiting for instance NADPH oxidases (Nox genes) whose overexpression is linked to tumor progression. Nox1 overexpression has been shown to inhibit transcriptional activity of the oncosuppressor p53, impairing tumor cell response to anticancer drugs. The tumor suppressor p53 is a transcription factor that, upon cellular stress, is activated to induce target genes involved in tumor cell growth inhibition and apoptosis. Thus, its activation is important for efficient tumor eradication. In this study, we examined the effect of GV on wild-type (wt) p53 activity in cancer cells. We found that GV was able to overcome the inhibitory effect of the NADPH oxidase Nox1 on p53 transcriptional activity. For the first time we show that GV was able to directly induce p53/DNA binding and transcriptional activity. In vitro, GV markedly induced cancer cell death and apoptotic marker PARP cleavage in wtp53-carrying cells. GV-induced cell death was partly inhibited in cells deprived of p53, suggesting that the anticancer activity of GV may partly depend on p53 activation. GV is US Food and Drug Administration approved for human use and may, therefore, have therapeutic potential in the management of cancer through p53 activation.

  6. Gentian violet induces wtp53 transactivation in cancer cells

    PubMed Central

    GARUFI, ALESSIA; D’ORAZI, VALERIO; ARBISER, JACK L.; D’ORAZI, GABRIELLA

    2014-01-01

    Recent studies suggest that gentian violet (GV) may have anticancer activity by inhibiting for instance NADPH oxidases (Nox genes) whose overexpression is linked to tumor progression. Nox1 overexpression has been shown to inhibit transcriptional activity of the oncosuppressor p53, impairing tumor cell response to anticancer drugs. The tumor suppressor p53 is a transcription factor that, upon cellular stress, is activated to induce target genes involved in tumor cell growth inhibition and apoptosis. Thus, its activation is important for efficient tumor eradication. In this study, we examined the effect of GV on wild-type (wt) p53 activity in cancer cells. We found that GV was able to overcome the inhibitory effect of the NADPH oxidase Nox1 on p53 transcriptional activity. For the first time we show that GV was able to directly induce p53/DNA binding and transcriptional activity. In vitro, GV markedly induced cancer cell death and apoptotic marker PARP cleavage in wtp53-carrying cells. GV-induced cell death was partly inhibited in cells deprived of p53, suggesting that the anticancer activity of GV may partly depend on p53 activation. GV is US Food and Drug Administration approved for human use and may, therefore, have therapeutic potential in the management of cancer through p53 activation. PMID:24535435

  7. Variability of Inducible Expression across the Hematopoietic System of Tetracycline Transactivator Transgenic Mice

    PubMed Central

    Takiguchi, Megumi; Dow, Lukas E.; Prier, Julia E.; Carmichael, Catherine L.; Kile, Benjamin T.; Turner, Stephen J.; Lowe, Scott W.; Huang, David C. S.; Dickins, Ross A.

    2013-01-01

    The tetracycline (tet)-regulated expression system allows for the inducible overexpression of protein-coding genes, or inducible gene knockdown based on expression of short hairpin RNAs (shRNAs). The system is widely used in mice, however it requires robust expression of a tet transactivator protein (tTA or rtTA) in the cell type of interest. Here we used an in vivo tet-regulated fluorescent reporter approach to characterise inducible gene/shRNA expression across a range of hematopoietic cell types of several commonly used transgenic tet transactivator mouse strains. We find that even in strains where the tet transactivator is expressed from a nominally ubiquitous promoter, the efficiency of tet-regulated expression can be highly variable between hematopoietic lineages and between differentiation stages within a lineage. In some cases tet-regulated reporter expression differs markedly between cells within a discrete, immunophenotypically defined population, suggesting mosaic transactivator expression. A recently developed CAG-rtTA3 transgenic mouse displays intense and efficient reporter expression in most blood cell types, establishing this strain as a highly effective tool for probing hematopoietic development and disease. These findings have important implications for interpreting tet-regulated hematopoietic phenotypes in mice, and identify mouse strains that provide optimal tet-regulated expression in particular hematopoietic progenitor cell types and mature blood lineages. PMID:23326559

  8. Transactivation of lung lysozyme expression by Ets family member ESE-1.

    PubMed

    Lei, Wanli; Jaramillo, Richard J; Harrod, Kevin S

    2007-11-01

    Epithelial-specific Ets (ESE) transcription factors, consisting of ESE-1, ESE-2, and ESE-3, are constitutively expressed in distinct epithelia of mucosal tissues, including the lung. Each ESE member exhibits alternative splicing and yields at least two isoforms (a and b) with transcriptional targets largely unidentified. The studies described herein define a novel role for ESE transcription factors in transactivation of the human lysozyme gene (LYZ), an essential component of innate defense in lung epithelia. Of the six ESE isoforms, ESE-1a and ESE-1b transactivated LYZ promoter in reporter gene assays, whereas only ESE-1b dramatically upregulated transcription of endogenous LYZ in both nonpulmonary and pulmonary epithelial cells. Importantly, ESE-1a and ESE-1b could transactivate the LYZ promoter in cultured primary airway epithelial cells. ESE-2 and ESE-3 isoforms were unable to substantially transactivate the lysozyme promoter or upregulate transcription of endogenous LYZ. Two functional consensus Ets sites located in the proximal 130-bp LYZ promoter were responsive to ESE-1b as identified by site-directed mutagenesis and DNA binding assays. Short hairpin RNA attenuation of endogenous ESE-1b mRNA levels in lung epithelia resulted in decreased LYZ transcription. Furthermore, ESE-1 antibody specifically enriched the 130-bp proximal LYZ promoter in chromatin immunoprecipitation analyses. These findings define a novel role for ESE transcription factors in regulating lung innate defense and suggest distinct regulatory functions for ESE family members.

  9. STRUCTURE OF THE EGF RECEPTOR TRANSACTIVATION CIRCUIT INTEGRATES MULTIPLE SIGNALS WITH CELL CONTEXT

    PubMed Central

    Joslin, Elizabeth J.; Shankaran, Harish; Opresko, Lee K.; Bollinger, Nikki; Lauffenburger, Douglas A.; Wiley, H. Steven

    2012-01-01

    Summary Transactivation of the epidermal growth factor receptor (EGFR) is thought to be a process by which a variety of cellular inputs can be integrated into a single signaling pathway through either stimulated proteolysis (shedding) of membrane-anchored EGFR ligands or by modification of the activity of the EGFR. As a first step towards building a predictive model of the EGFR transactivation circuit, we quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR to regulate extracellular signal regulated kinase (ERK) activity in human mammary epithelial cells. By using a “non-binding” reporter of ligand shedding, we found that transactivation triggers a positive feedback loop from ERK back to the EGFR such that ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding. Importantly, activated Ras and ERK levels were nearly linear functions of ligand shedding and the effect of multiple, sub-saturating inputs was additive. Simulations showed that ERK-mediated feedback through ligand shedding resulted in a stable steady-state level of activated ERK, but also showed that the extracellular environment can modulate the level of feedback. Our results suggest that the transactivation circuit acts as a context-dependent integrator and amplifier of multiple extracellular signals and that signal integration can effectively occur at multiple points in the EGFR pathway. PMID:20458382

  10. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    PubMed

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression.

  11. Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells.

    PubMed

    Lee, Sook-Jeong; Hwang, Sung-Ook; Noh, Eun Joo; Kim, Dong-Uk; Nam, Miyoung; Kim, Jong Hyeok; Nam, Joo Hyun; Hoe, Kwang-Lae

    2014-02-14

    Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.

  12. Analysis of Tat transactivation of human immunodeficiency virus transcription in vitro.

    PubMed

    Bohan, C A; Kashanchi, F; Ensoli, B; Buonaguro, L; Boris-Lawrie, K A; Brady, J N

    1992-01-01

    The HIV Tat protein is a potent transactivator of HIV transcription, increasing both RNA initiation and elongation. We now demonstrate that purified, full-length 86 amino acid Tat protein specifically transactivates the HIV LTR in vitro to a high level (25- to 60-fold). Tat transactivation was specifically blocked by anti-Tat serum, but not preimmune serum. Tat did not transactivate transcription from the control adenovirus major late promoter (AdMLP). HIV transcription was blocked at various functional steps during initiation and elongation complex formation. Similar to the control AdMLP, HIV basal initiation complex assembly was sensitive to the addition of 0.015% sarkosyl prior to the addition of nucleoside triphosphates. Resistance to 0.05% sarkosyl required the addition of G, C, and U, which constitute the first 13 bases of the HIV RNA transcript. The addition of Tat to the in vitro transcription relieved the 0.015% sarkosyl block. These Tat-induced complexes were sensitive to 0.05% sarkosyl, suggesting that transcriptional initiation had not occurred. Consistent with this hypothesis, the addition of G, C, and U to the Tat-induced transcription complexes allowed the rapid conversion to transcription initiation complexes. Tat also facilitated the formation of 0.015% sarkosyl-resistant complexes in a reconstituted transcription system containing partially purified transcription factors and polymerase II. Following the formation of stable initiation complexes, Tat increased the rate and efficiency of transcription elongation on the HIV but not the AdML template. Kinetic analysis of Tat transactivation suggests that approximately 30% of the Tat initiation complexes are converted to elongation complexes. We conclude that Tat, in addition to its demonstrated role in RNA elongation, facilitates transcription initiation in vitro.

  13. Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code

    PubMed Central

    Ciribilli, Yari; Monti, Paola; Bisio, Alessandra; Nguyen, H. Thien; Ethayathulla, Abdul S.; Ramos, Ana; Foggetti, Giorgia; Menichini, Paola; Menendez, Daniel; Resnick, Michael A.; Viadiu, Hector; Fronza, Gilberto; Inga, Alberto

    2013-01-01

    Structural and biochemical studies have demonstrated that p73, p63 and p53 recognize DNA with identical amino acids and similar binding affinity. Here, measuring transactivation activity for a large number of response elements (REs) in yeast and human cell lines, we show that p53 family proteins also have overlapping transactivation profiles. We identified mutations at conserved amino acids of loops L1 and L3 in the DNA-binding domain that tune the transactivation potential nearly equally in p73, p63 and p53. For example, the mutant S139F in p73 has higher transactivation potential towards selected REs, enhanced DNA-binding cooperativity in vitro and a flexible loop L1 as seen in the crystal structure of the protein–DNA complex. By studying, how variations in the RE sequence affect transactivation specificity, we discovered a RE-transactivation code that predicts enhanced transactivation; this correlation is stronger for promoters of genes associated with apoptosis. PMID:23892287

  14. Physical and functional interaction of the Epstein-Barr virus BZLF1 transactivator with the retinoic acid receptors RAR alpha and RXR alpha.

    PubMed Central

    Sista, N D; Barry, C; Sampson, K; Pagano, J

    1995-01-01

    Epstein-Barr virus (EBV) reactivation, indicated by induction of EBV early antigens from latently infected lymphoid cell lines by phorbol esters, is inhibited by retinoic acid (RA). Viral reactivation, which is triggered by the immediate-early BZLF-1 (Z) viral gene product, is repressed by retinoic acid receptors (RARs) RAR alpha and RXR alpha. These proteins negatively regulate Z-mediated transactivation of the promoter for an EBV early gene product, early antigen-diffuse (EaD). Here we confirm a direct physical interaction between the AP1-like protein Z and RXR alpha and map the domains of interaction in the Z protein and RXR alpha. The domain required for homodimerization of Z is separate from that required for its interaction with RXR alpha. Z also has the effect of repressing activation of an RAR-responsive cellular promoter (BRE). Point mutants in the dimerization domain of Z unable to interact with RXR alpha do not repress RXR alpha-mediated transactivation of BRE, the promoter for RAR beta, which suggests that interaction between the two proteins is required for this repressor effect. The domain of RXR alpha required for interaction with Z has been mapped, and is again separate from that required for homodimerization. These results indicate that a 'cross-coupling' or direct interaction between Z and RAR alpha and RXR alpha can modulate the reactivation of latent EBV infection and suggest that, reciprocally, the viral protein Z may influence cellular regulatory pathways. Images PMID:7784177

  15. Epidermal growth factor receptor transactivation is implicated in IL-6-induced proliferation and ERK1/2 activation in non-transformed prostate epithelial cells.

    PubMed

    Poncet, Nadège; Guillaume, Johann; Mouchiroud, Guy

    2011-03-01

    Epidermal growth factor receptor (EGF-R) is a receptor tyrosine kinase that can be activated by molecules other than its cognate ligands. This form of crosstalk called transactivation is frequently observed in both physiological and pathological cellular responses, yet it involves various mechanisms. Using the RWPE-1 cell line as a model of non-transformed prostate epithelial progenitor cells, we observed that interleukin-6 (IL-6) is able to promote cell proliferation and ERK1/2 activation provided that EGF-R kinase activity is not impaired. Treatment with GM6001, a general matrix metalloprotease inhibitor, indicated that IL-6 activates EGF-R through cleavage and release of membrane-anchored EGF-R ligands. Several inhibitors were used to test implication of "a disintegrin and metalloprotease" ADAM10 and ADAM17. GW280264X that targets both ADAM10 and ADAM17 blocked IL-6-induced proliferation and ERK1/2 phosphorylation with same potency as GM6001. However, ADAM10 inhibitor GI254023X and ADAM17 inhibitor TAPI-2 were less efficient in inhibiting response of RWPE-1 cells to IL-6, indicating possible cooperation of ADAM17 with ADAM10 or other metalloproteases. Accordingly, our findings suggest that IL-6 stimulates shedding of EGF-R ligands and transactivation of EGF-R in normal prostate epithelial cells, which may be an important mechanism to promote cell proliferation in inflammatory prostate.

  16. A1 adenosine receptor–stimulated exocytosis in bladder umbrella cells requires phosphorylation of ADAM17 Ser-811 and EGF receptor transactivation

    PubMed Central

    Prakasam, H. Sandeep; Gallo, Luciana I.; Li, Hui; Ruiz, Wily G.; Hallows, Kenneth R.; Apodaca, Gerard

    2014-01-01

    Despite the importance of ADAM17-dependent cleavage in normal biology and disease, the physiological cues that trigger its activity, the effector pathways that promote its function, and the mechanisms that control its activity, particularly the role of phosphorylation, remain unresolved. Using native bladder epithelium, in some cases transduced with adenoviruses encoding small interfering RNA, we observe that stimulation of apically localized A1 adenosine receptors (A1ARs) triggers a Gi-Gβγ-phospholipase C-protein kinase C (PKC) cascade that promotes ADAM17-dependent HB-EGF cleavage, EGFR transactivation, and apical exocytosis. We further show that the cytoplasmic tail of rat ADAM17 contains a conserved serine residue at position 811, which resides in a canonical PKC phosphorylation site, and is phosphorylated in response to A1AR activation. Preventing this phosphorylation event by expression of a nonphosphorylatable ADAM17S811A mutant or expression of a tail-minus construct inhibits A1AR-stimulated, ADAM17-dependent HB-EGF cleavage. Furthermore, expression of ADAM17S811A in bladder tissues impairs A1AR-induced apical exocytosis. We conclude that adenosine-stimulated exocytosis requires PKC- and ADAM17-dependent EGFR transactivation and that the function of ADAM17 in this pathway depends on the phosphorylation state of Ser-811 in its cytoplasmic domain. PMID:25232008

  17. Cyclin E/Cdk2, P/CAF, and E1A regulate the transactivation of the c-myc promoter by FOXM1

    SciTech Connect

    Wierstra, Inken Alves, Juergen

    2008-03-28

    FOXM1c transactivates the c-myc promoter by binding directly to its TATA-boxes. The present study demonstrates that the transactivation of the c-myc promoter by FOXM1c is enhanced by the key proliferation signal cyclin E/Cdk2, but repressed by P/CAF and the adenoviral oncoprotein E1A. Furthermore, FOXM1c interacts with the coactivator and histone acetyltransferase P/CAF. This study shows that, on the c-myc-P1 TATA-box, FOXM1c does not function simply as normal transcription factor just binding to an unusual site. Moreover, the inhibitory N-terminus of FOXM1c does not inhibit its transrepression domain or its EDA. Others reported that a cyclin/Cdk-binding LXL-motif of the splice variant FoxM1b is required for its interaction with Cdk2, Cdk1, and p27, its phosphorylation by Cdk1 and its activation by Cdc25B. In contrast, we now demonstrate that this LXL-motif is not required for the activation of FOXM1c by cyclin D1/Cdk4, cyclin E/Cdk and cyclin A/Cdk2 or for the repression of FOXM1c by p27.

  18. The N-terminal nuclear localization sequences of liver X receptors alpha and beta bind to importin alpha and are essential for both nuclear import and transactivating functions.

    PubMed

    Miller, Anna; Crumbley, Christine; Prüfer, Kirsten

    2009-04-01

    Liver X receptors (LXRs) alpha and beta are nuclear receptors, which form obligate heterodimers with the retinoid X receptor (RXR). The LXRs regulate both redundantly and non-redundantly the transcription of genes controlling cholesterol metabolism and transport as well as lipogenesis. Previously, we showed that mutations in putative N-terminal nuclear localization sequences (NLSs) within both LXRs inhibit nuclear import. Through in vitro studies, we show here that these NLSs bind importin alpha and are both necessary and sufficient for the nuclear import of LXRs. Imaging, transactivation, and electro-mobility shift experiments show that RXR rescues the nuclear import of the LXRalpha NLS mutant yet does not restore its transcriptional activity despite intact DNA binding. In contrast, RXR partially rescues the import of the LXRbeta NLS mutant, but has no effect on its transcriptional activity due to the loss of DNA binding. Experiments with NLS mutant RXR confirmed that RXR may dominate the nuclear import of the RXR/LXRalpha heterodimer, whereas LXRbeta dominates the nuclear import of the RXR/LXRbeta heterodimer. Intriguingly, our data indicate differences between LXRalpha and LXRbeta in their interaction with RXR and in the role their NLSs play in transactivating functions independent of nuclear import.

  19. Sharpin promotes hepatocellular carcinoma progression via transactivation of Versican expression

    PubMed Central

    Tanaka, Y; Tateishi, K; Nakatsuka, T; Kudo, Y; Takahashi, R; Miyabayashi, K; Yamamoto, K; Asaoka, Y; Ijichi, H; Tateishi, R; Shibahara, J; Fukayama, M; Ishizawa, T; Hasegawa, K; Kokudo, N; Koike, K

    2016-01-01

    Sharpin (Shank-associated RH domain-interacting protein, also known as SIPL1) is a multifunctional molecule that participates in various biological settings, including nuclear factor-κB signaling activation and tumor suppressor gene inhibition. Sharpin is upregulated in various types of cancers, including hepatocellular carcinoma (HCC), and is implicated in tumor progression. However, the exact roles of Sharpin in tumorigenesis and tumor progression remain largely unknown. Here we report novel mechanisms of HCC progression through Sharpin overexpression. In our study, Sharpin was upregulated in human HCC tissues. Increased Sharpin expression enhanced hepatoma cell invasion, whereas decrease in Sharpin expression by RNA interference inhibited invasion. Microarray analysis identified that Versican, a chondroitin sulfate proteoglycan that plays crucial roles in tumor progression and invasion, was also upregulated in Sharpin-expressing stable cells. Versican expression increased in the majority of HCC tissues and knocking down of Versican greatly attenuated hepatoma cell invasion. Sharpin expression resulted in a significant induction of Versican transcription synergistically with Wnt/β-catenin pathway activation. Furthermore, Sharpin-overexpressing cells had high tumorigenic properties in vivo. These results demonstrate that Sharpin promotes Versican expression synergistically with the Wnt/β-catenin pathway, potentially contributing to HCC development. A Sharpin/Versican axis could be an attractive therapeutic target for this currently untreatable cancer. PMID:27941932

  20. Nanotherapeutics Using an HIV-1 Poly A and Transactivator of the HIV-1 LTR-(TAR-) Specific siRNA

    PubMed Central

    Mahajan, Supriya D.; Aalinkeel, Ravikumar; Reynolds, Jessica L.; Nair, Bindukumar; Sykes, Donald E.; Law, Wing-Cheung; Ding, Hong; Bergey, Earl J.; Prasad, Paras N.; Schwartz, Stanley A.

    2011-01-01

    HIV-1 replication can be efficiently inhibited by intracellular expression of an siRNA targeting the viral RNA. We used a well-validated siRNA (si510) which targets the poly A/TAR (transactivator of the HIV-1 LTR) site and suppresses viral replication. Nanotechnology holds much potential for impact in the field of HIV-1 therapeutics, and nanoparticles such as quantum rods (QRs) can be easily functionalized to incorporate siRNA forming stable nanoplexes that can be used for gene silencing. We evaluated the efficacy of the QR-si510 HIV-1 siRNA nanoplex in suppressing viral replication in the HIV-1-infected monocytic cell line THP-1 by measuring p24 antigen levels and gene expression levels of HIV-1 LTR. Our results suggest that the QR-si510 HIV-1 siRNA nanoplex is not only effective in delivering siRNA, but also in suppressing HIV-1 viral replication for a longer time period. HIV-1 nanotherapeutics can thus enhance systemic bioavailability and offer multifunctionality. PMID:21660279

  1. The 9aaTAD Transactivation Domains: From Gal4 to p53

    PubMed Central

    Havelka, Marek; Rezacova, Martina

    2016-01-01

    The family of the Nine amino acid Transactivation Domain, 9aaTAD family, comprises currently over 40 members. The 9aaTAD domains are universally recognized by the transcriptional machinery from yeast to man. We had identified the 9aaTAD domains in the p53, Msn2, Pdr1 and B42 activators by our prediction algorithm. In this study, their competence to activate transcription as small peptides was proven. Not surprisingly, we elicited immense 9aaTAD divergence in hundreds of identified orthologs and numerous examples of the 9aaTAD species' convergence. We found unforeseen similarity of the mammalian p53 with yeast Gal4 9aaTAD domains. Furthermore, we identified artificial 9aaTAD domains generated accidentally by others. From an evolutionary perspective, the observed easiness to generate 9aaTAD transactivation domains indicates the natural advantage for spontaneous generation of transcription factors from DNA binding precursors. PMID:27618436

  2. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    PubMed Central

    Wang, Zhixiang

    2016-01-01

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. PMID:26771606

  3. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research.

    PubMed

    Wang, Zhixiang

    2016-01-12

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges.

  4. c-Jun transactivates Puma gene expression to promote osteoarthritis.

    PubMed

    Lu, Huading; Hou, Gang; Zhang, Yongkai; Dai, Yuhu; Zhao, Huiqing

    2014-05-01

    Osteoarthritis (OA) is a chronic degenerative joint disorder in which genetic, hormonal, mechanical and ageing factors affect its progression. Current studies are focusing on chondrocytes as a key mediator of OA at a cellular level. however, the mechanism underlying chondrocyte apoptosis remains unclear. PUMA is a pro-apoptotic member of the BH3-only subgroup of the Bcl-2 family and is involved in a large number of physiological and pathological processes. In the present study, we examined whether PUMA has a role in IL-1β-induced apoptosis and whether the c-Jun N-terminal kinase (JNK)/c-Jun pathway mediates the induction of PUMA, thus contributing to chondrocyte apoptosis. The results demonstrated an increase in PUMA protein and mRNA levels in cultured mouse chondrocytes following 4 h of IL-1β treatment. Furthermore, this upregulation of PUMA was critical for chondrocyte apoptosis as knockdown of PUMA using PUMA-specific siRNA significantly reduced apoptosis in cultured cells. Upon pharmacological inhibition of the JNK/c-Jun pathway with CE11004 or SP600125, the expression of PUMA was notably suppressed with a concomitant decrease in apoptosis observed in IL-1β-treated chondrocytes. Also, immunohistochemical studies revealed that the PUMA and c-Jun proteins were upregulated in chondrocytes from the articular cartilage of OA patients. Together, these data suggest a role for PUMA and the JNK/c-Jun pathway in the regulation of chondrocyte apoptosis during OA.

  5. EPAS1 trans-activation during hypoxia requires p42/p44 MAPK.

    PubMed

    Conrad, P W; Freeman, T L; Beitner-Johnson, D; Millhorn, D E

    1999-11-19

    Hypoxia is a common environmental stress that regulates gene expression and cell function. A number of hypoxia-regulated transcription factors have been identified and have been shown to play critical roles in mediating cellular responses to hypoxia. One of these is the endothelial PAS-domain protein 1 (EPAS1/HIF2-alpha/HLF/HRF). This protein is 48% homologous to hypoxia-inducible factor 1-alpha (HIF1-alpha). To date, virtually nothing is known about the signaling pathways that lead to either EPAS1 or HIF1-alpha activation. Here we show that EPAS1 is phosphorylated when PC12 cells are exposed to hypoxia and that p42/p44 MAPK is a critical mediator of EPAS1 activation. Pretreatment of PC12 cells with the MEK inhibitor, PD98059, completely blocked hypoxia-induced trans-activation of a hypoxia response element (HRE) reporter gene by transfected EPAS1. Likewise, expression of a constitutively active MEK1 mimicked the effects of hypoxia on HRE reporter gene expression. However, pretreatment with PD98059 had no effect on EPAS1 phosphorylation during hypoxia, suggesting that MAPK targets other proteins that are critical for the trans-activation of EPAS1. We further show that hypoxia-induced trans-activation of EPAS1 is independent of Ras. Finally, pretreatment with calmodulin antagonists nearly completely blocked both the hypoxia-induced phosphorylation of MAPK and the EPAS1 trans-activation of HRE-Luc. These results demonstrate that the MAPK pathway is a critical mediator of EPAS1 activation and that activation of MAPK and EPAS1 occurs through a calmodulin-sensitive pathway and not through the GTPase, Ras. These results are the first to identify a specific signaling pathway involved in EPAS1 activation.

  6. Identification of Essential Genetic Baculoviral Elements for Recombinant Protein Expression by Transactivation in Sf21 Insect Cells

    PubMed Central

    Chen, Fang-Fang; Yen, Zen-Zen; Lindemann, Nils; Meyer, Steffen; Spehr, Johannes; van den Heuvel, Joop

    2016-01-01

    The Baculovirus Expression Vector System (BEVS) is widely used to produce high amounts of recombinant proteins. Nevertheless, generating recombinant baculovirus in high quality is rather time-consuming and labor-intensive. Alternatively, virus-free expression in insect cells did not achieve similar expression levels for most proteins so far. The transactivation method is a promising approach for protein expression in Sf21 cells. It combines advantages of BEVS and plasmid-based expression by activating strong virus-dependent promoters on a transfected plasmid by baculoviral coinfection. Here, we identified expression elements required for transactivation. Therefore, we designed several vectors comprising different viral promoters or promoter combinations and tested them for eGFP expression using the automated BioLector microcultivation system. Remarkably, only the combination of the very late promoter p10 together with the homologous region 5 (hr5) could boost expression during transactivation. Other elements, like p10 alone or the late viral promoter polH, did not respond to transactivation. A new combination of hr5 and p10 with the strongest immediate early OpMNPV viral promoter OpIE2 improved the yield of eGFP by ~25% in comparison to the previous applied hr5-IE1-p10 expression cassette. Furthermore, we observed a strong influence of the transcription termination sequence and vector backbone on the level of expression. Finally, the expression levels for transactivation, BEVS and solely plasmid-based expression were compared for the marker protein eGFP, underlining the potential of transactivation for fast recombinant protein expression in Sf21 cells. In conclusion, essential elements for transactivation could be identified. The optimal elements were applied to generate an improved vector applicable in virus-free plasmid-based expression, transactivation and BEVS. PMID:26934632

  7. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions.

    PubMed

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Crucial Roles for Interactions between MLL3/4 and INI1 in Nuclear Receptor Transactivation

    PubMed Central

    Lee, Seunghee; Kim, Dae-Hwan; Goo, Young Hwa; Lee, Young Chul; Lee, Soo-Kyung; Lee, Jae W.

    2009-01-01

    Nuclear receptor (NR) transactivation involves multiple coactivators, and the molecular basis for how these are functionally integrated needs to be determined to fully understand the NR action. Activating signal cointegrator-2 (ASC-2), a transcriptional coactivator of many NRs and transcription factors, forms a steady-state complex, ASCOM (for ASC-2 complex), which contains histone H3-lysine-4 (H3K4) methyltransferase MLL3 or its paralog MLL4. Here, we show that ASCOM requires a functional cross talk with the ATPase-dependent chromatin remodeling complex Swi/Snf for efficient NR transactivation. Our results reveal that ASCOM and Swi/Snf are tightly colocalized in the nucleus and that ASCOM and Swi/Snf promote each other’s binding to NR target genes. We further show that the C-terminal SET domain of MLL3 and MLL4 directly interacts with INI1, an integral subunit of Swi/Snf. Our mutational analysis demonstrates that this interaction underlies the mutual facilitation of ASCOM and Swi/Snf recruitment to NR target genes. Importantly, this study uncovers a specific protein-protein interaction as a novel venue to couple two distinct enzymatic coactivator complexes during NR transactivation. PMID:19221051

  9. The leukemogenic fusion of MLL with ENL creates a novel transcriptional transactivator.

    PubMed

    Schreiner, S A; García-Cuéllar, M P; Fey, G H; Slany, R K

    1999-10-01

    Translocations affecting the chromosomal locus 11q23 are hallmarks of infant leukemias. These events disrupt the MLL gene (also ALL-1 or HRX) and fuse the MLL amino terminus in frame with a variety of unrelated proteins. The ENL gene on 19p13.1 is a recurrent fusion partner of MLL. Whereas potential functions have been suggested for isolated domains of either MLL or ENL no experimental data exist for the biological properties of the complete chimeric MLL-ENL protein. We show here that the fusion of MLL with ENL creates a novel molecule that is a potent general transcriptional transactivator in transient reporter gene assays. MLL-ENL strongly transactivated several unrelated promoters including the promoter of Hoxa7 a potential target gene for the unaltered MLL protein. This transactivation capability was cell type specific and it was critically dependent on the contributions of the methyltransferase-homology (MT) region of MLL in combination with the C-terminus of ENL. Squelching experiments and gel retardation studies identified the ENL C-terminus as a binding partner for an unknown factor and the MLL MT region as a unique general DNA binding motif. The potential implications of these findings for the leukemogenesis by MLL-ENL are discussed.

  10. Androgen receptor transactivation assay using green fluorescent protein as a reporter.

    PubMed

    Beck, Verena; Reiter, Evelyne; Jungbauer, Alois

    2008-02-15

    For screening of a large number of samples for androgenic activity, a robust system with minimal handling is required. The coding sequence for human androgen receptor (AR) was inserted into expression plasmid YEpBUbi-FLAG1, resulting in the plasmid YEpBUbiFLAG-AR, and the estrogen response element (ERE) on the reporter vector YRpE2 was replaced by an androgen response element (ARE), resulting in the plasmid YRpE2-ARE. Thus, a fully functional transactivation assay system with beta-galactosidase as a reporter gene could be created. Furthermore, green fluorescent protein (GFP) was introduced as an alternative reporter gene that resulted in a simplification of the whole assay procedure. For evaluation of both reporter systems, seven steroidal compounds with known AR agonistic properties (5 alpha-dihydrotestosterone, testosterone, androstenedione, 17 alpha-methyltestosterone, progesterone, epitestosterone, and d-norgestrel) were tested, and their potencies obtained in the different assays were compared. Furthermore, potencies from the transactivation assays were compared with IC(50) values obtained in radioligand binding assays. The newly developed androgen receptor transactivation assay is a useful tool for characterizing compounds with androgenic activity.

  11. Transactivation of the parathyroid hormone promoter by specificity proteins and the nuclear factor Y complex.

    PubMed

    Alimov, Alexander P; Park-Sarge, Ok-Kyong; Sarge, Kevin D; Malluche, Hartmut H; Koszewski, Nicholas J

    2005-08-01

    We previously identified a highly conserved specificity protein 1 (Sp1) DNA element in mammalian PTH promoters that acted as an enhancer of gene transcription and bound Sp1 and Sp3 proteins present in parathyroid gland nuclear extracts. More recently, a nuclear factor (NF)-Y element (NF-Y(prox)) was also described by our group, which was located approximately 30 bp downstream from the Sp1 site in the human PTH (hPTH) promoter and by itself acted as a weak enhancer of gene transcription. We now report that Sp proteins and NF-Y can synergistically enhance transcription of a minimal hPTH promoter construct. Positioning of the Sp1 DNA element appears to be critical for this synergism because deviations of one half of a helical turn caused an approximate 60% decrease in transactivation. Finally, examination of the bovine PTH (bPTH) promoter also revealed Sp1/NF-Y synergism, in conjunction with the identification of an analogous NF-Y binding site similarly positioned downstream from the bPTH Sp1 element. In summary, synergistic transactivation of the hPTH and bPTH promoters is observed by Sp proteins and the NF-Y complex. The conservation of this transactivation in the human and bovine promoters suggests that this may be a principle means of enhancing PTH gene transcription.

  12. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation

    PubMed Central

    Ravasi, Saula; Citro, Simona; Viviani, Barbara; Capra, Valérie; Rovati, G Enrico

    2006-01-01

    Background Cysteine-containing leukotrienes (cysteinyl-LTs) are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC) proliferation. We used human ASMC (HASMC) to identify the signal transduction pathway(s) of the leukotriene D4 (LTD4)-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R) and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS) was estimated by measuring dichlorodihydrofluorescein (DCF) oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX) and phosphoinositide 3-kinase (PI3K) inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC) abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF-R through the

  13. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation.

    PubMed

    Ravasi, Saula; Citro, Simona; Viviani, Barbara; Capra, Valérie; Rovati, G Enrico

    2006-03-22

    Cysteine-containing leukotrienes (cysteinyl-LTs) are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC) proliferation. We used human ASMC (HASMC) to identify the signal transduction pathway(s) of the leukotriene D4 (LTD4)-induced DNA synthesis. Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R) and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS) was estimated by measuring dichlorodihydrofluorescein (DCF) oxidation. We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX) and phosphoinositide 3-kinase (PI3K) inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC) abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF-R through the intervention of PI3K and ROS. While PI3K

  14. Delta-1 Activation of Notch-1 Signaling Results in HES-1 Transactivation

    PubMed Central

    Jarriault, Sophie; Le Bail, Odile; Hirsinger, Estelle; Pourquié, Olivier; Logeat, Frédérique; Strong, Clare F.; Brou, Christel; Seidah, Nabil G.; Israël, Alain

    1998-01-01

    The Notch receptor is involved in many cell fate determination events in vertebrates and invertebrates. It has been shown in Drosophila melanogaster that Delta-dependent Notch signaling activates the transcription factor Suppressor of Hairless, leading to an increased expression of the Enhancer of Split genes. Genetic evidence has also implicated the kuzbanian gene, which encodes a disintegrin metalloprotease, in the Notch signaling pathway. By using a two-cell coculture assay, we show here that vertebrate Dl-1 activates the Notch-1 cascade. Consistent with previous data obtained with active forms of Notch-1 a HES-1-derived promoter construct is transactivated in cells expressing Notch-1 in response to Dl-1 stimulation. Impairing the proteolytic maturation of the full-length receptor leads to a decrease in HES-1 transactivation, further supporting the hypothesis that only mature processed Notch is expressed at the cell surface and activated by its ligand. Furthermore, we observed that Dl-1-induced HES-1 transactivation was dependent both on Kuzbanian and RBP-J activities, consistent with the involvement of these two proteins in Notch signaling in Drosophila. We also observed that exposure of Notch-1-expressing cells to Dl-1 results in an increased level of endogenous HES-1 mRNA. Finally, coculture of Dl-1-expressing cells with myogenic C2 cells suppresses differentiation of C2 cells into myotubes, as previously demonstrated for Jagged-1 and Jagged-2, and also leads to an increased level of endogenous HES-1 mRNA. Thus, Dl-1 behaves as a functional ligand for Notch-1 and has the same ability to suppress cell differentiation as the Jagged proteins do. PMID:9819428

  15. Divergent Transactivation of Maize Storage Protein Zein Genes by the Transcription Factors Opaque2 and OHPs

    PubMed Central

    Yang, Jun; Ji, Chen; Wu, Yongrui

    2016-01-01

    Maize transcription factors (TFs) opaque2 (O2) and the O2 heterodimerizing proteins (OHP1 and OHP2) originated from an ancient segmental duplication. The 22-kDa (z1C) and 19-kDa (z1A, z1B, and z1D) α-zeins are the most abundant storage proteins in maize endosperm. O2 is known to regulate α-zein gene expression, but its target motifs in the 19-kDa α-zein gene promoters have not been identified. The mechanisms underlying the regulation of α-zein genes by these TFs are also not well understood. In this study, we found that the O2 binding motifs in the α-zein gene promoters are quite flexible, with ACGT being present in the z1C and z1A promoters and a variant, ACAT, being present in the z1B and z1D promoters. OHPs recognized and transactivated all of the α-zein promoters, although to much lower levels than did O2. In the presence of O2, the suppression of OHPs did not cause a significant reduction in the transcription of α-zein genes, but in the absence of O2, OHPs were critical for the expression of residual levels of α-zeins. These findings demonstrated that O2 is the primary TF and that OHPs function as minor TFs in this process. This relationship is the converse of that involved in 27-kDa γ-zein gene regulation, indicating that the specificities of O2 and the OHPs for regulating zein genes diverged after gene duplication. The prolamine-box binding factor by itself has limited transactivation activity, but it promotes the binding of O2 to O2 motifs, resulting in the synergistic transactivation of α-zein genes. PMID:27474726

  16. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    SciTech Connect

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  17. DNA-binding-defective mutants of the Epstein-Barr virus lytic switch activator Zta transactivate with altered specificities.

    PubMed Central

    Flemington, E K; Lytle, J P; Cayrol, C; Borras, A M; Speck, S H

    1994-01-01

    The Epstein-Barr virus BRLF1 and BZLF1 genes are the first viral genes transcribed upon induction of the viral lytic cycle. The protein products of both genes (referred to here as Rta and Zta, respectively) activate expression of other viral genes, thereby initiating the lytic cascade. Among the viral antigens expressed upon induction of the lytic cycle, however, Zta is unique in its ability to disrupt viral latency; expression of the BZLF1 gene is both necessary and sufficient for triggering the viral lytic cascade. We have previously shown that Zta can activate its own promoter (Zp), through binding to two Zta recognition sequences (ZIIIA and ZIIIB). Here we describe mutant Zta proteins that do not bind DNA (referred to as Zta DNA-binding mutants [Zdbm]) but retain the ability to transactivate Zp. Consistent with the inability of these mutants to bind DNA, transactivation of Zp by Zdbm is not dependent on the Zta recognition sequences. Instead, transactivation by Zdbm is dependent upon promoter elements that bind cellular factors. An examination of other viral and cellular promoters identified promoters that are weakly responsive or unresponsive to Zdbm. An analysis of a panel of artificial promoters containing one copy of various promoter elements demonstrated a specificity for Zdbm activation that is distinct from that of Zta. These results suggest that non-DNA-binding forms of some transactivators retain the ability to transactivate specific target promoters without direct binding to DNA. Images PMID:8164660

  18. A transgenic mouse line for collecting ribosome-bound mRNA using the tetracycline transactivator system

    PubMed Central

    Drane, Laurel; Ainsley, Joshua A.; Mayford, Mark R.; Reijmers, Leon G.

    2014-01-01

    Acquiring the gene expression profiles of specific neuronal cell-types is important for understanding their molecular identities. Genome-wide gene expression profiles of genetically defined cell-types can be acquired by collecting and sequencing mRNA that is bound to epitope-tagged ribosomes (TRAP; translating ribosome affinity purification). Here, we introduce a transgenic mouse model that combines the TRAP technique with the tetracycline transactivator (tTA) system by expressing EGFP-tagged ribosomal protein L10a (EGFP-L10a) under control of the tetracycline response element (tetO-TRAP). This allows both spatial control of EGFP-L10a expression through cell-type specific tTA expression, as well as temporal regulation by inhibiting transgene expression through the administration of doxycycline. We show that crossing tetO-TRAP mice with transgenic mice expressing tTA under the Camk2a promoter (Camk2a-tTA) results in offspring with cell-type specific expression of EGFP-L10a in CA1 pyramidal neurons and medium spiny neurons in the striatum. Co-immunoprecipitation confirmed that EGFP-L10a integrates into a functional ribosomal complex. In addition, collection of ribosome-bound mRNA from the hippocampus yielded the expected enrichment of genes expressed in CA1 pyramidal neurons, as well as a depletion of genes expressed in other hippocampal cell-types. Finally, we show that crossing tetO-TRAP mice with transgenic Fos-tTA mice enables the expression of EGFP-L10a in CA1 pyramidal neurons that are activated during a fear conditioning trial. The tetO-TRAP mouse can be combined with other tTA mouse lines to enable gene expression profiling of a variety of different cell-types. PMID:25400545

  19. Byakangelicin induces cytochrome P450 3A4 expression via transactivation of pregnane X receptors in human hepatocytes

    PubMed Central

    Yang, Jian; Luan, Xiaofei; Gui, Haiyan; Yan, Peng; Yang, Dongfang; Song, Xiulong; Liu, Wei; Hu, Gang; Yan, Bingfang

    2011-01-01

    BACKGROUND AND PURPOSE Byakangelicin is found in extracts of the root of Angelica dahurica, used in Korea and China as a traditional medicine to treat colds, headache and toothache. As byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones. Therefore, this study investigated the effects of byakangelicin on the cytochrome P450 isoform cytochrome (CY) P3A4 in human hepatocytes. EXPERIMENTAL APPROACH Cultures of human hepatocytes and a hepatoma cell line (Huh7 cells) were used. mRNA and protein levels were measured by quantitative reverse transcription-polymerase chain reaction and Western blot. Plasmid constructs and mutants were prepared by cloning and site-directed mutagenesis. Reporter (luciferase) activity was determined by transient co-transfection experiments. KEY RESULTS In human primary hepatocytes, byakangelicin markedly induced the expression of CYP3A4 both at the mRNA level (approximately fivefold) and the protein level (approximately threefold) but did not affect expression of human pregnane X receptor (hPXR). In reporter assays, byakangelicin activated CYP3A4 promoter in a concentration-dependent manner (EC50= 5 µM), and this activation was enhanced by co-transfection with hPXR. Further reporter assays demonstrated that the eNR4 binding element in the CYP3A4 promoter was required for the transcriptional activation of CYP3A4 by byakangelicin. CONCLUSIONS AND IMPLICATIONS Byakangelicin induced expression and activity of CYP3A4 in human hepatocytes. This induction was achieved by the transactivation of PXR and not by increased expression of PXR. Therefore, byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of drug–drug interactions. PMID:20942813

  20. Characterization of a nuclear export signal within the human T cell leukemia virus type I transactivator protein Tax.

    PubMed

    Alefantis, Timothy; Barmak, Kate; Harhaj, Edward W; Grant, Christian; Wigdahl, Brian

    2003-06-13

    Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. The HTLV-I transactivator protein Tax plays an integral role in the etiology of adult T cell leukemia, as expression of Tax in T lymphocytes has been shown to result in immortalization. In addition, Tax is known to interface with numerous transcription factor families, including activating transcription factor/cAMP response element-binding protein and nuclear factor-kappaB, requiring Tax to localize to both the nucleus and cytoplasm. In this report, the nucleocytoplasmic localization of Tax was examined in Jurkat, HeLa, and U-87 MG cells. The results reported herein indicate that Tax contains a leucine-rich nuclear export signal (NES) that, when fused to green fluorescent protein (GFP), can direct nuclear export via the CRM-1 pathway, as determined by leptomycin B inhibition of nuclear export. However, cytoplasmic localization of full-length Tax was not altered by treatment with leptomycin B, suggesting that native Tax utilizes another nuclear export pathway. Additional support for the presence of a functional NES has also been shown because the NES mutant Tax(L200A)-GFP localized to the nuclear membrane in the majority of U-87 MG cells. Evidence has also been provided suggesting that the Tax NES likely exists as a conditionally masked signal because the truncation mutant TaxDelta214-GFP localized constitutively to the cytoplasm. These results suggest that Tax localization may be directed by specific changes in Tax conformation or by specific interactions with cellular proteins leading to changes in the availability of the Tax NES and nuclear localization signal.

  1. Suppression of RelA/p65 transactivation activity by a lignoid manassantin isolated from Saururus chinensis.

    PubMed

    Lee, Jeong-Hyung; Hwang, Bang Yeon; Kim, Kyung-Sook; Nam, Jeong Beom; Hong, Young Soo; Lee, Jung Joon

    2003-11-15

    In our search for NF-kappaB inhibitors from natural resources, we have previously identified two structurally related dilignans, manassantin A and B as specific inhibitors of NF-kappaB activation from Saururus chinensis. However, their molecular mechanism of action remains unclear. We here demonstrate that manassantins A and B are potent inhibitors of NF-kappaB activation by the suppression of transciptional activity of RelA/p65 subunit of NF-kappaB. These compounds significantly inhibited the induced expression of NF-kappaB reporter gene by LPS or TNF-alpha in a dose-dependent manner. However, these compounds did not prevent the DNA-binding activity of NF-kappaB assessed by electrophoretic mobility shift assay as well as the induced-degradation of IkappaB-alpha protein by LPS or TNF-alpha. Further analysis revealed that manassantins A and B dose-dependently suppressed not only the induced NF-kappaB activation by overexpression of RelA/p65, but also transactivation activity of RelA/p65. Furthermore, treatment of cells with these compounds prevented the TNF-alpha-induced expression of anti-apoptotic NF-kappaB target genes Bfl-1/A1, a prosurvival Bcl-2 homologue, and resulted in sensitizing HT-1080 cells to TNF-alpha-induced cell death. Similarly, these compounds also suppressed the LPS-induced inducible nitric oxide synthase expression and nitric oxide production. Taken together, manassantins A and B could be valuable candidate for the intervention of NF-kappaB-dependent pathological condition such as inflammation and cancer.

  2. Epidermal growth factor receptor transactivation by intracellular prostaglandin E2-activated prostaglandin E2 receptors. Role in retinoic acid receptor-β up-regulation.

    PubMed

    Fernández-Martínez, Ana B; Lucio Cazaña, Francisco J

    2013-09-01

    The pharmacological modulation of renoprotective factor vascular endothelial growth factor-A (VEGF-A) in the proximal tubule has therapeutic interest. In human proximal tubular HK-2 cells, treatment with all-trans retinoic acid or prostaglandin E2 (PGE2) triggers the production of VEGF-A. The pathway involves an initial increase in intracellular PGE2, followed by activation of EP receptors (PGE2 receptors, most likely an intracellular subset) and increase in retinoic acid receptor-β (RARβ) expression. RARβ then up-regulates transcription factor hypoxia-inducible factor-1α (HIF-1α), which increases the transcription and production of VEGF-A. Here we studied the role in this pathway of epidermal growth factor receptor (EGFR) transactivation by EP receptors. We found that EGFR inhibitor AG1478 prevented the increase in VEGF-A production induced by PGE2- and all-trans retinoic acid. This effect was due to the inhibition of the transcriptional up-regulation of RARβ, which resulted in loss of the RARβ-dependent transcriptional up-regulation of HIF-1α. PGE2 and all-trans retinoic acid also increased EGFR phosphorylation and this effect was sensitive to antagonists of EP receptors. The role of intracellular PGE2 was indicated by two facts; i) PGE2-induced EGFR phosphorylation was substantially prevented by inhibitor of prostaglandin uptake transporter bromocresol green and ii) all-trans retinoic acid treatment, which enhanced intracellular but not extracellular PGE2, had lower effect on EGFR phosphorylation upon pre-treatment with cyclooxygenase inhibitor diclofenac. Thus, EGFR transactivation by intracellular PGE2-activated EP receptors results in the sequential activation of RARβ and HIF-1α leading to increased production of VEGF-A and it may be a target for the therapeutic modulation of HIF-1α/VEGF-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Mutations in the amino-terminal domain of the human androgen receptor may be associated with partial androgen insensitivity and impaired transactivation in vitro.

    PubMed

    Holterhus, P-M; Werner, R; Struve, D; Hauffa, B P; Schroeder, C; Hiort, O

    2005-09-01

    The majority of genetic variations in the androgen receptor (AR) gene are point mutations leading to impairment of the DNA- or hormone-binding domains. The N-terminus encoded by the first exon of the AR-gene usually harbors disruptive mutations associated with complete androgen insensitivity syndrome (CAIS) while missense mutations related with partial androgen insensitivity syndrome (PAIS) are seemingly rare. We present a 46,XY male with scrotal hypospadias in whom we detected a S432 F point mutation within the N-terminus. Transient transfections of an AR expression plasmid carrying the S432 F mutation using Chinese Hamster Ovary (CHO) cells revealed a significant partial reduction in transactivation of the co-transfected androgen responsive (ARE) (2)TATA luciferase reporter gene thus confirming PAIS. In two further 46, XY patients with slight to moderate virilization defects, we detected an S411 N mutation, and a 9 base pair deletion leading to the loss of amino acids 409 to 411 (L-A-S), respectively. These mutations did not compromise AR-function under the chosen experimental settings. The S432 F-patient supports particular significance of the AR-N-terminus for mild forms of AIS while the functional role of the two further mutations remains unclear. The N-terminus is a species-specific AR-domain possibly also involved in contributing to target tissue selectivity of AR-actions via mediating co-regulator interactions. Therefore, mild molecular defects of the AR-N-terminus may not necessarily inhibit general transactivation properties using currently established reporter gene models.

  4. Transactivation of the Receptor-tyrosine Kinase Ephrin Receptor A2 Is Required for the Low Molecular Weight Hyaluronan-mediated Angiogenesis That Is implicated in Tumor Progression*

    PubMed Central

    Lennon, Frances E; Mirzapoiazova, Tamara; Mambetsariev, Nurbek; Mambetsariev, Bolot; Salgia, Ravi; Singleton, Patrick A.

    2014-01-01

    Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, understanding the mechanism(s) by which angiogenesis occurs can have important therapeutic implications in numerous malignancies. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA, ∼2500 Da) promotes endothelial cell (EC) barrier disruption and angiogenesis. However, the mechanism(s) by which this occurs is poorly defined. Our data indicate that treatment of human EC with LMW-HA induced CD44v10 association with the receptor-tyrosine kinase, EphA2, transactivation (tyrosine phosphorylation) of EphA2, and recruitment of the PDZ domain scaffolding protein, PATJ, to the cell periphery. Silencing (siRNA) CD44, EphA2, PATJ, or Dbs (RhoGEF) expression blocked LMW-HA-mediated angiogenesis (EC proliferation, migration, and tubule formation). In addition, silencing EphA2, PATJ, Src, or Dbs expression blocked LMW-HA-mediated RhoA activation. To translate our in vitro findings, we utilized a novel anginex/liposomal targeting of murine angiogenic endothelium with either CD44 or EphA2 siRNA and observed inhibition of LMW-HA-induced angiogenesis in implanted Matrigel plugs. Taken together, these results indicate LMW-HA-mediated transactivation of EphA2 is required for PATJ and Dbs membrane recruitment and subsequent RhoA activation required for angiogenesis. These results suggest that targeting downstream effectors of LMW-HA could be a useful therapeutic intervention for angiogenesis-associated diseases including tumor progression. PMID:25023279

  5. The carboxyl terminus of the chemokine receptor CCR3 contains distinct domains which regulate chemotactic signaling and receptor down-regulation in a ligand-dependent manner.

    PubMed

    Sabroe, Ian; Jorritsma, Annelies; Stubbs, Victoria E L; Xanthou, Georgina; Jopling, Louise A; Ponath, Paul D; Williams, Timothy J; Murphy, Philip M; Pease, James E

    2005-04-01

    The chemokine receptor CCR3 regulates the chemotaxis of leukocytes implicated in allergic disease, such as eosinophils. Incubation of eosinophils with CCL11, CCL13 or CCL5 resulted in a rapid decrease of cell-surface CCR3 which was replicated using CCR3 transfectants. Progressive truncation of the CCR3 C terminus by 15 amino acids produced three constructs, Delta340, Delta325 and Delta310. Delta340 and Delta325 were able to bind CCL11 with affinities similar to wild-type CCR3. Delta340 transfectants exhibited enhanced migration and reduced receptor down-regulation in response to CCL11 and CCL13. Delta325 transfectants displayed chemotactic responses to CCL11 and CCL13 similar to wild-type CCR3, and had impaired down-regulation when stimulated with CCL13 but not CCL11. In contrast, neither the Delta325 nor Delta340 truncation affected chemotaxis or receptor down-regulation induced by CCL5. Delta310 transfectants bound CCL11 poorly and were biologically inactive. Inhibitors of p38 mitogen-activated protein kinase and PI3-kinase antagonized eosinophil shape change responses and chemotaxis of transfectants to CCL11 and CCL13. In contrast, shape change but not chemotaxis was sensitive to inhibition of the extracellular signal-regulated kinase kinase pathway suggesting differential regulation of the two responses. Thus, the CCR3 C terminus contains distinct domains responsible for the regulation of receptor desensitization and for coupling to chemotactic responses.

  6. Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53.

    PubMed

    Lowry, David F; Stancik, Amber; Shrestha, Ranjay Mann; Daughdrill, Gary W

    2008-05-01

    Internuclear distances derived from paramagnetic relaxation enhancement (PRE) data were used to restrain molecular dynamics simulations of the intrinsically unstructured transactivation domain of the tumor suppressor protein, p53. About 1000 structures were simulated using ensemble averaging of replicate molecules to compensate for the inherent bias in the PRE-derived distances. Gyration radii measurements on these structures show that the p53 transactivation domain (p53TAD) is statistically predominantly in a partially collapsed state that is unlike the open structure that is found for p53TAD bound to either the E3 ubiquitin ligase, MDM2, or the 70 kDa subunit of replication protein A, RPA70. Contact regions that potentially mediate the collapse were identified and found to consist of mostly hydrophobic residues. The identified contact regions preferentially place the MDM2 and RPA70 binding regions in close proximity. We show that our simulations thoroughly sample the available range of conformations and that a fraction of the molecules are in an open state that would be competent for binding either MDM2 or RPA70. We also show that the Stokes radius estimated from the average gyration radius of the ensemble is in good agreement with the value determined using size exclusion chromatography. Finally, the presence of a persistent loop localized to a PXP motif was identified. Serine residues flanking the PXP motif become phosphorylated in response to DNA damage, and we postulate that this will perturb the equilibrium population to more open conformations.

  7. A versatile cis-blocking and trans-activation strategy for ribozyme characterization

    PubMed Central

    Kennedy, Andrew B.; Liang, Joe C.; Smolke, Christina D.

    2013-01-01

    Synthetic RNA control devices that use ribozymes as gene-regulatory components have been applied to controlling cellular behaviors in response to environmental signals. Quantitative measurement of the in vitro cleavage rate constants associated with ribozyme-based devices is essential for advancing the molecular design and optimization of this class of gene-regulatory devices. One of the key challenges encountered in ribozyme characterization is the efficient generation of full-length RNA from in vitro transcription reactions, where conditions generally lead to significant ribozyme cleavage. Current methods for generating full-length ribozyme-encoding RNA rely on a trans-blocking strategy, which requires a laborious gel separation and extraction step. Here, we develop a simple two-step gel-free process including cis-blocking and trans-activation steps to support scalable generation of functional full-length ribozyme-encoding RNA. We demonstrate our strategy on various types of natural ribozymes and synthetic ribozyme devices, and the cleavage rate constants obtained for the RNA generated from our strategy are comparable with those generated through traditional methods. We further develop a rapid, label-free ribozyme cleavage assay based on surface plasmon resonance, which allows continuous, real-time monitoring of ribozyme cleavage. The surface plasmon resonance-based characterization assay will complement the versatile cis-blocking and trans-activation strategy to broadly advance our ability to characterize and engineer ribozyme-based devices. PMID:23155065

  8. Enhancement of alkaloid production in opium and California poppy by transactivation using heterologous regulatory factors.

    PubMed

    Apuya, Nestor R; Park, Joon-Hyun; Zhang, Liping; Ahyow, Maurice; Davidow, Patricia; Van Fleet, Jennifer; Rarang, Joel C; Hippley, Matthew; Johnson, Thomas W; Yoo, Hye-Dong; Trieu, Anthony; Krueger, Shannon; Wu, Chuan-yin; Lu, Yu-ping; Flavell, Richard B; Bobzin, Steven C

    2008-02-01

    Genes encoding regulatory factors isolated from Arabidopsis, soybean and corn have been screened to identify those that modulate the expression of genes encoding for enzymes involved in the biosynthesis of morphinan alkaloids in opium poppy (Papaver somniferum) and benzophenanthridine alkaloids in California poppy (Eschscholzia californica). In opium poppy, the over-expression of selected regulatory factors increased the levels of PsCOR (codeinone reductase), Ps4'OMT (S-adenosyl-l-methionine:3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase) and Ps6OMT [(R,S)-norcoclaurine 6-O-methyltransferase] transcripts by 10- to more than 100-fold. These transcriptional activations translated into an enhancement of alkaloid production in opium poppy of up to at least 10-fold. In California poppy, the transactivation effect of regulatory factor WRKY1 resulted in an increase of up to 60-fold in the level of EcCYP80B1 [(S)-N-methylcoclaurine 3'-hydroxylase] and EcBBE (berberine bridge enzyme) transcripts. As a result, the accumulations of selected alkaloid intermediates were enhanced up to 30-fold. The transactivation effects of other regulatory factors led to the accumulation of the same intermediates. These regulatory factors also led to the production of new alkaloids in California poppy callus culture.

  9. Acetylation of FOXM1 is essential for its transactivation and tumor growth stimulation

    PubMed Central

    Lv, Cuicui; Zhao, Ganye; Sun, Xinpei; Wang, Pan; Xie, Nan; Luo, Jianyuan; Tong, Tanjun

    2016-01-01

    Forkhead box transcription factor M1 (FOXM1) plays crucial roles in a wide array of biological processes, including cell proliferation and differentiation, the cell cycle, and tumorigenesis by regulating the expression of its target genes. Elevated expression of FOXM1 is frequently observed in a multitude of malignancies. Here we show that FOXM1 can be acetylated by p300/CBP at lysines K63, K422, K440, K603 and K614 in vivo. This modification is essential for its transactivation on the target genes. Acetylation of FOXM1 increases during the S phase and remains high throughout the G2 and M phases, when FOXM1 transcriptional activity is required. We find that the acetylation-deficient FOXM1 mutant is less active and exhibits significantly weaker tumorigenic activities compared to wild-type FOXM1. Mechanistically, the acetylation of FOXM1 enhances its transcriptional activity by increasing its DNA binding affinity, protein stability, and phosphorylation sensitivity. In addition, we demonstrate that NAD-dependent histone deacetylase SIRT1 physically binds to and deacetylates FOXM1 in vivo. The deacetylation of FOXM1 by SIRT1 attenuates its transcriptional activity and decreases its protein stability. Together, our findings demonstrate that the reversible acetylation of FOXM1 by p300/CBP and SIRT1 modulates its transactivation function. PMID:27542221

  10. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues.

    PubMed Central

    Goff, S A; Klein, T M; Roth, B A; Fromm, M E; Cone, K C; Radicella, J P; Chandler, V L

    1990-01-01

    The C1, B and R genes regulating the maize anthocyanin biosynthetic pathway encode tissue-specific regulatory proteins with similarities to transcriptional activators. The C1 and R regulatory genes are usually responsible for pigmentation of seed tissues, and the B-Peru allele of B, but not the B-I allele, can substitute for R function in the seed. In this study, members of the B family of regulatory genes were delivered to intact maize tissues by high velocity microprojectiles. In colorless r aleurones or embryos, the introduction of the B-Peru genomic clone or the expressed cDNAs of B-Peru or B-I resulted in anthocyanin-producing cells. Luciferase produced from the Bronze1 anthocyanin structural gene promoter was induced 100-fold when co-introduced with the expressed B-Peru or B-I cDNAs. This quantitative transactivation assay demonstrates that the proteins encoded by these two B alleles are equally able to transactivate the Bronze1 promoter. Analogous results were obtained using embryogenic callus cells. These observations suggest that one major contribution towards tissue-specific anthocyanin synthesis controlled by the various alleles of the B and R genes is the differential expression of functionally similar proteins. Images Fig. 2. PMID:2369901

  11. NLRC5/MHC class I transactivator is a target for immune evasion in cancer.

    PubMed

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A; Lizee, Gregory A; Kobayashi, Koichi S

    2016-05-24

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers.

  12. NLRC5/MHC class I transactivator is a target for immune evasion in cancer

    PubMed Central

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B.; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A.; Lizee, Gregory A.; Kobayashi, Koichi S.

    2016-01-01

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as “NLRC5” [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8+ cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers. PMID:27162338

  13. The homeoprotein Alx3 contains discrete functional domains and exhibits cell-specific and selective monomeric binding and transactivation.

    PubMed

    Pérez-Villamil, Beatriz; Mirasierra, Mercedes; Vallejo, Mario

    2004-09-03

    Alx3 is a paired class aristaless-like homeoprotein expressed during embryonic development. Transcriptional transactivation by aristaless-like proteins has been associated with cooperative dimerization upon binding to artificially generated DNA consensus sequences known as P3 sites, but natural target sites in genes regulated by Alx3 are unknown. We report the cloning of a cDNA encoding the rat homolog of Alx3, and we characterize the protein domains that are important for transactivation, dimerization, and binding to DNA. Two proline-rich domains located amino-terminal to the homeodomain (Pro1 and Pro2) are necessary for Alx3-dependent transactivation, whereas another one (Pro3) located in the carboxyl terminus is dispensable but contributes to enhance the magnitude of the response. We confirmed that transcriptional activity of Alx3 from a P3 site correlates with cooperative dimerization upon binding to DNA. However, Alx3 was found to bind selectively to non-P3-related TAAT-containing sites present in the promoter of the somatostatin gene in a specific manner that depends on the nuclear protein environment. Cell-specific transactivation elicited by Alx3 from these sites could not be predicted from in vitro DNA-binding experiments by using recombinant Alx3. In addition, transactivation did not depend on cooperative dimerization upon binding to cognate somatostatin DNA sites. Our data indicate that the paradigm according to which Alx3 must act homodimerically via cooperative binding to P3-like sites is insufficient to explain the mechanism of action of this homeoprotein to regulate transcription of natural target genes. Instead, Alx3 undergoes restrictive or permissive interactions with nuclear proteins that determine its binding to and transactivation from TAAT target sites selected in a cell-specific manner.

  14. Activator protein-1 contributes to high NaCl-induced increase in tonicity-responsive enhancer/osmotic response element-binding protein transactivating activity.

    PubMed

    Irarrazabal, Carlos E; Williams, Chester K; Ely, Megan A; Birrer, Michael J; Garcia-Perez, Arlyn; Burg, Maurice B; Ferraris, Joan D

    2008-02-01

    Tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP) is a Rel protein that activates transcription of osmoprotective genes at high extracellular NaCl. Other Rel proteins NFAT1-4 and NF-kappaB complex with activator protein-1 (AP-1) to transactivate target genes through interaction at composite NFAT/NF-kappaB.AP-1 sites. TonEBP/OREBP target genes commonly have one or more conserved AP-1 binding sites near TonEBP/OREBP cognate elements (OREs). Also, TonEBP/OREBP and the AP-1 proteins c-Fos and c-Jun are all activated by high NaCl. We now find, using an ORE.AP-1 reporter from the target aldose reductase gene or the same reporter with a mutated AP-1 site, that upon stimulation by high extracellular NaCl, 1) the presence of a wild type, but not a mutated, AP-1 site contributes to TonEBP/OREBP-dependent transcription and 2) AP-1 dominant negative constructs inhibit TonEBP/OREBP-dependent transcription provided the AP-1 site is not mutated. Using supershifts and an ORE.AP-1 probe, we find c-Fos and c-Jun present in combination with TonEBP/OREBP. Also, c-Fos and c-Jun coimmunoprecipitate with TonEBP/OREBP, indicating physical association. Small interfering RNA knockdown of either c-Fos or c-Jun inhibits high NaCl-induced increase of mRNA abundance of the TonEBP/OREBP target genes AR and BGT1. Furthermore, a dominant negative AP-1 also reduces high NaCl-induced increase of TonEBP/OREBP transactivating activity. Inhibition of p38, which is known to stimulate TonEBP/OREBP transcriptional activity, reduces high NaCl-dependent transcription of an ORE.AP-1 reporter only if the AP-1 site is intact. Thus, AP-1 is part of the TonEBP/OREBP enhanceosome, and its role in high NaCl-induced activation of TonEBP/OREBP may require p38 activity.

  15. Epstein-Barr Virus Latent Membrane Protein LMP-2A Is Sufficient for Transactivation of the Human Endogenous Retrovirus HERV-K18 Superantigen

    PubMed Central

    Sutkowski, Natalie; Chen, Gang; Calderon, German; Huber, Brigitte T.

    2004-01-01

    Superantigens are microbial proteins that strongly stimulate T cells. We described previously that the Epstein-Barr virus (EBV) transactivates a superantigen encoded by the human endogenous retrovirus, HERV-K18. We now report that the transactivation is dependent upon the EBV latent cycle proteins. Moreover, LMP-2A is sufficient for induction of HERV-K18 superantigen activity. PMID:15220463

  16. Piroxicam and c-phycocyanin prevent colon carcinogenesis by inhibition of membrane fluidity and canonical Wnt/β-catenin signaling while up-regulating ligand dependent transcription factor PPARγ.

    PubMed

    Saini, Manpreet Kaur; Sanyal, Sankar Nath

    2014-06-01

    The colon cancer tissues from DMH treated rats exhibited higher membrane potential, fluidity and changed lipid order as examined by Merocyanine 540 and 1,6-diphenyl-1,3,5-hexatriene, respectively. A transition from gel to liquid crystalline state was observed by Laurdan fluorescence and also reduced fluorescence quenching of NBD-PE as contributed in the decreased membrane lipid phase separation. With piroxicam, a traditional NSAID and c-phycocyanin, a biliprotein from Spirulina platensis, these effects were normalized. An augmented intracellular Ca(+2) had contributed to the drug mediated apoptosis which is supported by an elevated calpain-9 expression. Histopathologically, a large pool of secreted acid/neutral mucopolysaccrides as well as the presence of blood vessels and dysplastic crypts signifies invasive mucinous adenocarcinoma while both the drugs reduced these neoplastic alterations. Wnt/β-catenin pathway was also found to be up-regulated which served as a crucial indicator for cancer cell growth. A concomitant down regulation of PPARγ was noted in DMH treatment which is associated with tumor progression. The expression of PPARα and δ, the other two isoforms of PPAR family was also modulated. We conclude that piroxicam and c-phycocyanin exert their anti-neoplastic effects via regulating membrane properties, raising calpain-9 and PPARγ expression while suppressing Wnt/β-catenin signaling in experimental colon carcinogenesis.

  17. Endothelin-1 induces p66Shc activation through EGF receptor transactivation: Role of beta(1)Pix/Galpha(i3) interaction.

    PubMed

    Chahdi, Ahmed; Sorokin, Andrey

    2010-02-01

    Endothelin-1 (ET-1) is a vasoconstrictor peptide known to be a potent mitogen for glomerular mesangial cells. We have shown that ET-1 stimulates the adaptor protein p66Shc through Rac/Cdc42 guanine nucleotide exchange factor beta(1)Pix. In this study, we demonstrate that ET-1-induced serine phosphorylation of p66Shc is mediated through Galpha(i3). Pertussis toxin treatment of cells induced a significant decrease in the interaction between beta(1)Pix and ET(A)-R, and an increase in the binding of Galpha(i3) and G(beta1) to beta(1)Pix. Activation of heterotrimeric G proteins by AlF(4)(-) resulted in an increase of Galpha(i3) binding to beta(1)Pix, which was significantly disrupted in cells expressing beta(1)Pix dimerization deficient mutant, beta(1)PixDelta (602-611). In cells expressing beta(1)PixDelta (602-611), ET-1-induced p66Shc activation was also significantly decreased. Specific inhibition of EGF receptor by AG1478 blocked ET-1-induced p66Shc activation and the binding of p66Shc and Galpha(i3) to beta(1)Pix. Inhibition of Erk1/2 blocked p66Shc activation induced by ET-1. Altogether, our results indicate that ET-1 activates p66Shc through EGF receptor transactivation, leading to the activation of Galpha(i3), beta(1)Pix and Erk1/2.

  18. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein

    SciTech Connect

    Zheng Yanyan; Chen Wenling; Ma, W.-L. Maverick; Chang Chawnshang; Ou, J.-H. James . E-mail: jamesou@hsc.usc.edu

    2007-07-05

    Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR.

  19. Glucose tolerance in mice is linked to the dose of the p53 transactivation domain

    PubMed Central

    Franck, Debra; Tracy, Laura; Armata, Heather L.; Delaney, Christine L.; Jung, Dae Young; Ko, Hwi Jin; Ong, Helena; Kim, Jason K.; Scrable, Heidi; Sluss, Hayla K.

    2016-01-01

    The tumor suppressor p53 has a critical role in maintenance of glucose homeostasis. Phosphorylation of Ser18 in the transaction domain of p53 controls the expression of Zpf385a, a zinc finger protein that regulates adipogenesis and adipose function. Mice with a mutation in p53Ser18 exhibit reduced Zpf385a expression in adipose tissue, adipose tissue-specific insulin resistance, and glucose intolerance. Mice with relative deficits in the transactivation domain of p53 exhibit similar defects in glucose homeostasis, while “Super p53” mice with an increased dosage of p53 exhibit improved glucose tolerance. These data support the role of an ATM—p53 cellular stress axis that helps combat glucose intolerance and insulin resistance and regulates glucose homeostasis. PMID:23102272

  20. Use of cryopreserved transiently transfected cells in high-throughput pregnane X receptor transactivation assay.

    PubMed

    Zhu, Zhengrong; Puglisi, Jaime; Connors, David; Stewart, Jeremy; Herbst, John; Marino, Anthony; Sinz, Michael; O'Connell, Jonathan; Banks, Martyn; Dickinson, Kenneth; Cacace, Angela

    2007-03-01

    Cryopreserved, transiently transfected HepG2 cells were compared to freshly transfected HepG2 cells for use in a pregnane X receptor (PXR) transactivation assay. Assay performance was similar for both cell preparations; however, cryopreserved cells demonstrated less interassay variation. Validation with drugs of different PXR activation potencies and efficacies demonstrated an excellent correlation (r(2) > 0.95) between cryopreserved and fresh cells. Cryopreservation did not change the effect of known CYP3A4 inducers that have poor cell permeability, indicating that cryopreservation had little effect on membrane permeability. In addition, cryopreserved HepG2 cells did not exhibit enhanced susceptibility to cytotoxic compounds compared to transiently transfected control cells. The use of cryopreserved cells enables this assay to run with enhanced efficiency.

  1. Hypo- and hypermorphic FOXC1 mutations in dominant glaucoma: transactivation and phenotypic variability.

    PubMed

    Medina-Trillo, Cristina; Sánchez-Sánchez, Francisco; Aroca-Aguilar, José-Daniel; Ferre-Fernández, Jesús-José; Morales, Laura; Méndez-Hernández, Carmen-Dora; Blanco-Kelly, Fiona; Ayuso, Carmen; García-Feijoo, Julián; Escribano, Julio

    2015-01-01

    Dominant glaucoma, a heterogeneous, infrequent and irreversible optic neuropathy, is often associated with elevated intraocular pressure and early-onset. The role of FOXC1 in this type of glaucoma was investigated in twelve Spanish probands via nucleotide variation screening of its proximal promoter and unique exon. Functional evaluations of the identified variants included analyses of the transcriptional activity, protein stability, DNA binding ability and subcellular localization. Four different mutations that were identified in four probands (33.3%) were associated with remarkable phenotypic variability and were functionally classified as either hypermorphic (p.Y47X, p.Q106X and p.G447_G448insDG) or hypomorphic (p.I126S) alleles. To the best of our knowledge, three of the variants are novel (p.Y47X, p.I126S and p.G447_G448insDG) and, in addition, hypermorphic FOXC1 mutations are reported herein for the first time. The presence of an intact N-terminal activation domain in the truncated proteins p.Y47X and p.Q106X may underlie their associated transactivation hyperactivity by a gain-of-function mechanism involving dysregulated protein-protein interactions. Similarly, altered molecular interactions may also lead to increased p.G447_G448insDG activity. In contrast, the partial loss-of-function associated with p.I126S was due to impaired protein stability, DNA binding, protein phosphorylation and subcellular distribution. These results support that moderate and variable FOXC1 transactivation changes are associated with moderate goniodysgenesis, dominant glaucoma and remarkable phenotypic variability.

  2. Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming.

    PubMed

    Aksoy, Irene; Jauch, Ralf; Eras, Volker; Chng, Wen-Bin Alfred; Chen, Jiaxuan; Divakar, Ushashree; Ng, Calista Keow Leng; Kolatkar, Prasanna R; Stanton, Lawrence W

    2013-12-01

    The unique ability of Sox2 to cooperate with Oct4 at selective binding sites in the genome is critical for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). We have recently demonstrated that Sox17 can be converted into a reprogramming factor by alteration of a single amino acid (Sox17EK) within its DNA binding HMG domain. Here we expanded this study by introducing analogous mutations to 10 other Sox proteins and interrogated the role of N-and C-termini on the reprogramming efficiency. We found that point-mutated Sox7 and Sox17 can convert human and mouse fibroblasts into iPSCs, but Sox4, Sox5, Sox6, Sox8, Sox9, Sox11, Sox12, Sox13, and Sox18 cannot. Next we studied regions outside the HMG domain and found that the C-terminal transactivation domain of Sox17 and Sox7 enhances the potency of Sox2 in iPSC assays and confers weak reprogramming potential to the otherwise inactive Sox4EK and Sox18EK proteins. These results suggest that the glutamate (E) to lysine (K) mutation in the HMG domain is necessary but insufficient to swap the function of Sox factors. Moreover, the HMG domain alone fused to the VP16 transactivation domain is able to induce reprogramming, albeit at low efficiency. By molecular dissection of the C-terminus of Sox17, we found that the β-catenin interaction region contributes to the enhanced reprogramming efficiency of Sox17EK. To mechanistically understand the enhanced reprogramming potential of Sox17EK, we analyzed ChIP-sequencing and expression data and identified a subset of candidate genes specifically regulated by Sox17EK and not by Sox2. © AlphaMed Press.

  3. Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays.

    PubMed

    Wang, Yongli; Wang, Hui; Ma, Yujie; Du, Haiping; Yang, Qing; Yu, Deyue

    2015-01-01

    Plant responses to major environmental stressors, such as insect feeding, not only occur via the functions of defense genes but also involve a series of regulatory factors. Our previous transcriptome studies proposed that, in addition to two defense-related genes, GmVSPβ and GmN:IFR, a high proportion of transcription factors (TFs) participate in the incompatible soybean-common cutworm interaction networks. However, the regulatory mechanisms and effects of these TFs on those induced defense-related genes remain unknown. In the present work, we isolated and identified 12 genes encoding MYB, WRKY, NAC, bZIP, and DREB TFs from a common cutworm-induced cDNA library of a resistant soybean line. Sequence analysis of the promoters of three co-expressed genes, including GmVSPα, GmVSPβ, and GmN:IFR, revealed the enrichment of various TF-binding sites for defense and stress responses. To further identify the regulatory nodes composed of these TFs and defense gene promoters, we performed extensive transient co-transactivation assays to directly test the transcriptional activity of the 12 TFs binding at different levels to the three co-expressed gene promoters. The results showed that all 12 TFs were able to transactivate the GmVSPβ and GmN:IFR promoters. GmbZIP110 and GmMYB75 functioned as distinct regulators of GmVSPα/β and GmN:IFR expression, respectively, while GmWRKY39 acted as a common central regulator of GmVSPα/β and GmN:IFR expression. These corresponding TFs play crucial roles in coordinated plant defense regulation, which provides valuable information for understanding the molecular mechanisms involved in insect-induced transcriptional regulation in soybean. More importantly, the identified TFs and suitable promoters can be used to engineer insect-resistant plants in molecular breeding studies.

  4. Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays

    PubMed Central

    Wang, Yongli; Wang, Hui; Ma, Yujie; Du, Haiping; Yang, Qing; Yu, Deyue

    2015-01-01

    Plant responses to major environmental stressors, such as insect feeding, not only occur via the functions of defense genes but also involve a series of regulatory factors. Our previous transcriptome studies proposed that, in addition to two defense-related genes, GmVSPβ and GmN:IFR, a high proportion of transcription factors (TFs) participate in the incompatible soybean-common cutworm interaction networks. However, the regulatory mechanisms and effects of these TFs on those induced defense-related genes remain unknown. In the present work, we isolated and identified 12 genes encoding MYB, WRKY, NAC, bZIP, and DREB TFs from a common cutworm-induced cDNA library of a resistant soybean line. Sequence analysis of the promoters of three co-expressed genes, including GmVSPα, GmVSPβ, and GmN:IFR, revealed the enrichment of various TF-binding sites for defense and stress responses. To further identify the regulatory nodes composed of these TFs and defense gene promoters, we performed extensive transient co-transactivation assays to directly test the transcriptional activity of the 12 TFs binding at different levels to the three co-expressed gene promoters. The results showed that all 12 TFs were able to transactivate the GmVSPβ and GmN:IFR promoters. GmbZIP110 and GmMYB75 functioned as distinct regulators of GmVSPα/β and GmN:IFR expression, respectively, while GmWRKY39 acted as a common central regulator of GmVSPα/β and GmN:IFR expression. These corresponding TFs play crucial roles in coordinated plant defense regulation, which provides valuable information for understanding the molecular mechanisms involved in insect-induced transcriptional regulation in soybean. More importantly, the identified TFs and suitable promoters can be used to engineer insect-resistant plants in molecular breeding studies. PMID:26579162

  5. Hypo- and Hypermorphic FOXC1 Mutations in Dominant Glaucoma: Transactivation and Phenotypic Variability

    PubMed Central

    Medina-Trillo, Cristina; Sánchez-Sánchez, Francisco; Aroca-Aguilar, José-Daniel; Ferre-Fernández, Jesús-José; Morales, Laura; Méndez-Hernández, Carmen-Dora; Blanco-Kelly, Fiona; Ayuso, Carmen; García-Feijoo, Julián; Escribano, Julio

    2015-01-01

    Dominant glaucoma, a heterogeneous, infrequent and irreversible optic neuropathy, is often associated with elevated intraocular pressure and early-onset. The role of FOXC1 in this type of glaucoma was investigated in twelve Spanish probands via nucleotide variation screening of its proximal promoter and unique exon. Functional evaluations of the identified variants included analyses of the transcriptional activity, protein stability, DNA binding ability and subcellular localization. Four different mutations that were identified in four probands (33.3%) were associated with remarkable phenotypic variability and were functionally classified as either hypermorphic (p.Y47X, p.Q106X and p.G447_G448insDG) or hypomorphic (p.I126S) alleles. To the best of our knowledge, three of the variants are novel (p.Y47X, p.I126S and p.G447_G448insDG) and, in addition, hypermorphic FOXC1 mutations are reported herein for the first time. The presence of an intact N-terminal activation domain in the truncated proteins p.Y47X and p.Q106X may underlie their associated transactivation hyperactivity by a gain-of-function mechanism involving dysregulated protein-protein interactions. Similarly, altered molecular interactions may also lead to increased p.G447_G448insDG activity. In contrast, the partial loss-of-function associated with p.I126S was due to impaired protein stability, DNA binding, protein phosphorylation and subcellular distribution. These results support that moderate and variable FOXC1 transactivation changes are associated with moderate goniodysgenesis, dominant glaucoma and remarkable phenotypic variability. PMID:25786029

  6. c-Maf increases apoptosis in peripheral CD8 cells by transactivating Caspase 6

    PubMed Central

    Peng, Siying; Wu, Hailong; Mo, Yin-Yuan; Watabe, Kounosuke; Pauza, Mary E

    2009-01-01

    In addition to transactivation of interleukin-4 (IL-4), cellular muscular aponeurotic fibrosarcoma (c-Maf) enhances CD4 cell apoptosis by limiting Bcl-2 expression. The CD8 cells also express c-Maf and peripheral CD8 cell numbers are reduced in c-Maf transgenic mice, suggesting that c-Maf may influence CD8 cell survival in a manner similar to CD4 cells. Here we confirm that, similar to CD4 cells, c-Maf enhances CD8 cell susceptibility to apoptosis induced by multiple stimuli, independent of IL-4. However, unlike CD4 cells, c-Maf enhancement of apoptosis is independent of Bcl-2, suggesting that c-Maf uses other mechanisms to regulate CD8 cell apoptosis. Real-time reverse transcription–polymerase chain reaction reveals that the pro-apoptotic gene Caspase 6 is upregulated in c-Maf transgenic CD8 cells, suggesting that Caspase 6 is a novel c-Maf target gene. Luciferase reporter assays and site-directed mutagenesis reveal a functional c-Maf recognition element (MARE) within the first intron of Caspase 6. Binding of c-Maf to the MARE site is detectable by chromatin immunoprecipitation using non-transgenic T-cell lysates, so c-Maf can interact with the Caspase 6 MARE site in normal T cells. Furthermore, caspase 6 activity is increased among CD8 cells from c-Maf transgenic mice following T-cell receptor engagement. As expected, activity of the downstream caspases 3 and 7 is also increased. Consistent with the ability of caspase 6 to participate in positive feedback loops, cytochrome c release and caspase 8 activation are also increased. Together these results indicated that c-Maf increases CD8 cell sensitivity to apoptotic stimuli, at least in part, by direct transactivation of Caspase 6, providing increased substrate for Caspase 6-dependent apoptosis pathways. PMID:19476513

  7. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation

    PubMed Central

    Jordan, Jennifer J.; Inga, Alberto; Conway, Kathleen; Edmiston, Sharon; Carey, Lisa A.; Wu, Lin; Resnick, Michael A.

    2010-01-01

    Mutations of the sequence-specific master regulator p53 that alter transactivation function from promoter response elements (REs) could result in changes in the strength of gene activation or spectra of genes regulated. Such mutations in this tumor suppressor might lead to dramatic phenotypic changes and diversification of cell responses to stress. We have determined “functional fingerprints” of sporadic breast cancer-related p53 mutants many of which are also associated with familial cancer proneness such as the Li-Fraumeni Syndrome and germline BRCA1/2 mutant-associated cancers. The ability of p53, wild type and mutants, to transactivate from 11 human target REs has been assessed at variable expression levels using a cellular, isogenomic yeast model system that allows for the rapid analysis of p53 function using a qualitative and a quantitative reporter. Among 50 missense mutants, 29 were classified as loss-of-function. The remaining 21 retained transactivation towards at least one RE. At high levels of galactose induced p53 expression, 12/21 mutants that retain transactivation appeared similar to WT. When the level of galactose was reduced, transactivation defects could be revealed suggesting that some breast cancer related mutants can have subtle changes in transcription. These findings have been compared with clinical data from an ongoing neoadjuvant chemotherapy treatment trial for locally advanced breast tumors. The functional and nonfunctional missense mutations may distinguish tumors in terms of demographics, appearance and relapse, implying that heterogeneity in the functionality of specific p53 mutations could impact clinical behavior and outcome. PMID:20407015

  8. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation.

    PubMed

    Jordan, Jennifer J; Inga, Alberto; Conway, Kathleen; Edmiston, Sharon; Carey, Lisa A; Wu, Lin; Resnick, Michael A

    2010-05-01

    Mutations of the sequence-specific master regulator p53 that alter transactivation function from promoter response elements (RE) could result in changes in the strength of gene activation or spectra of genes regulated. Such mutations in this tumor suppressor might lead to dramatic phenotypic changes and diversification of cell responses to stress. We have determined "functional fingerprints" of sporadic breast cancer-related p53 mutants, many of which are also associated with familial cancer proneness such as the Li-Fraumeni syndrome and germline BRCA1/2 mutant-associated cancers. The ability of p53, wild-type and mutants, to transactivate from 11 human target REs has been assessed at variable expression levels using a cellular, isogenomic yeast model system that allows for the rapid analysis of p53 function using a qualitative and a quantitative reporter. Among 50 missense mutants, 29 were classified as loss of function. The remaining 21 retained transactivation toward at least one RE. At high levels of galactose-induced p53 expression, 12 of 21 mutants that retain transactivation seemed similar to wild-type. When the level of galactose was reduced, transactivation defects could be revealed, suggesting that some breast cancer-related mutants can have subtle changes in transcription. These findings have been compared with clinical data from an ongoing neoadjuvant chemotherapy treatment trial for locally advanced breast tumors. The functional and nonfunctional missense mutations may distinguish tumors in terms of demographics, appearance, and relapse, implying that heterogeneity in the functionality of specific p53 mutations could affect clinical behavior and outcome.

  9. Ligand dependence of metal-metal bonding in the d(3)d(3) dimers M(2)X(9)(n-) (M(III) = Cr, Mo, W; M(IV) = Mn, Tc, Re; X = F, Cl, Br, I).

    PubMed

    Stranger, R; Turner, A; Delfs, C D

    2001-08-13

    The ligand dependence of metal-metal bonding in the d(3)d(3) face-shared M(2)X(9)(n-) (M(III) = Cr, Mo, W; M(IV) = Mn, Tc, Re; X = F, Cl, Br, I) dimers has been investigated using density functional theory. In general, significant differences in metal-metal bonding are observed between the fluoride and chloride complexes involving the same metal ion, whereas less dramatic changes occur between the bromide and iodide complexes and minimal differences between the chloride and bromide complexes. For M = Mo, Tc, and Re, change in the halide from F to I results in weaker metal-metal bonding corresponding to a shift from either the triple metal-metal bonded to single bonded case or from the latter to a nonbonded structure. A fragment analysis performed on M(2)X(9)(3-) (M = Mo, W) allowed determination of the metal-metal and metal-bridge contributions to the total bonding energy in the dimer. As the halide changes from F to I, there is a systematic reduction in the total interaction energy of the fragments which can be traced to a progressive destabilization of the metal-bridge interaction because of weaker M-X(bridge) bonding as fluoride is replaced by its heavier congeners. In contrast, the metal-metal interaction remains essentially constant with change in the halide.

  10. Transactivation of progestin- and estrogen-responsive promoters by 19-nor progestins in African Green Monkey Kidney CV1 cells.

    PubMed

    Pasapera, A M; Gutiérrez-Sagal, R; García-Becerra, R; Ulloa-Aguirre, A; Savouret, J F

    2001-12-01

    New and more potent progestins and antiprogestins suitable for reproductive therapy and contraception are currently the target of intensive research. The design of such drugs has been hampered by the complex technology required for screening these compounds at the molecular level. To solve this problem, we developed an in vitro cell system that allows detection of the progestagenic effects of a given compound using a PRE2-TATA-CAT reporter vector transiently introduced in a cell line stably transfected with the rabbit progesterone receptor (PR). The African Green Monkey Kidney CV1 (AGMK-CV1) cell line was chosen because these cells do not express endogenous steroid receptors; the selected clone stably expressing the rabbit PR has been maintained in our laboratory for more than 2 yr without detectable losses in PR content and progestagenic response. The presence and function of the PR were assessed by immunohistochemical and saturation analyses as well as by monitoring transactivation of the PRE2-TATA-CAT reporter gene. In this cell line, the PR is expressed at a concentration of 0.170 fmol/mg of protein, and the receptor is localized within the cell nucleus in either the presence or absence of the potent synthetic progestin R5020. This PR-expressing cell system allowed study of the in vitro progestational activity of several 19-nor progestins. The antiprogestin RU486 inhibited CAT activity induced by R5020; norethisterone (NET), levonorgestrel (LNG), and gestodene (GSD) induced PRE2-TATA-CAT activity at concentrations similar to those of R5020, whereas NET A-ring-reduced metabolites induced CAT activity at an extent lower than (5alpha-NET) or similar (3beta,5alpha-NET) to that of the precursor compound. The PRE2-TATA-CAT induction by 17beta-estradiol was also analyzed and no crossreactivity was detected. However, when the ERE-VitA2-TK-CAT (estrogen-responsive element-vitellogenin A2-thymidine kinase promoter-CAT) reporter vector and the estradiol receptor alpha or

  11. SUMO modification of a heterochromatin histone demethylase JMJD2A enables viral gene transactivation and viral replication

    PubMed Central

    Yang, Wan-Shan; Campbell, Mel

    2017-01-01

    Small ubiquitin-like modifier (SUMO) modification of chromatin has profound effects on transcription regulation. By using Kaposi’s sarcoma associated herpesvirus (KSHV) as a model, we recently demonstrated that epigenetic modification of viral chromatin by SUMO-2/3 is involved in regulating gene expression and viral reactivation. However, how this modification orchestrates transcription reprogramming through targeting histone modifying enzymes remains largely unknown. Here we show that JMJD2A, the first identified Jumonji C domain-containing histone demethylase, is the histone demethylase responsible for SUMO-2/3 enrichment on the KSHV genome during viral reactivation. Using in vitro and in vivo SUMOylation assays, we found that JMJD2A is SUMOylated on lysine 471 by KSHV K-bZIP, a viral SUMO-2/3-specific E3 ligase, in a SUMO-interacting motif (SIM)-dependent manner. SUMOylation is required for stabilizing chromatin association and gene transactivation by JMJD2A. These finding suggest that SUMO-2/3 modification plays an essential role in the epigenetic regulatory function of JMJD2A. Consistently, hierarchical clustering analysis of RNA-seq data showed that a SUMO-deficient mutant of JMJD2A was more closely related to JMJD2A knockdown than to wild-type. Our previous report demonstrated that JMJD2A coated and maintained the “ready to activate” status of the viral genome. Consistent with our previous report, a SUMO-deficient mutant of JMJD2A reduced viral gene expression and virion production. Importantly, JMJD2A has been implicated as an oncogene in various cancers by regulating proliferation. We therefore further analyzed the role of SUMO modification of JMJD2A in regulating cell proliferation. Interestingly, the SUMO-deficient mutant of JMJD2A failed to rescue the proliferation defect of JMJD2A knockdown cells. Emerging specific inhibitors of JMJD2A have been generated for evaluation in cancer studies. Our results revealed that SUMO conjugation mediates an

  12. Creb1-Mecp2-mCpG Complex Transactivates Postnatal Murine Neuronal Glucose Transporter Isoform 3 Expression

    PubMed Central

    Chen, Yongjun; Shin, Bo-Chul; Thamotharan, Shanthie

    2013-01-01

    The murine neuronal facilitative glucose transporter isoform 3 (Glut3) is developmentally regulated, peaking in expression at postnatal day (PN)14. In the present study, we characterized a canonical CpG island spanning the 5′-flanking region of the glut3 gene. Methylation-specific PCR and bisulfite sequencing identified methylation of this CpG (mCpG) island of the glut3 gene, frequency of methylation increasing 2.5-fold with a 1.6-fold increase in DNA methyl transferase 3a concentrations noted with advancing postnatal age (PN14 vs PN3). 5′-flanking region of glut3-luciferase reporter transient transfection in HT22 hippocampal neurons demonstrated that mCpGs inhibit glut3 transcription. Contrary to this biological function, glut3 expression rises synchronously with mCpGs in PN14 vs PN3 neurons. Chromatin immunoprecipitation (IP) revealed that methyl-CpG binding protein 2 (Mecp2) bound the glut3-mCpGs. Depending on association with specific coregulators, Mecp2, a dual regulator of gene transcription, may repress or activate a downstream gene. Sequential chromatin IP uncovered the glut3-mCpGs to bind Mecp2 exponentially upon recruitment of Creb1 rather than histone deacetylase 1. Co-IP and coimmunolocalization confirmed that Creb1 associated with Mecp2 and cotransfection with glut3-mCpG in HT22 cells enhanced glut3 transcription. Separate 5-aza-2′-deoxycytidine pretreatment or in combination with trichostatin A reduced mCpG and specific small interference RNAs targeting Mecp2 and Creb1 separately or together depleting Mecp2 and/or Creb1 binding of glut3-mCpGs reduced glut3 expression in HT22 cells. We conclude that Glut3 is a methylation-sensitive neuronal gene that recruits Mecp2. Recruitment of Creb1-Mecp2 by glut3-mCpG contributes towards transactivation, formulating an escape from mCpG-induced gene suppression, and thereby promoting developmental neuronal glut3 gene transcription and expression. PMID:23493374

  13. Full trans-activation mediated by the immediate-early protein of equine herpesvirus 1 requires a consensus TATA box, but not its cognate binding sequence.

    PubMed

    Kim, Seong K; Shakya, Akhalesh K; O'Callaghan, Dennis J

    2016-01-04

    The immediate-early protein (IEP) of equine herpesvirus 1 (EHV-1) has extensive homology to the IEP of alphaherpesviruses and possesses domains essential for trans-activation, including an acidic trans-activation domain (TAD) and binding domains for DNA, TFIIB, and TBP. Our data showed that the IEP directly interacted with transcription factor TFIIA, which is known to stabilize the binding of TBP and TFIID to the TATA box of core promoters. When the TATA box of the EICP0 promoter was mutated to a nonfunctional TATA box, IEP-mediated trans-activation was reduced from 22-fold to 7-fold. The IEP trans-activated the viral promoters in a TATA motif-dependent manner. Our previous data showed that the IEP is able to repress its own promoter when the IEP-binding sequence (IEBS) is located within 26-bp from the TATA box. When the IEBS was located at 100 bp upstream of the TATA box, IEP-mediated trans-activation was very similar to that of the minimal IE(nt -89 to +73) promoter lacking the IEBS. As the distance from the IEBS to the TATA box decreased, IEP-mediated trans-activation progressively decreased, indicating that the IEBS located within 100 bp from the TATA box sequence functions as a distance-dependent repressive element. These results indicated that IEP-mediated full trans-activation requires a consensus TATA box of core promoters, but not its binding to the cognate sequence (IEBS).

  14. NF-κB accumulation associated with COL1A1 transactivators defects during chronological aging represses type I collagen expression through a -112/-61-bp region of the COL1A1 promoter in human skin fibroblasts.

    PubMed

    Bigot, Nicolas; Beauchef, Gallic; Hervieu, Magalie; Oddos, Thierry; Demoor, Magali; Boumediene, Karim; Galéra, Philippe

    2012-10-01

    The aging process, especially of the skin, is governed by changes in the epidermal, dermo-epidermal, and dermal compartments. Type I collagen, which is the major component of dermis extracellular matrix (ECM), constitutes a prime target for intrinsic and extrinsic aging-related alterations. In addition, under the aging process, pro-inflammatory signals are involved and collagens are fragmented owing to enhanced matrix metalloproteinase activities, and fibroblasts are no longer able to properly synthesize collagen fibrils. Here, we demonstrated that low levels of type I collagen detected in aged skin fibroblasts are attributable to an inhibition of COL1A1 transcription. Indeed, on one hand, we observed decreased binding activities of specific proteins 1 and 3, CCAAT-binding factor, and human collagen-Krüppel box, which are well-known COL1A1 transactivators acting through the -112/-61-bp promoter sequence. On the other hand, the aging process was accompanied by elevated amounts and binding activities of NF-κB (p65 and p50 subunits), together with an increased number of senescent cells. The forced expression of NF-κB performed in young fibroblasts was able to establish an old-like phenotype by repressing COL1A1 expression through the short -112/-61-bp COL1A1 promoter and by elevating the senescent cell distribution. The concomitant decrease of transactivator functions and increase of transinhibitor activity is responsible for ECM dysfunction, leading to aging/senescence in dermal fibroblasts.

  15. Recruitment of hepatocyte nuclear factor 4 into specific intranuclear compartments depends on tyrosine phosphorylation that affects its DNA-binding and transactivation potential.

    PubMed Central

    Ktistaki, E; Ktistakis, N T; Papadogeorgaki, E; Talianidis, I

    1995-01-01

    Hepatocyte nuclear factor 4 (HNF-4) is a prominent member of the family of liver-enriched transcription factors, playing a role in the expression of a large number of liver-specific genes. We report here that HNF-4 is a phosphoprotein and that phosphorylation at tyrosine residue(s) is important for its DNA-binding activity and, consequently, for its transactivation potential both in cell-free systems and in cultured cells. Tyrosine phosphorylation did not affect the transport of HNF-4 from the cytoplasm to the nucleus but had a dramatic effect on its subnuclear localization. HNF-4 was concentrated in distinct nuclear compartments, as evidenced by in situ immunofluorescence and electron microscopy. This compartmentalization disappeared when tyrosine phosphorylation was inhibited by genistein. The correlation between the intranuclear distribution of HNF-4 and its ability to activate endogenous target genes demonstrates a phosphorylation signal-dependent pathway in the regulation of transcription factor activity. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:7568236

  16. Role of epidermal growth factor receptor transactivation in endothelin-1-induced enhanced expression of Gi protein and proliferation in A10 vascular smooth muscle cells.

    PubMed

    Gomez Sandoval, Yessica-Haydee; Lévesque, Louis-Olivier; Li, Yuan; Anand-Srivastava, Madhu B

    2013-03-01

    We have recently shown that vasoactive peptides such as angiotensin II (Ang II) and endothelin-1 (ET-1) increase the expression of Gi proteins and the proliferation of A10 vascular smooth muscle cells (VSMC) through mitogen-activated protein (MAP) kinase-phosphoinositide (PI) 3-kinase pathways. This study was intended to examine the implication of epidermal growth factor receptor (EGFR) activation in ET-1-induced enhanced expression of Gi proteins and proliferation of A10 VSMC, and to further investigate the underlying mechanisms responsible for these increases. Cell proliferation was determined by [(3)H]thymidine incorporation and the expression of Gi proteins; extracellular signal-regulated kinases 1 and 2 (ERK1/2) and EGFR phosphorylation was determined by Western blotting. Treatment of A10 VSMC with ET-1 enhanced the expression of Gi proteins, which was attenuated by BQ123 and BQ788, antagonists of ET(A) and ET(B) receptor respectively. In addition, ET-1 enhanced the phosphorylation of EGFR in A10 VSMC, which was restored to the control levels by EGFR inhibitor and ETA and ETB receptor antagonists. Furthermore, ET-1 also augmented the proliferation and ERK1/2 phosphorylation of A10 VSMC, which were restored to the control levels by inhibition of EGFR. These data suggest that ET-1 transactivates EGFR, which, through MAP kinase signaling, may contribute to the enhanced expression of Gi proteins and thus increased proliferation of A10 VSMC.

  17. Molecular Cloning Reveals that the p160 Myb-Binding Protein Is a Novel, Predominantly Nucleolar Protein Which May Play a Role in Transactivation by Myb

    PubMed Central

    Tavner, Fiona J.; Simpson, Richard; Tashiro, Shigeki; Favier, Diane; Jenkins, Nancy A.; Gilbert, Debra J.; Copeland, Neal G.; Macmillan, Elizabeth M.; Lutwyche, Jodi; Keough, Rebecca A.; Ishii, Shunsuke; Gonda, Thomas J.

    1998-01-01

    We have previously detected two related murine nuclear proteins, p160 and p67, that can bind to the leucine zipper motif within the negative regulatory domain of the Myb transcription factor. We now describe the molecular cloning of cDNA corresponding to murine p160. The P160 gene is located on mouse chromosome 11, and related sequences are found on chromosomes 1 and 12. The predicted p160 protein is novel, and in agreement with previous studies, we find that the corresponding 4.5-kb mRNA is ubiquitously expressed. We showed that p67 is an N-terminal fragment of p160 which is generated by proteolytic cleavage in certain cell types. The protein encoded by the cloned p160 cDNA and an engineered protein (p67*) comprising the amino-terminal region of p160 exhibit binding specificities for the Myb and Jun leucine zipper regions identical to those of endogenous p160 and p67, respectively. This implies that the Myb-binding site of p160 lies within the N-terminal 580 residues and that the Jun-binding site is C-terminal to this position. Moreover, we show that p67* but not p160 can inhibit transactivation by Myb. Unexpectedly, immunofluorescence studies show that p160 is localized predominantly in the nucleolus. The implications of these results for possible functions of p160 are discussed. PMID:9447996

  18. Whole-genome cartography of p53 response elements ranked on transactivation potential.

    PubMed

    Tebaldi, Toma; Zaccara, Sara; Alessandrini, Federica; Bisio, Alessandra; Ciribilli, Yari; Inga, Alberto

    2015-06-17

    Many recent studies using ChIP-seq approaches cross-referenced to trascriptome data and also to potentially unbiased in vitro DNA binding selection experiments are detailing with increasing precision the p53-directed gene regulatory network that, nevertheless, is still expanding. However, most experiments have been conducted in established cell lines subjected to specific p53-inducing stimuli, both factors potentially biasing the results. We developed p53retriever, a pattern search algorithm that maps p53 response elements (REs) and ranks them according to predicted transactivation potentials in five classes. Besides canonical, full site REs, we developed specific pattern searches for non-canonical half sites and 3/4 sites and show that they can mediate p53-dependent responsiveness of associated coding sequences. Using ENCODE data, we also mapped p53 REs in about 44,000 distant enhancers and identified a 16-fold enrichment for high activity REs within those sites in the comparison with genomic regions near transcriptional start sites (TSS). Predictions from our pattern search were cross-referenced to ChIP-seq, ChIP-exo, expression, and various literature data sources. Based on the mapping of predicted functional REs near TSS, we examined expression changes of thirteen genes as a function of different p53-inducing conditions, providing further evidence for PDE2A, GAS6, E2F7, APOBEC3H, KCTD1, TRIM32, DICER, HRAS, KITLG and TGFA p53-dependent regulation, while MAP2K3, DNAJA1 and potentially YAP1 were identified as new direct p53 target genes. We provide a comprehensive annotation of canonical and non-canonical p53 REs in the human genome, ranked on predicted transactivation potential. We also establish or corroborate direct p53 transcriptional control of thirteen genes. The entire list of identified and functionally classified p53 REs near all UCSC-annotated genes and within ENCODE mapped enhancer elements is provided. Our approach is distinct from, and complementary

  19. Real-time monitoring of PtaHMGB activity in poplar transactivation assays.

    PubMed

    Ramos-Sánchez, José M; Triozzi, Paolo M; Moreno-Cortés, Alicia; Conde, Daniel; Perales, Mariano; Allona, Isabel

    2017-01-01

    Precise control of gene expression is essential to synchronize plant development with the environment. In perennial plants, transcriptional regulation remains poorly understood, mainly due to the long time required to perform functional studies. Transcriptional reporters based on luciferase have been useful to study circadian and diurnal regulation of gene expression, both by transcription factors and chromatin remodelers. The high mobility group proteins are considered transcriptional chaperones that also modify the chromatin architecture. They have been found in several species, presenting in some cases a circadian expression of their mRNA or protein. Transactivation experiments have been shown as a powerful and fast method to obtain information about the potential role of transcription factors upon a certain reporter. We designed and validated a luciferase transcriptional reporter using the 5' sequence upstream ATG of Populus tremula × alba LHY2 gene. We showed the robustness of this reporter line under long day and continuous light conditions. Moreover, we confirmed that pPtaLHY2::LUC activity reproduces the accumulation of PtaLHY2 mRNA. We performed transactivation studies by transient expression, using the reporter line as a genetic background, unraveling a new function of a high mobility group protein in poplar, which can activate the PtaLHY2 promoter in a gate-dependent manner. We also showed PtaHMGB2/3 needs darkness to produce that activation and exhibits an active degradation after dawn, mediated by the 26S proteasome. We generated a stable luciferase reporter poplar line based on the circadian clock gene PtaLHY2, which can be used to investigate transcriptional regulation and signal transduction pathway. Using this reporter line as a genetic background, we established a methodology to rapidly assess potential regulators of diurnal and circadian rhythms. This tool allowed us to demonstrate that PtaHMGB2/3 promotes the transcriptional activation of our

  20. PGE2-induced hypertrophy of cardiac myocytes involves EP4 receptor-dependent activation of p42/44 MAPK and EGFR transactivation.

    PubMed

    Mendez, Mariela; LaPointe, Margot C

    2005-05-01

    Upon induction of cyclooxygenase-2 (COX-2), neonatal ventricular myocytes (VMs) mainly synthesize prostaglandin E2 (PGE2). The biological effects of PGE2 are mediated through four different G protein-coupled receptor (GPCR) subtypes (EP(1-4)). We have previously shown that PGE2 stimulates cAMP production and induces hypertrophy of VMs. Because the EP4 receptor is coupled to adenylate cyclase and increases in cAMP, we hypothesized that PGE2 induces hypertrophic growth of cardiac myocytes through a signaling cascade that involves EP4-cAMP and activation of protein kinase A (PKA). To test this, we used primary cultures of VMs and measured [3H]leucine incorporation into total protein. An EP4 antagonist was able to partially block PGE2 induction of protein synthesis and prevent PGE2-dependent increases in cell surface area and activity of the atrial natriuretic factor promoter, which are two other indicators of hypertrophic growth. Surprisingly, a PKA inhibitor had no effect. In other cell types, G protein-coupled receptor activation has been shown to transactivate the epidermal growth factor receptor (EGFR) and result in p42/44 mitogen-activated protein kinase (MAPK) activation and cell growth. Immunoprecipitation of myocyte lysates demonstrated that the EGFR was rapidly phosphorylated by PGE2 in VMs, and the EP4 antagonist blocked this. In addition, the selective EGFR inhibitor AG-1478 completely blocked PGE2-induced protein synthesis. We also found that PGE2 rapidly phosphorylated p42/44 MAPK, which was inhibited by the EP4 antagonist and by AG-1478. Finally, the p42/44 MAPK inhibitor PD-98053 (25 micromol/l) blocked PGE2-induced protein synthesis. Altogether, we believe these are the first data to suggest that PGE2 induces protein synthesis in cardiac myocytes in part via activation of the EP4 receptor and subsequent activation of p42/44 MAPK. Activation of p42/44 MAPK is independent of the common cAMP-PKA pathway and involves EP4-dependent transactivation of EGFR.

  1. Structural and functional relationships of the steroid hormone receptors’ N-terminal transactivation domain

    PubMed Central

    Kumar, Raj; Litwack, Gerald

    2009-01-01

    Steroid hormone receptors are members of a family of ligand inducible transcription factors, and regulate the transcriptional activation of target genes by recruiting coregulatory proteins to the pre-initiation machinery. The binding of these coregulatory proteins to the steroid hormone receptors is often mediated through their two activation functional domains, AF1, which resides in the N-terminal domain, and the ligand-dependent AF2, which is localized in the C-terminal ligand binding domain. Compared to other important functional domains of the steroid hormone receptors, our understanding of the mechanisms of action of the AF1 are incomplete, in part, due to the fact that, in solution, AF1 is intrinsically disordered (ID). However, recent studies have shown that AF1 must adopt a functionally active and folded conformation for its optimal activity under physiological conditions. In this review, we summarize and discuss current knowledge regarding the molecular mechanisms of AF1-mediated gene activation, focusing on AF1 conformation and coactivator binding. We further propose models for the binding/folding of the AF1 domains of the steroid hormone receptors and their protein-protein interactions. The population of ID AF1 can be visualized as a collection of many different conformations, some of which may be assuming the proper functional folding for other critical target binding partners that result in ultimate assembly of AF1:coactivator complexes and subsequent gene regulation. Knowledge of the mechanisms involved therein will significantly help in understanding how signals from a steroid to a specific target gene are conveyed. PMID:19666041

  2. EPI-001, A Compound Active against Castration-Resistant Prostate Cancer, Targets Transactivation Unit 5 of the Androgen Receptor.

    PubMed

    De Mol, Eva; Fenwick, R Bryn; Phang, Christopher T W; Buzón, Victor; Szulc, Elzbieta; de la Fuente, Alex; Escobedo, Albert; García, Jesús; Bertoncini, Carlos W; Estébanez-Perpiñá, Eva; McEwan, Iain J; Riera, Antoni; Salvatella, Xavier

    2016-09-16

    Castration-resistant prostate cancer is the lethal condition suffered by prostate cancer patients that become refractory to androgen deprivation therapy. EPI-001 is a recently identified compound active against this condition that modulates the activity of the androgen receptor, a nuclear receptor that is essential for disease progression. The mechanism by which this compound exerts its inhibitory activity is however not yet fully understood. Here we show, by using high resolution solution nuclear magnetic resonance spectroscopy, that EPI-001 selectively interacts with a partially folded region of the transactivation domain of the androgen receptor, known as transactivation unit 5, that is key for the ability of prostate cells to proliferate in the absence of androgens, a distinctive feature of castration-resistant prostate cancer. Our results can contribute to the development of more potent and less toxic novel androgen receptor antagonists for treating this disease.

  3. TAR RNA binding properties and relative transactivation activities of human immunodeficiency virus type 1 and 2 Tat proteins.

    PubMed Central

    Rhim, H; Rice, A P

    1993-01-01

    Using gel shift assays, we found that the human immunodeficiency virus type 1 (HIV-1) Tat protein (Tat-1) bound both HIV-1 and HIV-2 TAR RNAs with similar high affinities. In contrast, the HIV-2 Tat protein (Tat-2) bound only TAR-2 RNA with high affinity. We conclude that the weak in vivo activity of Tat-2 on the HIV-1 long terminal repeat that has been observed previously is likely the result of low affinity for TAR-1 RNA. Additionally, TAR-2 RNA was found to contain multiple specific binding sites for Tat proteins. GAL4-Tat fusion proteins were analyzed to compare the relative transactivation activities of Tat-1 and Tat-2 in the absence of requirements for binding to TAR RNAs. The GAL4-Tat-2 protein was found to transactivate synthetic promoters containing GAL4 binding sites at levels severalfold higher than did the GAL4-Tat-1 protein. Images PMID:8419640

  4. EPI-001, a compound active against castration-resistant prostate cancer, targets transactivation unit 5 of the androgen receptor

    PubMed Central

    De Mol, Eva; Fenwick, R. Bryn; Phang, Christopher T. W.; Buzón, Victor; Szulc, Elzbieta; de la Fuente, Alex; Escobedo, Albert; García, Jesús; Bertoncini, Carlos W.; Estébanez-Perpiñá, Eva; McEwan, Iain J.; Riera, Antoni; Salvatella, Xavier

    2016-01-01

    Castration-resistant prostate cancer is the lethal condition suffered by prostate cancer patients that become refractory to androgen deprivation therapy. EPI-001 is a recently identified compound active against this condition that modulates the activity of the androgen receptor, a nuclear receptor that is essential for disease progression. The mechanism by which this compound exerts its inhibitory activity is however not yet fully understood. Here we show, by using high resolution solution nuclear magnetic resonance spectroscopy, that EPI-001 selectively interacts with a partially folded region of the transactivation domain of the androgen receptor, known as transactivation unit 5, that is key for the ability of prostate cells to proliferate in the absence of androgens, a distinctive feature of castration-resistant prostate cancer. Our results can contribute to the development of more potent and less toxic novel androgen receptor antagonists for treating this disease. PMID:27356095

  5. Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts.

    PubMed

    Takada, Ichiro; Suzawa, Miyuki; Matsumoto, Kunihiro; Kato, Shigeaki

    2007-11-01

    Osteoblasts and adipocytes differentiate from common pleiotropic mesenchymal stem cells under transcriptional controls by numerous factors and multiple intracellular signalings. However, cellular signaling factors that determine cell fates of mensenchymal stem cells in bone marrow remain to be largely uncovered, though peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is well established as a prime inducer of adipogenesis. Here, we describe two signaling pathways that induce the cell fate decision into osteoblasts from adipocytes. One signaling is a TAK1/TAB1/NIK cascade activated by TNF-alpha and IL-1, and the activated NF-kappaB blocked the DNA binding of PPAR-gamma, attenuating the activated PPAR-mediated adipogenesis. The second signaling is the noncanonical Wnt pathway through CaMKII-TAK1/TAB2-NLK. Activated NLK by a noncanonical Wnt ligand (Wnt-5a) transrepresses PPAR transactivation through a histone methyltransferase, SETDB1. Wnt-5a induces phosphorylation of NLK, leading to the formation of a corepressor complex that inactivates PPAR function through histone H3-K9 methylation. Thus, two signaling pathways lead to an osteoblastic cell lineage decision from mesenchymal stem cells through two distinct modes of PPAR transrepression.

  6. Trans-activation of TRPV1 by D1R in mouse dorsal root ganglion neurons.

    PubMed

    Lee, Dong Woo; Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Jung, Sung Jun; Oh, Seog Bae

    2015-10-02

    TRPV1, a ligand-gated ion channel expressed in nociceptive sensory neurons is modulated by a variety of intracellular signaling pathways. Dopamine is a neurotransmitter that plays important roles in motor control, cognition, and pain modulation in the CNS, and acts via a variety of dopamine receptors (D1R-D5R), a class of GPCRs. Although nociceptive sensory neurons express D1-like receptors, very little is known about the effect of dopamine on TRPV1 in the peripheral nervous system. Therefore, in this study, we examined the effects of D1R activation on TRPV1 in mouse DRG neurons using Ca(2+) imaging and immunohistochemical analysis. The D1R agonist SKF-38393 induced reproducible Ca(2+) responses via Ca(2+) influx through TRPV1 rather than Ca(2+) mobilization from intracellular Ca(2+) stores. Immunohistochemical analysis revealed co-expression of D1R and TRPV1 in mouse DRG neurons. The PLC-specific inhibitor blocked the SKF-38393-induced Ca(2+) response, whereas the PKC, DAG lipase, AC, and PKA inhibitors had no effect on the SKF-38393-induced Ca(2+) response. Taken together, our results suggest that the SKF-38393-induced Ca(2+) response results from the direct activation of TRPV1 by a PLC/DAG-mediated membrane-delimited pathway. These results provide evidence that the trans-activation of TRPV1 following D1R activation may contribute to the modulation of pain signaling in nociceptive sensory neurons.

  7. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription

    SciTech Connect

    Wang Jian; Tan Juan; Zhang Xihui; Guo Hongyan; Zhang Qicheng; Guo Tingting; Geng Yunqi; Qiao Wentao

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may be responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription.

  8. A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina-specific transcription factor CRX.

    PubMed

    Li, X; Chen, S; Wang, Q; Zack, D J; Snyder, S H; Borjigin, J

    1998-02-17

    The circadian hormone melatonin is synthesized predominantly in the pineal gland by the actions of two pineal-specific enzymes: serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT). Pineal night-specific ATPase (PINA), another pineal- and night-specific protein we recently identified, is produced as a truncated form of the Wilson disease gene (Atp7b) product. To identify the regulatory elements required for pineal-specific gene expression, we isolated sequences upstream of the rat PINA gene and discovered a cis-acting element that is recognized by a novel pineal/retina-specific nuclear factor. This pineal regulatory element (PIRE) has a consensus of TAATC/T and is present in six copies in the 5' regulatory region of the PINA gene, at least three copies in the rat NAT promoter, and at least one copy in each of the putative HIOMT promoters A and B. A recently identified retina-specific protein, cone rod homeobox (CRX), binds to PIRE in vitro and transactivates PIRE-reporter constructs. These data suggest that Crx may play a crucial role in regulating pineal gene expression through interactions with PIRE.

  9. A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina-specific transcription factor CRX

    PubMed Central

    Li, Xiaodong; Chen, Shiming; Wang, Qingliang; Zack, Donald J.; Snyder, Solomon H.; Borjigin, Jimo

    1998-01-01

    The circadian hormone melatonin is synthesized predominantly in the pineal gland by the actions of two pineal-specific enzymes: serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT). Pineal night-specific ATPase (PINA), another pineal- and night-specific protein we recently identified, is produced as a truncated form of the Wilson disease gene (Atp7b) product. To identify the regulatory elements required for pineal-specific gene expression, we isolated sequences upstream of the rat PINA gene and discovered a cis-acting element that is recognized by a novel pineal/retina-specific nuclear factor. This pineal regulatory element (PIRE) has a consensus of TAATC/T and is present in six copies in the 5′ regulatory region of the PINA gene, at least three copies in the rat NAT promoter, and at least one copy in each of the putative HIOMT promoters A and B. A recently identified retina-specific protein, cone rod homeobox (CRX), binds to PIRE in vitro and transactivates PIRE-reporter constructs. These data suggest that Crx may play a crucial role in regulating pineal gene expression through interactions with PIRE. PMID:9465110

  10. Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophages.

    PubMed

    Kalantari, Parisa; Narayan, Vivek; Natarajan, Sathish K; Muralidhar, Kambadur; Gandhi, Ujjawal H; Vunta, Hema; Henderson, Andrew J; Prabhu, K Sandeep

    2008-11-28

    Epidemiological studies suggest a correlation between severity of acquired immunodeficiency syndrome (AIDS) and selenium deficiency, indicating a protective role for this anti-oxidant during HIV infection. Here we demonstrate that thioredoxin reductase-1 (TR1), a selenium-containing pyridine nucleotide-disulfide oxidoreductase that reduces protein disulfides to free thiols, negatively regulates the activity of the HIV-1 encoded transcriptional activator, Tat, in human macrophages. We used a small interfering RNA approach as well as a high affinity substrate of TR1, ebselen, to demonstrate that Tat-dependent transcription and HIV-1 replication were significantly increased in human macrophages when TR1 activity was reduced. The increase in HIV-1 replication in TR1 small interfering RNA-treated cells was independent of the redox-sensitive transcription factor, NF-kappaB. These studies indicate that TR-1 acts as a negative regulator of Tat-dependent transcription. Furthermore, in vitro biochemical assays with recombinant Tat protein confirmed that TR1 targets two disulfide bonds within the Cys-rich motif required for efficient HIV-1 transactivation. Increasing TR1 expression along with other selenoproteins by supplementing with selenium suggests a potential inexpensive adjuvant therapy for HIV/AIDS patients.

  11. A Slow Conformational Switch in the BMAL1 Transactivation Domain Modulates Circadian Rhythms.

    PubMed

    Gustafson, Chelsea L; Parsley, Nicole C; Asimgil, Hande; Lee, Hsiau-Wei; Ahlbach, Christopher; Michael, Alicia K; Xu, Haiyan; Williams, Owen L; Davis, Tara L; Liu, Andrew C; Partch, Carrie L

    2017-05-18

    The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. SOX10 Transactivates S100B to Suppress Schwann Cell Proliferation and to Promote Myelination

    PubMed Central

    Fujiwara, Sayaka; Hoshikawa, Shinya; Ueno, Takaaki; Hirata, Makoto; Saito, Taku; Ikeda, Toshiyuki; Kawaguchi, Hiroshi; Nakamura, Kozo; Tanaka, Sakae; Ogata, Toru

    2014-01-01

    Schwann cells are an important cell source for regenerative therapy for neural disorders. We investigated the role of the transcription factor sex determining region Y (SRY)-box 10 (SOX10) in the proliferation and myelination of Schwann cells. SOX10 is predominantly expressed in rat sciatic nerve-derived Schwann cells and is induced shortly after birth. Among transcription factors known to be important for the differentiation of Schwann cells, SOX10 potently transactivates the S100B promoter. In cultures of Schwann cells, overexpressing SOX10 dramatically induces S100B expression, while knocking down SOX10 with shRNA suppresses S100B expression. Here, we identify three core response elements of SOX10 in the S100B promoter and intron 1 with a putative SOX motif. Knockdown of either SOX10 or S100B enhances the proliferation of Schwann cells. In addition, using dissociated cultures of dorsal root ganglia, we demonstrate that suppressing S100B with shRNA impairs myelination of Schwann cells. These results suggest that the SOX10-S100B signaling axis critically regulates Schwann cell proliferation and myelination, and therefore is a putative therapeutic target for neuronal disorders. PMID:25536222

  13. Crystal Structure of the CLOCK Transactivation Domain Exon19 in Complex with a Repressor.

    PubMed

    Hou, Zhiqiang; Su, Lijing; Pei, Jimin; Grishin, Nick V; Zhang, Hong

    2017-08-01

    In the canonical clock model, CLOCK:BMAL1-mediated transcriptional activation is feedback regulated by its repressors CRY and PER and, in association with other coregulators, ultimately generates oscillatory gene expression patterns. How CLOCK:BMAL1 interacts with coregulator(s) is not well understood. Here we report the crystal structures of the mouse CLOCK transactivating domain Exon19 in complex with CIPC, a potent circadian repressor that functions independently of CRY and PER. The Exon19:CIPC complex adopts a three-helical coiled-coil bundle conformation containing two Exon19 helices and one CIPC. Unique to Exon19:CIPC, three highly conserved polar residues, Asn341 of CIPC and Gln544 of the two Exon19 helices, are located at the mid-section of the coiled-coil bundle interior and form hydrogen bonds with each other. Combining results from protein database search, sequence analysis, and mutagenesis studies, we discovered for the first time that CLOCK Exon19:CIPC interaction is a conserved transcription regulatory mechanism among mammals, fish, flies, and other invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum.

    PubMed

    Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H

    2013-08-01

    XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD.

  15. Brain-Targeted Delivery of Trans-Activating Transcriptor-Conjugated Magnetic PLGA/Lipid Nanoparticles

    PubMed Central

    Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian

    2014-01-01

    Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain. PMID:25187980

  16. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles.

    PubMed

    Wen, Xiangru; Wang, Kai; Zhao, Ziming; Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian

    2014-01-01

    Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.

  17. Transcriptional transactivator peptide modified lidocaine-loaded nanoparticulate drug delivery system for topical anesthetic therapy.

    PubMed

    Wang, Yan; Wang, Shenhui; Shi, Pengcai

    2016-11-01

    For the topical anesthetic, transcriptional transactivator peptide (TAT) modified lidocaine (LID) loaded nanostructured lipid carriers (TAT-NLCs-LID) were prepared and then used for improving transdermal delivery of local anesthetic drug. In this study, TAT was conjugated with Distearoyl phosphatidylethanolamine-(polyethylene glycol)2000-maleimide (DSPE-PEG2000-Mal) to obtain TAT-PEG2000-DSPE. TAT-NLCs-LID were successfully prepared and characterized by determination of their particle size, morphology, drug encapsulation efficiency and in vitro drug release behavior. The skin permeation of LID-LNPs was examined using a Franz diffusion cell mounted with depilated mouse skin in vitro and in vivo anesthesia effect was evaluated on mice. The results showed that TAT-NLCs-LID have substantially small mean diameter (157.9 nm) and high encapsulation efficiency (81.8%). From the in vitro skin permeation results, transdermal flux of TAT-NLCs-LID was about several times higher than that of LID solution and NLCs-LID. In vivo anesthesia effect evaluation illustrated that TAT-NLCs-LID can enhance the transdermal delivery of LID by reducing the pain threshold in mice. These results indicate that the novel TAT containing drug delivery system is very useful for overcoming the barrier function of the skin and could deliver anesthetic through the skin. TAT-NLCs-LID could function as promising topical anesthetic system.

  18. Several different upstream promoter elements can potentiate transactivation by the BPV-1 E2 protein.

    PubMed Central

    Ham, J; Dostatni, N; Arnos, F; Yaniv, M

    1991-01-01

    The enhancer and upstream promoter regions of RNA polymerase II transcribed genes modulate the rate of transcription initiation and establish specific patterns of gene expression. Both types of region consist of clusters of DNA binding sites for nuclear proteins. To determine how efficiently the same factor can activate transcription when acting as an enhancer or promoter factor, we have studied transactivation by the BPV-1 E2 protein, a papillomavirus transcriptional regulator. By cotransfecting a BPV-1 E2 expression vector and a series of reporter plasmids containing well-defined chimeric promoters we have found that whilst E2 can strongly stimulate complex promoters such as that of the HSV tk gene, it does not efficiently activate constructions containing only a TATA box and initiation site. We show that insertion of upstream promoter elements, but not of spacer DNA, between E2 binding sites and the TATA box greatly increases E2 activation. This effect was observed with more than one type of upstream promoter element, is not related to the strength of the promoter and is unlikely to result from co-operative DNA binding by E2 and the transcription factors tested. These results would suggest that E2 has the properties of an enhancer rather than promoter factor and that in certain cases promoter and enhancer factors may affect different steps in the process of transcriptional activation. Images PMID:1655407

  19. Downregulation of class II transactivator (CIITA) expression by synthetic cannabinoid CP55,940.

    PubMed

    Gongora, Celine; Hose, Stacey; O'Brien, Terrence P; Sinha, Debasish

    2004-01-30

    Cannabinoid receptors are known to be expressed in microglia; however, their involvement in specific aspects of microglial immune function has not been demonstrated. Many effects of cannabinoids are mediated by two G-protein coupled receptors, designated CB1 and CB2. We have shown that the CB1 receptor is expressed in microglia that also express MHC class II antigen (J. Neuroimmunol. 82 (1998) 13-21). In our present study, we have analyzed the effect of cannabinoid agonist CP55,940 on MHC class II expression on the surface of IFN-gamma induced microglial cells by flow cytometry. CP55,940 blocked the class II MHC expression induced by IFN-gamma. It has been shown that the regulation of class II MHC genes occurs primarily at the transcriptional level, and a non-DNA binding protein, class II transactivator (CIITA), has been shown to be the master activator for class II transcription. We find that mRNA levels of CIITA are increased in IFN-gamma induced EOC 20 microglial cells and that this increase is almost entirely eliminated by the cannabinoid agonist CP55,940. These data suggests that cannabinoids affect MHC class II expression through actions on CIITA at the transcriptional level.

  20. Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor

    SciTech Connect

    Wang, C.-P.; Lee, Y.-F.; Chang, C.; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-12-08

    The human testicular receptor 4 (TR4) shares structural homology with members of the nuclear receptor superfamily. Some other members of this superfamily were able to regulate the transcriptional activity of the human oxytocin (OXT) promoter by binding to the first DR0 regulatory site. However, little investigation was conducted systematically in the study of the second dDR4 site of OXT proximal promoter, and the relationship between the first and the second sites of OXT promoter. Here, we demonstrated for the first time that TR4 could increase the proximal promoter activity of the human OXT gene via DR0, dDR4, and OXT (both DR0 and dDR4) elements, respectively. TR4 might induce OXT gene expression through the OXT element in a dose-dependent manner. However, there is no synergistic effect between DR0 and dDR4 elements during TR4 transactivation. Taken together, these results suggested that TR4 should be one of important regulators of OXT gene expression.

  1. Transactivation domains are not functionally conserved between vertebrate and invertebrate serum response factors.

    PubMed

    Avila, Sonia; Casero, Marie-Carmen; Fernandez-Cantón, Rocío; Sastre, Leandro

    2002-08-01

    The transcription factor serum response factor (SRF) regulates expression of growth factor-dependent genes and muscle-specific genes in vertebrates. Homologous factors regulate differentiation of some ectodermic tissues in invertebrates. To explore the molecular basis of these different physiological functions, the functionality of human, Drosophila melanogaster and Artemia franciscana SRFs in mammalian cells has been compared in this article. D. melanogaster and, to a lesser extend, A. franciscana SRF co-expression represses the activity of strong SRF-dependent promoters, such as those of the mouse c-fos and A. franciscana actin 403 genes. Domain-exchange experiments showed that these results can be explained by the absence of a transactivation domain, functional in mammalian cells, in D. melanogaster and A. franciscana SRFs. Both invertebrate SRFs can dimerize with endogenous mouse SRF through the conserved DNA-binding and dimerization domain. Co-expression of human and A. franciscana SRFs activate expression of weaker SRF-dependent promoters, such as those of the human cardiac alpha-actin gene or an A. franciscana actin 403 promoter where the SRF-binding site has been mutated. Mapping of A. franciscana SRF domains involved in transcriptional activation has shown that the conserved DNA-binding and dimerization domain is neccessary, but not sufficient, for promoter activation in mammalian cells.

  2. Semaphorin 3A alters endothelial cell immunogenicity by regulating Class II transactivator activity circuits.

    PubMed

    Schlahsa, Laura; Zhang, HaiJiao; Battermann, Anja; Verboom, Murielle; Immenschuh, Stephan; Eiz-Vesper, Britta; Stripecke, Renata; Engelmann, Katrin; Blasczyk, Rainer; Figueiredo, Constança

    2014-08-01

    Endothelial cells (ECs) play a pivotal role in the allogeneic immune response upon transplantation. Semaphorin 3A (Sema3A) was implicated in the modulation of EC growth, but its effects on immunogenicity were not previously investigated. ECs were transduced with a lentiviral vector encoding for the green fluorescence protein (GFP) sequence under the control of a Class II transactivator (CIITA)-dependent promoter. Upon stimulation of nonmodified ECs with recombinant Sema3A protein, mRNA and protein levels of CIITA, HLA-DR, and Sema3A receptors were evaluated. An enzyme-linked immunosorbent assay was developed to quantify Sema3A levels in the sera of kidney-transplanted patients. Sema3A stimulation of lentiviral vector encoding for the GFP sequence ECs caused a significant up regulation of the transgene expression, indicating an increase in CIITA levels. Stimulation of nonmodified ECs with Sema3A resulted in an up regulation of CIITA expression, which was associated with enhanced HLA-DR levels and an increase in alloreactive CD4+ T-cell proliferation. Sema3A receptor expression was enhanced by CIITA, establishing a positive feedback loop. Higher levels of Sema3A were observed in sera of patients presenting with organ rejection. This study links Sema3A signaling in ECs with increased CIITA levels and higher HLA-DR expression, resulting in CD4+ T-cell activation, which might have important implications for tissue and organ transplantation. © 2014 AABB.

  3. SIP1/NHERF2 enhances estrogen receptor alpha transactivation in breast cancer cells

    PubMed Central

    Meneses-Morales, Ivan; Tecalco-Cruz, Angeles C.; Barrios-García, Tonatiuh; Gómez-Romero, Vania; Trujillo-González, Isis; Reyes-Carmona, Sandra; García-Zepeda, Eduardo; Méndez-Enríquez, Erika; Cervantes-Roldán, Rafael; Pérez-Sánchez, Víctor; Recillas-Targa, Félix; Mohar-Betancourt, Alejandro; León-Del-Río, Alfonso

    2014-01-01

    The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that possesses two activating domains designated AF-1 and AF-2 that mediate its transcriptional activity. The role of AF-2 is to recruit coregulator protein complexes capable of modifying chromatin condensation status. In contrast, the mechanism responsible for the ligand-independent AF-1 activity and for its synergistic functional interaction with AF-2 is unclear. In this study, we have identified the protein Na+/H+ Exchanger RegulatoryFactor 2 (NHERF2) as an ERα-associated coactivator that interacts predominantly with the AF-1 domain of the nuclear receptor. Overexpression of NHERF2 in breast cancer MCF7 cells produced an increase in ERα transactivation. Interestingly, the presence of SRC-1 in NHERF2 stably overexpressing MCF7 cells produced a synergistic increase in ERα activity. We show further that NHERF2 interacts with ERα and SRC-1 in the promoter region of ERα target genes. The binding of NHERF2 to ERα in MCF7 cells increased cell proliferation and the ability of MCF7 cells to form tumors in a mouse model. We analyzed the expression of NHERF2 in breast cancer tumors finding a 2- to 17-fold increase in its mRNA levels in 50% of the tumor samples compared to normal breast tissue. These results indicate that NHERF2 is a coactivator of ERα that may participate in the development of estrogen-dependent breast cancer tumors. PMID:24771346

  4. Targeting reverse tetracycline-dependent transactivator to murine mammary epithelial cells that express the progesterone receptor.

    PubMed

    Mukherjee, Atish; Soyal, Selma M; Fernandez-Valdivia, Rodrigo; DeMayo, Francesco J; Lydon, John P

    2007-10-01

    Through an established gene-targeting strategy, reverse tetracycline-dependent transactivator (rtTA) was targeted downstream of the murine progesterone receptor (PR) promoter. Mice were generated in which one (PR(+/rtTA)) or both (PR(rtTA/rtTA)) PR alleles harbor the rtTA insertion. The PR(+/rtTA) and PR(rtTA/rtTA) knockins exhibit phenotypes identical to the normal and the progesterone receptor knockout mouse, respectively. Crossed with the TZA reporter, which carries the TetO-LacZ responder transgene, the PR(+/rtTA)/TZA and PR(rtTA/rtTA)/TZA bigenics exhibit doxycycline-induced beta-galactosidase activity specifically in progesterone responsive target tissues such as the mammary gland, uterus, ovary, and pituitary gland. In the case of the PR(+/rtTA)/TZA mammary epithelium, dual immunofluorescence demonstrated that PR expression and doxycycline-induced beta-galactosidase activity colocalized; beta-galactosidase was not detected in the absence of doxycycline. Although both the PR(+/rtTA) and PR(rtTA/rtTA) knockins represent innovative animal models with which to further query progesterone's mechanism of action in vivo, the PR(rtTA/rtTA) mouse in particular promises to provide unique insight into the paracrine mechanism of action, which underpins progesterone's involvement in mammary morphogenesis with obvious implications for extending our understanding of this steroid's role in breast cancer progression.

  5. cAMP-independent role of PKA in tonicity-induced transactivation of tonicity-responsive enhancer/ osmotic response element-binding protein.

    PubMed

    Ferraris, Joan D; Persaud, Prita; Williams, Chester K; Chen, Ye; Burg, Maurice B

    2002-12-24

    Hypertonicity-induced increase in activity of the transcription factor tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP) protects renal cells by increasing transcription of genes, including those involved in increased accumulation of organic osmolytes. We previously showed that hypertonicity increases transactivating activity of TonEBP/OREBP. Assay with a binary GAL4 transactivation system showed that the 984 C-terminal amino acids of TonEBP/OREBP (amino acids 548-1531) contain a tonicity-dependent transactivation domain (TAD). Also, amino acids 548-1531 undergo tonicity-dependent phosphorylation, and some inhibitors of protein kinases reduce the tonicity-dependent transactivation. In the present studies we examined the role of protein kinase A (PKA). (i) An inhibitor of PKA (H89) reduces tonicity-dependent increases in transactivation, ORE/TonE reporter activity, and induction of aldose reductase and betaine transporter mRNAs. (ii) Overexpression of the catalytic subunit of PKA (PKAc) increases transactivation activity of amino acids 548-1531 and activity of an ORE/TonE reporter. The increases are much greater under isotonic than under hypertonic conditions. (iii) A dominant-negative PKAc reduces activity of an ORE/TonE reporter. (iv) PKAc activity increases with tonicity but cAMP does not. (v) TonEBP/OREBP and PKAc coimmunoprecipitate. (vi) amino acids 872-1271, including N- and C-terminal polyglutamine stretches, demonstrate tonicity-dependent transactivation, albeit less than amino acids 548-1531, and a similar role for PKA. (i) PKA plays an important role in TonEBP/OREBP activation of tonicity-dependent gene expression; (ii) PKA activation of TonEBP/OREBP appears to be cAMP-independent; and (iii) amino acids 872-1271 are sufficient for tonicity-dependent transactivation of TonEBP/OREBP.

  6. cAMP-independent role of PKA in tonicity-induced transactivation of tonicity-responsive enhancer/ osmotic response element-binding protein

    PubMed Central

    Ferraris, Joan D.; Persaud, Prita; Williams, Chester K.; Chen, Ye; Burg, Maurice B.

    2002-01-01

    Hypertonicity-induced increase in activity of the transcription factor tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP) protects renal cells by increasing transcription of genes, including those involved in increased accumulation of organic osmolytes. We previously showed that hypertonicity increases transactivating activity of TonEBP/OREBP. Assay with a binary GAL4 transactivation system showed that the 984 C-terminal amino acids of TonEBP/OREBP (amino acids 548–1531) contain a tonicity-dependent transactivation domain (TAD). Also, amino acids 548–1531 undergo tonicity-dependent phosphorylation, and some inhibitors of protein kinases reduce the tonicity-dependent transactivation. In the present studies we examined the role of protein kinase A (PKA). Results: (i) An inhibitor of PKA (H89) reduces tonicity-dependent increases in transactivation, ORE/TonE reporter activity, and induction of aldose reductase and betaine transporter mRNAs. (ii) Overexpression of the catalytic subunit of PKA (PKAc) increases transactivation activity of amino acids 548–1531 and activity of an ORE/TonE reporter. The increases are much greater under isotonic than under hypertonic conditions. (iii) A dominant-negative PKAc reduces activity of an ORE/TonE reporter. (iv) PKAc activity increases with tonicity but cAMP does not. (v) TonEBP/OREBP and PKAc coimmunoprecipitate. (vi) amino acids 872–1271, including N– and C-terminal polyglutamine stretches, demonstrate tonicity-dependent transactivation, albeit less than amino acids 548–1531, and a similar role for PKA. Conclusions: (i) PKA plays an important role in TonEBP/OREBP activation of tonicity-dependent gene expression; (ii) PKA activation of TonEBP/OREBP appears to be cAMP-independent; and (iii) amino acids 872–1271 are sufficient for tonicity-dependent transactivation of TonEBP/OREBP. PMID:12482947

  7. Non-transactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes

    SciTech Connect

    Holmstroem, Therese E.; Mattsson, Charlotte L.; Wang, Yanling; Iakovleva, Irina; Petrovic, Natasa; Nedergaard, Jan

    2010-10-01

    In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one G{sub i}-protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.

  8. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein.

    PubMed

    Brázda, Václav; Čechová, Jana; Battistin, Michele; Coufal, Jan; Jagelská, Eva B; Raimondi, Ivan; Inga, Alberto

    2017-01-29

    The TP53 gene is the most frequently mutated gene in human cancer and p53 protein plays a crucial role in gene expression and cancer protection. Its role is manifested by interactions with other proteins and DNA. p53 is a transcription factor that binds to DNA response elements (REs). Due to the palindromic nature of the consensus binding site, several p53-REs have the potential to form cruciform structures. However, the influence of cruciform formation on the activity of p53-REs has not been evaluated. Therefore, we prepared sets of p53-REs with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures, for in vitro and in vivo analyses. Then we evaluated the presence of cruciform structures when inserted into plasmid DNA and employed a yeast-based assay to measure transactivation potential of these p53-REs cloned at a chromosomal locus in isogenic strains. We show that transactivation in vivo correlated more with relative propensity of an RE to form cruciforms than to its predicted in vitro DNA binding affinity for wild type p53. Structural features of p53-REs could therefore be an important determinant of p53 transactivation function. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Cholecystokinin 1 receptor modulates the MEKK1-induced c-Jun trans-activation: structural requirements of the receptor

    PubMed Central

    Ibarz, Géraldine; Oiry, Catherine; Carnazzi, Eric; Crespy, Philippe; Escrieut, Chantal; Fourmy, Daniel; Galleyrand, Jean Claude; Gagne, Didier; Martinez, Jean

    2006-01-01

    In cells overexpressing active MEKK1 to enhance c-Jun trans-activation, expression of rat cholecystokinin 1 receptor increased the activity of c-Jun while in the same experimental conditions overexpression of mouse cholecystokinin 1 receptor repressed it. This differential trans-activation is specific, since it was not observed for either the other overexpressed kinases (MEK, PKA) or for other transcription factors (ATF2, ELK-1, CREB). This differential behaviour was also detected in a human colon adenocarcinoma cell-line naturally producing high levels of endogenous MEKK1. This differential behaviour between the two receptors on the MEKK1-induced c-Jun trans-activation was independent of the activation state of JNK, of the phosphorylation level of c-Jun and of its ability to bind its specific DNA responsive elements. Two amino acids (Val43 and Phe50 in the mouse cholecystokinin 1 receptor, replaced by Leu43 and Ileu50 in the rat cholecystokinin 1 receptor) localized in the first transmembrane domain were found to play a crucial role in this differential behaviour. MEKK1 probably activates a transcriptional partner of c-Jun whose activity is maintained or increased in the presence of the rat cholecystokinin 1 receptor but repressed in the presence of the mouse cholecystokinin 1 receptor. PMID:16491099

  10. Cholecystokinin 1 receptor modulates the MEKK1-induced c-Jun trans-activation: structural requirements of the receptor.

    PubMed

    Ibarz, Géraldine; Oiry, Catherine; Carnazzi, Eric; Crespy, Philippe; Escrieut, Chantal; Fourmy, Daniel; Galleyrand, Jean Claude; Gagne, Didier; Martinez, Jean

    2006-04-01

    In cells overexpressing active MEKK1 to enhance c-Jun trans-activation, expression of rat cholecystokinin 1 receptor increased the activity of c-Jun while in the same experimental conditions overexpression of mouse cholecystokinin 1 receptor repressed it. This differential trans-activation is specific, since it was not observed for either the other overexpressed kinases (MEK, PKA) or for other transcription factors (ATF2, ELK-1, CREB). This differential behaviour was also detected in a human colon adenocarcinoma cell-line naturally producing high levels of endogenous MEKK1. This differential behaviour between the two receptors on the MEKK1-induced c-Jun trans-activation was independent of the activation state of JNK, of the phosphorylation level of c-Jun and of its ability to bind its specific DNA responsive elements. Two amino acids (Val43 and Phe50 in the mouse cholecystokinin 1 receptor, replaced by Leu43 and Ileu50 in the rat cholecystokinin 1 receptor) localized in the first transmembrane domain were found to play a crucial role in this differential behaviour. MEKK1 probably activates a transcriptional partner of c-Jun whose activity is maintained or increased in the presence of the rat cholecystokinin 1 receptor but repressed in the presence of the mouse cholecystokinin 1 receptor.

  11. Screening of endocrine disrupting chemicals with MELN cells, an ER-transactivation assay combined with cytotoxicity assessment.

    PubMed

    Berckmans, P; Leppens, H; Vangenechten, C; Witters, H

    2007-10-01

    There is growing concern that some chemicals can cause endocrine disrupting effects to wild animals and humans. Therefore a rapid and reliable screening assay to assess the activity of endocrine disrupting chemicals (EDCs) is required. These EDCs can act at multiple sites. Most studied mechanism is direct interaction with the hormone receptors, e.g. estrogen receptor. In this study the luciferase reporter gene assay using transgenic human MELN cells was used. Since cytotoxicity of the chemicals can decrease the luminescent signal in the transactivation assays, a cytotoxicity assay must be implemented. Mostly the neutral red (NR) assay is performed in parallel with the estrogenicity assay. To increase the reliability and cost-efficiency of the test, a method to measure estrogenicity and cytotoxicity in the same cell culture plate instead of in parallel plates was developed and evaluated. Therefore the NR-assay was compared with the CytoTox-ONE homogeneous membrane integrity assay. The latter measures LDH (lactate dehydrogenase) leakage based on a fluorometric method. For all compounds tested, the CytoTox-ONE test showed comparable curves and EC50-values to those obtained by the NR-assay. So the CytoTox-ONE kit, which seemed more sensitive than measurements of LDH-leakage based on a colorimetric method, is recommended to test cytotoxicity to MELN cells, with the advantage to use the same cells for ER-transactivation measurements. The chemicals tested in the optimised MELN assay showed estrogenic potencies comparable to those reported for several other transactivation assays.

  12. Mulberroside A suppresses PXR-mediated transactivation and gene expression of P-gp in LS174T cells.

    PubMed

    Li, Yuhua; Huang, Ling; Sun, Jiahong; Wei, Xiaohua; Wen, Jinhua; Zhong, Guoping; Huang, Min; Bi, Huichang

    2016-12-05

    Mulberroside A (Mul A) is the main bioactive constituents of Sangbaipi, which is officially listed in the Chinese Pharmacopoeia. The pregnane X receptor (PXR) has been recognized as the critical mediator of human P-glycoprotein (P-gp) gene transactivation. In this study, the effect of Mul A on PXR-mediated transactivation and gene expression of P-gp was investigated. It was found that Mul A significantly suppressed PXR-mediated P-gp luciferase activity induced by rifampicin (Rif). Furthermore, Rif induced an elevation of P-gp expression and transport activity, which was apparently suppressed by Mul A. However, Mul A did not suppress the P-gp luciferase activity, P-gp expression, and function in the absence of Rif. These findings suggest that Mul A suppresses PXR-mediated transactivation and P-gp expression induced by Rif. This should be taken into consideration to predict any potential herb-drug interactions when Mul A or Sangbaipi are co-administered with Rif or other PXR agonist drugs.

  13. Suppression of RNA Silencing by a Geminivirus Nuclear Protein, AC2, Correlates with Transactivation of Host Genes†

    PubMed Central

    Trinks, Daniela; Rajeswaran, R.; Shivaprasad, P. V.; Akbergenov, Rashid; Oakeley, Edward J.; Veluthambi, K.; Hohn, Thomas; Pooggin, Mikhail M.

    2005-01-01

    Bipartite geminiviruses encode a small protein, AC2, that functions as a transactivator of viral transcription and a suppressor of RNA silencing. A relationship between these two functions had not been investigated before. We characterized both of these functions for AC2 from Mungbean yellow mosaic virus-Vigna (MYMV). When transiently expressed in plant protoplasts, MYMV AC2 strongly transactivated the viral promoter; AC2 was detected in the nucleus, and a split nuclear localization signal (NLS) was mapped. In a model Nicotiana benthamiana plant, in which silencing can be triggered biolistically, AC2 reduced local silencing and prevented its systemic spread. Mutations in the AC2 NLS or Zn finger or deletion of its activator domain abolished both these effects, suggesting that suppression of silencing by AC2 requires transactivation of host suppressor(s). In line with this, in Arabidopsis protoplasts, MYMV AC2 or its homologue from African cassava mosaic geminivirus coactivated >30 components of the plant transcriptome, as detected with Affymetrix ATH1 GeneChips. Several corresponding promoters cloned from Arabidopsis were strongly induced by both AC2 proteins. These results suggest that silencing suppression and transcription activation by AC2 are functionally connected and that some of the AC2-inducible host genes discovered here may code for components of an endogenous network that controls silencing. PMID:15681452

  14. Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes.

    PubMed

    Trinks, Daniela; Rajeswaran, R; Shivaprasad, P V; Akbergenov, Rashid; Oakeley, Edward J; Veluthambi, K; Hohn, Thomas; Pooggin, Mikhail M

    2005-02-01

    Bipartite geminiviruses encode a small protein, AC2, that functions as a transactivator of viral transcription and a suppressor of RNA silencing. A relationship between these two functions had not been investigated before. We characterized both of these functions for AC2 from Mungbean yellow mosaic virus-Vigna (MYMV). When transiently expressed in plant protoplasts, MYMV AC2 strongly transactivated the viral promoter; AC2 was detected in the nucleus, and a split nuclear localization signal (NLS) was mapped. In a model Nicotiana benthamiana plant, in which silencing can be triggered biolistically, AC2 reduced local silencing and prevented its systemic spread. Mutations in the AC2 NLS or Zn finger or deletion of its activator domain abolished both these effects, suggesting that suppression of silencing by AC2 requires transactivation of host suppressor(s). In line with this, in Arabidopsis protoplasts, MYMV AC2 or its homologue from African cassava mosaic geminivirus coactivated >30 components of the plant transcriptome, as detected with Affymetrix ATH1 GeneChips. Several corresponding promoters cloned from Arabidopsis were strongly induced by both AC2 proteins. These results suggest that silencing suppression and transcription activation by AC2 are functionally connected and that some of the AC2-inducible host genes discovered here may code for components of an endogenous network that controls silencing.

  15. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus

    SciTech Connect

    Davis, M.G.; Kenney, S.C.; Kamine, J.; Pagano, J.S.; Huang, E.S.

    1987-12-01

    Almost all homosexual patients with acquired immunodeficiency syndrome are also actively infected with human cytomegalovirus (HCMV). The authors have hypothesized that an interaction between HCMV and human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome, may exist at a molecular level and contribute to the manifestations of HIV infection. In this report, they demonstrate that the immediate-early gene region of HCMV, in particular immediate-early region 2, trans-activates the expression of the bacterial gene chloramphenicol acetyltransferase that is fused to the HIV long terminal repeat and carried by plasmid pHIV-CAT. The HCMV immediate-early trans-activator increases the level of mRNA from the plamid pHIV-CAT. The sequences of HIV that are responsive to trans-activation by the HDMV immediate-early region are distinct from HIV sequences that are required for response to the HIV tat. The stimulation of HIV gene expression by HDMV gene functions could enhance the consequences of HIV infection in persons with previous or concurrent HCMV infection.

  16. Lack of trans-activation function for Maedi Visna virus and Caprine arthritis encephalitis virus Tat proteins.

    PubMed

    Villet, Stéphanie; Faure, Claudine; Bouzar, Baya Amel; Morin, Thierry; Verdier, Gérard; Chebloune, Yahia; Legras, Catherine

    2003-03-15

    All lentiviruses contain an open reading frame located shortly upstream or inside of the env gene and encoding a small protein which has been designated Tat. This designation was mainly with respect to the positional analogy with the first exon of the trans-activator protein of the well studied human immunodeficiency virus type 1 (HIV-1). In this work we comparatively studied the trans- activation activity induced by Tat proteins of the small ruminant Maedi Visna virus (MVV) of sheep and Caprine arthritis encephalitis virus (CAEV) of goats on MVV and CAEV LTRs with that induced by the human lentivirus HIV-1 on its own LTR. The HIV-1 LTR alone weakly expresses the reporter GFP gene except when the HIV-1 Tat protein is coexpressed, the GFP expression is increased 60-fold. In similar conditions only minimal trans-activation increasing two- to three-fold the MVV and CAEV LTR activity was found with MVV Tat protein, and no trans-activation activity was detected in any used cell type or with any virus strain when CAEV Tat was tested. These results indicate that the small ruminant lentiviruses (SRLV) differ from the primate lentiviruses in their control of expression from the viral LTRs and put into question the biological role of the encoded protein named "Tat."

  17. The mechanism of transactivation regulation due to polymorphic short tandem repeats (STRs) using IGF1 promoter as a model

    PubMed Central

    Chen, Holly Y.; Ma, Suk Ling; Huang, Wei; Ji, Lindan; Leung, Vincent H. K.; Jiang, Honglin; Yao, Xiaoqiang; Tang, Nelson L. S.

    2016-01-01

    Functional short tandem repeats (STR) are polymorphic in the population, and the number of repeats regulates the expression of nearby genes (known as expression STR, eSTR). STR in IGF1 promoter has been extensively studied for its association with IGF1 concentration in blood and various clinical traits and represents an important eSTR. We previously used an in-vitro luciferase reporter model to examine the interaction between STRs and SNPs in IGF1 promoter. Here, we further explored the mechanism how the number of repeats of the STR regulates gene transcription. An inverse correlation between the number of repeats and the extent of transactivation was found in a haplotype consisting of three promoter SNPs (C-STR-T-T). We showed that these adjacent SNPs located outside the STR were required for the STR to function as eSTR. The C allele of rs35767 provides a binding site for CCAAT/enhancer-binding-protein δ (C/EBPD), which is essential for the gradational transactivation property of eSTR and FOXA3 may also be involved. Therefore, we propose a mechanism in which the gradational transactivation by the eSTR is caused by the interaction of one or more transcriptional complexes located outside the STR, rather than by direct binding to a repeat motif of the STR. PMID:27910883

  18. Lysophosphatidic Acid-induced ERK Activation and Chemotaxis in MC3T3-E1 Preosteoblasts are Independent of EGF Receptor Transactivation

    SciTech Connect

    Karagiosis, Sue A.; Chrisler, William B.; Bollinger, Nikki; Karin, Norman J.

    2009-06-01

    Growing evidence indicates that bone-forming osteoblasts and their progenitors are target cells for the lipid growth factor lysophosphatidic acid (LPA) which is produced by degranulating platelets at sites of injury. LPA is a potent inducer of bone cell migration, proliferation and survival in vitro and an attractive candidate to facilitate preosteoblast chemotaxis during skeletal regeneration in vivo, but the intracellular signaling pathways mediating the effects of this lipid on bone cells are not defined. In this study we measured the ability of LPA to stimulate extracellular signal-related kinase (ERK1/2) in MC3T3-E1 preosteoblastic cells and determined the contribution of this pathway to LPA-stimulated chemotaxis. LPA-treated cells exhibited a bimodal activation of ERK1/2 with maximal phosphorylation at 5 and 60 minutes. The kinetics of ERK1/2 phosphorylation were not coupled to Ras activation or LPA-induced elevations in cytosolic Ca2+. While LPA is coupled to the transactivation of the EGF receptor in many cell types, LPA-stimulated ERK1/2 activation in MC3T3-E1 cells was unaffected by inhibition of EGF receptor function. ERK isoforms rapidly accumulated at nuclear sites in LPA-treated cells, a process that was blocked if ERK1/2 phosphorylation was prevented with the MEK1 inhibitor U0126. Blocking ERK1/2 phosphorylation with U0126 also diminished MC3T3-E1 cell migration and altered the normal disassembly of LPA-induced stress fibers, while the inhibition of EGF receptor function had no effect on LPA-coupled preosteoblast motility. Our results identify ERK1/2 activation as a mediatora mediator of LPA-stimulated MC3T3-E1 cell migration that may be relevant to preosteoblast motility during bone repair in vivo.

  19. Fkbp52 regulates androgen receptor transactivation activity and male urethra morphogenesis.

    PubMed

    Chen, Hanying; Yong, Weidong; Hinds, Terry D; Yang, Zuocheng; Zhou, Yuhong; Sanchez, Edwin R; Shou, Weinian

    2010-09-03

    Hypospadias is a common birth defect in humans, yet its etiology and pattern of onset are largely unknown. Recent studies have shown that male mice with targeted ablation of FK506-binding protein-52 (Fkbp52) develop hypospadias, most likely due to actions of Fkbp52 as a molecular co-chaperone of the androgen receptor (AR). Here, we further dissect the developmental and molecular mechanisms that underlie hypospadias in Fkbp52-deficient mice. Scanning electron microscopy revealed a defect in the elevation of prepucial swelling that led to the onset of the ventral penile cleft. Interestingly, expression of Fkbp52 was highest in the ventral aspect of the developing penis that undergoes fusion of the urethral epithelium. Although in situ hybridization and immunohistochemical analyses suggested that Fkbp52 mutants had a normal urethral epithelium signaling center and epithelial differentiation, a reduced apoptotic cell index at ventral epithelial cells at the site of fusion and a defect of genital mesenchymal cell migration were observed. Supplementation of gestating females with excess testosterone partially rescued the hypospadic phenotype in Fkbp52 mutant males, showing that loss of Fkbp52 desensitizes AR to hormonal activation. Direct measurement of AR activity was performed in mouse embryonic fibroblast cells treated with dihydrotestosterone or synthetic agonist R1881. Reduced AR activity at genes controlling sexual dimorphism and cell growth was found in Fkbp52-deficient mouse embryonic fibroblast cells. However, chromatin immunoprecipitation analysis revealed normal occupancy of AR at gene promoters, suggesting that Fkbp52 exerts downstream effects on the transactivation function of AR. Taken together, our data show Fkbp52 to be an important molecular regulator in the androgen-mediated pathway of urethra morphogenesis.

  20. FOXM1 regulates glycolysis in hepatocellular carcinoma by transactivating glucose transporter 1 expression.

    PubMed

    Shang, Runze; Pu, Meng; Li, Yu; Wang, Desheng

    2017-04-01

    The Forkhead box M1 (FOXM1) transcription factor plays crucial roles in the initiation and progression of various malignancies, including hepatocellular carcinoma (HCC). However, the mechanism by which FOXM1 regulates cancer metabolism remains unclear. In the present study, overexpression and RNA interference (RNAi) approaches were used to investigate the role of FOXM1 in the regulation of glycolysis in vitro. Luciferase reporter assays were used to explore the transcriptional regulation of the glucose transporter 1 (GLUT1) promoter by FOXM1. Then, immunohistochemical staining was used to examine the expression of FOXM1 and GLUT1 in 100 paired HCC and adjacent non-cancerous liver tissues. Chi-square test and logistic regression analysis were performed to evaluate the association between FOXM1 and GLUT1 expression with clinicopathological characteristics. Our data showed that FOXM1 promoted glycolysis in the HCC cells. FOXM1 knockdown significantly reduced the expression of GLUT1 among key glycolysis-related molecules in the different HCC cell lines. Glucose uptake and lactate production assay showed that FOXM1 positively regulated glycolysis based on GLUT1 expression. Moreover, FOXM1 overexpression increased and knockdown decreased GLUT1 expression. Luciferase reporter assays showed that the -206 to -199 bp region of the GLUT1 promoter is important for FOXM1 to enhance GLUT1 promoter activity. The results of the IHC analysis showed that the protein expression of FOXM1 and GLUT1 was closely related to the tumor histological grade and TNM stage. In addition, GLUT1 expression was also related to microvascular invasion. In conclusion, overexpression of FOXM1 and GLUT1 may play critical roles in HCC. FOXM1 promotes HCC glycolysis by transactivating GLUT1 expression.

  1. Fkbp52 Regulates Androgen Receptor Transactivation Activity and Male Urethra Morphogenesis*

    PubMed Central

    Chen, Hanying; Yong, Weidong; Hinds, Terry D.; Yang, Zuocheng; Zhou, Yuhong; Sanchez, Edwin R.; Shou, Weinian

    2010-01-01

    Hypospadias is a common birth defect in humans, yet its etiology and pattern of onset are largely unknown. Recent studies have shown that male mice with targeted ablation of FK506-binding protein-52 (Fkbp52) develop hypospadias, most likely due to actions of Fkbp52 as a molecular co-chaperone of the androgen receptor (AR). Here, we further dissect the developmental and molecular mechanisms that underlie hypospadias in Fkbp52-deficient mice. Scanning electron microscopy revealed a defect in the elevation of prepucial swelling that led to the onset of the ventral penile cleft. Interestingly, expression of Fkbp52 was highest in the ventral aspect of the developing penis that undergoes fusion of the urethral epithelium. Although in situ hybridization and immunohistochemical analyses suggested that Fkbp52 mutants had a normal urethral epithelium signaling center and epithelial differentiation, a reduced apoptotic cell index at ventral epithelial cells at the site of fusion and a defect of genital mesenchymal cell migration were observed. Supplementation of gestating females with excess testosterone partially rescued the hypospadic phenotype in Fkbp52 mutant males, showing that loss of Fkbp52 desensitizes AR to hormonal activation. Direct measurement of AR activity was performed in mouse embryonic fibroblast cells treated with dihydrotestosterone or synthetic agonist R1881. Reduced AR activity at genes controlling sexual dimorphism and cell growth was found in Fkbp52-deficient mouse embryonic fibroblast cells. However, chromatin immunoprecipitation analysis revealed normal occupancy of AR at gene promoters, suggesting that Fkbp52 exerts downstream effects on the transactivation function of AR. Taken together, our data show Fkbp52 to be an important molecular regulator in the androgen-mediated pathway of urethra morphogenesis. PMID:20605780

  2. Exosomes Derived from HIV-1-infected Cells Contain Trans-activation Response Element RNA*

    PubMed Central

    Narayanan, Aarthi; Iordanskiy, Sergey; Das, Ravi; Van Duyne, Rachel; Santos, Steven; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Dalby, Elizabeth; Iglesias-Ussel, Maria; Popratiloff, Anastas; Hakami, Ramin; Kehn-Hall, Kylene; Young, Mary; Subra, Caroline; Gilbert, Caroline; Bailey, Charles; Romerio, Fabio; Kashanchi, Fatah

    2013-01-01

    Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 104–106 copies/ml TAR RNA in exosomes derived from infected culture supernatants and 103 copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS. PMID:23661700

  3. A Hoxb13-driven Reverse Tetracycline Transactivator system for conditional gene expression in the prostate

    PubMed Central

    Rao, Varsha; Heard, Jamie C.; Ghaffari, Helya; Wali, Aminah; Mutton, Laura N.; Bieberich, Charles J.

    2013-01-01

    BACKGROUND Genetically engineered mouse models play important roles in analyses of prostate development and pathobiology. While constitutive genetic gain-and loss-of-function models have contributed significantly to our understanding of molecular events driving these processes, the availability of a tightly regulated inducible expression system could extend the utility of transgenic approaches. Here, we describe the development of a Tet-regulatory system that employs Hoxb13 transcriptional control elements to direct reverse tetracycline transactivator (rtTA) expression in the prostate. METHODS Using recombineering technology, the rtTA gene was placed under Hoxb13 cis-regulatory transcriptional control in the context of a 218-kb bacterial artificial chromosome. F1 offspring carrying the Hoxb13-rtTA transgene were bred to a Tetracycline operator–Histone 2B-Green Fluorescent Protein (TetO-H2BGFP) responder line. Detailed reporter gene expression analyses, including doxycycline (Dox) induction and withdrawal kinetics, were performed in Hoxb13-rtTA|TetO-H2BGFP double transgenic adult mice and embryos. RESULTS Dox-dependent GFP expression was observed exclusively in the prostate and distal colon epithelia of double transgenic mice. Reporter gene mRNA was detected in the prostate within 6 hr of Dox exposure, and was extinguished within 24 hr after Dox withdrawal. Furthermore, Dox-induced reporter gene expression persisted after castration. CONCLUSIONS The Hoxb13-rtTA transgenic system provides a powerful tool for conditional Tet operator-driven transgene expression in the normal prostate and during disease progression. Used in conjunction with other prostate pathology models, these mice will enable precise, temporally controlled analyses of gene function and can provide opportunities for detailed analyses of molecular events underlying prostate diseases. PMID:22297979

  4. GPCR-mediated EGF receptor transactivation regulates TRPV4 action in the vasculature

    PubMed Central

    Saifeddine, Mahmoud; El-Daly, Mahmoud; Mihara, Koichiro; Bunnett, Nigel W; McIntyre, Peter; Altier, Christophe; Hollenberg, Morley D; Ramachandran, Rithwik

    2015-01-01

    Background and Purpose Transient receptor potential vanilloid-4 (TRPV4) is a calcium-permeant ion channel that is known to affect vascular function. The ability of TRPV4 to cause a vasoconstriction in blood vessels has not yet been mechanistically examined. Further in neuronal cells, TRPV4 signalling can be potentiated by GPCR activation. Thus, we studied the mechanisms underlying the vascular contractile action of TRPV4 and the GPCR-mediated potentiation of such vasoconstriction, both of which are as yet unappreciated aspects of TRPV4 function. Experimental Approach The mechanisms of TRPV4-dependent regulation of vascular tone in isolated mouse aortae were studied using wire myography. TRPV4-dependent calcium signalling and prostanoid production was studied in cultured human umbilical vein endothelial cells (HUVECs). Key Results In addition to the well-documented vasorelaxation response triggered by TRPV4 activation, we report here a TRPV4-triggered vasoconstriction in the mouse aorta that involves a COX-generated Tx receptor (TP) agonist that acts in a MAPK and Src kinase signalling dependent manner. This constriction is potentiated by activation of the GPCRs for angiotensin (AT1 receptors) or proteinases (PAR1 and PAR2) via transactivation of the EGF receptor and a process involving PKC. TRPV4-dependent vascular contraction can be blocked by COX inhibitors or with TP antagonists. Further, TRPV4 activation in HUVECs stimulated Tx release as detected by an elisa. Conclusion and Implications We conclude that the GPCR potentiation of TRPV4 action and TRPV4-dependent Tx receptor activation are important regulators of vascular function and could be therapeutically targeted in vascular diseases. PMID:25572823

  5. GPCR-mediated EGF receptor transactivation regulates TRPV4 action in the vasculature.

    PubMed

    Saifeddine, Mahmoud; El-Daly, Mahmoud; Mihara, Koichiro; Bunnett, Nigel W; McIntyre, Peter; Altier, Christophe; Hollenberg, Morley D; Ramachandran, Rithwik

    2015-05-01

    Transient receptor potential vanilloid-4 (TRPV4) is a calcium-permeant ion channel that is known to affect vascular function. The ability of TRPV4 to cause a vasoconstriction in blood vessels has not yet been mechanistically examined. Further in neuronal cells, TRPV4 signalling can be potentiated by GPCR activation. Thus, we studied the mechanisms underlying the vascular contractile action of TRPV4 and the GPCR-mediated potentiation of such vasoconstriction, both of which are as yet unappreciated aspects of TRPV4 function. The mechanisms of TRPV4-dependent regulation of vascular tone in isolated mouse aortae were studied using wire myography. TRPV4-dependent calcium signalling and prostanoid production was studied in cultured human umbilical vein endothelial cells (HUVECs). In addition to the well-documented vasorelaxation response triggered by TRPV4 activation, we report here a TRPV4-triggered vasoconstriction in the mouse aorta that involves a COX-generated Tx receptor (TP) agonist that acts in a MAPK and Src kinase signalling dependent manner. This constriction is potentiated by activation of the GPCRs for angiotensin (AT1 receptors) or proteinases (PAR1 and PAR2) via transactivation of the EGF receptor and a process involving PKC. TRPV4-dependent vascular contraction can be blocked by COX inhibitors or with TP antagonists. Further, TRPV4 activation in HUVECs stimulated Tx release as detected by an elisa. We conclude that the GPCR potentiation of TRPV4 action and TRPV4-dependent Tx receptor activation are important regulators of vascular function and could be therapeutically targeted in vascular diseases. © 2015 The British Pharmacological Society.

  6. TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation.

    PubMed

    Papai, Gabor; Tripathi, Manish K; Ruhlmann, Christine; Layer, Justin H; Weil, P Anthony; Schultz, Patrick

    2010-06-17

    Transcription of eukaryotic messenger RNA (mRNA) encoding genes by RNA polymerase II (Pol II) is triggered by the binding of transactivating proteins to enhancer DNA, which stimulates the recruitment of general transcription factors (TFIIA, B, D, E, F, H) and Pol II on the cis-linked promoter, leading to pre-initiation complex formation and transcription. In TFIID-dependent activation pathways, this general transcription factor containing TATA-box-binding protein is first recruited on the promoter through interaction with activators and cooperates with TFIIA to form a committed pre-initiation complex. However, neither the mechanisms by which activation signals are communicated between these factors nor the structural organization of the activated pre-initiation complex are known. Here we used cryo-electron microscopy to determine the architecture of nucleoprotein complexes composed of TFIID, TFIIA, the transcriptional activator Rap1 and yeast enhancer-promoter DNA. These structures revealed the mode of binding of Rap1 and TFIIA to TFIID, as well as a reorganization of TFIIA induced by its interaction with Rap1. We propose that this change in position increases the exposure of TATA-box-binding protein within TFIID, consequently enhancing its ability to interact with the promoter. A large Rap1-dependent DNA loop forms between the activator-binding site and the proximal promoter region. This loop is topologically locked by a TFIIA-Rap1 protein bridge that folds over the DNA. These results highlight the role of TFIIA in transcriptional activation, define a molecular mechanism for enhancer-promoter communication and provide structural insights into the pathways of intramolecular communication that convey transcription activation signals through the TFIID complex.

  7. Bulge-specific cleavage in transactivation response region RNA and its DNA analogue by neocarzinostatin chromophore.

    PubMed

    Kappen, L S; Goldberg, I H

    1995-05-02

    On the basis of the finding that in the absence of thiol the nonprotein chromophore of the antitumor drug neocarzinostatin (NCS-chrom) induces highly efficient site-specific cleavage at a single site on the 3' side of a bulge in single-stranded DNA involving entirely 5' chemistry [Kappen, L. S., & Goldberg, I. H. (1993) Science, 261, 1319-1321], transactivation response region (TAR) RNA (29-mer) and its DNA analogue which presumably contain bulge structures were tested as potential substrates for NCS-chrom. In TAR RNA NCS-chrom generates a distinct but weak band due to cleavage at U24 in the bulge. Cleavage at U24 has a pH dependence and time course similar to those for previously studied DNA bulges. This band is not produced in drug reactions containing glutathione, by the protein component of native NCS, or by inactivated NCS-chrom. Cleavage at U24, albeit weak, occurs in an RNA substrate made up of two linear RNA oligomers which presumably can form a bulge akin to that in TAR RNA. In the DNA analogue of TAR RNA, as well as in a DNA duplex made of two linear oligomers that can form a similar bulge, NCS-chrom causes strand cleavage at the T residues in the bulge and at the bases flanking the bulge. Cleavage at T25 in the bulge involves, in addition to 5' chemistry, 4' attack which results in a fragment with mobility characteristic of 3'-phosphoglycolate-ended fragments. Experiments using DNA substrate having deuterium selectively at the 4' or 5' positions of T25 confirm 4' attack and show kinetic shuttling between the two positions.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Dimerization and Transactivation Domains as Candidates for Functional Modulation and Diversity of Sox9

    PubMed Central

    Geraldo, Marcos Tadeu; Valente, Guilherme Targino; Nakajima, Rafael Takahiro; Martins, Cesar

    2016-01-01

    Sox9 plays an important role in a large variety of developmental pathways in vertebrates. It is composed of three domains: high-mobility group box (HMG box), dimerization (DIM) and transactivation (TAD). One of the main processes for regulation and variability of the pathways involving Sox9 is the self-gene expression regulation of Sox9. However, the subsequent roles of the Sox9 domains can also generate regulatory modulations. Studies have shown that TADs can bind to different types of proteins and its function seems to be influenced by DIM. Therefore, we hypothesized that both domains are directly associated and can be responsible for the functional variability of Sox9. We applied a method based on a broad phylogenetic context, using sequences of the HMG box domain, to ensure the homology of all the Sox9 copies used herein. The data obtained included 4,921 sequences relative to 657 metazoan species. Based on coevolutionary and selective pressure analyses of the Sox9 sequences, we observed coevolutions involving DIM and TADs. These data, along with the experimental data from literature, indicate a functional relationship between these domains. Moreover, DIM and TADs may be responsible for the functional plasticity of Sox9 because they are more tolerant for molecular changes (higher Ka/Ks ratio than the HMG box domain). This tolerance could allow a differential regulation of target genes or promote novel targets during transcriptional activation. In conclusion, we suggest that DIM and TADs functional association may regulate differentially the target genes or even promote novel targets during transcription activation mediated by Sox9 paralogs, contributing to the subfunctionalization of Sox9a and Sox9b in teleosts. PMID:27196604

  9. Differential usage of class II transactivator promoters PI and PIV during inflammation and injury in kidney.

    PubMed

    Takeuchi, Oki; Sims, Tasha N; Takei, Yutaka; Ramassar, Vido; Famulski, Konrad S; Halloran, Philip F

    2003-11-01

    Expression of class II transactivator (CIITA), the transcriptional regulator that controls all class II expression, is controlled in cell lines in vitro by three promoters: the dendritic cell promoter PI, the B cell promoter PIII, and the interferon-gamma (IFN-gamma)-inducible promoter, PIV. The authors examined the promoter usage in vivo in mouse kidney in the basal state and in response to IFN-gamma, endotoxin, allostimulation, and renal injury. Genetically modified mice were used to examine the dependency of each promoter on IFN-gamma and on the transcription factor interferon regulatory factor 1 (IRF-1). Usage of distinct CIITA promoters was monitored by real-time reverse transcriptase polymerase chain reaction (RT-PCR) using the unique sequences in the 5' end of the transcript from each promoter. Kidneys in both control mice and IFN-gamma knockouts expressed chiefly PI- and PIV-related products. Administration of recombinant IFN-gamma activated only promoter PIV. Endotoxin or allogeneic stimulation elevated the PIV-related mRNA, dependent on IFN-gamma and on IRF-1. Ischemic renal injury, however, increased the PI- and PIV-driven mRNA expression in wild-type but also in IFN-gamma-deficient mice. Thus the in vivo control of CIITA promoters in kidney is similar to that observed in vitro (i.e., basal-state usage of PI and IFN-gamma-dependent usage of PIV during inflammation), but it also shows additional levels of control: IFN-gamma-independent basal activity of PIV and IFN-gamma-independent induction of PIV during tissue injury.

  10. Molecular signature of MT1-MMP: transactivation of the downstream universal gene network in cancer.

    PubMed

    Rozanov, Dmitri V; Savinov, Alexei Y; Williams, Roy; Liu, Kang; Golubkov, Vladislav S; Krajewski, Stan; Strongin, Alex Y

    2008-06-01

    Invasion-promoting MT1-MMP is directly linked to tumorigenesis and metastasis. Our studies led us to identify those genes, the expression of which is universally linked to MT1-MMP in multiple tumor types. Genome-wide expression profiling of MT1-MMP-overexpressing versus MT1-MMP-silenced cancer cells and a further data mining analysis of the preexisting expression database of 190 human tumors of 14 cancer types led us to identify 11 genes, the expression of which correlated firmly and universally with that of MT1-MMP (P < 0.00001). These genes included regulators of energy metabolism (NNT), trafficking and membrane fusion (SLCO2A1 and ANXA7), signaling and transcription (NR3C1, JAG1, PI3K delta, and CK2 alpha), chromatin rearrangement (SMARCA1), cell division (STK38/NDR1), apoptosis (DAPK1), and mRNA splicing (SNRPB2). Our subsequent extensive analysis of cultured cells, tumor xenografts, and cancer patient biopsies supported our data mining. Our results suggest that transcriptional reprogramming of the specific downstream genes, which themselves are associated with tumorigenesis, represents a distinctive "molecular signature" of the proteolytically active MT1-MMP. We suggest that the transactivation activity of MT1-MMP contributes to the promigratory cell phenotype, which is induced by this tumorigenic proteinase. The activated downstream gene network then begins functioning in unison with MT1-MMP to rework the signaling, transport, cell division, energy metabolism, and other critical cell functions and to commit the cell to migration, invasion, and, consequently, tumorigenesis.

  11. SIP1/NHERF2 enhances estrogen receptor alpha transactivation in breast cancer cells.

    PubMed

    Meneses-Morales, Ivan; Tecalco-Cruz, Angeles C; Barrios-García, Tonatiuh; Gómez-Romero, Vania; Trujillo-González, Isis; Reyes-Carmona, Sandra; García-Zepeda, Eduardo; Méndez-Enríquez, Erika; Cervantes-Roldán, Rafael; Pérez-Sánchez, Víctor; Recillas-Targa, Félix; Mohar-Betancourt, Alejandro; León-Del-Río, Alfonso

    2014-06-01

    The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that possesses two activating domains designated AF-1 and AF-2 that mediate its transcriptional activity. The role of AF-2 is to recruit coregulator protein complexes capable of modifying chromatin condensation status. In contrast, the mechanism responsible for the ligand-independent AF-1 activity and for its synergistic functional interaction with AF-2 is unclear. In this study, we have identified the protein Na+/H+ Exchanger RegulatoryFactor 2 (NHERF2) as an ERα-associated coactivator that interacts predominantly with the AF-1 domain of the nuclear receptor. Overexpression of NHERF2 in breast cancer MCF7 cells produced an increase in ERα transactivation. Interestingly, the presence of SRC-1 in NHERF2 stably overexpressing MCF7 cells produced a synergistic increase in ERα activity. We show further that NHERF2 interacts with ERα and SRC-1 in the promoter region of ERα target genes. The binding of NHERF2 to ERα in MCF7 cells increased cell proliferation and the ability of MCF7 cells to form tumors in a mouse model. We analyzed the expression of NHERF2 in breast cancer tumors finding a 2- to 17-fold increase in its mRNA levels in 50% of the tumor samples compared to normal breast tissue. These results indicate that NHERF2 is a coactivator of ERα that may participate in the development of estrogen-dependent breast cancer tumors. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

  12. Forward subtractive libraries containing genes transactivated by dexamethasone in ataxia-telangiectasia lymphoblastoid cells.

    PubMed

    Biagiotti, Sara; Menotta, Michele; Giacomini, Elisa; Radici, Lucia; Bianchi, Marzia; Bozzao, Cristina; Chessa, Luciana; Magnani, Mauro

    2014-07-01

    Ataxia telangiectasia (A-T) is a rare autosomal recessive disorder caused by biallelic mutations in the Ataxia Telangiectasia-mutated gene. A-T shows a complex phenotype ranging from early-onset progressive neurodegeneration to immunodeficiencies, high incidence of infections, and tumors. Unfortunately, no therapy is up to now available for treating this condition. Recently, the short term treatment of ataxia-telangiectasia patients with glucocorticoids was shown to improve their neurological symptoms and possibly reverse cerebellar atrophy. Thus, corticosteroids represent an attractive approach for the treatment of this neurodegenerative disease. However, the molecular mechanism involved in glucocorticoid action in A-T is yet unknown. The aim of our work is to construct cDNA libraries containing those genes which are transactivated by the glucocorticoid analogue, dexamethasone, in A-T human cells. For this purpose, suppression subtractive hybridization has been performed on ATM-null lymphoblastoid cell transcriptome extracted following drug administration. Annotation of whole genes contained in the libraries has been obtained by coupling subtractive hybridization with microarray analysis. Positive transcripts have been validated by quantitative PCR. Through in silico analyses, identified genes have been classified on the basis of the pathway in which they are involved, being able to address signaling required for dexamethasone action. Most of the induced transcripts are involved in metabolic processes and regulation of cellular processes. Our results can help to unravel the mechanism of glucocorticoid action in the reversion of A-T phenotype. Moreover, the induction of a specific region of the ATM transcript has been identified as putative biomarker predictive of dexamethasone efficacy on ataxic patients.

  13. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA.

    PubMed

    Narayanan, Aarthi; Iordanskiy, Sergey; Das, Ravi; Van Duyne, Rachel; Santos, Steven; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Dalby, Elizabeth; Iglesias-Ussel, Maria; Popratiloff, Anastas; Hakami, Ramin; Kehn-Hall, Kylene; Young, Mary; Subra, Caroline; Gilbert, Caroline; Bailey, Charles; Romerio, Fabio; Kashanchi, Fatah

    2013-07-05

    Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 10(4)-10(6) copies/ml TAR RNA in exosomes derived from infected culture supernatants and 10(3) copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS.

  14. A small circular TAR RNA decoy specifically inhibits Tat-activated HIV-1 transcription.

    PubMed Central

    Bohjanen, P R; Colvin, R A; Puttaraju, M; Been, M D; Garcia-Blanco, M A

    1996-01-01

    Linear TAR RNA has previously been used as a decoy to inhibit HIV-1 transcription in vitro and HIV-1 replication in vivo. A 48 nucleotide circular RNA containing the stem, bulge and loop of the HIV-1 TAR element was synthesized using the self-splicing activity of a group I permuted intron-exon and was tested for its ability to function as a TAR decoy in vitro. This small circular TAR molecule was exceptionally stable in HeLa nuclear extracts, whereas a similar linear TAR molecule was rapidly degraded. The TAR circle bound specifically to Tfr38, a peptide containing the TAR-binding region of Tat. The ability of Tat to trans-activate transcription from the HIV-1 promoter in vitro was efficiently inhibited by circular TAR RNA but not by TAR circles that contained either bulge or loop mutations. TAR circles did not inhibit transactivation exclusively by binding to Tat since this inhibition was not reversed by adding excess Tat to the transcription reaction. Together, these data suggest that TAR circles act as decoys that inhibit transactivation by binding to Tat and at least one cellular factor. These data also demonstrate the utility of small circular RNA molecules as tools for biochemical studies. PMID:8871552

  15. Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1.

    PubMed

    Aster, J C; Xu, L; Karnell, F G; Patriub, V; Pui, J C; Pear, W S

    2000-10-01

    Notch receptors participate in a conserved signaling pathway that controls the development of diverse tissues and cell types, including lymphoid cells. Signaling is normally initiated through one or more ligand-mediated proteolytic cleavages that permit nuclear translocation of the intracellular portion of the Notch receptor (ICN), which then binds and activates transcription factors of the Su(H)/CBF1 family. Several mammalian Notch receptors are oncogenic when constitutively active, including Notch1, a gene initially identified based on its involvement in a (7;9) chromosomal translocation found in sporadic T-cell lymphoblastic leukemias and lymphomas (T-ALL). To investigate which portions of ICN1 contribute to transformation, we performed a structure-transformation analysis using a robust murine bone marrow reconstitution assay. Both the ankyrin repeat and C-terminal transactivation domains were required for T-cell leukemogenesis, whereas the N-terminal RAM domain and a C-terminal domain that includes a PEST sequence were nonessential. Induction of T-ALL correlated with the transactivation activity of each Notch1 polypeptide when fused to the DNA-binding domain of GAL4, with the exception of polypeptides deleted of the ankyrin repeats, which lacked transforming activity while retaining strong transactivation activity. Transforming polypeptides also demonstrated moderate to strong activation of the Su(H)/CBF1-sensitive HES-1 promoter, while polypeptides with weak or absent activity on this promoter failed to cause leukemia. These experiments define a minimal transforming region for Notch1 in T-cell progenitors and suggest that leukemogenic signaling involves recruitment of transcriptional coactivators to ICN1 nuclear complexes.

  16. Glutamine Repeat Variants in Human RUNX2 Associated with Decreased Femoral Neck BMD, Broadband Ultrasound Attenuation and Target Gene Transactivation

    PubMed Central

    Morrison, Nigel A.; Stephens, Alexandre A.; Osato, Motomi; Polly, Patsie; Tan, Timothy C.; Yamashita, Namiko; Doecke, James D.; Pasco, Julie; Fozzard, Nicolette; Jones, Graeme; Ralston, Stuart H.; Prince, Richard L.; Nicholson, Geoff C.

    2012-01-01

    RUNX2 is an essential transcription factor required for skeletal development and cartilage formation. Haploinsufficiency of RUNX2 leads to cleidocranial displaysia (CCD) a skeletal disorder characterised by gross dysgenesis of bones particularly those derived from intramembranous bone formation. A notable feature of the RUNX2 protein is the polyglutamine and polyalanine (23Q/17A) domain coded by a repeat sequence. Since none of the known mutations causing CCD characterised to date map in the glutamine repeat region, we hypothesised that Q-repeat mutations may be related to a more subtle bone phenotype. We screened subjects derived from four normal populations for Q-repeat variants. A total of 22 subjects were identified who were heterozygous for a wild type allele and a Q-repeat variant allele: (15Q, 16Q, 18Q and 30Q). Although not every subject had data for all measures, Q-repeat variants had a significant deficit in BMD with an average decrease of 0.7SD measured over 12 BMD-related parameters (p = 0.005). Femoral neck BMD was measured in all subjects (−0.6SD, p = 0.0007). The transactivation function of RUNX2 was determined for 16Q and 30Q alleles using a reporter gene assay. 16Q and 30Q alleles displayed significantly lower transactivation function compared to wild type (23Q). Our analysis has identified novel Q-repeat mutations that occur at a collective frequency of about 0.4%. These mutations significantly alter BMD and display impaired transactivation function, introducing a new class of functionally relevant RUNX2 mutants. PMID:22912713

  17. Comparison of 7α-methyl-19-nortestosterone effectiveness alone or combined with progestins on androgen receptor mediated-transactivation.

    PubMed

    García-Becerra, Rocío; Ordaz-Rosado, David; Noé, Gabriela; Chávez, Bertha; Cooney, Austin J; Larrea, Fernando

    2012-02-01

    7α-methyl-19-nortestosterone (MENT) is an androgen with potent gonadotropin inhibitory activity and prostate-sparing effects. These attributes give MENT advantages over testosterone as a male contraceptive, but, as in the case of testosterone, a partial dose-dependent suppression of spermatogenesis has been observed. Combination of testosterone or MENT with synthetic progestins improves the rate of azoospermia; however, it is unknown whether these combinations affect hormone androgenicity or exert synergistic effects via progestational or androgenic interaction. Herein, using transactivation assays, we examined the ability of MENT alone or combined with several 19-nor-derived synthetic progestins to activate androgen receptor (AR)-dependent gene transcription. In addition, the capability of 7α-methyl-estradiol (7α-methyl-E(2)), an aromatized metabolite of MENT, to transactivate gene transcription via estrogen receptor α (ERα; ESR1) or ERβ (ESR2) was also investigated. As expected, MENT induced gene transactivation through either the progesterone receptor (PGR) or the AR. MENT was as efficient as progesterone in activating PGR-mediated reporter gene expression, but it was ten times more potent than testosterone and dihydrotestoterone in activating of AR-driven gene expression. The addition of increasing concentrations of other 19-nortestosterone derivatives (norethisterone or levonorgestrel) did not affect, in a significant manner, the ability of MENT to activate AR-dependent reporter gene transcription. The same results were obtained with different cell lines. 7α-Methyl-E(2) resulted in potent estrogen activity via both ER subtypes with efficiency similar to natural E(2). These results suggest that the addition of 19-nortestosterone-derived progestins, as a hormonal adjuvant in male fertility strategies for effective spermatogenic suppression, does not display any detrimental effect that would interfere with MENT androgenic transcriptional activity.

  18. Epstein-Barr virus nuclear antigen 2 transactivates the long terminal repeat of human immunodeficiency virus type 1.

    PubMed

    Scala, G; Quinto, I; Ruocco, M R; Mallardo, M; Ambrosino, C; Squitieri, B; Tassone, P; Venuta, S

    1993-05-01

    Human immunodeficiency virus type 1 (HIV-1)-infected subjects show a high incidence of Epstein-Barr virus (EBV) infection. This suggests that EBV may function as a cofactor that affects HIV-1 activation and may play a major role in the progression of AIDS. To test this hypothesis, we generated two EBV-negative human B-cell lines that stably express the EBNA2 gene of EBV. These EBNA2-positive cell lines were transiently transfected with plasmids that carry either the wild type or deletion mutants of the HIV-1 long terminal repeat (LTR) fused to the chloramphenicol acetyltransferase (CAT) gene. There was a consistently higher HIV-1 LTR activation in EBNA2-expressing cells than in control cells, which suggested that EBNA2 proteins could activate the HIV-1 promoter, possibly by inducing nuclear factors binding to HIV-1 cis-regulatory sequences. To test this possibility, we used CAT-based plasmids carrying deletions of the NF-kappa B (pNFA-CAT), Sp1 (pSpA-CAT), or TAR (pTAR-CAT) region of the HIV-1 LTR and retardation assays in which nuclear proteins from EBNA2-expressing cells were challenged with oligonucleotides encompassing the NF-kappa B or Sp1 region of the HIV-1 LTR. We found that both the NF-kappa B and the Sp1 sites of the HIV-1 LTR are necessary for EBNA2 transactivation and that increased expression resulted from the induction of NF-kappa B-like factors. Moreover, experiments with the TAR-deleted pTAR-CAT and with the tat-expressing pAR-TAT plasmids indicated that endogenous Tat-like proteins could participate in EBNA2-mediated activation of the HIV-1 LTR and that EBNA2 proteins can synergize with the viral tat transactivator. Transfection experiments with plasmids expressing the EBNA1, EBNA3, and EBNALP genes did not cause a significant HIV-1 LTR activation. Thus, it appears that among the latent EBV genes tested, EBNA2 was the only EBV gene active on the HIV-1 LTR. The transactivation function of EBNA2 was also observed in the HeLa epithelial cell line

  19. Human immunodeficiency virus trans-activator of transcription peptide detection via ribonucleic acid aptamer on aminated diamond biosensor

    NASA Astrophysics Data System (ADS)

    Rahim Ruslinda, A.; Wang, Xianfen; Ishii, Yoko; Ishiyama, Yuichiro; Tanabe, Kyosuke; Kawarada, Hiroshi

    2011-09-01

    The potential of ribonucleic acid (RNA) as both informational and ligand binding molecule have opened a scenario in the development of biosensors. An aminated diamond-based RNA aptasensor is presented for human immunodeficiency virus (HIV) trans-activator of transcription (Tat) peptide protein detection that not only gives a labeled or label-free detection method but also provides a reusable platform for a simple, sensitive, and selective detection of proteins. The immobilized procedure was based on the binding interaction between positively charged amine terminated diamond and the RNA aptamer probe molecules with the negatively charged surface carboxylic compound linker molecule such as terephthalic acid.

  20. Transactivation of the proenkephalin gene promoter by the Tax sub 1 protein of human T-cell lymphotropic virus type I

    SciTech Connect

    Joshi, J.B. ); Dave, H.P.G. )

    1992-02-01

    Human T-cell lymphotropic virus type I (HTLV-I), an etiologic agent for adult T-cell leukemia, is strongly associated with certain neurological diseases. The HTLV-I genome encodes a protein, Tax{sub 1}, that transactivates viral gene transcription. CD4-positive T helper lymphocytes express the proenkephalin gene, and enkephalins have been implicated as neuroimmunomodulators. The authors have investigated the effect of Tax{sub 1} on the proenkephalin gene promoter in C6 rat glioma cells and demonstrated its transactivation. Analysis using 5{prime} deletion mutants of the promoter region showed that sequences upstream of base pair - 190 are necessary for maximal transactivation. Forskolin, a cAMP modulator, synergistically increased Tax{sub 1}-mediated transactivation of the proenkephalin promoter. Neither Tax{sub 1} transactivation alone nor Tax{sub 1}/cAMP synergism exclusively involved cAMP-responsive elements. Endogenous proenkephalin gene expression increased in Tax{sub 1}-expressing C6 cells. Since HTLV-I infects lymphocytes, which express proenkephalin mRNA, Tax{sub 1} transregulation of proenkephalin expression may provide bidirectional communication between the nervous and immune systems in HTLV-I-related diseases.

  1. Leptin-induced transactivation of NPY gene promoter mediated by JAK1, JAK2 and STAT3 in the neural cell lines.

    PubMed

    Muraoka, Osamu; Xu, Bo; Tsurumaki, Tatsuru; Akira, Shizuo; Yamaguchi, Tsuyoshi; Higuchi, Hiroshi

    2003-06-01

    Neuropeptide Y (NPY) plays an important role in the central and sympathetic regulation of food intake and blood pressure. Although the NPY gene expression is regulated by a number of agents such as leptin, the mechanism responsible for leptin-induced regulation of the transcription of the NPY gene remains to be explored. In this study, the NPY gene promoter was transactivated by leptin in N18TG2, NG108-15 and PC12 cells which expressed the functional leptin receptor. The long isoform of leptin receptor (OB-Rb) could induce the transactivation, but the C-terminal truncated form (OB-Ra) could not. When dominant negative type of STAT3, JAK1 or JAK2 and was co-expressed, the leptin-induced transactivation was suppressed almost completely. The leptin-response element which confers NPY gene transactivation by leptin was determined in the 221-bp region of rat NPY gene promoter (-553/-335), where two STAT3-binding site-like elements (TCCAGTA) exist. These results indicated that activation of JAK1, JAK2 and STAT3 is necessary for leptin-induced transactivation of NPY gene through the leptin-response element in these neural cells.

  2. Effects of the Tat basic domain on human immunodeficiency virus type 1 transactivation, using chemically synthesized Tat protein and Tat peptides.

    PubMed Central

    Vives, E; Charneau, P; van Rietschoten, J; Rochat, H; Bahraoui, E

    1994-01-01

    To study the structure relationship of different Tat domains, the full-length Tat protein Tat1-86, the gene product of the first exon Tat1-72 which retains full activity of the protein, and a panel of shorter peptides mimicking different regions of the primary structure of the Tat protein were chemically synthesized by the solid-phase method, using an efficient protocol. Synthetic Tat1-86 and Tat1-72 transactivated beta-galactosidase activity in HeLa cells containing the lacZ gene under the control of the human immunodeficiency virus type 1 long terminal repeat. Analyses of the activity of Tat1-86 and Tat1-72 with the sulfhydryl of cysteine residues free or protected by the acetamidomethyl group showed that only the Tat fragments with deprotected cysteine residues retain transactivation ability. In contrast, peptide Tat1-48 was inactive, with cysteine residues either free or protected. Similarly, other shorter synthetic peptides covering the different Tat domains were inactive. Interestingly, when peptides Tat1-48 and Tat38-60 were used simultaneously, a significant transactivation was obtained. This result suggests that both peptide domains are implicated in transactivation, probably by acting at two different sites. This permits us to propose a fundamentally new step in the understanding of the molecular mechanism of Tat transactivation. Images PMID:8151793

  3. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells

    PubMed Central

    LI, LINGMEI; QI, LISHA; LIANG, ZHIJIE; SONG, WANGZHAO; LIU, YANXUE; WANG, YALEI; SUN, BAOCUN; ZHANG, BIN; CAO, WENFENG

    2015-01-01

    Epithelial-mesenchymal transition (EMT), a process closely related to tumor development, is regulated by a variety of signaling pathways and growth factors, such as transforming growth factor-β1 (TGF-β1) and epidermal growth factor (EGF). Hyaluronan (HA) has been shown to induce EMT through either TGF-β1 or EGF signaling and to be a regulator of the crosstalk between these two pathways in fibroblasts. In this study, in order to clarify whether HA has the same effect in tumor cells, we utilized the lung cancer cell line, A549, and the breast cancer cell line, MCF-7, and found that the effects of stimulation with TGF-β1 were more potent than those of EGF in regulating the expression of EMT-associated proteins and in enhancing cell migration and invasion. In addition, we observed that TGF-β1 activated EGF receptor (EGFR) and its downstream AKT and extracellular signal-regulated kinase (ERK) pathways. Furthermore, we found that TGF-β1 upregulated the expression of hyaluronan synthases (HAS1, HAS2 and HAS3) and promoted the expression of CD44, a cell surface receptor for HA, which interacts with EGFR, resulting in the activation of the downstream AKT and ERK pathways. Conversely, treatment with 4-methylumbelliferone (4-MU; an inhibitor of HAS) prior to stimulation with TGF-β1, inhibited the expression of CD44 and EGFR, abolished the interaction between CD44 and EGFR. Furthermore, the use of shRNA targeting CD44 impaired the expression of EGFR, deactivated the AKT and ERK pathways, reversed EMT and decreased the migration and invasion ability of cells. In conclusion, our data demonstrate that TGF-β1 induces EMT by the transactivation of EGF signaling through HA/CD44 in lung and breast cancer cells. PMID:26005723

  4. Niacin Activates the PI3K/Akt Cascade via PKC- and EGFR-Transactivation-Dependent Pathways through Hydroxyl-Carboxylic Acid Receptor 2

    PubMed Central

    Zhang, Wenjuan; Zhou, Qi; Yu, Yena; Shi, Ying; Offermanns, Stefan; Lu, Jianxin; Zhou, Naiming

    2014-01-01

    Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation. PMID:25375133

  5. Ets transcription factors bind and transactivate the core promoter of the von Willebrand factor gene.

    PubMed

    Schwachtgen, J L; Janel, N; Barek, L; Duterque-Coquillaud, M; Ghysdael, J; Meyer, D; Kerbiriou-Nabias, D

    1997-12-18

    von Willebrand factor (vWF) gene expression is restricted to endothelial cells and megakaryocytes. Previous results demonstrated that basal transcription of the human vWF gene is mediated through a promoter located between base pairs -89 and +19 (cap site: +1) which is functional in endothelial and non endothelial cells. Two DNA repeats TTTCCTTT correlating with inverted consensus binding sites for the Ets family of transcription factors are present in the -56/-36 sequence. In order to analyse whether these DNA elements are involved in transcription, human umbilical vein endothelial cells (HUVEC), bovine calf pulmonary endothelial cell line (CPAE), HeLa and COS cells were transfected with constructs containing deletions of the -89/+19 fragment, linked to the chloramphenicol acetyl transferase (CAT) reporter gene. The -60/+19 region exhibits significant promoter activity in HUVEC and CPAE cells only. The -42/+19 fragment is not active. Mutations of the -60/+19 promoter fragment in the 5' (-56/-49) Ets binding site abolish transcription in endothelial cells whereas mutations in the 3' (-43/-36) site does not. The -60/-33 fragment forms three complexes with proteins from HUVEC nuclear extracts in electrophoretic mobility shift assay which are dependent on the presence of the 5' Ets binding site. Binding of recombinant Ets-1 protein to the -60/-33 fragment gives a complex which also depends on the 5' site. The -60/+19 vWF gene core promoter is transactivated in HeLa cells by cotransfecting with Ets-1 or Erg (Ets-related gene) expression plasmids. In contrast to the wild type construct, transcription of the 5' site mutants is not increased by these expressed proteins. The results indicate that the promoter activity of the -60/+19 region of the vWF gene depends on transcription factors of the Ets family of which several members like Ets-1, Ets-2 and Erg are expressed in endothelium. Cotransfection of Ets-1 and Erg expression plasmids is sufficient to induce the -60/+19 v

  6. Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T.

    PubMed

    Fujinaga, K; Taube, R; Wimmer, J; Cujec, T P; Peterlin, B M

    1999-02-16

    The transcriptional transactivator Tat from HIV binds to the transactivation response element (TAR) RNA to increase rates of elongation of viral transcription. Human cyclin T supports these interactions between Tat and TAR. In this study, we report the sequence of mouse cyclin T and identify the residues from positions 1 to 281 in human cyclin T that bind to Tat and TAR. Mouse cyclin T binds to Tat weakly and is unable to facilitate interactions between Tat and TAR. Reciprocal exchanges of the cysteine and tyrosine at position 261 in human and mouse cyclin T proteins also render human cyclin T inactive and mouse cyclin T active. These findings reveal the molecular basis for the restriction of Tat transactivation in rodent cells.

  7. The serine 106 residue within the N-terminal transactivation domain is crucial for Oct4 function in mice.

    PubMed

    Mitani, Atsushi; Fukuda, Atsushi; Miyashita, Toshiyuki; Umezawa, Akihiro; Akutsu, Hidenori

    2017-03-07

    Pou5f1/Oct4 is a key transcription factor for the induction of pluripotency and totipotency in preimplantation mouse embryos. In mice, loss or gain of function experiments have demonstrated an important role for Oct4 in preimplantation and developmental ability. In this study, using mouse preimplantation embryos as a model for the evaluation of Oct4 function, we constructed Oct4 overexpression embryos with various mutations at the N-terminal transactivation domain. Developmental competency and molecular biological phenotypes depended on the type of mutation. The replacement of serine 106 with alanine resulted in more severe phenotypes similar to that of wild type Oct4, indicating that this alteration using alanine is negligible for Oct4 function. In contrast, we found that Oct4-specific antibodies could not recognize Oct4 protein when this residue was replaced by aspartic acid (Oct4-S106D). Oct4-S106D overexpressing embryos did not show developmental arrest and aberrant chromatin structure. Thus, these results demonstrated that the Ser-106 residue within the N-terminal transactivation domain is crucial for Oct4 function and suggested that this mutation might affect Oct4 protein conformation.

  8. Corepressive Action of CBP on Androgen Receptor Transactivation in Pericentric Heterochromatin in a Drosophila Experimental Model System▿ †

    PubMed Central

    Zhao, Yue; Takeyama, Ken-ichi; Sawatsubashi, Shun; Ito, Saya; Suzuki, Eriko; Yamagata, Kaoru; Tanabe, Masahiko; Kimura, Shuhei; Fujiyama, Sally; Ueda, Takashi; Murata, Takuya; Matsukawa, Hiroyuki; Shirode, Yuko; Kouzmenko, Alexander P.; Li, Feng; Tabata, Testuya; Kato, Shigeaki

    2009-01-01

    Ligand-bound nuclear receptors (NR) activate transcription of the target genes. This activation is coupled with histone modifications and chromatin remodeling through the function of various coregulators. However, the nature of the dependence of a NR coregulator action on the presence of the chromatin environment at the target genes is unclear. To address this issue, we have developed a modified position effect variegation experimental model system that includes an androgen-dependent reporter transgene inserted into either a pericentric heterochromatin region or a euchromatic region of Drosophila chromosome. Human androgen receptor (AR) and its constitutively active truncation mutant (AR AF-1) were transcriptionally functional in both chromosomal regions. Predictably, the level of AR-induced transactivation was lower in the pericentric heterochromatin. In genetic screening for AR AF-1 coregulators, Drosophila CREB binding protein (dCBP) was found to corepress AR transactivation at the pericentric region whereas it led to coactivation in the euchromatic area. Mutations of Sir2 acetylation sites or deletion of the CBP acetyltransferase domain abrogated dCBP corepressive action for AR at heterochromatic areas in vivo. Such a CBP corepressor function for AR was observed in the transcriptionally silent promoter of an AR target gene in cultured mammalian cells. Thus, our findings suggest that the action of NR coregulators may depend on the state of chromatin at the target loci. PMID:19075001

  9. Random mutagenesis of the human immunodeficiency virus type-1 trans-activator of transcription (HIV-1 Tat).

    PubMed Central

    Siderovski, D P; Matsuyama, T; Frigerio, E; Chui, S; Min, X; Erfle, H; Sumner-Smith, M; Barnett, R W; Mak, T W

    1992-01-01

    A new method is described for the direct construction of randomly mutagenized genes by applying the polymerase chain reaction (PCR) to an oligonucleotide synthesized using doped nucleotide reservoirs. We have demonstrated the utility of this method by generating a library of mutant HIV-1 tat genes. Several arbitrarily selected, inactive tat clones were sequenced to evaluate the extent of the mutagenesis. Moreover, fourteen recombinants encoding varying levels of transcriptional trans-activator activity were isolated by transient transfection of sub-library pools into a HeLa cell line bearing an HIV-LTR-chloramphenicol acetyltransferase (CAT) reporter gene. Sequence data revealed a spectrum of alterations including nucleotide substitutions, insertions, and deletions, suggesting that mutations arose from both the doped DNA synthesis and the subsequent PCR 'rescue' of full-length product. Sequence comparison between inactive and active Tat clones revealed a selection pressure against amino-acid substitutions within the N-terminal domains of Tat, indicating the importance of this region to trans-activation competence. In addition, single and double missense mutations within the basic-rich, TAR RNA-binding domain were seen to be tolerated within active Tat clones. Images PMID:1437550

  10. Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region.

    PubMed Central

    Gaynor, R; Soultanakis, E; Kuwabara, M; Garcia, J; Sigman, D S

    1989-01-01

    The transactivator protein, tat, encoded by the human immunodeficiency virus is a key regulator of viral transcription. Activation by the tat protein requires sequences downstream of the transcription initiation site called the transactivating region (TAR). RNA derived from the TAR is capable of forming a stable stem-loop structure and the maintenance of both the stem structure and the loop sequences located between +19 and +44 is required for complete in vivo activation by tat. Gel retardation assays with RNA from both wild-type and mutant TAR constructs generated in vitro with SP6 polymerase indicated specific binding of HeLa nuclear proteins to the TAR. To characterize this RNA-protein interaction, a method of chemical "imprinting" has been developed using photoactivated uranyl acetate as the nucleolytic agent. This reagent nicks RNA under physiological conditions at all four nucleotides in a reaction that is independent of sequence and secondary structure. Specific interaction of cellular proteins with TAR RNA could be detected by enhanced cleavages or imprints surrounding the loop region. Mutations that either disrupted stem base-pairing or extensively changed the primary sequence resulted in alterations in the cleavage pattern of the TAR RNA. Structural features of the TAR RNA stem-loop essential for tat activation are also required for specific binding of the HeLa cell nuclear protein. Images PMID:2544877

  11. Transactivation of ErbB receptors by leptin in the cardiovascular system: mechanisms, consequences and target for therapy.

    PubMed

    Bełtowski, Jerzy; Jazmroz-Wiśniewska, Anna

    2014-01-01

    Many experimental and clinical studies have demonstrated that elevated leptin concentration in patients with obesity/metabolic syndrome contributes to the pathogenesis of cardiovascular disorders including arterial hypertension, atherosclerosis, restenosis after coronary angioplasty and myocardial hypertrophy. Receptor tyrosine kinases belonging to the ErbB family, especially ErbB1 (epidermal growth factor receptor) and ErbB2 are abundantly expressed in the blood vessels and the heart. EGFR is activated not only by its multiple peptide ligands but also by many other factors including angiotensin II, endothelin-1, norepinephrine, thrombin and prorenin; the phenomenon referred to as "transactivation". Augmented EGFR signaling contributes to abnormalities of vascular tone and renal sodium handling as well as vascular remodeling and myocardial hypertrophy through various intracellular mechanisms, in particular extracellular signal-regulated kinases (ERK) and phosphoinositide 3-kinase (PI3K). Recent experimental studies indicate that chronically elevated leptin transactivates the EGFR through the mechanisms requiring reactive oxygen species and cytosolic tyrosine kinase, c-Src. In addition, hyperleptinemia increases ErbB2 activity in the arterial wall. Stimulation of EGFR and ErbB2 downstream signaling pathways such as ERK and PI3K in the vascular wall and the kidney may contribute to the increase in vascular tone, enhanced tubular sodium reabsorption as well as vascular and renal lesions in hyperleptinemic obese subjects.

  12. Transactivation Domain of Human c-Myc Is Essential to Alleviate Poly(Q)-Mediated Neurotoxicity in Drosophila Disease Models.

    PubMed

    Raj, Kritika; Sarkar, Surajit

    2017-03-18

    Polyglutamine (poly(Q)) disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, represent a group of neurological disorders which arise due to an atypically expanded poly(Q) tract in the coding region of the affected gene. Pathogenesis of these disorders inside the cells begins with the assembly of these mutant proteins in the form of insoluble inclusion bodies (IBs), which progressively sequester several vital cellular transcription factors and other essential proteins, and finally leads to neuronal dysfunction and apoptosis. We have shown earlier that targeted upregulation of Drosophila myc (dmyc) dominantly suppresses the poly(Q) toxicity in Drosophila. The present study examines the ability of the human c-myc proto-oncogene and also identifies the specific c-Myc isoform which drives the mitigation of poly(Q)-mediated neurotoxicity, so that it could be further substantiated as a potential drug target. We report for the first time that similar to dmyc, tissue-specific induced expression of human c-myc also suppresses poly(Q)-mediated neurotoxicity by an analogous mechanism. Among the three isoforms of c-Myc, the rescue potential was maximally manifested by the full-length c-Myc2 protein, followed by c-Myc1, but not by c-MycS which lacks the transactivation domain. Our study suggests that strategies focussing on the transactivation domain of c-Myc could be a very useful approach to design novel drug molecules against poly(Q) disorders.

  13. Low levels of the reverse transactivator fail to induce target transgene expression in vascular smooth muscle cells.

    PubMed

    Viceconte, Nikenza; McKenna, Tomás; Eriksson, Maria

    2014-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disease with multiple features that are suggestive of premature aging. Most patients with HGPS carry a mutation on one of their copies of the LMNA gene. The LMNA gene encodes the lamin A and lamin C proteins, which are the major proteins of the nuclear lamina. The organs of the cardiovascular system are amongst those that are most severely affected in HGPS, undergoing a progressive depletion of vascular smooth muscle cells, and most children with HGPS die in their early teens from cardio-vascular disease and other complications from atherosclerosis. In this study, we developed a transgenic mouse model based on the tet-ON system to increase the understanding of the molecular mechanisms leading to the most lethal aspect of HGPS. To induce the expression of the most common HGPS mutation, LMNA c.1824C>T; p.G608G, in the vascular smooth muscle cells of the aortic arch and thoracic aorta, we used the previously described reverse tetracycline-controlled transactivator, sm22α-rtTA. However, the expression of the reverse sm22α-transactivator was barely detectable in the arteries, and this low level of expression was not sufficient to induce the expression of the target human lamin A minigene. The results from this study are important because they suggest caution during the use of previously functional transgenic animal models and emphasize the importance of assessing transgene expression over time.

  14. Low Levels of the Reverse Transactivator Fail to Induce Target Transgene Expression in Vascular Smooth Muscle Cells

    PubMed Central

    Viceconte, Nikenza; McKenna, Tomás; Eriksson, Maria

    2014-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disease with multiple features that are suggestive of premature aging. Most patients with HGPS carry a mutation on one of their copies of the LMNA gene. The LMNA gene encodes the lamin A and lamin C proteins, which are the major proteins of the nuclear lamina. The organs of the cardiovascular system are amongst those that are most severely affected in HGPS, undergoing a progressive depletion of vascular smooth muscle cells, and most children with HGPS die in their early teens from cardio-vascular disease and other complications from atherosclerosis. In this study, we developed a transgenic mouse model based on the tet-ON system to increase the understanding of the molecular mechanisms leading to the most lethal aspect of HGPS. To induce the expression of the most common HGPS mutation, LMNA c.1824C>T; p.G608G, in the vascular smooth muscle cells of the aortic arch and thoracic aorta, we used the previously described reverse tetracycline-controlled transactivator, sm22α-rtTA. However, the expression of the reverse sm22α-transactivator was barely detectable in the arteries, and this low level of expression was not sufficient to induce the expression of the target human lamin A minigene. The results from this study are important because they suggest caution during the use of previously functional transgenic animal models and emphasize the importance of assessing transgene expression over time. PMID:25090270

  15. Trans-activation of the Tetrahymena group I intron ribozyme via a non-native RNA-RNA interaction.

    PubMed Central

    Ikawa, Y; Shiraishi, H; Inoue, T

    1999-01-01

    The peripheral P2.1 domain of the Tetrahymena group I intron ribozyme has been shown to be non-essential for splicing. We found, however, that separately prepared P2.1 RNA efficiently accelerates the 3' splice-site-specific hydrolysis reaction of a mutant ribozyme lacking both P2.1 and its upstream region in trans. We report here the unusual properties of this trans-activation. Compensatory mutational analysis revealed that non-native long-range base-pairings between the loop region of P2.1 RNA and L5c region of the mutant ribozyme are needed for the activation in spite of the fact that P2.1 forms base-pairings with P9.1 in the Tetrahymena ribozyme. The trans -activation depends on the non-native RNA-RNA interaction together with the higher order structure of P2.1 RNA. This activation is unique among the known trans-activations that utilize native tertiary interactions or RNA chaperons. PMID:10075996

  16. Activation of human papillomavirus type 18 gene expression by herpes simplex virus type 1 viral transactivators and a phorbol ester

    SciTech Connect

    Gius, D.; Laimins, L.A.

    1989-02-01

    Several viral trans-activators and a tumor promoter were examined for the ability to activate human papillomavirus type 18 (HPV-18) gene expression. A plasmid containing the HPV-18 noncoding region placed upstream of the chloramphenicol acetyltransferase reporter gene was cotransfected with different herpes simplex virus type 1 (HSV-1) genes into several cell lines. Both HSV-1 TIF and ICPO activated HPV-18 expression; however, activation by TIF was observed only in epithelial cells, while ICPO stimulated expression in a wide variety of cells. The element activated by both TIF and ICOP was mapped to a 229-base-pair fragment which also contains an HPV-18 epithelial cell-preferred enhancer. The inclusion of a papillomavirus E2 trans-activator with TIF and ICOP further increased HPV-18 expression. In contrast, the HSV-1 ICP4 and ICP27 genes, as well as the human T-cell lymphotropic virus type I and human immunodeficiency virus type 1 tat genes, were found to have no effect on HPV-18 expression. In transient assays, the addition of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also activated HPV-18 expression. The region of HPV-18 activated by TPA was localized to a sequence which is homologous to other TPA-responsive elements.

  17. Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential.

    PubMed

    Wakeman, Brian S; Izumiya, Yoshihiro; Speck, Samuel H

    2017-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50 RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation.

  18. The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity

    PubMed Central

    Zhang, Yiguo; Hayes, John D.

    2013-01-01

    The integral membrane-bound Nrf1 transcription factor fulfils important functions in maintaining cellular homeostasis and organ integrity, but how it is controlled vectorially is unknown. Herein, creative use of Gal4-based reporter assays with protease protection assays (GRAPPA), and double fluorescence protease protection (dFPP), reveals that the membrane-topogenic vectorial behaviour of Nrf1 dictates its post-translational modification and transactivation activity. Nrf1 is integrated within endoplasmic reticulum (ER) membranes through its NHB1-associated TM1 in cooperation with other semihydrophobic amphipathic regions. The transactivation domains (TADs) of Nrf1, including its Asn/Ser/Thr-rich (NST) glycodomain, are transiently translocated into the ER lumen, where it is glycosylated in the presence of glucose to become a 120-kDa isoform. Thereafter, the NST-adjoining TADs are partially repartitioned out of membranes into the cyto/nucleoplasmic side, where Nrf1 is subject to deglycosylation and/or proteolysis to generate 95-kDa and 85-kDa isoforms. Therefore, the vectorial process of Nrf1 controls its target gene expression. PMID:23774320

  19. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation.

    PubMed

    Vandevyver, Sofie; Dejager, Lien; Tuckermann, Jan; Libert, Claude

    2013-03-01

    Glucocorticoids are anti-inflammatory drugs that are widely used for the treatment of numerous (autoimmune) inflammatory diseases. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor family of transcription factors. Upon ligand binding, the GR translocates to the nucleus, where it acts either as a homodimeric transcription factor that binds glucocorticoid response elements (GREs) in promoter regions of glucocorticoid (GC)-inducible genes, or as a monomeric protein that cooperates with other transcription factors to affect transcription. For decades, it has generally been believed that the undesirable side effects of GC therapy are induced by dimer-mediated transactivation, whereas its beneficial anti-inflammatory effects are mainly due to the monomer-mediated transrepressive actions of GR. Therefore, current research is focused on the development of dissociated compounds that exert only the GR monomer-dependent actions. However, many recent reports undermine this dogma by clearly showing that GR dimer-dependent transactivation is essential in the anti-inflammatory activities of GR. Many of these studies used GR(dim/dim) mutant mice, which show reduced GR dimerization and hence cannot control inflammation in several disease models. Here, we review the importance of GR dimers in the anti-inflammatory actions of GCs/GR, and hence we question the central dogma. We summarize the contribution of various GR dimer-inducible anti-inflammatory genes and question the use of selective GR agonists as therapeutic agents.

  20. Measuring the Uptake and Transactivation Function of HIV-1 Tat Protein in a Trans-cellular Cocultivation Setup.

    PubMed

    Ruiz, Arthur P; Prasad, Vinayaka R

    2016-01-01

    HIV-1 Tat protein is secreted from infected cells and is endocytosed by uninfected bystander cells. Subsequently, Tat is translocated to the nucleus and binds to promoters of host cell genes, increasing the production of inflammatory host cytokines and chemokines. This inflammatory activation of uninfected cells by HIV-1 Tat protein contributes to the overall inflammatory burden in the central nervous system (CNS) that leads to the development of HIV-associated neurocognitive disorders (HAND). Here we describe methods to evaluate the uptake and transcriptional impact of HIV-1 Tat on uninfected cells by using a trans-cellular transactivation system. Cell lines transiently transfected with Tat expression constructs secrete Tat into the culture medium. Trans-cellular uptake and transactivation caused by secreted Tat can be measured by co-culturing LTR-responsive reporter cells with Tat-transfected cells. Such Tat-producer cells can also be co-cultured with immune cell lines, such as monocytic THP-1 cells or lymphocytic Jurkat T-cells, to evaluate transcriptional changes elicited by Tat taken up by the uninfected cells.

  1. IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene.

    PubMed Central

    Miller, C P; McGehee, R E; Habener, J F

    1994-01-01

    We describe the cloning from a rat islet somatostatin-producing cell line of a 1.4 kb cDNA encoding a new homeoprotein, IDX-1 (islet/duodenum homeobox-1), with close sequence similarity to the Drosophila melanogaster homeobox protein Antennapedia (Antp) and the Xenopus laevis endoderm-specific homeoprotein XlHbox8. Analyses of IDX-1 mRNA and protein in rat tissues show that IDX-1 is expressed in pancreatic islets and ducts and in the duodenum. In electrophoretic mobility shift assays IDX-1 binds to three sites in the 5' flanking region of the rat somatostatin gene. In co-transfection experiments IDX-1 transactivates reporter constructs containing somatostatin promoter sequences, and mutation of the IDX-1 binding sites attenuates transactivation. Reverse transcription-polymerase chain reaction of islet RNA using degenerate amplimers for mRNAs encoding homeoproteins indicates that IDX-1 is the most abundant of 12 different Antp-like homeodomain mRNAs expressed in adult rat islets. The pattern of expression, relative abundance and transcriptional regulatory activity suggests that IDX-1 may be involved in the regulation of islet hormone genes and in cellular differentiation in the endocrine pancreas and the duodenum. Images PMID:7907546

  2. The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity.

    PubMed

    Zhang, Yiguo; Hayes, John D

    2013-01-01

    The integral membrane-bound Nrf1 transcription factor fulfils important functions in maintaining cellular homeostasis and organ integrity, but how it is controlled vectorially is unknown. Herein, creative use of Gal4-based reporter assays with protease protection assays (GRAPPA), and double fluorescence protease protection (dFPP), reveals that the membrane-topogenic vectorial behaviour of Nrf1 dictates its post-translational modification and transactivation activity. Nrf1 is integrated within endoplasmic reticulum (ER) membranes through its NHB1-associated TM1 in cooperation with other semihydrophobic amphipathic regions. The transactivation domains (TADs) of Nrf1, including its Asn/Ser/Thr-rich (NST) glycodomain, are transiently translocated into the ER lumen, where it is glycosylated in the presence of glucose to become a 120-kDa isoform. Thereafter, the NST-adjoining TADs are partially repartitioned out of membranes into the cyto/nucleoplasmic side, where Nrf1 is subject to deglycosylation and/or proteolysis to generate 95-kDa and 85-kDa isoforms. Therefore, the vectorial process of Nrf1 controls its target gene expression.

  3. Graded or threshold response of the tet-controlled gene expression: all depends on the concentration of the transactivator

    PubMed Central

    2013-01-01

    Background Currently, the step-wise integration of tet-dependent transactivator and tet-responsive expression unit is considered to be the most promising tool to achieve stable tet-controlled gene expression in cell populations. However, disadvantages of this strategy for integration into primary cells led us to develop an “All-In-One” vector system, enabling simultaneous integration of both components. The effect on tet-controlled gene expression was analyzed for retroviral “All-In-One” vectors expressing the M2-transactivator either under control of a constitutive or a new type of autoregulated promoter. Results Determination of luciferase activity in transduced cell populations indicated improvement of the dynamic range of gene expression for the autoregulated system. Further differences were observed regarding induction kinetics and dose–response. Most notably, introduction of the autoregulated system resulted in a threshold mode of induction, whereas the constitutive system exhibited pronounced effector-dose dependence. Conclusion Tet-regulated gene expression in the applied autoregulated system resembles a threshold mode, whereby full induction of the tet-unit can be achieved at otherwise limiting doxycycline concentrations. PMID:23336718

  4. Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II.

    PubMed

    Utsunomiya, Hirotoshi; Takekoshi, Susumu; Gato, Nobuki; Utatsu, Hisao; Motley, Evangeline D; Eguchi, Kunie; Fitzgerald, Trinita G; Mifune, Mizuo; Frank, Gerald D; Eguchi, Satoru

    2002-12-27

    Bainiku-ekisu, the fruit-juice concentrate of the Oriental plum (Prunus mume) has recently been shown to improve human blood fluidity. We have shown that angiotensin II (AngII) stimulates growth of vascular smooth muscle cells (VSMCs) through epidermal growth factor (EGF) receptor transactivation that involves reactive oxygen species (ROS) production. To better understanding the possible cardiovascular protective effect of Bainiku-ekisu, we have studied whether Bainiku-ekisu inhibits AngII-induced growth promoting signals in VSMCs. Bainiku-ekisu markedly inhibited AngII-induced EGF receptor transactivation. H(2)O(2)-induced EGF receptor transactivation was also inhibited by Bainiku-ekisu. Thus, Bainiku-ekisu markedly inhibited AngII-induced extracellular signal-regulated kinase (ERK) activation. However, EGF-induced ERK activation was not affected by Bainiku-ekisu. AngII stimulated leucine uptake in VSMCs that was significantly inhibited by Bainiku-ekisu. Also, Bainiku-ekisu possesses a potent antioxidant activity. Since the activation of EGF receptor, ERK and the production of ROS play central roles in mediating AngII-induced vascular remodeling, these data suggest that Bainiku-ekisu could exert a powerful cardiovascular protective effect with regard to cardiovascular diseases.

  5. Transactivation Assays to Assess Canine and Rodent Pregnane X Receptor (PXR) and Constitutive Androstane Receptor (CAR) Activation

    PubMed Central

    Pinne, Marija; Ponce, Elsa; Raucy, Judy L.

    2016-01-01

    The pregnane X receptor (PXR/SXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are nuclear receptors (NRs) involved in the regulation of many genes including cytochrome P450 enzymes (CYPs) and transporters important in metabolism and uptake of both endogenous substrates and xenobiotics. Activation of these receptors can lead to adverse drug effects as well as drug-drug interactions. Depending on which nuclear receptor is activated will determine which adverse effect could occur, making identification important. Screening for NR activation by New Molecular Entities (NMEs) using cell-based transactivation assays is the singular high throughput method currently available for identifying the activation of a particular NR. Moreover, screening for species-specific NR activation can minimize the use of animals in drug development and toxicology studies. With this in mind, we have developed in vitro transactivation assays to identify compounds that activate canine and rat PXR and CAR3. We found differences in specificity for canine and rat PXR, with the best activator for canine PXR being 10 μM SR12813 (60.1 ± 3.1-fold) and for rat PXR, 10 μM dexamethasone (60.9 ± 8.4 fold). Of the 19 test agents examined, 10 and 9 significantly activated rat and canine PXR at varying degrees, respectively. In contrast, 5 compounds exhibited statistically significant activation of rat CAR3 and 4 activated the canine receptor. For canine CAR3, 50 μM artemisinin proved to be the best activator (7.3 ± 1.8 and 10.5 ± 2.2 fold) while clotrimazole (10 μM) was the primary activator of the rat variant (13.7 ± 0.8 and 26.9 ± 1.3 fold). Results from these studies demonstrated that cell-based transactivation assays can detect species-specific activators and revealed that PXR was activated by at least twice as many compounds as was CAR3, suggesting that there are many more agonists for PXR than CAR. PMID:27732639

  6. The number of positively charged amino acids in the basic domain of Tat is critical for trans-activation and complex formation with TAR RNA.

    PubMed Central

    Delling, U; Roy, S; Sumner-Smith, M; Barnett, R; Reid, L; Rosen, C A; Sonenberg, N

    1991-01-01

    The basic domain of Tat is required for trans-activation of viral gene expression. We have performed scanning peptide studies to demonstrate that only this domain is capable of binding to the TAR RNA stem-loop. Strikingly, the basic domain of the other human immunodeficiency virus trans-acting factor, Rev, but no other region, is also capable of binding to TAR. Peptide derivatives of Tat do not require the highly conserved glutamine residue at position 54 for TAR binding, since it may be substituted or deleted. In addition, the two lysine residues may be replaced by arginines. Analysis of binding and trans-activation demonstrated that homopolymers of arginine can completely substitute for the basic domain. Such homopolymers have high affinity for wild-type TAR RNA and lower affinity for mutant TAR. Homopolymers of six to nine arginines substituting for the basic domain of Tat enable full trans-activation in vivo. Homopolymers of at least seven arginines are required for detectable in vitro complex formation, although approximately 30% trans-activation is achieved with a mutant Tat containing only five arginines. Images PMID:2068104

  7. The Myc Transactivation Domain Promotes Global Phosphorylation of the RNA Polymerase II Carboxy-Terminal Domain Independently of Direct DNA Binding▿ †

    PubMed Central

    Cowling, Victoria H.; Cole, Michael D.

    2007-01-01

    Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc−/− fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters and stimulates TFIIH binding in an MBII-dependent manner. Expression of the Myc transactivation domain increases CDK mRNA cap methylation, polysome loading, and the rate of translation. We find that some traditional Myc transcriptional target genes are also regulated by this Myc-driven translation mechanism. We propose that Myc transactivation domain-driven RNA Pol II CTD phosphorylation has broad effects on both transcription and mRNA metabolism. PMID:17242204

  8. The hepatitis B virus X protein increases the cellular level of TATA-binding protein, which mediates transactivation of RNA polymerase III genes

    SciTech Connect

    Wang, Horng-Dar; Johnson, D.L.; Yuh, Chio-Hwa

    1995-12-01

    This report decribes the mechanism by which the hepatitis B virus X gene product induces RNA polymerase III genes. The RNA pol III transcription system serves as model for understanding the mechanism of X in the transactivation of cellular genes in both Drosophila and rat cell lines. 53 refs., 7 figs., 1 tab.

  9. Conserved structural motifs at the C-terminus of baculovirus protein IE0 are important for its functions in transactivation and supporting hr5-mediated DNA replication.

    PubMed

    Luria, Neta; Lu, Liqun; Chejanovsky, Nor

    2012-05-01

    IE0 and IE1 are transactivator proteins of the most studied baculovirus, the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). IE0 is a 72.6 kDa protein identical to IE1 with the exception of its 54 N-terminal amino acid residues. To gain some insight about important structural motifs of IE0, we expressed the protein and C‑terminal mutants of it under the control of the Drosophila heat shock promoter and studied the transactivation and replication functions of the transiently expressed proteins. IE0 was able to promote replication of a plasmid bearing the hr5 origin of replication of AcMNPV in transient transfections with a battery of eight plasmids expressing the AcMNPV genes dnapol, helicase, lef-1, lef-2, lef-3, p35, ie-2 and lef-7. IE0 transactivated expression of the baculovirus 39K promoter. Both functions of replication and transactivation were lost after introduction of selected mutations at the basic domain II and helix-loop-helix conserved structural motifs in the C-terminus of the protein. These IE0 mutants were unable to translocate to the cell nucleus. Our results point out the important role of some structural conserved motifs to the proper functioning of IE0.

  10. A transcriptional enhancer sequence of HTLV-I is responsible for trans-activation mediated by p40 chi HTLV-I.

    PubMed Central

    Fujisawa, J; Seiki, M; Sato, M; Yoshida, M

    1986-01-01

    Human T-cell leukemia virus type I (HTLV-I) contains a unique sequence pX that is located between env and the 3' long terminal repeat (LTR) and codes for three pX proteins, p40 chi, pp27 chi-III and pp21 chi-III. One of these proteins, p40 chi, was previously shown to activate transcription from the LTR in a trans-acting manner, which suggested that it activated some cellular genes involved in leukemogenesis. In this study, the sequences in the LTR responsible for this trans-activation were analyzed. Construction of deletion mutants of the LTR in pLTR-CAT and measurement of their activities in trans-activated expression of the CAT gene showed that sequences upstream of the TATA box were responsible for the trans-activation mediated by p40 chi. The active unit was identified as an enhancer sequence containing direct repeats by inserting it into an enhancer-minus SV40 promoter. Thus, it was concluded that an enhancer sequence in HTLV-I LTR is responsible, at least in part, for transcriptional trans-activation mediated by the viral product p40 chi. Images Fig.2. Fig.4. PMID:3011423

  11. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation.

    PubMed

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors.

  12. Recombinant production of Epstein-Barr virus BZLF1 trans-activator and characterization of its DNA-binding specificity.

    PubMed

    Lim, Chun Shen; Goh, Siang Ling; Krishnan, Gopala; Ng, Ching Ching

    2014-03-01

    This paper describes the recombinant production of a biologically active Epstein-Barr virus BZLF1 trans-activator, i.e., Z-encoded broadly reactive activator (ZEBRA), that recognized specific DNA motifs. We used auto-induction for histidine-tagged BZLF1 expression in Escherichia coli and immobilized cobalt affinity membrane chromatography for protein purification under native conditions. We obtained the purified BZLF1 at a yield of 5.4mg per gram of wet weight cells at 75% purity, in which 27% of the recombinant BZLF1 remained biologically active. The recombinant BZLF1 bound to oligonucleotides containing ZEBRA response elements, either AP-1 or ZIIIB, but not a ZIIIB mutant. The recombinant BZLF1 showed a specific DNA-binding activity which could be useful for functional studies.

  13. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    PubMed Central

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  14. Dissection of CDK4-binding and transactivation activities of p34(SEI-1) and comparison between functions of p34(SEI-1) and p16(INK4A).

    PubMed

    Li, Junan; Muscarella, Peter; Joo, Sang Hoon; Knobloch, Thomas J; Melvin, W Scott; Weghorst, Christopher M; Tsai, Ming-Daw

    2005-10-11

    Recent studies showed that p34(SEI-1), also known as TRIP-Br1 or SEI-1, plays a dual role in the regulation of cell-cycle progression. It exhibits the transactivation activity and regulates a number of genes required for G1/S transition, while it also binds and activates cyclin-dependent kinase 4 (CDK4) independent of the inhibitory activity of p16. The goals of this paper are to further dissect the two roles and to compare the functions between SEI-1 and p16. (i) Yeast one-hybrid-based random mutagenesis was first used to identify a number of SEI-1 residues important for LexA-mediated transactivation, including residues L51, K52, L53, H54, L57, and L69 located within the heptad repeat (residues 30-88), a domain required for LexA-mediated transactivation, and two residues M219 and L228 at the C-terminal segment that contributes to transactivation through modulating the heptad repeat. (ii) The functional significance of these residues was further confirmed by site-directed mutagenesis. It was also shown that the heptad repeat-involving transactivation is distinct from the well-known acidic region-involving transactivation. (iii) Yeast two-hybrid-based binding analysis was made possible with the transactivation-negative SEI-1 mutants, and the results showed that some of such mutants retain full ability to bind and activate CDK4. (iv) Site-specific mutants of CDK4 were used to show that there are notable differences among SEI-1, p16, and cyclin D2 in binding to CDK4. (v) The expression levels of SEI-1 and p16 were compared in 32 tumor specimens of human squamous cell carcinomas of the head and neck. The results indicate that SEI-1 was consistently overexpressed, while p16 was consistently underexpressed. These results provide important information on the molecular mechanism of the functions of SEI-1 and on the comparison between SEI-1 and p16 at both molecular and cellular levels.

  15. Effect of p40tax trans-activator of human T cell lymphotropic virus type I on expression of autoantigens.

    PubMed

    Banki, K; Ablonczy, E; Nakamura, M; Perl, A

    1994-03-01

    The possibility of a retroviral etiology has long been raised in a number of autoimmune disorders. More recently, Sjögren's syndrome and rheumatoid arthritis were noted in transgenic mice carrying the tax gene of human T cell leukemia virus type I (HTLV-I). To evaluate the involvement of HTLV-I Tax in autoimmunity, its effect on expression of autoantigens was investigated. A metallothionein promoter-driven p40tax expression plasmid, pMAXRHneo-1, was stably transfected into Molt4 and Jurkat cells and the p40tax protein was induced with CdCl2. trans-Activation or trans-repression of autoantigens by HTLV-I Tax was studied by Western blot analysis utilizing autoantigen-specific murine monoclonal and rabbit polyvalent antibodies as well as sera from 161 autoimmune patients. Induction of p40tax of HTLV-I had no significant effect on levels of expression of common autoantigens U1 snRNP, Sm, Ro, La, HSP-70, topoisomerase I/Scl70, PCNA, and HRES-1. Expression of two potentially novel autoantigens, 44 and 46 kDa, was induced by p40tax as detected by sera of progressive systemic sclerosis patients, BAK and VAR. By contrast, expression of 24- and 34-kDa proteins was suppressed in response to induction of p40tax as detected by sera of systemic lupus erythematosus patients PUS and HOR. Because none of these patients were infected by HTLV-I, a protein functionally similar to p40tax may be involved in eliciting autoantigen expression and a subsequent autoantibody response in a minority of patients with PSS and SLE. Sera of autoimmune patients may also be utilized to detect novel proteins trans-activated or trans-repressed by p40tax of HTLV-I.

  16. The viral transactivator HBx protein exhibits a high potential for regulation via phosphorylation through an evolutionarily conserved mechanism

    PubMed Central

    2012-01-01

    Background Hepatitis B virus (HBV) encodes an oncogenic factor, HBx, which is a multifunctional protein that can induce dysfunctional regulation of signaling pathways, transcription, and cell cycle progression, among other processes, through interactions with target host factors. The subcellular localization of HBx is both cytoplasmic and nuclear. This dynamic distribution of HBx could be essential to the multiple roles of the protein at different stages during HBV infection. Transactivational functions of HBx may be exerted both in the nucleus, via interaction with host DNA-binding proteins, and in the cytoplasm, via signaling pathways. Although there have been many studies describing different pathways altered by HBx, and its innumerable binding partners, the molecular mechanism that regulates its different roles has been difficult to elucidate. Methods In the current study, we took a bioinformatics approach to investigate whether the viral protein HBx might be regulated via phosphorylation by an evolutionarily conserved mechanism. Results We found that the phylogenetically conserved residues Ser25 and Ser41 (both within the negative regulatory domain), and Thr81 (in the transactivation domain) are predicted to be phosphorylated. By molecular 3D modeling of HBx, we further show these residues are all predicted to be exposed on the surface of the protein, making them easily accesible to these types of modifications. Furthermore, we have also identified Yin Yang sites that might have the potential to be phosphorylated and O-β-GlcNAc interplay at the same residues. Conclusions Thus, we propose that the different roles of HBx displayed in different subcellular locations might be regulated by an evolutionarily conserved mechanism of posttranslational modification, via phosphorylation. PMID:23079056

  17. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses.

    PubMed Central

    Pruss, G; Ge, X; Shi, X M; Carrington, J C; Bowman Vance, V

    1997-01-01

    Synergistic viral diseases of higher plants are caused by the interaction of two independent viruses in the same host and are characterized by dramatic increases in symptoms and in accumulation of one of the coinfecting viruses. In potato virus X (PVX)/potyviral synergism, increased pathogenicity and accumulation of PVX are mediated by the expression of potyviral 5' proximal sequences encoding P1, the helper component proteinase (HC-Pro), and a fraction of P3. Here, we report that the same potyviral sequence (termed P1/HC-Pro) enhances the pathogenicity and accumulation of two other heterologous viruses: cucumber mosaic virus and tobacco mosaic virus. In the case of PVX-potyviral synergism, we show that the expression of the HC-Pro gene product, but not the RNA sequence itself, is sufficient to induce the increase in PVX pathogenicity and that both P1 and P3 coding sequences are dispensable for this aspect of the synergistic interaction. In protoplasts, expression of the potyviral P1/HC-Pro region prolongs the accumulation of PVX (-) strand RNA and transactivates expression of a reporter gene from a PVX subgenomic promoter. Unlike the synergistic enhancement of PVX pathogenicity, which requires only expression of HC-Pro, the enhancement of PVX (-) strand RNA accumulation in protoplasts is significantly greater when the entire P1/HC-Pro sequence is expressed. These results indicate that the potyviral P1/HC-Pro region affects a step in disease development that is common to a broad range of virus infections and suggest a mechanism involving transactivation of viral replication. PMID:9212462

  18. Nuclear localization and transactivation by Vitis CBF transcription factors are regulated by combinations of conserved amino acid domains.

    PubMed

    Carlow, Chevonne E; Faultless, J Trent; Lee, Christine; Siddiqua, Mahbuba; Edge, Alison; Nassuth, Annette

    2017-09-01

    The highly conserved CBF pathway is crucial in the regulation of plant responses to low temperatures. Extensive analysis of Arabidopsis CBF proteins revealed that their functions rely on several conserved amino acid domains although the exact function of each domain is disputed. The question was what functions similar domains have in CBFs from other, overwintering woody plants such as Vitis, which likely have a more involved regulation than the model plant Arabidopsis. A total of seven CBF genes were cloned and sequenced from V. riparia and the less frost tolerant V. vinifera. The deduced species-specific amino acid sequences differ in only a few amino acids, mostly in non-conserved regions. Amino acid sequence comparison and phylogenetic analysis showed two distinct groups of Vitis CBFs. One group contains CBF1, CBF2, CBF3 and CBF8 and the other group contains CBF4, CBF5 and CBF6. Transient transactivation assays showed that all Vitis CBFs except CBF5 activate via a CRT or DRE promoter element, whereby Vitis CBF3 and 4 prefer a CRT element. The hydrophobic domains in the C-terminal end of VrCBF6 were shown to be important for how well it activates. The putative nuclear localization domain of Vitis CBF1 was shown to be sufficient for nuclear localization, in contrast to previous reports for AtCBF1, and also important for transactivation. The latter highlights the value of careful analysis of domain functions instead of reliance on computer predictions and published data for other related proteins. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Anti-TAR Polyamide Nucleotide Analog Conjugated with a Membrane-Permeating Peptide Inhibits Human Immunodeficiency Virus Type 1 Production

    PubMed Central

    Kaushik, Neerja; Basu, Amartya; Palumbo, Paul; Myers, Rene L.; Pandey, Virendra N.

    2002-01-01

    The emergence of drug-resistant variants has posed a significant setback against effective antiviral treatment for human immunodeficiency virus (HIV) infections. The choice of a nonmutable region of the viral genome such as the conserved transactivation response element (TAR element) in the 5′ long terminal repeat (LTR) may potentially be an effective target for drug development. We have earlier demonstrated that a polyamide nucleotide analog (PNA) targeted to the TAR hairpin element, when transfected into cells, can effectively inhibit Tat-mediated transactivation of HIV type 1 (HIV-1) LTR (T. Mayhood et al., Biochemistry 39:11532-11539, 2000). Here we show that this anti-TAR PNA (PNATAR), upon conjugation with a membrane-permeating peptide vector (transportan) retained its affinity for TAR in vitro similar to the unconjugated analog. The conjugate was efficiently internalized into the cells when added to the culture medium. Examination of the functional efficacy of the PNATAR-transportan conjugate in cell culture using luciferase reporter gene constructs resulted in a significant inhibition of Tat-mediated transactivation of HIV-1 LTR. Furthermore, PNATAR-transportan conjugate substantially inhibited HIV-1 production in chronically HIV-1-infected H9 cells. The mechanism of this inhibition appeared to be regulated at the level of transcription. These results demonstrate the efficacy of PNATAR-transportan as a potential anti-HIV agent. PMID:11907228

  20. Comparison of Cell Cycle Arrest, Transactivation, and Apoptosis Induced by the Simian Immunodeficiency Virus SIVagm and Human Immunodeficiency Virus Type 1 vpr Genes

    PubMed Central

    Zhu, Yonghong; Gelbard, Harris A.; Roshal, Mikhail; Pursell, Shannon; Jamieson, Beth D.; Planelles, Vicente

    2001-01-01

    All primate lentiviruses known to date contain one or two open reading frames with homology to the human immunodeficiency virus type 1 (HIV-1) vpr gene. HIV-1 vpr encodes a 96-amino-acid protein with multiple functions in the viral life cycle. These functions include modulation of the viral replication kinetics, transactivation of the long terminal repeat, participation in the nuclear import of preintegration complexes, induction of G2 arrest, and induction of apoptosis. The simian immunodeficiency virus (SIV) that infects African green monkeys (SIVagm) contains a vpr homologue, which encodes a 118-amino-acid protein. SIVagm vpr is structurally and functionally related to HIV-1 vpr. The present study focuses on how three specific functions (transactivation, induction of G2 arrest, and induction of apoptosis) are related to one another at a functional level, for HIV-1 and SIVagm vpr. While our study supports previous reports demonstrating a causal relationship between induction of G2 arrest and transactivation for HIV-1 vpr, we demonstrate that the same is not true for SIVagm vpr. Transactivation by SIVagm vpr is independent of cell cycle perturbation. In addition, we show that induction of G2 arrest is necessary for the induction of apoptosis by HIV-1 vpr but that the induction of apoptosis by SIVagm vpr is cell cycle independent. Finally, while SIVagm vpr retains its transactivation function in human cells, it is unable to induce G2 arrest or apoptosis in such cells, suggesting that the cytopathic effects of SIVagm vpr are species specific. Taken together, our results suggest that while the multiple functions of vpr are conserved between HIV-1 and SIVagm, the mechanisms leading to the execution of such functions are divergent. PMID:11264368

  1. Trans-activation function of a 3 prime truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    SciTech Connect

    Takada, Shinako; Koike, Katsuro )

    1990-08-01

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3{prime} end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product.

  2. Inactivation of p53 by HTLV type 1 and HTLV type 2 Tax trans-activators.

    PubMed

    Mahieux, R; Pise-Masison, C A; Nicot, C; Green, P; Hall, W W; Brady, J N

    2000-11-01

    Human T cell lymphotropic virus type II (HTLV-2) was originally isolated from a patient with a hairy T cell leukemia. It has been associated with rare cases of CD8(+) T lymphoproliferative disorders, and has a controversial role as a pathogen. The loss of p53 function, as a consequence of mutation or inactivation, increases the chances of genetic damage. Indeed, the importance of p53 as a tumor suppressor is evident from the fact that over 60% of all human cancers have a mutant or inactive p53. p53 status has been extensively studied in HTLV-1-infected cell lines. Interestingly, despite the fact that p53 mutations have been found in only a minority of cells, the p53 functions were found to be impaired. We have analyzed the functional activity of the p53 tumor suppressor in cells transformed with HTLV-2 subtypes A and B. As with HTLV-1-infected cells, abundant levels of the p53 protein are detected in HTLV-2 virus-infected cell lines. Using p53 reporter plasmid or induction of p53-responsive genes in response to gamma-irradiation, the p53 was found to be transcriptionally inhibited in HTLV-2-infected cells. Interestingly, although Tax-2A and-2B inactivate p53, the Tax-2A protein appears to inhibit p53 function less efficiently than either Tax-1 or Tax-2B in T cells, but not in fibroblasts.

  3. In situ distinction between steroid receptor binding and transactivation at a target gene.

    PubMed Central

    McDonnell, D P; Nawaz, Z; O'Malley, B W

    1991-01-01

    We have developed a DNA interference assay in the yeast Saccharomyces cerevisiae that is designed to indicate the intracellular DNA-binding status of the estrogen receptor. The assay utilizes a promoter containing multiple copies of a GAL4-estrogen receptor binding sequence. This element is designed so that either an estrogen receptor or a GAL4 molecule, but not both, can occupy it simultaneously. The assay is extremely sensitive, and at concentrations of estrogen receptor below that required for maximal transcriptional activation of its target estrogen response element, a quantitative inhibition of GAL4-mediated transcription is seen. Inhibition occurs thought the disruption of complex cooperative interactions among the GAL4 molecules in this reporter. The data obtained from our experiments show that at low concentrations of receptor, hormone is required to promote DNA binding. Overexpression of receptor leads to occupation of the estrogen receptor element in the absence of ligand. In contrast, this latter receptor form will not activate transcription. Our results are consistent with a two-step process for receptor activation. Ligand first causes dissociation of receptor from an inhibitory complex within the cell and produces a DNA-binding form. Second, it converts receptor to a transcriptionally competent form. With use of this yeast model system, these two steps can be distinguished in situ. PMID:1875926

  4. Protein Kinase C-δ Transactivates Platelet-derived Growth Factor Receptor-α in Mechanical Strain-induced Collagenase 3 (Matrix Metalloproteinase-13) Expression by Osteoblast-like Cells*

    PubMed Central

    Yang, Chuen-Mao; Hsieh, Hsi-Lung; Yao, Chung-Chen; Hsiao, Li-Der; Tseng, Chin-Ping; Wu, Chou Bing

    2009-01-01

    Matrix metalloproteinase-13 (MMP-13, or collagenase 3) has been shown to degrade intact collagen and to participate in situations where rapid and effective remodeling of collagenous ECM is required. Mechanical strain induction of MMP-13 is an example of how osteoblasts respond to high mechanical forces and participate in the bone-remodeling mechanism. Using MC3T3-E1 osteoblast-like cells, we dissected the signaling molecules involved in MMP-13 induction by mechanical strain. Reverse transcription-PCR and zymogram analysis showed that platelet-derived growth factor receptor (PDGFR) inhibitor, AG1296, inhibited the mechanical strain-induced MMP-13 gene and activity. However, the induction was not affected by anti-PDGF-AA serum. Immunoblot analysis revealed time-dependent phosphorylation of PDGFR-α up to 2.7-fold increases within 3 min under strain. Transfection with shPDGFR-α (at 4 and 8 μg/ml) abolished PDGFR-α and reduced MMP-13 expression. Moreover, time-dependent recruitments of phosphoinositide 3-kinase (PI3K) by PDGFR-α were detected by immunoprecipitation with anti-PDGFR-α serum followed by immunoblot with anti-PI3K serum. AG1296 inhibited PDGFR-α/PI3K aggregation and Akt phosphorylation. Interestingly, protein kinase C-δ (PKC-δ) inhibitor, rottlerin, inhibited not only PDGFR-α/PI3K aggregation but PDGFR-α phosphorylation. The sequential activations were further confirmed by mutants ΔPKC-δ, ΔAkt, and ΔERK1. Consistently, the primary mouse osteoblast cells used the same identified signaling molecules to express MMP-13 under mechanical strain. These results demonstrate that, in osteoblast-like cells, the MMP-13 induction by mechanical strain requires the transactivation of PDGFR-α by PKC-δ and the cross-talk between PDGFR-α/PI3K/Akt and MEK/ERK pathways. PMID:19633290

  5. Progesterone Signaling Inhibits Cervical Carcinogenesis in Mice

    PubMed Central

    Yoo, Young A; Son, Jieun; Mehta, Fabiola F.; DeMayo, Francesco J.; Lydon, John P.; Chung, Sang-Hyuk

    2014-01-01

    Human papillomavirus is the main cause of cervical cancer, yet other nonviral cofactors are also required for the disease. The uterine cervix is a hormone-responsive tissue, and female hormones have been implicated in cervical carcinogenesis. A transgenic mouse model expressing human papillomavirus oncogenes E6 and/or E7 has proven useful to study a mechanism of hormone actions in the context of this common malignancy. Estrogen and estrogen receptor α are required for the development of cervical cancer in this mouse model. Estrogen receptor α is known to up-regulate expression of the progesterone receptor, which, on activation by its ligands, either promotes or inhibits carcinogenesis, depending on the tissue context. Here, we report that progesterone receptor inhibits cervical and vaginal epithelial cell proliferation in a ligand-dependent manner. We also report that synthetic progestin medroxyprogesterone acetate promotes regression of cancers and precancerous lesions in the female lower reproductive tracts (ie, cervix and vagina) in the human papillomavirus transgenic mouse model. Our results provide the first experimental evidence that supports the hypothesis that progesterone signaling is inhibitory for cervical carcinogenesis in vivo. PMID:24012679

  6. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    PubMed Central

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis. Main Points: Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes PMID:27313509

  7. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes.

    PubMed

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M; Setton-Avruj, Patricia; Barbeito, Luis H; Ramos, Alberto J

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis. Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes.

  8. Neuroregeneration of Induced Pluripotent Stem Cells in Polyacrylamide-Chitosan Inverted Colloidal Crystal Scaffolds with Poly(lactide-co-glycolide) Nanoparticles and Transactivator of Transcription von Hippel-Lindau Peptide.

    PubMed

    Kuo, Yung-Chih; Chen, Chun-Wei

    2017-04-01

    Polyacrylamide (PAAM) and chitosan were fabricated by inverted colloidal crystal (ICC) method for scaffolds comprising regular pores. The hybrid PAAM-chitosan ICC scaffolds were grafted with poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) for a rougher pore surface and grafted with transactivator of transcription von Hippel-Lindau (TATVHL) peptide for a better differentiation of induced pluripotent stem (iPS) cells toward neural lineage. By scanning electron microscopy, we found that iPS cells cultured in PAAM-chitosan ICC scaffolds with PLGA NPs at 1.0 mg/mL and TATVHL peptide at 15 μg/mL elongated the axonal length to 15 μm. A combination of PLGA NPs and TATVHL peptide favored the adhesion of iPS cells, reduced the embryonic phenotype after cultivation, and guided the production of βIII tubulin-positive cells in PAAM-chitosan ICC scaffolds. In addition to the differentiation toward neurite-like cells, an increase in the content of TATVHL peptide in PAAM-chitosan ICC scaffolds inhibited the differentiation of iPS cells toward astrocytes. ICC scaffolds composed of PAAM, chitosan, PLGA NPs, and TATVHL peptide can be an efficacious matrix to differentiate iPS cells toward neurons and retard the glial formation for nerve regeneration.

  9. Binding and inhibition of the ternary complex factor Elk-4/Sap1 by the adapter protein Dok-4.

    PubMed

    Hooker, Erika; Baldwin, Cindy; Roodman, Victoria; Batra, Anupam; Takano, Tomoko; Lemay, Serge

    2017-03-08

    The adapter protein Dok-4 has been reported as both activator and inhibitor of Erk and Elk-1, but lack of knowledge about the identity of its partner molecules has precluded any mechanistic insight into these seemingly conflicting properties. We report that Dok-4 interacts with the transactivation domain of Elk-4  through an atypical PTB domain-mediated interaction. Dok-4 possesses a nuclear export signal and can relocalize Elk-4 from nucleus to cytosol, whereas Elk-4 possesses two nuclear localization signals that restrict interaction with Dok-4. Elk-4 protein, unlike Elk-1, is highly unstable in the presence of Dok-4, through both a an interaction-dependent mechanism and a PH domain-dependent but interaction-independent mechanism. This is reversed by proteasome inhibition, depletion of endogenous Dok-4 or lysine-to-arginine mutation of putative Elk-4 ubiquitination sites. Finally, Elk-4 transactivation is potently inhibited by Dok-4 overexpression but enhanced by Dok-4 knockdown in MDCK renal tubular cells, which correlates with  increased basal and EGF-induced expression of Egr-1, Fos and cylcinD1 mRNA and cell proliferation despite reduced Erk activation. Thus, Dok-4 can target Elk-4 activity through multiple mechanisms including binding of the transactivation domain, nuclear exclusion and protein destabilization, without a requirement for inhibition of Erk.

  10. Interleukin-1-receptor-associated kinase 2 (IRAK2)-mediated interleukin-1-dependent nuclear factor kappaB transactivation in Saos2 cells requires the Akt/protein kinase B kinase.

    PubMed Central

    Cenni, Vittoria; Sirri, Alessandra; De Pol, Anto; Maraldi, Nadir Mario; Marmiroli, Sandra

    2003-01-01

    The post-receptor pathway that leads to nuclear factor kappaB (NF-kappaB) activation begins with the assembly of a membrane-proximal complex among the interleukin 1 (IL-1) receptors and the adaptor molecules, myeloid differentiation protein 88 (MyD88), IL-1-receptor-associated kinases (IRAKs) and tumour-necrosis-factor-receptor-associated factor 6. Eventually, phosphorylation of the inhibitor of NF-kappaB (IkappaB) by the IkappaB kinases releases NF-kappaB, which translocates to the nucleus and modulates gene expression. In this paper, we report that IRAK2 and MyD88, but not IRAK1, interact physically with Akt, as demonstrated by co-immunoprecipitation and pull-down experiments. Interestingly, the association of Akt with recombinant IRAK2 is decreased by stimulation with IL-1, and is favoured by pre-treatment with phosphatase. Likewise, Akt association with IRAK2 is increased considerably by overexpression of PTEN (phosphatase and tensin homologue deleted on chromosome 10), while it is completely abrogated by overexpression of phosphoinositide-dependent protein kinase 1. These data indicate that Akt takes part in the formation of the signalling complex that conveys the signal from the IL-1 receptors to NF-kappaB, a step that is much more membrane-proximal than was reported previously. We also demonstrate that Akt activity is necessary for IL-1-dependent NF-kappaB transactivation, since a kinase-defective mutant of Akt impairs IRAK2- and MyD88-dependent, but not IRAK1-dependent, NF-kappaB activity, as monitored by a gene reporter assay. Accordingly, IRAK2 failed to trigger inducible nitric oxide synthase and IL-1beta production in cells expressing dominant-negative Akt. However, NF-kappaB binding to DNA was not affected by inhibition of Akt, indicating that Akt regulates NF-kappaB at a level distinct from the dissociation of p65 from IkappaBalpha and its translocation to the nucleus, possibly involving phosphorylation of the p65 transactivation domain. PMID:12906710

  11. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    SciTech Connect

    Park, Mi Hee; Min, Do Sik

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  12. Androgen ablation elicits PP1-dependence for AR stabilization and transactivation in prostate cancer.

    PubMed

    Liu, Xiaming; Han, Weiwei; Gulla, Sarah; Simon, Nicholas I; Gao, Yanfei; Liu, Jihong; Wang, Liang; Yang, Hongmei; Zhang, Xiaoping; Chen, Shaoyong

    2016-05-01

    Previous reports have documented protein phosphatase 1 (PP1) as an essential androgen receptor (AR) activator. However, more systemic studies are needed to further define PP1 effects on AR, particularly in the settings of prostate cancer cells and under conditions mimicking androgen ablation. PP1 effects on AR protein expression, degradation, ubiquitination, and stabilization were examined in non-prostate cancer cells, followed by validation on exogenous settings in androgen-sensitive (LNCaP and VCaP) and castration-resistant (C4-2) prostate cancer cells. Effects of PP1 on AR protein expression, on AR-mediated transcription of exogenous reporter and endogenous gene, and on LNCaP and C4-2 cell proliferation were monitored under androgen-containing versus androgen-depleted conditions to assess the effects of PP1 on AR responsiveness to androgen. In this report, we determined that PP1 functions to stabilize AR proteins that exclusively undergo the proteasome-dependent degradation, and the stimulatory effects of PP1 were predominantly mediated by the AR ligand-binding domain (LBD). Consistently, PP1 enhances AR protein stability by disrupting the LBD-mediated and K48-linked ubiquitination cascade. We further validated the above findings in the prostate cancer cells by showing that PP1 inhibition can increase ubiquitin- and proteasome-dependent degradation of endogenous AR under androgen deprivation. Significantly, we found that PP1 could markedly activate AR transcriptional activities under conditions mimicking androgen ablation and that androgen sensitivity was substantially evoked by PP1 inhibition in the prostate cancer cell lines. As summarized in a simplified model, our studies defined an essential PP1-mediated pathway for AR protein stabilization that can compensate the loss of androgen and established a mechanistic link between PP1 and androgen responsiveness. The amplified PP1-dependence for AR activation under the androgen ablated conditions provides a

  13. A Luciferase Functional Quantitative Assay for Measuring NF-ĸB Promoter Transactivation Mediated by HTLV-1 and HTLV-2 Tax Proteins.

    PubMed

    Bergamo, Elisa; Diani, Erica; Bertazzoni, Umberto; Romanelli, Maria Grazia

    2017-01-01

    HTLV-1 and HTLV-2 viruses express Tax transactivator proteins required for viral genome transcription and capable of transforming cells in vivo and in vitro. Although Tax oncogenic potential needs to be further elucidated, it is well established that Tax proteins activate, among others, transcription factors of the NF-ĸB family, which are involved in immune and inflammatory responses, cell growth, apoptosis, stress responses and oncogenesis. Here, we describe a reporter gene assay applied for quantitative analysis of Tax-dependent NF-ĸB activation. The procedure is based on co-transfection of two individual vectors containing the cDNA for firefly and Renilla luciferase enzymes and vectors expressing Tax proteins. The luciferase expression is driven by cis-NF-ĸB promoter regulatory elements responsive to Tax transactivating factor. This assay is particularly useful to investigate Tax influence on NF-ĸB activation mediated by viral or host factors.

  14. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    SciTech Connect

    Kenney, S.; Kamine, J.; Markovitz, D.; Fenrick, R.; Pagano, J.

    1988-03-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.

  15. A novel tetracycline-controlled transactivator-transrepressor system enables external control of oncolytic adenovirus replication.

    PubMed

    Fechner, H; Wang, X; Srour, M; Siemetzki, U; Seltmann, H; Sutter, A P; Scherübl, H; Zouboulis, C C; Schwaab, R; Hillen, W; Schultheiss, H-P; Poller, W

    2003-09-01

    The use of restricted replication-competent adenoviruses (RRCAs) inducing tumor cell-specific lysis is a promising approach in cancer gene therapy. However, the use of RRCAs in humans carries considerable risk, since after injection into the patient, further regulation or inhibition of virus replication from the outside is impossible. Therefore, we have developed a novel system allowing external pharmacological control of RRCA replication. We show here that a tumor-selective E1B-deleted RRCA can be tightly regulated by use of doxycycline (dox)-controlled adenoviral E1A gene expression, which in turn determines vector replication. RRCA replication is switched on by addition and switched off by withdrawal of dox. The system results in efficient tumor cell killing after induction by dox, whereas cells are unaffected by the uninduced system. It was also employed for efficient external control of transgene expression from cotransfected replication-deficient adenovectors. Furthermore, the use of a liver cell-specific human alpha1-antitrypsin (hAAT)-promoter driving a tetracycline-controlled transcriptional silencer allowed specific protection of cells with hAAT-promoter activity in the absence of dox in vitro and in vivo, delineating a new principle of 'tissue protective' gene therapy. The concept of external control of RRCAs may help to improve the safety of cancer gene therapy.

  16. AIRE acetylation and deacetylation: effect on protein stability and transactivation activity.

    PubMed

    Incani, Federica; Serra, Maria; Meloni, Alessandra; Cossu, Carla; Saba, Luisella; Cabras, Tiziana; Messana, Irene; Rosatelli, Maria C

    2014-08-27

    The AIRE protein plays a remarkable role as a regulator of central tolerance by controlling the promiscuous expression of tissue-specific antigens in thymic medullary epithelial cells. Defects in AIRE gene cause the autoimmune polyendocrinopathy- candidiasis-ectodermal dystrophy, a rare disease frequent in Iranian Jews, Finns, and Sardinian population. In this study, we have precisely mapped, by mass spectrometry experiments, the sites of protein acetylation and, by mutagenesis assays, we have described a set of acetylated lysines as being crucial in influencing the subcellular localization of AIRE. Furthermore, we have also determined that the de-acetyltransferase enzymes HDAC1-2 are involved in the lysine de-acetylation of AIRE. On the basis of our results and those reported in literature, we propose a model in which lysines acetylation increases the stability of AIRE in the nucleus. In addition, we observed that the interaction of AIRE with deacetylases complexes inhibits its transcriptional activity and is probably responsible for the instability of AIRE, which becomes more susceptible to degradation in the proteasome.

  17. c-Jun N-terminal kinase - c-Jun pathway transactivates Bim to promote osteoarthritis.

    PubMed

    Ye, Zhiqiang; Chen, Yuxian; Zhang, Rongkai; Dai, Haitao; Zeng, Chun; Zeng, Hua; Feng, Hui; Du, Gengheng; Fang, Hang; Cai, Daozhang

    2014-02-01

    Osteoarthritis (OA) is a chronic degenerative joint disorder. Previous studies have shown abnormally increased apoptosis of chondrocytes in patients and animal models of OA. TNF-α and nitric oxide have been reported to induce chondrocyte ageing; however, the mechanism of chondrocyte apoptosis induced by IL-1β has remained unclear. The aim of this study is to identify the role of the c-Jun N-terminal kinase (JNK) - c-Jun pathway in regulating induction of Bim, and its implication in chondrocyte apoptosis. This study showed that Bim is upregulated in chondrocytes obtained from the articular cartilage of OA patients and in cultured mouse chondrocytes treated with IL-1β. Upregulation of Bim was found to be critical for chondrocyte apoptosis induced by IL-1β, as revealed by the genetic knockdown of Bim, wherein apoptosis was greatly reduced in the chondrocytes. Moreover, activation of the JNK-c-Jun pathway was observed under IL-1β treatment, as indicated by the increased expression levels of c-Jun protein. Suppression of the JNK-c-Jun pathway, using chemical inhibitors and RNA interference, inhibited the Bim upregulation induced by IL-1β. These findings suggest that the JNK-c-Jun pathway is involved in the upregulation of Bim during OA and that the JNK-c-Jun-Bim pathway is vital for chondrocyte apoptosis.

  18. ATR-CHK1-E2F3 signaling transactivates human ribonucleotide reductase small subunit M2 for DNA repair induced by the chemical carcinogen MNNG.

    PubMed

    Gong, Chaoju; Liu, Hong; Song, Rui; Zhong, Tingting; Lou, Meng; Wang, Tingyang; Qi, Hongyan; Shen, Jing; Zhu, Lijun; Shao, Jimin

    2016-04-01

    N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent and an environmental carcinogen, causes DNA lesions and even carcinomas. DNA damage responses induced by MNNG activate various DNA repair genes and related signaling pathways. The present study aimed to investigate the regulatory mechanisms of human RR small subunit M2 (hRRM2) in response to MNNG. In this study, we demonstrated that the RRM2 gene was transactivated by MNNG exposure more strongly than the other small subunit, p53R2. The upregulated RRM2 translocated to the nucleus for DNA repair. Further study showed that E2F3 transactivated RRM2 expression by directly binding to its promoter after MNNG exposure. The transactivation was enhanced by the upregulation of NFY, which bound to the RRM2 promoter adjacent to the E2F3 binding site and interacted with E2F3. In response to MNNG treatment, E2F3 accumulated mainly through its phosphorylation at S124 and was dependent on ATR-CHK1 signaling. In comparison, p53R2 played a relatively weaker role in the MNNG-induced DNA damage response, and its transcription was regulated by the ATR-CHK2-E2F1/p53 pathway. We suggest that MNNG-stimulated ATR/CHK1 signaling stabilizes E2F3 by S124 phosphorylation, and then E2F3 together with NFY co-transactivate RRM2 expression for DNA repair. We propose a new mechanism for RRM2 regulation to maintain genome stability in response to environmental chemical carcinogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication.

    PubMed

    Bhargavan, Biju; Woollard, Shawna M; Kanmogne, Georgette D

    2016-02-01

    TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetic modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests that TLR3 can act as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Epidermal Growth Factor Receptor Transactivation by the Cannabinoid Receptor (CB1) and Transient Receptor Potential Vanilloid 1 (TRPV1) Induces Differential Responses in Corneal Epithelial Cells

    DTIC Science & Technology

    2010-01-01

    Epidermal growth factor receptor transactivation by the cannabinoid receptor (CB1) and transient receptor potential vanilloid 1 ( TRPV1 ) induces...Available online 7 July 2010 Keywords: cannabinoid receptor 1 (CB1) transient receptor potential vanilloid 1 ( TRPV1 ) epidermal growth factor receptor (EGFR...release of endogenous metabolites that are cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 ( TRPV1 ) agonists. We determined

  1. Toll-Like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication

    PubMed Central

    Bhargavan, Biju; Woollard, Shawna M.; Kanmogne, Georgette D.

    2016-01-01

    TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetics modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests TLR3 can acts as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects. PMID:26569339

  2. GPCR responses in vascular smooth muscle can occur predominantly through dual transactivation of kinase receptors and not classical Gαq protein signalling pathways.

    PubMed

    Little, Peter J

    2013-05-30

    GPCR signalling is well known to proceed through several linear pathways involving activation of G proteins and their downstream signalling pathways such as activation of phospholipase C. In addition, GPCRs signal via transactivation of Protein Tyrosine Kinase receptors such as that for Epidermal Growth Factor (EGF) and Platelet-Derived Growth Factor (PDGF) where GPCR agonists mediate increase levels of phosphorylated Erk (pErk) the immediate downstream product of the activation of EGF receptor. It has recently been shown that this paradigm can be extended to include the GPCR transactivation of a Protein Serine/Threonine Kinase receptor, specifically the Transforming Growth Factor β Type I receptor (also known as Alk V) (TβRI) in which case GPCR activation leads to the formation of carboxy terminal polyphosphorylated Smad2 (phosphoSmad2) being the immediate downstream product of the activation of TβRI. Growth factor and hormone regulation of proteoglycan synthesis in vascular smooth muscle cells represent one component of an in vitro model of atherosclerosis because modified proteoglycans show enhanced binding to lipoproteins as the initiating step in atherosclerosis. In the example of proteoglycan synthesis stimulated by GPCR agonists such as thrombin and endothelin-1, the transactivation pathways for the EGF receptor and TβRI are both active and together account for essentially all of the response to the GPCRs. In contrast, signalling downstream of GPCRs such as increased inositol 1,4,5 trisphosphate (IP3) and intracellular calcium do not have any effect on GPCR stimulated proteoglycan synthesis. These data lead to the conclusion that dual transactivation pathways for protein tyrosine and serine/threonine kinase receptors may play a far greater role in GPCR signalling than currently recognised.

  3. Crucial sequences within the Epstein-Barr virus TP1 promoter for EBNA2-mediated transactivation and interaction of EBNA2 with its responsive element.

    PubMed Central

    Meitinger, C; Strobl, L J; Marschall, G; Bornkamm, G W; Zimber-Strobl, U

    1994-01-01

    EBNA2 is one of the few genes of Epstein-Barr virus which are necessary for immortalization of human primary B lymphocytes. The EBNA2 protein acts as a transcriptional activator of several viral and cellular genes. For the TP1 promoter, we have shown previously that an EBNA2-responsive element (EBNA2RE) between -258 and -177 relative to the TP1 RNA start site is necessary and sufficient for EBNA2-mediated transactivation and that it binds EBNA2 through a cellular factor. To define the critical cis elements within this region, we cloned EBNA2RE mutants in front of the TP1 minimal promoter fused to the reporter gene for luciferase. Transactivation by EBNA2 was tested by transfection of these mutants in the absence and presence of an EBNA2 expression vector into the established B-cell line BL41-P3HR-1. The analysis revealed that two identical 11-bp motifs and the region 3' of the second 11-bp motif are essential for transactivation by EBNA2. Methylation interference experiments indicated that the same cellular factor in the absence of EBNA2 binds either one (complex I) or both (complex III) 11-bp motifs with different affinities, giving rise to two different specific protein-DNA complexes within the left-hand 54 bp of EBNA2RE. A third specific complex was shown previously to be present only in EBNA2-expressing cells and to contain EBNA2. Analysis of this EBNA2-containing complex revealed the same protection pattern as for complex III, indicating that EBNA2 interacts with DNA through binding of the cellular protein to the 11-bp motifs. Mobility shift assays with the different mutants demonstrated that one 11-bp motif is sufficient for binding the cellular factor, whereas for binding of EBNA2 as well as for efficient transactivation by EBNA2, both 11-bp motifs are required. Images PMID:7933133

  4. Mutations in the zinc fingers of ADR1 that change the specificity of DNA binding and transactivation.

    PubMed Central

    Thukral, S K; Morrison, M L; Young, E T

    1992-01-01

    ADR1 is a yeast transcription factor that contains two zinc fingers of the Cys-2-His-2 (C2H2) class. Mutations that change the specificity of DNA binding of ADR1 to its target site, upstream activation sequence 1 (UAS1), have been identified at three positions in the first zinc finger. Mutations Arg-115 to Gln, His-118 to Thr, and Arg-121 to Asn led to new specificities of DNA binding at adjacent positions 10, 9, and 8 (3'-GAG-5') in UAS1. Arg-115 is at the finger tip, and His-118 and Arg-121 are at positions 3 and 6, respectively, in the alpha helix of finger 1. One double mutant displayed the binding specificity expected from the properties of its constituent new-specificity mutations. Mutations in the second finger that allowed its binding site to be identified through loss-of-contact phenotypes were made. These mutations imply a tail-to-tail orientation of the two ADR1 monomers on their adjacent binding sites. Finger 1 is aligned on UAS1 in an amino-to-carboxyl-terminal orientation along the guanine-rich strand in a 3'-to-5' direction. One of the ADR1 mutants was functional in vivo with both its cognate binding site and wild-type UAS1, but the other two mutants were defective in transactivation despite their ability to bind with high affinity to their cognate binding sites. Images PMID:1588970

  5. Trans-Activation Response Element RNA is Detectable in the Plasma of a Subset of Aviremic HIV-1-Infected Patients.

    PubMed

    Hladnik, Anžej; Ferdin, Jana; Goričar, Katja; Deeks, G Steven; Peterlin, M Boris; Plemenitaš, Ana; Vita, Dolžan; Metka, Lenassi

    2017-09-01

    Determining the HIV-1 reservoir size in infected individuals is of great importance for improvement of their treatment. Plasma trans-activation response element (TAR) RNA has been suggested as one of the possible biomarkers. TAR RNA is produced during non-processive transcription in HIV-1 productively infected and latent T cells. Here, plasma samples and paired exosome samples of 55 subjects from the observational SCOPE cohort were analysed for the presence of TAR RNA. First, a PCR-based assay was optimized, which provided 100% specificity and 100% sensitivity in differentiating HIV-1 infected non-controllers from uninfected individuals. Next, TAR RNA was detected in the plasma of 63% of aviremic HIV-1-infected patients, who were either treated with antiretroviral therapy or were elite controllers. Although TAR RNA levels did not correlate with patient gender, age, CD4 levels, CD8 levels, they tended to correlate with CD4/CD8 ratio (P = 0.047). This study is the first to investigate plasma TAR RNA in a relatively large cohort of HIV-1-infected patients. We additionally show that the TAR RNA molecules in the plasma of aviremic patients are not limited to exosomes.

  6. Transactivator of transcription (TAT) peptide- chitosan functionalized multiwalled carbon nanotubes as a potential drug delivery vehicle for cancer therapy.

    PubMed

    Dong, Xia; Liu, Lanxia; Zhu, Dunwan; Zhang, Hailing; Leng, Xigang

    2015-01-01

    Carbon nanotube (CNT)-based drug delivery vehicles might find great potential in cancer therapy via the combination of chemotherapy with photothermal therapy due to the strong optical absorbance of CNTs in the near-infrared region. However, the application of CNTs in cancer therapy was considerably constrained by their lack of solubility in aqueous medium, as well as the cytotoxicity caused by their hydrophobic surface. Intracellular delivery efficiency is another factor determining the application potential of CNTs in cancer therapy. In the present study, low-molecular-weight chitosan conjugated with transactivator of transcription (TAT) peptide was used for noncovalent functionalization of multiwalled carbon nanotubes (MWCNTs), aiming at providing a more efficient drug delivery vehicle for cancer therapy. The TAT-chitosan-conjugated MWCNTs (MWCNTs-TC) were further investigated for their water solubility, cytotoxicity, cell-penetrating capability, and accumulation in tumor. It was found that MWCNTs-TC were essentially nontoxic with satisfying water solubility, and they were more efficient in terms of cancer-targeted intracellular transport both in vitro and in vivo as compared with chitosan-modified MWCNTs (MWCNTs-CS), suggesting the great application potential of MWCNTs-TC in cancer therapy.

  7. The minimal transactivation domain of the basic motif-leucine zipper transcription factor NRL interacts with TATA-binding protein.

    PubMed

    Friedman, James S; Khanna, Hemant; Swain, Prabodh K; Denicola, Raphael; Cheng, Hong; Mitton, Kenneth P; Weber, Christian H; Hicks, David; Swaroop, Anand

    2004-11-05

    The basic motif-leucine zipper (bZIP) transcription factor NRL controls the expression of rhodopsin and other phototransduction genes and is a key mediator of photoreceptor differentiation. To delineate the molecular mechanisms underlying transcriptional initiation of rod-specific genes, we characterized different regions of the NRL protein using yeast-based autoactivation assays. We identified 35 amino acid residues in the proline- and serine-rich N-terminal region (called minimal transactivation domain, MTD), which, when combined with LexA or Gal4 DNA binding domains, exhibited activation of target promoters. Because this domain is conserved in all proteins of the large Maf family, we hypothesized that NRL-MTD played an important role in assembling the transcription initiation complex. Our studies showed that the NRL protein, including the MTD, interacted with full-length or the C-terminal domain of TATA-binding protein (TBP) in vitro. NRL and TBP could be co-immunoprecipitated from bovine retinal nuclear extract. TBP was also part of c-Maf and MafA (two other large Maf proteins)-containing complex(es) in vivo. Our data suggest that the function of NRL-MTD is to activate transcription by recruiting or stabilizing TBP (and consequently other components of the general transcription complex) at the promoter of target genes, and a similar function may be attributed to other bZIP proteins of the large Maf family.

  8. Methylation of Gata3 protein at Arg-261 regulates transactivation of the Il5 gene in T helper 2 cells.

    PubMed

    Hosokawa, Hiroyuki; Kato, Miki; Tohyama, Hiroyuki; Tamaki, Yuuki; Endo, Yusuke; Kimura, Motoko Y; Tumes, Damon John; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I; Tanaka, Tomoaki; Nakayama, Toshinori

    2015-05-22

    Gata3 acts as a master regulator for T helper 2 (Th2) cell differentiation by inducing chromatin remodeling of the Th2 cytokine loci, accelerating Th2 cell proliferation, and repressing Th1 cell differentiation. Gata3 also directly transactivates the interleukin-5 (Il5) gene via additional mechanisms that have not been fully elucidated. We herein identified a mechanism whereby the methylation of Gata3 at Arg-261 regulates the transcriptional activation of the Il5 gene in Th2 cells. Although the methylation-mimicking Gata3 mutant retained the ability to induce IL-4 and repress IFNγ production, the IL-5 production was selectively impaired. We also demonstrated that heat shock protein (Hsp) 60 strongly associates with the methylation-mimicking Gata3 mutant and negatively regulates elongation of the Il5 transcript by RNA polymerase II. Thus, arginine methylation appears to play a pivotal role in the organization of Gata3 complexes and the target gene specificity of Gata3.

  9. Newly developed quantitative transactivation system shows difference in activation by Vitis CBF transcription factors on DRE/CRT elements.

    PubMed

    Nassuth, Annette; Siddiqua, Mahbuba; Xiao, Huogen; Moody, Michelle A; Carlow, Chevonne E

    2014-01-01

    Agroinfiltration-based transactivation systems can determine if a protein functions as a transcription factor, and via which promoter element. However, this activation is not always a yes or no proposition. Normalization for variation in plasmid delivery into plant cells, sample collection and protein extraction is desired to allow for a quantitative comparison between transcription factors or promoter elements. We developed new effector and reporter plasmids which carry additional reporter genes, as well as a procedure to assay all three reporter enzymes from a single extract. The applicability of these plasmids was demonstrated with the analysis of CBF transcription factors and their target promoter sequence, DRE/CRT. Changes in the core DRE/CRT sequence abolished activation by Vitis CBF1 or Vitis CBF4, whereas changes in the surrounding sequence lowered activation by Vitis CBF1 but much less so for Vitis CBF4. The system also detected a reduction in activation due to one amino acid change in Vitis CBF1. The newly developed effector and reporter plasmids improve the ability to quantitatively compare the activation on two different promoter elements by the same transcription factor, or between two different transcription factors on the same promoter element. The quantitative difference in activation by VrCBF1 and VrCBF4 on various DRE/CRT elements support the hypothesis that these transcription factors have unique roles in the cold acclimation process.

  10. [Retracted] Nuclear import of prototype foamy virus transactivator Bel1 is mediated by KPNA1, KPNA6 and KPNA7.

    PubMed

    Duan, Jihui; Tang, Zhiqin; Mu, Hong; Zhang, Guojun

    2017-03-01

    We would like to retract the article entitled "Nuclear import of prototype foamy virus transactivator Bel1 is mediated by KPNA1, KPNA6 and KPNA7" published in International Journal of Molecular Medicine 38: 339-406, 2016. The results presented in Fig. 6 have been demonstrated to be unreproducible, and we cannot provide an explanation for this. Furthermore, we have recently identified that the cell cultures used in our experiments were partly contaminated with Mycoplasma, which could have contributed to the irreproducibility of the results. In addition, we are currently in dispute with a colleague who has contributed towards this study, but does not wish to be included as a named author on the paper. We are therefore going to retract this article. All the authors unanimously agree to the retraction of this paper, and we deeply apologize to readers and editors for any inconvenience caused by this retraction. [the original article was published in the International Journal of Molecular Medicine 38: 399-406, 2016; DOI: 10.3892/ijmm.2016.2635].

  11. Pulling a Ligase out of a “HAT”: pCAF Mediates Ubiquitination of the Class II Transactivator

    PubMed Central

    2017-01-01

    The Class II Transactivator (CIITA) is essential to the regulation of Major Histocompatibility Class II (MHC II) genes transcription. As the “master regulator” of MHC II transcription, CIITA regulation is imperative and requires various posttranslational modifications (PTMs) in order to facilitate its role. Previously we identified various ubiquitination events on CIITA. Monoubiquitination is important for CIITA transactivity, while K63 linked ubiquitination is involved in crosstalk with ERK1/2 phosphorylation, where together they mediate cellular movement from the cytoplasm to nuclear region. Further, CIITA is also modified by degradative K48 polyubiquitination. However, the E3 ligase responsible for these modifications was unknown. We show CIITA ubiquitination and transactivity are enhanced with the histone acetyltransferase (HAT), p300/CBP associated factor (pCAF), and the E3 ligase region within pCAF is necessary for both. Additionally, pCAF mediated ubiquitination is independent of pCAF's HAT domain, and acetylation deficient CIITA is K48 polyubiquitinated and degraded in the presence of pCAF. Lastly, we identify the histone acetyltransferase, pCAF, as the E3 ligase responsible for CIITA's ubiquitination. PMID:28286521

  12. The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4.

    PubMed

    Yu, Zhengquan; Lin, Kevin K; Bhandari, Ambica; Spencer, Joel A; Xu, Xiaoman; Wang, Ning; Lu, Zhongxian; Gill, Gordon N; Roop, Dennis R; Wertz, Philip; Andersen, Bogi

    2006-11-01

    Defective permeability barrier is an important feature of many skin diseases and causes mortality in premature infants. To investigate the control of barrier formation, we characterized the epidermally expressed Grainyhead-like epithelial transactivator (Get-1)/Grhl3, a conserved mammalian homologue of Grainyhead, which plays important roles in cuticle development in Drosophila. Get-1 interacts with the LIM-only protein LMO4, which is co-expressed in the developing mammalian epidermis. The epidermis of Get-1(-/-) mice showed a severe barrier function defect associated with impaired differentiation of the epidermis, including defects of the stratum corneum, extracellular lipid composition and cell adhesion in the granular layer. The Get-1 mutation affects multiple genes linked to terminal differentiation and barrier function, including most genes of the epidermal differentiation complex. Get-1 therefore directly or indirectly regulates a broad array of epidermal differentiation genes encoding structural proteins, lipid metabolizing enzymes and cell adhesion molecules. Although deletion of the LMO4 gene had no overt consequences for epidermal development, the epidermal terminal differentiation defect in mice deleted for both Get-1 and LMO4 is much more severe than in Get-1(-/-) mice with striking impairment of stratum corneum formation. These findings indicate that the Get-1 and LMO4 genes interact functionally to regulate epidermal terminal differentiation.

  13. Improvement of the reverse tetracycline transactivator by single amino acid substitutions that reduce leaky target gene expression to undetectable levels.

    PubMed

    Roney, Ian J; Rudner, Adam D; Couture, Jean-François; Kærn, Mads

    2016-06-21

    Conditional gene expression systems that enable inducible and reversible transcriptional control are essential research tools and have broad applications in biomedicine and biotechnology. The reverse tetracycline transcriptional activator is a canonical system for engineered gene expression control that enables graded and gratuitous modulation of target gene transcription in eukaryotes from yeast to human cell lines and transgenic animals. However, the system has a tendency to activate transcription even in the absence of tetracycline and this leaky target gene expression impedes its use. Here, we identify single amino-acid substitutions that greatly enhance the dynamic range of the system in yeast by reducing leaky transcription to undetectable levels while retaining high expression capacity in the presence of inducer. While the mutations increase the inducer concentration required for full induction, additional sensitivity-enhancing mutations can compensate for this effect and confer a high degree of robustness to the system. The novel transactivator variants will be useful in applications where tight and tunable regulation of gene expression is paramount.

  14. Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator

    PubMed Central

    Chen, Jiguo; Ueda, Keiji; Sakakibara, Shuhei; Okuno, Toshiomi; Parravicini, Carlo; Corbellino, Mario; Yamanishi, Koichi

    2001-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is strongly linked to Kaposi's sarcoma, primary effusion lymphomas, and a subset of multicentric Castleman's disease. The mechanism by which this virus establishes latency and reactivation is unknown. KSHV Lyta (lytic transactivator, also named KSHV/Rta), mainly encoded by the ORF 50 gene, is a lytic switch gene for viral reactivation from latency, inasmuch as it is both essential and sufficient to drive the entire viral lytic cycle. Here we show that the Lyta promoter region was heavily methylated in latently infected cells. Treatment of primary effusion lymphoma-delivered cell lines with tetradecanoylphorbol acetate caused demethylation of the Lyta promoter and induced KSHV lytic phase in vitro. Methylation cassette assay shows demethylation of the Lyta promoter region was essential for the expression of Lyta. In vivo, biopsy samples obtained from patients with KSHV-related diseases show the most demethylation in the Lyta promoter region, whereas samples from a latently infected KSHV carrier remained in a methylated status. These results suggest a relationship among a demethylation status in the Lyta promoter, the reactivation of KSHV, and the development of KSHV-associated diseases. PMID:11274437

  15. Analysis of sequences involved in IE2 transactivation of a baculovirus immediate-early gene promoter and identification of a new regulatory motif.

    PubMed

    Shippam-Brett, C E; Willis, L G; Theilmann, D A

    2001-05-01

    Opep-2 is a unique baculovirus early gene that has only been identified in the Orgyia pseudotsugata multiple capsid nucleopolyhedrovirus (OpMNPV). Previous analyses have shown this gene is expressed at very early times post-infection (p.i.) but is shut down by 36-48 h p.i. The promoter of opep-2 therefore, represents a class of early genes that is temporally regulated. In this study, a detailed analysis of the opep-2 promoter is performed to analyze the role individual motifs play in early gene expression. A new 13 base pair regulatory element was identified and shown to be essential in controlling high-level expression of this gene. In addition, mutational analysis revealed that GATA and CACGTG motifs, which have been shown to bind cellular factors in Sf9 and Ld652Y cells, played minor roles in influencing opep-2 expression in the absence of other viral factors. The OpMNPV transactivator IE2 causes a significant activation of the opep-2 promoter. Cotransfection of an extensive number of promoter deletions and mutations did not show any sequence specificity for IE2 transactivation. This is the first detailed analysis of the sequence requirements for IE2 transactivation, and these results suggest that IE2 does not bind directly to specific elements in the opep-2 promoter.

  16. Transcription factor Nrf1 is topologically repartitioned across membranes to enable target gene transactivation through its acidic glucose-responsive domains.

    PubMed

    Zhang, Yiguo; Ren, Yonggang; Li, Shaojun; Hayes, John D

    2014-01-01

    The membrane-bound Nrf1 transcription factor regulates critical homeostatic and developmental genes. The conserved N-terminal homology box 1 (NHB1) sequence in Nrf1 targets the cap'n'collar (CNC) basic basic-region leucine zipper (bZIP) factor to the endoplasmic reticulum (ER), but it is unknown how its activity is controlled topologically within membranes. Herein, we report a hitherto unknown mechanism by which the transactivation activity of Nrf1 is controlled through its membrane-topology. Thus after Nrf1 is anchored within ER membranes, its acidic transactivation domains (TADs), including the Asn/Ser/Thr-rich (NST) glycodomain situated between acidic domain 1 (AD1) and AD2, are transiently translocated into the lumen of the ER, where NST is glycosylated in the presence of glucose to yield an inactive 120-kDa Nrf1 glycoprotein. Subsequently, portions of the TADs partially repartition across membranes into the cyto/nucleoplasmic compartments, whereupon an active 95-kDa form of Nrf1 accumulates, a process that is more obvious in glucose-deprived cells and may involve deglycosylation. The repartitioning of Nrf1 out of membranes is monitored within this protein by its acidic-hydrophobic amphipathic glucose-responsive domains, particularly the Neh5L subdomain within AD1. Therefore, the membrane-topological organization of Nrf1 dictates its post-translational modifications (i.e. glycosylation, the putative deglycosylation and selective proteolysis), which together control its ability to transactivate target genes.

  17. A major transactivator of varicella-zoster virus, the immediate-early protein IE62, contains a potent N-terminal activation domain.

    PubMed Central

    Perera, L P; Mosca, J D; Ruyechan, W T; Hayward, G S; Straus, S E; Hay, J

    1993-01-01

    Accumulating evidence indicates that the product of the putative immediate-early gene ORF62 (IE62) activates varicella-zoster virus (VZV) genes thought to represent all three kinetic classes, namely, immediate-early (alpha), early (beta), and late (gamma) classes, of VZV genes as well as a variety heterologous gene promoters. However, the mechanism(s) by which IE62 protein mediates transactivation of these diverse VZV and heterologous gene promoters remains to be elucidated. In this study, by using yeast GAL4 protein chimeras, the coding regions of VZV ORF62 possessing activation domains have been assessed. We demonstrate that the VZV IE62 protein contains a potent activation domain in the N-terminal portion of the molecule, encoded within the first 86 codons of ORF62. The predicted secondary structure profile and the acid-base composition of this IE62 domain resemble those of other transregulatory proteins whose activation is mediated through acidic, hydrophobic elements. In addition, we show that deletion of this activation domain from the 1,310-residue native IE62 protein results in ablation of the transactivator function of IE62. We also present evidence that the mutant IE62 protein lacking the activation domain, though devoid of transactivation ability, was still capable of interfering with the activation of target promoters by the native, full-length IE62. Images PMID:8392592

  18. The commonly used nonionic surfactant Span 80 has RXRα transactivation activity, which likely increases the obesogenic potential of oil dispersants and food emulsifiers.

    PubMed

    Bowers, Robert R; Temkin, Alexis M; Guillette, Louis J; Baatz, John E; Spyropoulos, Demetri D

    2016-11-01

    Obesity has reached pandemic proportions, and there is mounting evidence that environmental exposures to endocrine disrupting chemicals known as "obesogens" may contribute to obesity and associated medical conditions. The Deepwater Horizon (DWH) oil spill resulted in a massive environmental release of crude oil and remediation efforts applied large quantities of Corexit dispersants to the oil spill. The Corexit-enhanced Water Accommodated Fraction (CWAF) of DWH crude oil contains PPARγ transactivation activity, which is attributed to dioctyl sodium sulfosuccinate (DOSS), a probable obesogen. In addition to its use in oil dispersants, DOSS is commonly used as a stool softener and food additive. Because PPARγ functions as a heterodimer with RXRα to transcriptionally regulate adipogenesis we investigated the potential of CWAF to transactivate RXRα and herein demonstrated that the Corexit component Span 80 has RXRα transactivation activity. Span 80 bound to RXRα in the low micromolar range and promoted adipocyte differentiation of 3T3-L1 preadipocytes. Further, the combination of DOSS and Span 80 increased 3T3-L1 adipocyte differentiation substantially more than treatment with either chemical individually, likely increasing the obesogenic potential of Corexit dispersants. From a public health standpoint, the use of DOSS and Span 80 as food additives heightens concerns regarding their use and mandates further investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Helicobacter pylori-induced gastric mucosal TGF-α ectodomain shedding and EGFR transactivation involves Rac1/p38 MAPK-dependent TACE activation.

    PubMed

    Slomiany, B L; Slomiany, A

    2016-02-01

    Infection of gastric mucosa by H. pylori triggers a pattern of inflammatory responses characterized by the rise in proinflammatory cytokine production, up-regulation in mitogen-activated protein kinase (MAPK) cascade, and the induction in epidermal growth factor receptor (EGFR) activation. In this study, we report on the role of MAPK/p38 and Rac1 in the regulation of H. pylori LPS-induced TGF-α ectodomain shedding and EGFR transactivation. We show that stimulation of gastric mucosal cells with the LPS, reflected in p38 phosphorylation, guanine nucleotide exchange factor Dock180 activation and the rise in Rac1-GTP level, is accompanied by the activation of membrane-associated metalloprotease, (TACE) also known as ADAM17, responsible for soluble TGF-α release. Further, we reveal that the LPS-induced TGF-α shedding and EGFR transactivation involves the TACE activation through phosphorylation by p38 that requires Rac1 participation. Moreover, we demonstrate that up-regulation in H. pylori LPS-elicited Rac1-GTP membrane translocation plays a pivotal role in recruitment of the activated p38 to the membrane for TACE activation through phosphorylation on Thr(735). Taken together, our findings provide strong evidence as to the essential function of Rac1 in TACE activation, TGF-α ectodomain shedding, and the EGFR transactivation.

  20. Ligand-dependent EGFR activation induces the co-expression of IL-6 and PAI-1 via the NFkB pathway in advanced-stage epithelial ovarian cancer.

    PubMed

    Alberti, C; Pinciroli, P; Valeri, B; Ferri, R; Ditto, A; Umezawa, K; Sensi, M; Canevari, S; Tomassetti, A

    2012-09-13

    The epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases, is expressed in up to 70% of epithelial ovarian cancers (EOCs), where it correlates with poor prognosis. The majority of EOCs are diagnosed at an advanced stage, and at least 50% present malignant ascites. High levels of IL-6 have been found in the ascites of EOC patients and correlate with shorter survival. Herein, we investigated the signaling cascade led by EGFR activation in EOC and assessed whether EGFR activation could induce an EOC microenvironment characterized by pro-inflammatory molecules. In vitro analysis of EOC cell lines revealed that ligand-stimulated EGFR activated NFkB-dependent transcription and induced secretion of IL-6 and plasminogen activator inhibitor (PAI-1). IL-6/PAI-1 expression and secretion were strongly inhibited by the tyrosine kinase inhibitor AG1478 and EGFR silencing. A significant reduction of EGF-stimulated IL-6/PAI-1 secretion was also obtained with the NFkB inhibitor dehydroxymethylepoxyquinomicin. Of 23 primary EOC tumors from advanced-stage patients with malignant ascites at surgery, 12 co-expressed membrane EGFR, IL-6 and PAI-1 by immunohistochemistry; both IL-6 and PAI-1 were present in 83% of the corresponding ascites. Analysis of a publicly available gene-expression data set from 204 EOCs confirmed a significant correlation between IL-6 and PAI-1 expression, and patients with the highest IL-6 and PAI-1 co-expression showed a significantly shorter progression-free survival time (P=0.028). This suggests that EGFR/NFkB/IL-6-PAI-1 may have a significant impact on the therapy of a particular subset of EOC, and that IL-6/PAI-1 co-expression may be a novel prognostic marker.

  1. Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes.

    PubMed

    Miao, Ji; Choi, Sung-E; Seok, Sun Mi; Yang, Linda; Zuercher, William J; Xu, Yong; Willson, Timothy M; Xu, H Eric; Kemper, Jongsook Kim

    2011-07-01

    Small heterodimer partner (SHP) plays important roles in diverse biological processes by directly interacting with transcription factors and inhibiting their activities. SHP has been designated an orphan nuclear receptor, but whether its activity can be modulated by ligands has been a long-standing question. Recently, retinoid-related molecules, including 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3Cl-AHPC), were shown to bind to SHP and enhance apoptosis. We have examined whether 3Cl-AHPC acts as an agonist and increases SHP activity in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes and delineated the underlying mechanisms. Contrary to this expectation, micromolar concentrations of 3Cl-AHPC increased CYP7A1 expression but indirectly via p38 kinase signaling. Nanomolar concentrations, however, repressed CYP7A1 expression and decreased bile acid levels in HepG2 cells, and little repression was observed when SHP was down-regulated by small hairpin RNA. Mechanistic studies revealed that 3Cl-AHPC bound to SHP, increased the interaction of SHP with liver receptor homologue (LRH)-1, a hepatic activator for CYP7A1 and CYP8B1 genes, and with repressive cofactors, Brahma, mammalian Sin3a, and histone deacetylase-1, and, subsequently, increased the occupancy of SHP and these cofactors at the promoters. Mutation of Leu-100, predicted to contact 3Cl-AHPC within the SHP ligand binding pocket by molecular modeling, severely impaired the increased interaction with LRH-1, and repression of LRH-1 activity mediated by 3Cl-AHPC. 3Cl-AHPC repressed SHP metabolic target genes in a gene-specific manner in human primary hepatocytes and HepG2 cells. These data suggest that SHP may act as a ligand-regulated receptor in metabolic pathways. Modulation of SHP activity by synthetic ligands may be a useful therapeutic strategy.

  2. Liganded Thyroid Hormone Receptors Transactivate the DNA Methyltransferase 3a Gene in Mouse Neuronal Cells

    PubMed Central

    Kyono, Yasuhiro; Subramani, Arasakumar; Ramadoss, Preeti; Hollenberg, Anthony N.; Bonett, Ronald M.

    2016-01-01

    Thyroid hormone (T3) is essential for proper neurological development. The hormone, bound to its receptors, regulates gene transcription in part by modulating posttranslational modifications of histones. Methylation of DNA, which is established by the de novo DNA methyltransferase (DNMT)3a and DNMT3b, and maintained by DNMT1 is another epigenetic modification influencing gene transcription. The expression of Dnmt3a, but not other Dnmt genes, increases in mouse brain in parallel with the postnatal rise in plasma [T3]. We found that treatment of the mouse neuroblastoma cell line Neuro2a[TRβ1] with T3 caused rapid induction of Dnmt3a mRNA, which was resistant to protein synthesis inhibition, supporting that it is a direct T3-response gene. Injection of T3 into postnatal day 6 mice increased Dnmt3a mRNA in the brain by 1 hour. Analysis of two chromatin immunoprecipitation-sequencing datasets, and targeted analyses using chromatin immunoprecipitation, transfection-reporter assays, and in vitro DNA binding identified 2 functional T3-response elements (TREs) at the mouse Dnmt3a locus located +30.3 and +49.3 kb from the transcription start site. Thyroid hormone receptors associated with both of these regions in mouse brain chromatin, but with only 1 (+30.3 kb) in Neuro2a[TRβ1] cells. Deletion of the +30.3-kb TRE using CRISPR/Cas9 genome editing eliminated or strongly reduced the Dnmt3a mRNA response to T3. Bioinformatics analysis showed that both TREs are highly conserved among eutherian mammals. Thyroid regulation of Dnmt3a may be an evolutionarily conserved mechanism for modulating global changes in DNA methylation during postnatal neurological development. PMID:27387481

  3. Inhibition of the peptidyl-prolyl-isomerase Pin1 enhances the responses of acute myeloid leukemia cells to retinoic acid via stabilization of RARalpha and PML-RARalpha.

    PubMed

    Gianni', Maurizio; Boldetti, Andrea; Guarnaccia, Valeria; Rambaldi, Alessandro; Parrella, Edoardo; Raska, Ivan; Rochette-Egly, Cecile; Del Sal, Giannino; Rustighi, Alessandra; Terao, Mineko; Garattini, Enrico

    2009-02-01

    The peptidyl-prolyl-isomerase Pin1 interacts with phosphorylated proteins, altering their conformation. The retinoic acid receptor RARalpha and the acute-promyelocytic-leukemia-specific counterpart PML-RARalpha directly interact with Pin1. Overexpression of Pin1 inhibits ligand-dependent activation of RARalpha and PML-RARalpha. Inhibition is relieved by Pin1-targeted short interfering RNAs and by pharmacologic inhibition of the catalytic activity of the protein. Mutants of Pin1 catalytically inactive or defective for client-protein-binding activity are incapable of inhibiting ligand-dependent RARalpha transcriptional activity. Functional inhibition of RARalpha and PML-RARalpha by Pin1 correlates with degradation of the nuclear receptors via the proteasome-dependent pathway. In the acute myelogenous leukemia cell lines HL-60 and NB4, Pin1 interacts with RARalpha in a constitutive fashion. Suppression of Pin1 by a specific short hairpin RNA in HL-60 or NB4 cells stabilizes RARalpha and PML-RARalpha, resulting in increased sensitivity to the cytodifferentiating and antiproliferative activities of all-trans retinoic acid. Treatment of the two cell lines and freshly isolated acute myelogenous leukemia blasts (M1 to M4) with ATRA and a pharmacologic inhibitor of Pin1 causes similar effects. Our results add a further layer of complexity to the regulation of nuclear retinoic acid receptors and suggest that Pin1 represents an important target for strategies aimed at increasing the therapeutic index of retinoids.

  4. Prostaglandin E2 transactivates the colony-stimulating factor-1 receptor and synergizes with colony-stimulating factor-1 in the induction of macrophage migration via the mitogen-activated protein kinase ERK1/2.

    PubMed

    Digiacomo, Graziana; Ziche, Marina; Dello Sbarba, Persio; Donnini, Sandra; Rovida, Elisabetta

    2015-06-01

    Prostaglandin E2 (PGE2), a key mediator of immunity, inflammation, and cancer, acts through 4 G-protein-coupled E-prostanoid receptors (EPs 1-4). Crosstalk between EPs and receptor tyrosine kinases also occurs. Colony-stimulating factor-1 receptor (CSF-1R) is an RTK that sustains the survival, proliferation, and motility of monocytes/macrophages, which are an essential component of innate immunity and cancer development. The aim of this study was to investigate on a possible crosstalk between EP and CSF-1R. In BAC1.2F5 and RAW264.7 murine macrophages, CSF-1 (EC₅₀ = 18.1 and 10.2 ng/ml, respectively) and PGE2 (EC₅₀ = 1.5 and 5.5 nM, respectively) promoted migration. PGE2 induced rapid CSF-1R phosphorylation that was dependent on Src family kinases (SFKs). CSF-1R inhibition reduced PGE2-elicited ERK1/2 phosphorylation and macrophage migration, indicating that CSF-1R plays a role in PGE2-mediated immunoregulation. EP4 appeared responsible for functional PGE2/CSF-1R crosstalk. Furthermore, PGE2 synergized with CSF-1 in inducing ERK1/2 phosphorylation and macrophage migration. ERK1/2 inhibition completely blocked migration induced by the combination CSF-1/PGE2. CSF-1/PGE2 functional interaction with respect to migration also occurred in bone marrow-derived murine macrophages (EC₅₀ CSF-1, 6.7 ng/ml; EC₅₀ PGE2, 16.7 nM). These results indicated that PGE2 transactivates CSF-1R and synergizes with its signaling at ERK1/2 level in promoting macrophage migration. © FASEB.

  5. Antidepressants activate the lysophosphatidic acid receptor LPA(1) to induce insulin-like growth factor-I receptor transactivation, stimulation of ERK1/2 signaling and cell proliferation in CHO-K1 fibroblasts.

    PubMed

    Olianas, Maria C; Dedoni, Simona; Onali, Pierluigi

    2015-06-15

    Different lines of evidence indicate that the lysophosphatidic acid (LPA) receptor LPA1 is involved in neurogenesis, synaptic plasticity and anxiety-related behavior, but little is known on whether this receptor can be targeted by neuropsychopharmacological agents. The present study investigated the effects of different antidepressants on LPA1 signaling. We found that in Chinese hamster ovary (CHO)-K1 fibroblasts expressing endogenous LPA1 tricyclic and tetracyclic antidepressants and fluoxetine induced the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and CREB. This response was antagonized by either LPA1 blockade with Ki16425 and AM966 or knocking down LPA1 with siRNA. Antidepressants induced ERK1/2 phosphorylation in human embryonic kidney (HEK)-293 cells overexpressing LPA1, but not in wild-type cells. In PathHunter™ assay measuring receptor-β-arrestin interaction, amitriptyline, mianserin and fluoxetine failed to induce activation of LPA2 and LPA3 stably expressed in CHO-K1 cells. ERK1/2 stimulation by antidepressants and LPA was suppressed by pertussis toxin and inhibition of Src, phosphatidylinositol-3 kinase and insulin-like growth factor-I receptor (IGF-IR) activities. Antidepressants and LPA induced tyrosine phosphorylation of IGF-IR and insulin receptor-substrate-1 through LPA1 and Src. Prolonged exposure of CHO-K1 fibroblasts to either mianserin, mirtazapine or LPA enhanced cell proliferation as indicated by increased [(3)H]-thymidine incorporation and Ki-67 immunofluorescence. This effect was inhibited by blockade of LPA1- and ERK1/2 activity. These data provide evidence that different antidepressants induce LPA1 activation, leading to receptor tyrosine kinase transactivation, stimulation of ERK1/2 signaling and enhanced cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Sex steroids inhibit osmotic swelling of retinal glial cells.

    PubMed

    Neumann, Florian; Wurm, Antje; Linnertz, Regina; Pannicke, Thomas; Iandiev, Ianors; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2010-04-01

    Osmotic swelling of glial cells may contribute to the development of retinal edema. We investigated whether sex steroids inhibit the swelling of glial somata in acutely isolated retinal slices and glial cells of the rat. Superfusion of retinal slices or cells from control animals with a hypoosmolar solution did not induce glial swelling, whereas glial swelling was observed in slices of postischemic and diabetic retinas. Progesterone, testosterone, estriol, and 17beta-estradiol prevented glial swelling with half-maximal effects at approximately 0.3, 0.6, 6, and 20 microM, respectively. The effect of progesterone was apparently mediated by transactivation of metabotropic glutamate receptors, P2Y1, and adenosine A1 receptors. The data suggest that sex steroids may inhibit cytotoxic edema in the retina.

  7. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B.

    PubMed

    Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro

    2013-01-15

    Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation.

  8. The varicella-zoster virus (VZV) ORF9 protein interacts with the IE62 major VZV transactivator.

    PubMed

    Cilloniz, Cristian; Jackson, Wallen; Grose, Charles; Czechowski, Donna; Hay, John; Ruyechan, William T

    2007-01-01

    The varicella-zoster virus (VZV) ORF9 protein is a member of the herpesvirus UL49 gene family but shares limited identity and similarity with the UL49 prototype, herpes simplex virus type 1 VP22. ORF9 mRNA is the most abundantly expressed message during VZV infection; however, little is known concerning the functions of the ORF9 protein. We have found that the VZV major transactivator IE62 and the ORF9 protein can be coprecipitated from infected cells. Yeast two-hybrid analysis localized the region of the ORF9 protein required for interaction with IE62 to the middle third of the protein encompassing amino acids 117 to 186. Protein pull-down assays with GST-IE62 fusion proteins containing N-terminal IE62 sequences showed that amino acids 1 to 43 of the acidic transcriptional activation domain of IE62 can bind recombinant ORF9 protein. Confocal microscopy of transiently transfected cells showed that in the absence of other viral proteins, the ORF9 protein was localized in the cytoplasm while IE62 was localized in the nucleus. In VZV-infected cells, the ORF9 protein was localized to the cytoplasm whereas IE62 exhibited both nuclear and cytoplasmic localization. Cotransfection of plasmids expressing ORF9, IE62, and the viral ORF66 kinase resulted in significant colocalization of ORF9 and IE62 in the cytoplasm. Coimmunoprecipitation experiments with antitubulin antibodies indicate the presence of ORF9-IE62-tubulin complexes in infected cells. Colocalization of ORF9 and tubulin in transfected cells was visualized by confocal microscopy. These data suggest a model for ORF9 protein function involving complex formation with IE62 and possibly other tegument proteins in the cytoplasm at late times in infection.

  9. Modulation of PLAGL2 transactivation by positive cofactor 2 (PC2), a component of the ARC/Mediator complex.

    PubMed

    Wezensky, Sara J; Hanks, Tracey S; Wilkison, Michelle J; Ammons, Mary Cloud; Siemsen, Daniel W; Gauss, Katherine A

    2010-02-15

    The pleomorphic adenoma gene (PLAG) family of transcription factors regulates a wide range of physiological processes, including cell proliferation, tissue-specific gene regulation, and embryonic development, although little is known regarding the mechanisms that regulate PLAG protein activity. In this study, a yeast two-hybrid screen identified PC2, a component of the Mediator complex, as a PLAGL2-binding protein. We show that PC2 cooperates with PLAGL2 and PU.1 to enhance the activity of a known PLAGL2 target promoter (NCF2). The PLAGL2-binding element in the NCF2 promoter consisted of the core sequence of the bipartite PLAG1 consensus site, but lacked the G-cluster motif, and was recognized by PLAGL2 zinc fingers 5 and 6. Promoter and PLAGL2 mutants showed that PLAGL2 and PU.1 were required to bind to their respective sites in the promoter, and PC2 knockdown demonstrated that PC2 was essential for enhanced promoter activity. Co-immunoprecipitation and promoter-reporter studies reveal that the effect of PC2 on PLAGL2 target promoter activity was conferred via the C-terminus of PLAGL2, the region that is required for PC2 binding and contains the PLAGL2 activation domain. Importantly, chromatin immunoprecipitation analysis and PC2 knockdown studies confirmed that endogenous PC2 protein associated with the NCF2 promoter in MM1 cells in the region occupied by PLAGL2, and was required for PLAGL2 target promoter activity in TNF-alpha-treated MM1 cells, respectively. Lastly, the expression of another known PLAGL2 target gene, insulin-like growth factor II (IGF-II), was greatly diminished in the presence of PC2 siRNA. Together, the data identify PC2 as a novel PLAGL2-binding protein and important mediator of PLAGL2 transactivation.

  10. Leptin Overexpression in VTA Trans-activates the Hypothalamus whereas Prolonged Leptin Action in either Region Cross-Desensitizes

    PubMed Central

    Scarpace, P. J.; Matheny, M.; Kirichenko, N.V.; Gao, Y.X.; Tümer, N.; Zhang, Y.

    2012-01-01

    High-fat feeding or CNS leptin overexpression in chow-fed rats results in a region-specific cellular leptin resistance in medial basal hypothalamic regions and the ventral tegmental area (VTA). The present investigation examined the effects of targeted chronic leptin overexpression in the VTA as compared with the medial basal hypothalamus on long-term body weight homeostasis. The study also examined if this targeted intervention conserves regional leptin sensitivity or results in localized leptin resistance. Cellular leptin resistance was assessed by leptin-stimulated phosphorylation of signal transducers and activators of transcription 3 (STAT3). Tyrosine hydroxylase was measured in hypothalamus and VTA along with brown adipose tissue uncoupling protein 1. Leptin overexpression in VTA tempered HF-induced obesity, but to a slightly lesser extent than that with leptin overexpression in the hypothalamus. Moreover, the overexpression of leptin in the VTA stimulated cellular STAT3 phosphorylation in several regions of the medial basal hypothalamus, whereas verexpression in the hypothalamus did not activate STAT3 signaling in the VTA. This unidirectional trans-stimulation did not appear to involve migration of either the vector or the gene product. Long-term leptin overexpression in either the medial basal hypothalamus or VTA caused desensitization of leptin signaling in the treated region and cross-desensitization of leptin signaling in the untreated region. These results demonstrate a role of leptin receptors in the VTA in long-term body weight regulation, but the trans-activation of the hypothalamus following VTA leptin stimulation suggests that an integrative response involving both brain regions may account for the observed physiological outcomes. PMID:22982569

  11. Genistein and daidzein induced apoA-1 transactivation in hepG2 cells expressing oestrogen receptor-alpha.

    PubMed

    Yuen, Yee M; Leung, Lai K

    2008-05-01

    Studies have shown that soya consumption has been associated with low incidence of CVD. Because the chemical structures of soya isoflavones are similar to oestrogen, the beneficial outcome may be attributed to the oestrogenicity of these compounds. In this study, effect of the soya isoflavone genistein on the mRNA expression of apoA-1 in the human hepatoma HepG2 cell was investigated. Without oestrogen receptor (ER) alpha transfection, soya isoflavones in the physiological range had no effect on the apoA-1 transcription. Once ERalpha was ectopically expressed in these cells, soya isoflavone dramatically increased the apoA-1 mRNA abundance quantified by real-time PCR. ApoA-1-reporter assays with plasmid constructed from the 5'-flanking segment upstream to the coding region revealed that the transactivation of the apoA-1 promoter was induced by the soya isoflavone in HepG2 cells expressing ERalpha. This induction was reduced by the anti-oestrogen ICI 182780, but not the inhibitors of protein kinase (PK) C, PKA, or mitogen-activated PK. Based on the previously identified response elements on the promoter, a series of truncated promoter reporter plasmids were then constructed. An induction profile of genistein was built and insulin response core element at -411 to -404 appeared to be a potential site of interaction. This study illustrated that soya isoflavones at physiological concentrations could up regulate apoA-1 mRNA expression in ERalpha-transfected HepG2 cells.

  12. Pax transactivation-domain interacting protein is required for urine concentration and osmotolerance in collecting duct epithelia.

    PubMed

    Kim, Doyeob; Wang, Min; Cai, Qi; Brooks, Heddwen; Dressler, Gregory R

    2007-05-01

    Pax transactivation-domain interacting protein (PTIP) is a widely expressed nuclear protein that is essential for early embryonic development. PTIP was first identified on the basis of its interactions with the developmental regulator Pax2 but can also bind to other nuclear transcription factors. The Pax2 protein is essential for development of the renal epithelia and for regulating the response of mature collecting ducts to hyperosmotic stress. For determination of whether PTIP also functions in more differentiated cell types, the Cre-LoxP system was used to delete the ptip gene in the renal collecting ducts using Ksp-Cre driver mice. Collecting duct-specific ptip knockout mice were viable with little discernible phenotype under normal physiologic conditions. However, collecting duct-specific ptip mutants were unable to concentrate urine after the treatment of desamino-cis, D-arginine vasopressin, an antidiuretic hormone. Furthermore, aquaporin-2 (AQP2) expression in the inner medulla of the ptip knockout mice was decreased approximately 10-fold compared with that of wild-type littermates. Expression level of tonicity responsive enhancer binding protein, a transcription factor of AQP2, is not altered in the mutant mice, but its nuclear localization in the inner medulla is unresponsive after treatment with vasopressin agonists. This was due, at least in part, to decreased expression of the arginine vasopressin receptor 2 in ptip mutants. Furthermore, ptip null inner medullary collecting duct cells were sensitive to hyperosmolality in vitro. Thus, ptip is required for the urine concentration mechanism by modulating arginine vasopressin receptor 2 and AQP2 expression in the inner medulla. The data suggest an essential role for ptip in regulating urine concentration and in controlling survival of collecting duct epithelial cells in high osmolality.

  13. Pax Transactivation-Domain Interacting Protein Is Required for Urine Concentration and Osmotolerance in Collecting Duct Epithelia

    PubMed Central

    Kim, Doyeob; Wang, Min; Cai, Qi; Brooks, Heddwen; Dressler, Gregory R.

    2007-01-01

    Pax transactivation-domain interacting protein (PTIP) is a widely expressed nuclear protein that is essential for early embryonic development. PTIP was first identified on the basis of its interactions with the developmental regulator Pax2 but can also bind to other nuclear transcription factors. The Pax2 protein is essential for development of the renal epithelia and for regulating the response of mature collecting ducts to hyperosmotic stress. For determination of whether PTIP also functions in more differentiated cell types, the Cre-LoxP system was used to delete the ptip gene in the renal collecting ducts using Ksp-Cre driver mice. Collecting duct–specific ptip knockout mice were viable with little discernible phenotype under normal physiologic conditions. However, collecting duct–specific ptip mutants were unable to concentrate urine after the treatment of desamino-cis, D-arginine vasopressin, an antidiuretic hormone. Furthermore, aquaporin-2 (AQP2) expression in the inner medulla of the ptip knockout mice was decreased approximately 10-fold compared with that of wild-type littermates. Expression level of tonicity responsive enhancer binding protein, a transcription factor of AQP2, is not altered in the mutant mice, but its nuclear localization in the inner medulla is unresponsive after treatment with vasopressin agonists. This was due, at least in part, to decreased expression of the arginine vasopressin receptor 2 in ptip mutants. Furthermore, ptip null inner medullary collecting duct cells were sensitive to hyperosmolality in vitro. Thus, ptip is required for the urine concentration mechanism by modulating arginine vasopressin receptor 2 and AQP2 expression in the inner medulla. The data suggest an essential role for ptip in regulating urine concentration and in controlling survival of collecting duct epithelial cells in high osmolality. PMID:17429055

  14. Activity of the TonEBP/OREBP transactivation domain varies directly with extracellular NaCl concentration

    PubMed Central

    Ferraris, Joan D.; Williams, Chester K.; Persaud, Prita; Zhang, Zheng; Chen, Ye; Burg, Maurice B.

    2002-01-01

    Hypertonicity-induced binding of the transcription factor TonEBP/OREBP to its cognate DNA element, ORE/TonE, is associated with increased transcription of several osmotically regulated genes. Previously, it was found that hypertonicity rapidly causes nuclear translocation and phosphorylation of TonEBP/OREBP and, more slowly, increases TonEBP/OREBP abundance. Also, the C terminus of TonEBP/OREBP was found to contain a transactivation domain (TAD). We have now tested for tonicity dependence of the TAD activity of the 983 C-terminal amino acids of TonEBP/OREBP. HepG2 cells were cotransfected with a reporter construct and one of several TAD expression vector constructs. The reporter construct contained GAL4 DNA binding elements, a minimal promoter, and the Photinus luciferase gene. TAD expression vectors generate chimeras comprised of the GAL4 DNA binding domain fused to (i) the 983 C-terminal amino acids of TonEBP/OREBP, (ii) 17 glutamine residues, (iii) the TAD of c-Jun, or (iv) no TAD. All TAD-containing chimeras were functional at normal extracellular osmolality (300 mosmol/kg), but the activity only of the chimera containing the 983 C-terminal amino acids of TonEBP/OREBP varied with extracellular NaCl concentration, decreasing by >80% at 200 mosmol/kg and increasing 8-fold at 500 mosmol/kg. The chimera containing the 983 C-terminal amino acids of TonEBP/OREBP was constitutively localized to the nucleus and showed tonicity-dependent posttranslational modification consistent with phosphorylation. The activity at 500 mosmol/kg was reduced by herbimycin, a tyrosine kinase inhibitor and by 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole, a protein kinase CK2 inhibitor. Thus, the 983 C-terminal amino acids of TonEBP/OREBP contain a TAD that is regulated osmotically, apparently by tonicity-dependent phosphorylation. PMID:11792870

  15. The ubiquitin ligase Cullin5SOCS2 regulates NDR1/STK38 stability and NF-κB transactivation

    PubMed Central

    Paul, Indranil; Batth, Tanveer S.; Iglesias-Gato, Diego; Al-Araimi, Amna; Al-Haddabi, Ibrahim; Alkharusi, Amira; Norstedt, Gunnar; Olsen, Jesper V.; Zadjali, Fahad; Flores-Morales, Amilcar

    2017-01-01

    SOCS2 is a pleiotropic E3 ligase. Its deficiency is associated with gigantism and organismal lethality upon inflammatory challenge. However, mechanistic understanding of SOCS2 function is dismal due to our unawareness of its protein substrates. We performed a mass spectrometry based proteomic profiling upon SOCS2 depletion and yield quantitative data for ~4200 proteins. Through this screen we identify a novel target of SOCS2, the serine-threonine kinase NDR1. Over-expression of SOCS2 accelerates turnover, while its knockdown stabilizes, endogenous NDR1 protein. SOCS2 interacts with NDR1 and promotes its degradation through K48-linked ubiquitination. Functionally, over-expression of SOCS2 antagonizes NDR1-induced TNFα-stimulated NF-κB activity. Conversely, depletion of NDR1 rescues the effect of SOCS2-deficiency on TNFα-induced NF-κB transactivation. Using a SOCS2−/− mice model of colitis we show that SOCS2-deficiency is pro-inflammatory and negatively correlates with NDR1 and nuclear p65 levels. Lastly, we provide evidence to suggest that NDR1 acts as an oncogene in prostate cancer. To the best of our knowledge, this is the first report of an identified E3 ligase for NDR1. These results might explain how SOCS2-deficiency leads to hyper-activation of NF-κB and downstream pathological implications and posits that SOCS2 induced degradation of NDR1 may act as a switch in restricting TNFα-NF-κB pathway. PMID:28216640

  16. A gene-specific role for the Ssu72 RNAPII CTD phosphatase in HIV-1 Tat transactivation

    PubMed Central

    Chen, Yupeng; Zhang, Lirong; Estarás, Conchi; Choi, Seung H.; Moreno, Luis; Karn, Jonathan; Moresco, James J.; Yates, John R.

    2014-01-01

    HIV-1 Tat stimulates transcription elongation by recruiting the P-TEFb (positive transcription elongation factor-b) (CycT1:CDK9) C-terminal domain (CTD) kinase to the HIV-1 promoter. Here we show that Tat transactivation also requires the Ssu72 CTD Ser5P (S5P)-specific phosphatase, which mediates transcription termination and intragenic looping at eukaryotic genes. Importantly, HIV-1 Tat interacts directly with Ssu72 and strongly stimulates its CTD phosphatase activity. We found that Ssu72 is essential for Tat:P-TEFb-mediated phosphorylation of the S5P-CTD in vitro. Interestingly, Ssu72 also stimulates nascent HIV-1 transcription in a phosphatase-dependent manner in vivo. Chromatin immunoprecipitation (ChIP) experiments reveal that Ssu72, like P-TEFb and AFF4, is recruited by Tat to the integrated HIV-1 proviral promoter in TNF-α signaling 2D10 T cells and leaves the elongation complex prior to the termination site. ChIP-seq (ChIP combined with deep sequencing) and GRO-seq (genome-wide nuclear run-on [GRO] combined with deep sequencing) analysis further reveals that Ssu72 predominantly colocalizes with S5P–RNAPII (RNA polymerase II) at promoters in human embryonic stem cells, with a minor peak in the terminator region. A few genes, like NANOG, also have high Ssu72 at the terminator. Ssu72 is not required for transcription at most cellular genes but has a modest effect on cotranscriptional termination. We conclude that Tat alters the cellular function of Ssu72 to stimulate viral gene expression and facilitate the early S5P–S2P transition at the integrated HIV-1 promoter. PMID:25319827

  17. Modulation of the Disordered Conformational Ensembles of the p53 Transactivation Domain by Cancer-Associated Mutations

    PubMed Central

    Ganguly, Debabani; Chen, Jianhan

    2015-01-01

    Intrinsically disordered proteins (IDPs) are frequently associated with human diseases such as cancers, and about one-fourth of disease-associated missense mutations have been mapped into predicted disordered regions. Understanding how these mutations affect the structure-function relationship of IDPs is a formidable task that requires detailed characterization of the disordered conformational ensembles. Implicit solvent coupled with enhanced sampling has been proposed to provide a balance between accuracy and efficiency necessary for systematic and comparative assessments of the effects of mutations as well as post-translational modifications on IDP structure and interaction. Here, we utilize a recently developed replica exchange with guided annealing enhanced sampling technique to calculate well-converged atomistic conformational ensembles of the intrinsically disordered transactivation domain (TAD) of tumor suppressor p53 and several cancer-associated mutants in implicit solvent. The simulations are critically assessed by quantitative comparisons with several types of experimental data that provide structural information on both secondary and tertiary levels. The results show that the calculated ensembles reproduce local structural features of wild-type p53-TAD and the effects of K24N mutation quantitatively. On the tertiary level, the simulated ensembles are overly compact, even though they appear to recapitulate the overall features of transient long-range contacts qualitatively. A key finding is that, while p53-TAD and its cancer mutants sample a similar set of conformational states, cancer mutants could introduce both local and long-range structural modulations to potentially perturb the balance of p53 binding to various regulatory proteins and further alter how this balance is regulated by multisite phosphorylation of p53-TAD. The current study clearly demonstrates the promise of atomistic simulations for detailed characterization of IDP conformations, and

  18. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA.

    PubMed

    Sampey, Gavin C; Saifuddin, Mohammed; Schwab, Angela; Barclay, Robert; Punya, Shreya; Chung, Myung-Chul; Hakami, Ramin M; Zadeh, Mohammad Asad; Lepene, Benjamin; Klase, Zachary A; El-Hage, Nazira; Young, Mary; Iordanskiy, Sergey; Kashanchi, Fatah

    2016-01-15

    HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA*

    PubMed Central

    Sampey, Gavin C.; Saifuddin, Mohammed; Schwab, Angela; Barclay, Robert; Punya, Shreya; Chung, Myung-Chul; Hakami, Ramin M.; Asad Zadeh, Mohammad; Lepene, Benjamin; Klase, Zachary A.; El-Hage, Nazira; Young, Mary; Iordanskiy, Sergey; Kashanchi, Fatah

    2016-01-01

    HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5′ and 3′ stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART. PMID:26553869

  20. Transactivation activity of Meq, a Marek's disease herpesvirus bZIP protein persistently expressed in latently infected transformed T cells.

    PubMed Central

    Qian, Z; Brunovskis, P; Rauscher, F; Lee, L; Kung, H J

    1995-01-01

    Marek's disease virus (MDV) is an avian herpesvirus that induces a variety of diseases, including T-cell lymphomas, in chickens. In latently infected, transformed lymphoid cells, very few viral transcripts or proteins are detected. We previously described a gene, meq (MDV EcoQ), which is persistently expressed in MDV-transformed tumor samples and cell lines. meq codes for a 339-amino-acid protein with a basic-leucine zipper domain near its N terminus and a proline-rich domain near its C terminus. The basic-leucine zipper domain shows homology with Jun/Fos family proteins, whereas the proline-rich domain resembles that of the WT-1 tumor suppressor protein. These structural features raise the possibility that Meq functions as a transcription factor in regulating viral latency or oncogenesis. In this report, we show that the proline-rich domain is a potent transcription activator when fused to the yeast (Saccharomyces cerevisiae) Gal4(1-147) DNA-binding domain. The transactivation activity maps to the C-terminal 130 amino acids, with the last 33 amino acids essential. In the absence of these 33 amino acids, a two-and-one-half proline-rich repeat structure was found to exhibit repression activity. We further show that Meq is able to dimerize not only with itself but also with c-Jun. Meq/c-Jun heterodimers bind to an AP1-like sequence in the meq promoter region with an affinity much greater than that of Meq/Meq or c-Jun/c-Jun homodimers. Cotransfection chloramphenicol acetyltransferase assays suggest that the Meq/c-Jun heterodimers can up-regulate Meq expression in both chicken embryo fibroblasts and F9 cells. Our data provide the first biochemical evidence that Meq is a transcriptional factor and identify c-Jun as one of Meq's interacting partners. PMID:7769661

  1. MODULATION OF PLAGL2 TRANSACTIVATION BY POSITIVE COFACTOR 2 (PC2), A COMPONENT OF THE ARC/MEDIATOR COMPLEX

    PubMed Central

    Wezensky, Sara J.; Hanks, Tracey S.; Wilkison, Michelle J.; Ammons, Mary Cloud; Siemsen, Daniel W.; Gauss, Katherine A.

    2009-01-01

    The pleomorphic adenoma gene (PLAG) family of transcription factors regulate a wide-range of physiological processes, including cell proliferation, tissue-specific gene regulation, and embryonic development, although little is known regarding the mechanisms that regulate PLAG protein activity. In this study, a yeast two-hybrid screen identified PC2, a component of the Mediator complex, as a PLAGL2-binding protein. We show that PC2 cooperates with PLAGL2 and PU.1 to enhance the activity of a known PLAGL2 target promoter (NCF2). The PLAGL2 binding element in the NCF2 promoter consisted of the core sequence of the bipartite PLAG1 consensus site, but lacked the G-cluster motif, and was recognized by PLAGL2 zinc fingers 5 and 6. Promoter and PLAGL2 mutants showed that PLAGL2 and PU.1 were required to bind to their respective sites in the promoter, and PC2 knockdown demonstrated that PC2 was essential for enhanced promoter activity. Co-immunoprecipitation and promoter-reporter studies reveal that the effect of PC2 on PLAGL2 target promoter activity was conferred via the C-terminus of PLAGL2, the region that is required for PC2 binding and contains the PLAGL2 activation domain. Importantly, chromatin immunoprecipitation analysis and PC2 knockdown studies confirmed that endogenous PC2 protein associated with the NCF2 promoter in MM1 cells in the region occupied by PLAGL2, and was required for PLAGL2 target promoter activity in TNF-α-treated MM1 cells, respectively. Lastly, the expression of another known PLAGL2 target gene, insulin-like growth factor II (IGF-II), was greatly diminished in the presence of PC2 siRNA. Together, the data identify PC2 as a novel PLAGL2-binding protein and important mediator of PLAGL2 transactivation. PMID:20025940

  2. Phytanic acid activates NADPH oxidase through transactivation of epidermal growth factor receptor in vascular smooth muscle cells.

    PubMed

    Dhaunsi, Gursev S; Alsaeid, Mayra; Akhtar, Saghir

    2016-06-10

    Phytanic acid (PA) has been implicated in development of cancer and its defective metabolism is known to cause life-threatening conditions, such as Refsum disease, in children. To explore molecular mechanisms of phytanic acid-induced cellular pathology, we investigated its effect on NADPH oxidase (NOX) and epidermal growth factor receptor (EGFR) in rat aortic smooth muscle cells (RASMC). Smooth muscle cells were isolated from rat aortae using enzymic digestion with collagenase and elastase. Cultured RASMC were treated with varying concentrations (0.5-10 μg/ml) of phytanic acid in the presence/absence of fetal bovine serum (FBS) and/or EGFR inhibitor, AG1478. Following treatment with experimental agents, NOX activity was assayed in RASMC cultures by luminescence method. Gene expression of NOX-1 and p47phox was assessed using RT-PCR. NOX-1, p47phox and, total EGFR protein and its phosphorylated form were measured by Western blotting. Treatment of RASMC with supraphysiological concentrations (>2.5 μg/ml) of PA significantly (p < 0.01) increased the NOX activity. PA also significantly increased gene/protein expression of NOX-1 and p47phox whereas p22phox and p67phox remained unaffected. Interestingly, PA (2.5-10 μg/ml) markedly (2-3 folds) increased the total and phosphorylated EGFR. Treatment of cells with EGFR inhibitor, AG1478, significantly blocked the PA-induced enhancement of NOX activity. Our findings that PA transactivates EGFR and induces NOX activity in vascular smooth muscle cells provide new insights into molecular mechanisms of PA's role in cancer and Refsum disease.

  3. Nuclear import of prototype foamy virus transactivator Bel1 is mediated by KPNA1, KPNA6 and KPNA7.

    PubMed

    Duan, Jihui; Tang, Zhiqin; Mu, Hong; Zhang, Guojun

    2016-08-01

    Bel1, a transactivator of the prototype foamy virus (PFV), plays pivotal roles in the replication of PFV. Previous studies have demonstrated that Bel1 bears a nuclear localization signal (NLS); however, its amino acid sequence remains unclear and the corresponding adaptor importins have not yet been identified. In this study, we inserted various fragments of Bel1 into an EGFP-GST fusion protein and investigated their subcellular localization by fluorescence microscopy. We found that the 215PRQKRPR221 fragment, which accords with the consensus sequence K(K/R)X(K/R) of the monopartite NLS, directed the nuclear translocation of Bel1. Point mutation experiments revealed that K218, R219 and R221 were essential for the nuclear localization of Bel1. The results of GST pull-down assay revealed that the Bel1 peptide 215-221, which bears the NLS, interacted with the nucleocytoplasmic transport receptors, karyopherin alpha 1 (importin alpha 5) (KPNA1), karyopherin alpha 6 (importin alpha 7) (KPNA6) and karyopherin alpha 7 (importin alpha 8) (KPNA7). Finally, in vitro nuclear import assays demonstrated that KPNA1, KPNA6 or KPNA7, along with other necessary nuclear factors, caused Bel1 to localize to the nucleus. Thus, the findings of our study indicate that KPNA1, KPNA6 and KPNA7 are involved in Bel1 nuclear distribution.

  4. Transcriptional transactivation functions localized to the glucocorticoid receptor N terminus are necessary for steroid induction of lymphocyte apoptosis.

    PubMed Central

    Dieken, E S; Miesfeld, R L

    1992-01-01

    Genetic studies have suggested that transcriptional regulation of specific target genes (by either induction or repression) is the molecular basis of glucocorticoid-mediated lymphocyte apoptosis. To examine the role of transcriptional regulation more directly, we developed a complementation assay utilizing stable transfection of wild-type (wt) and mutant (nti) glucocorticoid receptor (GR) cDNA constructs into a GR-deficient S49 murine cell line (7r). Our data confirm that the level of functional GR is rate limiting for S49 apoptosis and moreover that the GR amino terminus (N terminus), which as been deleted from the nti GR, is absolutely required for complementation in this system. Surprisingly, we found that at physiological levels of receptor, expression of the nti GR in cells containing wt GR results in enhanced dexamethasone sensitivity rather than a dominant negative phenotype. One interpretation of these data is that DNA binding by wt-nti heterodimers may be functionally similar to that of wt-wt homodimers, indicating that GRE occupancy by at least one transactivation domain may be sufficient to induce the hormonal response. To determine whether acidic activating sequences such as those localized to the GR N terminus are important in the induction of lymphocyte apoptosis, we tested the activity of a chimeric receptor in which we replaced the entire GR N terminus with sequences from the herpes simplex virus VP16 protein. Our results demonstrate that 7r cells expressing VP-GR fusions are indeed steroid sensitive, strongly supporting the idea that S49 apoptosis is dependent on transcriptional regulation of specific genes which respond to acidic activating domains, implying that induction, rather than repression, may be the critical initiating event. Images PMID:1310148

  5. Hepatocyte nuclear factor 4α transactivates the mitochondrial alanine aminotransferase gene in the kidney of Sparus aurata.

    PubMed

    Salgado, María C; Metón, Isidoro; Anemaet, Ida G; González, J Diego; Fernández, Felipe; Baanante, Isabel V

    2012-02-01

    Alanine aminotransferase (ALT) plays an important role in amino acid metabolism and gluconeogenesis. The preference of carnivorous fish for protein amino acids instead of carbohydrates as a source of energy lead us to study the transcriptional regulation of the mitochondrial ALT (mALT) gene and to characterize the enzyme kinetics and modulation of mALT expression in the kidney of gilthead sea bream (Sparus aurata) under different nutritional and hormonal conditions. 5'-Deletion analysis of mALT promoter in transiently transfected HEK293 cells, site-directed mutagenesis and electrophoretic mobility shift assays allowed us to identify HNF4α as a new factor involved in the transcriptional regulation of mALT expression. Quantitative RT-PCR assays showed that starvation and the administration of streptozotocin (STZ) decreased HNF4α levels in the kidney of S. aurata, leading to the downregulation of mALT transcription. Analysis of the tissue distribution showed that kidney, liver, and intestine were the tissues with higher mALT and HNF4α expression. Kinetic analysis indicates that mALT enzyme is more efficient in catalyzing the conversion of L: -alanine to pyruvate than the reverse reaction. From these results, we conclude that HNF4α transactivates the mALT promoter and that the low levels of mALT expression found in the kidney of starved and STZ-treated fish result from a decreased expression of HNF4α. Our findings suggest that the mALT isoenzyme plays a major role in oxidazing dietary amino acids, and points to ALT as a target for a biotechnological action to spare protein and optimize the use of dietary nutrients for fish culture.

  6. Modulation of the disordered conformational ensembles of the p53 transactivation domain by cancer-associated mutations.

    PubMed

    Ganguly, Debabani; Chen, Jianhan

    2015-04-01

    Intrinsically disordered proteins (IDPs) are frequently associated with human diseases such as cancers, and about one-fourth of disease-associated missense mutations have been mapped into predicted disordered regions. Understanding how these mutations affect the structure-function relationship of IDPs is a formidable task that requires detailed characterization of the disordered conformational ensembles. Implicit solvent coupled with enhanced sampling has been proposed to provide a balance between accuracy and efficiency necessary for systematic and comparative assessments of the effects of mutations as well as post-translational modifications on IDP structure and interaction. Here, we utilize a recently developed replica exchange with guided annealing enhanced sampling technique to calculate well-converged atomistic conformational ensembles of the intrinsically disordered transactivation domain (TAD) of tumor suppressor p53 and several cancer-associated mutants in implicit solvent. The simulations are critically assessed by quantitative comparisons with several types of experimental data that provide structural information on both secondary and tertiary levels. The results show that the calculated ensembles reproduce local structural features of wild-type p53-TAD and the effects of K24N mutation quantitatively. On the tertiary level, the simulated ensembles are overly compact, even though they appear to recapitulate the overall features of transient long-range contacts qualitatively. A key finding is that, while p53-TAD and its cancer mutants sample a similar set of conformational states, cancer mutants could introduce both local and long-range structural modulations to potentially perturb the balance of p53 binding to various regulatory proteins and further alter how this balance is regulated by multisite phosphorylation of p53-TAD. The current study clearly demonstrates the promise of atomistic simulations for detailed characterization of IDP conformations, and

  7. A comparative analysis of the avirulence and translational transactivator functions of gene VI of Cauliflower mosaic virus.

    PubMed

    Palanichelvam, Karuppaiah; Schoelz, James E

    2002-02-15

    The primary function associated at present with the gene VI product of Cauliflower mosaic virus (CaMV) is that of a translational transactivator (TAV). In this capacity, it alters the host translational machinery to allow reinitiation of translation of other CaMV genes on the polycistronic 35S RNA of CaMV. In addition, the gene VI protein can elicit a specific type of plant defense response called the hypersensitive response (HR) in Nicotiana edwardsonii. In this study, we have adapted the agroinfiltration technique to compare the sequences of CaMV gene VI required for TAV function and elicitation of HR. To measure the activity of the TAV, we coagroinfiltrated gene VI of CaMV strain W260 with a bicistronic GUS reporter plasmid. TAV function could be assayed 4 days postinfiltration, before the onset of HR in N. edwardsonii. Through the use of the TAV and HR assays, we could show that the TAV functions of gene VI of CaMV strains W260 and D4 were equivalent, but only W260 gene VI elicited HR. A mutational analysis of W260 gene VI showed that the structural requirements for elicitation of HR were much more stringent than those for TAV function. Small deletions from either the 5' or 3' end of W260 gene VI abolished its ability to elicit HR, although the TAV function was retained in the mutant. The TAV function could also tolerate a small insertion within gene VI; this insertion abolished the elicitor function. This study provides direct evidence that the TAV function of gene VI is separate from its role as an elicitor of HR.

  8. Expression of a plant viral polycistronic mRNA in yeast, Saccharomyces cerevisiae, mediated by a plant virus translational transactivator.

    PubMed

    Sha, Y; Broglio, E P; Cannon, J F; Schoelz, J E

    1995-09-12

    We demonstrate that the cauliflower mosaic virus (CaMV) gene VI product can transactivate the expression of a reporter gene in bakers' yeast, Saccharomyces cerevisiae. The gene VI coding sequence was placed under the control of the galactose-inducible promoter GAL1, which is presented in the yeast shuttle vector pYES2, to create plasmid JS169. We also created a chloramphenicol acetyltransferase (CAT) reporter plasmid, JS161, by inserting the CAT reporter gene in-frame into CaMV gene II and subsequently cloning the entire CaMV genome into the yeast vector pRS314. When JS161 was transformed into yeast and subsequently assayed for CAT activity, only a very low level of CAT activity was detected in cellular extracts. To investigate whether the CaMV gene VI product would mediate an increase in CAT activity, we cotransformed yeast with JS169 and JS161. Upon induction with galactose, we found that CAT activity in yeast transformed with JS161 and JS169 was about 19 times higher than the level in the transformants that contained only JS161. CAT activity was dependent on the presence of the gene VI protein, because essentially no CAT activity was detected in yeast cells grown in the presence of glucose, which represses expression from the GAL1 promoter. RNase protection assays showed that the gene VI product had no effect on transcription from the 35S RNA promoter, demonstrating that regulation was occurring at the translation level. This yeast system will prove useful for understanding how the gene VI product of CaMV mediates the translation of genes present on a eukaryotic polycistronic mRNA.

  9. Temperature inducible β-sheet structure in the transactivation domains of retroviral regulatory proteins of the Rev family

    NASA Astrophysics Data System (ADS)

    Thumb, Werner; Graf, Christine; Parslow, Tristram; Schneider, Rainer; Auer, Manfred

    1999-11-01

    The interaction of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev with cellular cofactors is crucial for the viral life cycle. The HIV-1 Rev transactivation domain is functionally interchangeable with analog regions of Rev proteins of other retroviruses suggesting common folding patterns. In order to obtain experimental evidence for similar structural features mediating protein-protein contacts we investigated activation domain peptides from HIV-1, HIV-2, VISNA virus, feline immunodeficiency virus (FIV) and equine infectious anemia virus (EIAV) by CD spectroscopy, secondary structure prediction and sequence analysis. Although different in polarity and hydrophobicity, all peptides showed a similar behavior with respect to solution conformation, concentration dependence and variations in ionic strength and pH. Temperature studies revealed an unusual induction of β-structure with rising temperatures in all activation domain peptides. The high stability of β-structure in this region was demonstrated in three different peptides of the activation domain of HIV-1 Rev in solutions containing 40% hexafluoropropanol, a reagent usually known to induce α-helix into amino acid sequences. Sequence alignments revealed similarities between the polar effector domains from FIV and EIAV and the leucine rich (hydrophobic) effector domains found in HIV-1, HIV-2 and VISNA. Studies on activation domain peptides of two dominant negative HIV-1 Rev mutants, M10 and M32, pointed towards different reasons for the biological behavior. Whereas the peptide containing the M10 mutation (L 78E 79→D 78L 79) showed wild-type structure, the M32 mutant peptide (L 78L 81L 83→A 78A 81A 83) revealed a different protein fold to be the reason for the disturbed binding to cellular cofactors. From our data, we conclude, that the activation domain of Rev proteins from different viral origins adopt a similar fold and that a β-structural element is involved in binding to a

  10. In vitro screening of inhibition of PPAR-γ activity as a first step in identification of potential breast carcinogens.

    PubMed

    Kopp, T I; Lundqvist, J; Petersen, R K; Oskarsson, A; Kristiansen, K; Nellemann, C; Vogel, U

    2015-11-01

    Alcohol consumption and increased estrogen levels are major risk factors for breast cancer, and peroxisome proliferator-activated receptor γ (PPAR-γ) plays an important role in alcohol-induced breast cancer. PPAR-γ activity is inhibited by ethanol, leading to increased aromatase activity and estrogen biosynthesis ultimately leading to breast cancer. If other organic solvents inhibit PPAR-γ activity, they should also lead to increased oestrogen biosynthesis and thus be potential breast carcinogens. Ten commonly used hydrophilic organic solvents were first tested in a cell-based screening assay for inhibitory effects on PPAR-γ transactivation. The chemicals shown to inhibit PPAR-γ were tested with vectors encoding PPAR-γ with deleted AB domains and only the ligand-binding domain to rule out unspecific toxicity. Next, the effects on biosynthesis of estradiol, testosterone and oestrone sulphate were measured in the H295R steroidogenesis assay after incubation with the chemicals. Ethylene glycol, ethyl acetate, and dimethyl sulphoxide inhibited PPAR-γ transactivation in a dose-dependent manner. The inhibitory effect on PPAR-γ was specific for PPAR-γ since the AB domain of PPAR-γ was required for the inhibitory effect. In the second step, ethylene glycol significantly increased production of oestradiol by 19% (p < 0.05) and ethyl acetate inhibited production of testosterone (p < 0.05). We here show that screening of 10 commonly used organic solvents for the ability to inhibit PPAR-γ transactivation followed by a well-established steroidogenesis assay for production of sex hormones in exposed H295 R cells may provide a screening tool for potential breast carcinogens. This initial screening thus identified ethylene glycol and possibly ethyl acetate as potential breast carcinogens. © The Author(s) 2015.

  11. Transcriptional repressor NIR interacts with the p53-inhibiting ubiquitin ligase MDM2.

    PubMed

    Heyne, Kristina; Förster, Juliane; Schüle, Roland; Roemer, Klaus

    2014-04-01

    NIR (novel INHAT repressor) can bind to p53 at promoters and inhibit p53-mediated gene transactivation by blocking histone acetylation carried out by p300/CBP. Like NIR, the E3 ubiquitin ligase MDM2 can also bind and inhibit p53 at promoters. Here, we present data indicating that NIR, which shuttles between the nucleolus and nucleoplasm, not only binds to p53 but also directly to MDM2, in part via the central acidic and zinc finger domain of MDM2 that is also contacted by several other nucleolus-based MDM2/p53-regulating proteins. Like some of these, NIR was able to inhibit the ubiquitination of MDM2 and stabilize MDM2; however, unlike these nucleolus-based MDM2 regulators, NIR did not inhibit MDM2 to activate p53. Rather, NIR cooperated with MDM2 to repress p53-induced transactivation. This cooperative repression may at least in part involve p300/CBP. We show that NIR can block the acetylation of p53 and MDM2. Non-acetylated p53 has been documented previously to more readily associate with inhibitory MDM2. NIR may thus help to sustain the inhibitory p53:MDM2 complex, and we present evidence suggesting that all three proteins can indeed form a ternary complex. In sum, our findings suggest that NIR can support MDM2 to suppress p53 as a transcriptional activator.

  12. Transactivation of cellular genes involved in nucleotide metabolism by the regulatory IE1 protein of murine cytomegalovirus is not critical for viral replicative fitness in quiescent cells and host tissues.

    PubMed

    Wilhelmi, Vanessa; Simon, Christian O; Podlech, Jürgen; Böhm, Verena; Däubner, Torsten; Emde, Simone; Strand, Dennis; Renzaho, Angélique; Lemmermann, Niels A W; Seckert, Christof K; Reddehase, Matthias J; Grzimek, Natascha K A

    2008-10-01

    Despite its high coding capacity, murine CMV (mCMV) does not encode functional enzymes for nucleotide biosynthesis. It thus depends on cellular enzymes, such as ribonucleotide reductase (RNR) and thymidylate synthase (TS), to be supplied with deoxynucleoside triphosphates (dNTPs) for its DNA replication. Viral transactivation of these cellular genes in quiescent cells of host tissues is therefore a parameter of viral fitness relevant to pathogenicity. Previous work has shown that the IE1, but not the IE3, protein of mCMV transactivates RNR and TS gene promoters and has revealed an in vivo attenuation of the mutant virus mCMV-DeltaIE1. It was attractive to propose the hypothesis that lack of transactivation by IE1 and a resulting deficiency in the supply of dNTPs are the reasons for growth attenuation. Here, we have tested this hypothesis with the mutant virus mCMV-IE1-Y165C expressing an IE1 protein that selectively fails to transactivate RNR and TS in quiescent cells upon transfection while maintaining the capacity to disperse repressive nuclear domains (ND10). Our results confirm in vivo attenuation of mCMV-DeltaIE1, as indicated by a longer doubling time in host organs, whereas mCMV-IE1-Y165C replicated like mCMV-WT and the revertant virus mCMV-IE1-C165Y. Notably, the mutant virus transactivated RNR and TS upon infection of quiescent cells, thus indicating that IE1 is not the only viral transactivator involved. We conclude that transactivation of cellular genes of dNTP biosynthesis is ensured by redundancy and that attenuation of mCMV-DeltaIE1 results from the loss of other critical functions of IE1, with its function in the dispersal of ND10 being a promising candidate.

  13. CITED2 silencing sensitizes cancer cells to cisplatin by inhibiting p53 trans-activation and chromatin relaxation on the ERCC1 DNA repair gene

    PubMed Central

    Liu, Yu-Chin; Chang, Pu-Yuan; Chao, Chuck C.-K.

    2015-01-01

    In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy. PMID:26384430

  14. Inhibition of ErbB3 by a monoclonal antibody that locks the extracellular domain in an inactive configuration.

    PubMed

    Lee, Sangwon; Greenlee, Etienne B; Amick, Joseph R; Ligon, Gwenda F; Lillquist, Jay S; Natoli, Edward J; Hadari, Yaron; Alvarado, Diego; Schlessinger, Joseph

    2015-10-27

    ErbB3 (HER3) is a member of the EGF receptor (EGFR) family of receptor tyrosine kinases, which, unlike the other three family members, contains a pseudo kinase in place of a tyrosine kinase domain. In cancer, ErbB3 activation is driven by a ligand-dependent mechanism through the formation of heterodimers with EGFR, ErbB2, or ErbB4 or via a ligand-independent process through heterodimerization with ErbB2 overexpressed in breast tumors or other cancers. Here we describe the crystal structure of the Fab fragment of an antagonistic monoclonal antibody KTN3379, currently in clinical development in human cancer patients, in complex with the ErbB3 extracellular domain. The structure reveals a unique allosteric mechanism for inhibition of ligand-dependent or ligand-independent ErbB3-driven cancers by binding to an epitope that locks ErbB3 in an inactive conformation. Given the similarities in the mechanism of ErbB receptor family activation, these findings could facilitate structure-based design of antibodies that inhibit EGFR and ErbB4 by an allosteric mechanism.

  15. Impact of Glucocorticoid Receptor Density on Ligand-Independent Dimerization, Cooperative Ligand-Binding and Basal Priming of Transactivation: A Cell Culture Model

    PubMed Central

    Robertson, Steven; Rohwer, Johann M.; Hapgood, Janet P.; Louw, Ann

    2013-01-01

    Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display li