Science.gov

Sample records for inhibit stimulated lipolysis

  1. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    SciTech Connect

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Ahn, Dong-Choon; Kim, In-Shik; Park, Sang-Youel

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18{beta

  2. Nitric oxide inhibits isoproterenol-stimulated adipocyte lipolysis through oxidative inactivation of the beta-agonist.

    PubMed Central

    Klatt, P; Cacho, J; Crespo, M D; Herrera, E; Ramos, P

    2000-01-01

    Nitric oxide has been implicated in the inhibition of catecholamine-stimulated lipolysis in adipose tissue by as yet unknown mechanisms. In the present study, it is shown that the nitric oxide donor, 2,2-diethyl-1-nitroso-oxyhydrazine, antagonized isoproterenol (isoprenaline)-induced lipolysis in rat adipocytes, freshly isolated from white adipose tissue, by decreasing the potency of the beta-agonist without affecting its efficacy. These data suggest that nitric oxide did not act downstream of the beta-adrenoceptor but reduced the effective concentration of isoproterenol. In support of the latter hypothesis, we found that pre-treatment of isoproterenol with nitric oxide abolished the lipolytic activity of the catecholamine. Spectroscopic data and HPLC analysis confirmed that the nitric oxide-mediated inactivation of isoproterenol was in fact because of the modification of the catecholamine through a sequence of oxidation reactions, which apparently involved the generation of an aminochrome. Similarly, aminochrome was found to be the primary product of isoproterenol oxidation by 3-morpholinosydnonimine and peroxynitrite. Finally, it was shown that nitric oxide released from cytokine-stimulated adipocytes attenuated the lipolytic effect of isoproterenol by inactivating the catecholamine. In contrast with very recent findings, which suggest that nitric oxide impairs the beta-adrenergic action of isoproterenol through intracellular mechanisms and not through a chemical reaction between NO and the catecholamine, we showed that nitric oxide was able to attenuate the pharmacological activity of isoproterenol in vitro as well as in a nitric oxide-generating cellular system through oxidation of the beta-agonist. These findings should be taken into account in both the design and interpretation of studies used to investigate the role of nitric oxide as a modulator of isoproterenol-stimulated signal transduction pathways. PMID:11023835

  3. Nitric oxide inhibits isoproterenol-stimulated adipocyte lipolysis through oxidative inactivation of the beta-agonist.

    PubMed

    Klatt, P; Cacho, J; Crespo, M D; Herrera, E; Ramos, P

    2000-10-15

    Nitric oxide has been implicated in the inhibition of catecholamine-stimulated lipolysis in adipose tissue by as yet unknown mechanisms. In the present study, it is shown that the nitric oxide donor, 2,2-diethyl-1-nitroso-oxyhydrazine, antagonized isoproterenol (isoprenaline)-induced lipolysis in rat adipocytes, freshly isolated from white adipose tissue, by decreasing the potency of the beta-agonist without affecting its efficacy. These data suggest that nitric oxide did not act downstream of the beta-adrenoceptor but reduced the effective concentration of isoproterenol. In support of the latter hypothesis, we found that pre-treatment of isoproterenol with nitric oxide abolished the lipolytic activity of the catecholamine. Spectroscopic data and HPLC analysis confirmed that the nitric oxide-mediated inactivation of isoproterenol was in fact because of the modification of the catecholamine through a sequence of oxidation reactions, which apparently involved the generation of an aminochrome. Similarly, aminochrome was found to be the primary product of isoproterenol oxidation by 3-morpholinosydnonimine and peroxynitrite. Finally, it was shown that nitric oxide released from cytokine-stimulated adipocytes attenuated the lipolytic effect of isoproterenol by inactivating the catecholamine. In contrast with very recent findings, which suggest that nitric oxide impairs the beta-adrenergic action of isoproterenol through intracellular mechanisms and not through a chemical reaction between NO and the catecholamine, we showed that nitric oxide was able to attenuate the pharmacological activity of isoproterenol in vitro as well as in a nitric oxide-generating cellular system through oxidation of the beta-agonist. These findings should be taken into account in both the design and interpretation of studies used to investigate the role of nitric oxide as a modulator of isoproterenol-stimulated signal transduction pathways.

  4. Non-steroidal anti-inflammatory drugs activate NADPH oxidase in adipocytes and raise the H2O2 pool to prevent cAMP-stimulated protein kinase a activation and inhibit lipolysis

    PubMed Central

    2013-01-01

    Background Non-steroidal anti-inflammatory drugs (NSAIDs) —aspirin, naproxen, nimesulide, and piroxicam— lowered activation of type II cAMP-dependent protein kinase A (PKA-II) in isolated rat adipocytes, decreasing adrenaline- and dibutyryl cAMP (Bt2cAMP)-stimulated lipolysis. The molecular bases of insulin-like actions of NSAID were studied. Results Based on the reported inhibition of lipolysis by H2O2, catalase was successfully used to block NSAID inhibitory action on Bt2cAMP-stimulated lipolysis. NSAID, at (sub)micromolar range, induced an H2O2 burst in rat adipocyte plasma membranes and in whole adipocytes. NSAID-mediated rise of H2O2 was abrogated in adipocyte plasma membranes by: diphenyleneiodonium, an inhibitor of NADPH oxidase (NOX); the NOX4 antibody; and cytochrome c, trapping the NOX-formed superoxide. These three compounds prevented the inhibition of Bt2cAMP-stimulated lipolysis by NSAIDs. Inhibition of aquaporin-mediated H2O2 transport with AgNO3 in adipocytes allowed NOX activation but prevented the lipolysis inhibition promoted by NSAID: i.e., once synthesized, H2O2 must reach the lipolytic machinery. Since insulin inhibits adrenaline-stimulated lipolysis, the effect of aspirin on isoproterenol-stimulated lipolysis in rat adipocytes was studied. As expected, isoproterenol-mediated lipolysis was blunted by both insulin and aspirin. Conclusions NSAIDs activate NOX4 in adipocytes to produce H2O2, which impairs cAMP-dependent PKA-II activation, thus preventing isoproterenol-activated lipolysis. H2O2 signaling in adipocytes is a novel and important cyclooxygenase-independent effect of NSAID. PMID:23718778

  5. Glycerol inhibition of ruminal lipolysis in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of...

  6. Nutritional state modulates growth hormone-stimulated lipolysis.

    PubMed

    Bergan, Heather E; Kittilson, Jeffrey D; Sheridan, Mark A

    2015-01-01

    Growth hormone (GH) regulates several processes in vertebrates, including two metabolically disparate processes: promotion of growth, an anabolic action, and mobilization of stored lipid, a catabolic action. In this study, we used hepatocytes isolated from continuously fed and long-term (4weeks) fasted rainbow trout (Oncorhynchus mykiss) as a model to investigate the mechanistic basis of the anabolic and catabolic actions of GH. Our hypothesis was that nutritional state modulates the lipolytic responsiveness of cells by adjusting the signal transduction pathways to which GH links. GH stimulated lipolysis as measured by increased glycerol release in both a time- and concentration-related manner from cells of fasted fish but not from cells of fed fish. Expression of mRNAs that encode the lipolytic enzyme hormone-sensitive lipase (HSL), HSL1 and HSL2, also was stimulated by GH in cells from fasted fish and not in cells from fed fish. Activation of the signaling pathways that mediate GH action also was studied. In cells from fed fish, GH activated the JAK-STAT, PI3K-Akt, and ERK pathways, whereas in cells from fasted fish, GH activated the PLC/PKC and ERK pathways. In hepatocytes from fasted fish, blockade of PLC/PKC and of the ERK pathway inhibited GH-stimulated lipolysis and GH-stimulated HSL mRNA expression, whereas blockade of JAK-STAT or of the PI3K-Akt pathway had no effect on lipolysis or HSL expression stimulated by GH. These results indicate that during fasting GH activates the PLC/PKC and ERK pathways resulting in lipolysis but during periods of feeding GH activates a different complement of signal elements that do not promote lipolysis. These findings suggest that the responsiveness of cells to GH depends on the signal pathways to which GH links and helps resolve the growth-promoting and lipid catabolic actions of GH.

  7. The Role of PDE3B Phosphorylation in the Inhibition of Lipolysis by Insulin

    PubMed Central

    DiPilato, Lisa M.; Ahmad, Faiyaz; Harms, Matthew; Seale, Patrick; Manganiello, Vincent

    2015-01-01

    Inhibition of adipocyte lipolysis by insulin is important for whole-body energy homeostasis; its disruption has been implicated as contributing to the development of insulin resistance and type 2 diabetes mellitus. The main target of the antilipolytic action of insulin is believed to be phosphodiesterase 3B (PDE3B), whose phosphorylation by Akt leads to accelerated degradation of the prolipolytic second messenger cyclic AMP (cAMP). To test this hypothesis genetically, brown adipocytes lacking PDE3B were examined for their regulation of lipolysis. In Pde3b knockout (KO) adipocytes, insulin was unable to suppress β-adrenergic receptor-stimulated glycerol release. Reexpressing wild-type PDE3B in KO adipocytes fully rescued the action of insulin against lipolysis. Surprisingly, a mutant form of PDE3B that ablates the major Akt phosphorylation site, murine S273, also restored the ability of insulin to suppress lipolysis. Taken together, these data suggest that phosphorylation of PDE3B by Akt is not required for insulin to suppress adipocyte lipolysis. PMID:26031333

  8. Inhibition of rat fat cell lipolysis by monoamine oxidase and semicarbazide-sensitive amine oxidase substrates.

    PubMed

    Visentin, Virgile; Prévot, Danielle; Marti, Luc; Carpéné, Christian

    2003-04-18

    It has been demonstrated that amine oxidase substrates stimulate glucose transport in cardiomyocytes and adipocytes, promote adipogenesis in pre-adipose cell lines and lower blood glucose in diabetic rats. These insulin-like effects are dependent on amine oxidation by semicarbazide-sensitive amine oxidase or by monoamine oxidase. The present study aimed to investigate whether amine oxidase substrates also exhibit another insulin-like property, the inhibition of lipolysis. We therefore tested the influence of tyramine and benzylamine on lipolytic activity in rat adipocytes. These amines did not modify basal lipolysis but dose-dependently counteracted the stimulation induced by lipolytic agents. The response to 10 nM isoprenaline was totally inhibited by tyramine 1 mM. The blockade produced by inhibition of amine oxidase activity or by 1 mM glutathione suggested that the generation of oxidative species, which occurs during amine oxidation, was involved in tyramine antilipolytic effect. Among the products resulting from amine oxidation, only hydrogen peroxide was antilipolytic in a manner that was potentiated by vanadate, as for tyramine or benzylamine. Antilipolytic responses to tyramine and to insulin were sensitive to wortmannin. These data suggest that inhibition of lipolysis is a novel insulin-like effect of amine oxidase substrates which is mediated by hydrogen peroxide generated during amine oxidation.

  9. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle.

    PubMed

    Alsted, Thomas J; Ploug, Thorkil; Prats, Clara; Serup, Annette K; Høeg, Louise; Schjerling, Peter; Holm, Cecilia; Zimmermann, Robert; Fledelius, Christian; Galbo, Henrik; Kiens, Bente

    2013-10-15

    In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P < 0.001). In response to contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P < 0.05). In vitro TG hydrolase activity data revealed that adipose triglyceride lipase (ATGL) and HSL collectively account for ∼98% of the TG hydrolase activity in mouse skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions.

  10. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle

    PubMed Central

    Alsted, Thomas J; Ploug, Thorkil; Prats, Clara; Serup, Annette K; Høeg, Louise; Schjerling, Peter; Holm, Cecilia; Zimmermann, Robert; Fledelius, Christian; Galbo, Henrik; Kiens, Bente

    2013-01-01

    In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P < 0.001). In response to contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P < 0.05). In vitro TG hydrolase activity data revealed that adipose triglyceride lipase (ATGL) and HSL collectively account for ∼98% of the TG hydrolase activity in mouse skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions. PMID:23878361

  11. Leucaena leucocephala fruit aqueous extract stimulates adipogenesis, lipolysis, and glucose uptake in primary rat adipocytes.

    PubMed

    Kuppusamy, Umah Rani; Arumugam, Bavani; Azaman, Nooriza; Jen Wai, Chai

    2014-01-01

    Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro "insulin-like" activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.

  12. EPA-enriched phospholipids ameliorate cancer-associated cachexia mainly via inhibiting lipolysis.

    PubMed

    Du, Lei; Yang, Yu-Hong; Wang, Yu-Ming; Xue, Chang-Hu; Kurihara, Hideyuki; Takahashi, Koretaro

    2015-12-01

    Excessive loss of fat mass is considered as a key feature of body weight loss in cancer-associated cachexia (CAC). It affects the efficacy and tolerability of cancer therapy and reduces the quality and length of cancer patients' lives. The aim of the present study was to evaluate the effects of EPA-enriched phospholipids (EPA-PL) derived from starfish Asterias amurensis on cachectic weight loss in mice bearing S180 ascitic tumor, and TNF-α-stimulated lipolysis in 3T3-L1 adipocytes and to elucidate the possible mechanisms involved. Our findings revealed that oral administration of EPA-PL at 100 mg per kg body weight (BW) per day for 14 days prevented body weight loss in CAC mice by preserving the white adipose tissue (WAT) mass. We found that serum levels of nonesterified fatty acid (NEFA) and pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin (IL)-6 increased in CAC mice but decreased significantly after oral treatment of EPA-PL. In addition, EPA-PL treatment also suppressed the overexpression of several key lipolytic factors and raised the mRNA levels of some adipogenic factors in the WAT of CAC mice. Moreover, treatment of EPA-PL (200 and 400 μM) markedly inhibited TNF-α-stimulated lipolysis in adipocytes. Furthermore, the antilipolytic effects of EPA-PL were stimulated by the extracellular signal-regulated kinase 1/2 (ERK 1/2) inhibitor PD 98059 and blocked via the AMP-activated protein kinase (AMPK) inhibitor compound C and the phosphoinositide-3-kinase (PI3K) inhibitor LY 294002. Taken together, these data suggest that the dietary EPA-PL ameliorates CAC mainly via inhibiting lipolysis and at least in part for recovering the function of adipogenesis.

  13. Adipogenesis, lipogenesis and lipolysis is stimulated by mild but not severe hypoxia in 3T3-L1 cells.

    PubMed

    Weiszenstein, Martin; Musutova, Martina; Plihalova, Andrea; Westlake, Katerina; Elkalaf, Moustafa; Koc, Michal; Prochazka, Antonin; Pala, Jan; Gulati, Sumeet; Trnka, Jan; Polak, Jan

    2016-09-16

    In-vitro investigation of the effects of hypoxia is limited by physical laws of gas diffusion and cellular O2 consumption, making prolonged exposures to stable O2 concentrations impossible. Using a gas-permeable cultureware, chronic effects of mild and severe hypoxia on triglyceride accumulation, lipid droplet size distribution, spontaneous lipolysis and gene expression of adipocyte-specific markers were assessed. 3T3-L1 cells were differentiated under 20%, 4% or 1% O2 using a gas-permeable cultureware. Triglyceride accumulation, expression of genes characteristic for advanced adipocyte differentiation and involvement of key lipogenesis enzymes were assessed after exposures. Lipogenesis increased by 375% under mild hypoxia, but dropped by 43% in severe hypoxia. Mild, but not severe, hypoxia increased formation of large lipid droplets 6.4 fold and strongly induced gene expression of adipocyte-specific markers. Spontaneous lipolysis increased by 488% in mild, but only by 135% in severe hypoxia. Inhibition of ATP-dependent citrate lyase suppressed hypoxia-induced lipogenesis by 81% and 85%. Activation of HIF inhibited lipogenesis by 59%. Mild, but not severe, hypoxia stimulates lipolysis and promotes adipocyte differentiation, probably through excess of acetyl-CoA originating from tricarboxylic acid cycle independently of HIF activation.

  14. Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance

    PubMed Central

    Xiao, Na; Yang, Le-Le; Yang, Yi-Lin; Liu, Li-Wei; Li, Jia; Liu, Baolin; Liu, Kang; Qi, Lian-Wen; Li, Ping

    2017-01-01

    Endoplasmic reticulum (ER) stress, inflammation, and lipolysis occur simultaneously in adipose dysfunction and contribute to insulin resistance. This study was designed to investigate whether ginsenoside Rg5 could ameliorate adipose dysfunction and prevent muscle insulin resistance. Short-term high-fat diet (HFD) feeding induced hypoxia with ER stress in adipose tissue, leading to succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activity. Rg5 treatment reduced cellular energy charge, suppressed ER stress and then prevented succinate accumulation in adipose tissue. Succinate promoted IL-1β production through NLRP3 inflammasome activation and then increased cAMP accumulation by impairing PDE3B expression, leading to increased lipolysis. Ginsenoside Rg5 treatment suppressed NLRP3 inflammasome activation, preserved PDE3B expression and then reduced cAMP accumulation, contributing to inhibition of lipolysis. Adipose lipolysis increased FFAs trafficking from adipose tissue to muscle. Rg5 reduced diacylglycerol (DAG) and ceramides accumulation, inhibited protein kinase Cθ translocation, and prevented insulin resistance in muscle. In conclusion, succinate accumulation in hypoxic adipose tissue acts as a metabolic signaling to link ER stress, inflammation and cAMP/PKA activation, contributing to lipolysis and insulin resistance. These findings establish a previously unrecognized role of ginsenosides in the regulation of lipid and glucose homeostasis and suggest that adipose succinate-associated NLRP3 inflammasome activation might be targeted therapeutically to prevent lipolysis and insulin resistance. PMID:28261091

  15. The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue.

    PubMed

    Pereira, Maria J; Palming, Jenny; Rizell, Magnus; Aureliano, Manuel; Carvalho, Eugénia; Svensson, Maria K; Eriksson, Jan W

    2013-01-30

    Cyclosporin A (CsA), tacrolimus and rapamycin are immunosuppressive agents (IAs) associated with insulin resistance and dyslipidemia, although their molecular effects on lipid metabolism in adipose tissue are unknown. We explored IAs effects on lipolysis, lipid storage and expression of genes involved on lipid metabolism in isolated human adipocytes and/or adipose tissue obtained via subcutaneous and omental fat biopsies. CsA, tacrolimus and rapamycin increased isoproterenol-stimulated lipolysis and inhibited lipid storage by 20-35% and enhanced isoproterenol-stimulated hormone-sensitive lipase Ser552 phosphorylation. Rapamycin also increased basal lipolysis (~20%) and impaired insulin's antilipolytic effect. Rapamycin, down-regulated the gene expression of perilipin, sterol regulatory element-binding protein 1 (SREBP1) and lipin 1, while tacrolimus down-regulated CD36 and aP2 gene expression. All three IAs increased IL-6 gene expression and secretion, but not expression and secretion of TNF-α or adiponectin. These findings suggest that CsA, tacrolimus and rapamycin enhance lipolysis, inhibit lipid storage and expression of lipogenic genes in adipose tissue, which may contribute to the development of dyslipidemia and insulin resistance associated with immunosuppressive therapy.

  16. Berberine attenuates cAMP-induced lipolysis via reducing the inhibition of phosphodiesterase in 3T3-L1 adipocytes.

    PubMed

    Zhou, Libin; Wang, Xiao; Yang, Ying; Wu, Ling; Li, Fengying; Zhang, Rong; Yuan, Guoyue; Wang, Ning; Chen, Mingdao; Ning, Guang

    2011-04-01

    Berberine, a hypoglycemic agent, has been shown to decrease plasma free fatty acids (FFAs) level in insulin-resistant rats. In the present study, we explored the mechanism responsible for the antilipolytic effect of berberine in 3T3-L1 adipocytes. It was shown that berberine attenuated lipolysis induced by catecholamines, cAMP-raising agents, and a hydrolyzable cAMP analog, but not by tumor necrosis factor α and a nonhydrolyzable cAMP analog. Unlike insulin, the inhibitory effect of berberine on lipolysis in response to isoproterenol was not abrogated by wortmannin, an inhibitor of phosphatidylinositol 3-kinase, but additive to that of PD98059, an extracellular signal-regulated kinase kinase inhibitor. Prior exposure of adipocytes to berberine decreased the intracellular cAMP production induced by isoproterenol, forskolin, and 3-isobutyl-1-methylxanthine (IBMX), along with hormone-sensitive lipase (HSL) Ser-563 and Ser-660 dephosphorylation, but had no effect on perilipin phosphorylation. Berberine stimulated HSL Ser-565 as well as adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. However, compound C, an AMPK inhibitor, did not reverse the regulatory effect of berberine on HSL Ser-563, Ser-660, and Ser-565 phosphorylation, nor the antilipolytic effect of berberine. Knockdown of AMPK using RNA interference also failed to restore berberine-suppressed lipolysis. cAMP-raising agents increased AMPK activity, which was not additive to that of berberine. Stimulation of adipocytes with berberine increased phosphodiesterase (PDE) 3B and PDE4 activity measured by hydrolysis of (3)[H]cAMP. These results suggest that berberine exerts an antilipolytic effect mainly by reducing the inhibition of PDE, leading to a decrease in cAMP and HSL phosphorylation independent of AMPK pathway.

  17. Colonic fermentation from lactulose inhibits lipolysis in overweight subjects.

    PubMed

    Ferchaud-Roucher, V; Pouteau, E; Piloquet, H; Zaïr, Y; Krempf, M

    2005-10-01

    One of the strategies to prevent insulin resistance is to reduce circulating free fatty acids (FFA). The aim of this study is to assess the effect of an oral lactulose load on fatty acid metabolism in overweight subjects. Eight overweight subjects received a primed constant intravenous infusion of [1-(13)C]acetate and of [1,1,2,3,3-(2)H(5)]glycerol for 9 h. After 3 h of tracer infusion, patients ingested 30 g lactulose, or saline solution. Arterialized blood samples were collected every 20 min. Basal plasma concentrations of acetate were similar before and between oral treatments as well as glycerol and FFA concentrations. Plasma acetate turnover was 11.4 +/- 2.4 vs. 10.7 +/- 1.4 micromol.kg(-1).min(-1) [not significant (NS)], and plasma glycerol turnover was 3.8 +/- 0.4 vs. 4.8 +/- 1.9 micromol.kg(-1).min(-1) (NS). After lactulose ingestion, acetate concentration increased twofold and then decreased to baseline. Acetate turnover rate increased to 15.5 +/- 2.2 micromol.kg(-1).min(-1) after lactulose treatment, whereas it was unchanged after saline treatment (10.3 +/- 2.2 micromol.kg(-1).min(-1), P < or = 0.0001). In contrast, FFA concentrations decreased significantly after lactulose ingestion and then increased slowly. Glycerol turnover decreased after lactulose ingestion compared with saline, 2.8 +/- 0.4 vs. 3.5 +/- 0.3 micromol.kg(-1).min(-1) (P < or = 0.05). A significant negative correlation was found between glycerol and acetate turnover after lactulose treatments (r = -0.78, P < or = 0.02). These results showed in overweight subjects a short-term decrease in FFA level and glycerol turnover after lactulose ingestion related to a decrease of lipolysis in close relationship with an increase of acetate production.

  18. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis

    PubMed Central

    Tsao, Chang-Hui; Shiau, Ming-Yuh; Chuang, Pei-Hua; Chang, Yih-Hsin; Hwang, Jaulang

    2014-01-01

    Long-term cytokine-mediated inflammation is a risk factor for obesity and type 2 diabetes mellitus (T2DM). Our previous studies reveal significant associations between promoter single nucleotide polymorphisms (SNPs) of interleukin (IL)-4 and T2DM, as well as between SNPs in genes encoding IL-4/IL-4 receptor and high density lipoproteins. Our animal study reveals that IL-4 regulates glucose/lipid metabolism by promoting glucose tolerance and inhibiting lipid deposits. The above results strongly suggest the involvement of IL-4 in energy homeostasis. In the present study, we focus on examining the regulatory mechanism of IL-4 to lipid metabolism. Our results show that IL-4 inhibits adipogenesis by downregulating the expression of peroxisome proliferator-activated receptor-γ and CCAAT/enhancer-binding protein-α. Additionally, IL-4 promotes lipolysis by enhancing the activity and translocation of hormone sensitive lipase (HSL) in mature adipocytes, which suggests that IL-4 plays a pro-lipolytic role in lipid metabolism by boosting HSL activity. Our results demonstrate that IL-4 harbors pro-lipolysis capacity by inhibiting adipocyte differentiation and lipid accumulation as well as by promoting lipolysis in mature adipocytes to decrease lipid deposits. The above findings uncover the novel roles of IL-4 in lipid metabolism and provide new insights into the interactions among cytokine/immune responses, insulin sensitivity, and metabolism. PMID:24347527

  19. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors.

    PubMed

    Simon, Becky R; Parlee, Sebastian D; Learman, Brian S; Mori, Hiroyuki; Scheller, Erica L; Cawthorn, William P; Ning, Xiaomin; Gallagher, Katherine; Tyrberg, Björn; Assadi-Porter, Fariba M; Evans, Charles R; MacDougald, Ormond A

    2013-11-08

    G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3.

  20. The role of lipolysis stimulated lipoprotein receptor in breast cancer and directing breast cancer cell behavior.

    PubMed

    Reaves, Denise K; Fagan-Solis, Katerina D; Dunphy, Karen; Oliver, Shannon D; Scott, David W; Fleming, Jodie M

    2014-01-01

    The claudin-low molecular subtype of breast cancer is of particular interest for clinically the majority of these tumors are poor prognosis, triple negative, invasive ductal carcinomas. Claudin-low tumors are characterized by cancer stem cell-like features and low expression of cell junction and adhesion proteins. Herein, we sought to define the role of lipolysis stimulated lipoprotein receptor (LSR) in breast cancer and cancer cell behavior as LSR was recently correlated with tumor-initiating features. We show that LSR was expressed in epithelium, endothelium, and stromal cells within the healthy breast tissue, as well as in tumor epithelium. In primary breast tumor bioposies, LSR expression was significantly correlated with invasive ductal carcinomas compared to invasive lobular carcinomas, as well as ERα positive tumors and breast cancer cell lines. LSR levels were significantly reduced in claudin-low breast cancer cell lines and functional studies illustrated that re-introduction of LSR into a claudin-low cell line suppressed the EMT phenotype and reduced individual cell migration. However, our data suggest that LSR may promote collective cell migration. Re-introduction of LSR in claudin-low breast cancer cell lines reestablished tight junction protein expression and correlated with transepithelial electrical resistance, thereby reverting claudin-low lines to other intrinsic molecular subtypes. Moreover, overexpression of LSR altered gene expression of pathways involved in transformation and tumorigenesis as well as enhanced proliferation and survival in anchorage independent conditions, highlighting that reestablishment of LSR signaling promotes aggressive/tumor initiating cell behaviors. Collectively, these data highlight a direct role for LSR in driving aggressive breast cancer behavior.

  1. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.

    PubMed

    Zhang, Fuyang; Zhao, Shihao; Yan, Wenjun; Xia, Yunlong; Chen, Xiyao; Wang, Wei; Zhang, Jinglong; Gao, Chao; Peng, Cheng; Yan, Feng; Zhao, Huishou; Lian, Kun; Lee, Yan; Zhang, Ling; Lau, Wayne Bond; Ma, Xinliang; Tao, Ling

    2016-11-01

    The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte.

  2. Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes.

    PubMed

    Dave, Sandeep; Kaur, Naval Jit; Nanduri, Ravikanth; Dkhar, H Kitdorlang; Kumar, Ashwani; Gupta, Pawan

    2012-01-01

    The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)α(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.

  3. Inhibition of Adipogenesis and Induction of Apoptosis and Lipolysis by Stem Bromelain in 3T3-L1 Adipocytes

    PubMed Central

    Dave, Sandeep; Kaur, Naval Jit; Nanduri, Ravikanth; Dkhar, H. Kitdorlang; Kumar, Ashwani; Gupta, Pawan

    2012-01-01

    The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt–TSC2–mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein Giα1, as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes. PMID:22292054

  4. Inhibition of Lipolysis Ameliorates Diabetic Phenotype in a Mouse Model of Obstructive Sleep Apnea.

    PubMed

    Weiszenstein, Martin; Shimoda, Larissa A; Koc, Michal; Seda, Ondrej; Polak, Jan

    2016-08-01

    Obstructive sleep apnea (OSA) is associated with insulin resistance, glucose intolerance, and type 2 diabetes. Causal mechanisms mediating this association are not well defined; however, augmented lipolysis in adipose might be involved. Here, we investigated the effect of acipimox treatment (lipolysis inhibitor) on glucose tolerance and insulin sensitivity in mice exposed to intermittent hypoxia (IH). C57BL6/J mice were exposed for 14 days to IH or control conditions. IH was created by decreasing the fraction of inspired oxygen from 20.9 to 6.5%, 60 times/h. Control exposure was air (fraction of inspired oxygen, 20.9%) delivered at an identical flow rate. Acipimox was provided in drinking water (0.5 g/ml) during exposures. After exposures, intraperitoneal insulin (0.5 IU/kg) and glucose (1 g/kg) tolerance tests were performed, and primary adipocytes were isolated for lipolysis experiments. IH elevated fasting glucose by 51% and worsened glucose tolerance and insulin sensitivity by 33 and 102%, respectively. In parallel, IH increased spontaneous lipolysis by 264%, and reduced epididymal fat mass by 15% and adipocyte size by 8%. Acipimox treatment prevented IH-induced lipolysis and increased epididymal fat mass and adipocyte size by 19 and 10%, respectively. Acipimox fully prevented IH-induced impairments in fasting glycemia, glucose tolerance, and insulin sensitivity. For all reported results, P less than 0.05 was considered significant. Augmented lipolysis contributes to insulin resistance and glucose intolerance observed in mice exposed to IH. Acipimox treatment ameliorated the metabolic consequences of IH and might represent a novel treatment option for patients with obstructive sleep apnea.

  5. ApoB100-LDL Acts as a Metabolic Signal from Liver to Peripheral Fat Causing Inhibition of Lipolysis in Adipocytes

    PubMed Central

    Skogsberg, Josefin; Dicker, Andrea; Rydén, Mikael; Åström, Gaby; Nilsson, Roland; Bhuiyan, Hasanuzzaman; Vitols, Sigurd; Mairal, Aline; Langin, Dominique; Alberts, Peteris; Walum, Erik; Tegnér, Jesper; Hamsten, Anders; Arner, Peter; Björkegren, Johan

    2008-01-01

    Background Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown. Methods and Findings We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr−/−Apob100/100). Conclusions Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome. PMID:19020660

  6. Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets

    PubMed Central

    Zheng, Pengfei; Xie, Zhonglin; Yuan, Yuan; Sui, Wen; Wang, Chao; Gao, Xing; Zhao, Yuanlin; Zhang, Feng; Gu, Yu; Hu, Peizhen; Ye, Jing; Feng, Xuyang; Zhang, Lijun

    2017-01-01

    Myocardial ischaemia-reperfusion (I/R) injury is a complex pathophysiological process. Current research has suggested that energy metabolism disorders, of which the abnormal consumption of fatty acids is closely related, compose the main pathological basis for myocardial I/R injury. Lipid droplets (LD) are critical regulators of lipid metabolism by LD-associated proteins. Among the lipid droplet proteins, the perilipin family members regulate lipolysis and lipogenesis through different mechanisms. Plin5, an important perilipin protein, promotes LD generation and lowers fatty acid oxidation, thus protecting the myocardium from lipotoxicity. This study investigated the protective effects of Plin5 in I/R myocardium. Our results indicated that Plin5 deficiency exacerbated the myocardial infarct area, aggravated left ventricular systolic dysfunction, reduced lipid storage, and elevated free fatty acids. Plin5-deficient myocardium exhibited severely damaged mitochondria, elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity. Furthermore, the decreased phosphorylation of PI3K/Akt in Plin5-null cardiomyocytes might contribute to I/R injury aggravation. In conclusion, Plin5, a new regulator of myocardial lipid metabolism, decreases free fatty acid peroxidation by inhibiting the lipolysis of intracellular lipid droplets, thus providing cardioprotection against I/R injury and shedding new light on therapeutic solutions for I/R diseases. PMID:28218306

  7. Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes.

    PubMed

    Fu, Xiang-Wei; Wu, Guo-Quan; Li, Jun-Jie; Hou, Yun-Peng; Zhou, Guang-Bin; Lun-Suo; Wang, Yan-Ping; Zhu, Shi-En

    2011-01-15

    In order to examine its effect on oocyte lipid content and cryosurvival, Forskolin was added to the medium for in vitro maturation of porcine oocytes. Treatments were control (IVM without Forskolin during the 42 h incubation period), addition of 10 μM Forskolin for the entire 42 h (0-42) and addition of 10 μM Forskolin between 24 and 42 h only (24-42). In Experiment 1, treatments did not differ significantly in cleavage rate, but the blastocyst formation rate was lower in the 0-42 group than for control and 24-42 group oocytes (17, 32 and 40%, respectively; P < 0.05). It was shown in Experiment 2 that Forskolin treatment from 0-42 h and from 24-42 h significantly reduced lipid content of oocytes compared to that of control cells (65 and 99 vs. 140 μm(2) intensity of fluorescence, respectively; P < 0.05). In Experiment 3, the percentage of oocyte survival after cryopreservation and thawing was significantly higher in both Forskolin treatment groups than in control oocytes (72% for 0-42, 65% for 24-42 and 52% for control; P < 0.05). However, Forskolin treatment did not increase cleavage rates of vitrified in vitro matured porcine oocytes (Control group 28%, 0-42 h group 0%, 24-42 h group 26.67%). Addition of Forskolin affected the nuclear maturation of porcine oocytes. The percentage of PBE (polar body extrusion) were significantly reduced in the 0-42 h group (0-42 h group 42.00 ± 2.08 vs. Control group 79.70 ± 2.82 and 24-42 h group 70.60 ± 2.83; P < 0.05). The 24-42 h group showed similar nuclear status to that of the Control group. We propose that delipation engendered by incubation with 10 μM Forskolin during 24-42 hours of maturation increased cryosurvival of in vitro-maturated porcine oocytes and that attendant chemical lipolysis did not impair their further development as it may have done in oocytes incubated with Forskolin for the full 42 h.

  8. The Lipid Droplet Protein Hypoxia-inducible Gene 2 Promotes Hepatic Triglyceride Deposition by Inhibiting Lipolysis*

    PubMed Central

    DiStefano, Marina T.; Danai, Laura V.; Roth Flach, Rachel J.; Chawla, Anil; Pedersen, David J.; Guilherme, Adilson; Czech, Michael P.

    2015-01-01

    The liver is a major site of glucose, fatty acid, and triglyceride (TG) synthesis and serves as a major regulator of whole body nutrient homeostasis. Chronic exposure of humans or rodents to high-calorie diets promotes non-alcoholic fatty liver disease, characterized by neutral lipid accumulation in lipid droplets (LD) of hepatocytes. Here we show that the LD protein hypoxia-inducible gene 2 (Hig2/Hilpda) functions to enhance lipid accumulation in hepatocytes by attenuating TG hydrolysis. Hig2 expression increased in livers of mice on a high-fat diet and during fasting, two states associated with enhanced hepatic TG content. Hig2 expressed in primary mouse hepatocytes localized to LDs and promoted LD TG deposition in the presence of oleate. Conversely, tamoxifen-inducible Hig2 deletion reduced both TG content and LD size in primary hepatocytes from mice harboring floxed alleles of Hig2 and a cre/ERT2 transgene controlled by the ubiquitin C promoter. Hepatic TG was also decreased by liver-specific deletion of Hig2 in mice with floxed Hig2 expressing cre controlled by the albumin promoter. Importantly, we demonstrate that Hig2-deficient hepatocytes exhibit increased TG lipolysis, TG turnover, and fatty acid oxidation as compared with controls. Interestingly, mice with liver-specific Hig2 deletion also display improved glucose tolerance. Taken together, these data indicate that Hig2 plays a major role in promoting lipid sequestration within LDs in mouse hepatocytes through a mechanism that impairs TG degradation. PMID:25922078

  9. The Lipid Droplet Protein Hypoxia-inducible Gene 2 Promotes Hepatic Triglyceride Deposition by Inhibiting Lipolysis.

    PubMed

    DiStefano, Marina T; Danai, Laura V; Roth Flach, Rachel J; Chawla, Anil; Pedersen, David J; Guilherme, Adilson; Czech, Michael P

    2015-06-12

    The liver is a major site of glucose, fatty acid, and triglyceride (TG) synthesis and serves as a major regulator of whole body nutrient homeostasis. Chronic exposure of humans or rodents to high-calorie diets promotes non-alcoholic fatty liver disease, characterized by neutral lipid accumulation in lipid droplets (LD) of hepatocytes. Here we show that the LD protein hypoxia-inducible gene 2 (Hig2/Hilpda) functions to enhance lipid accumulation in hepatocytes by attenuating TG hydrolysis. Hig2 expression increased in livers of mice on a high-fat diet and during fasting, two states associated with enhanced hepatic TG content. Hig2 expressed in primary mouse hepatocytes localized to LDs and promoted LD TG deposition in the presence of oleate. Conversely, tamoxifen-inducible Hig2 deletion reduced both TG content and LD size in primary hepatocytes from mice harboring floxed alleles of Hig2 and a cre/ERT2 transgene controlled by the ubiquitin C promoter. Hepatic TG was also decreased by liver-specific deletion of Hig2 in mice with floxed Hig2 expressing cre controlled by the albumin promoter. Importantly, we demonstrate that Hig2-deficient hepatocytes exhibit increased TG lipolysis, TG turnover, and fatty acid oxidation as compared with controls. Interestingly, mice with liver-specific Hig2 deletion also display improved glucose tolerance. Taken together, these data indicate that Hig2 plays a major role in promoting lipid sequestration within LDs in mouse hepatocytes through a mechanism that impairs TG degradation.

  10. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR)*

    PubMed Central

    Hemmasi, Sarah; Czulkies, Bernd A.; Schorch, Björn; Veit, Antonia; Aktories, Klaus; Papatheodorou, Panagiotis

    2015-01-01

    CDT (Clostridium difficile transferase) is a binary, actin ADP-ribosylating toxin frequently associated with hypervirulent strains of the human enteric pathogen C. difficile, the most serious cause of antibiotic-associated diarrhea and pseudomembranous colitis. CDT leads to the collapse of the actin cytoskeleton and, eventually, to cell death. Low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile. The lipolysis-stimulated lipoprotein receptor (LSR) is the host cell receptor for CDT, and our aim was to gain a deeper insight into the interplay between both proteins. We show that CDT interacts with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. We identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying the CRISPR-Cas9 technology. LSR truncations ectopically expressed in LSR knock-out cells indicated that intracellular parts of LSR are not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. By generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), we found that amino acids 757–866 of CDTb are sufficient for binding to LSR. With a transposon-based, random mutagenesis approach, we identified potential LSR-interacting epitopes in CDTb. This study increases our understanding about the interaction between CDT and its receptor LSR, which is key to the development of anti-toxin strategies for preventing cell entry of the toxin. PMID:25882847

  11. The roles of tricellular tight junction protein lipolysis-stimulated lipoprotein receptor in malignancy of human endometrial cancer cells

    PubMed Central

    Shimada, Hiroshi; Satohisa, Seiro; Kohno, Takayuki; Takahashi, Syunta; Hatakeyama, Tsubasa; Konno, Takumi; Tsujiwaki, Mitsuhiro; Saito, Tsuyoshi; Kojima, Takashi

    2016-01-01

    Lipolysis-stimulated lipoprotein receptor (LSR) has been identified as a novel molecular constituent of tricellular contacts that have a barrier function for the cellular sheet. LSR recruits tricellulin (TRIC), which is the first molecular component of tricellular tight junctions. Knockdown of LSR increases cell motility and invasion of certain cancer cells. However, the behavior and the roles of LSR in endometrial cancer remain unknown. In the present study, we investigated the behavior and roles of LSR in normal and endometrial cancer cells in vivo and in vitro. In endometriosis and endometrial cancer, LSR was observed not only in the subapical region but also throughout the lateral region as well as in normal endometrial epithelial cells in the secretory phase, and LSR in the cancer was reduced in correlation with the malignancy. Knockdown of LSR by the siRNA in cells of the endometrial cancer cell line Sawano, induced cell migration, invasion and proliferation, while TRIC relocalized from the tricellular region to the bicellular region at the membrane. In Sawano cells and normal HEEs, a decrease of LSR induced by leptin and an increase of LSR induced by adiponectin and the drugs for type 2 diabetes metformin and berberine were observed via distinct signaling pathways including JAK2/STAT. In Sawano cells, metformin and berberine prevented cell migration and invasion induced by downregulation of LSR by the siRNA and leptin treatment. The dissection of the mechanism in the downregulation of endometrial LSR during obesity is important in developing new diagnostic and therapy for endometrial cancer. PMID:27036040

  12. The roles of tricellular tight junction protein lipolysis-stimulated lipoprotein receptor in malignancy of human endometrial cancer cells.

    PubMed

    Shimada, Hiroshi; Satohisa, Seiro; Kohno, Takayuki; Takahashi, Syunta; Hatakeyama, Tsubasa; Konno, Takumi; Tsujiwaki, Mitsuhiro; Saito, Tsuyoshi; Kojima, Takashi

    2016-05-10

    Lipolysis-stimulated lipoprotein receptor (LSR) has been identified as a novel molecular constituent of tricellular contacts that have a barrier function for the cellular sheet. LSR recruits tricellulin (TRIC), which is the first molecular component of tricellular tight junctions. Knockdown of LSR increases cell motility and invasion of certain cancer cells. However, the behavior and the roles of LSR in endometrial cancer remain unknown. In the present study, we investigated the behavior and roles of LSR in normal and endometrial cancer cells in vivo and in vitro. In endometriosis and endometrial cancer, LSR was observed not only in the subapical region but also throughout the lateral region as well as in normal endometrial epithelial cells in the secretory phase, and LSR in the cancer was reduced in correlation with the malignancy. Knockdown of LSR by the siRNA in cells of the endometrial cancer cell line Sawano, induced cell migration, invasion and proliferation, while TRIC relocalized from the tricellular region to the bicellular region at the membrane. In Sawano cells and normal HEEs, a decrease of LSR induced by leptin and an increase of LSR induced by adiponectin and the drugs for type 2 diabetes metformin and berberine were observed via distinct signaling pathways including JAK2/STAT. In Sawano cells, metformin and berberine prevented cell migration and invasion induced by downregulation of LSR by the siRNA and leptin treatment. The dissection of the mechanism in the downregulation of endometrial LSR during obesity is important in developing new diagnostic and therapy for endometrial cancer.

  13. Adipocyte lipolysis and insulin resistance.

    PubMed

    Morigny, Pauline; Houssier, Marianne; Mouisel, Etienne; Langin, Dominique

    2016-06-01

    Obesity-induced insulin resistance is a major risk factor for the development of type 2 diabetes. Basal fat cell lipolysis (i.e., fat cell triacylglycerol breakdown into fatty acids and glycerol in the absence of stimulatory factors) is elevated during obesity and is closely associated with insulin resistance. Inhibition of adipocyte lipolysis may therefore be a promising therapeutic strategy for treating insulin resistance and preventing obesity-associated type 2 diabetes. In this review, we explore the relationship between adipose lipolysis and insulin sensitivity. After providing an overview of the components of fat cell lipolytic machinery, we describe the hypotheses that may support the causality between lipolysis and insulin resistance. Excessive circulating fatty acids may ectopically accumulate in insulin-sensitive tissues and impair insulin action. Increased basal lipolysis may also modify the secretory profile of adipose tissue, influencing whole body insulin sensitivity. Finally, excessive fatty acid release may also worsen adipose tissue inflammation, a well-known parameter contributing to insulin resistance. Partial genetic or pharmacologic inhibition of fat cell lipases in mice as well as short term clinical trials using antilipolytic drugs in humans support the benefit of fat cell lipolysis inhibition on systemic insulin sensitivity and glucose metabolism, which occurs without an increase of fat mass. Modulation of fatty acid fluxes and, putatively, of fat cell secretory pattern may explain the amelioration of insulin sensitivity whereas changes in adipose tissue immune response do not seem involved.

  14. Overexpression of G0/G1 Switch Gene 2 in Adipose Tissue of Transgenic Quail Inhibits Lipolysis Associated with Egg Laying

    PubMed Central

    Chen, Paula Renee; Shin, Sangsu; Choi, Young Min; Kim, Elizabeth; Han, Jae Yong; Lee, Kichoon

    2016-01-01

    In avians, yolk synthesis is regulated by incorporation of portomicrons from the diet, transport of lipoproteins from the liver, and release of lipids from adipose tissue; however, the extent to which lipolysis in adipose tissue contributes to yolk synthesis and egg production has yet to be elucidated. G0/G1 switch gene 2 (G0S2) is known to bind and inhibit adipose triglyceride lipase (ATGL), the rate-limiting enzyme in lipolysis. The objective of this study was to determine whether overexpression of the G0S2 gene in adipose tissue could successfully inhibit endogenous ATGL activity associated with egg laying. Two independent lines of transgenic quail overexpressing G0S2 had delayed onset of egg production and reduced number of eggs over a six-week period compared to non-transgenic quail. Although no differences in measured parameters were observed at the pre-laying stage (5 weeks of age), G0S2 transgenic quail had significantly larger interclavicular fat pad weights and adipocyte sizes and lower NEFA concentrations in the serum at early (1 week after laying first egg) and active laying (5 weeks after laying first egg) stages. Overexpression of G0S2 inhibited lipolysis during early and active laying, which drastically shifted the balance towards a net accumulation of triacylglycerols and increased adipose tissue mass. Thereby, egg production was negatively affected as less triacylglycerols were catabolized to produce lipids for the yolk. PMID:26999108

  15. Overexpression of G0/G1 Switch Gene 2 in Adipose Tissue of Transgenic Quail Inhibits Lipolysis Associated with Egg Laying.

    PubMed

    Chen, Paula Renee; Shin, Sangsu; Choi, Young Min; Kim, Elizabeth; Han, Jae Yong; Lee, Kichoon

    2016-03-15

    In avians, yolk synthesis is regulated by incorporation of portomicrons from the diet, transport of lipoproteins from the liver, and release of lipids from adipose tissue; however, the extent to which lipolysis in adipose tissue contributes to yolk synthesis and egg production has yet to be elucidated. G0/G1 switch gene 2 (G0S2) is known to bind and inhibit adipose triglyceride lipase (ATGL), the rate-limiting enzyme in lipolysis. The objective of this study was to determine whether overexpression of the G0S2 gene in adipose tissue could successfully inhibit endogenous ATGL activity associated with egg laying. Two independent lines of transgenic quail overexpressing G0S2 had delayed onset of egg production and reduced number of eggs over a six-week period compared to non-transgenic quail. Although no differences in measured parameters were observed at the pre-laying stage (5 weeks of age), G0S2 transgenic quail had significantly larger interclavicular fat pad weights and adipocyte sizes and lower NEFA concentrations in the serum at early (1 week after laying first egg) and active laying (5 weeks after laying first egg) stages. Overexpression of G0S2 inhibited lipolysis during early and active laying, which drastically shifted the balance towards a net accumulation of triacylglycerols and increased adipose tissue mass. Thereby, egg production was negatively affected as less triacylglycerols were catabolized to produce lipids for the yolk.

  16. Immunogenic inhibition of prominent ruminal bacteria as a means to reduce lipolysis and biohydrogenation activity in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through the microbial processes of lipolysis and biohydrogenation, ruminal animals promote the accumulation of saturated fatty acids in their meat and milk. Anaerovibrio lipolyticus, Butyrivibrio fibrisolvens, and Propionibacterium avidum and acnes have been identified as contributors to ruminal li...

  17. Calciotropic hormones and lipolysis of human adipose tissue: role of extracellular calcium as conditioning but not regulating factor.

    PubMed

    Ziegler, R; Jobst, W; Minne, H; Faulhaber, J D

    1980-01-01

    The influences of different calcium concentrations (0, 0.924 and 2.772 mMol/l) on lipolysis of in vitro incubated human adipose tissue slices or adipocytes were studied under the conditions of stimulation with isoproterenol and parathyroid hormone preparations or inhibition by insulin. Extractive bovine PTH (as well as synthetic PTH 1--34) stimulated glycerol release in a biphasic pattern similarly to isoproterenol; PTH was about half as potent as isoproterenol. The optimal conditions for lipolysis were observed using a calcium concentration of 0.924 mMol/l, whereas lipolysis was distinctly impaired at concentrations of 0 or 2.772 mMol/l; this was true for basal as well as isoproterenol- and PTH stimulated lipolysis or the inhibitory effect of insulin. In contrast to partially purified extractive calcitonin, pure synthetic calcitonin did not inhibit lipolysis. Isoproterenol- and PTH-administrations led to cAMP accumulation in the adipose tissue, this process was also diminished at the non-optimal calcium concentrations. The results suggest a conditioning, but not a regulating significance of extracellular calcium for lipolysis, whereas the importance of the lipolytic potency of PTH remains to be elucidated.

  18. Effects of local alpha2-adrenergic receptor blockade on adipose tissue lipolysis during prolonged systemic adrenaline infusion in normal man.

    PubMed

    Simonsen, Lene; Enevoldsen, Lotte H; Stallknecht, Bente; Bülow, Jens

    2008-03-01

    During prolonged adrenaline infusion, lipolysis peaks within 30 min and thereafter tends to decline, and we hypothesized that the stimulation of local adipose tissue alpha2-adrenergic receptors accounts for this decline. The lipolytic effect of a prolonged intravenous adrenaline infusion combined with local infusion of the alpha2-blocker phentolamine in superficial and deep abdominal subcutaneous adipose tissue and in preperitoneal adipose tissue was studied in seven healthy subjects. The interstitial glycerol concentration in the three adipose tissue depots was measured by the microdialysis method. Regional adipose tissue blood flow was measured by the (133)Xe clearance technique. Regional glycerol output (lipolytic rate) was calculated from these measurements and simultaneous measurements of arterial glycerol concentrations. Adrenaline infusion increased lipolysis in all three depots (data previously published). Phentolamine infusion did not augment lipolysis in the subcutaneous depots while it increased the lipolytic rate in the preperitoneal depot. It is concluded that alpha2-adrenergic receptors do not have a significant effect on subcutaneous adipose tissue lipolysis during high circulating adrenaline concentrations, and the decrease in lipolysis in subcutaneous adipose tissue under prolonged adrenaline stimulation is thus not attributed to alpha2-adrenergic receptor inhibition of lipolysis. However, in the preperitoneal adipose tissue depot, alpha2-adrenergic receptor tone plays a role for the lipolytic rate obtained during prolonged adrenaline stimulation.

  19. Motor cortex inhibition induced by acoustic stimulation.

    PubMed

    Kühn, Andrea A; Sharott, Andrew; Trottenberg, Thomas; Kupsch, Andreas; Brown, Peter

    2004-09-01

    The influence of the brainstem motor system on cerebral motor areas may play an important role in motor control in health and disease. A new approach to investigate this interaction in man is combining acoustic stimulation activating the startle system with transcranial magnetic stimulation (TMS) over the motor cortex. However, it is unclear whether the inhibition of TMS responses following acoustic stimulation occurs at the level of the motor cortex through reticulo-cortical projections or subcortically, perhaps through reticulo-spinal projections. We compared the influence of acoustic stimulation on motor effects elicited by TMS over motor cortical areas to those evoked with subcortical electrical stimulation (SES) through depth electrodes in five patients treated with deep brain stimulation for Parkinson's disease. SES bypasses the motor cortex, demonstrating any interaction with acoustic stimuli at the subcortical level. EMG was recorded from the contralateral biceps brachii muscle. Acoustic stimulation was delivered binaurally through headphones and used as a conditioning stimulus at an interstimulus interval of 50 ms. When TMS was used as the test stimulus, the area and amplitude of the conditioned motor response was significantly inhibited (area: 57.5+/-12.9%, amplitude: 47.9+/-7.4%, as percentage of unconditioned response) whereas facilitation occurred with SES (area: 110.1+/-4.3%, amplitude: 116.9+/-6.9%). We conclude that a startle-evoked activation of reticulo-cortical projections transiently inhibits the motor cortex.

  20. Vagus nerve stimulation inhibits cortical spreading depression.

    PubMed

    Chen, Shih-Pin; Ay, Ilknur; de Morais, Andreia Lopes; Qin, Tao; Zheng, Yi; Sadeghian, Homa; Oka, Fumiaki; Simon, Bruce; Eikermann-Haerter, Katharina; Ayata, Cenk

    2016-04-01

    Vagus nerve stimulation has recently been reported to improve symptoms of migraine. Cortical spreading depression is the electrophysiological event underlying migraine aura and is a trigger for headache. We tested whether vagus nerve stimulation inhibits cortical spreading depression to explain its antimigraine effect. Unilateral vagus nerve stimulation was delivered either noninvasively through the skin or directly by electrodes placed around the nerve. Systemic physiology was monitored throughout the study. Both noninvasive transcutaneous and invasive direct vagus nerve stimulations significantly suppressed spreading depression susceptibility in the occipital cortex in rats. The electrical stimulation threshold to evoke a spreading depression was elevated by more than 2-fold, the frequency of spreading depressions during continuous topical 1 M KCl was reduced by ∼40%, and propagation speed of spreading depression was reduced by ∼15%. This effect developed within 30 minutes after vagus nerve stimulation and persisted for more than 3 hours. Noninvasive transcutaneous vagus nerve stimulation was as efficacious as direct invasive vagus nerve stimulation, and the efficacy did not differ between the ipsilateral and contralateral hemispheres. Our findings provide a potential mechanism by which vagus nerve stimulation may be efficacious in migraine and suggest that susceptibility to spreading depression is a suitable platform to optimize its efficacy.

  1. Lipid droplet meets a mitochondrial protein to regulate adipocyte lipolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to adrenergic stimulation, adipocytes undergo protein kinase A (PKA)-stimulated lipolysis. A key PKA target in this context is perilipin 1, a major regulator of lipolysis on lipid droplets (LDs). A study published in this issue of The EMBO Journal (Pidoux et al, 2011) identifies optic at...

  2. Acetylshikonin from Zicao Prevents Obesity in Rats on a High-Fat Diet by Inhibiting Lipid Accumulation and Inducing Lipolysis

    PubMed Central

    Zhu, Banghao

    2016-01-01

    Various drugs have been developed to treat obesity, but these have undesirable secondary effects, and an efficient but non-toxic anti-obesity drug from natural sources is desired. This study investigated the anti-obesity effects and mechanisms of action of acetylshikonin (AS)—which is used in traditional Chinese medicine—in rats on a high-fat diet (HFD). Rats were fed a normal diet or an HFD; the latter group was received no treatment or were treated with 100, 300, or 900 mg/kg AS extract by intragastric administration for 6 weeks. In addition, 3T3-L1 adipocytes were treated with AS and the effects on adipogenesis and lipolysis were evaluated by western blot analysis of adipogenic transcription factors and lipid-metabolizing enzyme levels and the phosphorylation status of protein kinase (PK) A and hormone-sensitive lipase (HSL). AS prevented HFD-induced obesity including reduction in body weight, white adipose tissue content, liver mass, and serum triglyceride and free fatty acid levels in rats. It also suppressed the expression of adipogenic differentiation transcription factors and decreased the expression of the adipocyte-specific proteins HSL and adipose triglyceride lipase (ATGL). Furthermore, AS treatment induced lipolysis, leading to the release of glycerol and increased in PKA and HSL phosphorylation. These findings demonstrate that AS has anti-obesity effects in a rat model and may be a safe treatment for obesity in humans. PMID:26771185

  3. Tauroursodeoxycholic acid inhibits TNF-α-induced lipolysis in 3T3-L1 adipocytes via the IRE-JNK-perilipin-A signaling pathway.

    PubMed

    Xia, Wenyan; Zhou, Yu; Wang, Lijing; Wang, Linxi; Liu, Xiaoying; Lin, Yichuan; Zhou, Qing; Huang, Jianqing; Liu, Libin

    2017-04-01

    The present study investigated the effects of tauroursodeoxycholic acid (TUDCA) on the lipolytic action of tumor necrosis factor (TNF)-α in 3T3-L1 adipocytes. Following treatment with TNF‑α, cell viability was determined by MTT assay to select the optimum concentration and duration of TNF‑α treatment in 3T3‑L1 adipocytes. Intracellular lipid droplet dispersion and glycerin content in culture media were determined to evaluate the effect of TUDCA on TNF‑α‑induced lipolysis in 3T3‑L1 adipocytes. Western blotting was performed to detect protein expression levels of perilipin‑A and protein markers of endoplasmic reticulum stress: Immunoglobulin‑binding protein (BiP), inositol‑requiring enzyme (IRE), c‑Jun N‑terminal kinase (JNK), phosphorylated (p)‑IRE and p‑JNK. Following treatment with 50 ng/ml TNF‑α for 24 h, glycerin content increased significantly and lipid droplets were dispersed. Glycerin content was reduced significantly and dispersal of lipid droplets reduced following pretreatment of 3T3‑L1 adipocytes with 1 mmol/l TUDCA. TNF‑α additionally activated the expression of BiP, p‑IRE and p‑JNK in a time‑dependent manner; following pretreatment of 3T3‑L1 adipocytes with 1 mmol/l TUDCA, the expression levels of these three proteins decreased. Therefore, TUDCA may inhibit TNF-α-induced lipolysis in 3T3‑L1 adipocytes and reduce production of free fatty acids. Its underlying molecular mechanisms are potentially associated with the inhibition of activation of the IRE‑JNK signaling pathway, which influences perilipin-A expression levels.

  4. Platyphylloside Isolated From Betula platyphylla Inhibit Adipocyte Differentiation and Induce Lipolysis Via Regulating Adipokines Including PPARγ in 3T3-L1 Cells

    PubMed Central

    Lee, Mina; Sung, Sang Hyun

    2016-01-01

    Background: Obesity causes or aggravates many health problems, both independently and in association with several pathological disorders, including Type II diabetes, hypertension, atherosclerosis, and cancer. Therefore, we screened small compounds isolated from natural products for the development of anti-obesity drugs. Objective: The purpose of this study was to investigate the anti-adipogenic activities of platyphylloside, diarylheptanoid isolated from Betula platyphylla, which was selected based on the screening using 3T3-L1 cells. Materials and Methods: To evaluate the inhibition of adipocyte differentiation and lipolysis, lipid contents of BPP on were measured using Oil Red O staining in 3T3-L1 cells. The mRNA and protein expression levels of various adipokines were measured by Quantitative real-time PCR and Western blotting analysis, respectively. Results: Platyphylloside showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 cells and suppressed adipocyte differentiation even in the presence of troglitazone, a PPARγ agonist. Platyphylloside might suppress adipocyte differentiation through PPARγ, C/EBPα, and SREBP1-induced adipogenesis, which is synergistically associated with downstream adipocyte-specific gene promoters such as aP2, FAS, SCD-1, LPL, and Adiponectin. In addition, platyphylloside affected lipolysis by down-regulating perilipin and HSL and up-regulating TNFα. Conclusion: Taken together, the results reveal that platyphylloside has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity. SUMMARY The extract of B. platyphylla bark and its isolate, BPP, had anti-adipogenic activity in 3T3-L1 cells via suppression of adipocyte differentiation from preadipocytes.Treatment with BPP significantly down-regulated the expression of PPARγ, C/EBP, C/EBPβ, C/EBPδ, SREBP1c, SCD-1, FAS, aP2 and LPL.BPP induced a lipolytic response in mature adipocytes via up-regulation krof TNFá and down

  5. Conjugated linoleic acid supplementation caused reduction of perilipin1 and aberrant lipolysis in epididymal adipose tissue

    SciTech Connect

    Cai, Demin; Li, Hongji; Zhou, Bo; Han, Liqiang; Zhang, Xiaomei; Yang, Guoyu; Yang, Guoqing

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Conjugated linoleic acid supplementation suppresses perilipin1 in epididymal fat. Black-Right-Pointing-Pointer Conjugated linoleic acid inhibits promoter activity of perilipin1 in 3T3-L1 cells. Black-Right-Pointing-Pointer Conjugated linoleic acids elevate basal but blunt hormone-stimulated lipolysis. -- Abstract: Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI) WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor {alpha} (TNF{alpha}) and the positive regulator Peroxisome Proliferator-Activated Receptor-{gamma} (PPAR{gamma}) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.

  6. Measurement of lipolysis.

    PubMed

    Schweiger, Martina; Eichmann, Thomas O; Taschler, Ulrike; Zimmermann, Robert; Zechner, Rudolf; Lass, Achim

    2014-01-01

    Lipolysis is defined as the hydrolytic cleavage of ester bonds in triglycerides (TGs), resulting in the generation of fatty acids (FAs) and glycerol. The two major TG pools in the body of vertebrates comprise intracellular TGs and plasma/nutritional TGs. Accordingly, this leads to the discrimination between intracellular and intravascular/gastrointestinal lipolysis, respectively. This chapter focuses exclusively on intracellular lipolysis, referred to as lipolysis herein. The lipolytic cleavage of TGs occurs in essentially all cells and tissues of the body. In all of them, the resulting FAs are utilized endogenously for energy production or biosynthetic pathways with one exception, white adipose tissue (WAT). WAT releases FAs and glycerol to supply nonadipose tissues at times of nutrient deprivation. The fundamental role of lipolysis in lipid and energy homeostasis requires the accurate measurement of lipase activities and lipolytic rates. The recent discovery of new enzymes and regulators that mediate the hydrolysis of TG has made these measurements more complex. Here, we describe detailed methodology for how to measure lipolysis and specific enzymes' activities in cells, organs, and their respective extracts.

  7. Hydrolysis of bovine and caprine milk fat globules by lipoprotein lipase. Effects of heparin and skim milk on lipase distribution and on lipolysis

    SciTech Connect

    Sundheim, G.; Bengtsson-Olivecrona, G.

    1987-12-01

    Heparin can dissociate lipoprotein lipase from casein micelles, and addition of heparin enhances lipolysis in bovine but not in caprine milk. Heparin shortened the lag-time for binding of lipoprotein lipase to milk fat globules and for lipolysis. Heparin counteracted the inhibitory effects of skim milk on binding of lipase and on lipolysis. Heparin stimulated lipolysis in all bovine milk samples when added before cooling and in spontaneously lipolytic milk samples also when added after cooling. Heparin enhanced lipolysis of isolated milk fat globules. Hence, its effect is not solely due to dissociation of lipoprotein lipase from the casein micelles. Cooling of goat milk caused more marked changes in the distribution of lipase than cooling of bovine milk; the fraction of added /sup 125/I-labeled lipase that bound to cream increased from about 8 to 60%. In addition, caprine skim milk caused less inhibition of lipolysis than bovine skim milk. These observations provide an explanation for the high degree of cold storage lipolysis in goat milk. Heparin had only small effects on the distribution of lipoprotein lipase in caprine milk, which explains why heparin has so little effect on lipolysis in caprine milk. The distribution of /sup 35/S-labeled heparin in bovine milk was studied. In warm milk less than 10% bound to the cream fraction, but when milk was cooled, binding of heparin to cream increased to 45%. These results suggest that there exists in the skim fraction a relatively small amount of a heparin-binding protein, which on cooling of milk adsorbs to the milk fat, or suggests that cooling induces a conformational change in a membrane protein such that its affinity for heparin increases.

  8. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites

    PubMed Central

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca2+ activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca2+ activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. DOI: http://dx.doi.org/10.7554/eLife.13598.001 PMID:26988796

  9. Suppression of adipose lipolysis by long-chain fatty acid analogs.

    PubMed

    Kalderon, Bella; Azazmeh, Narmen; Azulay, Nili; Vissler, Noam; Valitsky, Michael; Bar-Tana, Jacob

    2012-05-01

    Agonist-induced lipolysis of adipose fat is robustly inhibited by insulin or by feedback inhibition by the long-chain fatty acids (LCFA) produced during lipolysis. However, the mode of action of LCFA in suppressing adipose lipolysis is not clear. β,β'-Tetramethyl hexadecanedioic acid (Mββ/ EDICA16) is a synthetic LCFA that is neither esterified into lipids nor β-oxidized, and therefore, it was exploited for suppressing agonist-induced lipolysis in analogy to natural LCFA. Mββ is shown here to suppress isoproterenol-induced lipolysis in the rat in vivo as well as in 3T3-L1 adipocytes. Inhibition of isoproterenol-induced lipolysis is due to decrease in isoproterenol-induced cAMP with concomitant inhibition of the phosphorylation of hormone-sensitive lipase and perilipin by protein kinase A. Suppression of cellular cAMP levels is accounted for by inhibition of the adenylate cyclase due to suppression of Raf1 expression by Mββ-activated AMPK. Suppression of Raf1 is further complemented by induction of components of the unfolded-protein-response by Mββ. Our findings imply genuine inhibition of agonist-induced adipose lipolysis by LCFA, independent of their β-oxidation or reesterification. Mββ suppression of agonist-induced lipolysis and cellular cAMP levels independent of the insulin transduction pathway may indicate that synthetic LCFA could serve as insulin mimetics in the lipolysis context under conditions of insulin resistance.

  10. Can intraurethral stimulation inhibit micturition reflex in normal female rats?

    PubMed Central

    Yu, Tian; Liao, Limin; Wyndaele, Jean Jacques

    2016-01-01

    ABSTRACT Objective The study was designed to determine the effect of low frequency (2.5Hz) intraurethral electrical stimulation on bladder capacity and maximum voiding pressures. Materials and Methods The experiments were conducted in 15 virgin female Sprague-Dawley rats (220–250g). The animals were anesthetized by intraperitoneal injection of urethane (1.5g/kg). Animal care and experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee of Antwerp University (code: 2013-50). Unipolar square pulses of 0.06mA were used to stimulate urethra at frequency of 2.5Hz (0.2ms pulse width) in order to evaluate the ability of intraurethral stimulation to inhibit bladder contractions. Continuous stimulation and intermittent stimulation with 5sec ‘‘on’’ and 5sec ‘‘off’’ duty cycle were applied during repeated saline cystometrograms (CMGs). Maximum voiding pressures (MVP) and bladder capacity were investigated to determine the inhibitory effect on bladder contraction induced by intraurethral stimulation. Results The continuous stimulation and intermittent stimulation significantly (p<0.05) decreased MVP and increased bladder capacity. There was no significant difference in MVP and bladder capacity between continuous and intermittent stimulation group. Conclusions The present results suggest that 2.5Hz continuous and intermittent intraurethral stimulation can inhibit micturition reflex, decrease MVP and increase bladder capacity. There was no significant difference in MVP and bladder capacity between continuous and intermittent stimulation group. PMID:27286128

  11. Phosphatidic acid inhibits ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ouro, Alberto; Arana, Lide; Rivera, Io-Guané; Ordoñez, Marta; Gomez-Larrauri, Ana; Presa, Natalia; Simón, Jorge; Trueba, Miguel; Gangoiti, Patricia; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-12-15

    Ceramide 1-phosphate (C1P) was recently demonstrated to potently induce cell migration. This action could only be observed when C1P was applied exogenously to cells in culture, and was inhibited by pertussis toxin. However, the mechanisms involved in this process are poorly understood. In this work, we found that phosphatidic acid (PA), which is structurally related to C1P, displaced radiolabeled C1P from its membrane-binding site and inhibited C1P-stimulated macrophage migration. This effect was independent of the saturated fatty acid chain length or the presence of a double bond in each of the fatty acyl chains of PA. Treatment of RAW264.7 macrophages with exogenous phospholipase D (PLD), an enzyme that produces PA from membrane phospholipids, also inhibited C1P-stimulated cell migration. Likewise, PA or exogenous PLD inhibited C1P-stimulated extracellularly regulated kinases (ERK) 1 and 2 phosphorylation, leading to inhibition of cell migration. However, PA did not inhibit C1P-stimulated Akt phosphorylation. It is concluded that PA is a physiological regulator of C1P-stimulated macrophage migration. These actions of PA may have important implications in the control of pathophysiological functions that are regulated by C1P, including inflammation and various cellular processes associated with cell migration such as organogenesis or tumor metastasis.

  12. In vivo nitric oxide suppression of lipolysis in subcutaneous abdominal adipose tissue is greater in obese than lean women.

    PubMed

    Hickner, Robert C; Kemeny, Gabor; Clark, Paige D; Galvin, Vaughna B; McIver, Kerry L; Evans, Chris A; Carper, Michael J; Garry, Joseph P

    2012-06-01

    Mounting evidence suggests there is a reduced mobilization of stored fat in obese compared to lean women. It has been suggested that this decreased lipid mobilization may lead to, or perpetuate, the obese state; however, there may be a beneficial effect of reduced lipolysis, either by allowing for a sink of excess fatty acids, or by limiting a potentially harmful rise in interstitial and circulating fatty acid concentration. Nitric oxide (NO) may be responsible for a portion of the reduced in vivo rates of lipolysis in obese women because NO reduces adipose tissue lipolysis and adipose tissue nitric oxide synthase (NOS) mRNA is higher in obese than lean individuals. The purpose of this study was to determine if the inhibition of NOS by L-N(g)-monomethyl-L-arginine (L-NMMA) in the absence and presence of lipolytic stimulation would result in a larger increase in lipolytic rate in obese (OB) than lean (LN) women. Microdialysis probes were inserted into the subcutaneous abdominal adipose tissue of seven obese and six lean women to monitor lipolysis. Dialysate glycerol concentration increased in response to L-NMMA in OB (basal 125 ± 26 µmol/l; L-NMMA 225 ± 35 µmol/l) to a greater extent than in LN (basal 70 ± 18 µmol/l; L-NMMA 84 ± 20 µmol/l) women (P < 0.05). Dialysate glycerol increased to a similar extent in OB and LN in response to adrenergic stimulation by isoprenaline or norepinephrine in the presence of L-NMMA. The differential glycerol responses to L-NMMA between obese and lean could not be explained by differential blood flow responses. It can be concluded that NO suppresses basal lipolysis in obese women to a greater extent than in lean women.

  13. Perilipin Promotes HSL-Mediated Adipocyte Lipolysis via Phosphorylation-dependent and Independent Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis, in response to catecholamines, is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-ass...

  14. Metabolic response in liver and Brockmann bodies of rainbow trout to inhibition of lipolysis; possible involvement of the hypothalamus-pituitary-interrenal (HPI) axis.

    PubMed

    Librán-Pérez, Marta; Velasco, Cristina; Otero-Rodiño, Cristina; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2015-05-01

    We previously demonstrated in rainbow trout that the decrease in circulating levels of fatty acid (FA) induced by treating fish with SDZ WAG 994 (SDZ) induced a counter-regulatory response in which the activation of the hypothalamus-pituitary-interrenal (HPI, equivalent to mammalian hypothalamus-pituitary-adrenal) axis was likely involved. This activation, probably not related to the control of food intake through FA sensor systems but to the modulation of lipolysis in peripheral tissues, liver and Brockmann bodies (BB, the main site of pancreatic endocrine cells in fish), would target the restoration of FA levels in plasma. To assess this hypothesis, we lowered circulating FA levels by treating fish with SDZ alone, or SDZ in the presence of metyrapone (an inhibitor of cortisol synthesis). In liver, the changes observed were not compatible with a direct FA-sensing response but with a stress response, which allows us to suggest that the detection of a FA decrease in the hypothalamus elicits a counter-regulatory response in liver, resulting in an activation of lipolysis to restore FA levels in plasma. The activation of these metabolic changes in liver could be attributable to the activation of the HPI axis and/or to the action of sympathetic pathways. In contrast, in BB, changes in circulating FA levels induce changes in several parameters compatible with the function of FA-sensing systems informing about the decrease in circulating FA levels.

  15. Triphenyl phosphate enhances adipogenic differentiation, glucose uptake and lipolysis via endocrine and noradrenergic mechanisms.

    PubMed

    Cano-Sancho, German; Smith, Anna; La Merrill, Michele A

    2017-04-01

    The use of triphenyl phosphate (TPhP) as a flame retardant or plasticizer has increased during the last decade, resulting in widespread human exposure without commensurate toxicity assessment. The main objectives of this study were to assess the in vitro effect of TPhP and its metabolite diphenyl phosphate (DPhP) on the adipogenic differentiation of 3T3-L1 cells, as well as glucose uptake and lipolysis in differentiated 3T3-L1 adipocytes. TPhP increased pre-adipocyte proliferation and subsequent adipogenic differentiation of 3T3-L1 cells, coinciding with increased transcription in the CEBP and PPARG pathway. Treatment of mature adipocytes with TPhP increased the basal- and insulin stimulated- uptake of the glucose analog 2-[N (-7-nitrobenz-2-oxa1, 3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG). This effect was ablated by inhibition of PI3K, a member of the insulin signaling pathway. DPhP had no significant effect on cell proliferation and, compared to TPhP, a weaker effect on adipogenic differentiation and on 2-NBDG uptake. Both TPhP and DPhT significantly enhanced the isoproterenol-induced lipolysis, most likely by increasing the expression of lipolytic genes during and after differentiation. This study suggests that TPhP increases adipogenic differentiation, glucose uptake, and lipolysis in 3T3-L1 cells through endocrine and noradrenergic mechanisms.

  16. Modulation of adipose tissue lipolysis and body weight by high-density lipoproteins in mice

    PubMed Central

    Wei, H; Averill, M M; McMillen, T S; Dastvan, F; Mitra, P; Subramanian, S; Tang, C; Chait, A; LeBoeuf, R C

    2014-01-01

    Background: Obesity is associated with reduced levels of circulating high-density lipoproteins (HDLs) and its major protein, apolipoprotein (apo) A-I. As a result of the role of HDL and apoA-I in cellular lipid transport, low HDL and apoA-I may contribute directly to establishing or maintaining the obese condition. Methods: To test this, male C57BL/6 wild-type (WT), apoA-I deficient (apoA-I−/−) and apoA-I transgenic (apoA-Itg/tg) mice were fed obesogenic diets (ODs) and monitored for several clinical parameters. We also performed cell culture studies. Results: ApoA-I−/− mice gained significantly more body weight and body fat than WT mice over 20 weeks despite their reduced food intake. During a caloric restriction regime imposed on OD-fed mice, apoA-I deficiency significantly inhibited the loss of body fat as compared with WT mice. Reduced body fat loss with caloric restriction in apoA-I−/− mice was associated with blunted stimulated adipose tissue lipolysis as verified by decreased levels of phosphorylated hormone-sensitive lipase (p-HSL) and lipolytic enzyme mRNA. In contrast to apoA-I−/− mice, apoA-Itg/tg mice gained relatively less weight than WT mice, consistent with other reports. ApoA-Itg/tg mice showed increased adipose tissue lipolysis, verified by increased levels of p-HSL and lipolytic enzyme mRNA. In cell culture studies, HDL and apoA-I specifically increased catecholamine-induced lipolysis possibly through modulating the adipocyte plasma membrane cholesterol content. Conclusions: Thus, apoA-I and HDL contribute to modulating body fat content by controlling the extent of lipolysis. ApoA-I and HDL are key components of lipid metabolism in adipose tissue and constitute new therapeutic targets in obesity. PMID:24567123

  17. Effect of carbohydrate- and protein-rich meals on exercise-induced activation of lipolysis in obese subjects.

    PubMed

    Erdmann, J; Tholl, S; Schusdziarra, V

    2010-04-01

    Exercise is an important part of obesity treatment concepts to support fat mobilisation from adipose tissue and also fat oxidation nolich is impaired in obese subjects. In normal weight subjects it is well known that stimulation of plasma insulin levels by a carbohydrate meal can inhibit lipolysis and subsequent fat oxidation. Since obese subjects frequently have elevated basal and postprandial insulin levels the effect of carbohydrate- and protein-rich test meals on exercise-induced activation of lipolysis is of special interest. Twenty obese subjects performed bicycle exercise for 30 min in the fasted state, 30 min after a carbohydrate-or a protein-rich meal, and 120 min after the carbohydrate meal (n=12), respectively, at low intensity. Activation of lipolysis was assessed by plasma glycerol levels. In addition, plasma insulin, glucose, and lactate concentrations were determined. In comparison to the fasted state, the carbohydrate meal suppressed activation of lipolysis. Following the protein meal, exercise led to an attenuated but significant increase of glycerol levels. A similar rise was observed when the carbohydrate meal was ingested 2 h prior to the exercise bout. To improve exercise-induced lipolysis and subsequent fat oxidation during low-intensity exercise obese subjects should not ingest carbohydrates immediately before exercise. Hunger sensations should be satisfied with protein-rich food. When carbohydrates are consumed 2 h prior to exercise its lipolytic effect is comparable to the protein meal. These data are useful in every day dietary counselling and might help to improve weight loss during obesity treatment.

  18. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  19. G0/G1 Switch Gene 2 Regulates Cardiac Lipolysis*

    PubMed Central

    Heier, Christoph; Radner, Franz P. W.; Moustafa, Tarek; Schreiber, Renate; Grond, Susanne; Eichmann, Thomas O.; Schweiger, Martina; Schmidt, Albrecht; Cerk, Ines K.; Oberer, Monika; Theussl, H.-Christian; Wojciechowski, Jacek; Penninger, Josef M.; Zimmermann, Robert; Zechner, Rudolf

    2015-01-01

    The anabolism and catabolism of myocardial triacylglycerol (TAG) stores are important processes for normal cardiac function. TAG synthesis detoxifies and stockpiles fatty acids to prevent lipotoxicity, whereas TAG hydrolysis (lipolysis) remobilizes fatty acids from endogenous storage pools as energy substrates, signaling molecules, or precursors for complex lipids. This study focused on the role of G0/G1 switch 2 (G0S2) protein, which was previously shown to inhibit the principal TAG hydrolase adipose triglyceride lipase (ATGL), in the regulation of cardiac lipolysis. Using wild-type and mutant mice, we show the following: (i) G0S2 is expressed in the heart and regulated by the nutritional status with highest expression levels after re-feeding. (ii) Cardiac-specific overexpression of G0S2 inhibits cardiac lipolysis by direct protein-protein interaction with ATGL. This leads to severe cardiac steatosis. The steatotic hearts caused by G0S2 overexpression are less prone to fibrotic remodeling or cardiac dysfunction than hearts with a lipolytic defect due to ATGL deficiency. (iii) Conversely to the phenotype of transgenic mice, G0S2 deficiency results in a de-repression of cardiac lipolysis and decreased cardiac TAG content. We conclude that G0S2 acts as a potent ATGL inhibitor in the heart modulating cardiac substrate utilization by regulating cardiac lipolysis. PMID:26350455

  20. Effects of Glucagon on Lipolysis and Ketogenesis in Normal and Diabetic Men

    PubMed Central

    Liljenquist, John E.; Bomboy, James D.; Lewis, Stephen B.; Sinclair-Smith, Bruce C.; Felts, Philip W.; Lacy, William W.; Crofford, Oscar B.; Liddle, Grant W.

    1974-01-01

    The effect of glucagon (50 ng/kg/min) on arterial glycerol concentration and net splanchnic production of total ketones and glucose was studied after an overnight fast in four normal and five insulin-dependent diabetic men. Brachial artery and hepatic vein catheters were inserted and splanchnic blood flow determined using indocyanine green. The glucagon infusion resulted in a mean circulating plasma level of 4,420 pg/ml. In the normal subjects, the glucagon infusion resulted in stimulation of insulin secretion indicated by rising levels of immunoreactive insulin and C-peptide immunoreactivity. Arterial glycerol concentration (an index of lipolysis) declined markedly and net splanchnic total ketone production was virtually abolished. In contrast, the diabetic subjects secreted no insulin (no rise in C-peptide immunoreactivity) in response to glucagon. Arterial glycerol and net splanchnic total ketone production in these subjects rose significantly (P=<0.05) when compared with the results in four diabetics who received a saline infusion after undergoing the same catheterization procedure. Net splanchnic glucose production rose markedly during glucagon stimulation in the normals and diabetics despite the marked rise in insulin in the normals. Thus, the same level of circulating insulin which markedly suppressed lipolysis and ketogenesis in the normals failed to inhibit the glucagon-mediated increase in net splanchnic glucose production. It is concluded (a) that glucagon at high concentration is capable of stimulating lipolysis and ketogenesis in insulin-deficient diabetic man; (b) that insulin, mole for mole, has more antilipolytic activity in man than glucagon has lipolytic activity; and (c) that glucagon, on a molar basis, has greater stimulatory activity than insulin has inhibitory activity on hepatic glucose release. PMID:4808635

  1. Resveratrol regulates lipolysis via adipose triglyceride lipase.

    PubMed

    Lasa, Arrate; Schweiger, Martina; Kotzbeck, Petra; Churruca, Itziar; Simón, Edurne; Zechner, Rudolf; Portillo, María del Puy

    2012-04-01

    Resveratrol has been reported to increase adrenaline-induced lipolysis in 3T3-L1 adipocytes. The general aim of the present work was to gain more insight concerning the effects of trans-resveratrol on lipid mobilization. The specific purpose was to assess the involvement of the two main lipases: adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in the activation of lipolysis induced by this molecule. For lipolysis experiments, 3T3-L1 and human SGBS adipocytes as well as adipose tissue from wild-type, ATGL knockout and HSL knockout mice were used. Moreover, gene and protein expressions of these lipases were analyzed. Resveratrol-induced free fatty acids release but not glycerol release in 3T3-L1 under basal and isoproterenol-stimulating conditions and under isoproterenol-stimulating conditions in SGBS adipocytes. When HSL was blocked by compound 76-0079, free fatty acid release was still induced by resveratrol. By contrast, in the presence of the compound C, an inhibitor of adenosine monophosphate-activated protein kinase, resveratrol effect was totally blunted. Resveratrol increased ATGL gene and protein expressions, an effect that was not observed for HSL. Resveratrol increased fatty acids release in epididymal adipose tissue from wild-type and HSL knockout mice but not in that adipose tissue from ATGL knockout mice. Taking as a whole, the present results provide novel evidence that resveratrol regulates lipolytic activity in human and murine adipocytes, as well as in white adipose tissue from mice, acting mainly on ATGL at transcriptional and posttranscriptional levels. Enzyme activation seems to be induced via adenosine monophosphate-activated protein kinase.

  2. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  3. Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis*

    PubMed Central

    Stenson, Britta M.; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M. L.; Mairal, Aline; Åström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W. E.; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-01

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression. PMID:21030586

  4. Taurine inhibition of metal-stimulated catecholamine oxidation.

    PubMed

    Dawson, R; Baker, D; Eppler, B; Tang, E; Shih, D; Hern, H; Hu, M

    2000-01-01

    Taurine is an abundant amino acid found in mammalian tissues and it has been suggested to have cytoprotective functions. The aim of the present study was to determine if taurine had the potential to reduce oxidative stress associated with metal-stimulated catecholamine oxidation. Taurine and structural analogs of taurine were tested for their ability to inhibit metal-stimulated quinone formation from dopamine or L-dopa. Oxidative damage to proteins and lipids were also assessed in vitro and the effects of taurine were determined. Taurine (20 mM) was found to decrease significantly ferric iron (50-500 microM)- and manganese (10 microM)-stimulated L-dopa or dopamine oxidation. Taurine had no effect on zinc-induced dopamine oxidation and slightly potentiated copper- and NaIO(4)-stimulated quinone formation. Ferric iron-stimulated lipid peroxidation was not affected by taurine (1-20 mM). Protein carbonyl formation induced by ferric iron (500 microM) and L-dopa (500 microM) was significantly reduced by 10 mM taurine. The cytotoxicity of L-dopa (250 microM) and ferric chloride (75 microM) to LLC-PK(1) cells was attenuated by 10 mM taurine or hypotaurine. Homotaurine alone stimulated L-dopa oxidation and potentiated the cytotoxic effects of ferric iron. Homotaurine was found to be cytotoxic when combined with L-dopa or L-dopa/iron. In contrast, hypotaurine inhibited quinone formation and protected LLC-PK(1) cells. These studies suggest that taurine may exhibit cytoprotective effects against the oxidation products of catecholamines by acting as a scavenger for free radicals and cytotoxic quinones.

  5. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver.

    PubMed

    Hotta, Yuhei; Nakamura, Hirotoshi; Konishi, Morichika; Murata, Yusuke; Takagi, Hiroyuki; Matsumura, Shigenobu; Inoue, Kazuo; Fushiki, Tohru; Itoh, Nobuyuki

    2009-10-01

    Fibroblast growth factors (Fgfs) are polypeptide growth factors with diverse functions. Fgf21, a unique member of the Fgf family, is expected to function as a metabolic regulator in an endocrine manner. Hepatic Fgf21 expression was increased by fasting. The phenotypes of hepatic Fgf21 transgenic or knockdown mice and high-fat, low-carbohydrate ketogenic diet-fed mice suggests that Fgf21 stimulates lipolysis in the white adipose tissue during normal feeding and is required for ketogenesis and triglyceride clearance in the liver during fasting. However, the physiological roles of Fgf21 remain unclear. To elucidate the physiological roles of Fgf21, we generated Fgf21 knockout (KO) mice by targeted disruption. Fgf21 KO mice were viable, fertile, and seemingly normal. Food intake, oxygen consumption, and energy expenditure were also essentially unchanged in Fgf21 KO mice. However, hypertrophy of adipocytes, decreased lipolysis in adipocytes, and decreased blood nonesterified fatty acid levels were observed when Fgf21 KO mice were fed normally. In contrast, increased lipolysis in adipocytes and increased blood nonesterified fatty acid levels were observed in Fgf21 KO mice by fasting for 24 h, indicating that Fgf21 stimulates lipolysis in the white adipose tissue during feeding but inhibits it during fasting. In contrast, unexpectedly, hepatic triglyceride levels were essentially unchanged in Fgf21 KO mice. In addition, ketogenesis in Fgf21 KO mice was not impaired by fasting for 24 h. The present results indicate that Fgf21 regulates lipolysis in adipocytes in response to the metabolic state but is not required for ketogenesis and triglyceride clearance in the liver.

  6. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits

    PubMed Central

    Merklein, Moritz; Kabakova, Irina V.; Büttner, Thomas F. S.; Choi, Duk-Yong; Luther-Davies, Barry; Madden, Stephen J.; Eggleton, Benjamin J.

    2015-01-01

    On-chip nonlinear optics is a thriving research field, which creates transformative opportunities for manipulating classical or quantum signals in small-footprint integrated devices. Since the length scales are short, nonlinear interactions need to be enhanced by exploiting materials with large nonlinearity in combination with high-Q resonators or slow-light structures. This, however, often results in simultaneous enhancement of competing nonlinear processes, which limit the efficiency and can cause signal distortion. Here, we exploit the frequency dependence of the optical density-of-states near the edge of a photonic bandgap to selectively enhance or inhibit nonlinear interactions on a chip. We demonstrate this concept for one of the strongest nonlinear effects, stimulated Brillouin scattering using a narrow-band one-dimensional photonic bandgap structure: a Bragg grating. The stimulated Brillouin scattering enhancement enables the generation of a 15-line Brillouin frequency comb. In the inhibition case, we achieve stimulated Brillouin scattering free operation at a power level twice the threshold. PMID:25736909

  7. Copper Regulates Cyclic AMP-Dependent Lipolysis

    PubMed Central

    Krishnamoorthy, Lakshmi; Cotruvo, Joseph A.; Chan, Jefferson; Kaluarachchi, Harini; Muchenditsi, Abigael; Pendyala, Venkata S.; Jia, Shang; Aron, Allegra T.; Ackerman, Cheri M.; Vander Wal, Mark N.; Guan, Timothy; Smaga, Lukas P.; Farhi, Samouil L.; New, Elizabeth J.; Lutsenko, Svetlana; Chang, Christopher J.

    2016-01-01

    Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium, and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining the body's weight and energy stores. Utilizing a murine model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we demonstrate that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue within a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype. PMID:27272565

  8. Cadmium inhibits acid secretion in stimulated frog gastric mucosa

    SciTech Connect

    Gerbino, Andrea; Debellis, Lucantonio; Caroppo, Rosa; Curci, Silvana; Colella, Matilde

    2010-06-01

    Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (I{sub sc}), transepithelial potential (V{sub t}) and resistance (R{sub t}) were recorded in the continuous presence of cadmium. Addition of cadmium (20 {mu}M to 1 mM) on the serosal but not luminal side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in I{sub sc} cannot be explained by an action on: 1) H{sub 2} histamine receptor, 2) Ca{sup 2+} signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H{sup +}/K{sup +}-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H{sup +}/K{sup +}-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.

  9. Effects of Eucommia leaf extracts on autonomic nerves, body temperature, lipolysis, food intake, and body weight.

    PubMed

    Horii, Yuko; Tanida, Mamoru; Shen, Jiao; Hirata, Tetsuya; Kawamura, Naomi; Wada, Atsunori; Nagai, Katsuya

    2010-08-02

    Eucommia ulmoides Oliver leaf extracts (ELE) have been shown to exert a hypolipidemic effect in hamsters. Therefore, it was hypothesized that ELE might affect lipid metabolism via changes in autonomic nerve activities and causes changes in thermogenesis and body weight. We examined this hypothesis, and found that intraduodenal (ID) injection of ELE elevated epididymal white adipose tissue sympathetic nerve activity (WAT-SNA) and interscapular brown adipose tissue sympathetic nerve activity (BAT-SNA) in urethane-anesthetized rats and elevated the plasma concentration of free fatty acids (FFA) (a marker of lipolysis) and body temperature (BT) (a marker of thermogenesis) in conscious rats. Furthermore, it was observed that ID administration of ELE decreased gastric vagal nerve activity (GVNA) in urethane-anesthetized rats, and that ELE given as food reduced food intake, body and abdominal adipose tissue weights and decreased plasma triglyceride level. These findings suggest that ELE stimulates lipolysis and thermogenesis through elevations in WAT-SNA and BAT-SNA, respectively, suppresses appetite by inhibiting the activities of the parasympathetic nerves innervating the gastrointestinal tract, including GVNA, and decreases the amount of abdominal fat and body weight via these changes.

  10. Magnetic field inhibits isolated lymphocytes' proliferative response to mitogen stimulation.

    PubMed

    Roman, Adam; Zyss, Tomasz; Nalepa, Irena

    2005-04-01

    We aimed to find out how the exposure of isolated lymphocytes to a pulsed magnetic field (MF) affected their in vitro proliferative response to mitogenic stimulation. Cells were exposed to MF of various intensities (0.3, 0.6, and 1.2 T) at a constant frequency of 30 Hz, for a period of 60, 180, and 330 s. Then, the proliferative response of splenocytes was induced by optimal concentrations of concanavalin A (Con A; mitogenic toward T cells), bacterial lipopolysaccharide (LPS; mitogenic toward B cells), or pokeweed mitogen (PWM; mitogenic toward both populations). We found that the exposure of lymphocytes to the MF profoundly inhibited their proliferative response to mitogens. The suppressive action of the MF on B and T cell proliferation was intensified when a cooperative response of those two lymphocyte populations was simultaneously induced by PWM. The inhibitory effect of MF depended on the exposure time and MF intensity. Prolonged exposure and/or a stronger intensity of the MF weakened its inhibitory influence on the response of lymphocyte to mitogenic stimulation. The data show that an exposure to MF may influence the activity of lymphocytes in their response to mitogenic stimuli.

  11. Splanchnic lipolysis in human obesity

    PubMed Central

    Nielsen, Soren; Guo, ZengKui; Johnson, C. Michael; Hensrud, Donald D.; Jensen, Michael D.

    2004-01-01

    Elevated FFA concentrations have been shown to reproduce some of the metabolic abnormalities of obesity. It has been hypothesized that visceral adipose tissue lipolysis releases excess FFAs into the portal vein, exposing the liver to higher FFA concentrations. We used isotope dilution/hepatic vein catheterization techniques to examine whether intra-abdominal fat contributes a greater portion of hepatic FFA delivery in visceral obesity. Obese women (n = 24) and men (n = 20) with a range of obesity phenotypes, taken together with healthy, lean women (n = 12) and men (n = 12), were studied. Systemic, splanchnic, and leg FFA kinetics were measured. The results showed that plasma FFA concentrations were approximately 20% greater in obese men and obese women. The contribution of splanchnic lipolysis to hepatic FFA delivery ranged from less than 10% to almost 50% and increased as a function of visceral fat in women (r = 0.49, P = 0.002) and in men (r = 0.52, P = 0.002); the slope of the relationship was greater in women than in men (P < 0.05). Leg and splanchnic tissues contributed a greater portion of systemic FFA release in obese men and women than in lean men and women. We conclude that the contribution of visceral adipose tissue lipolysis to hepatic FFA delivery increases with increasing visceral fat in humans and that this effect is greater in women than in men. PMID:15173884

  12. Inhibition of LRRK2 kinase activity stimulates macroautophagy☆

    PubMed Central

    Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; Abeti, Rosella; Soutar, Marc P.M.; Plun-Favreau, Helene; Giunti, Paola; Tooze, Sharon A.; Bandopadhyay, Rina; Lewis, Patrick A.

    2013-01-01

    Leucine Rich Repeat Kinase 2 (LRRK2) is one of the most important genetic contributors to Parkinson's disease. LRRK2 has been implicated in a number of cellular processes, including macroautophagy. To test whether LRRK2 has a role in regulating autophagy, a specific inhibitor of the kinase activity of LRRK2 was applied to human neuroglioma cells and downstream readouts of autophagy examined. The resulting data demonstrate that inhibition of LRRK2 kinase activity stimulates macroautophagy in the absence of any alteration in the translational targets of mTORC1, suggesting that LRRK2 regulates autophagic vesicle formation independent of canonical mTORC1 signaling. This study represents the first pharmacological dissection of the role LRRK2 plays in the autophagy/lysosomal pathway, emphasizing the importance of this pathway as a marker for LRRK2 physiological function. Moreover it highlights the need to dissect autophagy and lysosomal activities in the context of LRRK2 related pathologies with the final aim of understanding their aetiology and identifying specific targets for disease modifying therapies in patients. PMID:23916833

  13. Brain sites mediating corticosteroid feedback inhibition of stimulated ACTH secretion

    SciTech Connect

    Jacobson, L.

    1989-01-01

    There is substantial evidence that the brain mediates stress-induced and circadian increases in ACTH secretion and that corticosteroid concentrations which normalize basal plasma ACTH are insufficient to normalize ACTH responses to circadian or stressful stimuli in adrenalectomized rats. To identify brain sites mediating corticosteroid inhibition of stimulated ACTH secretion, two approaches were used. The first compared brain ({sup 14}C)-2-deoxyglucose uptake in rats with differential ACTH responses to stress. Relative to sham-adrenalectomized (SHAM) rats, adrenalectomized rats replaced with low, constant corticosterone levels via a subcutaneous corticosterone pellet (B-PELLET) exhibited elevated and prolonged ACTH responses to a variety of stimuli. Adrenalectomized rate given a circadian corticosterone rhythm via corticosterone in their drinking water exhibited elevated ACTH levels immediately after stress, but unlike B-PELLET rats, terminated stress induced ACTH secretion normally relative to SHAMS. Therefore, the abnormal ACTH responses to stress in B-PELLET rats were due to the lack of both circadian variations and stress-induced increases in corticosterone. Hypoxia was selected as a standardized stimulus for correlating brain ({sup 14}C)-2-deoxyglucose uptake with ACTH secretion. In intact rats, increases in plasma ACTH and decreases in arterial PO{sub 2} correlated with the severity of hypoxia at arterial PCO{sub 2} below 60 mm Hg. Hypoxia PELLET vs. SHAM rats. However, in preliminary experiments, although hypoxia increased brain 2-deoxyglucose uptake in most brain regions, plasma ACTH correlated poorly with 2-deoxyglucose uptake at 12% and 10% O{sub 2}.

  14. Inhibition of apolipoprotein B synthesis stimulates endoplasmic reticulum autophagy that prevents steatosis

    PubMed Central

    Conlon, Donna M.; Thomas, Tiffany; Fedotova, Tatyana; Di Paolo, Gilbert; Chan, Robin B.; Gibeley, Sarah; Liu, Jing; Ginsberg, Henry N.

    2016-01-01

    Inhibition of VLDL secretion reduces plasma levels of atherogenic apolipoprotein B (apoB) lipoproteins but can also cause hepatic steatosis. Approaches targeting apoB synthesis, which lies upstream of VLDL secretion, have potential to effectively reduce dyslipidemia but can also lead to hepatic accumulation of unsecreted triglycerides (TG). Here, we found that treating mice with apoB antisense oligonucleotides (ASOs) for 6 weeks decreased VLDL secretion and plasma cholesterol without causing steatosis. The absence of steatosis was linked to an increase in ER stress in the first 3 weeks of ASO treatment, followed by development of ER autophagy at the end of 6 weeks of treatment. The latter resulted in increased fatty acid (FA) oxidation that was inhibited by both chloroquine and 3-methyl adenine, consistent with trafficking of ER TG through the autophagic pathway before oxidation. These findings support the concept that inhibition of apoB synthesis traps lipids that have been transferred to the ER by microsomal TG transfer protein (MTP), inducing ER stress. ER stress then triggers ER autophagy and subsequent lysosomal lipolysis of TG, followed by mitochondrial oxidation of released FA, leading to prevention of steatosis. The identification of this pathway indicates that inhibition of VLDL secretion remains a viable target for therapies aiming to reduce circulating levels of atherogenic apoB lipoproteins. PMID:27599291

  15. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes

    SciTech Connect

    Iwamura, Yoshihiro; Mori, Mayumi; Nakashima, Katsuhiko; Mikami, Toshiyuki; Murayama, Katsuhisa; Arai, Satoko; Miyazaki, Toru

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer AIM induces lipolysis in a distinct manner from that of hormone-dependent lipolysis. Black-Right-Pointing-Pointer AIM ablates activity of peroxisome proliferator-activated receptor in adipocytes. Black-Right-Pointing-Pointer AIM reduces mRNA levels of lipid-droplet coating proteins leading to lipolysis. -- Abstract: Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown. Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPAR{gamma}), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPAR{gamma}-agonist or forced expression of FSP27, while it was synergized by a PPAR{gamma}-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological

  16. Reflex inhibition of cutaneous and muscle vasoconstrictor neurons during stimulation of cutaneous and muscle nociceptors.

    PubMed

    Kirillova-Woytke, Irina; Baron, Ralf; Jänig, Wilfrid

    2014-05-01

    Cutaneous (CVC) and muscle (MVC) vasoconstrictor neurons exhibit typical reflex patterns to physiological stimulation of somatic and visceral afferent neurons. Here we tested the hypothesis that CVC neurons are inhibited by stimulation of cutaneous nociceptors but not of muscle nociceptors and that MVC neurons are inhibited by stimulation of muscle nociceptors but not of cutaneous nociceptors. Activity in the vasoconstrictor neurons was recorded from postganglionic axons isolated from the sural nerve or the lateral gastrocnemius-soleus nerve in anesthetized rats. The nociceptive afferents were excited by mechanical stimulation of the toes of the ipsilateral hindpaw (skin), by hypertonic saline injected into the ipsi- or contralateral gastrocnemius-soleus muscle, or by heat or noxious cold stimuli applied to the axons in the common peroneal nerve or tibial nerve. The results show that CVC neurons are inhibited by noxious stimulation of skin but not by noxious stimulation of skeletal muscle and that MVC neurons are inhibited by noxious stimulation of skeletal muscle but not by noxious stimulation of skin. These inhibitory reflexes are mostly lateralized and are most likely organized in the spinal cord. Stimulation of nociceptive cold-sensitive afferents does not elicit inhibitory or excitatory reflexes in CVC or MVC neurons. The reflex inhibition of activity in CVC or MVC neurons generated by stimulation of nociceptive cutaneous or muscle afferents during tissue injury leads to local increase of blood flow, resulting in an increase of transport of immunocompetent cells, proteins, and oxygen to the site of injury and enhancing the processes of healing.

  17. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase.

    PubMed

    Schweiger, Martina; Paar, Margret; Eder, Christina; Brandis, Janina; Moser, Elena; Gorkiewicz, Gregor; Grond, Susanne; Radner, Franz P W; Cerk, Ines; Cornaciu, Irina; Oberer, Monika; Kersten, Sander; Zechner, Rudolf; Zimmermann, Robert; Lass, Achim

    2012-11-01

    The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexpression or silencing of G0S2 in human SGBS adipocytes decreases and increases lipolysis, respectively. Human G0S2 is upregulated during adipocyte differentiation and inhibits ATGL activity in a dose-dependent manner. Interestingly, C-terminally truncated ATGL mutants, which fail to localize to lipid droplets, translocate to the lipid droplet upon coexpression with G0S2, suggesting that G0S2 anchors ATGL to lipid droplets independent of ATGL's C-terminal lipid binding domain. Taken together, our results indicate that G0S2 also regulates human lipolysis by affecting enzyme activity and intracellular localization of ATGL. Increased lipolysis is known to contribute to the pathogenesis of insulin resistance, and G0S2 expression has been shown to be reduced in poorly controlled type 2 diabetic patients. Our data indicate that downregulation of G0S2 in adipose tissue could represent one of the underlying causes leading to increased lipolysis in the insulin-resistant state.

  18. Inhibition of CaMKK2 Stimulates Osteoblast Formation and Inhibits Osteoclast Differentiation

    PubMed Central

    Cary, Rachel L.; Waddell, Seid; Racioppi, Luigi; Long, Fanxin; Novack, Deborah V.; Voor, Michael J.; Sankar, Uma

    2013-01-01

    Bone remodeling, a physiological process characterized by bone formation by osteoblasts (OB) and resorption of pre-existing bone matrix by osteoclasts (OC), is vital for the maintenance of healthy bone tissue in adult humans. Imbalances in this vital process result in pathological conditions including osteoporosis. Owing to its initial asymptomatic nature, osteoporosis is often detected only after the patient has sustained significant bone loss or a fracture. Hence, anabolic therapeutics that stimulates bone accrual is in high clinical demand. Here we identify Ca2+/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) as a potential target for such therapeutics, as its inhibition enhances OB differentiation and bone growth and suppresses OC differentiation. Mice null for CaMKK2 possess higher trabecular bone mass in their long bones, along with significantly more OBs and fewer multinuclear OCs. Whereas Camkk2−/− MSCs yield significantly higher numbers of OBs, bone marrow cells from Camkk2−/− mice produce fewer multinuclear OCs, in vitro. Acute inhibition of CaMKK2 by its selective, cell-permeable pharmacological inhibitor STO-609 also results in increased OB and diminished OC formation. Further, we find phospho-protein kinase A (PKA) and Ser133 phosphorylated form of cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) to be markedly elevated in OB progenitors deficient in CaMKK2. On the other hand, genetic ablation of CaMKK2 or its pharmacological inhibition in OC progenitors results in reduced pCREB as well as significantly reduced levels of its transcriptional target, nuclear factor of activated T cells c1 (NFATc1). Moreover, in vivo administration of STO-609 results in increased OBs and diminished OCs, conferring significant protection from ovariectomy (OVX)-induced osteoporosis in adult mice. Overall, our findings reveal a novel function for CaMKK2 in bone remodeling and highlight the potential for its therapeutic

  19. Adrenergic control of lipolysis in women compared with men.

    PubMed

    Schmidt, Stacy L; Bessesen, Daniel H; Stotz, Sarah; Peelor, Frederick F; Miller, Benjamin F; Horton, Tracy J

    2014-11-01

    Data suggest women are more sensitive to the lipolytic action of epinephrine compared with men while maintaining similar glucoregulatory effects (Horton et al. J Appl Physiol 107: 200-210, 2009). This study aimed to determine the specific adrenergic receptor(s) that may mediate these sex differences. Lean women (n = 14) and men (n = 16) were studied on 4 nonconsecutive days during the following treatment infusions: saline (S: control), epinephrine [E: mixed β-adrenergic (lipolytic) and α2-adrenergic (antilipolytic) stimulation], epinephrine + phentolamine (E + P: mixed β-adrenergic stimulation only), and terbutaline (T: selective β2-adrenergic stimulation). Tracer infusions of glycerol, palmitate, and glucose were administered to determine systemic lipolysis, free fatty acid (FFA) release, and glucose turnover, respectively. Following basal measurements, substrate and hormone concentrations were measured in all subjects over 90 min of treatment and tracer infusion. Women had greater increases in glycerol and FFA concentrations with all three hormone infusions compared with men (P < 0.01). Glycerol and palmitate rate of appearance (Ra) and rate of disappearance (Rd) per kilogram body weight were greater with E infusion in women compared with men (P < 0.05), whereas no sex differences were observed with other treatments. Glucose concentration and kinetics were not different between sexes with any infusion. In conclusion, these data support the hypothesis that the greater rate of lipolysis in women with infusion of E was likely due to lesser α2 antilipolytic activation. These findings may help explain why women have greater lipolysis and fat oxidation during exercise, a time when epinephrine concentration is elevated.

  20. AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue

    PubMed Central

    Kim, Sun-Joong; Tang, Tianyi; Abbott, Marcia; Viscarra, Jose A.; Wang, Yuhui

    2016-01-01

    The role of AMP-activated protein kinase (AMPK) in promoting fatty acid (FA) oxidation in various tissues, such as liver and muscle, has been well understood. However, the role of AMPK in lipolysis and FA metabolism in adipose tissue has been controversial. To investigate the role of AMPK in the regulation of adipose lipolysis in vivo, we generated mice with adipose-tissue-specific knockout of both the α1 and α2 catalytic subunits of AMPK (AMPK-ASKO mice) by using aP2-Cre and adiponectin-Cre. Both models of AMPK-ASKO ablation show no changes in desnutrin/ATGL levels but have defective phosphorylation of desnutrin/ATGL at S406 to decrease its triacylglycerol (TAG) hydrolase activity, lowering basal lipolysis in adipose tissue. These mice also show defective phosphorylation of hormone-sensitive lipase (HSL) at S565, with higher phosphorylation at protein kinase A sites S563 and S660, increasing its hydrolase activity and isoproterenol-stimulated lipolysis. With higher overall adipose lipolysis, both models of AMPK-ASKO mice are lean, having smaller adipocytes with lower TAG and higher intracellular free-FA levels. Moreover, FAs from higher lipolysis activate peroxisome proliferator-activated receptor delta to induce FA oxidative genes and increase FA oxidation and energy expenditure. Overall, for the first time, we provide in vivo evidence of the role of AMPK in the phosphorylation and regulation of desnutrin/ATGL and HSL and thus adipose lipolysis. PMID:27185873

  1. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    SciTech Connect

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.; Juutilainen, Timo; Kovanen, Petri T.; Eklund, Kari K. . E-mail: kari.eklund@hus.fi

    2006-08-18

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured in the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.

  2. The contribution of classical (beta1/2-) and atypical beta-adrenoceptors to the stimulation of human white adipocyte lipolysis and right atrial appendage contraction by novel beta3-adrenoceptor agonists of differing selectivities.

    PubMed

    Sennitt, M V; Kaumann, A J; Molenaar, P; Beeley, L J; Young, P W; Kelly, J; Chapman, H; Henson, S M; Berge, J M; Dean, D K; Kotecha, N R; Morgan, H K; Rami, H K; Ward, R W; Thompson, M; Wilson, S; Smith, S A; Cawthorne, M A; Stock, M J; Arch, J R

    1998-06-01

    The role of beta3- and other putative atypical beta-adrenoceptors in human white adipocytes and right atrial appendage has been investigated using CGP 12177 and novel phenylethanolamine and aryloxypropanolamine beta3-adrenoceptor (beta3AR) agonists with varying intrinsic activities and selectivities for human cloned betaAR subtypes. The ability to demonstrate beta1/2AR antagonist-insensitive (beta3 or other atypical betaAR-mediated) responses to CGP 12177 was critically dependent on the albumin batch used to prepare and incubate the adipocytes. Four aryloxypropanolamine selective beta3AR agonists (SB-226552, SB-229432, SB-236923, SB-246982) consistently elicited beta1/2AR antagonist-insensitive lipolysis. However, a phenylethanolamine (SB-220646) that was a selective full beta3AR agonist elicited full lipolytic and inotropic responses that were sensitive to beta1/2AR antagonism, despite it having very low efficacies at cloned beta1- and beta2ARs. A component of the response to another phenylethanolamine selective beta3AR agonist (SB-215691) was insensitive to beta1/2AR antagonism in some experiments. Because no [corrected] novel aryloxypropanolamine had a beta1/2AR antagonist-insensitive inotropic effect, these results establish more firmly that beta3ARs mediate lipolysis in human white adipocytes, and suggest that putative 'beta4ARs' mediate inotropic responses to CGP 12177. The results also illustrate the difficulty of predicting from studies on cloned betaARs which betaARs will mediate responses to agonists in tissues that have a high number of beta1- and beta2ARs or a low number of beta3ARs.

  3. Modulation of motor inhibition by subthalamic stimulation in obsessive-compulsive disorder

    PubMed Central

    Kibleur, A; Gras-Combe, G; Benis, D; Bastin, J; Bougerol, T; Chabardès, S; Polosan, M; David, O

    2016-01-01

    High-frequency deep brain stimulation of the subthalamic nucleus can be used to treat severe obsessive-compulsive disorders that are refractory to conventional treatments. The mechanisms of action of this approach possibly rely on the modulation of associative-limbic subcortical–cortical loops, but remain to be fully elucidated. Here in 12 patients, we report the effects of high-frequency stimulation of the subthalamic nucleus on behavior, and on electroencephalographic responses and inferred effective connectivity during motor inhibition processes involved in the stop signal task. First, we found that patients were faster to respond and had slower motor inhibition processes when stimulated. Second, the subthalamic stimulation modulated the amplitude and delayed inhibition-related electroencephalographic responses. The power of reconstructed cortical current densities decreased in the stimulation condition in a parietal–frontal network including cortical regions of the inhibition network such as the superior parts of the inferior frontal gyri and the dorsolateral prefrontal cortex. Finally, dynamic causal modeling revealed that the subthalamic stimulation was more likely to modulate efferent connections from the basal ganglia, modeled as a hidden source, to the cortex. The connection from the basal ganglia to the right inferior frontal gyrus was significantly decreased by subthalamic stimulation. Beyond motor inhibition, our study thus strongly suggests that the mechanisms of action of high-frequency subthalamic stimulation are not restricted to the subthalamic nucleus, but also involve the modulation of distributed subcortical–cortical networks. PMID:27754484

  4. Facilitation and inhibition in the visual system after photic stimulation.

    NASA Technical Reports Server (NTRS)

    Cavaggioni, A.; Goldstein, M. H., Jr.

    1965-01-01

    Changes in shock-evoked response complex /SERC/ RECORDED from visual cortexes of cats after retinal illumination, noting enhancement of waveform after photic stimulation and role of barbiturate anesthetization

  5. AMP-activated Protein Kinase Is Activated as a Consequence of Lipolysis in the Adipocyte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AMP-activated protein kinase (AMPK) is activated in adipocytes during exercise and other states in which lipolysis is stimulated. However, the mechanism(s) responsible for this effect and its physiological relevance are unclear. To examine these questions, 3T3-L1 adipocytes were treated with agents...

  6. Shrinking and development of lipid droplets in adipocytes during catecholamine-induced lipolysis.

    PubMed

    Nagayama, Masafumi; Shimizu, Kyoko; Taira, Toshio; Uchida, Tsutomu; Gohara, Kazutoshi

    2010-01-04

    Time-lapse observation of adipocytes during catecholamine-induced lipolysis clearly shows that shrinking of existing lipid droplets (LDs) occurs in some adipocytes and that small LDs are newly developed in almost all cells. Immunofluorescence imaging reveals that activation and localization of hormone-sensitive lipase (HSL) on the surface of LDs, which are required for conferring maximal lipolysis, are necessary for the shrinking of the LDs. However, not all adipocytes in which phosphorylated HSL is localized on LDs exhibit shrinking of LDs. The simultaneous shrinking and development of LDs yield apparent fragmentation and dispersion of LDs in adipocytes stimulated with catecholamine.

  7. Basic study on the influence of inhibition induced by the magnetic stimulation on the peripheral nerve

    NASA Astrophysics Data System (ADS)

    Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Iramina, Keiji

    2015-05-01

    The purpose of this study is to analyze the inhibition mechanism of magnetic stimulation on motor function. A magnetic stimulator with a flat figure-eight coil was used to stimulate the peripheral nerve of the antebrachium. The intensity of magnetic stimulation was 0.8 T, and the stimulation frequency was 1 Hz. The amplitudes of the motor-evoked potentials (MEPs) at the abductor pollicis brevis muscle and first dorsal interosseous muscle were used to evaluate the effects of magnetic stimulation. The effects of magnetic stimulation were evaluated by analyzing the MEP amplitude before and after magnetic stimulation to the primary motor cortex. The results showed that MEP amplitude after magnetic stimulation compared with before magnetic stimulation decreased. Because there were individual differences in MEP amplitude induced by magnetic stimulation, the MEP amplitude after stimulation was normalized by the amplitude of each participant before stimulation. The MEP amplitude after stimulation decreased by approximately 58% (p < 0.01) on average compared with before stimulation. Previous studies suggested that magnetic stimulation to the primary motor cortex induced an increase or a decrease in MEP amplitude. Furthermore, previous studies have shown that the alteration in MEP amplitude was induced by cortical excitability based on magnetic stimulation. The results of this study showed that MEP amplitude decreased following magnetic stimulation to the peripheral nerve. We suggest that the decrease in MEP amplitude found in this study was obtained via the feedback from a peripheral nerve through an afferent nerve to the brain. This study suggests that peripheral excitement by magnetic stimulation of the peripheral nerve may control the central nervous system via afferent feedback.

  8. Disruption of latent inhibition by interpolation of task-irrelevant stimulation between preexposure and conditioning.

    PubMed

    Escobar, Martha; Arcediano, Francisco; Miller, Ralph R

    2005-08-01

    Latent inhibition refers to attenuated responding to a conditioned stimulus (CS) that was repeatedly presented without reinforcement prior to the CS-unconditioned stimulus (US) pairings. Using water-deprived rats as subjects, we observed that interpolating task-irrelevant stimulation between the preexposure and conditioning phases of a latent inhibition procedure attenuated latent inhibition (Experiments 1A, 1B, and 2). Apparently, interpolated stimulation segments the preexposure and conditioning treatments into two separate experiences, much in the same way that a change of context would. Consistent with this view, the interpolated stimulation did not disrupt latent inhibition if it was also presented during both preexposure and conditioning (Experiment 3). We view these results as analogous to those of Escobar, Arcediano, and Miller (2003), who suggested that the difficulty in observing latent inhibition in human adults is related to the segmentation between preexposure and conditioning caused by the usual interpolation of instructions in preparations with humans.

  9. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease.

    PubMed

    Nielsen, Thomas Svava; Jessen, Niels; Jørgensen, Jens Otto L; Møller, Niels; Lund, Sten

    2014-06-01

    Lipolysis is the process by which triglycerides (TGs) are hydrolyzed to free fatty acids (FFAs) and glycerol. In adipocytes, this is achieved by sequential action of adipose TG lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase. The activity in the lipolytic pathway is tightly regulated by hormonal and nutritional factors. Under conditions of negative energy balance such as fasting and exercise, stimulation of lipolysis results in a profound increase in FFA release from adipose tissue (AT). This response is crucial in order to provide the organism with a sufficient supply of substrate for oxidative metabolism. However, failure to efficiently suppress lipolysis when FFA demands are low can have serious metabolic consequences and is believed to be a key mechanism in the development of type 2 diabetes in obesity. As the discovery of ATGL in 2004, substantial progress has been made in the delineation of the remarkable complexity of the regulatory network controlling adipocyte lipolysis. Notably, regulatory mechanisms have been identified on multiple levels of the lipolytic pathway, including gene transcription and translation, post-translational modifications, intracellular localization, protein-protein interactions, and protein stability/degradation. Here, we provide an overview of the recent advances in the field of AT lipolysis with particular focus on the molecular regulation of the two main lipases, ATGL and HSL, and the intracellular and extracellular signals affecting their activity.

  10. Is transcranial direct current stimulation a potential method for improving response inhibition?

    PubMed

    Kwon, Yong Hyun; Kwon, Jung Won

    2013-04-15

    Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.

  11. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas.

    PubMed Central

    Wiggins, D; Gibbons, G F

    1992-01-01

    In hepatocyte cultures maintained in the absence of extracellular fatty acids, at least 70% of the secreted very-low-density lipoprotein (VLDL) triacylglycerol was derived via lipolysis of intracellular triacylglycerol. This proportion was unchanged when the cells were exposed for 24 h to insulin or glucagon, hormones which decreased the overall secretion of intracellular triacylglycerol, or to chloroquine or tolbutamide, agents which inhibit lysosomal lipolysis. The rate of intracellular lipolysis was 2-3-fold greater than that required to maintain the observed rate of triacylglycerol secretion. Most of the fatty acids released were returned to the intracellular pool. Neither insulin nor glucagon had any significant effect on the overall lipolysis and re-esterification of intracellular triacylglycerol. In these cases a greater proportion of the released fatty acids re-entered the cellular pool, rather than being recruited for VLDL assembly. Tolbutamide inhibited intracellular lipolysis, but suppressed VLDL secretion to a greater extent. 3,5-Dimethylpyrazole did not affect lipolysis or VLDL secretion. The increased secretion of VLDL triacylglycerol observed after exposure of cells to insulin for 3 days was not accompanied by an increased rate of intracellular lipolysis. However, a larger proportion of the triacylglycerol secreted under these conditions may not have undergone prior lipolysis. PMID:1599431

  12. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1987-07-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse.

  13. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity.

    PubMed

    Xiong, Xiao-Qing; Chen, Dan; Sun, Hai-Jian; Ding, Lei; Wang, Jue-Jin; Chen, Qi; Li, Yue-Hua; Zhou, Ye-Bo; Han, Ying; Zhang, Feng; Gao, Xing-Ya; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-09-01

    Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5), and contributes to the beneficial effects of exercise on metabolism. Here we report the therapeutical effects of FNDC5/irisin on metabolic derangements and insulin resistance in obesity, and show the lipolysis effect of irisin and its signal molecular mechanism. In obese mice, lentivirus mediated-FNDC5 overexpression enhanced energy expenditure, lipolysis and insulin sensitivity, and reduced hyperlipidemia, hyperglycemia, hyperinsulinism, blood pressure and norepinephrine levels; it increased hormone-sensitive lipase (HSL) expression and phosphorylation, and reduced perilipin level and adipocyte diameter in adipose tissues. Subcutaneous perfusion of irisin reduced hyperlipidemia and hyperglycemia, and improved insulin resistance. Either FNDC5 overexpression or irisin perfusion only induced a tendency toward a slight decrease in body weight in obese mice. In 3T3-L1 adipocytes, irisin enhanced basal lipolysis rather than isoproterenol-induced lipolysis, which were prevented by inhibition of adenylate cyclase or PKA; irisin increased the HSL and perilipin phosphorylation; it increased PKA activity, and cAMP and HSL mRNA levels, but reduced perilipin expression. These results indicate that FNDC5/irisin ameliorates glucose/lipid metabolic derangements and insulin resistance in obese mice, and enhances lipolysis via cAMP-PKA-HSL/perilipin pathway. FNDC5 or irisin can be taken as an effective therapeutic strategy for metabolic disorders.

  14. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis

    PubMed Central

    Koopman, Frieda A.; Chavan, Sangeeta S.; Miljko, Sanda; Grazio, Simeon; Sokolovic, Sekib; Schuurman, P. Richard; Mehta, Ashesh D.; Levine, Yaakov A.; Faltys, Michael; Zitnik, Ralph; Tracey, Kevin J.; Tak, Paul P.

    2016-01-01

    Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the “inflammatory reflex,” is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases. PMID:27382171

  15. High and low frequency transcutaneous electrical nerve stimulation inhibits nociceptive responses induced by CO2 laser stimulation in humans.

    PubMed

    de Tommaso, Marina; Fiore, Pietro; Camporeale, Alfonso; Guido, Marco; Libro, Giuseppe; Losito, Luciana; Megna, Marisa; Puca, Francomichele; Megna, Gianfranco

    2003-05-15

    The aim of the study was to evaluate the effects of transcutaneous electric nerve stimulation (TENS) on CO(2) laser evoked potentials (LEPs) in 16 normal subjects. The volar side of the forearm was stimulated by 10 Hz TENS in eight subjects and by 100 Hz TENS in the remainder; the skin of the forearm was stimulated by CO(2) laser and the LEPs were recorded in basal conditions and soon after and 15 min after TENS. Both low and high frequency TENS significantly reduced the subjective rating of heat stimuli and the LEPs amplitude, although high frequency TENS appeared more efficacious. TENS seemed to exert a mild inhibition of the perception and processing of pain induced by laser Adelta fibres activation; the implications of these effects in the clinical employment of TENS remain to be clarified.

  16. Phorbol ester stimulates secretory activity while inhibiting receptor-activated aminopyrine uptake by gastric glands

    SciTech Connect

    Brown, M.R.; Chew, C.S.

    1986-03-05

    Both cyclic AMP-dependent and -independent secretagogues stimulate pepsinogen release, respiration and H/sup +/ secretory activity (AP uptake) in rabbit gastric glands. 12-O-tetradecanoylphorbol-13-acetate (T), a diacyglycerol analog, activates protein kinase C (PKC) and stimulates secretion in many systems. T stimulated respiration and pepsinogen release by glands and increased AP uptake by both glands and purified parietal cells. However, T reduced AP uptake by glands stimulated with carbachol (C) or histamine (H) with an apparent IC/sub 50/ of 1 nM. Preincubation with T for 30 min produced maximum inhibition which was not reversed by removal of T. T accelerated the decline of the transient C peak while the late steady state response to H was most inhibited. H-stimulated AP uptake was also inhibited by 50 ..mu..g/ml 1-oleoyl-2-acetyl-glycerol, a reported PKC activator, but not by the inactive phorbol, 4..cap alpha..-phorbol-12,13-didecanoate. In contrast, T potentiated AP uptake by glands stimulated with submaximal doses of dibutyryl cyclic AMP. These results suggest inhibition by T is a specific effect of PKC activators. The differing effects of T on secretion indicators may result from a dual action of T on receptor and post-receptor intracellular events.

  17. ADIPOSE TRIGLYCERIDE LIPASE REGULATES BASAL LIPOLYSIS AND LIPID DROPLET SIZE IN ADIPOCYTES

    PubMed Central

    Miyoshi, Hideaki; Perfield, James W.; Obin, Martin S.; Greenberg, Andrew S.

    2008-01-01

    In adipocytes, lipid droplet (LD) size reflects a balance of triglyceride synthesis (lipogenesis) and hydrolysis (lipolysis). Perilipin A (Peri A), is the most abundant phosphoprotein on the surface of adipocyte LDs and has a crucial role in lipid storage and lipolysis. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major rate-determining enzymes for lipolysis in adipocytes. Each of these proteins (Peri A, ATGL and HSL) have been demonstrated to regulate lipid storage and release in the adipocyte. However, in the absence of PKA stimulation (basal state), the lipases (ATGL and HSL) are located mainly in the cytoplasm, and their contribution to basal rates of lipolysis and influence on LD size are poorly understood. In this study, we utilize an adenoviral system to knockdown or overexpress ATGL and HSL in an engineered model system of adipocytes in the presence or absence of Peri A. We are able to demonstrate in our experimental model system, that in the basal state, LD size, triglyceride storage, and fatty acid release are mainly influenced by expression of ATGL. These results demonstrate for the first time the relative contributions of ATGL, HSL, and Peri A on determination of LD size in the absence of PKA-stimulation. PMID:18980248

  18. Low Frequency Electrical Stimulation Either Prior to Or after Rapid Kindling Stimulation Inhibits the Kindling-Induced Epileptogenesis

    PubMed Central

    Jalilifar, Mostafa; Moazedi, Ahmad Ali; Ghotbeddin, Zohreh

    2017-01-01

    Objective. Studies are ongoing to find appropriate low frequency stimulation (LFS) protocol for treatment of epilepsy. The present study aimed at assessing the antiepileptogenesis effects of LFS with the same protocol applied either just before or immediately after kindling stimulations. Method. This experimental animal study was conducted on adult Wistar rats (200 ± 20 g) randomly divided into kindle (n = 7), LFS + Kindle (n = 6), and Kindle + LFS groups (n = 6). All animals underwent rapid kindling procedure and four packages of LFS (1 Hz) with 5 min interval were applied either immediately before (LFS-K) or after kindling stimulation (K-LFS). The after discharge duration (ADD), daily stages of kindling, and kindling seizure stage and number of stimulations required to reach each stage were compared between the three groups using two-way analysis of variance (ANOVA) followed by Tukey post hoc and one-way ANOVA, and Kruskal-Wallis test, respectively. Results. LFS in both protocols significantly decreased the ADD (p < 0.05) and daily seizure stages (p < 0.05) and increased the number of stimulations required to achieve stage 3 and stages 4 and 5 of kindling compared with the kindle group (stage 2: p > 0.05, stages 3 to 5: p < 0.05). Conclusion. Although LFS-K showed more inhibiting effect than K-LFS, the difference was not statistically significant. PMID:28373988

  19. Alternative Mechanism for White Adipose Tissue Lipolysis after Thermal Injury

    PubMed Central

    Diao, Li; Patsouris, David; Sadri, Ali-Reza; Dai, Xiaojing; Amini-Nik, Saeid; Jeschke, Marc G

    2015-01-01

    Extensively burned patients often suffer from sepsis, a complication that enhances postburn hypermetabolism and contributes to increased incidence of multiple organ failure, morbidity and mortality. Despite the clinical importance of burn sepsis, the molecular and cellular mechanisms of such infection-related metabolic derangements and organ dysfunction are still largely unknown. We recently found that upon endoplasmic reticulum (ER) stress, the white adipose tissue (WAT) interacts with the liver via inflammatory and metabolic signals leading to profound hepatic alterations, including hepatocyte apoptosis and hepatic fatty infiltration. We therefore hypothesized that burn plus infection causes an increase in lipolysis of WAT after major burn, partially through induction of ER stress, contributing to hyperlipidemia and profound hepatic lipid infiltration. We used a two-hit rat model of 60% total body surface area scald burn, followed by intraperitoneal (IP) injection of Pseudomonas Aeruginosa-derived lipopolysaccharide (LPS) 3 d postburn. One day later, animals were euthanized and liver and epididymal WAT (EWAT) samples were collected for gene expression, protein analysis and histological study of inflammasome activation, ER stress, apoptosis and lipid metabolism. Our results showed that burn plus LPS profoundly increased lipolysis in WAT associated with significantly increased hepatic lipid infiltration. Burn plus LPS augmented ER stress by upregulating CHOP and activating ATF6, inducing NLRP3 inflammasome activation and leading to increased apoptosis and lipolysis in WAT with a distinct enzymatic mechanism related to inhibition of AMPK signaling. In conclusion, burn sepsis causes profound alterations in WAT and liver that are associated with changes in organ function and structure. PMID:26736177

  20. GABA-mediated oxytocinergic inhibition in dorsal horn neurons by hypothalamic paraventricular nucleus stimulation.

    PubMed

    Rojas-Piloni, Gerardo; López-Hidalgo, Mónica; Martínez-Lorenzana, Guadalupe; Rodríguez-Jiménez, Javier; Condés-Lara, Miguel

    2007-03-16

    In anaesthetized rats, we tested whether the unit activity of dorsal horn neurons that receive nociceptive input is modulated by electrical stimulation of the hypothalamic paraventricular nucleus (PVN). An electrophysiological mapping of dorsal horn neurons at L3-L4 let us choose cells responding to a receptive field located in the toes region of the left hindpaw. Dorsal horn neurons were classified according to their response properties to peripheral stimulation. Wide Dynamic Range (WDR) cells responding to electrical stimulation of the peripheral receptive field and presenting synaptic input of Adelta, Abeta, and C-fibers were studied. Suspected interneurons that are typically silent and lack peripheral receptive field responses were also analyzed. PVN electrical stimulation inhibits Adelta (-55.0+/-10.2%), C-fiber (-73.1+/-6.7%), and post-discharge (-75.0+/-8.9%) peripheral activation in WDR cells, and silent interneurons were activated. So, this last type of interneuron was called a PVN-ON cell. In WDR cells, the inhibition of peripheral responses caused by PVN stimulation was blocked by intrathecal administration of a specific oxytocin antagonist or bicuculline. However, PVN-ON cell activation was blocked by the same specific oxytocin antagonist, but not by bicuculline. Our results suggest that PVN stimulation inhibits nociceptive peripheral-evoked responses in WDR neurons by a descending oxytocinergic pathway mediated by GABAergic PVN-ON cells. We discuss our observation that the PVN electrical stimulation selectively inhibits Adelta and C-fiber activity without affecting Abeta fibers. We conclude that Adelta and C-fibers receive a presynaptic inhibition mediated by GABA.

  1. Alpha-melanocyte stimulating hormone inhibits monocytes adhesion to vascular endothelium

    PubMed Central

    Yang, Yang; Zhang, Weihua; Meng, Lin; Yu, Haitao; Lu, Na; Fu, Gang

    2015-01-01

    Inflammation and its subsequent endothelial dysfunction have been reported to play a pivotal role in the initiation and progression of chronic vascular diseases. Inhibiting the attachment of monocytes to endothelium is a potential therapeutic strategy for vascular diseases treatment. α-Melanocyte stimulating hormone is generated from a precursor hormone called proopiomelanocortin by post-translational processing. However, whether α-melanocyte stimulating hormone plays a role in regulating endothelial inflammation is still unknown. In this study, the effects of α-melanocyte stimulating hormone on endothelial inflammation in human umbilical vein endothelial cell lines were investigated. And the result indicated that α-melanocyte stimulating hormone inhibits the expression of endothelial adhesion molecules, including vascular adhesion molecule-1 and E-selectin, thereby attenuating the adhesion of THP-1 cells to the surface of endothelial cells. Mechanistically, α-melanocyte stimulating hormone was found to inhibit NF-κB transcriptional activity. Finally, we found that the effect of α-melanocyte stimulating hormone on endothelial inflammation is dependent on its receptor melanocortin receptor 1. PMID:25898835

  2. Dichloroacetate inhibits glycolysis and augments insulin-stimulated glycogen synthesis in rat muscle.

    PubMed Central

    Clark, A S; Mitch, W E; Goodman, M N; Fagan, J M; Goheer, M A; Curnow, R T

    1987-01-01

    The decrease in plasma lactate during dichloroacetate (DCA) treatment is attributed to stimulation of lactate oxidation. To determine whether DCA also inhibits lactate production, we measured glucose metabolism in muscles of fed and fasted rats incubated with DCA and insulin. DCA increased glucose-6-phosphate, an allosteric modifier of glycogen synthase, approximately 50% and increased muscle glycogen synthesis and glycogen content greater than 25%. Lactate release fell; inhibition of glycolysis accounted for greater than 80% of the decrease. This was associated with a decrease in intracellular AMP, but no change in citrate or ATP. When lactate oxidation was increased by raising extracellular lactate, glycolysis decreased (r = - 0.91), suggesting that lactate oxidation regulates glycolysis. When muscle lactate production was greatly stimulated by thermal injury, DCA increased glycogen synthesis, normalized glycogen content, and inhibited glycolysis, thereby reducing lactate release. The major effect of DCA on lactate metabolism in muscle is to inhibit glycolysis. PMID:3543056

  3. Molecular Basis of ABHD5 Lipolysis Activation

    PubMed Central

    Sanders, Matthew A.; Zhang, Huamei; Mladenovic, Ljiljana; Tseng, Yan Yuan; Granneman, James G.

    2017-01-01

    Alpha-beta hydrolase domain-containing 5 (ABHD5), the defective gene in human Chanarin-Dorfman syndrome, is a highly conserved regulator of adipose triglyceride lipase (ATGL)-mediated lipolysis that plays important roles in metabolism, tumor progression, viral replication, and skin barrier formation. The structural determinants of ABHD5 lipolysis activation, however, are unknown. We performed comparative evolutionary analysis and structural modeling of ABHD5 and ABHD4, a functionally distinct paralog that diverged from ABHD5 ~500 million years ago, to identify determinants of ABHD5 lipolysis activation. Two highly conserved ABHD5 amino acids (R299 and G328) enabled ABHD4 (ABHD4 N303R/S332G) to activate ATGL in Cos7 cells, brown adipocytes, and artificial lipid droplets. The corresponding ABHD5 mutations (ABHD5 R299N and ABHD5 G328S) selectively disrupted lipolysis without affecting ATGL lipid droplet translocation or ABHD5 interactions with perilipin proteins and ABHD5 ligands, demonstrating that ABHD5 lipase activation could be dissociated from its other functions. Structural modeling placed ABHD5 R299/G328 and R303/G332 from gain-of-function ABHD4 in close proximity on the ABHD protein surface, indicating they form part of a novel functional surface required for lipase activation. These data demonstrate distinct ABHD5 functional properties and provide new insights into the functional evolution of ABHD family members and the structural basis of lipase regulation. PMID:28211464

  4. Afferents contributing to autogenic inhibition of gastrocnemius following electrical stimulation of its tendon.

    PubMed

    Khan, Serajul I; Burne, John A

    2009-07-28

    Electrical stimulation of the Achilles tendon produced strong reflex inhibition of the ongoing voluntary EMG activity in the two heads of the gastrocnemius (GA) muscle in all tested subjects. The inhibition was seen clearly in both averaged and single sweep surface EMG records. The inhibitory response was produced without electrical (M wave) or mechanical, (muscle twitch) signs of direct muscle stimulation. The onset latency and duration for the first period of inhibition (I(1)) were 47-49 ms and 67 ms, respectively. A second inhibition (I(2)) had an onset latency of 187-193 ms and duration under 40 ms. Non-noxious stimuli in the range of 2.6-7.6 x mean perceptual threshold, when delivered to four locations over the GA tendon, all produced clear inhibition of the voluntary muscle activity. The inhibition was maximal when the cathode was a large metal plate located near the musculotendinous junction and decreased approximately linearly with distances more distal to that site. The effect of passive muscle stretch on the electrically induced tendon reflex inhibition (TRE) was tested at ankle joint angles incremented in steps of 20 degrees. It was found that TRE is strongly dependent on joint angle, being maximal in the fully stretched muscle. TRE was lost completely after partial tibial nerve block. In comparison, GA inhibition produced by cutaneous (sural) nerve stimulation was of a higher threshold, longer latency and persisted after partial tibial nerve block. We thus demonstrated a powerful autogenic inhibition in the lower limb arising from tendon afferents in conscious subjects that is increased by passive muscle stretch and likely to originate from group I tendon afferents.

  5. Reflex inhibition of normal cramp following electrical stimulation of the muscle tendon.

    PubMed

    Khan, Serajul I; Burne, John A

    2007-09-01

    Muscle cramp was induced in one head of the gastrocnemius muscle (GA) in eight of thirteen subjects using maximum voluntary contraction when the muscle was in the shortened position. Cramp in GA was painful, involuntary, and localized. Induction of cramp was indicated by the presence of electromyographic (EMG) activity in one head of GA while the other head remained silent. In all cramping subjects, reflex inhibition of cramp electrical activity was observed following Achilles tendon electrical stimulation and they all reported subjective relief of cramp. Thus muscle cramp can be inhibited by stimulation of tendon afferents in the cramped muscle. When the inhibition of cramp-generated EMG and voluntary EMG was compared at similar mean EMG levels, the area and timing of the two phases of inhibition (I(1), I(2)) did not differ significantly. This strongly suggests that the same reflex pathway was the source of the inhibition in both cases. Thus the cramp-generated EMG is also likely to be driven by spinal synaptic input to the motorneurons. We have found that the muscle conditions that appear necessary to facilitate cramp, a near to maximal contraction of the shortened muscle, are also the conditions that render the inhibition generated by tendon afferents ineffective. When the strength of tendon inhibition in cramping subjects was compared with that in subjects that failed to cramp, it was found to be significantly weaker under the same experimental conditions. It is likely that reduced inhibitory feedback from tendon afferents has an important role in generating cramp.

  6. Insulin inhibits AMPA-induced neuronal damage via stimulation of protein kinase B (Akt).

    PubMed

    Kim, S-J; Han, Y

    2005-02-01

    We designed a series of experiments to explore the neuroprotective effects of insulin. Insulin significantly inhibited the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced neuronal cell damage as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay. However, insulin had little affect on the AMPA-induced glial cell damage. To determine whether insulin inhibits AMPA-induced excitotoxicity, we performed grease-gap recording assays using rat brain slices. In these experiments, insulin also significantly inhibited AMPA-induced depolarization. Flow cytometry and DNA fragmentation assays showed that insulin inhibits AMPA-induced apoptosis and DNA fragmentation, respectively. Insulin stimulated protein kinase B (Akt) activity, whereas AMPA pretreatment did not alter the insulin-stimulated Akt activity. On the contrary, insulin blocked induction of SAPK/JNK, which AMPA stimulated. Taken together, these results suggest that insulin exerts neuroprotective effects by inhibiting AMPA-induced excitotoxicity and apoptosis, possibly by activating Akt and blocking SAPK/JNK.

  7. ARP101 inhibits α-MSH-stimulated melanogenesis by regulation of autophagy in melanocytes.

    PubMed

    Kim, Eun Sung; Jo, Yoon Kyung; Park, So Jung; Chang, Huikyoung; Shin, Ji Hyun; Choi, Eun Sun; Kim, Jun Bum; Seok, Su Hyeon; Kim, Jae-Sung; Oh, Jeong Su; Kim, Myoung-Hwan; Lee, Eunjoo H; Cho, Dong-Hyung

    2013-12-11

    Autophagy is a cooperative process between autophagosomes and lysosomes that degrades cellular organelles. Although autophagy regulates the turnover of cellular components, its role in melanogenesis is not clearly established. Previously, we reported that ARP101 induces autophagy in various cancer cells. Here, we show that ARP101 inhibits melanogenesis by regulation of autophagy. ARP101 inhibited α-MSH-stimulated melanin synthesis and suppressed the expression of tyrosinase and TRP1 in immortalized mouse melanocytes. ARP101 also induced autophagy in melanocytes. Knockdown of ATG5 reduced both anti-melanogenic activity and autophagy mediated by ARP101 in α-MSH treated melanocytes. Electron microscopy analysis further revealed that autophagosomes engulf melanin or melanosome in α-MSH and ARP101-treated cells. Collectively, our results suggest that ARP101 inhibits α-MSH-stimulated melanogenesis through the activation of autophagy in melanocytes.

  8. Minocycline hydrochloride nanoliposomes inhibit the production of TNF-α in LPS-stimulated macrophages

    PubMed Central

    Liu, D; Yang, P S

    2012-01-01

    Background As an adjunctive treatment of chronic periodontitis, it seems that the application of periocline or the other antimicrobials is effective against periodontopathogens. In this study, nanoliposomes were investigated as carriers of minocycline hydrochloride and the inhibition effects of minocycline hydrochloride nanoliposomes on the proliferation and lipopolysaccharide (LPS)-stimulated production of tumor necrosis factor-α (TNF-α) of macrophages were elucidated. Methods After stimulation with 10 μg/mL LPS, murine macrophages (ANA-1) were treated with 10, 20, 40, 50 and 70 μg/mL 2% minocycline hydrochloride nanoliposomes, minocycline hydrochloride solution, and periocline for 6, 12, 24, 48 and 60 hours, respectively. A tetrazolium (MTT) assay was used to evaluate macrophages cell proliferation rate and the levels of TNF-α mRNA were measured by SYBR Green Real Time PCR. Results Ten to 70 μg/mL 2% minocycline hydrochloride nanoliposomes, minocycline hydrochloride solution, and periocline showed dose- and time-dependent inhibition of ANA-1 proliferation. Minocycline hydrochloride nanoliposomes showed dose- and ratio-dependent inhibition of LPS-stimulated TNF-α secretion of ANA-1. The inhibition effect of 10 μg/mL minocycline hydrochloride nanoliposomes was significantly better than that of two positive control groups, and equated to that of 60 or 70 μg/mL periocline. The expression of TNF-α mRNA in experimental group continued to reduce linearly with time. Conclusion All three preparations of minocycline hydrochloride showed dose- and time-dependent inhibition of proliferation of ANA-1. Minocycline hydrochloride nanoliposomes have stronger and longer inhibition effect on LPS-stimulated TNF-α secretion of macrophages cell than minocycline hydrochloride solution and periocline. PMID:22973098

  9. Assessment of Homonymous Recurrent Inhibition during Voluntary Contraction by Conditioning Nerve Stimulation

    PubMed Central

    Duclay, Julien; Martin, Alain

    2016-01-01

    In humans, the amount of spinal homonymous recurrent inhibition during voluntary contraction is usually assessed by using a peripheral nerve stimulation paradigm. This method consists of conditioning the maximal M-wave (SM stimulus) with prior reflex stimulation (S1), with 10 ms inter-stimulus interval (ISI). The decrease observed between unconditioned (S1 only) and conditioned (S1+SM) reflex size is then attributed to recurrent inhibition. However, during a voluntary contraction, a superimposed SM stimulation leads to a maximal M-wave followed by a voluntary (V) wave at similar latency than the H-reflex. This wave can therefore interfere with the conditioned H-reflex when two different stimulation intensities are used (S1 and SM), leading to misinterpretation of the data. The aim of the present study was to assess if conditioning V-wave response instead of H-reflex, by applying SM for both stimuli (test and conditioning), can be used as an index of recurrent inhibition. Conditioned and unconditioned responses of soleus and medial gastrocnemius muscles were recorded in twelve subjects at 25% and at 50% of maximal voluntary contraction at the usual ISI of 10 ms and an optimal inter-stimulus of 15 ms determined upon M- and V-wave latencies. Conditioned H-reflex (obtained with S1+SM paradigm) was significantly lower than the unconditioned by ~30% on average, meaning that the amount of inhibition was 70%. This amount of recurrent inhibition was significantly lower at higher force level with both methods. Regardless of the level of force or the conditioning ISI, results obtained with V-wave conditioning (SM+SM) were similar at both force levels, linearly correlated and proportional to those obtained with H conditioning. Then, V-wave conditioning appears to be a reliable index of homonymous recurrent inhibition during voluntary contraction. PMID:27880831

  10. The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures.

    PubMed

    Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Zhao, Zhiqing; Long, Yuyang; Fang, Yuan; Wang, Meizhen; Yin, Jun; Shen, Dongsheng

    2015-05-01

    Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h(-1), which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8%, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1% more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.

  11. Dopamine Regulation of Lateral Inhibition between Striatal Neurons Gates the Stimulant Actions of Cocaine.

    PubMed

    Dobbs, Lauren K; Kaplan, Alanna R; Lemos, Julia C; Matsui, Aya; Rubinstein, Marcelo; Alvarez, Veronica A

    2016-06-01

    Striatal medium spiny neurons (MSNs) form inhibitory synapses on neighboring striatal neurons through axon collaterals. The functional relevance of this lateral inhibition and its regulation by dopamine remains elusive. We show that synchronized stimulation of collateral transmission from multiple indirect-pathway MSNs (iMSNs) potently inhibits action potentials in direct-pathway MSNs (dMSNs) in the nucleus accumbens. Dopamine D2 receptors (D2Rs) suppress lateral inhibition from iMSNs to disinhibit dMSNs, which are known to facilitate locomotion. Surprisingly, D2R inhibition of synaptic transmission was larger at axon collaterals from iMSNs than their projections to the ventral pallidum. Targeted deletion of D2Rs from iMSNs impaired cocaine's ability to suppress lateral inhibition and increase locomotion. These impairments were rescued by chemogenetic activation of Gi-signaling in iMSNs. These findings shed light on the functional significance of lateral inhibition between MSNs and offer a novel synaptic mechanism by which dopamine gates locomotion and cocaine exerts its canonical stimulant response. VIDEO ABSTRACT.

  12. Reinforcement and Stimulant Medication Ameliorate Deficient Response Inhibition in Children with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Rosch, Keri S; Fosco, Whitney D; Pelham, William E; Waxmonsky, James G; Bubnik, Michelle G; Hawk, Larry W

    2016-02-01

    This study examined the degree to which reinforcement, stimulant medication, and their combination impact response inhibition in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Across three studies, participants with ADHD (n = 111, 25 girls) and typically-developing (TD) controls (n = 33, 6 girls) completed a standard version of the stop signal task (SST) and/or a reinforcement-manipulation SST with performance-contingent points. In two of these studies, these tasks were performed under placebo or 0.3 and 0.6 mg/kg methylphenidate (MPH) conditions. Cross-study comparisons were conducted to test hypotheses regarding the separate and combined effects of reinforcement and methylphenidate on response inhibition among children with ADHD relative to TD controls. Baseline response inhibition was worse among children with ADHD compared to controls. MPH produced dose-related improvements in response inhibition in children with ADHD; compared to non-medicated TD controls, 0.3 mg/kg MPH normalized deficient response inhibition, and 0.6 mg/kg MPH resulted in better inhibition in children with ADHD. Reinforcement improved response inhibition to a greater extent for children with ADHD than for TD children, normalizing response inhibition. The combination of MPH and reinforcement improved response inhibition among children with ADHD compared to reinforcement alone and MPH alone, also resulting in normalization of response inhibition despite repeated task exposure. Deficient response inhibition commonly observed in children with ADHD is significantly improved with MPH and/or reinforcement, normalizing inhibition relative to TD children tested under standard conditions.

  13. Amoxapine inhibition of GABA-stimulated chloride conductance: Investigations of potential sites of activity

    SciTech Connect

    Ikeda, M.; Knapp, R.J.; Yamamura, H.I. ); Malatynska, E. )

    1989-01-01

    Amoxapine inhibits GABA-stimulated chloride conductance by acting on the GABA{sub A}-receptor chloride-ionophore complex which can be studied using membrane vesicles prepared from rat cerebral cortex. Amoxapine produces a right shift in the GABA concentration-response curve for the stimulation of {sup 36}Cl{sup {minus}} uptake into these vesicles with no apparent change in the maximum response. Schild analysis of these data gave a pA{sub 2} value of 5.52 with a slope of 0.79. Amoxapine inhibits the binding of the GABA{sub A} receptor selective antagonist ({sup 3}H)SR 95531 with an IC{sub 50} value of 3.45 {mu}M and a pseudo Hill coefficient of 0.83. In contrast, 10 {mu}M amoxapine inhibits ({sup 3}H) flunitrazepam binding by less than 25% while the benzodiazepine antagonist Ro 15-1788 reduces the amoxapine inhibition of GABA-stimulated chloride conductance only at high concentrations.

  14. Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat.

    PubMed

    Hesslow, G

    1994-04-15

    The purpose of the present study was to test the hypothesis that neurones in the anterior interpositus nucleus, under the control of Purkinje cells in the c1 and c3 zones of the cerebellar cortex, exert some control over classically conditioned responses. In particular, the experiments were designed to determine whether the cerebellar control of conditioned and unconditioned responses is different. The experiments were performed on cats decerebrated rostral to the red nucleus under halothane anaesthesia. The cats were conditioned using either a 1000 Hz tone or trains of stimuli through the skin of the proximal forelimb as the conditioned stimulus, and periorbital electrical stimulation as the unconditioned stimulus. A large proportion of the animals acquired conditioned responses at normal rates. It could be shown that these were true conditioned responses and did not result from sensitization or pseudoconditioning. For instance, unpaired presentations of conditioned and unconditioned stimuli caused rapid extinction. Cerebellar areas controlling eyeblink were identified by recording climbing fibre responses in the cerebellar cortex and recording EMG activity in the eyelid evoked by stimulation of the cerebellar cortex. When single shocks of 40-70 microA were applied to these areas during the emission of conditioned eyeblink responses, the latter were strongly inhibited. The inhibition had a latency of about 10 ms and a duration of 25-75 ms. It was shown that this inhibition of the conditioned responses was topographically specific and could only be evoked from cortical sites identified as controlling eyeblink. Stimulation of the periphery of an eyeblink area caused little or no inhibition. The effect of cortical stimulation on unconditioned reflex responses in the orbicularis oculi muscle was also tested. Some inhibition of unconditioned responses was observed, but quantitative analysis showed that this inhibition was considerably weaker than the corresponding

  15. Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat.

    PubMed Central

    Hesslow, G

    1994-01-01

    The purpose of the present study was to test the hypothesis that neurones in the anterior interpositus nucleus, under the control of Purkinje cells in the c1 and c3 zones of the cerebellar cortex, exert some control over classically conditioned responses. In particular, the experiments were designed to determine whether the cerebellar control of conditioned and unconditioned responses is different. The experiments were performed on cats decerebrated rostral to the red nucleus under halothane anaesthesia. The cats were conditioned using either a 1000 Hz tone or trains of stimuli through the skin of the proximal forelimb as the conditioned stimulus, and periorbital electrical stimulation as the unconditioned stimulus. A large proportion of the animals acquired conditioned responses at normal rates. It could be shown that these were true conditioned responses and did not result from sensitization or pseudoconditioning. For instance, unpaired presentations of conditioned and unconditioned stimuli caused rapid extinction. Cerebellar areas controlling eyeblink were identified by recording climbing fibre responses in the cerebellar cortex and recording EMG activity in the eyelid evoked by stimulation of the cerebellar cortex. When single shocks of 40-70 microA were applied to these areas during the emission of conditioned eyeblink responses, the latter were strongly inhibited. The inhibition had a latency of about 10 ms and a duration of 25-75 ms. It was shown that this inhibition of the conditioned responses was topographically specific and could only be evoked from cortical sites identified as controlling eyeblink. Stimulation of the periphery of an eyeblink area caused little or no inhibition. The effect of cortical stimulation on unconditioned reflex responses in the orbicularis oculi muscle was also tested. Some inhibition of unconditioned responses was observed, but quantitative analysis showed that this inhibition was considerably weaker than the corresponding

  16. Stimulation of beta-adrenoceptors inhibits calcium-dependent potassium-channels in mouse macrophages

    SciTech Connect

    Rosati, C.; Hannaert, P.; Dausse, J.P.; Braquet, P.; Garay, R.

    1986-12-01

    K/sup +/ efflux in mouse macrophages exhibited a rate constant (k/sub k/) of 0.67 +/- 0.04 (h)/sup -1/. This was strongly stimulated by increasing concentrations of the Ca/sup 2 +/ ionophore A23187 up to a maximal value of 4.01 +/- 0.25 (h)/sup -1/ with an IC/sub 50/ of 7.6 +/- 1.9 ..mu..M. Similar results were obtained with the Ca/sup 2 +/ ionophore ionomycin. Binding experiments with /sup 3/H-dihydroalprenolol revealed a high density of beta-adrenergic receptors with apparent dissociation constant of 2.03 +/- 0.06 nM. Isoproterenol at a concentration of 10/sup -6/ -10/sup -5/ M induced a two- to threefold stimulation of endogenous levels of cyclic AMP (cAMP). A23187-stimulated K/sup +/ efflux was partially inhibited by (i) stimulation of adenylate cyclase with isoproterenol, forskolin or, PGE/sub 1/; (ii) exogenous cAMP; and (iii) inhibition of phosphodiesterase with MIX (1-methyl-3-isobutylxanthine). Maximal inhibition of K/sup +/ efflux was obtained by simultaneous addition of isoproterenol and MIX. In dose-response curves, the isoproterenol-sensitive K/sup +/ efflux was half-maximally inhibited (IC/sub 50/) with 2-5 x 10/sup -10/ M of isoproterenol concentration. Propranolol was able to completely block the effect of isoproterenol, with an IC/sub 50/ of about 1-2 x 10/sup -7/ M. Isoproterenol and MIX did not inhibit A23187-stimulated K/sup +/ efflux in an incubation medium where NaCl was replaced by sucrose (or choline), suggesting the involvement of an Na/sup +/:Ca/sup 2 +/ exchange mechanism. The results show that stimulation of beta-adrenoceptors in mouse macrophages counter balances the opening of K/sup +/ channels induced by the calcium ionophore A23187. This likely reflects a decrease in cytoslic free calcium content via a cAMP-mediated stimulation of Na/sup +/:Ca/sup 2 +/ exchange.

  17. Treatment of lipoma by injection lipolysis.

    PubMed

    Nanda, Soni

    2011-05-01

    Injection lipolysis or lipodissolve is the practice of injecting phosphatidyl choline/ sodium deoxycholate (PDC/DC) compounds in the subcutaneous fat. Though this practice is being used extensively for nonsurgical contouring of body and dissolving localized collections of excess fat, it's use as a treatment modality for lipomas needs further evaluation. We present a case where this technique was used for treating a lipoma, with no recurrence after 9 months of follow up. Injection lipolysis as a treatment modality for lipomas needs to be evaluated for safety and efficacy in trials on larger population. This could prove to be a very valuable adjunct to the current practice of excision, if done by a trained person in a properly selected patient. Also the side effects and the controversies regarding this procedure have been discussed in detail in the present paper.

  18. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    NASA Astrophysics Data System (ADS)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  19. Calcium supplementation does not alter lipid oxidation or lipolysis in overweight/obese women.

    PubMed

    Sampath, Vanitha; Havel, Peter J; King, Janet C

    2008-11-01

    Based on cell culture and studies in mice, increased dietary calcium appears to stimulate lipolysis and could possibly reduce body adiposity through hormonal influences on adipocyte calcium uptake. In this study, we investigated the effects of 1,500 mg supplemental calcium daily for 3 months on hormones regulating calcium and energy metabolism and rates of lipid oxidation and lipolysis in overweight women. Fifteen overweight (BMI > 25 kg/m(2)) premenopausal women were supplemented with 1,500 mg of calcium, as CaCO(3), per day for 3 months while maintaining their usual diets and activity levels. Baseline and endpoint measurements were obtained after the subjects consumed a standardized 25% fat diet for 4 days. Lipid oxidation was measured by indirect calorimetry, lipolysis by infusion of deuterated glycerol, and body fat by dual-energy X-ray absorptiometry. Urinary calcium, circulating levels of hormones involved in energy and lipid metabolism (insulin, leptin, and adiponectin) or calcium metabolism (25(OH)D, 1,25(OH)(2)D), and parathyroid hormone (PTH)) were also measured. Urinary levels of calcium (P = 0.005) increased and 1,25(OH)(2)D declined (P = 0.03). However other parameters, including body weight, body fat, PTH, insulin, leptin, adiponectin, 25(OH)D, as well as rates of lipid oxidation and lipolysis were not altered by calcium supplementation. Calcium supplementation for 3 months increased urinary calcium excretion, decreased circulating levels of 1,25(OH)(2)-D, but had no effect on rates of lipid oxidation or lipolysis, in these overweight women.

  20. Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity

    PubMed Central

    Ding, Lei; Zhang, Feng; Zhao, Ming-Xia; Ren, Xing-Sheng; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-01-01

    Chemical stimulation of white adipose tissue (WAT) causes adipose afferent reflex (AAR) and sympathetic activation. This study is to investigate the effects of AAR on lipolysis and the mechanisms of attenuated lipolysis response to enhanced AAR in obesity. Obesity was caused by high-fat diet for 12 weeks in rats. AAR was induced by injection of capsaicin into inguinal WAT or electrical stimulation of epididymal WAT afferent nerve. AAR caused sympathetic activation, which was enhanced in obesity rats. AAR increased cAMP levels and PKA activity, promoted hormone sensitive lipase (HSL) and perilipin phosphorylation, and increased lipolysis in WAT, which were attenuated in obesity rats. PKA activity, cAMP, perilipin and β-adrenoceptor levels were reduced, while HSL was upregulated in adipocytes from obesity rats. In primary adipocytes, isoproterenol increased cAMP levels and PKA activity, promoted HSL and perilipin phosphorylation, and increased lipolysis, which were attenuated in obesity rats. The attenuated effects of isoproterenol in adipocytes from obesity rats were prevented by a cAMP analogue dbcAMP. The results indicate that reduced lipolysis response to enhanced AAR in obesity is attributed to the impaired activation of β-adrenoceptor-cAMP-PKA-HSL pathway. Increased cAMP level in adipocytes rectifies the attenuated lipolysis in obesity. PMID:27694818

  1. FAT SIGNALS - Lipases and Lipolysis in Lipid Metabolism and Signaling

    PubMed Central

    Zechner, Rudolf; Zimmermann, Robert; Eichmann, Thomas O.; Kohlwein, Sepp D.; Haemmerle, Guenter; Lass, Achim; Madeo, Frank

    2012-01-01

    Lipolysis is defined as the catabolism of triacylglycerols stored in cellular lipid droplets. Recent discoveries of essential lipolytic enzymes and characterization of numerous regulatory proteins and mechanisms have fundamentally changed our perception of lipolysis and its impact on cellular metabolism. New findings that lipolytic products and intermediates participate in cellular signaling processes and that “lipolytic signaling” is particularly important in many nonadipose tissues unveil a previously underappreciated aspect of lipolysis, which may be relevant for human disease. PMID:22405066

  2. Hormonal regulation of intracellular lipolysis in C57BL/6J mice: effect of diet-induced adiposity and data normalization.

    PubMed

    Bederman, Ilya R; Previs, Stephen F

    2008-10-01

    The breakdown of intracellular triglycerides in adipose tissue provides fatty acids and glycerol as substrates for oxidation. However, the exposure of target organs to excess free fatty acids is associated with the development of insulin resistance and impaired regulation of carbohydrate metabolism, suggesting that the control of triglyceride breakdown is an important factor in balancing health and disease. We have studied the temporal influence of diet-induced changes in adiposity on the response of intracellular lipolysis to epinephrine +/- insulin using freshly isolated adipocytes from C57BL/6J mice fed a low-fat (10% kcal) or high-fat (HF, 45% kcal) diet for 1, 4, or 12 weeks. In this model, we also tested how data normalization affects the interpretation. The contribution of the epididymal fat to total body mass increased by approximately 15%, 45%, and 100% after 1, 4, and 12 weeks of HF diet consumption, respectively. In addition, HF feeding led to an increase in fasting insulin, that is, approximately 2-fold greater in HF- vs low-fat-fed mice at 4 and 12 weeks. We found that diet-induced changes in adiposity did not alter the lipolytic response to epinephrine when data were normalized per DNA (ie, per cell); however, the lipolytic potential of the organ (ie, the lipolytic rate per cell multiplied by the total number of cells) was increased in isolated adipocytes after 4 and 12 weeks of HF feeding. We also observed a marked impairment in insulin-mediated inhibition of epinephrine-stimulated lipolysis after 4 and 12 weeks of HF feeding, demonstrating that diet-induced adiposity leads to insulin resistance in adipocytes. In conclusion, HF feeding in mice leads to greater rates of lipolysis via (1) an increase in the number of fat cells and (2) a defect in insulin signaling in adipocytes. The combination of these 2 alterations on the control of intracellular lipolysis suggests a mechanism(s) that (partly) explains how target organs could be exposed to excess

  3. Melanocyte stimulating hormone peptides inhibit TNF-alpha signaling in human dermal fibroblast cells.

    PubMed

    Hill, R P; MacNeil, S; Haycock, J W

    2006-02-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) has been identified as a potent anti-inflammatory in various tissues including the skin. It has previously been shown in skin cell keratinocytes and melanocytes/melanoma cells that MSH peptides inhibit TNF-alpha stimulated NF-kappaB activity and intercellular adhesion molecule-1 (ICAM-1) upregulation. However, the precise anti-inflammatory role of MSH peptides in dermal fibroblasts is unclear. Some studies report on pro-inflammatory responses, while others on anti-inflammatory responses. The present study confirms MC1R expression in cultured human dermal fibroblasts and reports that the MSH peptides alpha-MSH and KP(-D-)V inhibit TNF-alpha stimulated NF-kappaB activity and ICAM-1 upregulation, consistent with an anti-inflammatory role. However, involvement of IkappaB-alpha regulation by either peptide was not confirmed, supporting a mechanism independent of the NF-kappaB inhibitor. In conclusion, alpha-MSH and KP(-D-)V peptides have an anti-inflammatory action on dermal fibroblast signaling by inhibiting the pro-inflammatory activity of TNF-alpha in vitro.

  4. Inhibition of antibody formation during continual stimulation with a strong immunogen

    PubMed Central

    Gras, J.; Roca, Mercedes; Ayats, Rosa; Castro, Rosa; Duran, F.

    1974-01-01

    Long persisting antigenic stimulation at immunogenic levels leads to a profound inhibition of antibody formation. With Brucellus abortus, there is first a brief and high IgM response. IgG antibody titres remain at a low level for some days, and then begin a slow and progressive increase, leading to a rather persistent maximum, and finally after about 300 days, to the state of inhibition. When the same total dose is given with monthly intervals, the effect is quite different, with similar IgM and IgG peaks being observed after each dose. The inhibited animals respond moderately to a ten-fold higher antigen dose, and only with IgG. Six months after interruption of the persistent antigenic stimulus, a strong response can be obtained after a new antigenic stimulation, with a substantial proportion of IgM. It is concluded that persistent antigenic stimulation plays a major role in the change from IgM to IgG synthesis. PMID:4212089

  5. Patterns of esophageal inhibition during swallowing, pharyngeal stimulation, and transient LES relaxation. Lower esophageal sphincter.

    PubMed

    Pouderoux, Philippe; Verdier, Eric; Kahrilas, Peter J

    2003-02-01

    Lower esophageal sphincter (LES) relaxation and esophageal body inhibition co-occur during esophageal peristalsis but not necessarily during pharyngeal stimulation or transient LES relaxation (tLESR). This study examined these relationships and the impact on reflux. Nine young volunteers were studied. An artificial high-pressure zone (HPZ) was established, and pH was recorded 8 and 5 cm proximal to the LES. Pharyngeal stimulation was by water injection and gastric distension with liquid or gas. Peristalsis, pharyngeal stimulation, and spontaneous events were recorded. Swallowing relaxed the LES in 100% of trials (the HPZ in 80%) and caused no reflux. Pharyngeal stimulation relaxed the LES in two-thirds of trials, had no effect on the HPZ, and caused no reflux. Gastric distension was associated with 117 tLESRs, 48% with acid reflux, and 32% with gas reflux; there was no effect on the HPZ. We conclude that LES relaxation is a necessary but not sufficient condition for reflux. LES relaxation and esophageal body inhibition are independent events that may be concurrent (swallowing) or dissociated (tLESR).

  6. Histamine stimulates chloride secretion in omeprazole-inhibited frog gastric mucosa

    SciTech Connect

    McGreevy, J.; Barton, R.; Housinger, T.

    1986-03-05

    Omeprazole (OME) stops hydrogen ion (H) secretion in the histamine (HIST)-stimulated gastric mucosa while the chloride (Cl) which had accompanied the H continues to be pumped into the lumen. This finding suggests that the Cl pump is independent of the H/K ATP-ase driven H pump. To test this hypothesis, 16 Ussing-chambered frog mucosas were exposed to OME prior to HIST stimulation. If the Cl pump is independent, HIST should stimulate Cl secretion in the OME-inhibited mucosa. A 1 hr control (CON) interval preceded exposure to OME (10/sup -4/M) in the nutrient solution. Potential difference (PD), short-circuit current (Isc), resistance (R), H flux (J/sup H/) and Cl flux (J/sup Cl/ with /sup 36/Cl) were measured every 15 min. After 1 hr of OME exposure, HIST (10/sup -5/M) was added to the nutrient solution. The findings demonstrate that HIST stimulates Cl secretion in the OME-inhibited bullfrog gastric mucosa.

  7. Cannabinoids inhibit the activation of ERK MAPK in PMA/Io-stimulated mouse splenocytes.

    PubMed

    Faubert Kaplan, Barbara L; Kaminski, Norbert E

    2003-10-01

    The mechanism of action of immune suppression by cannabinoids involves suppression of interleukin-2 (IL-2) production in phorbol ester plus calcium ionophore (PMA/Io)-stimulated lymphocytes. This decrease in IL-2 was due to inhibition of activator protein-1 (AP-1) and nuclear factor of activated T cells (NF-AT) transcription factors, both of which depend on proteins that are regulated by the extracellular signal-regulated kinase subgroup of the mitogen-activated protein kinases (ERK MAPK). Thus, the objective of the present study was to characterize the effects of cannabinoid compounds on ERK MAPK under conditions where IL-2 expression was suppressed. Using the MEK inhibitor PD098059 in order to assess the role of ERK MAPK in PMA/Io-stimulated splenocytes (SPLC), it was determined that IL-2 production and expression of c-fos and c-jun nuclear protein expression depended on activation of ERK MAPK. In response to PMA/Io, expression of nuclear phosphorylated ERK MAPK was rapidly induced, peaked at approximately 15 min, and was sustained for up to 240 min. Pretreatment with cannabinol (CBN) inhibited expression of phosphorylated ERK MAPK at several time points up to 240 min post cellular activation. Furthermore, WIN-55212-2, a synthetic cannabinoid, inhibited expression of phosphorylated ERK MAPK at 240 min post cellular activation. CBN did not induce activation of ERK MAPK in the absence of PMA/Io. Collectively, these studies suggest that cannabinoid-induced inhibition of IL-2 in PMA/Io-stimulated splenocytes might be due, in part, to inhibition of ERK MAPK activation.

  8. AHNAK deficiency promotes browning and lipolysis in mice via increased responsiveness to β-adrenergic signalling

    PubMed Central

    Shin, Jae Hoon; Lee, Seo Hyun; Kim, Yo Na; Kim, Il Yong; Kim, Youn Ju; Kyeong, Dong Soo; Lim, Hee Jung; Cho, Soo Young; Choi, Junhee; Wi, Young Jin; Choi, Jae-Hoon; Yoon, Yeo Sung; Bae, Yun Soo; Seong, Je Kyung

    2016-01-01

    In adipose tissue, agonists of the β3-adrenergic receptor (ADRB3) regulate lipolysis, lipid oxidation, and thermogenesis. The deficiency in the thermogenesis induced by neuroblast differentiation-associated protein AHNAK in white adipose tissue (WAT) of mice fed a high-fat diet suggests that AHNAK may stimulate energy expenditure via development of beige fat. Here, we report that AHNAK deficiency promoted browning and thermogenic gene expression in WAT but not in brown adipose tissue of mice stimulated with the ADRB3 agonist CL-316243. Consistent with the increased thermogenesis, Ahnak−/− mice exhibited an increase in energy expenditure, accompanied by elevated mitochondrial biogenesis in WAT depots in response to CL-316243. Additionally, AHNAK-deficient WAT contained more eosinophils and higher levels of type 2 cytokines (IL-4/IL-13) to promote browning of WAT in response to CL-316243. This was associated with enhanced sympathetic tone in the WAT via upregulation of adrb3 and tyrosine hydroxylase (TH) in response to β-adrenergic activation. CL-316243 activated PKA signalling and enhanced lipolysis, as evidenced by increased phosphorylation of hormone-sensitive lipase and release of free glycerol in Ahnak−/− mice compared to wild-type mice. Overall, these findings suggest an important role of AHNAK in the regulation of thermogenesis and lipolysis in WAT via β-adrenergic signalling. PMID:26987950

  9. Sustained Inhibition of Proliferative Response After Transient FGF Stimulation Is Mediated by Interleukin 1 Signaling.

    PubMed

    Poole, Ashleigh; Kacer, Doreen; Cooper, Emily; Tarantini, Francesca; Prudovsky, Igor

    2016-03-01

    Transient FGF stimulation of various cell types results in FGF memory--a sustained blockage of efficient proliferative response to FGF and other growth factors. FGF memory establishment requires HDAC activity, indicating its epigenetic character. FGF treatment stimulates proinflammatory NFκB signaling, which is also critical for FGF memory formation. The search for FGF-induced mediators of FGF memory revealed that FGF stimulates HDAC-dependent expression of the inflammatory cytokine IL1α. Similarly to FGF, transient cell treatment with recombinant IL1α inhibits the proliferative response to further FGF and EGF stimulation, but does not prevent FGF receptor-mediated signaling. Interestingly, like cells pretreated with FGF1, cells pretreated with IL1α exhibit enhanced restructuring of actin cytoskeleton and increased migration in response to FGF stimulation. IRAP, a specific inhibitor of IL 1 receptor, and a neutralizing anti-IL1α antibody prevent the formation of FGF memory and rescue an efficient proliferative response to FGF restimulation. A similar effect results following treatment with the anti-inflammatory agents aspirin and dexamethasone. Thus, FGF memory is mediated by proinflammatory IL1 signaling. It may play a role in the limitation of proliferative response to tissue damage and prevention of wound-induced hyperplasia.

  10. Inhibition of colony-stimulating factor (CSF) production by postburn serum: negative feedback inhibition mediated by lactoferrin.

    PubMed

    Peterson, V M; Ambruso, D R; Emmett, M; Bartle, E J

    1988-11-01

    Fatal infections in severely burned patients are often preceded by a decline in the production of colony-stimulating factor (CSF) and the proliferation of granulocyte-macrophage stem cells (CFU-GM), and overwhelming sepsis is often associated with leukopenia. The underlying mechanisms accounting for these granulopoietic defects are poorly understood, but the fact that postburn serum has been shown to inhibit CSF production suggests that a humoral factor or factors may play a role. Previous work has demonstrated that plasma levels of lactoferrin (LF), a known inhibitor of CSF production, are elevated following burn injury. To determine if LF is responsible for serum-mediated inhibition of CSF production, serial plasma levels of LF were measured in 18 burn patients using an enzyme-linked immunoabsorbent assay (ELISA). LF was elevated within 24 hours of injury and was associated with an absolute granulocytosis which rapidly declined, reaching a nadir at postburn days 3 through 5. Postburn serum, especially when collected during the first 24 hours following burn injury, inhibited in vitro CSF production by normal human peripheral blood mononuclear cells. Pre-incubation of postburn serum with an LF antibody restored normal CSF production. These data suggest that LF may play an important role in the regulation of postburn granulopoiesis.

  11. Slowing down fat digestion and absorption by an oxadiazolone inhibitor targeting selectively gastric lipolysis.

    PubMed

    Point, Vanessa; Bénarouche, Anais; Zarrillo, Julie; Guy, Alexandre; Magnez, Romain; Fonseca, Laurence; Raux, Brigitt; Leclaire, Julien; Buono, Gérard; Fotiadu, Frédéric; Durand, Thierry; Carrière, Frédéric; Vaysse, Carole; Couëdelo, Leslie; Cavalier, Jean-François

    2016-11-10

    Based on a previous study and in silico molecular docking experiments, we have designed and synthesized a new series of ten 5-Alkoxy-N-3-(3-PhenoxyPhenyl)-1,3,4-Oxadiazol-2(3H)-one derivatives (RmPPOX). These molecules were further evaluated as selective and potent inhibitors of mammalian digestive lipases: purified dog gastric lipase (DGL) and guinea pig pancreatic lipase related protein 2 (GPLRP2), as well as porcine (PPL) and human (HPL) pancreatic lipases contained in porcine pancreatic extracts (PPE) and human pancreatic juices (HPJ), respectively. These compounds were found to strongly discriminate classical pancreatic lipases (poorly inhibited) from gastric lipase (fully inhibited). Among them, the 5-(2-(Benzyloxy)ethoxy)-3-(3-PhenoxyPhenyl)-1,3,4-Oxadiazol-2(3H)-one (BemPPOX) was identified as the most potent inhibitor of DGL, even more active than the FDA-approved drug Orlistat. BemPPOX and Orlistat were further compared in vitro in the course of test meal digestion, and in vivo with a mesenteric lymph duct cannulated rat model to evaluate their respective impacts on fat absorption. While Orlistat inhibited both gastric and duodenal lipolysis and drastically reduced fat absorption in rats, BemPPOX showed a specific action on gastric lipolysis that slowed down the overall lipolysis process and led to a subsequent reduction of around 55% of the intestinal absorption of fatty acids compared to controls. All these data promote BemPPOX as a potent candidate to efficiently regulate the gastrointestinal lipolysis, and to investigate its link with satiety mechanisms and therefore develop new strategies to "fight against obesity".

  12. Inhibition of midbrain-evoked tonic and rhythmic motor activity by cutaneous stimulation in decerebrate cats.

    PubMed

    Beyaert, C A; Haouzi, P; Marchal, F

    2003-03-01

    The effect of mechanical and electrical stimulation of cervical cutaneous afferents was analysed on both the centrally induced tonic and rhythmic activities in hindlimb antagonist muscle nerves of 16 decerebrate paralysed cats. Electrical stimulation of dorsal midbrain evoked in the nerve to the tibialis anterior muscle (TAn) either rhythmic discharges (n=14), associated with tonic discharges in ten cats, or only tonic discharges (n=4). Centrally induced activity in the ipsilateral nerve to gastrocnemius medialis (GMn) occurred in fewer cats (n=12) and displayed similar patterns as in TAn. Manual traction of the scruff of the neck reduced the TAn tonic and rhythmic discharges (n=6) by 73% (P<0.05) and 71% (P<0.05), respectively, and reduced only the tonic component of GMn discharges (by 41%, n=3). Electrical stimulation (impulses 0.1-0.5 ms, 50 Hz) of cervical nerves belonging to C5 or C6 dermatomes, the intensity (0.4-4 mA) of which induced minimal inhibition of both TAn and GMn discharges, reduced significantly the tonic component of TAn discharges (by 39%, n=4). At higher intensities of electrical cervical nerve stimulation (2-6 mA) inducing maximal inhibitory effect, both tonic and rhythmic activities in TAn and GMn were both significantly reduced by, respectively, 81% and 94% in TAn (n=7), and by 49% and 43% in GMn (n=7). Electrical cervical nerve stimulation consistently reduced the isolated tonic discharge in TAn by 66% (n=4, P<0.05) and in GMn by 23% (n=3) when present. Thus the tonic component was more sensitive to inhibition than the rhythmic component of hindlimb muscle nerve activity.

  13. Protein kinase C activation inhibits eosinophil degranulation through stimulation of intracellular cAMP production.

    PubMed

    Ezeamuzie, Charles I; Taslim, Najla

    2004-11-01

    The mechanism of inhibition of eosinophil degranulation by protein kinase C (PKC) was investigated in complement C5a (C5a)-stimulated degranulation of highly purified human eosinophils using the specific PKC activator - phorbol 12-myristate 13-acetate (PMA). C5a-induced release of eosinophil peroxidase and eosinophil cationic protein was potently inhibited in a concentration-dependent manner by PMA (IC(50): 3 and 5 nM, respectively). The inhibition by PMA, but not histamine, was significantly reversed by the specific, but isoform nonselective, PKC inhibitor Ro 31-8220 (1 microM). In the presence of phosphodiesterase inhibitor rolipram (5 microM), PMA stimulated a pronounced concentration-dependent increase in intracellular cAMP, with a potency 400 times that of histamine (EC(50): 55 nM vs 22.5 microM). The inactive PMA analogue, 4alpha-PMA, had no such effect. The cAMP production by PMA, but not histamine, was significantly reversed by Ro 31-8220 (1 microM) and the selective inhibitor of the novel PKCdelta, rottlerin (1-3 microM), but not the selective inhibitor of the classical PKC isoforms, Gö 6976 (0.01-0.1 microM). Western blot analysis revealed the presence of six PKC isoforms (alpha, betaI, betaII, delta, iota and zeta) in isolated eosinophils. Chelation of internal or external calcium had no effect on PMA-induced cAMP response, but abolished that induced by histamine. There was a good correlation between increase in intracellular cAMP and inhibition of degranulation. These results show, for the first time, that in human eosinophils, PMA, via activation of PKCdelta isoform, can stimulate cAMP production, and that this may be the basis for its potent anti-degranulatory effect.

  14. Protein kinase C activation inhibits eosinophil degranulation through stimulation of intracellular cAMP production

    PubMed Central

    Ezeamuzie, Charles I; Taslim, Najla

    2004-01-01

    The mechanism of inhibition of eosinophil degranulation by protein kinase C (PKC) was investigated in complement C5a (C5a)-stimulated degranulation of highly purified human eosinophils using the specific PKC activator – phorbol 12-myristate 13-acetate (PMA). C5a-induced release of eosinophil peroxidase and eosinophil cationic protein was potently inhibited in a concentration-dependent manner by PMA (IC50: 3 and 5 nM, respectively). The inhibition by PMA, but not histamine, was significantly reversed by the specific, but isoform nonselective, PKC inhibitor Ro 31-8220 (1 μM). In the presence of phosphodiesterase inhibitor rolipram (5 μM), PMA stimulated a pronounced concentration-dependent increase in intracellular cAMP, with a potency 400 times that of histamine (EC50: 55 nM vs 22.5 μM). The inactive PMA analogue, 4α-PMA, had no such effect. The cAMP production by PMA, but not histamine, was significantly reversed by Ro 31-8220 (1 μM) and the selective inhibitor of the novel PKCδ, rottlerin (1–3 μM), but not the selective inhibitor of the classical PKC isoforms, Gö 6976 (0.01–0.1 μM). Western blot analysis revealed the presence of six PKC isoforms (α, βI, βII, δ, ι and ζ) in isolated eosinophils. Chelation of internal or external calcium had no effect on PMA-induced cAMP response, but abolished that induced by histamine. There was a good correlation between increase in intracellular cAMP and inhibition of degranulation. These results show, for the first time, that in human eosinophils, PMA, via activation of PKCδ isoform, can stimulate cAMP production, and that this may be the basis for its potent anti-degranulatory effect. PMID:15504748

  15. Dopamine Inhibits Angiotensin-Stimulated Aldosterone Biosynthesis in Bovine Adrenal Cells

    PubMed Central

    Mc Kenna, Terence J.; Island, Donald P.; Nicholson, Wendell E.; Liddle, Grant W.

    1979-01-01

    The possibility that dopamine may play a role in the in vivo control of aldosterone production in man was suggested to us by reports from others; (a) that bromocriptine, a dopaminergic agonist, inhibits the aldosterone response to diuresis and to the infusion of angiotensin or ACTH; and (b) that metaclopramide, a dopamine blocking agent, causes elevations in plasma aldosterone levels. To determine whether such effects were direct or indirect, we examined the action of dopamine on aldosterone biosynthesis in isolated, bovine adrenal cells. Dopamine significantly inhibits the aldosterone response to angiotensin (P < 0.001), but does not influence basal aldosterone biosynthesis. It has previously been reported that angiotensin stimulates both the early and late phases of aldosterone biosynthesis. The present experiments demonstrated that the enhancing effect of angiotensin on the conversion of deoxycorticosterone to aldosterone (late phase of aldosterone biosynthesis) was almost completely inhibited by dopamine (P < 0.001). A significant inhibitory effect of dopamine (10 nM) was seen even when aldosterone biosynthesis was stimulated by a grossly supraphysiological concentration of angiotensin II (10 μM). However, these studies did not demonstrate any direct effect of dopamine on the early phase of aldosterone biosynthesis (cholesterol to pregnenolone) basally or when stimulated, or on the late phase of aldosterone biosynthesis under basal conditions. These in vitro studies suggest a direct inhibitory role for dopamine on the late phase of aldosterone biosynthesis, which may account for the in vivo inhibition of the aldosterone response to angiotensin in subjects treated with a dopaminergic agent. PMID:447857

  16. Both inflammatory and classical lipolytic pathways are involved in lipopolysaccharide-induced lipolysis in human adipocytes.

    PubMed

    Grisouard, Jean; Bouillet, Elisa; Timper, Katharina; Radimerski, Tanja; Dembinski, Kaethi; Frey, Daniel M; Peterli, Ralph; Zulewski, Henryk; Keller, Ulrich; Müller, Beat; Christ-Crain, Mirjam

    2012-02-01

    High fat diet-induced endotoxaemia triggers low-grade inflammation and lipid release from adipose tissue. This study aims to unravel the cellular mechanisms leading to the lipopolysaccharide (LPS) effects in human adipocytes. Subcutaneous pre-adipocytes surgically isolated from patients were differentiated into mature adipocytes in vitro. Lipolysis was assessed by measurement of glycerol release and mRNA expression of pro-inflammatory cytokines were evaluated by real-time PCR. Treatment with LPS for 24 h induced a dose-dependent increase in interleukin (IL)-6 and IL-8 mRNA expression. At 1 µg/ml LPS, IL-6 and IL-8 were induced to 19.5 ± 1.8-fold and 662.7 ± 91.5-fold (P < 0.01 vs basal), respectively. From 100 ng/ml to 1 µg/ml, LPS-induced lipolysis increased to a plateau of 3.1-fold above basal level (P < 0.001 vs basal). Co-treatment with inhibitors of inhibitory kappa B kinase kinase beta (IKKβ) or NF-κB inhibited LPS-induced glycerol release. Co-treatment with the protein kinase A (PKA) inhibitor H-89, the lipase inhibitor orlistat or the hormone-sensitive lipase (HSL) inhibitor CAY10499 abolished the lipolytic effects of LPS. Co-treatment with the MAPK inhibitor, U0126 also reduced LPS-induced glycerol release. Inhibition of lipolysis by orlistat or CAY10499 reduced LPS-induced IL-6 and IL-8 mRNA expression. Induction of lipolysis by the synthetic catecholamine isoproterenol or the phosphodiesterase type III inhibitor milrinone did not alter basal IL-6 and IL-8 mRNA expression after 24 treatments whereas these compounds enhanced LPS-induced IL-6 and IL-8 mRNA expression. Both the inflammatory IKKβ/NF-κB pathway and the lipolytic PKA/HSL pathways mediate LPS-induced lipolysis. In turn, LPS-induced lipolysis reinforces the expression of pro-inflammatory cytokines and, thereby, triggers its own lipolytic activity.

  17. Corticosterone inhibition of osmotically stimulated vasopressin from hypothalamic-neurohypophysial explants.

    PubMed

    Papanek, P E; Sladek, C D; Raff, H

    1997-01-01

    Glucocorticoids inhibit and glucocorticoid deficiency increases vasopressin (AVP) release in vivo. To determine whether the effect of glucocorticoids is hypothalamic and mediated via a glucocorticoid receptor, explants of the hypothalamic-neurohypophysial system were used to measure AVP release during agonist and antagonist exposure. Explants from adult rats, which contained AVP neurons of the supraoptic nucleus with axonal projections terminating in the neural lobe but excluded the paraventricular nucleus, were perifused with an osmotic stimulus (increase of 5 mosmol/h over 6 h) in the absence or presence of corticosterone (100 micrograms/dl) or with corticosterone (100 micrograms/dl) in the absence or presence of the glucocorticoid antagonist RU-486 (10 microM). AVP release was not increased during osmotic stimulation in the presence of corticosterone (Cort) and was 20-30% lower than osmotically stimulated release observed in the absence of Cort. RU-486 reversed the inhibitory effect of corticosterone on AVP release. No changes in AVP mRNA content were detected. These results suggest that Cort inhibits osmotically stimulated AVP release by a direct effect within the hypothalamus and/or neurohypophysis. This effect is mediated by the glucocorticoid receptor through either genomic or nongenomic mechanisms.

  18. Eosinophil cationic protein stimulates and major basic protein inhibits airway mucus secretion.

    PubMed

    Lundgren, J D; Davey, R T; Lundgren, B; Mullol, J; Marom, Z; Logun, C; Baraniuk, J; Kaliner, M A; Shelhamer, J H

    1991-03-01

    Possible roles of eosinophil (EO) products in modulating the release of mucus from airway explants were investigated. Cell- and membrane-free lysates from purified human EOs (1 to 20 x 10(5)) caused a dose-dependent release of respiratory glycoconjugates (RGC) from cultured feline tracheal explants. Crude extracts from isolated EO granules also stimulated RGC release, suggesting that a granular protein might be responsible. Three proteins derived from EO granules, EO-derived neurotoxin, EO cationic protein (ECP), and major basic protein (MBP) were separated by sequential sizing and affinity chromatography. ECP (0.025 to 25 micrograms/ml) caused a dose-dependent increase in RGC release from both feline and human airway explants and also stimulated the release of the serous cell-marker, lactoferrin, from human bronchial explants. EO-derived neurotoxin (0.025 to 50 micrograms/ml) failed to affect RGC release, whereas MBP (50 micrograms/ml) significantly inhibited RGC release from feline explants. Thus, ECP stimulates RGC and lactoferrin release from airway explants, whereas MBP inhibits RGC release.

  19. β-adrenoceptor blocking agents and lipolysis

    PubMed Central

    Harms, H. H.; De Vente, J.; Zaagsma, J.

    1982-01-01

    1 The pharmacological characteristics of β-adrenoceptor subtypes on adipocytes of various mammalian species, including man, are reviewed. 2 Rat adipocytes possess a homogeneous population of β-adrenoceptors with properties that clearly distinguish them from `classic' β1- and β2-adrenoceptors, although they share certain features with both. Thus, rat adipocyte β-adrenoceptors should be considered as non-β1-non-β2 receptors, like the atypical β-adrenoceptors found on erythrocytes of turkey, chicken and frog. 3 Preliminary data suggest that adipocyte β-adrenoceptors of guinea pig and swine are different from `classic' β1- and β2-adrenoceptors as well, whereas in the dog and possibly in the cat, a mixture of β1- and β2-receptors mediates catecholamine induced lipolysis. 4 Human adipocyte β-adrenoceptors probably also consist of at least two subtypes. Insufficient data are available to decide if these β-adrenoceptors are identical with `classic' β1- and β2-receptors, or share some hybrid characteristics with rat adipocyte β-adrenoceptors. 5 In vivo studies in animals as well as in man, tend to corroborate in vitro results. Cardioselective β-adrenoceptor blocking agents, like atenolol, metoprolol and practolol are not as effective in blocking catecholamine induced lipolysis as non-cardioselective agents like propranolol and pindolol. The relatively low potency of cardioselective β-adrenoceptor blocking agents is found using either isoprenaline, adrenaline or exercise as the agonist, suggesting that β2-adrenoceptors are involved. On the other hand, cardioselective agents, though less effective than non-cardioselective compounds, have a significant inhibitory effect on catecholamine induced lipolysis at doses that have only minimal effect on other β2-adrenoceptor mediated responses, which argues for participation of β1-adrenoceptors. 6 Thus, human in vitro and in vivo data are consistent with, but not proof of the hypothesis that a mixture of β1

  20. Paired Associative Stimulation Induces Change in Presynaptic Inhibition of Ia Terminals in Wrist Flexors in Humans

    PubMed Central

    Russmann, Heike; Shamim, Ejaz A.; Meunier, Sabine; Hallett, Mark

    2010-01-01

    Enhancements in the strength of corticospinal projections to muscles are induced in conscious humans by paired associative stimulation (PAS) to the motor cortex. Although most of the previous studies support the hypothesis that the increase of the amplitude of motor evoked potentials (MEPs) by PAS involves long-term potentiation (LTP)-like mechanism in cortical synapses, changes in spinal excitability after PAS have been reported, suggestive of parallel modifications in both cortical and spinal excitability. In a first series of experiments (experiment 1), we confirmed that both flexor carpi radialis (FCR) MEPs and FCR H reflex recruitment curves are enhanced by PAS. To elucidate the mechanism responsible for this change in the H reflex amplitude, we tested, using the same subjects, the hypothesis that enhanced H reflexes are caused by a down-regulation of the efficacy of mechanisms controlling Ia afferent discharge, including presynaptic Ia inhibition and postactivation depression. To address this question, amounts of both presynaptic Ia inhibition of FCR Ia terminals (D1and D2 inhibitions methods; experiment 2) and postactivation depression (experiment 3) were determined before and after PAS. Results showed that PAS induces a significant decrease of presynaptic Ia inhibition of FCR terminals, which was concomitant with the facilitation of the H reflex. Postactivation depression was unaffected by PAS. It is argued that enhancement of segmental excitation by PAS relies on a selective effect of PAS on the interneurons controlling presynaptic inhibition of Ia terminals. PMID:20538768

  1. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation.

    PubMed

    Yang, Gui-Li; Zhao, Zilong; Qin, Ting-Ting; Wang, Dong; Chen, Lijuan; Xiang, Rong; Xi, Zhen; Jiang, Rongcai; Zhang, Zhi-Song; Zhang, Jianning; Li, Lu-Yuan

    2017-02-09

    Vascular hyperpermeability is critical in ischemic diseases, including stroke and myocardial infarction, as well as in inflammation and cancer. It is well known that the VEGF-VEGFR2 signaling pathways are pivotal in promoting vascular permeability; however, counterbalancing mechanisms that restrict vascular permeability to maintain the integrity of blood vessels, are not yet fully understood. We report that TNF superfamily member 15 (TNFSF15), a cytokine largely produced by vascular endothelial cells and a specific inhibitor of the proliferation of these same cells, can inhibit VEGF-induced vascular permeability in vitro and in vivo, and that death receptor 3 (DR3), a cell surface receptor of TNFSF15, mediates TNFSF15-induced dephosphorylation of VEGFR2. Src homology region 2 domain-containing phosphatase-1 (SHP-1) becomes associated with DR3 upon TNFSF15 interaction with the latter. In addition, a protein complex consisting of VEGFR2, DR3, and SHP-1 is formed in response to the effects of TNFSF15 and VEGF on endothelial cells. It is plausible that this protein complex provides a structural basis for the molecular mechanism in which TNFSF15 induces the inhibition of VEGF-stimulated vascular hyperpermeability.-Yang, G.-L., Zhao, Z., Qin, T.-T., Wang, D., Chen, L., Xiang, R., Xi, Z., Jiang, R., Zhang, Z.-S., Zhang, J., Li. L.-Y. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation.

  2. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase.

    PubMed

    Henin, N; Vincent, M F; Gruber, H E; Van den Berghe, G

    1995-04-01

    AMP-activated protein kinase is a multisubstrate protein kinase that, in liver, inactivates both acetyl-CoA carboxylase, the rate-limiting enzyme of fatty acid synthesis, and 3-hydroxy-3-methyl-glutaryl-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. AICAR (5-amino 4-imidazolecarboxamide ribotide, ZMP) was found to stimulate up to 10-fold rat liver AMP-activated protein kinase, with a half-maximal effect at approximately 5 mM. In accordance with previous observations, addition to suspensions of isolated rat hepatocytes of 50-500 microM AICAriboside, the nucleoside corresponding to ZMP, resulted in the accumulation of millimolar concentrations of the latter. This was accompanied by a dose-dependent inactivation of both acetyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase. Addition of 50-500 microM AICAriboside to hepatocyte suspensions incubated in the presence of various substrates, including glucose and lactate/pyruvate, caused a parallel inhibition of both fatty acid and cholesterol synthesis. With lactate/pyruvate (10/1 mM), half-maximal inhibition was obtained at approximately 100 microM, and near-complete inhibition at 500 microM AICAriboside. These findings open new perspectives for the simultaneous control of triglyceride and cholesterol synthesis by pharmacological stimulators of AMP-activated protein kinase.

  3. Transcranial direct current stimulation of superior medial frontal cortex disrupts response selection during proactive response inhibition.

    PubMed

    Bender, Angela D; Filmer, Hannah L; Dux, Paul E

    2016-10-24

    Cognitive control is a vital executive process that is involved in selecting, generating, and maintaining appropriate, goal-directed behaviour. One operation that draws heavily on this resource is the mapping of sensory information to appropriate motor responses (i.e., response selection). Recently, a transcranial direct current stimulation (tDCS) study demonstrated that the left posterior lateral prefrontal cortex (pLPFC) is casually involved in response selection and response selection training. Correlational brain imaging evidence has also implicated the superior medial frontal cortex (SMFC) in response selection, and there is causal evidence that this brain region is involved in the proactive modulation of response tendencies when occasional stopping is required (response inhibition). However, to date there is only limited causal evidence that implicates the SMFC in response selection. Here, we investigated the role of SMFC in response selection, response selection training (Experiment 1) and response selection when occasional response inhibition is anticipated (Experiments 2 and 3) by employing anodal, cathodal, and sham tDCS. Cathodal stimulation of the SMFC modulated response selection by increasing reaction times in the context of proactive response inhibition. Our results suggest a context dependent role of the SMFC in response selection and hint that task set can influence the interaction between the brain and behaviour.

  4. Effect of the water extracts of propolis on stimulation and inhibition of different cells

    PubMed Central

    Vahedy, Fatemeh; Seyyedin, Mohammad; Jomehzadeh, Hamid Reza; Bozary, Kazem

    2007-01-01

    The water extracts of propolis (WEP) could inhibit growth of different cell lines namely McCoy, HeLa, SP2/0, HEp-2, and BHK21 and stimulate growth of normal cell named human lymphocyte, rat kidney, rat liver, and rat spleen. In these experiments 1 and 2 mg of WEP were added to 1 ml RPMI media with 5% FCS. Cell counts and cell viability of propolis-treated and propolis-free cells were assessed by Trypan blue dye exclusion test and MTT assay. The results showed that in case of McCoy, HeLa, SP20, HEp-2, and BHK21 cell lines, the water extracts of propolis could inhibit cell growth as well as reduction on size of the cells. In contrast the same amount of WEP could stimulate growth of normal cells up to 60% with the same concentration used for cell lines. Thus our study indicates that although WEP consists only of the soluble part of propolis, it enables to inhibit different cell lines and increase growth of normal cells. This indicates also that WEP contains the specific compounds with bioactivity against cell lines. Although propolis contain different number of compounds it is clear that WEP has enough biological compounds useful for the treatment of some diseases, medical and related applications. PMID:19003017

  5. Ascorbic acid participates in a general mechanism for concerted glucose transport inhibition and lactate transport stimulation.

    PubMed

    Castro, Maite A; Angulo, Constanza; Brauchi, Sebastián; Nualart, Francisco; Concha, Ilona I

    2008-11-01

    In this paper, we present a novel function for ascorbic acid. Ascorbic acid is an important water-soluble antioxidant and cofactor in various enzyme systems. We have previously demonstrated that an increase in neuronal intracellular ascorbic acid is able to inhibit glucose transport in cortical and hippocampal neurons. Because of the presence of sodium-dependent vitamin C transporters, ascorbic acid is highly concentrated in brain, testis, lung, and adrenal glands. In this work, we explored how ascorbic acid affects glucose and lactate uptake in neuronal and non-neuronal cells. Using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, the expression of glucose and ascorbic acid transporters in non-neuronal cells was studied. Like neurons, HEK293 cells expressed GLUT1, GLUT3, and SVCT2. With radioisotope-based methods, only intracellular ascorbic acid, but not extracellular, inhibits 2-deoxyglucose transport in HEK293 cells. As monocarboxylates such as pyruvate and lactate, are important metabolic sources, we analyzed the ascorbic acid effect on lactate transport in cultured neurons and HEK293 cells. Intracellular ascorbic acid was able to stimulate lactate transport in both cell types. Extracellular ascorbic acid did not affect this transport. Our data show that ascorbic acid inhibits glucose transport and stimulates lactate transport in neuronal and non-neuronal cells. Mammalian cells frequently present functional glucose and monocarboxylate transporters, and we describe here a general effect in which ascorbic acid functions like a glucose/monocarboxylate uptake switch in tissues expressing ascorbic acid transporters.

  6. Acupuncture stimulation inhibits somato-renal sympathetic A- and C-reflexes in anesthetized rats.

    PubMed

    Li, Wei-Min; Wu, Gen-Cheng; Arita, Hideko; Hanaoka, Kazuo

    2002-01-01

    Stimulation of peripheral nerve afferent for example tibial nerve by a strong electrical stimulation (rectanfular wave with 20V amplitude; pulse duration of 0.5 ms, 0.3 pulses/sec) can evoke a discharge of the somato-sympathetic reflex which is recorded on the efferent of renal sympathetic nerve. The component of the somato-sympathetic reflex can be divided into two parts: one is related to the transmission of the myelinated afferent fibers with a short lantency (41+/-2 ms) and is defined A-reflex, the other is related to the transmission of the unmyelinated afferent fibers with a long latency (210+/-13 ms) and is defined C-reflex. In the present study, an acupuncture needle (diameter 0.34 mm) was inserted into the hind limbs of the rat, dorsolaterally at the area of acupoint: huantiao (GB30), at a depth of 4-5 mm and was twisted right and left twice every second during recording the somato-renal sympathetic reflex. It was found that acupuncture on the huantiao acupoint significantly inhibited both A- and C-reflexes. There was no different inhibition of the A- and C-reflexes by acupuncture on the right or left side. However acupuncture on the fore limbs of the rat dorsolaterally at the area of acupoint: quchi (LI11) showed no effect on neither A- nor C-reflexes. These results suggest that acupuncture at the same spinal segment of the acupoint inhibits the somatorenal sympathetic reflex.

  7. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition.

    PubMed

    Deniau, Jean-Michel; Degos, Bertrand; Bosch, Clémentine; Maurice, Nicolas

    2010-10-01

    Deep brain electrical stimulation has become a recognized therapy in the treatment of a variety of motor disorders and has potentially promising applications in a wide range of neurological diseases including neuropsychiatry. Behavioural observation that electrical high-frequency stimulation of a given brain area induces an effect similar to a lesion suggested a mechanism of functional inhibition. In vitro and in vivo experiments as well as per operative recordings in patients have revealed a variety of effects involving local changes of neuronal excitability as well as widespread effects throughout the connected network resulting from activation of axons, including antidromic activation. Here we review current data regarding the local and network activity changes induced by high-frequency stimulation of the subthalamic nucleus and discuss this in the context of motor restoration in Parkinson's disease. Stressing the important functional consequences of axonal activation in deep brain stimulation mechanisms, we highlight the importance of developing anatomical knowledge concerning the fibre connections of the putative therapeutic targets.

  8. Both standing and postural threat decrease Achilles tendon reflex inhibition from tendon electrical stimulation.

    PubMed

    Horslen, Brian C; Inglis, J Timothy; Blouin, Jean-Sébastien; Carpenter, Mark G

    2017-03-22

    Golgi tendon organ Ib reflexes are thought to contribute to standing balance control, but it is unknown if they are modulated when people are exposed to a postural threat. We used a novel application of tendon electrical stimulation (TStim) to elicit Ib inhibitory reflexes in the medial gastrocnemius, while actively engaged in upright standing balance, to examine a) how Ib reflexes to TStim are influenced by upright stance, and b) the effects of height-induced postural threat on Ib reflexes during standing. TStim evoked short-latency (<47 ms) inhibition apparent in trigger-averaged rectified EMG, which was quantified in terms of area, duration, and mean amplitude of inhibition. In order to validate the use of TStim in a standing model, TStim-Ib inhibition was compared from conditions where participants were laying prone vs. standing upright. TStim evoked Ib inhibition in both conditions, however significant reductions in Ib inhibition area (42.2%) and duration (32.9%) were observed during stance. Postural threat, manipulated by having participants stand at LOW (0.8 m high, 0.6 m from edge) and HIGH (3.2 m, at edge) elevated surfaces, significantly reduced Ib inhibition area (32.4%), duration (16.4%) and amplitude (24.8%) in the HIGH, compared to LOW threat condition. These results demonstrate TStim is a viable technique for investigating Ib reflexes in standing, and confirm Ib reflexes are modulated with postural orientation. The novel observation of reduced Ib inhibition with elevated postural threat reveals that human Ib reflexes are context-dependent, and the human Ib reflex pathways are modulated by threat or emotional processing centres of the CNS. This article is protected by copyright. All rights reserved.

  9. Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body.

    PubMed

    Patel, Rajesh T; Soulages, Jose L; Hariharasundaram, Balaji; Arrese, Estela L

    2005-06-17

    The hydrolysis of triglyceride (TG) stored in the lipid droplets of the insect fat body is under hormonal regulation by the adipokinetic hormone (AKH), which triggers a rapid activation cAMP-dependent kinase cascade (protein kinase A (PKA)). The role of phosphorylation on two components of the lipolytic process, the TG-lipase and the lipid droplet, was investigated in fat body adipocytes. The activity of purified TG-lipase determined using in vivo TG-radiolabeled lipid droplets was unaffected by the phosphorylation of the lipase. However, the activity of purified lipase was 2.4-fold higher against lipid droplets isolated from hormone-stimulated fat bodies than against lipid droplets isolated from unstimulated tissue. In vivo stimulation of lipolysis promotes a rapid phosphorylation of a lipid droplet protein with an apparent mass of 42-44 kDa. This protein was identified as "Lipid Storage Droplet Protein 1" (Lsdp1). In vivo phosphorylation of this protein reached a peak approximately 10 min after the injection of AKH. Supporting a role of Lsdp1 in lipolysis, maximum TG-lipase activity was also observed with lipid droplets isolated 10 min after hormonal stimulation. The activation of lipolysis was reconstituted in vitro using purified insect PKA and TG-lipase and lipid droplets. In vitro phosphorylation of lipid droplets catalyzed by PKA enhanced the phosphorylation of Lsdp1 and the lipolytic rate of the lipase, demonstrating a prominent role PKA and protein phosphorylation on the activation of the lipid droplets. AKH-induced changes in the properties of the substrate do not promote a tight association of the lipase with the lipid droplets. It is concluded that the lipolysis in fat body adipocytes is controlled by the activation of the lipid droplet. This activation is achieved by PKA-mediated phosphorylation of the lipid droplet. Lsdp1 is the main target of PKA, suggesting that this protein is a major player in the activation of lipolysis in insects.

  10. Glucose inhibition of epinephrine stimulation of hepatic gluconeogenesis by blockade of the alpha-receptor function.

    PubMed

    Kneer, N M; Bosch, A L; Clark, M G; Lardy, H A

    1974-11-01

    For isolated rat hepatocytes, glucagon, 3':5'-cyclic AMP, 3':5'-cyclic GMP, and epinephrine stimulate the rate of gluconeogenesis from substrates not involving pathways of mitochondrial metabolism. From estimation of the rates of glucose formation, fructose 6-phosphate phosphorylation, and lactate and pyruvate formation it is concluded that epinephrine and 3':5'-cyclic GMP stimulate gluconeogenesis from either galactose or fructose by influencing the rate of reactions involving fructose 6-phosphate in a manner similar to that already reported for glucagon and 3':5'-cyclic AMP. Each agent acts to inhibit flux through phosphofructokinase (EC 2.7.1.11) and enhance flux through fructose diphosphatase (EC 3.1.3.11), resulting in the re-direction of carbon from lactate and pyruvate formation to glucose synthesis. In addition to 3':5'-cyclic GMP, dibutyryl 3':5'-cyclic GMP, 8-bromo 3':5'-cyclic GMP, 8-benzyl-thio 3':5'-cyclic GMP and 8-(4-chlorophenyl)thio 3':5'-cyclic GMP stimulate glucose formation and inhibit lactate and pyruvate formation from galactose. Guanosine monophosphate and 2':3'-cyclic GMP are inactive. As the stimulatory effect of epinephrine is inhibited by phenoxybenzamine and not by propranolol, and is not simulated by isoproterenol, it is concluded that catecholamine activity is expressed through the alpha-receptor. Increased extracellular glucose concentration (>10 mM) decreases the stimulatory effect of epinephrine, 3':5'-cyclic GMP, and partially that of 3':5'-cyclic AMP but does not alter the efficacy of glucagon.

  11. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  12. Inhibition of connexin 36 hemichannels by glucose contributes to the stimulation of insulin secretion.

    PubMed

    Pizarro-Delgado, Javier; Fasciani, Ilaria; Temperan, Ana; Romero, María; González-Nieto, Daniel; Alonso-Magdalena, Paloma; Nualart-Marti, Anna; Estil'les, Elisabet; Paul, David L; Martín-del-Río, Rafael; Montanya, Eduard; Solsona, Carles; Nadal, Angel; Barrio, Luis Carlos; Tamarit-Rodríguez, J

    2014-06-15

    The existence of functional connexin36 (Cx36) hemichannels in β-cells was investigated in pancreatic islets of rat and wild-type (Cx36(+/+)), monoallelic (Cx36(+/-)), and biallelic (Cx36(-/-)) knockout mice. Hemichannel opening by KCl depolarization was studied by measuring ATP release and changes of intracellular ATP (ADP). Cx36(+/+) islets lost ATP after depolarization with 70 mM KCl at 5 mM glucose; ATP loss was prevented by 8 and 20 mM glucose or 50 μM mefloquine (connexin inhibitor). ATP content was higher in Cx36(-/-) than Cx36(+/+) islets and was not decreased by KCl depolarization; Cx36(+/-) islets showed values between that of control and homozygous islets. Five minimolar extracellular ATP increased ATP content and ATP/ADP ratio and induced a biphasic insulin secretion in depolarized Cx36(+/+) and Cx36(+/-) but not Cx36(-/-) islets. Cx36 hemichannels expressed in oocytes opened upon depolarization of membrane potential, and their activation was inhibited by mefloquine and glucose (IC₅₀ ∼8 mM). It is postulated that glucose-induced inhibition of Cx36 hemichannels in islet β-cells might avoid depolarization-induced ATP loss, allowing an optimum increase of the ATP/ADP ratio by sugar metabolism and a biphasic stimulation of insulin secretion. Gradual suppression of glucose-induced insulin release in Cx36(+/-) and Cx36(-/-) islets confirms that Cx36 gap junction channels are necessary for a full secretory stimulation and might account for the glucose intolerance observed in mice with defective Cx36 expression. Mefloquine targeting of Cx36 on both gap junctions and hemichannels also suppresses glucose-stimulated secretion. By contrast, glucose stimulation of insulin secretion requires Cx36 hemichannels' closure but keeping gap junction channels opened.

  13. Water Soluble Single-Walled Carbon Nanotubes Inhibit Stimulated Endocytosis in Neurons

    PubMed Central

    Malarkey, Erik B.; Reyes, Reno C.; Zhao, Bin; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    We report the use of chemically-functionalized water soluble single-walled carbon nanotube (SWNT) graft copolymers to inhibit endocytosis. The graft copolymers were prepared by the functionalization of SWNTs with poly-ethylene glycol. When added to the culturing medium, these functionalized water soluble SWNTs were able to increase the length of various neuronal processes, neurites, as previously reported. Here we have determined that SWNTs are able to block stimulated membrane endocytosis in neurons, which could then explain the previously noted extended neurite length. PMID:18759491

  14. [Erythropoiesis and functional characteristics in bone marrow erythroblastic islets during stimulated adn inhibited erythropoiesis].

    PubMed

    Rassokhin, A G; Kruglov, D G; Zakharov, Iu M

    2000-01-01

    When erythropiesis is stimulated (acute blood loss) or inhibited (posttransfusion polycythemia), there are early changes in the cytochemical values of erythroblastic islets (EI): in the levels of acid and neutral glucoconjugates and in the activity of nonspecific esterase. A close correlation has been found between the erythropoiesis in EI and its functional characteristics. It is concluded that central macrophages play the key role in the modulation of EI erythropoiesis. It is suggested that EI macrophages are involved in the provision of bioenergetic and reparative processes in EI.

  15. Inhibition of Ca²⁺/calmodulin-dependent protein kinase kinase 2 stimulates osteoblast formation and inhibits osteoclast differentiation.

    PubMed

    Cary, Rachel L; Waddell, Seid; Racioppi, Luigi; Long, Fanxin; Novack, Deborah V; Voor, Michael J; Sankar, Uma

    2013-07-01

    Bone remodeling, a physiological process characterized by bone formation by osteoblasts (OBs) and resorption of preexisting bone matrix by osteoclasts (OCs), is vital for the maintenance of healthy bone tissue in adult humans. Imbalances in this vital process result in pathological conditions including osteoporosis. Owing to its initial asymptomatic nature, osteoporosis is often detected only after the patient has sustained significant bone loss or a fracture. Hence, anabolic therapeutics that stimulate bone accrual is in high clinical demand. Here we identify Ca²⁺/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) as a potential target for such therapeutics because its inhibition enhances OB differentiation and bone growth and suppresses OC differentiation. Mice null for CaMKK2 possess higher trabecular bone mass in their long bones, along with significantly more OBs and fewer multinuclear OCs. In vitro, although Camkk2⁻/⁻ mesenchymal stem cells (MSCs) yield significantly higher numbers of OBs, bone marrow cells from Camkk2⁻/⁻ mice produce fewer multinuclear OCs. Acute inhibition of CaMKK2 by its selective, cell-permeable pharmacological inhibitor STO-609 also results in increased OB and diminished OC formation. Further, we find phospho-protein kinase A (PKA) and Ser¹³³ phosphorylated form of cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) to be markedly elevated in OB progenitors deficient in CaMKK2. On the other hand, genetic ablation of CaMKK2 or its pharmacological inhibition in OC progenitors results in reduced pCREB as well as significantly reduced levels of its transcriptional target, nuclear factor of activated T cells, cytoplasmic (NFATc1). Moreover, in vivo administration of STO-609 results in increased OBs and diminished OCs, conferring significant protection from ovariectomy (OVX)-induced osteoporosis in adult mice. Overall, our findings reveal a novel function for CaMKK2 in bone remodeling and

  16. Cyclic adenosine monophosphate acutely inhibits and chronically stimulates Na/H antiporter in OKP cells.

    PubMed Central

    Cano, A; Preisig, P; Alpern, R J

    1993-01-01

    Parathyroid hormone, dopamine, alpha-adrenergic catecholamines, and angiotensin II regulate renal Na excretion, at least in part through modulation of acute cyclic (c)AMP-induced proximal tubule Na/H antiporter inhibition. The present studies examined the effect of chronic increases in cell cAMP on Na/H antiporter activity in OKP cells. Whereas 8-bromo cAMP acutely inhibited Na/H antiporter activity, chronic application for 6 h led to a 24% increase in Na/H antiporter activity measured 16-20 h after cAMP removal. This chronic persistent activation of the Na/H antiporter required > 2 h exposure. This effect was not a nonspecific effect of 8-bromo cAMP, in that addition of forskolin or forskolin + 3-isobutyl-1-methylxanthine for 6 h also led to a chronic persistent increase in Na/H antiporter activity. Inhibition of protein synthesis with cycloheximide prevented 8-bromo cAMP-induced Na/H antiporter stimulation. Although 8-bromo cAMP addition decreased cell pH by 0.15-0.20 pH U, Na/H antiporter stimulation could be dissociated from cell acidification. In summary, while cAMP acutely inhibits Na/H antiporter activity, it chronically increases antiporter activity. This chronic activation occurs with exogenous addition or endogenous generation of cAMP. These results imply that for hormones that modulate renal Na excretion and proximal tubule Na/H antiporter activity via cAMP and protein kinase A, acute effects may not predict chronic effects. PMID:7691881

  17. The Impact of Full-Length, Trimeric and Globular Adiponectin on Lipolysis in Subcutaneous and Visceral Adipocytes of Obese and Non-Obese Women.

    PubMed

    Wedellova, Zuzana; Kovacova, Zuzana; Tencerova, Michaela; Vedral, Tomas; Rossmeislova, Lenka; Siklova-Vitkova, Michaela; Stich, Vladimir; Polak, Jan

    2013-01-01

    Contribution of individual adiponectin isoforms to lipolysis regulation remains unknown. We investigated the impact of full-length, trimeric and globular adiponectin isoforms on spontaneous lipolysis in subcutaneous abdominal (SCAAT) and visceral adipose tissues (VAT) of obese and non-obese subjects. Furthermore, we explored the role of AMPK (5'-AMP-activated protein kinase) in adiponectin-dependent lipolysis regulation and expression of adiponectin receptors type 1 and 2 (AdipoR1 and AdipoR2) in SCAAT and VAT. Primary adipocytes isolated from SCAAT and VAT of obese and non-obese women were incubated with 20 µg/ml of: A) full-length adiponectin (physiological mixture of all adiponectin isoforms), B) trimeric adiponectin isoform or C) globular adiponectin isoform. Glycerol released into media was used as a marker of lipolysis. While full-length adiponectin inhibited lipolysis by 22% in non-obese SCAAT, globular isoform inhibited lipolysis by 27% in obese SCAAT. No effect of either isoform was detected in non-obese VAT, however trimeric isoform inhibited lipolysis by 21% in obese VAT (all p<0.05). Trimeric isoform induced Thr172 p-AMPK in differentiated preadipocytes from a non-obese donor, while globular isoform induced Ser79 p-ACC by 32% (p<0.05) and Ser565 p-HSL by 52% (p = 0.08) in differentiated preadipocytes from an obese donor. AdipoR2 expression was 17% and 37% higher than AdipoR1 in SCAAT of obese and non-obese groups and by 23% higher in VAT of obese subjects (all p<0.05). In conclusion, the anti-lipolytic effect of adiponectin isoforms is modified with obesity: while full-length adiponectin exerts anti-lipolytic action in non-obese SCAAT, globular and trimeric isoforms show anti-lipolytic activity in obese SCAAT and VAT, respectively.

  18. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    SciTech Connect

    Fernandes, Claudia A.; Fievez, Laurence; Neyrinck, Audrey M.; Delzenne, Nathalie M.; Bureau, Fabrice; Vanbever, Rita

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  19. Inhibition of Rho protein stimulates iNOS expression in rat vascular smooth muscle cells.

    PubMed

    Muniyappa, R; Xu, R; Ram, J L; Sowers, J R

    2000-06-01

    Inducible nitric oxide synthase (iNOS) in vascular smooth muscle cells (VSMCs) is upregulated in arterial injury and plays a role in regulating VSMC proliferation and restenosis. Inflammatory cytokines [e.g., interleukin-1beta (IL-1beta)] released during vascular injury induce iNOS. Small GTP-binding proteins of the Ras superfamily play a major role in IL-1beta-dependent signaling pathways. In this study, we examined the role of Rho GTPases in regulating iNOS expression in VSMCs. Treatment of VSMCs with mevastatin, which inhibits isoprenylation of Rho and other small GTP-binding proteins, produced significantly higher amounts of IL-1beta-evoked NO and iNOS protein compared with control. Similarly, bacterial toxins [Toxin B from Clostridium difficile and C3 ADP-ribosyl transferase (C3) toxin from Clostridium botulinium] that specifically inactivate Rho proteins increased NOS products (NO and citrulline) and iNOS expression. Toxin B increased the activity of iNOS promoter-reporter construct in VSMCs. Both toxins enhanced IL-1beta-stimulated iNOS expression and NO production. These data demonstrate for the first time that inhibition of Rho induces iNOS and suggest a role for Rho protein in IL-1beta-stimulated NO production in VSMCs.

  20. Stimulation and inhibition of gastrointestinal propulsion induced by substance P and substance K in the rat.

    PubMed Central

    Holzer, P.

    1985-01-01

    Substance P and substance K (neurokinin A) (dose range: 0.08-80 nmol kg-1) were tested for their effects on gastrointestinal propulsion in the rat. The peptides were given by intraperitoneal injection concurrently with the intragastric administration of a test meal containing charcoal and 51Cr. Examination 3 min after the test meal showed that high doses of substance P (greater than 0.74 nmol kg-1) and substance K (greater than 8.8 nmol kg-1) inhibited gastric emptying and gastrointestinal transit. This inhibitory effect was changed to a stimulant effect by pretreatment of the rats with atropine (3.5 mumol kg-1). Guanethidine pretreatment (67 mumol kg-1) revealed a facilitatory effect of low doses of the two tachykinins (about 1 nmol kg-1) on gastrointestinal propulsion. Examination 15 min after the test meal demonstrated that substance P (greater than 0.74 nmol kg-1) dose-dependently enhanced gastrointestinal propulsion, an effect that was also seen after atropine pretreatment. Low doses of substance K (about 1 nmol kg-1) also stimulated gastrointestinal propulsion but this effect was abolished by atropine. In addition, atropine pretreatment revealed a stimulant effect of high doses of substance K (88 nmol kg-1) on gastric emptying. These results show that the effects of substance P and substance K on gastrointestinal propulsion vary with dose and time and involve, at least partly, activation of the autonomic nervous system. PMID:2413940

  1. Effects of AMPK activation on lipolysis in primary rat adipocytes: studies at different glucose concentrations.

    PubMed

    Szkudelski, Tomasz; Szkudelska, Katarzyna

    2017-02-01

    Adipose tissue plays a key role in energy homeostasis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an important intracellular energy sensor. Effects of activation of AMPK by aminomidazole-4-carboxamide ribonucleotide (AICAR) on lipolysis in the rat adipocytes were determined in the presence of 3 or 12 mM glucose. Response to epinephrine or dibutyryl-cAMP was higher in the presence of 12 mM glucose. AICAR decreased lipolysis, also when glucose was replaced by alanine or succinate and without decrease in cAMP levels. AICAR attenuated epinephrine-induced decrease in adenosine triphosphate (ATP) levels, reduced glucose uptake and lactate release. These results indicate that short-term activation of AMPK by AICAR in the rat adipocytes inhibits lipolysis, due to changes in the final, followed by protein kinase A (PKA), steps of the lipolytic cascade and improves intracellular energy status. Similar effects of AICAR were observed in the presence of 3 and 12 mM glucose, which indicates that the AMPK system is operative at high glucose concentrations.

  2. Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity.

    PubMed

    Zheng, Long Tai; Ryu, Geun-Mu; Kwon, Byoung-Mog; Lee, Won-Ha; Suk, Kyoungho

    2008-06-24

    Microglial activation plays a pivotal role in the pathogenesis of neurodegenerative diseases by producing various proinflammatory cytokines and nitric oxide (NO). In the present study, the anti-inflammatory and subsequent neuroprotective effects of catechol and its derivatives including 3-methylcatechol, 4-methylcatechol, and 4-tert-butylcatechol were investigated in microglia and neuroblastoma cells in culture. The four catechol compounds showed anti-inflammatory effects with different potency. The catechols significantly decreased lipopolysaccharide (LPS)-induced NO and tumor necrosis factor (TNF)-alpha production in BV-2 microglia cells. The catechols also inhibited the expression of inducible nitric oxide synthase (iNOS) and TNF-alpha at mRNA or protein levels in the LPS-stimulated BV-2 cells. In addition, the catechols inhibited LPS-induced nuclear translocation of p65 subunit of nuclear factor (NF)-kappaB, IkappaB degradation, and phosphorylation of p38 mitogen-activated protein kinase (MAPK) in BV-2 cells. Moreover, the catechols attenuated the cytotoxicity of LPS-stimulated BV-2 microglia toward co-cultured rat B35 neuroblastoma cells. The catechols, however, did not protect B35 cells against H(2)O(2) toxicity, indicating that the compounds exerted the neuroprotective effect by inhibiting the inflammatory activation of microglia in the co-culture. The anti-inflammatory and neuroprotective properties of the catechols in cultured microglia and neuroblastoma cells suggest a therapeutic potential of these compounds for the treatment of neurodegenerative diseases that are associated with an excessive microglial activation.

  3. Inhibition of breast cancer resistance protein (ABCG2) in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation.

    PubMed

    Jin, Jun-O; Zhang, Wei; Wong, Ka-Wing; Kwak, Minseok; van Driel, Ian R; Yu, Qing

    2014-01-01

    Breast cancer resistance protein (ABCG2), a member of the ATP-binding cassette transporters has been identified as a major determinant of multidrug resistance (MDR) in cancer cells, but ABC transporter inhibition has limited therapeutic value in vivo. In this research, we demonstrated that inhibition of efflux transporters ABCG2 induced the generation of tolerogenic DCs from human peripheral blood myeloid DCs (mDCs). ABCG2 expression was present in mDCs and was further increased by LPS stimulation. Treatment of CD1c+ mDCs with an ABCG2 inhibitor, Ko143, during LPS stimulation caused increased production of IL-10 and decreased production of pro-inflammatory cytokines and decreased expression of CD83 and CD86. Moreover, inhibition of ABCG2 in monocyte-derived DCs (MDDCs) abrogated the up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in these cells in response to LPS. Furthermore, CD1c+ mDCs stimulated with LPS plus Ko143 inhibited the proliferation of allogeneic and superantigen-specific syngenic CD4+ T cells and promoted expansion of CD25+FOXP3+ regulatory T (Treg) cells in an IL-10-dependent fashion. These tolerogenic effects of ABCG2 inhibition could be abolished by ERK inhibition. Thus, we demonstrated that inhibition of ABCG2 in LPS-stimulated mDCs can potently induce tolerogenic potentials in these cells, providing crucial new information that could lead to development of better strategies to combat MDR cancer.

  4. Influence of intramuscular heat stimulation on modulation of nociception: complex role of central opioid receptors in descending facilitation and inhibition.

    PubMed

    You, Hao-Jun; Lei, Jing; Ye, Gang; Fan, Xiao-Li; Li, Qiang

    2014-10-01

    It has been reported that the threshold to activate 'silent' or inactive descending facilitation of nociception is lower than that of descending inhibition. Thus, the development of pain therapy to effectively drive descending inhibition alone, without the confounding influences of facilitation is a challenge. To address this issue we investigated the effects of intramuscular stimulation with a heating-needle on spinal nociception, assessed by measuring nociceptive paw withdrawal reflex in rats. Additionally, involvement of the thalamic 'nociceptive discriminators' (thalamic mediodorsal (MD) and ventromedial (VM) nuclei), and opioid-mediated mechanisms were further explored. Descending facilitation and inhibition were elicited by 46°C noxious heating-needle stimulation, and were regulated by thalamic MD and VM nuclei, respectively. In contrast, innocuous heating-needle stimulation at a temperature of 43°C elicited descending inhibition modulated by the thalamic VM nucleus alone. Microinjection of μ/δ/κ-opioid receptor antagonists β-funaltrexamine hydrochloride/naltrindole/nor-binaltorphimine, into the VM nucleus attenuated the 46°C intramuscular heating-needle stimulation-evoked descending inhibition, whereas treatment of the MD nucleus with β-funaltrexamine hydrochloride significantly decreased the descending facilitation. By contrast, descending inhibition evoked by 43°C heating-needle stimulation was only depressed by naltrindole, as opposed to μ- and κ-opioid receptor antagonists, which failed to influence descending inhibition. The present study reveals distinct roles of μ-opioid receptors in the function of thalamic MD and VM nuclei,which exert facilitatory and inhibitory actions on nociception. Furthermore, innocuous, but not noxious, intramuscular heating-needle stimulation targeting δ-opioid receptors is suggested to be a promising avenue for the effective inhibition of pain.

  5. [Transcranial magnetic stimulation (TMS), inhibition processes and attention deficit/hyperactivity disorder (ADHD) - an overview].

    PubMed

    Hoegl, Thomas; Bender, Stephan; Buchmann, Johannes; Kratz, Oliver; Moll, Gunther H; Heinrich, Hartmut

    2014-11-01

    Motor system excitability can be tested by transcranial magnetic stimulation CFMS). In this article, an overview of recent methodological developments and research findings related to attention deficit/hyperactivity disorder (ADHD) is provided. Different TMS parameters that reflect the function of interneurons in the motor cortex may represent neurophysiological markers of inhibition in ADHD, particularly the so-called intracortical inhibition. In children with a high level of hyperactivity and impulsivity, intracortical inhibition was comparably low at rest as shortly before the execution of a movement. TMS-evoked potentials can also be measured in the EEG so that investigating processes of excitability is not restricted to motor areas in future studies. The effects of methylphenidate on motor system excitability may be interpreted in the sense of a 'fine-tuning' with these mainly dopaminergic effects also depending on genetic parameters (DAT1 transporter). A differentiated view on the organization of motor control can be achieved by a combined analysis of TMS parameters and event-related potentials. Applying this bimodal approach, strong evidence for a deviant implementation of motor control in children with ADHD and probably compensatory mechanisms (with involvement of the prefrontal cortex) was obtained. These findings, which contribute to a better understanding of hyperactivity/impulsivity, inhibitory processes and motor control in ADHD as well as the mechanisms of medication, underline the relevance of TMS as a neurophysiological method in ADHD research.

  6. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3.

    PubMed

    Rabbani, M A G; Ribaudo, Michael; Guo, Ju-Tao; Barik, Sailen

    2016-12-15

    A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3.

  7. Interhemispheric Inhibition Induced by Transcranial Magnetic Stimulation Over Primary Sensory Cortex

    PubMed Central

    Iwata, Yasuyuki; Jono, Yasutomo; Mizusawa, Hiroki; Kinoshita, Atsushi; Hiraoka, Koichi

    2016-01-01

    The present study investigated whether the long-interval interhemispheric inhibition (LIHI) is induced by the transcranial magnetic stimulation over the primary sensory area (S1-TMS) without activation of the conditioning side of the primary motor area (M1) contributing to the contralateral motor evoked potential (MEP), whether the S1-TMS-induced LIHI is dependent on the status of the S1 modulated by the tactile input, and whether the pathways mediating the LIHI are different from those mediating the M1-TMS-induced LIHI. In order to give the TMS over the S1 without eliciting the MEP, the intensity of the S1-TMS was adjusted to be the sub-motor-threshold level and the trials with the MEP response elicited by the S1-TMS were discarded online. The LIHI was induced by the S1-TMS given 40 ms before the test TMS in the participants with the attenuation of the tactile perception of the digit stimulation (TPDS) induced by the S1-TMS, indicating that the LIHI is induced by the S1-TMS without activation of the conditioning side of the M1 contributing to the contralateral MEP in the participants in which the pathways mediating the TPDS is sensitive to the S1-TMS. The S1-TMS-induced LIHI was positively correlated with the attenuation of the TPDS induced by the S1-TMS, indicating that the S1-TMS-induced LIHI is dependent on the effect of the S1-TMS on the pathways mediating the TPDS at the S1. In another experiment, the effect of the digit stimulation given before the conditioning TMS on the S1- or M1-TMS-induced LIHI was examined. The digit stimulation produces tactile input to the S1 causing change in the status of the S1. The S1-TMS-induced LIHI was enhanced when the S1-TMS was given in the period in which the tactile afferent volley produced by the digit stimulation just arrived at the S1, while the LIHI induced by above-motor-threshold TMS over the contralateral M1 was not enhanced by the tactile input. Thus, the S1-TMS-induced LIHI is dependent on the status of the S1

  8. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation

    PubMed Central

    Liu, Weiqing; Zhou, Liyan; Zhou, Chenchen; Zhang, Shiwen; Jing, Junjun; Xie, Liang; Sun, Ningyuan; Duan, Xiaobo; Jing, Wei; Liang, Xing; Zhao, Hu; Ye, Ling; Chen, Qianming; Yuan, Quan

    2016-01-01

    Osteoporosis is an age-related disease that affects millions of people. Growth differentiation factor 11 (GDF11) is a secreted member of the transforming growth factor beta (TGF-β) superfamily. Deletion of Gdf11 has been shown to result in a skeletal anterior–posterior patterning disorder. Here we show a role for GDF11 in bone remodelling. GDF11 treatment leads to bone loss in both young and aged mice. GDF11 inhibits osteoblast differentiation and also stimulates RANKL-induced osteoclastogenesis through Smad2/3 and c-Fos-dependent induction of Nfatc1. Injection of GDF11 impairs bone regeneration in mice and blocking GDF11 function prevents oestrogen-deficiency-induced bone loss and ameliorates age-related osteoporosis. Our data demonstrate that GDF11 is a previously unrecognized regulator of bone remodelling and suggest that GDF11 is a potential target for treatment of osteoporosis. PMID:27653144

  9. Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting.

    PubMed

    Wang, Hui; Hill, Russell T; Zheng, Tianling; Hu, Xiaoke; Wang, Bin

    2016-01-01

    Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.

  10. Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Chee, O.; Rosella-Dampman, L. M.; Emmert, S.; Summy-Long, J. Y.

    1984-01-01

    The effect of intracerebroventricular (ICV) pretreatment with 100 ng/5 microliter leucine(5)-enkephalin (LE) on the increase in plasma oxytocin (OT) and vasopressin (VP) caused by ICV injection of 10, 50, or 100 ng/5 microliter of angiotensin II (AII) is investigated experimentally in conscious adult male Sprague-Dawley rats; the effects of water-deprivation dehydration and lactation/suckling (in female rats) are also studied. An OT radioimmunoassay (RIA) with a sensitivity of 800 fg/ml (described in detail) and the VP RIA technique of Keil and Severs (1977) are employed. Administration of AII or dehydration for 48 or 72 h cause a significant increase in OT and VP without affecting the ratio, while lactation and suckling increase OT only. LE pretreatment inhibits significantly but does not suppress the AII-stimulated OT-VP response.

  11. Inhibition of stimulated dopamine release and hemodynamic response in the brain through electrical stimulation of rat forepaw.

    PubMed Central

    Chen, Y Iris; Ren, Jiaqian; Wang, Fu-Nien; Xu, Haibo; Mandeville, Joseph B; Kim, Young; Rosen, Bruce R; Jenkins, Bruce G; Hui, Kathleen KS; Kwong, Kenneth K

    2008-01-01

    The subcortical response to peripheral somatosensory stimulation is not well studied. Prior literature suggests that somatosensory stimulation can affect dopaminergic tone. We studied the effects of electrical stimulation near the median nerve on the response to an amphetamine induced increase in synaptic dopamine. We applied the electrical stimulation close to the median nerve 20 minutes after administration of 3mg/kg amphetamine. We used fMRI and microdialysis to measure markers of DA release, together with the release of associated neurotransmitters of striatal Glutamate (Glu) and GABA. Result 1) Changes in cerebral blood volume (CBV), a marker used in fMRI, indicate that electrical stimulation significantly attenuated increased DA release (due to AMPH) in the striatum, thalamus, medial prefrontal and cingulate cortices. 2) Microdialysis showed that electrical stimulation increased Glu and GABA release and attenuated the AMPH-enhanced DA release. The striatal DA dynamics correlated with the CBV response. Conclusion These results demonstrate that electrical stimulation near the median nerve activates Glu/GABA release which subsequently attenuate excess striatal DA release. These data provide evidence for physiologic modulation caused by electroacupuncture at points near the median nerve. PMID:18178315

  12. Bifunctional bioceramics stimulating osteogenic differentiation of a gingival fibroblast and inhibiting plaque biofilm formation.

    PubMed

    Shen, Ya; Wang, Zhejun; Wang, Jiao; Zhou, Yinghong; Chen, Hui; Wu, Chengtie; Haapasalo, Markus

    2016-04-01

    Gingival recession is a common clinical problem that results in esthetic deficiencies and poor plaque control and predominantly occurs in aged patients. In order to restore the cervical region, ideal biomaterials should possess the ability to stimulate proliferation and osteogenesis/cementogenesis of human gingival fibroblasts (HGF) and have a strong antibiofilm effect. The aim of the present study was to investigate the interactions of HGF and oral multispecies biofilms with Ca, Mg and Si-containing bredigite (BRT, Ca7MgSi4O16) bioceramics. BRT extract induced osteogenic/cementogenic differentiation of HGF and its inhibition of plaque biofilm formation were systematically studied. BRT extract in concentrations lower than <200 mg mL(-1) presented high biocompatibility to HGF cells in 3 days. Ion extracts from BRT also stimulated a series of bone-related gene and protein expressions in HGF cells. Furthermore, BRT extract significantly inhibited oral multispecies plaque biofilm growth on its surface and contributed to over 30% bacterial cell death without additional antibacterial agents in two weeks. A planktonic killing test showed that BRT suppressed 98% plaque bacterial growth compared to blank control in 3 days. The results also revealed that BRT extract has an osteostimulation effect on HGF. The suppression effect on plaque biofilms suggested that BRT might be used as a bioactive material for cervical restoration and that the synergistic effect of bioactive ions, such as Ca, Mg and Si ions, played an important role in the design and construction of bifunctional biomaterials in combination with tissue regeneration and antibiofilm activity.

  13. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells

    PubMed Central

    Lin, C.; Agnes, J. T.; Behrens, N.; Tagawa, Y.; Gershwin, L. J.; Corbeil, L. B.

    2016-01-01

    Our previous studies showed that bovine respiratory syncytial virus (BRSV) followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2) epithelial cells with H. somni concentrated culture supernatant (CCS) stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2—RSAD2) and ISG15 (IFN-stimulated gene 15—ubiquitin-like modifier) were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT) upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide) but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt) does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo. PMID:26859677

  14. Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia.

    PubMed

    Dailey, Dana L; Rakel, Barbara A; Vance, Carol G T; Liebano, Richard E; Amrit, Anand S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A

    2013-11-01

    Because transcutaneous electrical nerve stimulation (TENS) works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo-controlled cross-over design to test the effects of a single treatment of TENS with people with fibromyalgia. Three treatments were assessed in random order: active TENS, placebo TENS and no TENS. The following measures were assessed before and after each TENS treatment: pain and fatigue at rest and in movement; pressure pain thresholds, 6-m walk test, range of motion; 5-time sit-to-stand test, and single-leg stance. Conditioned pain modulation was completed at the end of testing. There was a significant decrease in pain and fatigue with movement for active TENS compared to placebo and no TENS. Pressure pain thresholds increased at the site of TENS (spine) and outside the site of TENS (leg) when compared to placebo TENS or no TENS. During active TENS, conditioned pain modulation was significantly stronger compared to placebo TENS and no TENS. No changes in functional tasks were observed with TENS. Thus, the current study suggests TENS has short-term efficacy in relieving symptoms of fibromyalgia while the stimulator is active. Future clinical trials should examine the effects of repeated daily delivery of TENS, similar to the way in which TENS is used clinically on pain, fatigue, function, and quality of life in individuals with fibromyalgia.

  15. Sesamin inhibits IL-1β-stimulated inflammatory response in human osteoarthritis chondrocytes by activating Nrf2 signaling pathway.

    PubMed

    Kong, Pengyu; Chen, Guanghua; Jiang, Anlong; Wang, Yufu; Song, Chengchao; Zhuang, Jinpeng; Xi, Chunyang; Wang, Guangxi; Ji, Ye; Yan, Jinglong

    2016-12-13

    Sesamin, a bioactive component extracted from sesame, has been reported to exert anti-inflammatory and anti-oxidant effects. In this study, we evaluated the anti-inflammatory effects of sesamin on IL-1β-stimulated human osteoarthritis chondrocytes and investigated the possible mechanism. Results demonstrated that sesamin treatment significantly inhibited PGE2 and NO production induced by IL-1β. Sesamin inhibited MMP1, MMP3, and MMP13 production in IL-1β-stimulated chondrocytes. Sesamin also inhibited IL-1β-induced phosphorylation of NF-κB p65 and IκBα. Meanwhile, sesamin was found to up-regulate the expression of Nrf2 and HO-1. However, Nrf2 siRNA reversed the anti-inflammatory effects of sesamin. In conclusion, our results suggested that sesamin showed anti-inflammatory effects in IL-1β-stimulated chondrocytes by activating Nrf2 signaling pathway.

  16. Amphetamine decreases behavioral inhibition by stimulation of dopamine D2, but not D3, receptors.

    PubMed

    van Gaalen, Marcel M; Unger, Liliane; Jongen-Rêlo, Ana-Lucia; Schoemaker, Hans; Gross, Gerhard

    2009-09-01

    Behavioral disinhibition is a manifestation of impulsive behavior that is prominent in the psychopathology of various psychiatric disorders such as addiction, attention-deficit hyperactivity disorder, mania, and personality disorders. Impulsivity may be studied by measuring anticipatory responses made before the presentation of a food-predictive, brief light stimulus in a two-choice serial reaction time task. In such serial reaction time tasks, amphetamine has been shown to produce dose-dependent increases in premature responding in a manner dependent on dopamine D(2)-like receptor stimulation. So far, it is unknown whether it is the D(2) or D(3) receptor that is involved in this form of impulsivity. In this study, rats were trained in a two-choice serial reaction time task until baseline performance was stable. Next, effects of the dopamine D(2) preferring antagonist L-741,626 and selective D(3) antagonist SB-277011 were assessed alone and in the presence of amphetamine. Neither L-741,626 nor SB-277011 affected behavioral inhibition, although the latter significantly increased reaction time at 10 mg/kg. Amphetamine dose-dependently increased impulsivity. The effect of amphetamine was attenuated by L-741,626 (3 mg/kg), whereas SB-277011 (3 mg/kg) had no effect. Therefore, amphetamine-induced behavioral disinhibition depends on D(2), but not D(3), receptor stimulation.

  17. Biochemistry and pathophysiology of intravascular and intracellular lipolysis

    PubMed Central

    Young, Stephen G.; Zechner, Rudolf

    2013-01-01

    All organisms use fatty acids (FAs) for energy substrates and as precursors for membrane and signaling lipids. The most efficient way to transport and store FAs is in the form of triglycerides (TGs); however, TGs are not capable of traversing biological membranes and therefore need to be cleaved by TG hydrolases (“lipases”) before moving in or out of cells. This biochemical process is generally called “lipolysis.” Intravascular lipolysis degrades lipoprotein-associated TGs to FAs for their subsequent uptake by parenchymal cells, whereas intracellular lipolysis generates FAs and glycerol for their release (in the case of white adipose tissue) or use by cells (in the case of other tissues). Although the importance of lipolysis has been recognized for decades, many of the key proteins involved in lipolysis have been uncovered only recently. Important new developments include the discovery of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), the molecule that moves lipoprotein lipase from the interstitial spaces to the capillary lumen, and the discovery of adipose triglyceride lipase (ATGL) and comparative gene identification-58 (CGI-58) as crucial molecules in the hydrolysis of TGs within cells. This review summarizes current views of lipolysis and highlights the relevance of this process to human disease. PMID:23475957

  18. Activation and inhibition of retinal ganglion cells in response to epiretinal electrical stimulation: a computational modelling study

    NASA Astrophysics Data System (ADS)

    Abramian, Miganoosh; Lovell, Nigel H.; Morley, John W.; Suaning, Gregg J.; Dokos, Socrates

    2015-02-01

    Objective. Retinal prosthetic devices aim to restore sight in visually impaired people by means of electrical stimulation of surviving retinal ganglion cells (RGCs). This modelling study aims to demonstrate that RGC inhibition caused by high-intensity cathodic pulses greatly influences their responses to epiretinal electrical stimulation and to investigate the impact of this inhibition on spatial activation profiles as well as their implications for retinal prosthetic device design. Another aim is to take advantage of this inhibition to reduce axonal activation in the nerve fibre layer. Approach. A three-dimensional finite-element model of epiretinal electrical stimulation was utilized to obtain RGC activation and inhibition threshold profiles for a range of parameters. Main results. RGC activation and inhibition thresholds were highly dependent on cell and stimulus parameters. Activation thresholds were 1.5, 3.4 and 11.3 μA for monopolar electrodes with 5, 20 and 50 μm radii, respectively. Inhibition to activation threshold ratios were mostly within the range 2-10. Inhibition significantly altered spatial patterns of RGC activation. With concentric electrodes and appropriately high levels of stimulus amplitudes, activation of passing axons was greatly reduced. Significance. RGC inhibition significantly impacts their spatial activation profiles, and therefore it most likely influences patterns of perceived phosphenes induced by retinal prosthetic devices. Thus this inhibition should be taken into account in future studies concerning retinal prosthesis development. It might be possible to utilize this inhibitory effect to bypass activation of passing axons and selectively stimulate RGCs near their somas and dendrites to achieve more localized phosphenes.

  19. Low frequency mechanical stimulation inhibits adipogenic differentiation of C3H10T1/2 mesenchymal stem cells.

    PubMed

    Khayat, Ghazaleh; Rosenzweig, Derek H; Quinn, Thomas M

    2012-04-01

    Oscillatory mechanical stimulation at relatively high frequencies (0.1 Hz) has been shown to inhibit adipogenic and promote osteogenic differentiation of mesenchymal stem cells. However, for physiological interpretations and ease of implementation it is of interest to know whether different rates of mechanical stimulation can produce similar results. We hypothesized that relatively low frequency mechanical stimulation (0.01 Hz) can inhibit adipogenic differentiation of C3H10T1/2 mouse mesenchymal stem cells, even in a potent adipogenic differentiation medium. C3H10T1/2 cells were cultured in adipogenic medium under control (non-mechanically stimulated) conditions and under oscillatory surface stretch with 10% amplitude and 0.01 Hz frequency for 6h per day for up to 5 days. Cell population was assessed by counting and adipogenic differentiation was assessed by real-time quantitative PCR (qPCR) analysis of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid binding protein 4 (FABP4) after 3 and 5 days. Involvement of the ERK signaling pathway was assessed by Western blot. Low frequency mechanical stimulation significantly decreased expression of PPARγ after 3 days and FABP4 after 3 and 5 days versus non-stimulated culture. ERK signaling was decreased in mechanically-stimulated culture, indicating a role in the inhibition of adipogenic differentiation. Application of this study: Low frequency mechanical stimulation may provide a technically simple means for control of mesenchymal stem cell differentiation in cell-based therapies, particularly for inhibition of differentiation toward undesired adipogenic lineages.

  20. Inhibition of nerve stimulation-induced vasodilatation in corpora cavernosa of the pithed rat by blockade of nitric oxide synthase.

    PubMed Central

    Finberg, J. P.; Levy, S.; Vardi, Y.

    1993-01-01

    1. The effect of inhibition of nitric oxide synthase by NG-nitro-L-arginine methyl ester (L-NAME) on nerve stimulation-induced vasodilation in corpora cavernosa was studied in the pithed rat. Corporal vasodilation was estimated by the increase in ratio (corpora cavernosal pressure/systemic blood pressure; CP/BP) following electrical stimulation of the sacral part of the spinal cord. 2. L-NAME (2, 5, 10 and 25 mg kg-1) caused an increase in BP and a dose-dependent inhibition of the rise in the CP/BP ratio following stimulation. 3. The inhibitory effect of L-NAME (25 mg kg-1) on the corporal response to spinal cord stimulation, as well as the pressor response, was partially prevented by prior administration of L- but not D-arginine (400 mg kg-1, i.v.). 4. L-NAME (20 mg kg-1, i.v.) did not inhibit the rise in corporal pressure resulting from direct intracavernosal administration of papaverine (400 micrograms over 2 min). However, this response was inhibited by 5-hydroxytryptamine (20 micrograms kg-1, i.v.). 5. The results are indicative of a role of nitric oxide (NO) in the corporal vasodilator response to erectile stimulation. PMID:7683562

  1. Tungstate stimulates insulin release and inhibits somatostatin output in the perfused rat pancreas.

    PubMed

    Silvestre, Ramona A; Egido, Eva M; Hernández, Raquel; Marco, José

    2005-09-05

    In the rat pancreas, infusion of sodium-tungstate stimulates basal insulin release in a dose-dependent manner. We have studied tungstate's effects on the insulin secretion elicited by various B-cell secretagogues. Somatostatin output was also measured. The study was performed in the perfused pancreas isolated from normal or somatostatin-depleted pancreases as induced by cysteamine pre-treatment. In control rats, tungstate co-infusion (5 mM) potentiated the insulin secretory responses to glucose (2.7-fold; P<0.01), arginine (2-fold; P<0.01), exendin-4 (3-fold; P<0.01), glucagon (4-fold; P<0.05), and tolbutamide (2-fold; P<0.01). It also inhibited the somatostatin secretory responses to glucose (90%; P<0.01), arginine (95%; P<0.01), glucagon (80%; P<0.025), exendin-4 (80%; P<0.05) and tolbutamide (85%; P<0.01). In somatostatin-depleted pancreases, the stimulatory effect of tungstate on basal insulin secretion and its potentiation of arginine-induced insulin output were comparable to those found in control rats. Our observations suggest an amplifying effect of tungstate on a common step in the insulin stimulus/secretion coupling process, and would rule out a paracrine effect mediated by the inhibition of somatostatin secretion induced by this compound.

  2. IL-21 Receptor Antagonist Inhibits Differentiation of B Cells toward Plasmablasts upon Alloantigen Stimulation

    PubMed Central

    de Leur, Kitty; Dor, Frank J. M. F.; Dieterich, Marjolein; van der Laan, Luc J. W.; Hendriks, Rudi W.; Baan, Carla C.

    2017-01-01

    Interaction between T follicular helper (Tfh) cells and B cells is complex and involves various pathways, including the production of IL-21 by the Tfh cells. Secretion of IL-21 results in B cell differentiation toward immunoglobulin-producing plasmablasts. In patients after kidney transplantation, the formation of alloantibodies produced by donor antigen-activated B cells are a major cause of organ failure. In this allogeneic response, the role of IL-21-producing Tfh cells that regulate B cell differentiation is unknown. Here, we tested, in an alloantigen-driven setting, whether Tfh cell help signals control B cell differentiation with its dependency on IL-21. Pre-transplantation patient PBMCs were sorted into pure CD4posCXCR5pos Tfh cells and CD19posCD27pos memory B cells and stimulated with donor antigen in the presence or absence of an IL-21 receptor (IL-21R) antagonist (αIL-21R). Donor antigen stimulation initiated expression of the activation markers inducible co-stimulator (ICOS) and programmed death 1 (PD-1) on Tfh cells and a shift toward a mixed Tfh2 and Tfh17 phenotype. The memory B cells underwent class switch recombination and differentiated toward IgM- and IgG-producing plasmablasts. In the presence of αIL-21R, a dose-dependent inhibition of STAT3 phosphorylation was measured in both T and B cells. Blockade of the IL-21R did not have an effect on PD-1 and ICOS expression on Tfh cells but significantly inhibited B cell differentiation. The proportion of plasmablasts decreased by 78% in the presence of αIL-21R. Moreover, secreted IgM and IgG2 levels were significantly lower in the presence of αIL-21R. In conclusion, our results demonstrate that IL-21 produced by alloantigen-activated Tfh cells controls B cell differentiation toward antibody producing plasmablasts. The IL-21R might, therefore, be a useful target in organ transplantation to prevent antigen-driven immune responses leading to graft failure. PMID:28373876

  3. Plasticity of cortical inhibition in dystonia is impaired after motor learning and Paired-Associative Stimulation

    PubMed Central

    Meunier, Sabine; Russmann, Heike; Shamim, Ejaz; Lamy, Jean-Charles; Hallett, Mark

    2012-01-01

    Summary Artificial induction of plasticity by paired associative stimulation (PAS) in healthy subjects (HV) demonstrates Hebbian-like plasticity in selected inhibitory networks as well as excitatory ones. In a group of 17 patients with focal hand dystonia and a group of 19 HV, we evaluated how PAS and the learning of a simple motor task influence the circuits supporting long interval intracortical inhibition (LICI, reflecting activity of GABAB interneurons) and long latency afferent inhibition (LAI, reflecting activity of somatosensory inputs to the motor cortex). In HV, PAS and motor learning induced LTP-like plasticity of excitatory networks and a lasting decrease of LAI and LICI in the motor representation of the targeted or trained muscle. The better the motor performance, the larger was the decrease of LAI. Although motor performance in the patient group was similar to that of the control group, LAI did not decrease during the motor learning as it did in the control group. In contrast, LICI was normally modulated. In patients the results after PAS did not match those obtained after motor learning: LAI was paradoxically increased and LICI did not exhibit any change. In the normal situation, decreased excitability in inhibitory circuits after induction of LTP-like plasticity may help to shape the cortical maps according to the new sensorimotor task. In patients, the abnormal or absent modulation of afferent and intracortical long-interval inhibition might indicate maladaptive plasticity that possibly contributes to the difficulty that they have to learn a new sensorimotor task.“ PMID:22429246

  4. Anaesthetic agents inhibit gastrin-stimulated but not basal histamine release from rat stomach ECL cells.

    PubMed

    Norlén, P; Kitano, M; Lindström, E; Håkanson, R

    2000-06-01

    By mobilizing histamine in response to gastrin, the ECL cells in the oxyntic mucosa play a key role in the control of the parietal cells and hence of gastric acid secretion. General anaesthesia suppresses basal and gastrin- and histamine-stimulated acid secretion. The present study examines if the effect of anaesthesia on basal and gastrin-stimulated acid secretion is associated with suppressed ECL-cell histamine secretion. A microdialysis probe was implanted in the submucosa of the ventral aspect of the acid-producing part of the stomach (32 rats). Three days later, ECL-cell histamine mobilization was monitored 2 h before and 4 h after the start of intravenous infusion of gastrin (5 nmol kg(-1) h(-1)). The rats were either conscious or anaesthetized. Four commonly used anaesthetic agents were given 1 h before the start of the experiments by intraperitoneal injection: chloral hydrate (300 mg kg(-1)), pentobarbitone (40 mg kg(-1)), urethane (1.5 g kg(-1)) and a mixture of fluanisone/fentanyl/midazolam (15/0.5/7.5 mg kg(-1)). In a parallel series of experiments, basal- and gastrin-induced acid secretion was monitored in six conscious and 25 anaesthetized (see above) chronic gastric fistula rats. All anaesthetic agents lowered gastrin-stimulated acid secretion; also the basal acid output was reduced (fluanisone/fentanyl/midazolam was an exception). Anaesthesia reduced gastrin-stimulated but not basal histamine release by 55 - 80%. The reduction in gastrin-induced acid response (70 - 95%) was strongly correlated to the reduction in gastrin-induced histamine mobilization. The correlation is in line with the view that the reduced acid response to gastrin reflects impaired histamine mobilization. Rat stomach ECL cells were purified by counter-flow elutriation. Gastrin-evoked histamine mobilization from the isolated ECL cells was determined in the absence or presence of anaesthetic agents in the medium. With the exception of urethane, they inhibited gastrin

  5. Inhibition of atrial receptor-induced renal responses by stimulation of carotid baroreceptors in anaesthetized dogs.

    PubMed Central

    Karim, F; Majid, D S

    1991-01-01

    excitation of carotid baroreceptors can completely inhibit the reflex renal haemodynamic and functional responses to atrial receptor stimulation. PMID:1886066

  6. Effects of β-hydroxybutyrate and isoproterenol on lipolysis in isolated adipocytes from periparturient dairy cows and cows with clinical ketosis.

    PubMed

    van der Drift, S G A; Everts, R R; Houweling, M; van Leengoed, L A M G; Stegeman, J A; Tielens, A G M; Jorritsma, R

    2013-06-01

    An in vitro model was used to investigate effects of β-hydroxybutyrate and isoproterenol (β-adrenergic receptor agonist) on lipolysis in isolated adipocytes from late pregnant and recently calved dairy cows (n=5) and cows with clinical ketosis (n=3). Incubation with 3.0 mmol/L β-hydroxybutyrate reduced lipolysis in isolated adipocytes. This inhibitory effect was lower in the first lactation week (47%±16%) compared with late pregnancy (71%±6.5%). Incubation with 0.3 μmol/L isoproterenol stimulated lipolysis in isolated adipocytes from periparturient dairy cows. Basal lipolysis resulted in non-esterified fatty acid to glycerol ratios in the incubation media of 2.0±0.23 in prepartum samples, 2.1±0.23 in the first lactation week and 2.2±0.09 in cows with clinical ketosis. β-Hydroxybutyrate reduced lipolysis by 45%±9.6% in isolated adipocytes from cows with clinical ketosis, indicating that impaired feedback of β-hydroxybutyrate may not play a role in the disease etiology.

  7. Lipolysis, lipogenesis, and adiposity are reduced while fatty acid oxidation is increased in visceral and subcutaneous adipocytes of endurance-trained rats

    PubMed Central

    Pistor, Kathryn E; Sepa-Kishi, Diane M; Hung, Steven; Ceddia, Rolando B

    2014-01-01

    This study examined the alterations in triglyceride (TG) breakdown and storage in subcutaneous inguinal (SC Ing) and epididymal (Epid) fat depots following chronic endurance training. Male Wistar rats were either kept sedentary (Sed) or subjected to endurance training (Ex) at 70–85% peak VO2 for 6 weeks. At weeks 0, 3, and 6 blood was collected at rest and immediately after a bout of submaximal exercise of similar relative intensity to assess whole-body lipolysis. At week 6, adipocytes were isolated from Epid and SC Ing fat pads for the determination of lipolysis under basal or isoproterenol- and forskolin-stimulated conditions, basal and insulin-stimulated glucose incorporation into lipids, and fatty acid oxidation (FAO). Body weight, fat pad mass, and insulin were reduced by endurance training. Also, circulating non-esterified fatty acids (NEFAs) were 33% lower in Ex than Sed rats when exercising at the same relative intensity. This coincided with reduced isoproterenol-stimulated lipolysis in the Epid (27%) and SC Ing (25%) adipocytes in Ex rats. Similarly, forskolin-stimulated lipolysis was reduced in Epid (51%) and SC Ing (49%) adipocytes from Ex rats. Insulin-stimulated glucose incorporation into lipids in adipocytes from both fat depots from Ex rats was also lower (∼43%) than Sed controls. Conversely, FAO was increased in Epid (1.71-fold) and SC Ing (1.82-fold) adipocytes of Ex rats. In conclusion, chronic endurance exercise reduced lipolysis and lipogenesis while increasing FAO in Epid and SC Ing adipocytes. These are compatible with an energy-sparing adaptive response to reduced adiposity under chronic endurance training conditions. PMID:26167399

  8. Bulbospinal inhibition of PAD elicited by stimulation of afferent and motor axons in the isolated frog spinal cord and brainstem.

    PubMed

    González, H; Jiménez, I; Rudomin, P

    1992-01-01

    1. In the isolated spinal cord and brainstem of the frog, stimulation of the brainstem (BS) with trains of 3-4 pulses at 60-400 Hz produced dorsal root potentials (DRPs). The lowest threshold sites eliciting DRPs were located at the level of the obex up to about 2.5 mm rostrally, 0.5-1.2 mm laterally, between 0.5 and 1.6 mm depth. This region corresponds to the bulbar reticular formation (RF). 2. Stimulation of the RF with strengths below those required to produce DRPs, very effectively inhibited the DRPs produced by stimulation of a neighboring dorsal root (DR-DRPs) as well as the DRPs produced by antidromic stimulation of the central end of motor nerves (VR-DRPs). The inhibition was detectable 20 ms after the first pulse of the conditioning train, attained maximal values between 50 and 100 ms and lasted more than 250 ms. 3. Stimulation of the bulbar RF increased the negative response (N1 response) produced in the motor pool by antidromic activation of motoneurons. The time course of the facilitation of the N1 response resembled that of the reticularly-induced inhibition of the VR-DRPs and DR-DRPs. 4. The present series of observations supports the existence of reticulo-spinal pathways that are able to inhibit the depolarization elicited in afferent fibers by stimulation of other afferent fibers or by antidromic activation of motor axons. This inhibition appears to be exerted on the PAD mediating interneurons and is envisaged as playing an important role in motor control.

  9. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    PubMed

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth.

  10. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Saito, Takeshi; Abe, Daigo; Sekiya, Keizo . E-mail: ksekiya@affrc.go.jp

    2007-06-01

    Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulated kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.

  11. AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication.

    PubMed

    Booth, Laurence; Roberts, Jane L; Ecroyd, Heath; Tritsch, Sarah R; Bavari, Sina; Reid, St Patrick; Proniuk, Stefan; Zukiwski, Alexander; Jacob, Abraham; Sepúlveda, Claudia S; Giovannoni, Federico; García, Cybele C; Damonte, Elsa; González-Gallego, Javier; Tuñón, María J; Dent, Paul

    2016-10-01

    We have recently demonstrated that AR-12 (OSU-03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR-12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock down of chaperones or AR-12 treatment inactivated mTOR and elevated ATG13 S318 phosphorylation concomitant with inducing an endoplasmic reticulum stress response that in an eIF2α-dependent fashion increased Beclin1 and LC3 expression and autophagosome formation. Over-expression of chaperones prevented the reduction in receptor/glucosidase expression, mTOR inactivation, the ER stress response, and autophagosome formation. AR-12 reduced the reproduction of viruses including Mumps, Influenza, Measles, Junín, Rubella, HIV (wild type and protease resistant), and Ebola, an effect replicated by knock down of multiple chaperone proteins. AR-12-stimulated the co-localization of Influenza, EBV and HIV virus proteins with LC3 in autophagosomes and reduced viral protein association with the chaperones HSP90, HSP70, and GRP78. Knock down of Beclin1 suppressed drug-induced autophagosome formation and reduced the anti-viral protection afforded by AR-12. In an animal model of hemorrhagic fever virus, a transient exposure of animals to low doses of AR-12 doubled animal survival from ∼30% to ∼60% and suppressed liver damage as measured by ATL, GGT and LDH release. Thus through inhibition of chaperone protein functions; reducing the production, stability and processing of viral proteins; and stimulating autophagosome formation/viral protein degradation, AR-12 acts as a broad-specificity anti-viral drug in vitro and in vivo. We argue future patient studies with AR-12 are warranted. J. Cell. Physiol. 231: 2286-2302, 2016. © 2016 Wiley Periodicals, Inc.

  12. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    ERIC Educational Resources Information Center

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  13. Cortical Inhibition in Attention Deficit Hyperactivity Disorder: New Insights from the Electroencephalographic Response to Transcranial Magnetic Stimulation

    ERIC Educational Resources Information Center

    Bruckmann, Sarah; Hauk, Daniela; Roessner, Veit; Resch, Franz; Freitag, Christine M.; Kammer, Thomas; Ziemann, Ulf; Rothenberger, Aribert; Weisbrod, Matthias; Bender, Stephan

    2012-01-01

    Attention deficit hyperactivity disorder is one of the most frequent neuropsychiatric disorders in childhood. Transcranial magnetic stimulation studies based on muscle responses (motor-evoked potentials) suggested that reduced motor inhibition contributes to hyperactivity, a core symptom of the disease. Here we employed the N100 component of the…

  14. Immobilized alpha-melanocyte stimulating hormone 10-13 (GKPV) inhibits tumor necrosis factor-alpha stimulated NF-kappaB activity.

    PubMed

    Kelly, J M; Moir, A J G; Carlson, K; Yang, Y; MacNeil, S; Haycock, J W

    2006-02-01

    alpha-MSH is an anti-inflammatory peptide which signals by binding to the melanocortin-1 receptor (MC1R) and elevating cyclic AMP in several different cells and tissues. The carboxyl terminal peptides of alpha-MSH (KPV/GKPV) are the smallest minimal sequences that prevent inflammation, but it is not known if they operate via MC1R or cyclic AMP. The aim of this study was to examine the intracellular signaling potential of the GKPV peptide sequence when immobilized to polystyrene beads via a polyethylene glycol moiety. Beads containing an immobilized GKPV peptide were investigated for their ability to inhibit proinflammatory tumor necrosis factor-alpha (TNF-alpha) stimulated activation of NF-kappaB in HBL cells stably transfected with an NF-kappaB-luciferase reporter construct. Peptide functionalized beads were compared with the ability of soluble peptide alone (alpha-MSH or GKPV) or non-functionalized beads to inhibit TNF-alpha stimulated activation of NF-kappaB. GKPV peptide functionalized beads significantly inhibited NF-kappaB-luciferase activity in comparison to beads containing no peptide moiety in one of two growths conditions investigated. Soluble alpha-MSH and GKPV peptides were also confirmed to inhibit NF-kappaB-luciferase. The present study suggests that the carboxyl terminal MSH peptide acts via a cell receptor-based mechanism and furthermore may support the potential use of such immobilized ligands for anti-inflammatory therapeutic use.

  15. Forskolin inhibits the Gs-stimulated adenylate cyclase in rat ascites hepatoma AH66F cells.

    PubMed

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Hasegawa, T; Takagi, K; Satake, T

    1989-09-01

    Forskolin increased intracellular cyclic AMP and augmented cyclic AMP formation by prostaglandin E1 (PGE1) in normal rat hepatocytes and ascites hepatoma AH66 cells. However, in AH66F cells which were derived from the AH66 cell line, the diterpene only slightly increased the cyclic AMP level, and dose-dependently inhibited the accumulation caused by PGE1. Forskolin dose-dependently activated adenylate cyclase in these membranes, and the magnitude of activation by forskolin was largest in the following order: hepatocytes, AH66 cells, and AH66F cells. This difference may be based on the number of forskolin-binding sites. The binding affinity of forskolin for each cell membrane was similar. The number and affinity of forskolin-binding sites in these cells were not influenced by 5'-guanylylimidodiphosphate [Gpp(NH)p]. In hepatocytes and AH66 cells, forskolin and other adenylate cyclase activators such as PGE1, GTP, Gpp(NH)p, F-, and Mn2+ synergistically increased the enzyme activity. In AH66F cells, the forskolin-stimulated activity was hardly influenced by the GTP analog, and forskolin diminished the activities induced by the GTP analog in a manner similar to that of diterpene alone. Forskolin (10 microM) also significantly inhibited the activities induced by PGE1, GTP, and F-. The effect of forskolin with Mn2+ was additive in AH66F cells. The data suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide-binding protein and the catalytic unit in the membrane of normal hepatocytes and AH66 cells, but it interferes with the coupling in AH66F cells.

  16. PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia

    PubMed Central

    Yang, Weiyuan; Cai, Yuanping; Hu, Li; Wei, Qian; Chen, Guoju; Bai, Mei; Wu, Hong; Liu, Juanxu; Yu, Yixun

    2017-01-01

    Cellulose synthase catalytic subunits (CESAs) play important roles in plant growth, development and disease resistance. Previous studies have shown an essential role of Arabidopsis thaliana CESA3 in plant growth. However, little is known about the role of CESA3 in species other than A. thaliana. To gain a better understanding of CESA3, the petunia (Petunia hybrida) PhCESA3 gene was isolated, and the role of PhCESA3 in plant growth was analyzed in a wide range of plants. PhCESA3 mRNA was present at varying levels in tissues examined. VIGS-mediated PhCESA3 silencing resulted in dwarfing of plant height, which was consistent with the phenotype of the A. thaliana rsw1 mutant (a temperature-sensitive allele of AtCESA1), the A. thaliana cev1 mutant (the AtCESA3 mild mutant), and the antisense AtCESA3 line. However, PhCESA3 silencing led to swollen stems, pedicels, filaments, styles and epidermal hairs as well as thickened leaves and corollas, which were not observed in the A. thaliana cev1 mutant, the rsw1 mutant and the antisense AtCESA3 line. Further micrographs showed that PhCESA3 silencing reduced the length and increased the width of cells, suggesting that PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia. PMID:28150693

  17. Cortical inhibition in attention deficit hyperactivity disorder: new insights from the electroencephalographic response to transcranial magnetic stimulation.

    PubMed

    Bruckmann, Sarah; Hauk, Daniela; Roessner, Veit; Resch, Franz; Freitag, Christine M; Kammer, Thomas; Ziemann, Ulf; Rothenberger, Aribert; Weisbrod, Matthias; Bender, Stephan

    2012-07-01

    Attention deficit hyperactivity disorder is one of the most frequent neuropsychiatric disorders in childhood. Transcranial magnetic stimulation studies based on muscle responses (motor-evoked potentials) suggested that reduced motor inhibition contributes to hyperactivity, a core symptom of the disease. Here we employed the N100 component of the electroencephalographic response to transcranial magnetic stimulation as a novel marker for a direct assessment of cortical inhibitory processes, which has not been examined in attention deficit hyperactivity disorder so far. We further investigated to what extent affected children were able to regulate motor cortical inhibition, and whether effects of age on the electroencephalographic response to transcranial magnetic stimulation were compatible with either a delay in brain maturation or a qualitatively different development. N100 amplitude evoked by transcranial magnetic stimulation and its age-dependent development were assessed in 20 children with attention deficit hyperactivity disorder and 19 healthy control children (8-14 years) by 64-channel electroencephalography. Amplitude and latency of the N100 component were compared at rest, during response preparation in a forewarned motor reaction time task and during movement execution. The amplitude of the N100 component at rest was significantly lower and its latency tended to be shorter in children with attention deficit hyperactivity disorder. Only in controls, N100 amplitude to transcranial magnetic stimulation was reduced by response preparation. During movement execution, N100 amplitude decreased while motor evoked potential amplitudes showed facilitation, indicating that the electroencephalographic response to transcranial magnetic stimulation provides further information on cortical excitability independent of motor evoked potential amplitudes and spinal influences. Children with attention deficit hyperactivity disorder showed a smaller N100 amplitude reduction

  18. Intraportal Infusion of Ghrelin Could Inhibit Glucose-Stimulated GLP-1 Secretion by Enteric Neural Net in Wistar Rat

    PubMed Central

    Zhang, Xiyao; Li, Wensong; Li, Ping; Chang, Manli; Huang, Xu; Li, Qiang; Cui, Can

    2014-01-01

    As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1) when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide) infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor), which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect. PMID:25247193

  19. Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen.

    PubMed

    Kees, Martin G; Pongratz, Georg; Kees, Frieder; Schölmerich, Jürgen; Straub, Rainer H

    2003-12-01

    Using a spleen slice microsuperfusion technique in mice, we have previously characterized the role of norepinephrine (NE) and other neurotransmitters for sympathetic modulation of IL-6 and TNF secretion of splenic macrophages. Since experiments in spleen slices do not reflect the situation of an entire perfused organ, we investigated sympathetic modulation of lipopolysaccharide (LPS)-induced secretion of IL-6 and TNF in perfusion experiments of rat spleen. In an organ bath, perfusion was performed in explanted whole spleens, and catecholamines and cytokines were measured by HPLC and ELISA, respectively. Release of NE depended on stimulation frequency (maximum at 10 Hz). Apart from NE, perfusates also contained significant amounts of dopamine and epinephrine. Furthermore, perfusate epinephrine levels correlated positively with perfusate NE levels (RRank=0.750, p<0.001) but not with plasma epinephrine concentrations. This indicates that epinephrine is a conversion product of sympathetically released NE. Early electrical stimulation of extrasplenic splenic nerves, 20 min after administration of LPS, significantly inhibited TNF secretion. This electrically induced effect was abrogated by simultaneous administration of propranolol (10(-6) M) but it was not influenced by administration of either an alpha1- or alpha2-adrenergic antagonist. Late electrical stimulation of splenic nerves, 2.5 h after administration of LPS, did not change TNF secretion. Interestingly, no influence of early or late sympathetic nerve fiber stimulation on IL-6 secretion was observed. In conclusion, this is the first perfusion study of the entire spleen that demonstrates that early electrical stimulation of sympathetic splenic nerve fibers directly inhibits LPS-induced TNF secretion. This study corroborates the idea that splenic sympathetic nerves are able to inhibit important activators of the innate immune system when stimulation happens very early or even prior to their induction by LPS.

  20. Muscarinic cholinergic inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and CaS transport in guinea pig ventricles

    SciTech Connect

    Lindemann, J.P.; Watanabe, A.M.

    1985-10-25

    The effects of muscarinic cholinergic stimulation on beta-adrenergic induced increases in phospholamban phosphorylation and CaS transport were studied in intact myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with TSPi, after which membrane vesicles were isolated from individual hearts. Isoproterenol produced reversible increases in TSP incorporation into phospholamban. Associated with the increases in TSP incorporation were increases in the initial rate of phosphate-facilitated CaS uptake measured in aliquots of the same membrane vesicles isolated from the perfused hearts. The increases in TSP incorporation and calcium transport were significantly attenuated by the simultaneous administration of acetylcholine. Acetylcholine also attenuated increases in phospholamban phosphorylation and CaS uptake produced by the phosphodiesterase inhibitor isobutylmethylxanthine and forskolin. The contractile effects of all agents which increased cAMP levels (increased contractility and a reduction in the t1/2 of relaxation) were also attenuated by acetylcholine. The inhibitory effects of acetylcholine were associated with attenuation of the increases in cAMP levels produced by isoproterenol and isobutylmethylxanthine but not by forskolin. Acetylcholine also increased the rate of reversal of the functional and biochemical effects of isoproterenol by propranolol without affecting cAMP levels. These results suggest that cholinergic agonists inhibit the functional effects of beta-adrenergic stimulation in part by inhibition of phospholamban phosphorylation. This inhibition may be mediated by two potential mechanisms: inhibition of beta-adrenergic activation of adenylate cyclase and stimulation of dephosphorylation.

  1. Prefrontal hypoactivity associated with impaired inhibition in stimulant-dependent individuals but evidence for hyperactivation in their unaffected siblings.

    PubMed

    Morein-Zamir, Sharon; Simon Jones, P; Bullmore, Edward T; Robbins, Trevor W; Ersche, Karen D

    2013-09-01

    A neurocognitive endophenotype has been proposed for stimulant dependence, based on behavioral measures of inhibitory response control associated with white matter changes in the frontal cortex. This study investigated the functional neuroimaging correlates of inhibitory response control, as functional activity serves as a more dynamic measure than brain structure, allowing refinement of the suggested endophenotype. Stimulant-dependent individuals (SDIs), their unaffected siblings (SIBs), and healthy controls (CTs) performed the stop-signal task, including stop-signal reaction time (SSRT) as a measure of response inhibition, while undergoing functional magnetic resonance imaging. SDIs had impaired response inhibition accompanied by hypoactivation in the ventrolateral prefrontal cortex (PFC). In addition, they demonstrated hypoactivation in the anterior cingulate when failing to stop. In contrast, no hypoactivations were noted in their unaffected SIBs. Rather, they exhibited increased activation in the dorsomedial PFC relative to controls, together with inhibitory performance that was intermediate between that of the stimulant group and the healthy CT group. Such hyperactivations within the neurocircuitry underlying response inhibition and control are suggestive of compensatory mechanisms that could be protective in nature or could reflect coping with a pre-existing vulnerability, thus expressing potential aspects of resilience. The functional activation associated with response inhibition and error monitoring showed differential patterns of results between SDIs and their unaffected first-degree relatives, suggesting that the proposed endophenotype does not generalize to functional brain activity.

  2. Prefrontal Hypoactivity Associated with Impaired Inhibition in Stimulant-Dependent Individuals but Evidence for Hyperactivation in their Unaffected Siblings

    PubMed Central

    Morein-Zamir, Sharon; Simon Jones, P; Bullmore, Edward T; Robbins, Trevor W; Ersche, Karen D

    2013-01-01

    A neurocognitive endophenotype has been proposed for stimulant dependence, based on behavioral measures of inhibitory response control associated with white matter changes in the frontal cortex. This study investigated the functional neuroimaging correlates of inhibitory response control, as functional activity serves as a more dynamic measure than brain structure, allowing refinement of the suggested endophenotype. Stimulant-dependent individuals (SDIs), their unaffected siblings (SIBs), and healthy controls (CTs) performed the stop-signal task, including stop-signal reaction time (SSRT) as a measure of response inhibition, while undergoing functional magnetic resonance imaging. SDIs had impaired response inhibition accompanied by hypoactivation in the ventrolateral prefrontal cortex (PFC). In addition, they demonstrated hypoactivation in the anterior cingulate when failing to stop. In contrast, no hypoactivations were noted in their unaffected SIBs. Rather, they exhibited increased activation in the dorsomedial PFC relative to controls, together with inhibitory performance that was intermediate between that of the stimulant group and the healthy CT group. Such hyperactivations within the neurocircuitry underlying response inhibition and control are suggestive of compensatory mechanisms that could be protective in nature or could reflect coping with a pre-existing vulnerability, thus expressing potential aspects of resilience. The functional activation associated with response inhibition and error monitoring showed differential patterns of results between SDIs and their unaffected first-degree relatives, suggesting that the proposed endophenotype does not generalize to functional brain activity. PMID:23609131

  3. Further evidence for inhibition of episodic luteinizing hormone release in ovariectomized rats by stimulation of dopamine receptors.

    PubMed

    Drouva, S V; Gallo, R V

    1977-03-01

    Stimulation of dopamine receptors by apomorphine inhibits episodic LH release in ovariectomized rats. The present study was designed to examine further the role of dopamine in this process. Unrestrained, unanesthetized rats with indwelling right atrial cannulae were bled continuously (30 or 50 microliters of whole blood/5 min for 3-6 h) and whole blood samples analyzed for LH by radioimmunoassay. Animals were treated with various compounds reported to stimulate or block dopamine receptors. ET 495, a long acting dopamine receptor stimulating agent, caused a marked inhibition of episodic LH release (2 1/2-4 h). Control injections of distilled water had no effect. d-Butaclamol, a blocker of dopamine receptors, did not itself alter episodic LH release but prevented the inhibitory effects seen following apomorphine or ET 495. I-butaclamol, a biologically inactive form of butaclamol, had no effect. Measurement of plasma corticosterone levels in these same animals indicated increased values following apomorphine or ET 495 alone (when LH release was inhibited), as well as after apomorphine or ET 495 administration to d-butaclamol-pretreated rats (when LH levels did not change). These data support our previous hypothesis that in ovariectomized adult rats, activation of dopamine receptors is capable of inhibiting episodic LH release, but that dopamine may not play an inhibitory role under normal physiological conditions in the modulation of LH secretion. In addition, the inhibitory action of apomorphine and ET 495 does not appear to be exerted via a stress-induced release of adrenal corticosterone.

  4. The Effects of Frequency-Dependent Dynamic Muscle Stimulation on Inhibition of Trabecular Bone Loss in a Disuse Model

    PubMed Central

    Lam, Hoyan; Qin, Yi-Xian

    2008-01-01

    Clinical electrical muscle stimulation has been shown to alleviate muscle atrophy resulting from functional disuse, yet little is known about its effect on the skeleton. The objective of this study is to evaluate the potential of dynamic muscle stimulation on disused trabecular bone, and to investigate the importance of optimized stimulation frequency in the loading regimen. Fifty-six skeletally mature Sprague-Dawley rats were divided into seven groups for the 4-week experiment: baseline control, age-matched control, hindlimb suspended (HLS), and HLS with muscle stimulation at 1 Hz, 20 Hz, 50 Hz, and 100 Hz. Muscle stimulation was carried out for 10 minutes per day for 5 days per week, total of 4 weeks. The metaphyseal and epiphyseal trabecular regions of the distal femurs were analyzed with microcomputed tomography and histomorphometry methods. HLS alone for 4-week resulted in a significant amount of trabecular bone loss and structural deterioration. Muscle contraction at 1 Hz was not sufficient to inhibit trabecular bone loss and resulted in similar amount of loss to that of HLS alone. Bone quantity and structure were significantly improved by applying muscle stimulation at mid-frequency (20 Hz & 50 Hz). Dynamic stimulation at 50 Hz demonstrated the greatest preventive effect on the skeleton against functional disused alone animals (up to +147% in bone volume fraction, +38% in trabecular number and -36% in trabecular separation). Histomorphometric analysis showed that the stimulation, regardless of its frequency, did not have an effect on the bone formation indices, such as mineral apposition rate and bone formation rate. Overall, the data demonstrated the potentials of frequency-dependent dynamic muscle contraction in regulating skeletal adaptive responses under disuse conditions. Dynamic muscle stimulation, with a specific regimen, may be beneficial to future orthopedic research in developing a countermeasure for disuse osteopenia and osteoporosis. PMID

  5. Inhibition of DYRK1A Stimulates Human β-Cell Proliferation.

    PubMed

    Dirice, Ercument; Walpita, Deepika; Vetere, Amedeo; Meier, Bennett C; Kahraman, Sevim; Hu, Jiang; Dančík, Vlado; Burns, Sean M; Gilbert, Tamara J; Olson, David E; Clemons, Paul A; Kulkarni, Rohit N; Wagner, Bridget K

    2016-06-01

    Restoring functional β-cell mass is an important therapeutic goal for both type 1 and type 2 diabetes (1). While proliferation of existing β-cells is the primary means of β-cell replacement in rodents (2), it is unclear whether a similar principle applies to humans, as human β-cells are remarkably resistant to stimulation of division (3,4). Here, we show that 5-iodotubercidin (5-IT), an annotated adenosine kinase inhibitor previously reported to increase proliferation in rodent and porcine islets (5), strongly and selectively increases human β-cell proliferation in vitro and in vivo. Remarkably, 5-IT also increased glucose-dependent insulin secretion after prolonged treatment. Kinome profiling revealed 5-IT to be a potent and selective inhibitor of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) and cell division cycle-like kinase families. Induction of β-cell proliferation by either 5-IT or harmine, another natural product DYRK1A inhibitor, was suppressed by coincubation with the calcineurin inhibitor FK506, suggesting involvement of DYRK1A and nuclear factor of activated T cells signaling. Gene expression profiling in whole islets treated with 5-IT revealed induction of proliferation- and cell cycle-related genes, suggesting that true proliferation is induced by 5-IT. Furthermore, 5-IT promotes β-cell proliferation in human islets grafted under the kidney capsule of NOD-scid IL2Rg(null) mice. These results point to inhibition of DYRK1A as a therapeutic strategy to increase human β-cell proliferation.

  6. Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts

    PubMed Central

    Scaffidi, Amelia K; Mutsaers, Steven E; Moodley, Yuben P; McAnulty, Robin J; Laurent, Geoffrey J; Thompson, Philip J; Knight, Darryl A

    2002-01-01

    Oncostatin M (OSM), a member of the interleukin-6 (IL-6) cytokine family, acts on a variety of cells and elicits diversified biological responses, suggesting potential roles in the regulation of cell survival, differentiation and proliferation.We have examined the effect of OSM on the regulation of human lung fibroblast proliferation, collagen production and spontaneous apoptosis. The proliferative effects of OSM (0.5 – 100 ng ml−1) were assessed using a MTS assay as well as [3H]-thymidine incorporation and cell counts at 24 and 48 h. Hydroxyproline was measured as an index of procollagen production by high pressure liquid chromotography (HPLC). Apoptosis was determined by annexin staining.OSM enhanced the mitotic activity of lung fibroblasts in a time and dose dependent manner. Maximum proliferation of 57% above control was observed after incubation for 48 h with 2 ng ml−1 OSM (P<0.05).Incubation with the mitogen activated protein kinase (MAPK) kinase inhibitor, PD98059 or the tyrosine kinase inhibitor, genestein both significantly reduced the mitogenic effect of OSM (P<0.05).In contrast, proliferation in response to OSM was not regulated by induction of cyclo-oxygenase and subsequent prostaglandin E2 (PGE2) release or by IL-6.OSM also stimulated fibroblasts to synthesize pro-collagen by a maximum of 35% above control levels after 48 h (P<0.05).OSM significantly inhibited the spontaneous apoptosis of fibroblasts at 24 and 48 h.These results provide evidence that OSM has pro-fibrotic properties and suggest that it may play a role in normal lung wound repair and fibrosis. PMID:12086989

  7. Pulmonary Surfactant Phosphatidylglycerol Inhibits Mycoplasma pneumoniae-stimulated Eicosanoid Production from Human and Mouse Macrophages*

    PubMed Central

    Kandasamy, Pitchaimani; Zarini, Simona; Chan, Edward D.; Leslie, Christina C.; Murphy, Robert C.; Voelker, Dennis R.

    2011-01-01

    Mycoplasma pneumoniae is a human pathogen causing respiratory infections that are also associated with serious exacerbations of chronic lung diseases. Membranes and lipoproteins from M. pneumoniae induced a 4-fold increase in arachidonic acid (AA) release from RAW264.7 and a 2-fold increase in AA release from primary human alveolar macrophages. The bacterial lipoprotein mimic and TLR2/1 agonist Pam3Cys and the TLR2/6 agonist MALP-2 produced effects similar to those elicited by M. pneumoniae in macrophages by inducing the phosphorylation of p38MAPK and p44/42ERK1/2 MAP kinases and cyclooxygenase-2 (COX-2) expression. M. pneumoniae induced the generation of prostaglandins PGD2 and PGE2 from RAW264.7 cells and thromboxane B2 (TXB2) from human alveolar macrophages. Anti-TLR2 antibody completely abolished M. pneumoniae-induced AA release and TNFα secretion from RAW264.7 cells and human alveolar macrophages. Disruption of the phosphorylation of p44/42ERK1/2 or inactivation of cytosolic phospholipase A2α (cPLA2α) completely inhibited M. pneumoniae-induced AA release from macrophages. The minor pulmonary surfactant phospholipid, palmitoyl-oleoyl-phosphatidylglycerol (POPG), antagonized the proinflammatory actions of M. pneumoniae, Pam3Cys, and MALP-2 by reducing the production of AA metabolites from macrophages. The effect of POPG was specific, insofar as saturated PG, and saturated and unsaturated phosphatidylcholines did not have significant effect on M. pneumoniae-induced AA release. Collectively, these data demonstrate that M. pneumoniae stimulates the production of eicosanoids from macrophages through TLR2, and POPG suppresses this pathogen-induced response. PMID:21205826

  8. Anodal transcranial direct current stimulation of the motor cortex induces opposite modulation of reciprocal inhibition in wrist extensor and flexor.

    PubMed

    Lackmy-Vallée, Alexandra; Klomjai, Wanalee; Bussel, Bernard; Katz, Rose; Roche, Nicolas

    2014-09-15

    Transcranial direct current stimulation (tDCS) is used as a noninvasive tool to modulate brain excitability in humans. Recently, several studies have demonstrated that tDCS applied over the motor cortex also modulates spinal neural network excitability and therefore can be used to explore the corticospinal control acting on spinal neurons. Previously, we showed that reciprocal inhibition directed to wrist flexor motoneurons is enhanced during contralateral anodal tDCS, but it is likely that the corticospinal control acting on spinal networks controlling wrist flexors and extensors is not similar. The primary aim of the study was to explore the effects of anodal tDCS on reciprocal inhibition directed to wrist extensor motoneurons. To further examine the supraspinal control acting on the reciprocal inhibition between wrist flexors and extensors, we also explored the effects of the tDCS applied to the ipsilateral hand motor area. In healthy volunteers, we tested the effects induced by sham and anodal tDCS on reciprocal inhibition pathways innervating wrist muscles. Reciprocal inhibition directed from flexor to extensor muscles and the reverse situation, i.e., reciprocal inhibition, directed from extensors to flexors were studied in parallel with the H reflex technique. Our main finding was that contralateral anodal tDCS induces opposing effects on reciprocal inhibition: it decreases reciprocal inhibition directed from flexors to extensors, but it increases reciprocal inhibition directed from extensors to flexors. The functional result of these opposite effects on reciprocal inhibition seems to favor wrist extension excitability, suggesting an asymmetric descending control onto the interneurons that mediate reciprocal inhibition.

  9. Adenosine (ADO) released during orthodromic stimulation of the frog sympathetic ganglion inhibits phosphatidylinositol turnover (PI) associated with synaptic transmission

    SciTech Connect

    Curnish, R.; Bencherif, M.; Rubio, R.; Berne, R.M.

    1986-03-05

    The authors have previously demonstrated that /sup 3/H-purine release was enhanced during synaptic activation of the prelabelled frog sympathetic ganglion. In addition, during orthodromic stimulation, there is an increased /sup 3/H-inositol release (an index of PI) that occurs during the poststimulation period and not during the period of stimulation. They hypothesized that endogenous ADO inhibits PI turnover during orthodromic stimulation. To test this hypothesis (1) they performed experiments to directly measure ADO release in the extracellular fluid by placing the ganglion in a 5 ..mu..l drop of Ringer's and let it come to equilibrium with the interstitial fluid, (2) they destroyed endogenous ADO by suffusing adenosine deaminase (ADA) during the stimulation period. Their results show (1) orthodromic stimulation increases release of ADO into the bathing medium, (2) ADA induced an increase of PI during the stimulation period in contrast to an increase seen only during the poststimulation period when ADA was omitted. They conclude that there is dual control of PI during synaptic activity, a stimulatory effect (cause unknown) and a short lived inhibitory effect that is probably caused by adenosine.

  10. Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis.

    PubMed

    Fu, Rong; Chen, Yan; Wang, Xiao-Ping; An, Teng; Tao, Lei; Zhou, Yu-Xin; Huang, Yu-Jie; Chen, Bao-An; Li, Zhi-Yu; You, Qi-Dong; Guo, Qing-Long; Wu, Zhao-Qiu

    2016-02-02

    Angiogenesis is associated with the progression of multiple myeloma (MM). Wogonin is an active mono-flavonoid with remarkable antitumor activity. However, its impact on MM-stimulated angiogenesis remains largely unknown. Here, we demonstrated that wogonin decreased expression and secretion of pro-angiogenic factors in MM cells via c-Myc/HIF-1α signaling axis, reducing MM-stimulated angiogenesis and MM cell proliferation in vivo. Overexpression of c-Myc in MM cells disrupted the balance between VHL SUMOylation and ubiquitination, and thus inhibited proteasome-mediated HIF-1α degradation. Impaired function of VHL ubiquitination complex in c-Myc-overexpressing cells was fully reversed by wogonin treatment via increasing HIF-1α-VHL interaction and promoting HIF-1α degradation. Collectively, our in vitro and in vivo studies reveal for the first time that wogonin represses MM-stimulated angiogenesis and tumor progression via c-Myc/VHL/HIF-1α signaling axis.

  11. Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis

    PubMed Central

    Wang, Xiao-Ping; An, Teng; Tao, Lei; Zhou, Yu-Xin; Huang, Yu-Jie; Chen, Bao-An; Li, Zhi-Yu; You, Qi-Dong; Guo, Qing-Long; Wu, Zhao-Qiu

    2016-01-01

    Angiogenesis is associated with the progression of multiple myeloma (MM). Wogonin is an active mono-flavonoid with remarkable antitumor activity. However, its impact on MM-stimulated angiogenesis remains largely unknown. Here, we demonstrated that wogonin decreased expression and secretion of pro-angiogenic factors in MM cells via c-Myc/HIF-1α signaling axis, reducing MM-stimulated angiogenesis and MM cell proliferation in vivo. Overexpression of c-Myc in MM cells disrupted the balance between VHL SUMOylation and ubiquitination, and thus inhibited proteasome-mediated HIF-1α degradation. Impaired function of VHL ubiquitination complex in c-Myc-overexpressing cells was fully reversed by wogonin treatment via increasing HIF-1α-VHL interaction and promoting HIF-1α degradation. Collectively, our in vitro and in vivo studies reveal for the first time that wogonin represses MM-stimulated angiogenesis and tumor progression via c-Myc/VHL/HIF-1α signaling axis. PMID:26735336

  12. Phorbol esters inhibit alpha/sub 1/-adrenergic receptor stimulated phosphoinositide hydrolysis and contraction in rat aorta

    SciTech Connect

    Not Available

    1986-03-01

    The mechanisms of pharmacomechanical coupling in vascular tissue are at the present time unclear. The authors and others have proposed that receptor-induced activation of phosphoinositide (PI) hydrolysis may be involved. To investigate this possibility they studied the actions of two biologically active phorbol esters: phorbol dibutyrate (PDB) and phorbol myristate diacetate (PMA) on receptor-stimulated PI hydrolysis in rat aortic rings. They found both PDB (IC/sub 5//sup 0/ approx. 5nM) and PMA (IC/sub 50/ approx. 30 nM) but not 4-..cap alpha..-phorbol (IC32%/sub 0/ > 10,000 nM) inhibited norepinephrine-stimulated PI hydrolysis. In the presence of the calcium channel antagonist nitrendipine, PDB potently inhibited both the phasic and tonic components of norepinephrine-induced vascular contraction. In the presence of 10/sup -7/M nitrendipine, PDB had an IC/sub 50/ for contraction of approximately 10nM. The results thus suggest a functional coupling between ..cap alpha../sub 1/-adrenergic receptor-stimulated PI hydrolysis and vascular contraction. The findings further imply a mode of feed-back regulation in vascular tissue involving phorbol ester and receptor-stimulated PI hydrolysis.

  13. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  14. Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings.

    PubMed

    Cogiamanian, Filippo; Vergari, Maurizio; Schiaffi, Elena; Marceglia, Sara; Ardolino, Gianluca; Barbieri, Sergio; Priori, Alberto

    2011-02-01

    Aiming at developing a new, noninvasive approach to spinal cord neuromodulation, we evaluated whether transcutaneous direct current (DC) stimulation induces long-lasting changes in the central pain pathways in human beings. A double-blind crossover design was used to investigate the effects of anodal direct current (2mA, 15min) applied on the skin overlying the thoracic spinal cord on the lower-limb flexion reflex in a group of 11 healthy volunteers. To investigate whether transcutaneous spinal cord DC stimulation (tsDCS) acts indirectly on the nociceptive reflex by modulating excitability in mono-oligosynaptic segmental reflex pathways, we also evaluated the H-reflex size from soleus muscle after tibial nerve stimulation. In our healthy subjects, anodal thoracic tsDCS reduced the total lower-limb flexion reflex area by 40.25% immediately after stimulation (T0) and by 46.9% 30min after stimulation offset (T30). When we analyzed the 2 lower-limb flexion reflex components (RII tactile and RIII nociceptive) separately, we found that anodal tsDCS induced a significant reduction in RIII area with a slight but not significant effect on RII area. After anodal tsDCS, the RIII area decreased by 27% at T0 and by 28% at T30. Both sham and active tsDCS left all the tested H-reflex variables unchanged. None of our subjects reported adverse effects after active stimulation. These results suggest that tsDCS holds promise as a tool that is complementary or alternative to drugs and invasive spinal cord electrical stimulation for managing pain. Thoracic transcutaneous direct current stimulation induces depression of nociceptive lower limb flexion reflex in human beings that persists after stimulation offset; this form of stimulation holds promise as a tool that is complementary or alternative to drugs and invasive spinal cord electrical stimulation for managing pain.

  15. The Ca2+ channel β subunit determines whether stimulation of Gq-coupled receptors enhances or inhibits N current

    PubMed Central

    Heneghan, John F.; Mitra-Ganguli, Tora; Stanish, Lee F.; Liu, Liwang; Zhao, Rubing

    2009-01-01

    In superior cervical ganglion (SCG) neurons, stimulation of M1 receptors (M1Rs) produces a distinct pattern of modulation of N-type calcium (N-) channel activity, enhancing currents elicited with negative test potentials and inhibiting currents elicited with positive test potentials. Exogenously applied arachidonic acid (AA) reproduces this profile of modulation, suggesting AA functions as a downstream messenger of M1Rs. In addition, techniques that diminish AA's concentration during M1R stimulation minimize N-current modulation. However, other studies suggest depletion of phosphatidylinositol-4,5-bisphosphate during M1R stimulation suffices to elicit modulation. In this study, we used an expression system to examine the physiological mechanisms regulating modulation. We found the β subunit (CaVβ) acts as a molecular switch regulating whether modulation results in enhancement or inhibition. In human embryonic kidney 293 cells, stimulation of M1Rs or neurokinin-1 receptors (NK-1Rs) inhibited activity of N channels formed by CaV2.2 and coexpressed with CaVβ1b, CaVβ3, or CaVβ4 but enhanced activity of N channels containing CaVβ2a. Exogenously applied AA produced the same pattern of modulation. Coexpression of CaVβ2a, CaVβ3, and CaVβ4 recapitulated the modulatory response previously seen in SCG neurons, implying heterogeneous association of CaVβ with CaV2.2. Further experiments with mutated, chimeric CaVβ subunits and free palmitic acid revealed that palmitoylation of CaVβ2a is essential for loss of inhibition. The data presented here fit a model in which CaVβ2a blocks inhibition, thus unmasking enhancement. Our discovery that the presence or absence of palmitoylated CaVβ2a toggles M1R- or NK-1R–mediated modulation of N current between enhancement and inhibition identifies a novel role for palmitoylation. Moreover, these findings predict that at synapses, modulation of N-channel activity by M1Rs or NK-1Rs will fluctuate between enhancement and

  16. Growth Inhibition and Stimulation of Shewanella oneidensis MR-1 by Surfactants and Calcium Polysulfide

    SciTech Connect

    Bailey, Kathryn L.; Tilton, Fred A.; Jansik, Danielle P.; Ergas, Sarina J.; Marshall, Matthew J.; Miracle, Ann L.; Wellman, Dawn M.

    2012-06-14

    Foam delivery technology (FDT) uses surfactant based foam to immobilize subsurface contaminants in situ. Where traditional approaches are impractical, FDT has the potential to overcome many of the technical challenges facing the remediation of contaminated deep vadose zone environments. However, little is known about the effects these reactive chemicals may have on microorganisms inhabiting the contaminated subsurface. In addition, there are currently no standard assays to assess microbial responses to subsurface remedial treatments while these agents are under development. The objective of this study was to develop a rapid laboratory assay to assess the potential growth inhibition and/or stimulation of microorganisms following exposure to candidate FDT components. Calcium polysulfide (CPS) and several surfactants (i.e. sodium laureth sulfate (SLES), sodium dodecyl sulfate (SDS), cocamidopropyl betaine (CAPB) and NINOL40-CO) have diverse chemistries and are candidate components of FDT. Shewanella oneidensis MR-1 cultures were exposed to a range of concentrations of these chemicals to determine the minimum bactericidal concentration (MBC) and the growth and viability potential of these components. Concentrations of SDS higher than 700 {micro}M were toxic to S. oneidensis MR-1 growth over the course of four days of exposure. The relative acute toxicity order for these compounds was SDS>>CPS>>NINOL40-CO>SLES-CAPB. Dose dependent growth decreases (20 to 100 mM) were observed in the CAPB and SLES treated cultures and both CPS and NINOL 40-CO were toxic at all concentrations tested (1.45 to 7.25 mM CPS). Both SLES (20 to 100 mM) and SDS at lower concentrations (20 to 500 {micro}M) were stimulatory to S. oneidensis MR-1 indicating a capacity to be used as a carbon source. These studies also identified potentially key component characteristics, such as precipitate formation and oxygen availability, which may prove valuable in assessing the response of subsurface

  17. Growth inhibition and stimulation of Shewanella oneidensis MR-1 by surfactants and calcium polysulfide.

    PubMed

    Bailey, Kathryn L; Tilton, Fred; Jansik, Danielle P; Ergas, Sarina J; Marshall, Matthew J; Miracle, Ann L; Wellman, Dawn M

    2012-06-01

    Foam delivery technology (FDT) uses surfactant based foam to immobilize subsurface contaminants in situ. Where traditional approaches are impractical, FDT has the potential to overcome many of the technical challenges facing the remediation of contaminated deep vadose zone environments. However, little is known about the effects these reactive chemicals may have on microorganisms inhabiting the contaminated subsurface. In addition, there are currently no standard assays to assess microbial responses to subsurface remedial treatments while these agents are under development. The objective of this study was to develop a rapid laboratory assay to assess the potential growth inhibition and/or stimulation of microorganisms following exposure to candidate FDT components. Calcium polysulfide (CPS) and several surfactants (i.e. sodium laureth sulfate (SLES), sodium dodecyl sulfate (SDS), cocamidopropyl betaine (CAPB) and NINOL40-CO) have diverse chemistries and are candidate components of FDT. Shewanella oneidensis MR-1 cultures were exposed to a range of concentrations of these chemicals to determine the minimum bactericidal concentration (MBC) and the growth and viability potential of these components. Concentrations of SDS higher than 700 μM were toxic to S. oneidensis MR-1 growth over the course of four days of exposure. The relative acute toxicity order for these compounds was SDS > CPS > NINOL 40-CO>SLES≥CAPB. Dose dependent growth decreases (20-100mM) were observed in the CAPB and SLES treated cultures and both CPS and NINOL 40-CO were toxic at all concentrations tested (1.45-7.25 mM CPS). Both SLES (20-100mM) and SDS at lower concentrations (20-500 μM) were stimulatory to S. oneidensis MR-1 indicating a capacity to be used as a carbon source. These studies also identified potentially key component characteristics, such as precipitate formation and oxygen availability, which may prove valuable in assessing the response of subsurface microorganisms. This benchtop

  18. Lipolysis of Visceral Adipocyte Triglyceride by Pancreatic Lipases Converts Mild Acute Pancreatitis to Severe Pancreatitis Independent of Necrosis and Inflammation

    PubMed Central

    Patel, Krutika; Trivedi, Ram N.; Durgampudi, Chandra; Noel, Pawan; Cline, Rachel A.; DeLany, James P.; Navina, Sarah; Singh, Vijay P.

    2016-01-01

    Visceral fat necrosis has been associated with severe acute pancreatitis (SAP) for over 100 years; however, its pathogenesis and role in SAP outcomes are poorly understood. Based on recent work suggesting that pancreatic fat lipolysis plays an important role in SAP, we evaluated the role of pancreatic lipases in SAP-associated visceral fat necrosis, the inflammatory response, local injury, and outcomes of acute pancreatitis (AP). For this, cerulein pancreatitis was induced in lean and obese mice, alone or with the lipase inhibitor orlistat and parameters of AP induction (serum amylase and lipase), fat necrosis, pancreatic necrosis, and multisystem organ failure, and inflammatory response were assessed. Pancreatic lipases were measured in fat necrosis and were overexpressed in 3T3-L1 cells. We noted obesity to convert mild cerulein AP to SAP with greater cytokines, unsaturated fatty acids (UFAs), and multisystem organ failure, and 100% mortality without affecting AP induction or pancreatic necrosis. Increased pancreatic lipase amounts and activity were noted in the extensive visceral fat necrosis of dying obese mice. Lipase inhibition reduced fat necrosis, UFAs, organ failure, and mortality but not the parameters of AP induction. Pancreatic lipase expression increased lipolysis in 3T3-L1 cells. We conclude that UFAs generated via lipolysis of visceral fat by pancreatic lipases convert mild AP to SAP independent of pancreatic necrosis and the inflammatory response. PMID:25579844

  19. Autophagy in the CNS and Periphery Coordinate Lipophagy and Lipolysis in the Brown Adipose Tissue and Liver.

    PubMed

    Martinez-Lopez, Nuria; Garcia-Macia, Marina; Sahu, Srabani; Athonvarangkul, Diana; Liebling, Emily; Merlo, Paola; Cecconi, Francesco; Schwartz, Gary J; Singh, Rajat

    2016-01-12

    The integrative physiology of inter-organ communication in lipophagy regulation is not well understood. Lipophagy and the cytosolic lipases ATGL and HSL contribute to lipid droplet (LD) mobilization; however, whether autophagy proteins engage with lipases to promote lipid utilization remains unknown. Here, we show that cold induces autophagy in proopiomelanocortin (POMC) neurons and activates lipophagy in brown adipose tissue (BAT) and liver in mice. Targeted activation of autophagy in POMC neurons via intra-hypothalamic rapamycin is sufficient to trigger lipid utilization in room temperature-housed mice. Conversely, inhibiting autophagy in POMC neurons or in peripheral tissues or denervating BAT blocks lipid utilization. Unexpectedly, the autophagosome marker LC3 is mechanistically coupled to ATGL-mediated lipolysis. ATGL exhibits LC3-interacting region (LIR) motifs, and mutating a single LIR motif on ATGL displaces ATGL from LD and disrupts lipolysis. Thus, cold-induced activation of central autophagy activates lipophagy and cytosolic lipases in a complementary manner to mediate lipolysis in peripheral tissues.

  20. Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord

    PubMed Central

    Hotta, Harumi; Watanabe, Nobuhiro

    2015-01-01

    Recently, we found that gentle mechanical skin stimulation inhibits the micturition reflex in anesthetized rats. However, the central mechanisms underlying this inhibition have not been determined. This study aimed to clarify the central neural mechanisms underlying this inhibitory effect. In urethane-anesthetized rats, cutaneous stimuli were applied for 1 min to the skin of the perineum using an elastic polymer roller with a smooth, soft surface. Inhibition of rhythmic micturition contractions by perineal stimulation was abolished by naloxone, an antagonist of opioidergic receptors, administered into the intrathecal space of the lumbosacral spinal cord at doses of 2–20 μg but was not affected by the same doses of naloxone administered into the subarachnoid space of the cisterna magna. Next, we examined whether perineal rolling stimulation inhibited the descending and ascending limbs of the micturition reflex. Perineal rolling stimulation inhibited bladder contractions induced by electrical stimulation of the pontine micturition center (PMC) or the descending tract of the micturition reflex pathway. It also inhibited the bladder distension-induced increase in the blood flow of the dorsal cord at L5–S1, reflecting the neural activity of this area, as well as pelvic afferent-evoked field potentials in the dorsal commissure at the lumbosacral level; these areas contain long ascending neurons to the PMC. Neuronal activities in this center were also inhibited by the rolling stimulation. These results suggest that the perineal rolling stimulation activates the spinal opioidergic system and inhibits both ascending and descending transmissions of the micturition reflex pathway in the spinal cord. These inhibitions would lead to the shutting down of positive feedback between the bladder and the PMC, resulting in inhibition of the micturition reflex. Based on the central neural mechanisms we show here, gentle perineal stimulation may be applicable to several different

  1. Effects of methylmercury on primary cultured rat hepatocytes: Cell injury and inhibition of growth factor stimulated DNA synthesis

    SciTech Connect

    Tanno, Keiichi; Fukazawa, Toshiyuki; Tajima, Shizuko; Fujiki, Motoo )

    1992-08-01

    Many more studies deal with the toxicity of methylmercury on nervous tissue than on its toxicity to the liver. Methylmercury accumulates in the liver in higher concentrations than brain and the liver has the primary function of detoxifying methylmercury. According to recent studies, hepatocyte mitochondrial membranes are destroyed by methylmercury and DNA synthesis is inhibited by methylmercury during hepatocyte regeneration. Methylmercury alters the membrane ion permeability of isolate skate hepatocytes, and inhibits the metal-sensitive alcohol dehydrogenase and glutathione reductase of primary cultured rat hepatocytes. However, little is known about the effect of methylmercury on hepatocyte proliferation in primary cultured rat hepatocytes. We therefore used the primary cultured rat hepatocytes to investigate the effects of methylmercury on cell injury and growth factor stimulate DNA synthesis. The primary effect of methylmercury is to inhibit hepatocyte proliferation rather than to cause direct cell injury. 16 refs., 4 figs.

  2. Consecutive 15 min is necessary for focal low frequency stimulation to inhibit amygdaloid-kindling seizures in rats.

    PubMed

    Liu, Yang; Wang, Yi; Xu, Zhenghao; Xu, Cenglin; Ying, Xiaoying; Wang, Shuang; Zhang, Shihong; Xiao, Bo; Chen, Zhong

    2013-09-01

    Low-frequency stimulation (LFS) is emerging as a new option for the treatment of intractable epilepsy. The stimulation duration may influence the anti-epileptic effect of LFS but is poorly studied. The present study was designed to evaluate the anti-epileptic effect of focal LFS with different stimulation duration on amygdaloid-kindling seizures in rats. We found 15 and 30 min but not 1 or 5 min LFS delivered immediately after the kindling stimulation slowed the progression of behavioral seizure stages and reduced mean afterdischarge duration (ADD) during kindling acquisition. In fully kindled animals, 15 and 30min rather than 1 and 5 min LFS decreased the incidence of generalized seizures and the average seizure stage as well as shortened the cumulative generalized seizure duration (GSD). Meanwhile, EEG analysis showed 15 and 30 min LFS specifically lowered the power in delta band. However, if 15min LFS delivered intermittently by 5 min interval, it had no suppressing effect on kindling rat. Thus, it is likely that consecutive 15 min is necessary for LFS to inhibit amygdaloid-kindling seizures in rats, indicating the stimulation duration may be a key fact affecting the clinical effect of LFS on epilepsy.

  3. Niflumic acid inhibits ATP-stimulated exocytosis in a mucin-secreting epithelial cell line.

    PubMed

    Bertrand, C A; Danahay, H; Poll, C T; Laboisse, C; Hopfer, U; Bridges, R J

    2004-02-01

    ATP is an efficacious secretagogue for mucin and chloride in the epithelial cell line HT29-Cl.16E. Mucin release has been measured as [3H]glucosamine-labeled product in extracellular medium and as single-cell membrane capacitance increases indicative of exocytosis-related increases in membrane area. The calcium-activated chloride channel blocker niflumic acid, also reported to modulate secretion, was used to probe for divergence in the purinergic signaling of mucin exocytosis and channel activation. With the use of whole cell patch clamping, ATP stimulated a transient capacitance increase of 15 +/- 4%. Inclusion of niflumic acid significantly reduced the ATP-stimulated capacitance change to 3 +/- 1%, although normalized peak currents were not significantly different. Ratiometric imaging was used to assess intracellular calcium (Cai2+) dynamics during stimulation. In the presence of niflumic acid, the ATP-stimulated peak change in Cai2+ was unaffected, but the initial response and overall time to Cai2+ peak were significantly affected. Excluding external calcium before ATP stimulation or including the capacitative calcium entry blocker LaCl3 during stimulation muted the initial calcium transient similar to that observed with niflumic acid and significantly reduced peak capacitance change, suggesting that a substantial portion of the ATP-stimulated mucin exocytosis in HT29-Cl.16E depends on a rapid, brief calcium influx through the plasma membrane. Niflumic acid interferes with this influx independent of a chloride channel blockade effect.

  4. C(2)-ceramide influences the expression and insulin-mediated regulation of cyclic nucleotide phosphodiesterase 3B and lipolysis in 3T3-L1 adipocytes.

    PubMed

    Mei, Jie; Holst, Lena Stenson; Landström, Tova Rahn; Holm, Cecilia; Brindley, David; Manganiello, Vincent; Degerman, Eva

    2002-03-01

    Cyclic nucleotide phosphodiesterase (PDE) 3B plays an important role in the antilipolytic action of insulin and, thereby, the release of fatty acids from adipocytes. Increased concentrations of circulating fatty acids as a result of elevated or unrestrained lipolysis cause insulin resistance. The lipolytic action of tumor necrosis factor (TNF)-alpha is thought to be one of the mechanisms by which TNF-alpha induces insulin resistance. Ceramide is the suggested second messenger of TNF-alpha action, and in this study, we used 3T3-L1 adipocytes to investigate the effects of C(2)-ceramide (a short-chain ceramide analog) on the expression and regulation of PDE3B and lipolysis. Incubation of adipocytes with 100 micromol/l C(2)-ceramide (N-acetyl-sphingosine) resulted in a time-dependent decrease of PDE3B activity, accompanied by decreased PDE3B protein expression. C(2)-ceramide, in a time- and dose-dependent manner, stimulated lipolysis, an effect that was blocked by H-89, an inhibitor of protein kinase A. These ceramide effects were prevented by 20 micromol/l troglitazone, an antidiabetic drug. In addition to downregulation of PDE3B, the antilipolytic action of insulin was decreased by ceramide treatment. These results, together with data from other studies on PDE3B and lipolysis in diabetic humans and animals, suggest a novel pathway by which ceramide induces insulin resistance. Furthermore, PDE3B is demonstrated to be a target for troglitazone action in adipocytes.

  5. Quantifying the Neural Elements Activated and Inhibited by Globus Pallidus Deep Brain Stimulation

    PubMed Central

    Johnson, Matthew D.; McIntyre, Cameron C.

    2008-01-01

    Deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) is an effective therapy option for controlling the motor symptoms of medication-refractory Parkinson's disease and dystonia. Despite the clinical successes of GPi DBS, the precise therapeutic mechanisms are unclear and questions remain on the optimal electrode placement and stimulation parameter selection strategies. In this study, we developed a three-dimensional computational model of GPi-DBS in nonhuman primates to investigate how membrane channel dynamics, synaptic inputs, and axonal collateralization contribute to the neural responses generated during stimulation. We focused our analysis on three general neural elements that surround GPi-DBS electrodes: GPi somatodendritic segments, GPi efferent axons, and globus pallidus pars externa (GPe) fibers of passage. During high-frequency electrical stimulation (136 Hz), somatic activity in the GPi showed interpulse excitatory phases at 1–3 and 4–5.5 ms. When including stimulation-induced GABAA and AMPA receptor dynamics into the model, the somatic firing patterns continued to be entrained to the stimulation, but the overall firing rate was reduced (78.7 to 25.0 Hz, P < 0.001). In contrast, axonal output from GPi neurons remained largely time-locked to each pulse of the stimulation train. Similar entrainment was also observed in GPe efferents, a majority of which have been shown to project through GPi en route to the subthalamic nucleus. The models suggest that pallidal DBS may have broader network effects than previously realized and the modes of therapy may depend on the relative proportion of GPi and/or GPe efferents that are directly affected by the stimulation. PMID:18768645

  6. Theta Burst Stimulation of the Cerebellum Modifies the TMS-Evoked N100 Potential, a Marker of GABA Inhibition

    PubMed Central

    2015-01-01

    Theta burst stimulation (TBS) of the cerebellum, a potential therapy for neurological disease, can modulate corticospinal excitability via the dentato-thalamo-cortical pathway, but it is uncertain whether its effects are mediated via inhibitory or facilitatory networks. The aim of this study was to investigate the effects of 30Hz cerebellar TBS on the N100 waveform of the TMS-evoked potential (TEP), a marker of intracortical GABAB-mediated inhibition. 16 healthy participants (aged 18–30 years; 13 right handed and 3 left handed) received 30Hz intermittent TBS (iTBS), continuous TBS (cTBS) or sham stimulation over the right cerebellum, in three separate sessions. The first 8 participants received TBS at a stimulus intensity of 80% of active motor threshold (AMT), while the remainder received 90% of AMT. Motor evoked potentials (MEP) and TEP were recorded before and after each treatment, by stimulating the first dorsal interosseus area of the left motor cortex. Analysis of the 13 right handed participants showed that iTBS at 90% of AMT increased the N100 amplitude compared to sham and cTBS, without significantly altering MEP amplitude. cTBS at 80% of active motor threshold decreased the N100 amplitude and cTBS overall reduced resting MEP amplitude. The study demonstrates effects of 30Hz cerebellar TBS on inhibitory cortical networks that may be useful for treatment of neurological conditions associated with dysfunctional intracortical inhibition. PMID:26529225

  7. THE POSSIBLE MEDIATION BY CYCLIC AMP OF THE STIMULATION OF THYMOCYTE PROLIFERATION BY VASOPRESSIN AND THE INHIBITION OF THIS MITOGENIC ACTION BY THYROCALCITONIN,

    DTIC Science & Technology

    LYMPHOCYTES, MITOSIS), (*MITOSIS, INHIBITION), (* HORMONES , MITOSIS), CELLS(BIOLOGY), PHYSIOLOGY, THYMUS, ADENOSINE PHOSPHATES, STIMULATION...PHYSIOLOGY), GROWTH(PHYSIOLOGY), DEOXYRIBONUCLEIC ACIDS, PURINE ALKALOIDS, PITUITARY HORMONES , THYROID HORMONES , IN VITRO ANALYSIS, CANADA

  8. Gossypol inhibits human chorionic gonadotropin-stimulated testosterone production by cultured canine testicular interstitial cells.

    PubMed

    Mushtaq, M; Kulp, S; Chang, W; Lin, Y C

    1996-03-01

    Gossypol (GP) is a natural polyphenolic compound that possesses antifertility and antisteroidogenic activities in both males and females. The dog is highly sensitive to GP toxicity, yet GP's effect on canine testicular steroidogenesis has never been reported. Thus, the present study examines GP's effects on human chorionic gonadotropin (hCG)-induced testosterone (T) production by primary cultured canine testicular interstitial cells. After decapsulation and enzymatic dissociation of canine testes in Dulbecco's Modified Eagle Medium with Ham's Nutrient Mixture F-12 (1:1; DME/F-12) containing 0.1% collagenase, 0.1% BSA, and 10 micrograms/ml DNase 1 (37 degrees C, 20 min), interstitial cells were isolated by sedimentation and filtration (140 microns) and then cultured in supplemented DME/F-12 medium (5 micrograms/ml insulin, 5 micrograms/ml transferrin, 5 ng/ml sodium selenite; DME/F-12/S) containing 0.1% fetal bovine serum (FBS). FBS was used to enhance cell attachment during the first 24 hours of culture. After 24 hours, the medium was replaced with serum-free DME/F-12/S and the cells were cultured for an additional 24 hours. Thereafter, cells were treated with hCG (0.1 IU/ml) alone and in combination with GP (0.05, 0.5, 2.5 and 5.0 microM). Media were collected for T radioimmunoassay and cells for protein estimation after 8, 16 and 24 hours of treatment. Treatment with hCG significantly (p < 0.05) stimulated T production over that of controls at all treatment times examined. At 8, 16 and 24 hours, T secretion was elevated from 0.91 +/- 0.25, 1.32 +/- 0.42, and 1.41 +/- 0.40 pg/microgram protein to 2.36 +/- 0.50, 2.84 +/- 0.60, and 2.82 +/- 0.43 pg/microgram protein, respectively. At 0.5, 2.5 and 5.0 microM, GP significantly (p < 0.05) reduced hCG-induced T secretion at 16 and 24 hours of treatment to 1.79 +/- 0.50, 1.62 +/- 0.12, 1.34 +/- 0.16 (16 hr), and 1.53 +/- 0.38, 1.43 +/- 0.11, 1.42 +/- 0.32 (24 hr) pg/microgram protein, respectively. At 8 hours, T

  9. Stimulation and Inhibition of Anaerobic Digestion by Nickel and Cobalt: A Rapid Assessment Using the Resazurin Reduction Assay.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2016-10-03

    Stimulation of anaerobic digestion by essential trace metals is beneficial from a practical point of view to enhance the biodegradability and degradation rate of wastes. Hence, a quick method to determine which metal species, and at what concentration, can optimize anaerobic digestion is of great interest to both researchers and operators. In this present study, we investigated the effect of nickel(II), cobalt(II), and their mixture, on the anaerobic digestion of synthetic municipal wastewater. Using a volumetric method, that is, measuring methane production over time, revealed that anaerobic digestion was stimulated by the addition of 5 mg L(-1) nickel(II), and cobalt(II), and their mixture in day(s). However, using a novel resazurin reduction assay, and based on its change in rate over time, we evaluated both inhibition at 250 mg L(-1) nickel(II) and cobalt(II), and also the stimulatory effect of 5 mg L(-1) nickel(II), and cobalt(II), and their mixture, in just 6 h. By investigating the dynamic distribution of these metals in the liquid phase of the anaerobic system and kinetics of resazurin reduction by nickel spiked anaerobic sludge, the concentration of nickel(II) on anaerobic digestion performance was profiled. Three critical concentrations were determined; stimulation starting (around 1 mg L(-1)), stimulation ending (around 100 mg L(-1)) and stimulation maximizing (around 10 mg L(-1)). Hence, we propose that the resazurin reduction assay is a novel and quick protocol for studying the stimulation of anaerobic bioprocesses by bioavailable essential trace metals.

  10. [On the mechanisms of stimulation and inhibition during germination of wheat seeds in extremely low frequency electromagnetic fields].

    PubMed

    Aksenov, S I; Grunina, T Iu; Goriachev, S N

    2007-01-01

    It has been shown that the effects of stimulation of germination of wheat seeds by electromagnetic field depend on the degree of membrane tension during imbibition of seeds in sucrose solutions. This provides further confirmation of the influence of electromagnetic fields on the release of proteins from the bound state on the membranes. The prolonged treatment with electromagnetic fields during the imbibition of seeds leads not only to the inhibition of germination of sprouts but also to a decrease in their germinability, which can be as strong as twofold for seeds with the initial low germinability. This is related to the desynchronization of germination processes, caused by the stimulation of the release of proteins and inhibition of another stage during the cell division, the assembly of complex structures. It is noted that the activation of the release of proteins and inhibition of their binding by the action of electromagnetic fields must elevate the cell excitability. The presumably, the excitability of cells determines the effects of magnetic storms and high solar activity on the physiological state of organisms.

  11. Methadone but not morphine inhibits lubiprostone-stimulated Cl- currents in T84 intestinal cells and recombinant human ClC-2, but not CFTR Cl- currents.

    PubMed

    Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti; Malinowska, Danuta H

    2013-05-01

    In clinical trials, methadone, but not morphine, appeared to prevent beneficial effects of lubiprostone, a ClC-2 Cl(-) channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostone-stimulated Cl(-) currents were measured by short circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and in a high expression cell line (HEK293EBNA) as well as human CFTR (hCFTR) stably expressed in HEK293 cells was used to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl(-) currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at 100 nM. Naloxone did not affect lubiprostone stimulation or methadone inhibition of Isc. Lubiprostone-stimulated Cl(-) currents in hClC-2/HEK293 cells, but not forskolin/IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, were inhibited by methadone, but not morphine. HEK293EBNA cells expressing hClC-2 showed time-dependent, voltage-activated, CdCl2-inhibited Cl(-) currents in the absence (control) and the presence of lubiprostone. Methadone, but not morphine, inhibited control and lubiprostone-stimulated hClC-2 Cl(-) currents with half-maximal inhibition at 100 and 200-230 nM, respectively. Forskolin/IBMX-stimulated hClC-2 Cl(-) currents were also inhibited by methadone. Myristoylated protein kinase inhibitor (a specific PKA inhibitor) inhibited forskolin/IBMX- but not lubiprostone-stimulated hClC-2 Cl(-) currents. Methadone caused greater inhibition of lubiprostone-stimulated currents added before patching (66.1 %) compared with after patching (28.7 %). Methadone caused inhibition of lubiprostone-stimulated Cl(-) currents in T84 cells and control; lubiprostone- and forskolin/IBMX-stimulated recombinant hClC-2 Cl(-) currents may be the basis for reduced efficacy of lubiprostone in methadone-treated patients.

  12. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells

    PubMed Central

    Muid, Suhaila; Froemming, Gabriele R. Anisah; Rahman, Thuhairah; Ali, A. Manaf; Nawawi, Hapizah M.

    2016-01-01

    Background Tocotrienols (TCTs) are more potent antioxidants than α-tocopherol (TOC). However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims 1) To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS). 2) To identify the two most potent TCT isomers in stimulated human endothelial cells. 3) To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM), together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α), adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin), eNOS, and NFκB. Results δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM) but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM) but exhibits neutral effects at lower concentrations. Conclusion δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence, there is a

  13. Anodal transcranial direct current stimulation of right temporoparietal area inhibits self-recognition.

    PubMed

    Payne, Sophie; Tsakiris, Manos

    2017-02-01

    Self-other discrimination is a crucial mechanism for social cognition. Neuroimaging and neurostimulation research has pointed to the involvement of the right temporoparietal region in a variety of self-other discrimination tasks. Although repetitive transcranial magnetic stimulation over the right temporoparietal area has been shown to disrupt self-other discrimination in face-recognition tasks, no research has investigated the effect of increasing the cortical excitability in this region on self-other face discrimination. Here we used transcranial direct current stimulation (tDCS) to investigate changes in self-other discrimination with a video-morphing task in which the participant's face morphed into, or out of, a familiar other's face. The task was performed before and after 20 min of tDCS targeting the right temporoparietal area (anodal, cathodal, or sham stimulation). Differences in task performance following stimulation were taken to indicate a change in self-other discrimination. Following anodal stimulation only, we observed a significant increase in the amount of self-face needed to distinguish between self and other. The findings are discussed in relation to the control of self and other representations and to domain-general theories of social cognition.

  14. Selenium promotes adipogenic determination and differentiation of chicken embryonic fibroblasts with regulation of genes involved in fatty acid uptake, triacylglycerol synthesis and lipolysis.

    PubMed

    Hassan, Aishlin; Ahn, Jinsoo; Suh, Yeunsu; Choi, Young Min; Chen, Paula; Lee, Kichoon

    2014-08-01

    Selenium (Se) has been utilized in the differentiation of primary pig and rat preadipocytes, indicating that it may have proadipogenic potential; however, some studies have also demonstrated that Se has antiadipogenic activity. In this study, chicken embryonic fibroblasts (CEFs) were used to investigate the role of Se in adipogenesis in vitro and in ovo. Se supplementation increased lipid droplet accumulation and inhibited proliferation of cultured CEFs isolated from 6-day-old embryos dose-dependently. This suggests that Se may play a role in cell cycle inhibition, thereby promoting the differentiation of fibroblasts to adipocytes. Se did not stimulate adipogenic differentiation of CEFs isolated from 9- to 12-day-old embryos, implying a permissive stage of adipogenic determination by Se at earlier embryonic ages. Microarray analysis comparing control and Se treatments on CEFs from 6-day-old embryos and confirmatory analysis by quantitative real-time polymerase chain reaction revealed that genes involved in adipocyte determination and differentiation, fatty acid uptake and triacylglycerol synthesis were up-regulated. In addition, up-regulation of an anti-lipolytic G0/G1 switch gene 2 and down-regulation of a prolipolytic monoglyceride lipase may lead to inhibition of lipolysis by Se. Both osteogenic and myogenic genes were down-regulated, and several genes related to oxidative stress response during adipogenesis were up-regulated. In ovo injection of Se at embryonic day 8 increased adipose tissue mass by 30% and caused adipocyte hypertrophy in 17-day-old chicken embryos, further supporting the proadipogenic role of Se during the embryonic development of chickens. These results suggest that Se plays a significant role in several mechanisms related to adipogenesis.

  15. In vivo production of macrophage migration inhibition and stimulation factors during the inductive phase of the alloimmune response

    SciTech Connect

    Suslov, A.P.; Yazova, A.K.; Berkova, N.P.

    1986-12-01

    This paper offers a study of the production of macrophage migration inhibition factor (MIF), and also of the alternative macrophage migration stimulation factor (MSF), in vivo. Mice were injected with mouse spleen cells, irradiated with a dose of 1500 rads. The animals were divided into three groups, two of which were injected for a second time with irradiated mouse spleen cells. Samples of all fractions obtained by electrophoresis of sera of unimmunized mice had no significant effect of macrophage migration, while unfractionated sera of immunized mice obtained after a second injection of alloantigen as a rule stimulated macrophage migration. The results are evidence that T cells may function in vivo during the period before development of the antigen-specific proliferative response of T cells. The technique used to approach the problem, described in this study, can be used for preparative isolation of purified MIF and MSF without contamination by embryonic calf serum proteins which are usually present in culture in vitro.

  16. Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Hirsch, R. E.; Lewis, D. R.; Qi, Z.; Sussman, M. R.; Lewis, B. D.

    1999-01-01

    A transferred-DNA insertion mutant of Arabidopsis that lacks AKT1 inward-rectifying K+ channel activity in root cells was obtained previously by a reverse-genetic strategy, enabling a dissection of the K+-uptake apparatus of the root into AKT1 and non-AKT1 components. Membrane potential measurements in root cells demonstrated that the AKT1 component of the wild-type K+ permeability was between 55 and 63% when external [K+] was between 10 and 1,000 microM, and NH4+ was absent. NH4+ specifically inhibited the non-AKT1 component, apparently by competing for K+ binding sites on the transporter(s). This inhibition by NH4+ had significant consequences for akt1 plants: K+ permeability, 86Rb+ fluxes into roots, seed germination, and seedling growth rate of the mutant were each similarly inhibited by NH4+. Wild-type plants were much more resistant to NH4+. Thus, AKT1 channels conduct the K+ influx necessary for the growth of Arabidopsis embryos and seedlings in conditions that block the non-AKT1 mechanism. In contrast to the effects of NH4+, Na+ and H+ significantly stimulated the non-AKT1 portion of the K+ permeability. Stimulation of akt1 growth rate by Na+, a predicted consequence of the previous result, was observed when external [K+] was 10 microM. Collectively, these results indicate that the AKT1 channel is an important component of the K+ uptake apparatus supporting growth, even in the "high-affinity" range of K+ concentrations. In the absence of AKT1 channel activity, an NH4+-sensitive, Na+/H+-stimulated mechanism can suffice.

  17. Peripheral osmotic stimulation inhibits the brain's innate immune response to microdialysis of acidic perfusion fluid adjacent to supraoptic nucleus

    PubMed Central

    Hu, Sanmei

    2009-01-01

    During the brain's innate immune response microglia, astroglia and ependymal cells resolve/repair damaged tissue and control infection. Released interleukin-1β (IL-1β) reaching cerebroventricles stimulates circumventricular organs (CVOs; subfornical organ, SFO; organum vasculosum lamina terminalis, OVLT), the median preoptic nucleus (MePO), and magnocellular and parvocellular neurons in the supraoptic (SON) and paraventricular (PVN) nuclei. Hypertonic saline (HS) also activates these osmosensory CVOs and neuroendocrine systems, but, in contrast to IL-1β, inhibits the peripheral immune response. To examine whether the brain's innate immune response is attenuated by osmotic stimulation, sterile acidic perfusion fluid was microdialyzed (2 μl/min) in the SON area of conscious rats for 6 h with sterile HS (1.5 M NaCl) injected subcutaneously (15 ml/kg) at 5 h. Immunohistochemistry identified cytokine sources (IL-1β+; OX-42+ microglia) and targets (IL-1R+; inducible cyclooxygenase, COX-2+; c-Fos+) near the probe, in CVOs, MePO, ependymal cells, periventricular hypothalamus, SON, and PVN. Inserting the probe stimulated magnocellular neurons (c-Fos+; SON; PVN) via the MePO (c-Fos+), a response enhanced by HS. Microdialysis activated microglia (OX-42+; amoeboid/hypertrophied; IL-1β+) in the adjacent SON and bilaterally in perivascular areas of the PVN, periventricular hypothalamus and ependyma, coincident with c-Fos expression in ependymal cells and COX-2 in the vasculature. These microglial responses were attenuated by HS, coincident with activating parvocellular and magnocellular neuroendocrine systems and elevating circulating IL-1β, oxytocin, and vasopressin. Acidosis-induced cellular injury from microdialysis activated the brain's innate immune response by a mechanism inhibited by peripheral osmotic stimulation. PMID:19759333

  18. Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5

    PubMed Central

    Hou, Hailong; Sun, Lu; Siddoway, Benjamin A.; Petralia, Ronald S.; Yang, Hongtian; Gu, Hua; Nairn, Angus C.

    2013-01-01

    The serine/threonine protein phosphatase protein phosphatase 1 (PP1) is known to play an important role in learning and memory by mediating local and downstream aspects of synaptic signaling, but how PP1 activity is controlled in different forms of synaptic plasticity remains unknown. We find that synaptic N-methyl-d-aspartate (NMDA) receptor stimulation in neurons leads to activation of PP1 through a mechanism involving inhibitory phosphorylation at Thr320 by Cdk5. Synaptic stimulation led to proteasome-dependent degradation of the Cdk5 regulator p35, inactivation of Cdk5, and increased auto-dephosphorylation of Thr320 of PP1. We also found that neither inhibitor-1 nor calcineurin were involved in the control of PP1 activity in response to synaptic NMDA receptor stimulation. Rather, the PP1 regulatory protein, inhibitor-2, formed a complex with PP1 that was controlled by synaptic stimulation. Finally, we found that inhibitor-2 was critical for the induction of long-term depression in primary neurons. Our work fills a major gap regarding the regulation of PP1 in synaptic plasticity. PMID:24189275

  19. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

    PubMed Central

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21. PMID:27301791

  20. Repetition suppression in transcranial magnetic stimulation-induced motor-evoked potentials is modulated by cortical inhibition.

    PubMed

    Kallioniemi, E; Pääkkönen, A; Julkunen, P

    2015-12-03

    Transcranial magnetic stimulation (TMS) can be applied to modulate cortical phenomena. The modulation effect is dependent on the applied stimulation frequency. Repetition suppression (RS) has been demonstrated in the motor system using TMS with short suprathreshold 1-Hz stimulation trains repeated at long inter-train intervals. RS has been reported to occur in the resting motor-evoked potentials (MEPs) with respect to the first pulse in a train of stimuli. Although this RS in the motor system has been described in previous studies, the neuronal origin of the phenomenon is still poorly understood. The present study evaluated RS in three TMS-induced motor responses; resting and active MEPs as well as corticospinal silent periods (SPs) in order to clarify the mechanism behind TMS-induced RS. We studied 10 healthy right-handed subjects using trains of four stimuli with stimulation intensities of 120% of the resting motor threshold (rMT) and 120% of the silent period threshold for an SP duration of 30 ms (SPT30). Inter-trial interval was 20s, with a 1-s inter-stimulus interval within the trains. We confirmed that RS appears in resting MEPs (p < 0.001), whereas active MEPs did not exhibit RS (p > 0.792). SPs, on the contrary, lengthened (p < 0.001) indicating modulation of cortical inhibition. The effects of the two stimulation intensities exhibited a similar trend; however, the SPT30 evoked a more profound inhibitory effect compared to that achieved by rMT. Moreover, the resting MEP amplitudes and SP durations correlated (rho ⩽ -0.674, p < 0.001) and the pre-TMS EMG level did not differ between stimuli in resting MEPs (F = 0.0, p ⩾ 0.999). These results imply that the attenuation of response size seen in resting MEPs might originate from increasing activity of inhibitory GABAergic interneurons which relay the characteristics of SPs.

  1. Vagus nerve electrical stimulation inhibits serum levels of S100A8 protein in septic shock rats.

    PubMed

    Lei, Ming; Liu, Xin-Xin

    2016-05-01

    The vagus nerve and the released acetylcholine exert anti-inflammatory effects and inhibit septic shock. However, their detailed mechanisms remain to be elucidated. The present study aimed to investigate the effects of vagus nerve electrical stimulation on serum S100A8 levels in septic shock rats. A total of 36 male Sprague-Dawley rats were randomly divided into six equal groups: i) Sham group, receiving sham operation; ii) CLP group, subjected to cecal ligation and puncture (CLP) to establish a model of polymicrobial sepsis; iii) VGX group, subjected to CLP and bilateral cervical vagotomy; iv) STM group, subjected to CLP, bilateral cervical vagotomy and electrical stimulation on the left vagus nerve trunk; v) α‑bungarotoxin (BGT) group was administered α‑BGT prior to electrical stimulation; vi) Anti‑receptor for advanced glycation end products (RAGE) group, administered intraperitoneal injection of anti‑RAGE antibody prior to electrical stimulation. The right carotid artery was cannulated to monitor mean artery pressure (MAP). The serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured to assess the liver function. Serum S100A8 and advanced glycation end product (AGE) levels were measured using enzyme‑linked immunosorbent assays. The expression of hepatic RAGE was determined by western blotting. The present study revealed that Sprague‑Dawley rats exhibited progressive hypotension and significantly increased serum AST and ALT levels following CLP challenge compared with the sham group. The levels of S100A8 and AGEs, and the protein expression of hepatic RAGE were significantly increased following CLP compared with the sham group. Vagus nerve electrical stimulation significantly prevented the development of CLP‑induced hypotension, alleviated the hepatic damage, reduced serum S100A8 and AGEs production, and reduced the expression of hepatic RAGE. The inhibitory effect of vagus nerve electrical

  2. Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria.

    PubMed

    Popov, V N; Simonian, R A; Skulachev, V P; Starkov, A A

    1997-09-22

    The hypothesis that a non-coupled alternative oxidase of plant mitochondria operates as an antioxygen defence mechanism [Purvis, A.C. and Shewfelt, R.L., Physiol. Plant. 88 (1993) 712-718; Skulachev, V.P., Biochemistry (Moscow) 59 (1994) 1433-1434] has been confirmed in experiments on isolated soybean and pea cotyledon mitochondria. It is shown that inhibitors of the alternative oxidase, salicyl hydroxamate and propyl gallate strongly stimulate H2O2 production by these mitochondria oxidizing succinate. Effective concentrations of the inhibitors proved to be the same as those decreasing the cyanide-resistant respiration. The inhibitors proved to be ineffective in stimulating H2O2 formation in rat liver mitochondria lacking the alternative oxidase.

  3. Water-in-oil microemulsions versus emulsions as carriers of hydroxytyrosol: an in vitro gastrointestinal lipolysis study using the pHstat technique.

    PubMed

    Chatzidaki, Maria D; Mateos-Diaz, Eduardo; Leal-Calderon, Fernando; Xenakis, Aristotelis; Carrière, Frédéric

    2016-05-18

    Water-in-oil (W/O) microemulsions and emulsions based on medium chain triglycerides (MCT) were successfully formulated with the addition of emulsifiers and used as encapsulation matrices for hydroxytyrosol (HT), an antioxidant naturally found in extra virgin olive oil. The digestibility of these edible W/O dispersions by recombinant dog gastric lipase (rDGL) and porcine pancreatic lipase (PPL) was then tested at different pH values using a pHstat device. rDGL and PPL displayed a much lower activity on the W/O microemulsion than that on the W/O emulsion and MCT alone. This was explained by the presence of higher amounts of emulsifiers (4.9% w/w lecithin and monoglycerides) in the composition of W/O microemulsions compared to W/O emulsions (1.3% w/w emulsifiers). These surfactants also induced a shift of maximum lipase activity towards lower pH values, which usually reflects the competition between surfactants and lipases for binding at the lipid-water interface. rDGL and PPL were then used consecutively in a two-step digestion model mimicking the conditions found in the human gastrointestinal tract. Direct titration and back-titration of free fatty acids allowed the continuous estimation of lipolysis rates under both gastric and duodenal conditions. Gastric lipolysis of W/O microemulsions was reduced 6 to 9-fold compared to W/O emulsions. This inhibition had a major impact on the overall lipolysis, although duodenal lipolysis was less affected by the dispersion type. The presence of HT had also some minor effects on lipolysis rates.

  4. Stimulated human melanocytes express and release interleukin-8, which is inhibited by luteolin: relevance to early vitiligo.

    PubMed

    Miniati, A; Weng, Z; Zhang, B; Therianou, A; Vasiadi, M; Nicolaidou, E; Stratigos, A J; Antoniou, C; Theoharides, T C

    2014-01-01

    Vitiligo is a disorder of depigmentation, for which the pathogenesis is as yet unclear. Interleukin (IL)-8 (CXCL8) is a key inflammatory chemokine. We investigated the regulation of IL-8 production in human melanocytes, and the IL-8 serum levels and skin gene expression in patients with vitiligo and in controls. Cultured melanocytes were stimulated for 24 h with tumour necrosis factor (TNF) 100 ng/mL and IL-1β 10 ng/mL, with or without pretreatment with luteolin 50 μmol/L for 30 min, and IL-8 release was measured by ELISA. Serum cytokines were measured by a microbead array. Skin biopsies were taken from healthy subjects (n = 14) as well as from marginal lesional and nonlesional skin from patients with vitiligo (n = 15). IL-8 gene expression was evaluated by quantitative real time PCR. Both TNF and IL-1β stimulated significant IL-8 release (P < 0.01) from melanocytes, whereas pretreatment with luteolin significantly inhibited this effect (P < 0.01). IL-8 gene expression was significantly increased in vitiligo compared with control skin (P < 0.05). IL-8 may be involved in vitiligo inflammation. Inhibition by luteolin of IL-8 release could be useful for vitiligo therapy.

  5. Sitagliptin attenuates inflammatory responses in lipopolysaccharide-stimulated cardiomyocytes via nuclear factor-κB pathway inhibition.

    PubMed

    Lin, Chien-Hung; Lin, Chung-Ching

    2016-06-01

    Glucagon-like peptide-1 (GLP-1) and GLP-1 receptors (GLP-1Rs) are responsible for glucose homeostasis, and have been shown to reduce inflammation in preclinical studies. The aim of the present study was to determine whether sitagliptin, an inhibitor of the enzyme dipeptidyl peptidase-4 (DPP-4), as a GLP-1 receptor agonist, exerts an anti-inflammatory effect on cardiomyoblasts during lipopolysaccharide (LPS) stimulation. Exposure to LPS increased the expression levels of tumor necrosis factor (TNF)-α, interleukin-6 (IL)-6 and IL-1β in H9c2 cells, and also resulted in elevations in cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression and nuclear factor-κB (NF-κB) nuclear translocation. Treatment with the DPP-4 inhibitor sitagliptin dose-dependently downregulated the mRNA levels of IL-6, COX-2 and iNOS in LPS-stimulated H9c2 cells. In addition, sitagliptin inhibited the increased protein expression of IL-6, TNF-α and IL-1β. NF-κB mRNA expression was reduced and its translocation to the nucleus was suppressed by treatment with sitagliptin. The present results demonstrated that sitagliptin exerts a beneficial effect on cardiomyoblasts exposed to LPS by inhibiting expression of inflammatory mediators and suppressing NF-κB activation. These findings indicate that the DPP-4 inhibitor sitagliptin may serve a function in cardiac remodeling attributed to sepsis-induced inflammation.

  6. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  7. Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes.

    PubMed

    Menninger, J R; Otto, D P

    1982-05-01

    In mutant Escherichia coli with temperature-sensitive peptidyl-tRNA hydrolase (aminoacyl-tRNA hydrolase; EC 3.1.1.29), peptidyl-tRNA accumulates at the nonpermissive temperature (40 degrees C), and the cells die. These consequences of high temperature were enhanced if the cells were first treated with erythromycin, carbomycin, or spiramycin at doses sufficient to inhibit protein synthesis in wild-type cells but not sufficient to kill either mutant or wild-type cells at the permissive temperature (30 degrees C). Since peptidyl-tRNA hydrolase in he mutant cells is inactivated rapidly and irreversibly at 40 degrees C, the enhanced accumulation of peptidyl-tRNA and killing were the result of enhanced dissociation, stimulated by the antibiotics, of peptidyl-tRNA from ribosomes. The implications of these findings for inhibition of cell growth and protein synthesis are discussed. Certain alternative interpretations are shown to be inconsistent with the relevant data. Previous conflicting observations on the effects of macrolide antibiotics are explained in terms of our observations. We conclude that erythromycin, carbomycin, and spiramycin (and probably all macrolides) have as a primary mechanism of action the stimulation of dissociation of peptidyl-tRNA from ribosomes, probably during translocation.

  8. NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1{beta}-stimulated vascular smooth muscle cells by induction of {eta}{omicron}-1

    SciTech Connect

    Choi, Hyoung Chul; Kim, Hee Sun; Lee, Kwang Youn; Chang, Ki Churl Kang, Young Jin

    2008-11-28

    We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1{beta}-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE{sub 2} without modulation of expression of COX-2 in IL-1{beta}-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1{beta}-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE{sub 2} production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE{sub 2} and proliferation of IL-1{beta}-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1{beta}-stimulated VSMC. NS-398 inhibited proliferation of IL-1{beta}-stimulated VSMC in a HbO{sub 2}-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1{beta}-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.

  9. A methylation-stimulated DNA machine: an autonomous isothermal route to methyltransferase activity and inhibition analysis.

    PubMed

    Zhu, Changfeng; Wen, Yanqin; Peng, Hongzhen; Long, Yitao; He, Yao; Huang, Qing; Li, Di; Fan, Chunhai

    2011-04-01

    The operation of DNA nanomachines is generally triggered by either conformational changes of DNA nanostructure or external environmental stimuli. In the present study, we demonstrate an alternative driving force, DNA methylation, to stimulate DNA machine operation. DNA methylation changes neither DNA sequence and conformation nor external environment, however, blocks its cleavage by corresponding methylation-sensitive restriction endonuclease. We thus designed a strand displacement amplification DNA machine, which could be stimulated upon DNA methylation and then autonomously generates accumulated amounts of peroxidase-mimicking DNAzyme signaling machine products in an isothermal manner. The machine product DNAzyme could catalyze the H(2)O(2)-mediated oxidation of 2,2'-azino-bis(3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS(2-)) to a colored product ABTS(·-). This methylation-stimulated DNA machine was further used as a colorimetric assay for analysis of methyltransferases activities and screening of methylation inhibitors. As compared with classical methylation assay, this facile isothermal DNA machine avoids the introduction of methylation-specific polymerase chain reaction and radioactive labels, which might be employed as an effective tool for DNA methylation analysis.

  10. Tumor necrosis factor inhibits ligand-stimulated EGF receptor activation through a TNF receptor 1-dependent mechanism

    PubMed Central

    McElroy, Steven J.; Frey, Mark R.; Yan, Fang; Edelblum, Karen L.; Goettel, Jeremy A.; John, Sutha; Polk, D. Brent

    2008-01-01

    Tumor necrosis factor (TNF) and epidermal growth factor (EGF) are key regulators in the intricate balance maintaining intestinal homeostasis. Previous work from our laboratory shows that TNF attenuates ligand-driven EGF receptor (EGFR) phosphorylation in intestinal epithelial cells. To identify the mechanisms underlying this effect, we examined EGFR phosphorylation in cells lacking individual TNF receptors. TNF attenuated EGF-stimulated EGFR phosphorylation in wild-type and TNFR2−/−, but not TNFR1−/−, mouse colon epithelial (MCE) cells. Reexpression of wild-type TNFR1 in TNFR1−/− MCE cells rescued TNF-induced EGFR inhibition, but expression of TNFR1 deletion mutant constructs lacking the death domain (DD) of TNFR1 did not, implicating this domain in EGFR downregulation. Blockade of p38 MAPK, but not MEK, activation of ERK rescued EGF-stimulated phosphorylation in the presence of TNF, consistent with the ability of TNFR1 to stimulate p38 phosphorylation. TNF promoted p38-dependent EGFR internalization in MCE cells, suggesting that desensitization is achieved by reducing receptor accessible to ligand. Taken together, these data indicate that TNF activates TNFR1 by DD- and p38-dependent mechanisms to promote EGFR internalization, with potential impact on EGF-induced proliferation and migration key processes that promote healing in inflammatory intestinal diseases. PMID:18467504

  11. Genipin inhibits MMP-1 and MMP-3 release from TNF-a-stimulated human periodontal ligament cells.

    PubMed

    Shindo, Satoru; Hosokawa, Yoshitaka; Hosokawa, Ikuko; Ozaki, Kazumi; Matsuo, Takashi

    2014-12-01

    Genipin, the aglycon of geniposide found in gardenia fruit has long been considered for treatment of inflammatory diseases in traditional oriental medicine. Genipin has recently been reported to have some pharmacological functions, such as antimicrobial, antitumor, and anti-inflammatory effects. The aim of this study was to examine whether genipin could modify matrix metalloproteinase (MMP)-1 and MMP-3, which are related to the destruction of periodontal tissues in periodontal lesion, expression in tumor necrosis factor (TNF)-α-stimulated human periodontal ligament cells (HPDLCs). Genipin prevented TNF-α-mediated MMP-1 and MMP-3 productions in HPDLCs. Moreover, genipin could suppress not only extracellular signal-regulated kinase (ERK) and Jun-N-terminal kinase (JNK) phosphorylations but also AMP-activated protein kinase (AMPK) phosphorylation in TNF-α-stimulated HPDLCs. Inhibitors of ERK and AMPK could inhibit both MMP-1 and MMP-3 productions. Moreover, we revealed the ERK inhibitor suppressed AMPK phosphorylation in TNF-α-stimulated HPDLCs. These data provide a new mechanism through which genipin could be used for the treatment of periodontal disease to prevent MMPs expression in periodontal lesion.

  12. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice spe...

  13. D-Psicose inhibits the expression of MCP-1 induced by high-glucose stimulation in HUVECs.

    PubMed

    Murao, Koji; Yu, Xiao; Cao, Wen M; Imachi, Hitomi; Chen, Ke; Muraoka, Tomie; Kitanaka, Noriko; Li, Junhun; Ahmed, Rania A M; Matsumoto, Kensuke; Nishiuchi, Takamasa; Tokuda, Masaaki; Ishida, Toshihiko

    2007-07-26

    Monocyte chemoattractant protein-1 (MCP-1) is a 76-amino-acid chemokine thought to be the major chemotactic factor for monocytes. MCP-1 is found in macrophage-rich areas of atherosclerotic lesions. Recent report indicates that MCP-1 is induced by glucose-stimulation, raising the important link between diabetes mellitus and atherosclerosis. One of the rare sugars, d-psicose (d-ribo-2-hexulose) is present in small quantities in commercial carbohydrate complexes, however the physiological functions of d-psicose have not been evaluated. In this study, we examined the effects of d-psicose on MCP-1 expression in human umbilical vein endothelial cells (HUVECs). Results showed that MCP-1 mRNA and protein were stimulated following exposure to 22.4 mM glucose. Transcriptional activity of MCP-1 promoter paralleled endogenous expression of the gene and this activity was dependent on the dose of d-glucose. d-Psicose inhibited these effects. Next we used inhibitors of selected signal transduction pathways to show that high-glucose (HG) stimulated MCP-1 promoter activity was sensitive to p38-Mitogen-Activated Protein Kinase (p38-MAPK) pathway inhibitor. As expected, a dominant-negative p38-MAPK abolished the stimulatory effect of HG on the promoter activity. To incubate the cells with HG and d-psicose reduced the activation of p38-MAPK. Together, these results indicate that the d-psicose suppression of HG induced MCP-1 expression is mediated in part by inhibition of the p38-MAPK pathway and raise the possibility that d-psicose may be of therapeutic value in the treatment of diseases such as atherosclerosis.

  14. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    PubMed

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.

  15. Specific inhibition by prostaglandins E2 and I2 of histamine-stimulated [14C]aminopyrine accumulation and cyclic adenosine monophosphate generation by isolated canine parietal cells.

    PubMed Central

    Soll, A H

    1980-01-01

    The effects of prostaglandins E2 and I2 on accumulation of [14C]aminopyrine and the generation of cyclic AMP by fractions of dispersed canine gastric mucosal cells, enriched in their content of parietal cells, have been studied. The parietal cell content of the fractions was enriched to between 43 and 70% using an elutriator rotor. The accumulation of [14C]aminopyrine was used as the index of parietal cell response to stimulation. Prostaglandin E2 (PGE2, 0.1 nM-0.1 mM) inhibited histamine stimulated aminopyrine uptake but did not block the response to carbachol, gastrin, or dibuturyl cyclic AMP. PGE2 did, however, inhibit aminopyrine uptake stimulated by carbachol and gastrin when the response to these agents was potentiated by histamine. PGE2 (0.1 NM-0.1 mM) inhibited histamine-stimulated cyclic AMP production in a dose-dependent fashion with maximal inhibition at 1 microM PGE2. Prostacyclin also inhibited both histamine-stimulated aminopyrine accumulation and histamine-stimulated cyclic AMP production. In the absence of added histamine, PGE2 in concentrations above 1 microM and prostacyclin in concentrations above 10 microM stimulated cyclic AMP production, probably by acting on the nonparietal cells as shown in previous studies. These present data are consistent with the hypothesis that prostaglandins E2 and I2 inhibit the response of isolated parietal cells to histamine by specifically blocking histamine-stimulated cyclic AMP production. PMID:6154063

  16. Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor.

    PubMed Central

    Horwood, N J; Udagawa, N; Elliott, J; Grail, D; Okamura, H; Kurimoto, M; Dunn, A R; Martin, T; Gillespie, M T

    1998-01-01

    IL-18 inhibits osteoclast (OCL) formation in vitro independent of IFN-gamma production, and this was abolished by the addition of neutralizing antibodies to GM-CSF. We now establish that IL-18 was unable to inhibit OCL formation in cocultures using GM-CSF-deficient mice (GM-CSF -/-). Reciprocal cocultures using either wild-type osteoblasts with GM-CSF -/- spleen cells or GM-CSF -/- osteoblasts with wild-type spleen cells were examined. Wild-type spleen cells were required to elicit a response to IL-18 indicating that cells of splenic origin were the IL-18 target. As T cells comprise a large proportion of the spleen cell population, the role of T cells in osteoclastogenesis was examined. Total T cells were removed and repleted in various combinations. Addition of wild-type T cells to a GM-CSF -/- coculture restored IL-18 inhibition of osteoclastogenesis. Major subsets of T cells, CD4+ and CD8+, were also individually depleted. Addition of either CD4+ or CD8+ wild-type T cells restored IL-18 action in a GM-CSF -/- background, while IL-18 was ineffective when either CD4+ or CD8+ GM-CSF -/- T cells were added to a wild-type coculture. These results highlight the involvement of T cells in IL-18-induced OCL inhibition and provide evidence for a new OCL inhibitory pathway whereby IL-18 inhibits OCL formation due to action upon T cells promoting the release of GM-CSF, which in turn acts upon OCL precursors. PMID:9449693

  17. Stimulation of β₂-adrenergic receptors inhibits calcineurin activity in CD4(+) T cells via PKA-AKAP interaction.

    PubMed

    Riether, Carsten; Kavelaars, Annemieke; Wirth, Timo; Pacheco-López, Gustavo; Doenlen, Raphael; Willemen, Hanneke; Heijnen, Cobi J; Schedlowski, Manfred; Engler, Harald

    2011-01-01

    The sympathetic nervous system (SNS) is able to modulate immune functions via adrenoceptor-dependent mechanisms. Activation of β₂-adrenergic receptors (AR) on CD4(+) T lymphocytes has been shown to inhibit Th1-cytokine production and cell proliferation. Here, we investigated the role of the calcium/calmodulin-dependent protein phosphatase calcineurin (CaN), a key element of the T cell receptor (TCR)-signaling pathway, in β₂-AR-mediated suppression of T cell function. Purified rat splenic CD4(+) T cells were stimulated with anti-CD3/anti-CD28 in presence or absence of the β₂-AR agonist terbutaline (TERB). Treatment with TERB induced a dose-dependent inhibition of cellular CaN activity, along with a reduction in IL-2 and IFN-γ production, and T cell proliferation. Co-administration of the β-AR antagonist nadolol abolished these effects. Blockade of the cAMP-dependent protein kinase A (PKA) with the inhibitor H-89 completely prevented TERB-induced CaN inhibition. However, a receptor-independent rise in the second messenger cAMP was not sufficient to suppress CaN activity. Disruption of the interaction between PKA and A-kinase anchoring protein (AKAP) by the inhibitor peptide St-Ht31 fully blocked TERB-induced CaN inhibition, demonstrating that PKA-AKAP interaction is essential for the β₂-AR-mediated CaN inhibition. Taken together, this study provides evidence for a link between the β₂-AR and TCR signaling pathways since expression of IL-2 and IFN-γ in activated T cells largely depends on dephosphorylation of the transcription factor NFAT by CaN, and identifies a novel intracellular mechanism that can lead to downregulation of T cell function after SNS activation.

  18. Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing.

    PubMed

    Vasant, Dipesh H; Mistry, Satish; Michou, Emilia; Jefferson, Samantha; Rothwell, John C; Hamdy, Shaheen

    2014-02-15

    The human cortical swallowing system exhibits bilateral but functionally asymmetric representation in health and disease as evidenced by both focal cortical inhibition (pre-conditioning with 1 Hz repetitive transcranial magnetic stimulation; rTMS) and unilateral stroke, where disruption of the stronger (dominant) pharyngeal projection alters swallowing neurophysiology and behaviour. Moreover, excitatory neurostimulation protocols capable of reversing the disruptive effects of focal cortical inhibition have demonstrated therapeutic promise in post-stroke dysphagia when applied contralaterally. In healthy participants (n = 15, 8 males, mean age (±SEM) 35 ± 9 years), optimal parameters of transcranial direct current stimulation (tDCS) (anodal, 1.5 mA, 10 min) were applied contralaterally after 1 Hz rTMS pre-conditioning to the strongest pharyngeal projection. Swallowing neurophysiology was assessed in both hemispheres by intraluminal recordings of pharyngeal motor-evoked responses (PMEPs) to single-pulse TMS as a measure of cortical excitability. Swallowing behaviour was examined using a pressure-based reaction time protocol. Measurements were made before and for up to 60 min post intervention. Subjects were randomised to active or sham tDCS after 1 Hz rTMS on separate days and data were compared using repeated measures ANOVA. Active tDCS increased PMEPs bilaterally (F1,14 = 7.4, P = 0.017) reversing the inhibitory effects of 1 Hz rTMS in the pre-conditioned hemisphere (F1,14 = 10.1, P = 0.007). Active tDCS also enhanced swallowing behaviour, increasing the number of correctly timed challenge swallows compared to sham (F1,14 = 6.3, P = 0.025). Thus, tDCS to the contralateral pharyngeal motor cortex reverses the neurophysiological and behavioural effects of focal cortical inhibition on swallowing in healthy individuals and has therapeutic potential for dysphagia rehabilitation.

  19. Breathing Stimulant Compounds Inhibit TASK-3 Potassium Channel Function Likely by Binding at a Common Site in the Channel Pore

    PubMed Central

    Chokshi, Rikki H.; Larsen, Aaron T.; Bhayana, Brijesh

    2015-01-01

    Compounds PKTHPP (1-{1-[6-(biphenyl-4-ylcarbonyl)-5,6,7,8-tetrahydropyrido[4,3-d]-pyrimidin-4-yl]piperidin-4-yl}propan-1-one), A1899 (2ʹ′-[(4-methoxybenzoylamino)methyl]biphenyl-2-carboxylic acid 2,4-difluorobenzylamide), and doxapram inhibit TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore (K2P) potassium channel function and stimulate breathing. To better understand the molecular mechanism(s) of action of these drugs, we undertook studies to identify amino acid residues in the TASK-3 protein that mediate this inhibition. Guided by homology modeling and molecular docking, we hypothesized that PKTHPP and A1899 bind in the TASK-3 intracellular pore. To test our hypothesis, we mutated each residue in or near the predicted PKTHPP and A1899 binding site (residues 118–128 and 228–248), individually, to a negatively charged aspartate. We quantified each mutation's effect on TASK-3 potassium channel concentration response to PKTHPP. Studies were conducted on TASK-3 transiently expressed in Fischer rat thyroid epithelial monolayers; channel function was measured in an Ussing chamber. TASK-3 pore mutations at residues 122 (L122D, E, or K) and 236 (G236D) caused the IC50 of PKTHPP to increase more than 1000-fold. TASK-3 mutants L122D, G236D, L239D, and V242D were resistant to block by PKTHPP, A1899, and doxapram. Our data are consistent with a model in which breathing stimulant compounds PKTHPP, A1899, and doxapram inhibit TASK-3 function by binding at a common site within the channel intracellular pore region, although binding outside the channel pore cannot yet be excluded. PMID:26268529

  20. Secreted APE1/Ref-1 inhibits TNF-α-stimulated endothelial inflammation via thiol-disulfide exchange in TNF receptor.

    PubMed

    Park, Myoung Soo; Choi, Sunga; Lee, Yu Ran; Joo, Hee Kyoung; Kang, Gun; Kim, Cuk-Seong; Kim, Soo Jin; Lee, Sang Do; Jeon, Byeong Hwa

    2016-03-11

    Apurinic apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) is a multifunctional protein with redox activity and is proved to be secreted from stimulated cells. The aim of this study was to evaluate the functions of extracellular APE1/Ref-1 with respect to leading anti-inflammatory signaling in TNF-α-stimulated endothelial cells in response to acetylation. Treatment of TNF-α-stimulated endothelial cells with an inhibitor of deacetylase that causes intracellular acetylation, considerably suppressed vascular cell adhesion molecule-1 (VCAM-1). During TSA-mediated acetylation in culture, a time-dependent increase in secreted APE1/Ref-1 was confirmed. The acetyl moiety of acetylated-APE1/Ref-1 was rapidly removed based on the removal kinetics. Additionally, recombinant human (rh) APE1/Ref-1 with reducing activity induced a conformational change in rh TNF-α receptor 1 (TNFR1) by thiol-disulfide exchange. Following treatment with the neutralizing anti-APE1/Ref-1 antibody, inflammatory signals via the binding of TNF-α to TNFR1 were remarkably recovered, leading to up-regulation of reactive oxygen species generation and VCAM-1, in accordance with the activation of p66(shc) and p38 MAPK. These results strongly indicate that anti-inflammatory effects in TNF-α-stimulated endothelial cells by acetylation are tightly linked to secreted APE1/Ref-1, which inhibits TNF-α binding to TNFR1 by reductive conformational change, with suggestion as an endogenous inhibitor of vascular inflammation.

  1. Inhibition of intracellular proteolysis in muscle cultures by multiplication-stimulating activity

    NASA Technical Reports Server (NTRS)

    Janeczko, Richard A.; Etlinger, Joseph D.

    1984-01-01

    The effects of the insulin-like growth factor, multiplication-stimulating activity (MSA), on chick myotube cultures are studied. The results indicate that MSA is an effective anabolic agent regulating protein metabolism and amino acid uptake, but not sugar transport. Similar size effects on protein metabolism and amino acid uptake in serum-free media were observed in parallel studies with insulin, although insulin levels well in excess of the normal physiological range are required to produce significant effects. It is suggested that there is a generally low insulin sensitivity in cultured chick myotubes relative to adult tissues.

  2. The Role of Vitamin D Stimulation of Mullerian Inhibiting Substance (MIS) in Prostate Cancer Therapy

    DTIC Science & Technology

    2008-12-01

    calcitriol and MIS achieve increased potency to inhibit prostate cancer cell growth compared to either drug alone. However, this has not yet been...combination was no better than either drug alone. And the findings differed from the first experiment where MIS showed no anti-proliferative activity. Figure...always to a greater extent. However, we did not find that any of the genes exhibited enhancement when both drugs were used. In fact, many of the genes

  3. Matrix metalloproteinase inhibition influences aspects of photoperiod stimulated ovarian recrudescence in Siberian hamsters.

    PubMed

    Shahed, Asha; Simmons, Jamie J; Featherstone, Sydney L; Young, Kelly A

    2015-05-15

    Blocking matrix metalloproteinase (MMP) activity in vivo with inhibitor GM6001 impedes photostimulated ovarian recrudescence in photoregressed Siberian hamsters. Since direct and indirect effects of MMPs influence a myriad of ovarian functions, we investigated the effect of in vivo MMP inhibition during recrudescence on ovarian mRNA expression of steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), Cyp19a1 aromatase, epidermal growth factor receptor (EGFR), amphiregulin (Areg), estrogen receptors (Esr1 and Esr2), tissue inhibitors of MMPs (TIMP-1,-2,-3), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), its receptor VEGFR-2, and angiopoietin-2 (Ang-2). Female Siberian hamsters were randomly assigned to one of four photoperiod groups: stimulatory long (LD) or inhibitory short (SD) photoperiods, or transferred from SD to LD for 2 weeks (post-transfer, PT). Half of the PT hamsters were injected (ip) daily with GM6001 (PTG). SD exposure reduced ovarian StAR, 3β-HSD, Cyp19a1, Esr1, Esr2, TIMPs 2-3, PCNA, VEGFR-2 and Ang-2 mRNA expression (p<0.05), and 2 weeks of photostimulation restored mRNA expression of 3β-HSD and PCNA and increased Areg and VEGFA mRNA expression in the PT group. GM6001 treatment during photostimulation (PTG) increased TIMP-1, -2 and -3 and PCNA mRNA, but inhibited Areg mRNA expression compared to PT. Neither photoperiod nor GM6001 altered EGFR expression. Results of this study suggest that in vivo inhibition of MMP activity by GM6001 may impede ovarian recrudescence, particularly follicular growth, in two ways: (1) directly by partially inhibiting the release of EGFR ligands like Areg, thereby potentially affecting EGFR activation and its downstream pathway, and (2) indirectly by its effect on TIMPs which themselves can affect proliferation, angiogenesis and follicular growth.

  4. Tyrosol and its analogues inhibit alpha-melanocyte-stimulating hormone induced melanogenesis.

    PubMed

    Wen, Kuo-Ching; Chang, Chih-Shiang; Chien, Yin-Chih; Wang, Hsiao-Wen; Wu, Wan-Chen; Wu, Chin-Sheng; Chiang, Hsiu-Mei

    2013-11-28

    Melanin is responsible for skin color and plays a major role in defending against harmful external factors such as ultraviolet (UV) irradiation. Tyrosinase is responsible for the critical steps of melanogenesis, including the rate-limiting step of tyrosine hydroxylation. The mechanisms of action of skin hypopigmenting agents are thought to be based on the ability of a given agent to inhibit the activity of tyrosinase and, hence, down regulate melanin synthesis. Tyrosol and its glycoside, salidroside, are active components of Rhodiola rosea, and in our preliminary study we found that Rhodiola rosea extract inhibited melanogenesis. In this study, we examined the effects of tyrosol and its analogues on melanin synthesis. We found that treatment of B16F0 cells to tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), 2-hydroxyphenylacetic acid (7), or salidroside (11) resulted in a reduction in melanin content and inhibition of tyrosinase activity as well as its expression. Tyrosol (1), 4-hydroxyphenylacetic acid (5) and 2-hydroxyphenylacetic acid (7) suppressed MC1R expression. Tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), and 2-hydroxyphenylacetic acid (7) inhibited α-MSH induced TRP-1 expression, but salidroside (11) did not. All the compounds did not affect MITF and TRP-2 expression. Furthermore, we found that the cell viability of tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), and 2-hydroxyphenylacetic acid (7) at concentrations below 4 mM and salidroside (11) at concentrations below 0.5 mM were higher than 90%. The compounds exhibited metal-coordinating interactions with copper ion in molecular docking with tyrosinase. Our results suggest that tyrosol, 4-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 2-hydroxyphenylacetic acid, and salidroside are potential hypopigmenting agents.

  5. Thapsigargin induces rapid, transient growth inhibition and c-fos expression followed by sustained growth stimulation in mouse keratinocyte cultures.

    PubMed

    Harmon, C S; Ducote, J; Xiong, Y

    1996-08-01

    Although the sesquiterpene lactone thapsigargin has been shown to possess hyperplastic and tumor-promoting activities when applied topically to mouse skin in vivo, the cellular mechanism(s) which underlie these effects are unclear. We show here that thapsigargin treatment of Primary mouse epidermal keratinocytes increased intracellular free Ca2+ concentration (Cai) in a concentration-dependent manner. Thapsigargin induced a rapid, transient elevation in keratinocyte Cai, in part due to the release of Ca2+ from intracellular stores. This response was followed by a sustained elevation in Ca2+, resulting entirely from calcium influx. Thapsigargin elicited a biphasic effect on keratinocyte DNA synthesis: a rapid inhibitory effect (50-60% inhibition at 4-8 h), followed by a very marked and sustained elevation. Prolonged treatment of keratinocytes with thapsigargin at relatively high concentrations resulted in cytotoxicity (inhibition of neutral red uptake). The rapid antiproliferative effect of thapsigargin was not associated with cytotoxicity, as determined by either neutral red uptake or by trypan blue exclusion, and was not blocked by pretreatment with Ro 31-7349, a selective inhibitor of protein kinase C. The rapid antiproliferative effect of thapsigargin was associated with rapid, transient activation of keratinocyte c-fos expression and rapid inhibition of total protein synthesis. Taken together, these findings raise the possibility that the hyperplastic and tumor-promoting activities of thapsigargin on epidermis in vivo result from direct keratinocyte growth stimulation as a consequence of a prolonged elevation in levels of Cai.

  6. 5'-nitro-indirubinoxime inhibits inflammatory response in TNF-alpha stimulated human umbilical vein endothelial cells.

    PubMed

    Kim, Eun-Jung; Park, Won-Hwan; Ahn, Sang-Gun; Yoon, Jung-Hoon; Kim, Si-Wouk; Kim, Soo-A

    2010-07-01

    Inflammation plays a critical role in the development of atherosclerosis and TNF-alpha, a major inflammatory cytokine, induces inflammatory responses by enhancing the expression of adhesion molecules and the secretion of inflammatory mediators. Indirubin is an active compound of Polygonum tinctorium Lour (P. tinctorium) that has the ability to suppress inflammation. Previously, we described the novel indirubin derivative, 5'-nitro-indirubinoxime (5'-NIO), and demonstrated that it has potent anti-proliferative activity against various human cancer cells. In this study, we examined the effect of 5'-NIO on the TNF-alpha induced inflammatory conditions of human umbilical vein endothelial cells (HUVECs). We found that 5'-NIO inhibited TNF-alpha induced MCP-1 and IL-8 expression at the RNA and protein levels in HUVECs. Specifically, 5'-NIO significantly inhibited the TNF-alpha stimulated release of MCP-1 and IL-8, with levels that were only 19.8% and 30.9% of those of untreated control cells, respectively. Furthermore, 5'-NIO largely inhibited the adhesion of U937 cells to HUVECs by decreasing the expression level of ICAM-1 and VCAM-1. Overall, these observations suggest that 5'-NIO has the potential for use as an anti-atherosclerotic agent.

  7. Doxycycline Inhibits IL-17-Stimulated MMP-9 Expression by Downregulating ERK1/2 Activation: Implications in Myogenic Differentiation

    PubMed Central

    Obradović, Hristina; Krstić, Jelena; Kukolj, Tamara; Đorđević, Ivana Okić; Jauković, Aleksandra; Jovčić, Gordana

    2016-01-01

    Interleukin 17 (IL-17) is a cytokine with pleiotropic effects associated with several inflammatory diseases. Although elevated levels of IL-17 have been described in inflammatory myopathies, its role in muscle remodeling and regeneration is still unknown. Excessive extracellular matrix degradation in skeletal muscle is an important pathological consequence of many diseases involving muscle wasting. In this study, the role of IL-17 on the expression of matrix metalloproteinase- (MMP-) 9 in myoblast cells was investigated. The expression of MMP-9 after IL-17 treatment was analyzed in mouse myoblasts C2C12 cell line. The increase in MMP-9 production by IL-17 was concomitant with its capacity to inhibit myogenic differentiation of C2C12 cells. Doxycycline (Doxy) treatment protected the myogenic capacity of myoblasts from IL-17 inhibition and, moreover, increased myotubes hypertrophy. Doxy blocked the capacity of IL-17 to stimulate MMP-9 production by regulating IL-17-induced ERK1/2 MAPK activation. Our results imply that MMP-9 mediates IL-17's capacity to inhibit myoblast differentiation during inflammatory diseases and indicate that Doxy can modulate myoblast response to inflammatory induction by IL-17. PMID:28042204

  8. Ovariectomy Stimulates and Bisphosphonates Inhibit Intracortical Remodeling in the Mouse Mandible

    PubMed Central

    Kubek, Daniel J.; Burr, David B.; Allen, Matthew R.

    2010-01-01

    Objective The pathophysiology of osteonecrosis of the jaw (ONJ) is thought to be linked to suppression of intracortical remodeling. Aim of this study was to determine whether mice, which normally do not undergo appreciable amounts of intracortical remodeling, could be stimulated by ovariectomy to remodel within the cortex of the mandible and if bisphosphonates (BPs) would suppress this intracortical remodeling. Material and Methods Skeletally mature female C3H mice were either ovariectomized (OVX) or SHAM operated and treated with two intravenous doses of zoledronic acid (ZOL, 0.06 mg/kg body weight) or vehicle (VEH). This ZOL dose corresponds to the dose given to cancer patients on a mg/kg basis, adjusted for body weight. Calcein was administered prior to sacrifice to label active formation sites. Dynamic histomorphometry of the mandible and femur were performed. Results Vehicle-treated OVX animals had significantly higher (8-fold) intracortical remodeling of the alveolar portion of the mandible compared to sham – this was significantly suppressed by ZOL treatment. At all skeletal sites, overall bone formation rate (BFR) was lower with ZOL treatment compared to the corresponding VEH group. Conclusions Under normal conditions the level of intracortical remodeling in the mouse mandible is minimal but in C3H mice can be stimulated to appreciable levels with ovariectomy. Based on this, if the suppression of intracortical remodeling is found to be part of the pathophysiology of ONJ, the ovariectomized C3H mouse could serve as a useful tool for studying this condition. PMID:21040464

  9. Prostaglandin E2 receptor EP3 regulates both adipogenesis and lipolysis in mouse white adipose tissue

    PubMed Central

    Xu, Hu; Fu, Jia-Lin; Miao, Yi-Fei; Wang, Chun-Jiong; Han, Qi-Fei; Li, Sha; Huang, Shi-Zheng; Du, Sheng-Nan; Qiu, Yu-Xiang; Yang, Ji-Chun; Gustafsson, Jan-Åke; Breyer, Richard M.; Zheng, Feng; Wang, Nan-Ping; Zhang, Xiao-Yan; Guan, You-Fei

    2016-01-01

    Among the four prostaglandin E2 receptors, EP3 receptor is the one most abundantly expressed in white adipose tissue (WAT). The mouse EP3 gene gives rise to three isoforms, namely EP3α, EP3β, and EP3γ, which differ only at their C-terminal tails. To date, functions of EP3 receptor and its isoforms in WAT remain incompletely characterized. In this study, we found that the expression of all EP3 isoforms were downregulated in WAT of both db/db and high-fat diet-induced obese mice. Genetic ablation of three EP3 receptor isoforms (EP3−/− mice) or EP3α and EP3γ isoforms with EP3β intact (EP3β mice) led to an obese phenotype with increased food intake, decreased motor activity, reduced insulin sensitivity, and elevated serum triglycerides. Since the differentiation of preadipocytes and mouse embryonic fibroblasts to adipocytes was markedly facilitated by either pharmacological blockade or genetic deletion/inhibition of EP3 receptor via the cAMP/PKA/PPARγ pathway, increased adipogenesis may contribute to obesity in EP3−/− and EP3β mice. Moreover, both EP3−/− and EP3β mice had increased lipolysis in WAT mainly due to the activated cAMP/PKA/hormone-sensitive lipase pathway. Taken together, our findings suggest that EP3 receptor and its α and γ isoforms are involved in both adipogenesis and lipolysis and influence food intake, serum lipid levels, and insulin sensitivity. PMID:27436752

  10. The effect of blockade of dopamine receptors on the inhibition of episodic luteinizing hormone release during electrical stimulation of the arcuate nucleus in ovariectomized rats.

    PubMed

    Gallo, R V

    1978-04-01

    This study examined the possible involvement of dopamine (DA) in mediating the inhibition of episodic LH release that occurs during electrical stimulation of the arcuate nucleus (ARH) in ovariectomized rats. Animals were treated before stimulation with pimozide (1.26--2.0 mg/kg) or d-butaclamol (1 mg/kg), blockers of DA receptors, or l-butaclamol. Apomorphine, which inhibits episodic LH release by activating DA receptors, was given near the end of the experiment to determine if these receptors were blocked. ARH stimulation suppressed pulsatile LH release in six rats when DA receptors were not blocked by pimozide (as well as two in which blockade was not tested). A transient increase occurred in one other animal. When DA receptors were blocked by pimozide, stimulation of the ARH inhibited episodic LH release in nine rats, suggesting that DA may have no role in mediating this inhibition. However, because increased LH release occurred in five additional animals, as well as in one with partial receptor blockade, the possibility remains that DA may perhaps have a minor role in this inhibitory response. Although ARH stimulation increased LH release after DA receptor blockade by d-butaclamol, this effect could not be ascribed to the DA antagonist property of this agent, because elevated blood LH levels also occurred during stimulation in rats treated with l-butaclamol, in which DA receptors were not blocked. d- and l-butaclamol may possess a non-stereospecific action on a non-dopaminergic event, thus reversing the response to ARH stimulation. Finally, whether DA receptors were blocked or not by pimozide, d-, or l-butaclamol, activation of the ventromedial hypothalamic and periventricular nucleus regions suppressed episodic LH release, but did not increase LH secretion. This suggests that the region through which stimulation can inhibit, but not increase, LH release may extend in the hypothalamus to these two areas.

  11. High pressure and anesthesia: pressure stimulates or inhibits bacterial bioluminescence depending upon temperature.

    PubMed

    Nosaka, S; Kamaya, H; Ueda, I

    1988-10-01

    Although high pressure is often viewed as a nonspecific stimulus counteracting anesthesia, pressure can either excite or inhibit biological activity depending on the temperature at application. Temperature and pressure are two independent variables that determine equilibrium quantity, e.g., the state of organisms in terms of activity and anesthesia depth. We used the light intensity of luminous bacteria (Vibrio fischeri) as an activity parameter, and studied the effects of pressure and anesthetics on the bacteria's light intensity at various temperatures. The light intensity was greatest at about 30 degrees C at ambient pressure. When the system was pressurized up to 204 atm, the temperature for maximum light intensity was shifted to higher temperatures. Above the optimal temperature for the maximal light intensity, high pressure increased the light intensity. Below the optimal temperature, pressure decreased light intensity. Pressure only shifts the reaction equilibrium to the lower volume state (Le Chatelier's principle). When the volume of the excited state is larger than the resting state, high pressure inhibits excitation, and vice versa. Halothane 0.008 atm and isoflurane 0.021 atm inhibited the light intensity both above and below the optimal temperature. When pressurized, the light intensity increased in the high temperature range but decreased in the low temperature range, as in the control. Thus, high pressure seemingly potentiated the anesthetic action at low temperatures. When the ratio of the light intensity in bacteria exposed to anesthesia and those not exposed to anesthesia was plotted against the pressure, however, the value approached unity in proportion to the pressure increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Wolbachia Stimulates Immune Gene Expression and Inhibits Plasmodium Development in Anopheles gambiae

    PubMed Central

    Kambris, Zakaria; Blagborough, Andrew M.; Pinto, Sofia B.; Blagrove, Marcus S. C.; Godfray, H. Charles J.; Sinden, Robert E.; Sinkins, Steven P.

    2010-01-01

    The over-replicating wMelPop strain of the endosymbiont Wolbachia pipientis has recently been shown to be capable of inducing immune upregulation and inhibition of pathogen transmission in Aedes aegypti mosquitoes. In order to examine whether comparable effects would be seen in the malaria vector Anopheles gambiae, transient somatic infections of wMelPop were created by intrathoracic inoculation. Upregulation of six selected immune genes was observed compared to controls, at least two of which (LRIM1 and TEP1) influence the development of malaria parasites. A stably infected An. gambiae cell line also showed increased expression of malaria-related immune genes. Highly significant reductions in Plasmodium infection intensity were observed in the wMelPop-infected cohort, and using gene knockdown, evidence for the role of TEP1 in this phenotype was obtained. Comparing the levels of upregulation in somatic and stably inherited wMelPop infections in Ae. aegypti revealed that levels of upregulation were lower in the somatic infections than in the stably transinfected line; inhibition of development of Brugia filarial nematodes was nevertheless observed in the somatic wMelPop infected females. Thus we consider that the effects observed in An. gambiae are also likely to be more pronounced if stably inherited wMelPop transinfections can be created, and that somatic infections of Wolbachia provide a useful model for examining effects on pathogen development or dissemination. The data are discussed with respect to the comparative effects on malaria vectorial capacity of life shortening and direct inhibition of Plasmodium development that can be produced by Wolbachia. PMID:20949079

  13. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors

    SciTech Connect

    Singh, Preeti; Godbole, Madan; Rao, Geeta; Annarao, Sanjay; Mitra, Kalyan; Roy, Raja; Ingle, Arvind; Agarwal, Gaurav; Tiwari, Swasti

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Molecular iodine (I{sub 2}) causes non-apoptotic cell death in MDA-MB231 breast tumor cells. Black-Right-Pointing-Pointer Autophagy is activated as a survival mechanism in response to I{sub 2} in MDA-MB231. Black-Right-Pointing-Pointer Autophagy inhibition sensitizes tumor cells to I{sub 2}-induced apoptotic cell death. Black-Right-Pointing-Pointer Autophagy inhibitor potentiates apoptosis and tumor regressive effects of I{sub 2} in mice. -- Abstract: Estrogen receptor negative (ER{sup -ve}) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I{sub 2}) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER{sup -ve}-p53 mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I{sub 2} (3 {mu}M) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER{sup -ve} mammary tumors could be sensitized to I{sub 2}-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I{sub 2} treated MDA-MB231 cells. Further, CQ (20 {mu}M) in combination with I{sub 2}, showed apoptotic features such as increased sub-G1 fraction ({approx}5-fold), expression of cleaved caspase-9 and -3 compared to I{sub 2} treatment alone. Flowcytometry of I{sub 2} and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p < 0.01) and translocation of cathepsin D activity to cytosol relative to I{sub 2} treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I{sub 2} and CQ co-treated mice relative to I{sub 2} or

  14. Green tea catechins enhance norepinephrine-induced lipolysis via a protein kinase A-dependent pathway in adipocytes.

    PubMed

    Chen, Shu; Osaki, Noriko; Shimotoyodome, Akira

    2015-05-22

    Green tea catechins have been shown to attenuate obesity in animals and humans. The catechins activate adenosine monophosphate-activated protein kinase (AMPK), and thereby increase fatty acid oxidation in liver and skeletal muscles. Green tea catechins have also been shown to reduce body fat in humans. However, the effect of the catechins on lipolysis in adipose tissue has not been fully understood. The aim of this study was to clarify the effect of green tea catechins on lipolysis in adipocytes and to elucidate the underlying mechanism. Differentiated mouse adipocyte cell line (3T3-L1) was stimulated with green tea catechins in the presence or absence of norepinephrine. Glycerol and free fatty acids in the media were measured. Phosphorylation of hormone-sensitive lipase (HSL) was determined by Western blotting, and the mRNA expression levels of HSL, adipose triglyceride lipase (ATGL), and perilipin were determined by quantitative RT-PCR. The cells were treated with inhibitors of protein kinase A (PKA), protein kinase C (PKC), protein kinase G (PKG), or mitogen-activated protein kinase (MAPK) to determine the responsible pathway. Treatment of 3T3-L1 adipocytes with green tea catechins increased the level of glycerol and free fatty acids released into the media in the presence, but not absence, of norepinephrine, and increased the level of phosphorylated HSL in the cells. The catechins also increased mRNA and protein levels of HSL and ATGL. PKA inhibitor (H89) attenuated the catechin-induced increase in glycerol release and HSL phosphorylation. The results demonstrate that green tea catechins enhance lipolysis in the presence of norepinephrine via a PKA-dependent pathway in 3T3-L1 adipocytes, providing a potential mechanism by which green tea catechins could reduce body fat.

  15. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    SciTech Connect

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J. )

    1991-05-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of ({sup 3}H)proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of ({sup 3}H)hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of ({sup 3}H)thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.

  16. Nitric oxide inhibits smooth muscle responses evoked by cholinergic nerve stimulation in the guinea pig gastric fundus.

    PubMed

    Yoneda, S; Suzuki, H

    2001-12-01

    In circular smooth muscle tissues of the guinea pig gastric fundus, transmural nerve stimulation (TNS) evoked an atropine-sensitive cholinergic excitatory junction potential (e.j.p.) and, after inhibiting the e.j.p. with atropine, an apamin-sensitive nonadrenergic noncholinergic (NANC) inhibitory junction potential (i.j.p.). The amplitude of e.j.p.s was similar when the frequency of TNS was low (<0.5 Hz), but it decreased successively (depression phenomenon) when the frequency was high (>1 Hz). The depression phenomenon was attenuated after inhibiting the production of nitric oxide (NO) with N(omega)-nitro-L-arginine (NOLA), but was not altered by inhibiting the i.j.p. with apamin. The e.j.p.s were increased in amplitude by the inhibition of cholinesterase activity, but they were decreased by NO produced from SNP with no alteration of their depression phenomenon. Isometric twitch contractions were depressed during high-frequency TNS. NOLA caused an increase in the amplitude of twitch contractions and the attenuation of their depression that changed the transient contraction produced by high-frequency TNS (1 Hz) to a tetanic one. SNP reduced the amplitude of twitch contractions, with no alteration of the depression phenomena. Contractions produced by low concentrations of acetylcholine, but not by high concentrations, were attenuated by SNP, with no alteration of the membrane depolarization. The results suggest that NO produced during TNS has inhibitory actions on cholinergic transmission; the depression of e.j.p.s is mainly prejunctional events, and the depression of mechanical responses is mainly postjunctional events.

  17. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition

    PubMed Central

    Beck, Florian; Geiger, Jörg; Gambaryan, Stepan; Solari, Fiorella A.; Dell’Aica, Margherita; Loroch, Stefan; Mattheij, Nadine J.; Mindukshev, Igor; Pötz, Oliver; Jurk, Kerstin; Burkhart, Julia M.; Fufezan, Christian; Heemskerk, Johan W. M.; Walter, Ulrich

    2017-01-01

    Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein–coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin αIIbβ3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We applied quantitative temporal phosphoproteomics to study ADP-mediated signaling at unprecedented molecular resolution. Furthermore, to mimic the antagonistic efficacy of endothelial-derived prostacyclin, we determined how Iloprost reverses ADP-mediated signaling events. We provide temporal profiles of 4797 phosphopeptides, 608 of which showed significant regulation. Regulated proteins are implicated in well-known activating functions such as degranulation and cytoskeletal reorganization, but also in less well-understood pathways, involving ubiquitin ligases and GTPase exchange factors/GTPase-activating proteins (GEF/GAP). Our data demonstrate that ADP-triggered phosphorylation occurs predominantly within the first 10 seconds, with many short rather than sustained changes. For a set of phosphorylation sites (eg, PDE3ASer312, CALDAG-GEFISer587, ENSASer109), we demonstrate an inverse regulation by ADP and Iloprost, suggesting that these are central modulators of platelet homeostasis. This study demonstrates an extensive spectrum of human platelet protein phosphorylation in response to ADP and Iloprost, which inversely overlap and represent major activating and inhibitory pathways. PMID:28060719

  18. Glycosyl glycerides from hydroponic Panax ginseng inhibited NO production in lipopolysaccharide-stimulated RAW264.7 cells

    PubMed Central

    Cha, Byeong-Ju; Park, Ji-Hae; Shrestha, Sabina; Baek, Nam-In; Lee, Sang Min; Lee, Tae Hoon; Kim, Jiyoung; Kim, Geum-Soog; Kim, Seung-Yu; Lee, Dae-Young

    2014-01-01

    Background Although the aerial parts of hydroponic Panax ginseng are reported to contain higher contents of total ginsenosides than those of roots, the isolation and identification of active metabolites from the aerial parts of hydroponic P. ginseng have not been carried out so far. Methods The aerial parts of hydroponic P. ginseng were applied on repeated silica gel and octadecylsilane columns to yield four glycosyl glycerides (Compounds 1–4), which were identified based on nuclear magnetic resonance, infrared, fast atom bombardment mass spectrometry, and gas chromatography/mass spectrometry data. Compounds 1–4 were evaluated for inhibition activity on NO production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Results and conclusion The glycosyl glycerides were identified to be (2S)-1-O-7(Z),10(Z),13(Z)-hexadecatrienoyl-3-O-β-d-galactopyranosyl-sn-glycerol (1), (2S)-1-O-linolenoyl-3-O-β-d-galactopyranosyl-sn-glycerol (2), (2S)-1-O-linolenoyl-2-O-linolenoyl-3-O-β-d-galactopyranosyl-sn-glycerol (3), and 2(S)-1-O-linoleoyl-2-O-linoleoyl-3-O-β-d-galactopyranosyl-sn-glycerol (4). Compounds 1 and 2 showed moderate inhibition activity on NO production in LPS-stimulated RAW264.7 cells [half maximal inhibitory concentration (IC50): 63.8 ± 6.4μM and 59.4 ± 6.8μM, respectively] without cytotoxicity at concentrations < 100μM, whereas Compounds 3 and 4 showed good inhibition effect (IC50: 7.7 ± 0.6μM and 8.0 ± 0.9μM, respectively) without cytotoxicity at concentrations < 20μM. All isolated compounds showed reduced messenger RNA (mRNA) expression of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α in LPS-induced macrophage cells with strong inhibition of mRNA activity observed for Compounds 3 and 4. PMID:26045690

  19. Dopamine transporter occupancy by RTI-55, inhibition of dopamine transport and stimulation of locomotor activity

    SciTech Connect

    Gatley, S.J.; Gifford, A.N.; Volkow, N.D.

    1997-05-01

    Cocaine analogs such as RTI-55 (or {beta}CIT) with a higher affinity for the DAT are potentially useful as therapeutic drugs in cocaine abuse as well as for radiopharmaceutical use. Previously we showed that in mice RTI-55 (2 mg/Kg, i/p) reduced H-3 cocaine striatum-to-cerebellum ratios (St/Cb, {lg_bullet}) from 1.6 to 1.2 at 3 h after administration, with recovery by 12 h. In the present study we demonstrate a very similar time-course for transport {triangle} measured in striatal homo within 2 min of sacrifice. The maximum inhibition of uptake at about 1 h corresponded to about 80% of the control uptake rate, similar to the percent reduction in St/Cb. The time-course of the effect of this dose of RTI-55 on locomotor activity ({sq_bullet}) was complex, with a drop in the activity measure at 7 h, after a further injection of RTI-55, but activity remained higher than in saline controls. In spite of this complexity, which may be associated with stereotypies and/or exhaustion, the duration of increased activity is consistent with the duration of transporter blockade. These experiments support the notion that PET/SPECT measures of transporter occupancy accurately reflect transporter inhibition.

  20. [Stimulation and inhibition of Escherichia coli cell growth during cultivation in the catholyte and anolyte of culture medium].

    PubMed

    Muroshnikov, A I

    2002-01-01

    The effect of pretreatment of growth medium M-9 with direct electric current in the cathode and the anode compartments of a diaphragm electrolyzer on the growth of Escherichia coli cells was studied. The cells were cultured separately in the catholyte and the anolyte of the growth medium. The cell growth was registered as a change in optical density of the culture suspension by the method of turbidimetry. It was found that cells grown in the catholyte at a temperature of 37 degrees C yielded a 20-30% increase in amount as compared to the control. No cell growth was observed in the anolyte, and a part of the initial cells were lysed. Possible mechanisms of stimulation and inhibition of cell growth and the reasons of discrepancies in the earlier published data are discussed.

  1. Simplified assays of lipolysis enzymes for drug discovery and specificity assessment of known inhibitors.

    PubMed

    Iglesias, Jose; Lamontagne, Julien; Erb, Heidi; Gezzar, Sari; Zhao, Shangang; Joly, Erik; Truong, Vouy Linh; Skorey, Kathryn; Crane, Sheldon; Madiraju, S R Murthy; Prentki, Marc

    2016-01-01

    Lipids are used as cellular building blocks and condensed energy stores and also act as signaling molecules. The glycerolipid/ fatty acid cycle, encompassing lipolysis and lipogenesis, generates many lipid signals. Reliable procedures are not available for measuring activities of several lipolytic enzymes for the purposes of drug screening, and this resulted in questionable selectivity of various known lipase inhibitors. We now describe simple assays for lipolytic enzymes, including adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), sn-1-diacylglycerol lipase (DAGL), monoacylglycerol lipase, α/β-hydrolase domain 6, and carboxylesterase 1 (CES1) using recombinant human and mouse enzymes either in cell extracts or using purified enzymes. We observed that many of the reported inhibitors lack specificity. Thus, Cay10499 (HSL inhibitor) and RHC20867 (DAGL inhibitor) also inhibit other lipases. Marked differences in the inhibitor sensitivities of human ATGL and HSL compared with the corresponding mouse enzymes was noticed. Thus, ATGListatin inhibited mouse ATGL but not human ATGL, and the HSL inhibitors WWL11 and Compound 13f were effective against mouse enzyme but much less potent against human enzyme. Many of these lipase inhibitors also inhibited human CES1. Results describe reliable assays for measuring lipase activities that are amenable for drug screening and also caution about the specificity of the many earlier described lipase inhibitors.

  2. Gastrodin inhibits osteoclastogenesis via down-regulating the NFATc1 signaling pathway and stimulates osseointegration in vitro.

    PubMed

    Zhou, Feng; Shen, Yi; Liu, Bo; Chen, Xia; Wan, Lu; Peng, Dan

    2017-03-18

    Bone is a rigid yet dynamic organ, and this dynamism is mediated by the delicate balance between osteoclastic bone resorption and osteoblastic bone formation. However, excessive activation of osteoclasts is responsible for many bone diseases such as osteoporosis, Paget disease, and tumor bone metastasis. Agents that could inhibit osteoclast formation or function are regarded as promising alternatives to treat osteoclast-related diseases. Recently, traditional Chinese medicine has attracted attention because of its multiple activities in bone metabolism. Among them, gastrodin has been reported as an anti-osteoporosis agent that reduces reactive oxygen species. However, the direct action of gastrodin on osteoclast differentiation and bone resorption, and its underlying molecular mechanism, remain unknown. In this study, we investigated the effects of gastrodin on receptor activator NF-κB ligand (RANKL)-activated osteoclasts formation and bone resorption. Our results showed that gastrodin retarded RANKL-induced osteoclast differentiation efficiently by downregulating transcriptional and translational expression of nuclear factor of activated T cells cl (NFATc1), a major factor in RANKL-mediated osteoclastogenesis. Meanwhile, gastrodin prevented osteoclast maturation and migration by inhibiting the gene expression of dendrocyte expressed seven transmembrane protein (DC-STAMP), an osteoclastic-specific gene that controls cells fusion and movement. And gastrodin prevented RANKL-induced osteoclastic bone erosion in vitro. In addition, gastrodin also stimulated bone mesenchymal stem cell (BMSC) spreading and osseointegration in titanium plate. In summary, gastrodin could prevent osteoclasts formation and bone resorption via blockage of NFATc1 activity, and stimulate osseointegration in vitro. Gastrodin could be developed as a potent phytochemical candidate to treat osteolytic diseases.

  3. Resveratrol upregulates SOCS1 production by lipopolysaccharide-stimulated RAW264.7 macrophages by inhibiting miR-155.

    PubMed

    Ma, Chunfang; Wang, Yin; Shen, Aijuan; Cai, Wanru

    2017-01-01

    Resveratrol is a polyphenolic compound extracted from grapes and the Chinese herb, Polygonum cuspidatum. In the present study, in order to elucidate the molecular mechanisms of action of resveratrol in host immune cells, we examined the effects of resveratrol on the inflammatory response in lipopolysaccharide (LPS)‑stimulated RAW264.7 murine macrophages. The cells were treated with resveratrol prior to stimulation with LPS (1 µg/ml). Resveratrol downregulated the expression of inflammatory markers, such as tumor necrosis factor (TNF)-α and interleukin (IL)‑6, induced by LPS, and inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT)1/STAT3. Resveratrol also upregulated the production of suppressor of cytokine signaling 1 (SOCS1; a STAT inhibitor) and suppressed the expression of miR‑155, which plays an essential role in the innate and adaptive immune response. Given the elevated levels of SOCS1 in LPS-induced inflammation, our results suggest that resveratrol exerts anti-inflammatory effects due to the upregulation of SOCS1, which is a potential target of miR‑155, as well as of miR‑155 mimics and inhibitors. These findings suggest the benefits of resveratrol, which are derived from its regulation of SOCS1 expression via the inhibition of miR‑155, and indicate that resveratrol may be developed as a useful agent for the treatment of inflammatory diseases.

  4. Extracellular calcium sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition.

    PubMed

    Rey, Osvaldo; Young, Steven H; Jacamo, Rodrigo; Moyer, Mary P; Rozengurt, Enrique

    2010-10-01

    The extracellular Ca(2+)-sensing receptor (CaR) is increasingly implicated in the regulation of multiple cellular functions in the gastrointestinal tract, including secretion, proliferation and differentiation of intestinal epithelial cells. However, the signaling mechanisms involved remain poorly defined. Here we examined signaling pathways activated by the CaR, including Ca(2+) oscillations, in individual human colon epithelial cells. Single cell imaging of colon-derived cells expressing the CaR, including SW-480, HT-29, and NCM-460 cells, shows that stimulation of this receptor by addition of aromatic amino acids or by an elevation of the extracellular Ca(2+) concentration promoted striking intracellular Ca(2+) oscillations. The intracellular calcium oscillations in response to extracellular Ca(2+) were of sinusoidal pattern and mediated by the phospholipase C/diacylglycerol/inositol 1,4,5-trisphosphate pathway as revealed by a biosensor that detects the accumulation of diacylglycerol in the plasma membrane. The intracellular calcium oscillations in response to aromatic amino acids were of transient type, that is, Ca(2+) spikes that returned to baseline levels, and required an intact actin cytoskeleton, a functional Rho, Filamin A and the ion channel TRPC1. Further analysis showed that re-expression and stimulation of the CaR in human epithelial cells derived from normal colon and from colorectal adenocarcinoma inhibits their proliferation. This inhibition was associated with the activation of the signaling pathway that mediates the generation of sinusoidal, but not transient, intracellular Ca(2+) oscillations. Thus, these results indicate that the CaR can function in two signaling modes in human colonic epithelial cells offering a potential link between gastrointestinal responses and food/nutrients uptake and metabolism.

  5. Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells.

    PubMed

    Blank, Fabian; Gerber, Peter; Rothen-Rutishauser, Barbara; Sakulkhu, Usawadee; Salaklang, Jatuporn; De Peyer, Karin; Gehr, Peter; Nicod, Laurent P; Hofmann, Heinrich; Geiser, Thomas; Petri-Fink, Alke; Von Garnier, Christophe

    2011-12-01

    Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4+ T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4+ T cells, and induce cytokines. The decreased antigen processing and CD4+ T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.

  6. SOCS1 Regulates Apoptosis and Inflammation by Inhibiting IL-4 Signaling in IL-1β-Stimulated Human Osteoarthritic Chondrocytes

    PubMed Central

    He, Qiang; Sun, Caihong; Lei, Wei

    2017-01-01

    Recently, Suppressor of Cytokine Signaling 1 (SOCS1) was identified as a potential therapeutic target for osteoarthritis (OA) treatment. However, the mechanisms and signaling pathways of SOCS1 in the regulation of OA development are unclear. The purpose of the current study was to investigate whether interleukin- (IL-) 4 was involved in regulatory mechanism of SOCS1 in human osteoarthritic chondrocytes. First, IL-1β was used to stimulate human osteoarthritic chondrocytes isolated from the articular cartilage of OA patients undergoing total knee replacement. The protein and mRNA expression levels of SOCS1 were upregulated in IL-1β-stimulated human osteoarthritic chondrocytes compared with control cells. The knockdown of SOCS1 increased cell viability and inhibited cell apoptosis. It was also found that IL-4 expression was increased by SOCS1 silencing. Additionally, knockdown of IL-4 reduced cell viability and increased cell apoptosis of osteoarthritic chondrocytes transfected with SOCS1 siRNA. Moreover, the decreased expression of inflammatory factors induced by SOCS1 was enhanced by IL-4 knockdown. In conclusion, IL-4 signaling plays a crucial role in the regulatory functions of SOCS1 in apoptosis and inflammation in human osteoarthritic chondrocytes. These findings provide a potential therapeutic target for the clinical treatment of OA. PMID:28373981

  7. Inhibition of transcription and translation of globin messenger RNA in dimethyl sulfoxide-stimulated Friend erythroleukemic cells treated with interferon.

    PubMed Central

    Rossi, G B; Dolei, A; Cioé, L; Benedetto, A; Matarese, G P; Belardelli, F

    1977-01-01

    The addition of appropriate doses of interferon (IF) to cultures of Friend erythroleukemic cells inhibits dimethyl sulfoxide (Me2SO)-stimulated erythroid differentiation. In this study, the synthesis of heme, hemoglobin, and globin mRNA in Me2SO-stimulated cultures, with or without IF added, was compared. Although the hemoglobin content in Me2SO+IF-treated cultures was reduced 6- to 9-fold compared to that of cultures treated with Me2SO alone, there was less than a 2-fold decrease in the amount of heme accumulated. Globin mRNA, although unchanged in size or base sequence, was reduced in content in the Me2SO+IF cultures. The level of reduction of globin mRNA was insufficient to account for the lack of globin synthesis. Thus, it appears that IF may operate on two levels--one involving the transcription of globin mRNA and the other involving its translation. PMID:266723

  8. CCR5 as a potential target in cancer therapy: inhibition or stimulation?

    PubMed

    González-Martin, Alicia; Mira, Emilia; Mañes, Santos

    2012-11-01

    Extensive evidence implicates CCR5 and its ligands in the biology of tumors, although there is considerable controversy regarding the role of this chemokine receptor in cancer progression. The discrepancies between the pro- and anti-tumor effects of CCR5 might derive from its expression by cell types with opposing functions in tumor progression and the context in which tumors originate. We propose that CCR5 is necessary for optimal activation of the adaptive immune response to tumors, and for the success of certain immunotherapeutic strategies. Since efficient activation of T cell responses has broad implications in the success of some chemoand radiotherapy protocols, activation of CCR5, rather than its inhibition, might provide new therapeutic opportunities for cancer treatment.

  9. Low pH Environmental Stress Inhibits LPS and LTA-Stimulated Proinflammatory Cytokine Production in Rat Alveolar Macrophages

    PubMed Central

    Fernandez, Stanley F.; Fung, Christopher; Helinski, Jadwiga D.; Alluri, Ravi; Davidson, Bruce A.; Knight, Paul R.

    2013-01-01

    Gastric aspiration increases the risks for developing secondary bacterial pneumonia. Cytokine elaboration through pathogen recognition receptors (PRRs) is an important mechanism in initiating innate immune host response. Effects of low pH stress, a critical component of aspiration pathogenesis, on the PRR pathways were examined, specifically toll-like receptor-2 (TLR2) and TLR4, using isolated rat alveolar macrophages (aMØs). We assessed the ability of aMØs after brief exposure to acidified saline to elaborate proinflammatory cytokines in response to lipopolysaccharide (LPS) and lipoteichoic acid (LTA) stimulation, known ligands of TLR4 and TLR2, respectively. Low pH stress reduced LPS- and LTA-mediated cytokine release (CINC-1, MIP-2, TNF-α, MCP-1, and IFN-β). LPS and LTA increased intracellular Ca2+ concentrations while Ca2+ chelation by BAPTA decreased LPS- and LTA-mediated cytokine responses. BAPTA blocked the effects of low pH stress on most of LPS-stimulated cytokines but not of LTA-stimulated responses. In vivo mouse model demonstrates suppressed E. coli and S. pneumoniae clearance following acid aspiration. In conclusion, low pH stress inhibits antibacterial cytokine response of aMØs due to impaired TLR2 (MyD88 pathway) and TLR4 signaling (MyD88 and TRIF pathways). The role of Ca2+ in low pH stress-induced signaling is complex but appears to be distinct between LPS- and LTA-mediated responses. PMID:24288685

  10. Minocycline inhibits the enhancement of antidromic primary afferent stimulation-evoked vasodilation following intradermal capsaicin injection.

    PubMed

    Gong, Kerui; Yue, Yue; Zou, Xiaoju; Li, Dingge; Lin, Qing

    2010-09-27

    Neurogenic inflammation is induced by inflammatory mediators released in peripheral tissue from primary afferent nociceptors. Our previous studies suggest that neurogenic inflammation induced by intradermal injection of capsaicin results from the enhancement of dorsal root reflexes (DRRs), which involve antidromic activation of dorsal root ganglion (DRG) neurons. Numerous studies have reported the important role of glial modulation in pain. However, it remains unclear whether glial cells participate in the process of neurogenic inflammation-induced pain. Here we tested the role of DRG satellite glial cells (SGCs) in this process in anesthetized rats by administration of a glial inhibitor, minocycline. Electrical stimuli (ES, frequency 10 Hz; duration 1 ms; strength 3 mA) were applied to the cut distal ends of the L4-5 dorsal roots. The stimuli evoked antidromic action potentials designed to mimic DRRs. Local cutaneous blood flow in the hindpaw was measured using a Doppler flow meter. Antidromic ES for 10 min evoked a significant vasodilation that could be inhibited dose-dependently by local administration of the calcitonin gene-related peptide receptor antagonist, CGRP8-37. Pretreatment with capsaicin intradermally injected into the hindpaw 2h before the ES enhanced greatly the vasodilation evoked by antidromic ES, and this enhancement could be reversed by minocycline pretreatment. Our findings support the view that neurogenic inflammation following capsaicin injection involves antidromic activation of DRG neurons via the generation of DRRs. Inhibition of neurogenic inflammation by minocycline is suggested to be associated with its inhibitory effect on SGCs that are possibly activated following capsaicin injection.

  11. Beta-endorphin-induced inhibition and stimulation of insulin secretion in normal humans is glucose dependent.

    PubMed

    Giugliano, D; Cozzolino, D; Salvatore, T; Torella, R; D'Onofrio, F

    1988-09-01

    This study evaluated the effect of human beta-endorphin on pancreatic hormone levels and their responses to nutrient challenges in normal subjects. Infusion of 0.5 mg/h beta-endorphin caused a significant rise in plasma glucose concentrations preceded by a significant increase in peripheral glucagon levels. No changes occurred in the plasma concentrations of insulin and C-peptide. Acute insulin and C-peptide responses to intravenous pulses of different glucose amounts (0.33 g/kg and 5 g) and arginine (3 g) were significantly reduced by beta-endorphin infusion (P less than .01). This effect was associated with a significant reduction of the glucose disappearance rates, suggesting that the inhibition of insulin was of biological relevance. beta-Endorphin also inhibited glucose suppression of glucagon levels and augmented the glucagon response to arginine. To verify whether the modification of prestimulus glucose level could be important in these hormonal responses to beta-endorphin, basal plasma glucose concentrations were raised by a primed (0.5 g/kg) continuous (20 mg kg-1.min-1) glucose infusion. After stabilization of plasma glucose levels (350 +/- 34 mg/dl, t = 120 min), beta-endorphin infusion caused an immediate and marked increase in plasma insulin level (peak response 61 +/- 9 microU/ml, P less than .01), which remained elevated even after the discontinuation of opioid infusion. Moreover, the acute insulin response to a glucose pulse (0.33 g/kg i.v.) given during beta-endorphin infusion during hyperglycemia was significantly higher than the response obtained during euglycemia (171 +/- 32 vs. 41 +/- 7 microU/ml, P less than .01).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb

    PubMed Central

    Lehmann, Alexander; D’Errico, Anna; Vogel, Martin; Spors, Hartwig

    2016-01-01

    Mitral and tufted cells (MTCs) of the mammalian olfactory bulb are connected via dendrodendritic synapses with inhibitory interneurons in the external plexiform layer. The range, spatial layout, and temporal properties of inhibitory interactions between MTCs mediated by inhibitory interneurons remain unclear. Therefore, we tested for inhibitory interactions using an optogenetic approach. We optically stimulated MTCs expressing channelrhodopsin-2 in transgenic mice, while recording from individual MTCs in juxtacellular or whole-cell configuration in vivo. We used a spatial noise stimulus for mapping interactions between MTCs belonging to different glomeruli in the dorsal bulb. Analyzing firing responses of MTCs to the stimulus, we did not find robust lateral inhibitory effects that were spatially specific. However, analysis of sub-threshold changes in the membrane potential revealed evidence for inhibitory interactions between MTCs that belong to different glomerular units. These lateral inhibitory effects were short-lived and spatially specific. MTC response maps showed hyperpolarizing effects radially extending over more than five glomerular diameters. The inhibitory maps exhibited non-symmetrical yet distance-dependent characteristics. PMID:27047340

  13. Trimethylamine stimulated and dissolved organic matter inhibited methane production in sediment from the Poyang Lake, China.

    PubMed

    Wang, Jiajia; Liu, Chunying; Gong, Xiaofeng; Liu, Yuanmu; Chen, Chunli

    2016-10-01

    Methane (CH4) emitted from wetlands contributes significantly to the greenhouse effect. The Poyang Lake, the largest freshwater lake in China, is fed by five rivers and connects to the Yangtze River. The area of the lake fluctuates dramatically between drawdown and flood periods with large areas of wetlands. In order to understand the CH4 production capacity and factors that influence CH4 production in the wetland, a static closed chamber combined with a gas chromatograph technique was used to investigate the influence of substrates and electron acceptors on methanogenesis. The results showed that CH4 production capacity of sediments from the Poyang Lake was [Formula: see text] and it was stimulated by trimethylamine (TMA) to a great extent. Incubation temperature played a vital role on CH4 production in sediments and the optimum temperature for methanogenesis was 35°C. Minimum CH4 production capacity occurred with the addition of FeCl3, and the inhibitory effects of electron acceptors decreased in the sequence: FeCl3 > MnO2 > DOM > Fe2O3. In this study, DOM was demonstrated as one of the inhibitors to methanogenesis and TMA was the main substrate of methanogens in the sediments of the Poyang Lake whose pH value is 7.83.

  14. Histone deacetylase inhibition and progesterone act synergistically to stimulate baboon glycodelin gene expression.

    PubMed

    Jaffe, Randal C; Ferguson-Gottschall, Susan D; Gao, Weihua; Beam, Craig; Fazleabas, Asgerally T

    2007-03-01

    During the late luteal phase of the menstrual cycle and early pregnancy, the major secretory product of the uterine glandular epithelial cells in humans and non-human primates is glycodelin. Previous studies using Ishikawa cells, a human endometrial cell line, have shown that a chimeric plasmid containing the baboon glycodelin promoter responds to progestins but the response is modest compared with the induction of glycodelin seen in vivo and in gene array analysis. A recent report indicating that the histone deacetylase inhibitor trichostatin A (TSA) promoted glycodelin expression prompted us to examine its mechanism of action. In Ishikawa cells transfected with the baboon glycodelin promoter, TSA and the synthetic progestin medroxyprogesterone acetate both stimulated expression of the reporter and the combined treatment produced a synergistic effect. The effect of TSA and progestin was absent when the same promoter constructs were transfected into COS-1 cells, a kidney cell line, and a TSA effect but no progestin effect was observed in T47D cells, a mammary cell line. Through deletion analysis, the TSA action was localized to the -67/-52 region of the baboon glycodelin promoter, a region which contains the proximal Sp1 site. Deletions of this same region had no effect on progestin responsiveness. Our findings indicate that at least two regions of the glycodelin promoter are important for the normal induction of glycodelin expression. Non-target cells may lack factors which act on the response elements resulting in the restriction of expression to the appropriate target tissue.

  15. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    PubMed

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P < 0.05). In the TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P < 0.05). Distinctive decreases of pro-inflammatory cytokines observed in the dermis in the TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  16. Direct inhibition of elastase and matrixmetalloproteinases and stimulation of biosynthesis of fibrillar collagens, elastin, and fibrillins by xanthohumol.

    PubMed

    Philips, Neena; Samuel, Mathew; Arena, Rosemarie; Chen, Yu-Jun; Conte, Jennifer; Natarajan, Prashanthi; Natrajan, Prashanti; Haas, Gerhard; Gonzalez, Salvador

    2010-01-01

    In skin aging there is deterioration of the extracellular matrix's collagen and elastin fibers, from its reduced biosynthesis and increased degradation by elastase and matrixmetalloproteinases (MMPs). Xanthohumol is a flavonoid isolated from the hop plant Humulus lupulus L., with anti-microbial, antioxidant, anti-inflammatory, and anti-carcinogenic properties. The goal of this research was to investigate xanthohumol as an anti-skinaging agent via its beneficial regulation of the extracellular matrix. To this purpose, we examined the direct effect of xanthohumol on the activities of elastase and MMPs (MMPs 1, 2, and 9) and its effect on the expression (protein and/or transcription levels) of collagens (types I, III, and V), elastin, and fibrillins (1 and 2) in dermal fibroblasts. Xanthohumol significantly inhibited elastase and MMP-9 activities from its lowest concentration, and MMP-1 and MMP-2 at its higher concentrations, which implies a greater protective effect on elastin. It dramatically increased the expression of types I, III, and V collagens, and elastin, fibrillin-1, and fibrillin-2 in dermal fibroblasts. The effects were similar to those of ascorbic acid. This is the first report identifying xanthohumol's potential to improve skin structure and firmness: it simultaneously inhibits the activities of elastase/MMPs and stimulates the biosynthesis of fibrillar collagens, elastin, and fibrillins.

  17. Arsenic trioxide prevents nitric oxide production in lipopolysaccharide -stimulated RAW 264.7 by inhibiting a TRIF-dependent pathway.

    PubMed

    Takahashi, Miyuki; Ota, Akinobu; Karnan, Sivasundaram; Hossain, Ekhtear; Konishi, Yuko; Damdindorj, Lkhagvasuren; Konishi, Hiroyuki; Yokochi, Takashi; Nitta, Masakazu; Hosokawa, Yoshitaka

    2013-02-01

    Arsenic trioxide (ATO) is one of the most potent drugs in cancer chemotherapy, and is highly effective in treating both newly diagnosed and relapse patients with acute promyelocytic leukemia (APL). Despite a number of reports regarding the molecular mechanisms by which ATO promotes anti-tumor or pro-apoptotic activity in hematological and other solid malignancies, the effects of ATO on immune responses remain poorly understood. To further understand and clarify the effects of ATO on immune responses, we sought to examine whether ATO affects the production of nitric oxide (NO) in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line, RAW 264.7. Arsenic trioxide was found to prevent NO production in a dose-dependent manner. Arsenic trioxide significantly inhibited the increase in inducible nitric oxide synthase (iNOS) at both the mRNA and protein levels. Furthermore, our analyses revealed that the inhibitory effect of ATO on iNOS expression was ascribed to the prevention of IRF3 phosphorylation, interferon (IFN)-β expression, and STAT1 phosphorylation, but not the prevention of the MyD88-dependent pathway. Taken together, our results indicate that ATO prevents NO production by inhibiting the TIR-domain-containing adaptor protein inducing IFN-β (TRIF)-dependent pathway, thus highlighting an anti-inflammatory property of ATO in innate immunity.

  18. An optimized B lymphocyte stimulator (BLyS) antagonist peptide inhibits the interaction of BLyS with BCMA.

    PubMed

    Tian, Yu; Zhu, Yan-Feng; Wu, Zhen; Feng, Jian-Nan; Li, Yan; Shen, Bei-Fen; Sun, Jian

    2013-04-01

    B lymphocyte stimulator (BLyS) antagonists are new therapeutic reagents for treating the autoimmune diseases. Peptibodies can inhibit the bioactivity of BLyS, the same as other BLyS antagonists: decoyed BLyS receptors and anti-BLyS antibodies. In this study, a new optimized BLyS antagonist peptide was designed according to our previous work by the computer-aided homology modeling. Competitive ELISA showed that the peptide at 100 μg/ml could inhibit 54 % of the BCMA-Fc binding to BLyS. To maintain its stability and spatial conformation, the peptide was fused to human IgG1 Fc to form a peptide-Fc fusion protein-a novel peptibody by gene engineering. ELISA indicated that the peptibody could bind with BLyS in dosage-dependent manner as BCMA-Fc did. This study highlights the possibility of designing and optimizing BLyS antagonist peptides with high biopotency by the computer-aided design. Thus, these peptides could neutralize BLyS activity and be potential antagonists to treat autoimmune diseases related with BLyS overexpression.

  19. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages.

    PubMed

    Kim, Chu-Sook; Kawada, Teruo; Kim, Byung-Sam; Han, In-Seob; Choe, Suck-Young; Kurata, Tadao; Yu, Rina

    2003-03-01

    Capsaicin, a major ingredient of hot pepper, was considered to exhibit an anti-inflammatory property. In order to clarify the signalling mechanism underlying the anti-inflammatory action of capsaicin, we investigated the effect of capsaicin on the production of inflammatory molecules in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. The level of PGE2 was measured by EIA. The expression levels of COX-2, iNOS, IkB-a, and vanilloid receptor-1 (VR-1) were determined at the protein and mRNA levels. Significant inhibition of the production of LPS-induced PGE2 by capsaicin was observed in a dose-dependent manner. Capsaicin did not affect the COX-2 expression at either the protein or mRNA level, but inhibited the enzyme activity of COX-2 and the expression of the iNOS protein. Capsaicin completely blocked LPS-induced disappearance of IkB-a and therefore inactivated NF-kB. The inhibitory action of capsaicin on PGE2 production was not abolished by capsazepine, a specific antagonist to VR-1. A high expression level of the VR-1 like protein (VRL-1) was observed in peritoneal macrophages, while the expression of VR-1 was not detected. These findings suggest that the anti-inflammatory action of capsaicin may occur through a novel mechanism, not by a VR-1 receptor-mediated one. Both capsaicin and capsazepine may be a promising drug candidates for ameliorating inflammatory diseases and cancer.

  20. Transcutaneous Electrical Nerve Stimulation (TENS) reduces pain, fatigue, and hyperalgesia while restoring central inhibition in primary fibromyalgia

    PubMed Central

    Dailey, Dana L; Rakel, Barbara A; Vance, Carol GT; Liebano, Richard E; Anand, Amrit S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A

    2014-01-01

    Because TENS works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo controlled cross-over design to test effects of a single treatment of TENS in people with fibromyalgia. Three treatments were assessed in random order: active TENS, placebo TENS, no TENS. The following measures were assessed before and after each TENS treatment: pain and fatigue at rest and movement, pressure pain thresholds (PPTs), 6 minute walk test (6MWT), range of motion (ROM), five time sit to stand test (FTSTS), and single leg stance (SLS). Conditioned pain modulation (CPM) was completed at end of testing. There was a significant decrease in pain and fatigue with movement for active TENS compared to placebo and no TENS. PPTs increased at site of TENS (spine) and outside site of TENS (leg) when compared to placebo TENS or no TENS. During Active TENS CPM was significantly stronger compared to placebo TENS and no TENS. No changes in functional tasks were observed with TENS. Thus, the current study suggests TENS has short-term efficacy in relieving symptoms of fibromyalgia while the stimulator is active. Future clinical trials should examine the effects of repeated daily delivery of TENS, similar to how TENS is used clinically, on pain, fatigue, function and quality of life in individuals with fibromyalgia. PMID:23900134

  1. Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome

    SciTech Connect

    Hsu, Hsin-Fen; Tsou, Tsui-Chun; Chao, How-Ran; Shy, Cherng-Gueih; Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching; Ko, Ying-Chin

    2010-06-15

    To investigate the possible involvement of betel-quid chewing in adipocyte dysfunction, we determined the effects of arecoline, a major alkaloid in areca nuts, on adipogenic differentiation (adipogenesis), lipolysis, and glucose uptake by fat cells. Using mouse 3T3-L1 preadipocytes, we showed that arecoline inhibited adipogenesis as determined by oil droplet formation and adipogenic marker gene expression. The effects of arecoline on lipolysis of differentiated 3T3-L1 adipocytes were determined by the glycerol release assay, indicating that arecoline induced lipolysis in an adenylyl cyclase-dependent manner. The diabetogenic effects of arecoline on differentiated 3T3-L1 adipocytes were evaluated by the glucose uptake assay, revealing that {>=} 300 {mu}M arecoline significantly attenuated insulin-induced glucose uptake; however, no marked effect on basal glucose uptake was detected. Moreover, using 94 subjects that were randomly selected from a health check-up, we determined the association of betel-quid chewing with hyperlipidemia and its related risk factors. Hyperlipidemia frequency and serum triglyceride levels of betel-quid chewers were significantly higher than those of non-betel-quid chewers. In this study, we demonstrated that arecoline inhibits adipogenic differentiation, induces adenylyl cyclase-dependent lipolysis, and interferes with insulin-induced glucose uptake. Arecoline-induced fat cell dysfunction may lead to hyperlipidemia and hyperglycemia/insulin-resistance. These findings provide the first in vitro evidence of betel-quid chewing modulation of adipose cell metabolism that could contribute to the explanation of the association of this habit with metabolic syndrome disorders.

  2. MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-α.

    PubMed

    Lorente-Cebrián, Silvia; Mejhert, Niklas; Kulyté, Agné; Laurencikiene, Jurga; Åström, Gaby; Hedén, Pér; Rydén, Mikael; Arner, Peter

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and have multiple effects in various tissues including adipose inflammation, a condition characterized by increased local release of the pro-lipolytic cytokine tumor necrosis factor-alpha (TNF-α). Whether miRNAs regulate adipocyte lipolysis is unknown. We set out to determine whether miRNAs affect adipocyte lipolysis in human fat cells. To this end, eleven miRNAs known to be present in human adipose tissue were over-expressed in human in vitro differentiated adipocytes followed by assessments of TNF-α and glycerol levels in conditioned media after 48 h. Three miRNAs (miR-145, -26a and let-7d) modulated both parameters in parallel. However, while miR-26a and let-7d decreased, miR-145 increased both glycerol release and TNF-α secretion. Further studies were focused therefore on miR-145 since this was the only stimulator of lipolysis and TNF-α secretion. Time-course analysis demonstrated that miR-145 over-expression up-regulated TNF-α expression/secretion followed by increased glycerol release. Increase in TNF-α production by miR-145 was mediated via activation of p65, a member of the NF-κB complex. In addition, miR-145 down-regulated the expression of the protease ADAM17, resulting in an increased fraction of membrane bound TNF-α, which is the more biologically active form of TNF-α. MiR-145 overexpression also increased the phosphorylation of activating serine residues in hormone sensitive lipase and decreased the mRNA expression of phosphodiesterase 3B, effects which are also observed upon TNF-α treatment in human adipocytes. We conclude that miR-145 regulates adipocyte lipolysis via multiple mechanisms involving increased production and processing of TNF-α in fat cells.

  3. MicroRNAs Regulate Human Adipocyte Lipolysis: Effects of miR-145 Are Linked to TNF-α

    PubMed Central

    Lorente-Cebrián, Silvia; Mejhert, Niklas; Kulyté, Agné; Laurencikiene, Jurga; Åström, Gaby; Hedén, Pér; Rydén, Mikael; Arner, Peter

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and have multiple effects in various tissues including adipose inflammation, a condition characterized by increased local release of the pro-lipolytic cytokine tumor necrosis factor-alpha (TNF-α). Whether miRNAs regulate adipocyte lipolysis is unknown. We set out to determine whether miRNAs affect adipocyte lipolysis in human fat cells. To this end, eleven miRNAs known to be present in human adipose tissue were over-expressed in human in vitro differentiated adipocytes followed by assessments of TNF-α and glycerol levels in conditioned media after 48 h. Three miRNAs (miR-145, -26a and let-7d) modulated both parameters in parallel. However, while miR-26a and let-7d decreased, miR-145 increased both glycerol release and TNF-α secretion. Further studies were focused therefore on miR-145 since this was the only stimulator of lipolysis and TNF-α secretion. Time-course analysis demonstrated that miR-145 over-expression up-regulated TNF-α expression/secretion followed by increased glycerol release. Increase in TNF-α production by miR-145 was mediated via activation of p65, a member of the NF-κB complex. In addition, miR-145 down-regulated the expression of the protease ADAM17, resulting in an increased fraction of membrane bound TNF-α, which is the more biologically active form of TNF-α. MiR-145 overexpression also increased the phosphorylation of activating serine residues in hormone sensitive lipase and decreased the mRNA expression of phosphodiesterase 3B, effects which are also observed upon TNF-α treatment in human adipocytes. We conclude that miR-145 regulates adipocyte lipolysis via multiple mechanisms involving increased production and processing of TNF-α in fat cells. PMID:24475180

  4. Influence of position and stimulation parameters on intracortical inhibition and facilitation in human tongue motor cortex.

    PubMed

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk; Baad-Hansen, Lene

    2014-04-04

    Paired-pulse transcranial magnetic stimulation (ppTMS) can be used to assess short-interval intracortical inhibitory (SICI) and facilitatory (ICF) networks. Many methodological parameters may however influence the outcome. The aim of the study was to examine the influence of body positions (recline and supine), inter-stimulus intervals (ISI) between the test stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. In studies 1 and 2, fourteen and seventeen healthy volunteers participated respectively. ppTMS was applied over the "hot-spot" of the tongue motor cortex and motor evoked potentials (MEPs) were recorded from contralateral tongue muscles. In study 1, single pulse and three ppTMS ISIs, 2, 10, and 15ms, were applied 8 times each in three blocks (TS: 120%, 140% and 160% of resting motor threshold (rMT); CS: 80% of rMT) in two different body positions (recline and supine) randomly. In study 2, single pulse and four ppTMS ISIs, 2, 2.5, 3, and 3.5ms, were applied 8 times each in randomized order in two blocks (CS: 70% and 80% of rMT; TS: 120% of rMT). There was a significant effect of body position (P=0.049), TS intensities (P<0.001) and ISIs (P<0.001) and interaction between intensity and ISIs (P=0.042) in study 1. In study 2, there was a significant effect of ISI (P<0.001) but not CS intensity (P=0.984) on MEP amplitude. These results may be applied in future studies on the mechanisms of cortical plasticity in the tongue motor pathways using ppTMS and SICI and ICF.

  5. Sulfated gastrin stimulates ghrelin and growth hormone release but inhibits insulin secretion in cattle.

    PubMed

    Zhao, Hongqiong; Yannaing, Swe; Thanthan, Sint; Kuwayama, Hideto

    2011-11-01

    This study was designed to determine the effects of gastrin on the circulating levels of ghrelin, growth hormone (GH), insulin, glucagon and glucose in ruminants. Two experiments were done in eight Holstein steers. Animals were randomly assigned to receive intravenous bolus injections: (1) 0.1% bovine serum albumin in saline as vehicle, 0.8, 4.0 and 20.0 μg/kg body weight (BW) of bovine sulfated gastrin-34; (2) vehicle, 0.53 μg/kg BW of bovine sulfated gastrin-17 alone or combined with 20.0 μg/kg BW of [D-Lys(3)]-GHRP-6, the selective antagonist of GHS-R1a. Blood samples were collected from -10 to 150 min relative to injection time. Concentrations of acyl and total ghrelin in response to gastrin-34 injection were significantly increased in a dose-dependent manner. Concentrations of GH were also markedly elevated by gastrin-34 injection; however, the effect of 20.0 μg/kg was weaker than that of 4.0 μg/kg. The three doses of gastrin-34 equally decreased insulin levels within 15 min and maintained the level until the time of last sampling. Gastrin-34 had no effect (P > 0.05) on the levels of glucagon and glucose. Levels of acyl ghrelin increased after administration of gastrin-17 alone or combined with [D-Lys(3)]-GHRP-6; however, [D-Lys(3)]-GHRP-6 did not block the elevation of GH by gastrin-17. The present results indicate that sulfated gastrin stimulates both ghrelin and GH release, but the GHS-R1a may not contribute to the release of GH by gastrin. Moreover, sulfated gastrin seems to indirectly maintain the homeostasis of blood glucose through the down-regulation of insulin in ruminants.

  6. Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells.

    PubMed

    Befani, Christina; Mylonis, Ilias; Gkotinakou, Ioanna-Maria; Georgoulias, Panagiotis; Hu, Cheng-Jun; Simos, George; Liakos, Panagiotis

    2013-11-01

    Hypoxia-inducible factors (HIFs) are transcriptional regulators that mediate the cellular response to low oxygen. Although HIF-1 is usually considered as the principal mediator of hypoxic adaptation, several tissues and different cell types express both HIF-1 and HIF-2 isoforms under hypoxia or when treated with hypoxia mimetic chemicals such as cobalt. However, the similarities or differences between HIF-1 and HIF-2, in terms of their tissue- and inducer-specific activation and function, are not adequately characterized. To address this issue, we investigated the effects of true hypoxia and hypoxia mimetics on HIF-1 and HIF-2 induction and specific gene transcriptional activity in two hepatic cancer cell lines, Huh7 and HepG2. Both hypoxia and cobalt caused rapid induction of both HIF-1α and HIF-2α proteins. Hypoxia induced erythropoietin (EPO) expression and secretion in a HIF-2-dependent way. Surprisingly, however, EPO expression was not induced when cells were treated with cobalt. In agreement, both HIF-1- and HIF-2-dependent promoters (of PGK and SOD2 genes, respectively) were activated by hypoxia while cobalt only activated the HIF-1-dependent PGK promoter. Unlike cobalt, other hypoxia mimetics such as DFO and DMOG activated both types of promoters. Furthermore, cobalt impaired the hypoxic stimulation of HIF-2, but not HIF-1, activity and cobalt-induced HIF-2α interacted poorly with USF-2, a HIF-2-specific co-activator. These data show that, despite similar induction of HIF-1α and HIF-2α protein expression, HIF-1 and HIF-2 specific gene activating functions respond differently to different stimuli and suggest the operation of oxygen-independent and gene- or tissue-specific regulatory mechanisms involving additional transcription factors or co-activators.

  7. Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing

    PubMed Central

    Vasant, Dipesh H; Mistry, Satish; Michou, Emilia; Jefferson, Samantha; Rothwell, John C; Hamdy, Shaheen

    2014-01-01

    The human cortical swallowing system exhibits bilateral but functionally asymmetric representation in health and disease as evidenced by both focal cortical inhibition (pre-conditioning with 1 Hz repetitive transcranial magnetic stimulation; rTMS) and unilateral stroke, where disruption of the stronger (dominant) pharyngeal projection alters swallowing neurophysiology and behaviour. Moreover, excitatory neurostimulation protocols capable of reversing the disruptive effects of focal cortical inhibition have demonstrated therapeutic promise in post-stroke dysphagia when applied contralaterally. In healthy participants (n = 15, 8 males, mean age (±SEM) 35 ± 9 years), optimal parameters of transcranial direct current stimulation (tDCS) (anodal, 1.5 mA, 10 min) were applied contralaterally after 1 Hz rTMS pre-conditioning to the strongest pharyngeal projection. Swallowing neurophysiology was assessed in both hemispheres by intraluminal recordings of pharyngeal motor-evoked responses (PMEPs) to single-pulse TMS as a measure of cortical excitability. Swallowing behaviour was examined using a pressure-based reaction time protocol. Measurements were made before and for up to 60 min post intervention. Subjects were randomised to active or sham tDCS after 1 Hz rTMS on separate days and data were compared using repeated measures ANOVA. Active tDCS increased PMEPs bilaterally (F1,14 = 7.4, P = 0.017) reversing the inhibitory effects of 1 Hz rTMS in the pre-conditioned hemisphere (F1,14 = 10.1, P = 0.007). Active tDCS also enhanced swallowing behaviour, increasing the number of correctly timed challenge swallows compared to sham (F1,14 = 6.3, P = 0.025). Thus, tDCS to the contralateral pharyngeal motor cortex reverses the neurophysiological and behavioural effects of focal cortical inhibition on swallowing in healthy individuals and has therapeutic potential for dysphagia rehabilitation. PMID:24247983

  8. Glu-857 moderates K+-dependent stimulation and SCH 28080-dependent inhibition of the gastric H,K-ATPase.

    PubMed

    Rulli, S J; Horiba, M N; Skripnikova, E; Rabon, E C

    1999-05-21

    The rabbit H,K-ATPase alpha- and beta-subunits were transiently expressed in HEK293 T cells. The co-expression of the H,K-ATPase alpha- and beta-subunits was essential for the functional H,K-ATPase. The K+-stimulated H,K-ATPase activity of 0.82 +/- 0.2 micromol/mg/h saturated with a K0.5 (KCl) of 0.6 +/- 0.1 mM, whereas the 2-methyl-8-(phenylmethoxy)imidazo[1,2a]pyridine-3-acetonitrile (SCH 28080)-inhibited ATPase of 0.62 +/- 0.07 micromol/mg/h saturated with a Ki (SCH 28080) of 1.0 +/- 0.3 microM. Site mutations were introduced at the N,N-dicyclohexylcarbodiimide-reactive residue, Glu-857, to evaluate the role of this residue in ATPase function. Variations in the side chain size and charge of this residue did not inhibit the specific activity of the H,K-ATPase, but reversal of the side chain charge by substitution of Lys or Arg for Glu produced a reciprocal change in the sensitivity of the H,K-ATPase to K+ and SCH 28080. The K0.5 for K+stimulated ATPase was decreased to 0.2 +/-.05 and 0.2 +/-.03 mM, respectively, in Lys-857 and Arg-857 site mutants, whereas the Ki for SCH 28080-dependent inhibition was increased to 6.5 +/- 1.4 and 5.9 +/- 1.5 microM, respectively. The H,K-ATPase kinetics were unaffected by the introduction of Ala at this site, but Leu produced a modest reciprocal effect. These data indicate that Glu-857 is not an essential residue for cation-dependent activity but that the residue influences the kinetics of both K+ and SCH 28080-mediated functions. This finding suggests a possible role of this residue in the conformational equilibrium of the H,K-ATPase.

  9. Flavonoids inhibit iNOS production via mitogen activated proteins in lipoteichoic acid stimulated cardiomyoblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Ventura-Arroyo, Jairo Agustín; Arreguín-Cano, Juan Antonio; Ostoa-Pérez, María Fernanda

    2014-08-01

    Infective endocarditis is caused by oral commensal bacteria which are important etiologic agents in this disease and can induce release of nitric oxide (NO), promoting an inflammatory response in the endocardium. In this study, we investigated the properties of kaempherol, epigallocatechin, apigenin, and naringin in embryonic mouse heart cells (H9c2) treated with lipoteichoic acid (LTA) obtained from Streptococcus sanguinis. NO production was measured with the Griess method. Expression of inducible nitric oxide synthase (iNOS) was detected by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, western blot assays and immunofluorescence staining were used to assess translocation of nuclear factor kappa beta (NF-κB), degradation of IκB, and activity of the mitogen activated protein (MAP) kinases extracellular signal-regulated kinase (ERK 1/2), p38, and c-Jun N-terminal kinase (JNK). And the effects of these flavonoids on cell viability were also assessed. Our results showed that flavonoids blocked activation of ERK, JNK, and p38 in cardiomyocytes treated with LTA. Moreover, the flavonoids showed no cytotoxic effects and blocked NF-κB translocation and IκB degradation and inhibited LTA-induced NF-κB promoter activity, iNOS expression and NO production. In conclusion these effects are consistent with some of the observed anti-inflammatory properties of other flavonoids.

  10. Stimulation of 45Ca efflux from smooth muscle cells by metabolic inhibition and high K depolarization.

    PubMed

    Van Breemen, C; Wuytack, F; Casteels, R; Martinelli, B; Campailla, E; Ferrari, G

    1975-09-09

    The characteristics of the extracellular and cellular calcium exchange in taenia coli have been studied by efflux experiments under different experimental conditions. The exchange of extracellularly bound calcium is accelerated by the presence of calcium in the external solution. If a Ca-free solution is used as washing solution, the slowly exchanging extracellular calcium also contributes appreciably to the later phase of the Ca efflux and obscures the changes of the cellular calcium exchange. There is no evidence for a Ca-Ca exchange diffusion. Most of the 45Ca bound at extracellular binding sites can be released by a 10 min exposure to 2 mM EGTA or to 10 mM La3+. This La concentration moreover largely inhibits the release of 45Ca from the cellular compartment by metabolic depletion. A release of cellular 45Ca can be induced by metabolic depletion or by K depolarization. Both procedures probably act at the same sequestering sites. However, while DNP + IAAa cts in the absence of external Ca, it is observed that K depolarization can only cause a Ca release if external Ca can enter the cells.

  11. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds

    PubMed Central

    Lehtovirta-Morley, Laura E; Ge, Chaorong; Ross, Jenna; Yao, Huaiying; Nicol, Graeme W; Prosser, James I

    2014-01-01

    Autotrophic ammonia oxidation is performed by two distinct groups of microorganisms: ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB). AOA outnumber their bacterial counterparts in many soils, at times by several orders of magnitude, but relatively little is known of their physiology due to the lack of cultivated isolates. Although a number of AOA have been cultivated from soil, Nitrososphaera viennensis was the sole terrestrial AOA in pure culture and requires pyruvate for growth in the laboratory. Here, we describe isolation in pure culture and characterisation of two acidophilic terrestrial AOA representing the Candidatus genus Nitrosotalea and their responses to organic acids. Interestingly, despite their close phylogenetic relatedness, the two Nitrosotalea strains exhibited differences in physiological features, including specific growth rate, temperature preference and to an extent, response to organic compounds. In contrast to N. viennensis, both Nitrosotalea isolates were inhibited by pyruvate but their growth yield increased in the presence of oxaloacetate. This study demonstrates physiological diversity within AOA species and between different AOA genera. Different preferences for organic compounds potentially influence the favoured localisation of ammonia oxidisers within the soil and the structure of ammonia-oxidising communities in terrestrial ecosystems. PMID:24909965

  12. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds.

    PubMed

    Lehtovirta-Morley, Laura E; Ge, Chaorong; Ross, Jenna; Yao, Huaiying; Nicol, Graeme W; Prosser, James I

    2014-09-01

    Autotrophic ammonia oxidation is performed by two distinct groups of microorganisms: ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB). AOA outnumber their bacterial counterparts in many soils, at times by several orders of magnitude, but relatively little is known of their physiology due to the lack of cultivated isolates. Although a number of AOA have been cultivated from soil, Nitrososphaera viennensis was the sole terrestrial AOA in pure culture and requires pyruvate for growth in the laboratory. Here, we describe isolation in pure culture and characterisation of two acidophilic terrestrial AOA representing the Candidatus genus Nitrosotalea and their responses to organic acids. Interestingly, despite their close phylogenetic relatedness, the two Nitrosotalea strains exhibited differences in physiological features, including specific growth rate, temperature preference and to an extent, response to organic compounds. In contrast to N. viennensis, both Nitrosotalea isolates were inhibited by pyruvate but their growth yield increased in the presence of oxaloacetate. This study demonstrates physiological diversity within AOA species and between different AOA genera. Different preferences for organic compounds potentially influence the favoured localisation of ammonia oxidisers within the soil and the structure of ammonia-oxidising communities in terrestrial ecosystems.

  13. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function

    PubMed Central

    Gallardo-Montejano, Violeta I.; Saxena, Geetu; Kusminski, Christine M.; Yang, Chaofeng; McAfee, John L.; Hahner, Lisa; Hoch, Kathleen; Dubinsky, William; Narkar, Vihang A.; Bickel, Perry E.

    2016-01-01

    Dysfunctional cellular lipid metabolism contributes to common chronic human diseases, including type 2 diabetes, obesity, fatty liver disease and diabetic cardiomyopathy. How cells balance lipid storage and mitochondrial oxidative capacity is poorly understood. Here we identify the lipid droplet protein Perilipin 5 as a catecholamine-triggered interaction partner of PGC-1α. We report that during catecholamine-stimulated lipolysis, Perilipin 5 is phosphorylated by protein kinase A and forms transcriptional complexes with PGC-1α and SIRT1 in the nucleus. Perilipin 5 promotes PGC-1α co-activator function by disinhibiting SIRT1 deacetylase activity. We show by gain-and-loss of function studies in cells that nuclear Perilipin 5 promotes transcription of genes that mediate mitochondrial biogenesis and oxidative function. We propose that Perilipin 5 is an important molecular link that couples the coordinated catecholamine activation of the PKA pathway and of lipid droplet lipolysis with transcriptional regulation to promote efficient fatty acid catabolism and prevent mitochondrial dysfunction. PMID:27554864

  14. cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts.

    PubMed

    Liu, Xiaoqiu; Sun, Shu Qiang; Hassid, Aviv; Ostrom, Rennolds S

    2006-12-01

    Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Cytokines such as transforming growth factor-beta (TGF-beta) play a fundamental role in the development of tissue fibrosis by stimulating matrix deposition and other profibrotic responses, but less is known about pathways that might inhibit fibrosis. Increased cAMP formation inhibits myofibroblast differentiation and collagen production by cardiac fibroblasts, but the mechanism of this inhibition is not known. We sought to characterize the signaling pathways by which cAMP-elevating agents alter collagen expression and myofibroblast differentiation. Treatment with 10 microM forskolin or isoproterenol increased cAMP production and cAMP response element binding protein (CREB) phosphorylation in cardiac fibroblasts and inhibited serum- or TGF-beta-stimulated collagen synthesis by 37% or more. These same cAMP-elevating agents blunted TGF-beta-stimulated expression of collagen I, collagen III, and alpha-smooth muscle actin. Forskolin or isoproterenol treatment blocked the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) induced by TGF-beta despite the fact that these cAMP-elevating agents stimulated ERK1/2 activation on their own. cAMP-elevating agents also attenuated the activation of c-Jun NH(2)-terminal kinase and reduced binding of the transcriptional coactivator CREB-binding protein 1 to transcriptional complexes containing Smad2, Smad3, and Smad4. Pharmacological inhibition of ERK completely blocked TGF-beta-stimulated collagen gene expression, but expression of an active mutant of MEK was additive with TGF-beta treatment. Thus, cAMP-elevating agents inhibit the profibrotic effects of TGF-beta in cardiac fibroblasts largely through inhibiting ERK1/2 phosphorylation but also by reducing Smad-mediated recruitment of transcriptional coactivators.

  15. Mitosis and inhibition of intracellular transport stimulate palmitoylation of a 62-kD protein

    PubMed Central

    1992-01-01

    Recent studies suggest that a cycle of acylation/deacylation is involved in the vesicular transport of proteins between intracellular compartments at both the budding and the fusion stage (Glick, B. S., and J. E. Rothman. 1987. Nature (Lond.). 326:309-312). Since a number of cellular processes requiring vesicular transport are inhibited during mitosis, we examined the fatty acylation of proteins in interphase and mitotic cells. We have identified a major palmitoylated protein with an apparent molecular weight of 62,000 (p62), whose level of acylation increases 5-10-fold during mitosis. Acylation was reversible and p62 was no longer palmitoylated in cells that have exited mitosis and entered G1. p62 is tightly bound to the cytoplasmic side of membranes, since it was sensitive to digestion with proteases in the absence of detergent and was not removed by treatment with 1 M KCl. p62 is removed from membranes by nonionic detergents or concentrations of urea greater than 4 M. The localization of p62 by subcellular fractionation is consistent with it being in the cis-Golgi or the cis-Golgi network. A palmitoylated protein of the same molecular weight was also observed in interphase cells treated with inhibitors of intracellular transport, such as brefeldin A, monensin, carbonylcyanide m-chlorophenylhydrazone, or aluminum fluoride. The protein palmitoylated in the presence of brefeldin A was shown to be the same as that palmitoylated during mitosis using partial proteolysis. Digestion with two enzymes, alkaline protease and endoprotease lys-C, generated the same 3H-palmitate-labeled peptide fragments from p62 from mitotic or brefeldin A-treated cells. We suggest that the acylation and deacylation of p62 may be important in vesicular transport and that this process may be regulated during mitosis. PMID:1730740

  16. ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK

    PubMed Central

    2011-01-01

    Background Obesity is a health hazard which is closely associated with various complications including insulin resistance, hypertension, dyslipidemia, atherosclerosis, type 2 diabetes and cancer. In spite of numerous preclinical and clinical interventions, the prevalence of obesity and its related disorders are on the rise demanding an urgent need for exploring novel therapeutic agents that can regulate adipogenesis. In the present study, we evaluated whether a dietary supplement ReishiMax (RM), containing triterpenes and polysaccharides extracted from medicinal mushroom Ganoderma lucidum, affects adipocyte differentiation and glucose uptake in 3T3-L1 cells. Methods 3T3-L1 pre-adipocytes were differentiated into adipocytes and treated with RM (0-300 μg/ml). Adipocyte differentiation/lipid uptake was evaluated by oil red O staining and triglyceride and glycerol concentrations were determined. Gene expression was evaluated by semi-quantitative RT-PCR and Western blot analysis. Glucose uptake was determined with [3H]-glucose. Results RM inhibited adipocyte differentiation through the suppresion of expression of adipogenic transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ), sterol regulatory element binding element protein-1c (SREBP-1c) and CCAAT/enhancer binding protein-α (C/EBP-α). RM also suppressed expression of enzymes and proteins responsible for lipid synthesis, transport and storage: fatty acid synthase (FAS), acyl-CoA synthetase-1 (ACS1), fatty acid binding protein-4 (FABP4), fatty acid transport protein-1 (FATP1) and perilipin. RM induced AMP-activated protein kinase (AMPK) and increased glucose uptake by adipocytes. Conclusion Our study suggests that RM can control adipocyte differentiation and glucose uptake. The health benefits of ReishiMax warrant further clinical studies. PMID:21929808

  17. Pycnogenol supplementation promotes lipolysis via activation of cAMP-dependent PKA in ob/ob mice and primary-cultured adipocytes.

    PubMed

    Ho, Jin-Nyoung; Kim, Ok-Kyung; Nam, Da-Eun; Jun, Woojin; Lee, Jeongmin

    2014-01-01

    This study investigated the PKA-dependent inhibitory effect of pycnogenol (Pyc) on lipolysis using ob/ob mice and primary mouse adipocytes. Supplementation of Pyc at 30 mg/kg significantly reduced body weight gain and visceral fat mass. The serum and hepatic triglyceride (TG) and total cholesterol (TC) levels were reduced by Pyc supplementation, and high density lipoprotein (HDL)-cholesterol level significantly increased. In addition, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) mRNA levels increased with Pyc supplementation in adipose tissue of ob/ob mice. The treatment of primary cultured adipocytes with Pyc at 100 μg/mL significantly increased glycerol release, cAMP level by reduction of phosphodiestersae-3B (PDE3B), and HSL levels, but decreased protein levels of perilipin A and fatty acid synthetase (FAS). The PKA inhibitor (H89) clearly blocked the cellular levels of perilipin A and HSL, suggesting that Pyc promotes lipolysis of adipocytes through activation of cAMP-dependent PKA, resulting in induction of HSL and reduction of perilipin A. Therefore, this study may elucidate the possible mechanism of Pyc, which is a candidate for weight loss through stimulation of lipolysis.

  18. Inhibition of phosphatidylinositol 3-kinase stimulates activity of the small-conductance K channel in the CCD

    PubMed Central

    Li, Dimin; Wei, Yuan; Babilonia, Elisa; Wang, Zhijian; Wang, Wen-Hui

    2010-01-01

    We used Western blotting to examine the expression of phosphatidylinositol 3-kinase (PI3K) in the renal cortex and outer medulla and employed the patch-clamp technique to study the effect of PI3K on the ROMK-like small-conductance K (SK) channels in the cortical collecting duct (CCD). Low K intake increased the expression of the 110-kDa α-subunit (p110α) of PI3K compared with rats on a normal-K diet. Because low K intake increases superoxide levels (2), the possibility that increases in superoxide anions may be responsible for the effect of low K intake on the expression of PI3K is supported by finding that addition of H2O2 stimulates the expression of p110α in M1 cells. Inhibition of PI3K with either wortmannin or LY-294002 significantly increased channel activity in the CCD from rats on a K-deficient (KD) diet or on a normal-K diet. The stimulatory effect of wortmannin on ROMK channel activity cannot be mimicked by inhibition of phospholipase C with U-73122. This suggests that the effect of inhibiting PI3K was not the result of increasing the phosphatidylinositol 4,5-bisphosphate level. Moreover, application of the exogenous phosphatidylinositol 3,4,5-trisphosphate analog had no effect on channel activity in excised patches. Because low K intake has been shown to increase the activity of protein tyrosine kinase (PTK), we explored the role of the interaction between PTK and PI3K in the regulation of the SK channel activity. Inhibition of PTK increased SK channel activity in the CCD from rats on a KD diet. However, addition of wortmannin did not further increase ROMK channel activity. Also, the effect of wortmannin was abolished by treatment of CCD with phalloidin. We conclude that PI3K is involved in mediating the effect of low K intake on ROMK channel activity in the CCD and that the effect of PI3K on SK channels requires the involvement of PTK and the cytoskeleton. PMID:16204406

  19. Inhibition of phosphatidylinositol 3-kinase stimulates activity of the small-conductance K channel in the CCD.

    PubMed

    Li, Dimin; Wei, Yuan; Babilonia, Elisa; Wang, Zhijian; Wang, Wen-Hui

    2006-04-01

    We used Western blotting to examine the expression of phosphatidylinositol 3-kinase (PI3K) in the renal cortex and outer medulla and employed the patch-clamp technique to study the effect of PI3K on the ROMK-like small-conductance K (SK) channels in the cortical collecting duct (CCD). Low K intake increased the expression of the 110-kDa alpha-subunit (p110alpha) of PI3K compared with rats on a normal-K diet. Because low K intake increases superoxide levels (2), the possibility that increases in superoxide anions may be responsible for the effect of low K intake on the expression of PI3K is supported by finding that addition of H(2)O(2) stimulates the expression of p110alpha in M1 cells. Inhibition of PI3K with either wortmannin or LY-294002 significantly increased channel activity in the CCD from rats on a K-deficient (KD) diet or on a normal-K diet. The stimulatory effect of wortmannin on ROMK channel activity cannot be mimicked by inhibition of phospholipase C with U-73122. This suggests that the effect of inhibiting PI3K was not the result of increasing the phosphatidylinositol 4,5-bisphosphate level. Moreover, application of the exogenous phosphatidylinositol 3,4,5-trisphosphate analog had no effect on channel activity in excised patches. Because low K intake has been shown to increase the activity of protein tyrosine kinase (PTK), we explored the role of the interaction between PTK and PI3K in the regulation of the SK channel activity. Inhibition of PTK increased SK channel activity in the CCD from rats on a KD diet. However, addition of wortmannin did not further increase ROMK channel activity. Also, the effect of wortmannin was abolished by treatment of CCD with phalloidin. We conclude that PI3K is involved in mediating the effect of low K intake on ROMK channel activity in the CCD and that the effect of PI3K on SK channels requires the involvement of PTK and the cytoskeleton.

  20. Do imipramine and dihydroergosine possess two components - one stimulating 5-HT sub 1 and the other inhibiting 5-HT sub 2 receptors

    SciTech Connect

    Pericic, D.; Mueck-Seler, D. )

    1990-01-01

    The mechanisms by which imipramine and dihydroergosine stimulate the 5-HT syndrome in rats and inhibit the head-twitch response in rats and mice were studied. Imipramine- and dihydroergosine-included stimulation of the 5-HT syndrome was inhibited stereoselectively by propranolol, a high affinity ligand for 5-HT{sub 1} receptor sites, but not by ritanserin, a specific 5-HT{sub 2} receptor antagonist. (-) -Propranolol potentiated the inhibitory effect of imipramine, but not of dihydroergosine on the head-twitch response, while ritanserin was without effect. As expected, 8-OH-DPAT, a selective 5-HT{sub 1A} receptor agonist, stimulated, and 5-HT{sub 1B} agonists CGS 12066B and 1-(trifluoromethylphenyl) piperazine (TFMPP) failed to stimulate the 5-HT syndrome induced in rats by pargyline and 5-HTP administration. A higher dose of ritanserin inhibited the syndrome. While 8-OH-DPAT alone produced all behavioral components of the 5-HT syndrome, dihydroergosine or imipramine alone even at very high doses never produced tremor or a more intensive forepaw padding as seen when these drugs were given in combination with pargyline and 5-HTP. A single administration of (-)-propranolol also inhibited the head-twitch response. This effect lasted in mice longer that after ritanserin administration. In in vitro experiments dihydroergosine expressed approximately twenty-fold higher affinity for {sup 3}H-ketanserin binding sites than imipramine.

  1. A calmodulin-stimulated Ca2+ pump in plasma-membrane vesicles from Trypanosoma brucei; selective inhibition by pentamidine.

    PubMed Central

    Benaim, G; Lopez-Estraño, C; Docampo, R; Moreno, S N

    1993-01-01

    Despite previous reports [McLaughlin (1985) Mol. Biochem. Parasitol. 15, 189-201; Ghosh, Ray, Sarkar and Bhaduri (1990) J. Biol. Chem. 265, 11345-11351; Mazumder, Mukherjee, Ghosh, Ray and Bhaduri (1992) J. Biol. Chem. 267, 18440-18446] that the plasma membrane of different trypanosomatids only contains Ca(2+)-ATPase that does not show any demonstrable dependence on Mg2+, a high-affinity (Ca(2+)-Mg2+)-ATPase was demonstrated in the plasma membrane of Trypanosoma brucei. The enzyme became saturated with micromolar amounts of Ca2+, reaching a Vmax. of 3.45 +/- 0.66 nmol of ATP/min per mg of protein. The Km,app. for Ca2+ was 0.52 +/- 0.03 microM. This was decreased to 0.23 +/- 0.05 microM, and the Vmax. was increased to 6.36 +/- 0.22 nmol of ATP/min per mg of protein (about 85%), when calmodulin was present. T. brucei plasma-membrane vesicles accumulated Ca2+ on addition of ATP only when Mg2+ was present, and released it to addition of the Ca2+ ionophore A23187. In addition, this Ca2+ transport was stimulated by calmodulin. Addition of NaCl to Ca(2+)-loaded T. brucei plasma-membrane vesicles did not result in Ca2+ release, thus suggesting the absence of a Na+/Ca2+ exchanger in these parasites. Therefore the (Ca(2+)-Mg2+)-ATPase would be the only mechanism so far described that is responsible for the long-term fine tuning of the intracellular Ca2+ concentration of these parasites. The trypanocidal drug pentamidine inhibited the T. brucei plasma-membrane (Ca(2+)-Mg2+)-ATPase and Ca2+ transport at concentrations that had no effect on the Ca(2+)-ATPase activity of human or pig erythrocytes. In this latter case, pentamidine behaved as a weak calmodulin antagonist, since it inhibited the stimulation of the erythrocyte Ca(2+)-ATPase by calmodulin. PMID:8280074

  2. Epidermal growth factor stimulates mouse placental lactogen I but inhibits mouse placental lactogen II secretion in vitro.

    PubMed Central

    Yamaguchi, M; Ogren, L; Endo, H; Thordarson, G; Kensinger, R; Talamantes, F

    1992-01-01

    This study was undertaken to determine whether epidermal growth factor (EGF) regulates the secretion of mouse placental lactogen (mPL)-I and mPL-II. Primary cell cultures were prepared from placentas from days 7, 9, and 11 of pregnancy and cultured for up to 5 days. Addition of EGF (20 ng/ml) to the medium resulted in significant stimulation of mPL-I secretion by the second day of culture in cells from days 7 and 9 of pregnancy and significant inhibition of mPL-II secretion by the third or fourth day of culture in cells from days 7, 9, and 11. Dose-response studies carried out with cells from day 7 of pregnancy demonstrated that the minimum concentration of EGF that stimulated mPL-I secretion and inhibited mPL-II secretion was 1.0 ng/ml. EGF did not affect the DNA content of the cells or cell viability, assessed by trypan blue exclusion, nor did it have a general effect on protein synthesis. There are three types of PL-containing giant cells in mouse placental cell cultures: cells that contain either mPL-I or mPL-II and cells that contain both hormones. Immunocytochemical analysis and the reverse hemolytic plaque assay indicated that EGF treatment was accompanied by a significant increase in the number of cells that produce mPL-I, but among the PL cells that contained mPL-I, there was no change in the fraction of cells that contained only mPL-I or the fraction that contained both mPL-I and mPL-II. In contrast, EGF treatment did affect the distribution of mPL-II among PL cells. In control cultures, about 75% of the cells that contained mPL-II also contained mPL-I, but in EGF-treated cultures, all of the cells that contained mPL-II also contained mPL-I. These data suggest that EGF regulates mPL-I and mPL-II secretion at least partly by regulating PL cell differentiation. PMID:1454826

  3. Pathogenesis of Pancreatic Cancer Exosome-Induced Lipolysis in Adipose Tissue

    PubMed Central

    Sagar, Gunisha; Sah, Raghuwansh P.; Javeed, Naureen; Dutta, Shamit K; Smyrk, Thomas C; Lau, Julie S; Giorgadze, Nino; Tchkonia, Tamar; Kirkland, James; Chari, Suresh T; Mukhopadhyay, Debabrata

    2017-01-01

    Background and Objectives New-onset diabetes and concomitant weight loss occurring several months before the clinical presentation of pancreatic cancer (PC) appear to be paraneoplastic phenomena caused by tumor-secreted products. Our recent findings have shown exosomal adrenomedullin (AM) is important in development of diabetes in PC. Adipose tissue lipolysis might explain early onset weight loss in PC. We hypothesize that lipolysis-inducing cargo is carried in exosomes shed by PC and is responsible for the paraneoplastic effects. Therefore, in this study we investigate if exosomes secreted by PC induce lipolysis in adipocytes and explore the role of AM in PC exosomes as the mediator of this lipolysis. Design Exosomes from patient derived cell lines and from plasma of PC patients and non-PC controls were isolated and characterized. Differentiated murine (3T3-L1) and human adipocytes were exposed to these exosomes to study lipolysis. Glycerol assay and western blotting were used to study lipolysis. Duolink assay was used to study AM and AM receptor (ADMR) interaction in adipocytes treated with exosomes. Results In murine and human adipocytes we found that both AM and PC-exosomes promoted lipolysis, which was abrogated by AM receptor blockade. AM interacted with its receptor on the adipocytes, activated p38 and ERK1/2 MAPKs and promoted lipolysis by phosphorylating hormone sensitive lipase. PKH67 labeled PC-exosomes were readily internalized into adipocytes and involved both caveolin and macropinocytosis as possible mechanisms for endocytosis. Conclusions Pancreatic cancer secreted exosomes induce lipolysis in subcutaneous adipose tissue; exosomal adrenomedullin is a candidate mediator of this effect. PMID:26061593

  4. The effect of inhibition of leukotriene synthesis on the activity of interleukin-8 and granulocyte-macrophage colony-stimulating factor

    PubMed Central

    Pizzey, A. R.; Linch, D. C.

    1993-01-01

    The cytokines interleukin-8 (IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced the extracellular release of arachidonate metabolites from ionophore-stimulated neutrophils by 145 ± 10% (mean ± S.E.M., n = 13) and 182 ± 11% (n = 16), respectively. To determine whether enhanced leukotriene production mediates the effects of these cytokines on neutrophil activity, two different specific arachidonate 5-lipoxygenase (5-LO) inhibitors, piriprost and MK-886, were used to inhibit leukotriene synthesis. Neither inhibitor affected the upregulation of CD11b β2-integrin expression or priming of superoxide generation stimulated by IL-8 and GM-CSF. It is concluded that leukotrienes do not mediate either the direct or priming effects of these cytokines and that these classes of anti-inflammatory drugs are therefore unlikely to inhibit the effects of IL-8 and GM-CSF on neutrophil activation. PMID:18475524

  5. Testosterone inhibition of growth hormone release stimulated by a growth hormone secretagogue: studies in the rat and dog.

    PubMed

    Rigamonti, Antonello E; Cella, Silvano G; Giordani, Claudio; Bonomo, Sara M; Giunta, Marialuisa; Sartorio, Alessandro; Muller, Eugenio

    2006-01-01

    Anabolic steroids are frequently taken by athletes and bodybuilders together with recombinant human GH (rhGH), though there is some scientific evidence that the use of anabolic steroids reverses the rhGH-induced effects. Recently, we have shown that treatment with rhGH (0.2 IU/kg s.c., daily x 12 days) in the dog markedly reduced the canine GH (cGH) responses stimulated by EP51216, a GH secretagogue (GHS), evaluated after 3 and 5 daily rhGH injections, and that the inhibition was still present a few days after rhGH discontinuation. The aim of the present study was to evaluate in the dog the GH response to EP51216 (125 mug/kg i.v.) in a condition of enhanced androgenic function (i.e. acute injection or 15-day treatment with testosterone at the dose of 2 mg/kg i.m. on alternate days), and in the hypophysectomized rat the hypothalamic and hippocampal expression of ghrelin, the receptor of GHSs (GHS-R), GH-releasing hormone (GHRH) and somatostatin (SS) after specific hormonal replacement therapies (testosterone, 1 mg/kg/day s.c.; hydrocortisone, 500 mug/kg/day s.c.; rhGH, 400 mug/kg/day s.c.; 0.9% saline 0.1 ml/kg/day s.c.; x11 days). In the dog experiments, under baseline conditions, a single injection of EP51216 elicited an abrupt rise of plasma cGH. Twenty-four hours from the acute bolus injection of testosterone, C(max) and AUC(0-90) of the GHS-stimulated cGH response were significantly lower than baseline cGH response; 5 days later, there was still a significant decrease of either parameter versus the original values. Short-term treatment with testosterone markedly reduced the GHS-stimulated cGH responses evaluated during (5th bolus) and at the end (8th bolus) of testosterone treatment. Four and 8 days after testosterone withdrawal, the EP51216-stimulated cGH response was still significantly reduced when compared with that under baseline conditions. Plasma concentrations of insulin-like growth factor 1 (IGF-1) were stable until the 5th bolus of testosterone and

  6. Pyrroloquinoline quinone prevents testosterone deficiency-induced osteoporosis by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption

    PubMed Central

    Wu, Xuan; Li, Jie; Zhang, Hengwei; Wang, Hui; Yin, Guoyong; Miao, Dengshun

    2017-01-01

    Accumulating evidences suggest that oxidative stress caused and deteriorated the aging related osteoporosis and pyrroloquinoline quinone (PQQ) is a powerful antioxidant. However, it is unclear whether PQQ can prevent testosterone deficiency-induced osteoporosis. In this study, the orchidectomized (ORX) mice were supplemented in diet with/without PQQ for 48 weeks, and compared with each other and with sham mice. Results showed that bone mineral density, trabecular bone volume, collagen deposition and osteoblast number were decreased significantly in ORX mice compared with shame mice, whereas PQQ supplementation largely prevented these alterations. In contrast, osteoclast surface and ratio of RANKL and OPG mRNA relative expression levels were increased significantly in ORX mice compared with shame mice, but were decreased significantly by PQQ supplementation. Furthermore, we found that CFU-f and ALP positive CFU-f forming efficiency and the proliferation of mesenchymal stem cells were reduced significantly in ORX mice compared with shame mice, but were increased significantly by PQQ supplementation. Reactive oxygen species (ROS) levels in thymus were increased, antioxidant enzymes SOD-1, SOD-2, Prdx I and Prdx IV protein expression levels in bony tissue were down-regulated, whereas the protein expression levels of DNA damage response related molecules including γ-H2AX, p53, Chk2 and NFκB-p65 in bony tissue were up-regulated significantly in ORX mice compared with shame mice, whereas PQQ supplementation largely rescued these alterations observed in ORX mice. Our results indicate that PQQ supplementation can prevent testosterone deficiency-induced osteoporosis by inhibiting oxidative stress and DNA damage, stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. PMID:28386349

  7. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells

    PubMed Central

    Wang, Yuan Yuan; Attané, Camille; Milhas, Delphine; Dirat, Béatrice; Dauvillier, Stéphanie; Guerard, Adrien; Gilhodes, Julia; Lazar, Ikrame; Alet, Nathalie; Laurent, Victor; Le Gonidec, Sophie; Hervé, Caroline; Bost, Frédéric; Ren, Guo Sheng; Bono, Françoise; Escourrou, Ghislaine; Prentki, Marc; Nieto, Laurence; Valet, Philippe

    2017-01-01

    In breast cancer, a key feature of peritumoral adipocytes is their loss of lipid content observed both in vitro and in human tumors. The free fatty acids (FFAs), released by adipocytes after lipolysis induced by tumor secretions, are transferred and stored in tumor cells as triglycerides in lipid droplets. In tumor cell lines, we demonstrate that FFAs can be released over time from lipid droplets through an adipose triglyceride lipase–dependent (ATGL-dependent) lipolytic pathway. In vivo, ATGL is expressed in human tumors where its expression correlates with tumor aggressiveness and is upregulated by contact with adipocytes. The released FFAs are then used for fatty acid β-oxidation (FAO), an active process in cancer but not normal breast epithelial cells, and regulated by coculture with adipocytes. However, in cocultivated cells, FAO is uncoupled from ATP production, leading to AMPK/acetyl-CoA carboxylase activation, a circle that maintains this state of metabolic remodeling. The increased invasive capacities of tumor cells induced by coculture are completely abrogated by inhibition of the coupled ATGL-dependent lipolysis/FAO pathways. These results show a complex metabolic symbiosis between tumor-surrounding adipocytes and cancer cells that stimulate their invasiveness, highlighting ATGL as a potential therapeutic target to impede breast cancer progression. PMID:28239646

  8. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    SciTech Connect

    Yoon, Jeongyeon; Ryoo, Sungwoo

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS) mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.

  9. Myricitrin inhibits PDGF-BB-stimulated vascular smooth muscle cell proliferation and migration through suppressing PDGFRβ/Akt/Erk signaling.

    PubMed

    Li, Jie; Zhang, Mei; Ma, Juanjuan

    2015-01-01

    Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) and the stimulation of platelet-derived growth factor (PDGF)-BB play major pathological processes involved in the development of cardiovascular diseases. As a result, the use of anti-proliferative and anti-migratory agents for VSMCs offers promise for the treatment of vascular disorders. Myricitrin is a naturally occurring phenolic compound which possesses antioxidant and anti-inflammatory activity. In this study, we investigate the inhibitory effect of myricitrin on PDGF-BB-induced VSMCs proliferation and migration. In accordance with these findings, myricitrin induced the arrest of cell cycle progression at G0/G1 phase. Myricitrin also decreased the expressions of G0/G1 specific regulatory proteins including cyclin D1, cyclin-dependent kinases (CDK) 4, cyclin E and CDK2, as well as increased the expression of p21 in PDGF-BB-induced VSMCs. Moreover, myricitrin inhibited PDGF-BB-induced phosphorylation of PDGFRβ, Akt and Erk1/2. These results suggest that myricitrin plays an important role in prevention of VSMCs proliferation and migration through the G0/G1 cell cycle arrest by PDGF signaling pathway. Thus, myricitrin is effective in reducing atherosclerotic process by blocking proliferation of VSMCs.

  10. Mechanism of the reflex inhibition of micturition contractions of the urinary bladder elicited by acupuncture-like stimulation in anesthetized rats.

    PubMed

    Sato, A; Sato, Y; Suzuki, A

    1992-11-01

    The effects of acupuncture-like stimulation of various segmental areas on the rhythmic micturition contractions (RMCs) of the urinary bladder were examined in anesthetized rats. The urinary bladder was cannulated via the urethra and expanded by infusing saline until the urinary bladder produced micturition contractions rhythmically as a consequence of the rhythmic burst discharges of the vesical pelvic efferent nerves. An acupuncture needle, having a diameter of either 160 or 340 microns, was inserted to a depth of about 4-5 mm into the skin and underlying muscles at various segmental areas, rostrally from the face then caudally to the hindlimb. Once being inserted, the needle was twisted left and right with the fingers about once every second for 1 min. (1) Acupuncture-like stimulation applied to the perineal area inhibited both the RMCs and the rhythmic burst discharges of vesical pelvic efferent nerves without any significant changes in the hypogastric efferent nerve activity. By contrast, stimulation applied to the face, neck, forelimb, chest, abdomen, back, and hindlimb areas was ineffective. (2) After surgically separating the perineal skin from the underlying muscles with the main cutaneous nerve branches intact, stimulation of either the perineal skin or the perineal muscles inhibited the RMCs. Stimulation of the perineal muscles produced a stronger inhibition of the RMCs than that of the perineal skin. (3) Stimulation of the perineal area increased afferent nerve activity, either recorded from the pudendal nerve branches innervating the perineal skin or underlying muscles, or recorded from the pelvic nerve branches innervating the perineal muscles. (4) The stimulation-induced inhibition of the RMCs was abolished after surgically severing both pudendal and pelvic nerve branches that innervated the perineal skin and underlying muscles. (5) The present findings indicate that the inhibition of the RMCs following acupuncture-like stimulation of the perineal

  11. Adipose Tissue Free Fatty Acid Storage In Vivo: Effects of Insulin Versus Niacin as a Control for Suppression of Lipolysis.

    PubMed

    Ali, Asem H; Mundi, Manpreet; Koutsari, Christina; Bernlohr, David A; Jensen, Michael D

    2015-08-01

    Insulin stimulates the translocation fatty acid transport protein 1 (FATP1) to plasma membrane, and thus greater free fatty acid (FFA) uptake, in adipocyte cell models. Whether insulin stimulates greater FFA clearance into adipose tissue in vivo is unknown. We tested this hypothesis by comparing direct FFA storage in subcutaneous adipose tissue during insulin versus niacin-medicated suppression of lipolysis. We measured direct FFA storage in abdominal and femoral subcutaneous fat in 10 and 11 adults, respectively, during euglycemic hyperinsulinemia or after oral niacin to suppress FFA compared with 11 saline control experiments. Direct palmitate storage was assessed using a [U-(13)C]palmitate infusion to measure palmitate kinetics and an intravenous palmitate radiotracer bolus/timed biopsy. Plasma palmitate concentrations and flux were suppressed to 23 ± 3 and 26 ± 5 µmol ⋅ L(-1) (P = 0.91) and 44 ± 4 and 39 ± 5 µmol ⋅ min(-1) (P = 0.41) in the insulin and niacin groups, respectively, much less (P < 0.001) than the saline control group (102 ± 8 and 104 ± 12 µmol ⋅ min(-1), respectively). In the insulin, niacin, and saline groups, abdominal palmitate storage rates were 0.25 ± 0.05 vs. 0.25 ± 0.07 vs. 0.32 ± 0.05 µmol ⋅ kg adipose lipid(-1) ⋅ min(-1), respectively (P = NS), and femoral adipose storage rates were 0.19 ± 0.06 vs. 0.20 ± 0.05 vs. 0.31 ± 0.05 µmol ⋅ kg adipose lipid(-1) ⋅ min(-1), respectively (P = NS). In conclusion, insulin does not increase FFA storage in adipose tissue compared with niacin, which suppresses lipolysis via a different pathway.

  12. Adipose Tissue Free Fatty Acid Storage In Vivo: Effects of Insulin Versus Niacin as a Control for Suppression of Lipolysis

    PubMed Central

    Ali, Asem H.; Mundi, Manpreet; Koutsari, Christina; Bernlohr, David A.

    2015-01-01

    Insulin stimulates the translocation fatty acid transport protein 1 (FATP1) to plasma membrane, and thus greater free fatty acid (FFA) uptake, in adipocyte cell models. Whether insulin stimulates greater FFA clearance into adipose tissue in vivo is unknown. We tested this hypothesis by comparing direct FFA storage in subcutaneous adipose tissue during insulin versus niacin-medicated suppression of lipolysis. We measured direct FFA storage in abdominal and femoral subcutaneous fat in 10 and 11 adults, respectively, during euglycemic hyperinsulinemia or after oral niacin to suppress FFA compared with 11 saline control experiments. Direct palmitate storage was assessed using a [U-13C]palmitate infusion to measure palmitate kinetics and an intravenous palmitate radiotracer bolus/timed biopsy. Plasma palmitate concentrations and flux were suppressed to 23 ± 3 and 26 ± 5 µmol ⋅ L−1 (P = 0.91) and 44 ± 4 and 39 ± 5 µmol ⋅ min−1 (P = 0.41) in the insulin and niacin groups, respectively, much less (P < 0.001) than the saline control group (102 ± 8 and 104 ± 12 µmol ⋅ min−1, respectively). In the insulin, niacin, and saline groups, abdominal palmitate storage rates were 0.25 ± 0.05 vs. 0.25 ± 0.07 vs. 0.32 ± 0.05 µmol ⋅ kg adipose lipid−1 ⋅ min−1, respectively (P = NS), and femoral adipose storage rates were 0.19 ± 0.06 vs. 0.20 ± 0.05 vs. 0.31 ± 0.05 µmol ⋅ kg adipose lipid−1 ⋅ min−1, respectively (P = NS). In conclusion, insulin does not increase FFA storage in adipose tissue compared with niacin, which suppresses lipolysis via a different pathway. PMID:25883112

  13. Increased norepinephrine release during sympathetic nerve stimulation and its inhibition by adenosine in the isolated perfused kidney of spontaneously hypertensive rats

    SciTech Connect

    Ekas, R.D. Jr.; Steenberg, M.L.; Lokhandwala, M.F.

    1983-01-01

    The present study was performed to measure norepinephrine release during sympathetic nerve stimulation and determine the inhibitory action of adenosine on stimulus-induced release of norepinephrine in the isolated perfused kidney of WKY and SHR. Norepinephrine release during periarterial nerve stimulation was measured as total /sup 3/H-overflow since greater than 75% of total /sup 3/H-overflow was /sup 3/H-norepinephrine in both the WKY and SHR. A significantly greater increase in /sup 3/H-norepinephrine overflow was observed during periarterial nerve stimulation in SHR in comparison with WKY. Adenosine (0.3, 1.0, 3.0 and 10.0 micrograms/ml) produced dose-dependent inhibition of /sup 3/H-norepinephrine overflow elicited by periarterial nerve stimulation. However, the effect of adenosine on transmitter release was more pronounced in the SHR in that the threshold dose required to cause inhibition of stimulus-induced release of /sup 3/H-norepinephrine was smaller in the SHR. These results demonstrate that while norepinephrine release during sympathetic nerve stimulation is greater in the SHR, this finding can not be explained on the basis of a decrease in the presynaptic inhibitory action of adenosine. Therefore, the mechanism responsible for the increased release of norepinephrine in the SHR remains to be determined.

  14. Utility of intracerebral theta burst electrical stimulation to attenuate interhemispheric inhibition and to promote motor recovery after cortical injury in an animal model.

    PubMed

    Barry, Melissa D; Boddington, Laura J; Igelström, Kajsa M; Gray, Jason P; Shemmell, Jon; Tseng, Kuei Y; Oorschot, Dorothy E; Reynolds, John N J

    2014-11-01

    Following a cerebral cortex injury such as stroke, excessive inhibition around the core of the injury is thought to reduce the potential for new motor learning. In part, this may be caused by an imbalance of interhemispheric inhibition (IHI); therefore, treatments that relieve the inhibitory drive from the healthy hemisphere to the peri-lesional area may enhance motor recovery. Theta burst stimulation delivered by transcranial magnetic stimulation has been tested as a means of normalizing IHI, but clinical results have been variable. Here we use a new rat model of synaptic IHI to demonstrate that electrical intracranial theta burst stimulation causes long-lasting changes in motor cortex excitability. Further, we show that contralateral intermittent theta burst stimulation (iTBS) blocks IHI via a mechanism involving cannabinoid receptors. Finally, we show that contralesional iTBS applied during recovery from cortical injury in rats improves the recovery of motor function. These findings suggest that theta burst stimulation delivered through implanted electrodes may be a promising avenue to explore for augmenting rehabilitation from brain injury.

  15. Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis.

    PubMed

    Esteban-Torres, M; Mancheño, J M; de las Rivas, B; Muñoz, R

    2014-11-01

    Lactobacillus plantarum is a lactic acid bacterium that can be found during cheese ripening. Lipolysis of milk triacylglycerols to free fatty acids during cheese ripening has fundamental consequences on cheese flavor. In the present study, the gene lp_1760, encoding a putative esterase or lipase, was cloned and expressed in Escherichia coli BL21 (DE3) and the overproduced Lp_1760 protein was biochemically characterized. Lp_1760 hydrolyzed p-nitrophenyl esters of fatty acids from C2 to C16, with a preference for p-nitrophenyl butyrate. On triglycerides, Lp_1760 showed higher activity on tributyrin than on triacetin. Although optimal conditions for activity were 45°C and pH 7, Lp_1760 retains activity under conditions commonly found during cheese making and ripening. The Lp_1760 showed more than 50% activity at 5°C and exhibited thermal stability at high temperatures. Enzymatic activity was strongly inhibited by sodium dodecyl sulfate and phenylmethylsulfonyl fluoride. The Lp_1760 tributyrin esterase showed high activity in the presence of NaCl, lactic acid, and calcium chloride. The results suggest that Lp_1760 might be a useful tributyrin esterase to be used in cheese manufacturing.

  16. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2{alpha} in adipocytes

    SciTech Connect

    Dagon, Yossi; Avraham, Yosefa; Berry, Elliot M. . E-mail: Berry@md.huji.ac.il

    2006-02-03

    AMP-activated protein kinase (AMPK) is a metabolic master switch regulating glucose and lipid metabolism. Recently, AMPK has been implicated in the control of adipose tissue content. Yet, the nature of this action is controversial. We examined the effect on F442a adipocytes of the AMPK activator-AICAR. Activation of AMPK induced dose-dependent apoptotic cell death, inhibition of lipolysis, and downregulatation key adipogenic genes, such as peroxisome proliferator-activated receptor (PPAR{gamma}) and CCAAT/enhancer-binding protein alpha (C/EBP{alpha}). We have identified the {alpha}-subunit of the eukaryotic initiation factor-2 (eIF2{alpha}) as a target gene which is phosphorylated following AICAR treatment. Such phosphorylation is one of the best-characterized mechanisms for downregulating protein synthesis. 2-Aminopurine (2-AP), an inhibitor of eIF2{alpha} kinases, could overcome the apoptotic effect of AICAR, abolishing the reduction of PPAR{gamma} and C/EBP{alpha} and the lipolytic properties of AMPK. Thus, AMPK may diminish adiposity via reduction of fat cell number through eIF2{alpha}-dependent translation shutdown.

  17. Suppressive Role of PPARγ-Regulated Endothelial Nitric Oxide Synthase in Adipocyte Lipolysis

    PubMed Central

    Yamada, Yoko; Eto, Masato; Ito, Yuki; Mochizuki, Satoru; Son, Bo-Kyung; Ogawa, Sumito; Iijima, Katsuya; Kaneki, Masao; Kozaki, Koichi; Toba, Kenji; Akishita, Masahiro; Ouchi, Yasuyoshi

    2015-01-01

    Introduction Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/-) mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear. Methods and Results The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD) was able to induce non-alcoholic steatohepatitis (NASH) in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes. Conclusions eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders. PMID:26317347

  18. Inhibition of phospholipase D activation by CYL-26z in formyl peptide-stimulated neutrophils involves the blockade of RhoA activation.

    PubMed

    Kuan, Yu-Hsiang; Lin, Ruey-Hseng; Tsao, Lo-Ti; Chen, Yeh-Long; Tzeng, Cherng-Chyi; Wang, Jih-Pyang

    2005-09-15

    5-[4-Acridin-9-ylamino]phenyl]-5-methyl-3-methylenedihydrofuran-2-one (CYL-26z) inhibited the formyl-Met-Leu-Phe (fMLP)-stimulated phospholipase D (PLD) activity, which was assessed by the production of phosphatidylethanol (PEt) in the presence of ethanol, in rat neutrophils (IC50 1.2+/-0.2 microM). CYL-26z caused a slight but significant attenuation of the global protein tyrosine phosphorylation stimulated by fMLP only at concentrations of CYL-26z up to 30 microM. CYL-26z blocked the membrane recruitment of protein kinase C-alpha (PKC-alpha) at concentrations of CYL-26z > or =3 microM, but failed to affect the membrane association of PKC-betaI and -betaII. The translocation of RhoA to the membrane was attenuated by CYL-26z (IC50 3.8+/-0.8 microM) in fMLP-stimulated neutrophils, whereas CYL-26z caused no significant inhibition of the membrane recruitment of ADP-ribosylation factor (Arf). CYL-26z inhibited the activation of RhoA and dissociation of the RhoA-Rho guanine nucleotide dissociation inhibitor (GDI) complex in fMLP-stimulated neutrophils (IC50 1.8+/-1.0 microM and 1.8+/-0.9 microM, respectively). In a cell-free system, CYL-26z effectively attenuated the membrane association of RhoA in response to GTPgammaS (IC50 1.3+/-0.5 microM). In contrast, the GTPgammaS-stimulated translocation of Arf to membrane was suppressed only at concentrations of CYL-26z up to 30 microM. CYL-26z inhibited the fMLP-stimulated membrane expression of CD11b, CD45 and CD63, and the release of lysozyme and beta-glucuronidase. These results indicate that CYL-26z inhibited the fMLP-stimulated PLD activity, mainly through the blockade of RhoA activation, and degranulation in rat neutrophils.

  19. Alterations of the Lipid Metabolome in Dairy Cows Experiencing Excessive Lipolysis Early Postpartum

    PubMed Central

    Humer, Elke; Khol-Parisini, Annabella; Metzler-Zebeli, Barbara U.; Gruber, Leonhard; Zebeli, Qendrim

    2016-01-01

    A decrease in insulin sensitivity enhances adipose tissue lipolysis helping early lactation cows counteracting their energy deficit. However, excessive lipolysis poses serious health risks for cows, and its underlying mechanisms are not clearly understood. The present study used targeted ESI-LC-MS/MS-based metabolomics and indirect insulin sensitivity measurements to evaluate metabolic alterations in the serum of dairy cows of various parities experiencing variable lipolysis early postpartum. Thirty (12 primiparous and 18 multiparous) cows of Holstein Friesian and Simmental breeds, fed the same diet and kept under the same management conditions, were sampled at d 21 postpartum and classified as low (n = 10), medium (n = 8), and high (n = 12) lipolysis groups, based on serum concentration of nonesterified fatty acids. Overall, excessive lipolysis in the high group came along with impaired estimated insulin sensitivity and characteristic shifts in acylcarnitine, sphingomyelin, phosphatidylcholine and lysophospholipid metabolome profiles compared to the low group. From the detected phosphatidylcholines mainly those with diacyl-residues showed differences among lipolysis groups. Furthermore, more than half of the detected sphingomyelins were increased in cows experiencing high lipomobilization. Additionally, strong differences in serum acylcarnitines were noticed among lipolysis groups. The study suggests an altered serum phospholipidome in dairy cows associated with an increase in certain long-chain sphingomyelins and the progression of disturbed insulin function. In conclusion, the present study revealed 37 key metabolites as part of alterations in the synthesis or breakdown of sphingolipids and phospholipids associated with lowered estimated insulin sensitivity and excessive lipolysis in early-lactating cows. PMID:27383746

  20. Somatostatin, misoprostol and galanin inhibit gastrin- and PACAP-stimulated secretion of histamine and pancreastatin from ECL cells by blocking specific Ca2+ channels.

    PubMed

    Björkqvist, Maria; Bernsand, Maria; Eliasson, Lena; Håkanson, Rolf; Lindström, Erik

    2005-08-15

    The oxyntic mucosa is rich in ECL cells. They secrete histamine and chromogranin A-derived peptides, such as pancreastatin, in response to gastrin and pituitary adenylate cyclase-activating peptide (PACAP). Secretion is initiated by Ca2+ entry. While gastrin stimulates secretion by opening L-type and N-type Ca2+ channels, PACAP stimulates secretion by activating L-type and receptor-operated Ca2+ channels. Somatostatin, galanin and prostaglandin E2 (PGE2) inhibit gastrin- and PACAP-stimulated secretion from the ECL cells. In the present study, somatostatin and the PGE2 congener misoprostol inhibited gastrin- and PACAP-stimulated secretion 100%, while galanin inhibited at most 60-65%. Bay K 8644, a specific activator of L-type Ca2+ channels, stimulated ECL-cell secretion, an effect that was inhibited equally effectively by somatostatin, misoprostol and galanin (75-80% inhibition). Pretreatment with pertussis toxin, that inactivates inhibitory G-proteins, prevented all three agents from inhibiting stimulated secretion (regardless of the stimulus). Pretreatment with nifedipine (10 microM), an L-type Ca2+ channel blocker, reduced PACAP-evoked pancreastatin secretion by 50-60%, gastrin-evoked secretion by approximately 80% and abolished the response to Bay K 8644. The nifedipine-resistant response to PACAP was abolished by somatostatin and misoprostol but not by galanin. Gastrin and PACAP raised the intracellular Ca2+ concentration in a biphasic manner, believed to reflect mobilization of internal Ca2+ followed by Ca2+ entry. Somatostatin and misoprostol blocked Ca2+ entry (and histamine and pancreastatin secretion) but not mobilization of internal Ca2+. The present observations on isolated ECL cells suggest that Ca2+ entry rather than mobilization of internal Ca2+ triggers exocytosis, that gastrin and PACAP activate different (but over-lapping) Ca2+ channels, that somatostatin, misoprostol and galanin interact with inhibitory G-proteins to block Ca2+ entry via L-type Ca

  1. The Cell Wall as the Antigenic Site for Antibodies Stimulating Ingestion (MSF) and Inhibition (BIF) of Brucella in Macrophages from Normal and Immune Animals

    PubMed Central

    Ralston, Doris J.; Elberg, S. S.

    1971-01-01

    Following extraction with hot trichloracetic acid and digestion with trypsin, deoxyribonuclease and ribonuclease, cell wall residues of Brucella melitensis strain Rev I contained an antigenic moiety capable of removing antibodies responsible for stimulation of ingestion, inhibition of Brucella growth by macrophages, and agglutination of Brucella. The preparation was dermonecrotic for both normal and immune rabbits and, when injected in oil, stimulated antibody production. The peptidoglycan-containing structure was degraded by egg-white lysozyme and enzymes from normal and immune macrophages with an accompanying loss of dermonecrotic and serumabsorbing capacity. PMID:5582072

  2. Inhibition of intracranial self-stimulation in brain stem-transected cats--a proposed mechanism of aversive effects produced by brain stimulation.

    PubMed

    Ikegami, S; Kawamura, H

    1981-12-21

    Effects of intracranial self-stimulation of central 'punishment areas' were studied on an operant conditioning of vertical eye movements in the midpontine pretrigeminal cats as well as in the encéphale isolé cats. In 36 pretrigeminal cats, the ventromedial hypothalamus (VMH), basal amygdaloid nuclei (AMY), dorsal central gray (CG) of the midbrain and the thalamic nuclei such as the ventralis posteromedialis (VPM) and ventralis posterolateralis (VPL) were tested. No suppression of eye movements indicating a passive avoidance conditioning from stimulation of these 'punishment areas' was obtained in 92 electrode tip sites. In 49 encéphale isolé cats, stimulation of the VPM associated with contraction of the facial muscles, demonstrated a marked passive avoidance effect on the eye movements. After blocking both the trigeminal (5N) and facial nerves (7N), VPM stimulation no longer produced an increase of facial EMG activity and the suppressive effect on eye movements was abolished. Extracranial blockade of 7N alone, which induced facial muscle paralysis also showed similar effects. Bilateral blockade of cranial nerves from acoustic (8N) to hypoglossal (12N) nerves had no significant effect on the avoidance conditioning. The mass neural activity recorded from the 5N showed a marked increase of discharge by VPM stimulation which was reduced significantly after 7N blockade. These results may suggest a possibility that punishing effects of brain stimulation depend on feedback from the periphery (muscles, blood vessels and visceral organs), whereas reward effects essentially depend on neural circuitry confined within the forebrain above the rostral pons.

  3. Stimulation, Inhibition, or Stabilization of Na,K-ATPase Caused by Specific Lipid Interactions at Distinct Sites

    PubMed Central

    Habeck, Michael; Haviv, Haim; Katz, Adriana; Kapri-Pardes, Einat; Ayciriex, Sophie; Shevchenko, Andrej; Ogawa, Haruo; Toyoshima, Chikashi; Karlish, Steven J. D.

    2015-01-01

    The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-l-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70–80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump. PMID:25533463

  4. Stimulation, inhibition, or stabilization of Na,K-ATPase caused by specific lipid interactions at distinct sites.

    PubMed

    Habeck, Michael; Haviv, Haim; Katz, Adriana; Kapri-Pardes, Einat; Ayciriex, Sophie; Shevchenko, Andrej; Ogawa, Haruo; Toyoshima, Chikashi; Karlish, Steven J D

    2015-02-20

    The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-L-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70-80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump.

  5. Effects of GABA(B), 5-HT(1A), and 5-HT(2) receptor stimulation on activation and inhibition of the rat lateral amygdala following medial geniculate nucleus stimulation in vivo.

    PubMed

    Sokal, David M; Giarola, Alessandra S; Large, Charles H

    2005-01-07

    The input from the medial geniculate nucleus of the thalamus (MGN) to the lateral amygdala is known to be important in the regulation of fear and anxiety. Modulation of this pathway may be useful for the treatment of anxiety disorders. We set out to determine whether simple extracellular electrophysiological techniques could be used to study pharmacological modulation of this pathway in vivo. We studied the effects of GABA(B), 5-HT(1), and 5-HT(2) receptor agonists on activity in the lateral amygdala following stimulation of the MGN in isoflurane-anaesthetised rats. Electrical stimulation of the MGN evoked a characteristic biphasic field potential in the lateral amygdala. Baclofen (10 mg kg(-1), iv) inhibited the evoked potential with an effect that was most marked on the positive-going component (80+/-9% inhibition; P<0.05). Baclofen also significantly reduced paired-pulse inhibition of the negative-going component at short interpulse intervals (<200 ms). The 5-HT(1A) receptor ligands, 8-OH-DPAT (60 microg kg(-1), iv) and WAY-100635 (0.5 mg kg(-1), iv) were without effect on evoked responses or paired-pulse relationship. In contrast, the 5-HT(2) receptor agonist, DOI, caused a rapid inhibition of the field potential (to 59.33+/-11.41% of the baseline response; P<0.05). This effect was blocked by ketanserin, either following systemic (0.5 mg kg(-1), iv) or intra-amygdala administration. These results show that GABA(B) and 5-HT(2) receptor agonists can modulate activation of the lateral amygdala following MGN stimulation; furthermore, GABA(B) receptor agonists appear to have a profound effect on local circuit inhibition within the lateral amygdala. The results support the use of in vivo field potential recording within the MGN-lateral amygdala pathway to evaluate this as a possible site of action for novel anxiolytic drugs.

  6. Contraction inhibits insulin-stimulated insulin receptor substrate-1/2-associated phosphoinositide 3-kinase activity, but not protein kinase B activation or glucose uptake, in rat muscle.

    PubMed Central

    Whitehead, J P; Soos, M A; Aslesen, R; O'rahilly, S; Jensen, J

    2000-01-01

    The initial stages of insulin-stimulated glucose uptake are thought to involve tyrosine phosphorylation of insulin receptor substrates (IRSs), which recruit and activate phosphoinositide 3-kinase (PI 3-kinase), leading to the activation of protein kinase B (PKB) and other downstream effectors. In contrast, contraction stimulates glucose uptake via a PI 3-kinase-independent mechanism. The combined effects of insulin and contraction on glucose uptake are additive. However, it has been reported that contraction causes a decrease in insulin-stimulated IRS-1-associated PI 3-kinase activity. To investigate this paradox, we have examined the effects of contraction on insulin-stimulated glucose uptake and proximal insulin-signalling events in isolated rat epitrochlearis muscle. Stimulation by insulin or contraction produced a 3-fold increase in glucose uptake, with the effects of simultaneous treatment by insulin and contraction being additive. Wortmannin completely blocked the additive effect of insulin in contracting skeletal muscle, indicating that this is a PI 3-kinase-dependent effect. Insulin-stimulated recruitment of PI 3-kinase to IRS-1 was unaffected by contraction; however, insulin produced no discernible increase in PI 3-kinase activity in IRS-1 or IRS-2 immunocomplexes in contracting skeletal muscle. Consistent with this, contraction inhibited insulin-stimulated p70(S6K) activation. In contrast, insulin-stimulated activation of PKB was unaffected by contraction. Thus, in contracting skeletal muscle, insulin stimulates glucose uptake and activates PKB, but not p70(S6K), by a PI 3-kinase-dependent mechanism that is independent of changes in IRS-1- and IRS-2-associated PI 3-kinase activity. PMID:10903138

  7. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation

    PubMed Central

    Jang, Hyun-Ju; Martinez-Lemus, Luis A.; Sowers, James R.

    2012-01-01

    Elevated tissue levels of angiotensin II (ANG II) are associated with impairment of insulin actions in metabolic and cardiovascular tissues. ANG II-stimulated activation of mammalian target of rapamycin (mTOR)/p70 S6 kinase (p70S6K) in cardiovascular tissues is implicated in cardiac hypertrophy and vascular remodeling. However, the role of ANG II-stimulated mTOR/p70S6K in vascular endothelium is poorly understood. In the present study, we observed that ANG II stimulated p70S6K in bovine aortic endothelial cells. ANG II increased phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser636/639 and inhibited the insulin-stimulated phosphorylation of endothelial nitric oxide synthase (eNOS). An inhibitor of mTOR, rapamycin, attenuated the ANG II-stimulated phosphorylation of p70S6K and phosphorylation of IRS-1 (Ser636/639) and blocked the ability of ANG II to impair insulin-stimulated phosphorylation of eNOS, nitric oxide production, and mesenteric-arteriole vasodilation. Moreover, point mutations of IRS-1 at Ser636/639 to Ala prevented the ANG II-mediated inhibition of insulin signaling. From these results, we conclude that activation of mTOR/p70S6K by ANG II in vascular endothelium may contribute to impairment of insulin-stimulated vasodilation through phosphorylation of IRS-1 at Ser636/639. This ANG II-mediated impairment of vascular actions of insulin may help explain the role of ANG II as a link between insulin resistance and hypertension. PMID:22028412

  8. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.

    PubMed

    Bachasson, D; Temesi, J; Gruet, M; Yokoyama, K; Rupp, T; Millet, G Y; Verges, Samuel

    2016-02-09

    Transcranial magnetic stimulation (TMS) of the motor cortex during voluntary contractions elicits electrophysiological and mechanical responses in the target muscle. The effect of different TMS intensities on exercise-induced changes in TMS-elicited variables is unknown, impairing data interpretation. This study aimed to investigate TMS intensity effects on maximal voluntary activation (VATMS), motor-evoked potentials (MEPs), and silent periods (SPs) in the quadriceps muscles before, during, and after exhaustive isometric exercise. Eleven subjects performed sets of ten 5-s submaximal isometric quadriceps contractions at 40% of maximal voluntary contraction (MVC) strength until task failure. Three different TMS intensities (I100, I75, I50) eliciting MEPs of 53 ± 6%, 38 ± 5% and 25 ± 3% of maximal compound action potential (Mmax) at 20% MVC were used. MEPs and SPs were assessed at both absolute (40% baseline MVC) and relative (50%, 75%, and 100% MVC) force levels. VATMS was assessed with I100 and I75. When measured at absolute force level, MEP/Mmax increased during exercise at I50, decreased at I100 and remained unchanged at I75. No TMS intensity effect was observed at relative force levels. At both absolute and relative force levels, SPs increased at I100 and remained stable at I75 and I50. VATMS assessed at I75 tended to be lower than at I100. TMS intensity affects exercise-induced changes in MEP/Mmax (only when measured at absolute force level), SPs, and VATMS. These results indicate a single TMS intensity assessing maximal voluntary activation and exercise-induced changes in corticomotoneuronal excitability/inhibition may be inappropriate.

  9. Inhibition of the colony-stimulating-factor-1 receptor affects the resistance of lung cancer cells to cisplatin

    PubMed Central

    Pass, Harvey I.; Lavilla, Carmencita; Canino, Claudia; Goparaju, Chandra; Preiss, Jordan; Noreen, Samrah; Blandino, Giovanni; Cioce, Mario

    2016-01-01

    In the present work we show that multiple lung cancer cell lines contain cisplatin resistant cell subpopulations expressing the Colony-Stimulating-Factor-Receptor-1 (CSF-1R) and surviving chemotherapy-induced stress. By exploiting siRNA-mediated knock down in vitro and the use of an investigational CSF-1R TKI (JNJ-40346527) in vitro and in vivo, we show that expression and function of the receptor are required for the clonogenicity and chemoresistance of the cell lines. Thus, inhibition of the kinase activity of the receptor reduced the levels of EMT-associated genes, stem cell markers and chemoresistance genes. Additionally, the number of high aldehyde dehydrogenase (ALDH) expressing cells was reduced, consequent to the lack of cisplatin-induced increase of ALDH isoforms. This affected the collective chemoresistance of the treated cultures. Treatment of tumor bearing mice with JNJ-40346527, at pharmacologically relevant doses, produced strong chemo-sensitizing effects in vivo. These anticancer effects correlated with a reduced number of CSF-1Rpos cells, in tumors excised from the treated mice. Depletion of the CD45pos cells within the treated tumors did not, apparently, play a major role in mediating the therapeutic response to the TKI. Thus, lung cancer cells express a functional CSF-1 and CSF-1R duo which mediates pro-tumorigenic effects in vivo and in vitro and can be targeted in a therapeutically relevant way. These observations complement the already known role for the CSF-1R at mediating the pro-tumorigenic properties of tumor-infiltrating immune components. PMID:27486763

  10. Prostaglandin E2 Exerts Multiple Regulatory Actions on Human Obese Adipose Tissue Remodeling, Inflammation, Adaptive Thermogenesis and Lipolysis

    PubMed Central

    García-Alonso, Verónica; Titos, Esther; Alcaraz-Quiles, Jose; Rius, Bibiana; Lopategi, Aritz; López-Vicario, Cristina; Jakobsson, Per-Johan; Delgado, Salvadora; Lozano, Juanjo; Clària, Joan

    2016-01-01

    Obesity induces white adipose tissue (WAT) dysfunction characterized by unremitting inflammation and fibrosis, impaired adaptive thermogenesis and increased lipolysis. Prostaglandins (PGs) are powerful lipid mediators that influence the homeostasis of several organs and tissues. The aim of the current study was to explore the regulatory actions of PGs in human omental WAT collected from obese patients undergoing laparoscopic bariatric surgery. In addition to adipocyte hypertrophy, obese WAT showed remarkable inflammation and total and pericellular fibrosis. In this tissue, a unique molecular signature characterized by altered expression of genes involved in inflammation, fibrosis and WAT browning was identified by microarray analysis. Targeted LC-MS/MS lipidomic analysis identified increased PGE2 levels in obese fat in the context of a remarkable COX-2 induction and in the absence of changes in the expression of terminal prostaglandin E synthases (i.e. mPGES-1, mPGES-2 and cPGES). IPA analysis established PGE2 as a common top regulator of the fibrogenic/inflammatory process present in this tissue. Exogenous addition of PGE2 significantly reduced the expression of fibrogenic genes in human WAT explants and significantly down-regulated Col1α1, Col1α2 and αSMA in differentiated 3T3 adipocytes exposed to TGF-β. In addition, PGE2 inhibited the expression of inflammatory genes (i.e. IL-6 and MCP-1) in WAT explants as well as in adipocytes challenged with LPS. PGE2 anti-inflammatory actions were confirmed by microarray analysis of human pre-adipocytes incubated with this prostanoid. Moreover, PGE2 induced expression of brown markers (UCP1 and PRDM16) in WAT and adipocytes, but not in pre-adipocytes, suggesting that PGE2 might induce the trans-differentiation of adipocytes towards beige/brite cells. Finally, PGE2 inhibited isoproterenol-induced adipocyte lipolysis. Taken together, these findings identify PGE2 as a regulator of the complex network of interactions

  11. Analysis of anandamide- and lysophosphatidylinositol-induced inhibition of the vasopressor responses produced by sympathetic stimulation or noradrenaline in pithed rats.

    PubMed

    Marichal-Cancino, Bruno A; Manrique-Maldonado, Guadalupe; Altamirano-Espinoza, Alain H; Ruiz-Salinas, Inna; González-Hernández, Abimael; Maassenvandenbrink, Antoinette; Villalón, Carlos M

    2013-12-05

    The endocannabinoid system exhibits multiple functions in cardiovascular regulation mainly by cannabinoid (CB1 and CB2) receptors, vanilloid TRPV1 receptors and, probably, by the orphan G protein-coupled receptor 55 (GPR55). Hence, the role of these receptors was investigated in Wistar pithed rats on anandamide- and lysophosphatidylinositol (LPI)-induced inhibition of the vasopressor responses induced by preganglionic (T7-T9) stimulation of the vasopressor sympathetic outflow or i.v. bolus injections of noradrenaline. The corresponding frequency- and dose-dependent vasopressor responses were analyzed before and during i.v. continuous infusions of anandamide (CB1, CB2, TRPV1 and GPR55), JWH-015 (CB2) and LPI (GPR55) in animals receiving (i.v.) the antagonists NIDA41020 (CB1), AM630 (CB2), capsazepine (TRPV1) and/or cannabidiol (GPR55). Anandamide (0.1-3.1 μg/kg min) inhibited the vasopressor responses by electrical stimulation, but not those by noradrenaline; while LPI (5.6-10 μg/kg min) inhibited both responses. In contrast, JWH-015 (5.6-10 μg/kg min) failed to induce sympatho-inhibition. Anandamide-induced sympatho-inhibition was: (i) dose-dependently blocked by 31 and 100 μg/kg NIDA41020; (ii) slightly blocked by 310 μg/kg AM630 or 31 μg/kg cannabidiol; and (iii) unaffected by 310 μg/kg capsazepine. Moreover, LPI-induced inhibition of both vasopressor responses was blocked and abolished by 10 and 31 μg/kg cannabidiol, respectively, and weakly blocked by 100 μg/kg NIDA41020. Thus, the sympatho-inhibition by anandamide is primarily mediated by cannabinoid CB1 and, minimally, by cannabidiol-sensitive receptors. In contrast, LPI-induced inhibition of both responses seems to be mainly mediated by postjunctional cannabidiol-sensitive (presumably endothelial GPR55) receptors.

  12. Selective p38α MAP kinase/MAPK14 inhibition in enzymatically modified LDL-stimulated human monocytes: implications for atherosclerosis.

    PubMed

    Cheng, Fei; Twardowski, Laura; Fehr, Sarah; Aner, Christoph; Schaeffeler, Elke; Joos, Thomas; Knorpp, Thomas; Dorweiler, Bernhard; Laufer, Stefan; Schwab, Matthias; Torzewski, Michael

    2017-02-01

    The first ATP-competitive p38α MAPK/MAPK14 inhibitor with excellent in vivo efficacy and selectivity, skepinone-L, is now available. We investigated the impact of selective p38α MAPK/MAPK14 inhibition on enzymatically modified LDL (eLDL) stimulated human monocytes with its implications for atherosclerosis. Among the different p38 MAPK isoforms, p38α/MAPK14 was the predominantly expressed and activated isoform in isolated human peripheral blood monocytes. Moreover, eLDL colocalized with macrophages positive for p38α MAPK/MAPK14 in human carotid endarterectomy specimens. Using the human leukemia cell line THP-1 and/or primary monocyte-derived macrophages, skepinone-L inhibited eLDL-induced activation of the p38 MAPK pathway, inhibited eLDL induced expression of both cluster of differentiation 36 (CD36) and ATP-binding cassette, subfamily A, member 1 (ABCA1), without a net effect on foam cell formation, had a cell- and time-dependent effect on eLDL-triggered apoptosis, and inhibited eLDL-stimulated secretion of IL-8 and MIP-1β/CCL4 (macrophage inflammatory protein-1β/chemokine, CC motif, ligand 4). Inhibition of a key signaling molecule of the p38 MAPK pathway, p38α MAPK/MAPK14, by selective inhibitors like skepinone-L, conclusively facilitates elucidation of the impact of the complex network of p38 MAPK signaling on atherogenesis and might provide a promising therapeutic tool to prevent inflammatory cascades in atherosclerosis.-Cheng, F., Twardowski, L., Fehr, S., Aner, C., Schaeffeler, E., Joos, T., Knorpp, T., Dorweiler, B., Laufer, S., Schwab, M., Torzewski, M. Selective p38α MAP kinase/MAPK14 inhibition in enzymatically modified LDL-stimulated human monocytes: implications for atherosclerosis.

  13. Resveratrol inhibits collagen-induced platelet stimulation through suppressing NADPH oxidase and oxidative inactivation of SH2 domain-containing protein tyrosine phosphatase-2.

    PubMed

    Jang, Ji Yong; Min, Ji Hyun; Wang, Su Bin; Chae, Yun Hee; Baek, Jin Young; Kim, Myunghee; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-12-01

    Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47(phox), a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton's tyrosine kinase, and phospholipase Cγ2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases.

  14. Prostaglandin E2 inhibition of secretagogue-stimulated (/sup 14/C)aminopyrine accumulation in rat parietal cells: a model for its mechanism of action

    SciTech Connect

    Rosenfeld, G.C.

    1986-05-01

    Prostaglandin E2 (PGE2) differentially inhibited histamine and isoproterenol stimulation of (/sup 14/C)aminopyrine accumulation in rat parietal cell preparations. Low concentrations of PGE2 decreased the maximum response to isoproterenol whereas higher concentrations increased the EC50 of histamine with only a modest effect on the maximum response. Also, PGE2 potentiated dibutyryl cyclic AMP stimulation of aminopyrine accumulation in either the absence or presence of carbachol. In contrast, PGE2 inhibited potentiation between carbachol and histamine due to its inhibitory effect on histamine and possibly also to an inhibitory effect on cholinergic activity. Islet activating protein prevented the inhibitory actions of PGE2. To account for these results a model is presented based on the recent proposal by Gilman of an interaction between components of adenylyl cyclase stimulatory and inhibitory guanine nucleotide binding proteins.

  15. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    SciTech Connect

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  16. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects.

    PubMed

    Hart, Heledd; Radua, Joaquim; Nakao, Tomohiro; Mataix-Cols, David; Rubia, Katya

    2013-02-01

    CONTEXT Functional magnetic resonance imaging studies in attention-deficit/hyperactivity disorder (ADHD) revealed fronto-striato-parietal dysfunctions during tasks of inhibition and attention. However, it is unclear whether task-dissociated dysfunctions exist and to what extent they may be influenced by age and by long-term stimulant medication use. OBJECTIVE To conduct a meta-analysis of functional magnetic resonance imaging studies in ADHD during inhibition and attention tasks, exploring age and long-term stimulant medication use effects. DATA SOURCES PubMed, ScienceDirect, Web of Knowledge, Google Scholar, and Scopus databases were searched up to May 2012 for meta-analyses. Meta-regression methods explored age and long-term stimulant medication use effects. STUDY SELECTION Twenty-one data sets were included for inhibition (287 patients with ADHD and 320 control subjects), and 13 data sets were included for attention (171 patients with ADHD and 178 control subjects). DATA EXTRACTION Peak coordinates of clusters of significant group differences, as well as demographic, clinical, and methodological variables, were extracted for each study or were obtained from the authors. DATA SYNTHESIS Patients with ADHD relative to controls showed reduced activation for inhibition in the right inferior frontal cortex, supplementary motor area, and anterior cingulate cortex, as well as striato-thalamic areas, and showed reduced activation for attention in the right dorsolateral prefrontal cortex, posterior basal ganglia, and thalamic and parietal regions. Furthermore, the meta-regression analysis for the attention domain showed that long-term stimulant medication use was associated with more similar right caudate activation relative to controls. Age effects could be analyzed only for the inhibition meta-analysis, showing that the supplementary motor area and basal ganglia were underactivated solely in children with ADHD relative to controls, while the inferior frontal cortex and

  17. Somatostatin analog (SMS 201-995) inhibits the basal and angiotensin II-stimulated sup 3 H-thymidine uptake by rat adrenal glands

    SciTech Connect

    Pawlikowski, M.; Lewinski, A.; Sewerynek, E.; Szkudlinski, M.; Kunert-Radek, J.; Wajs, E. )

    1990-02-14

    The effects of a long-acting somatostatin analog SMS 201-995 injections on the basal and angiotensin II-stimulated ({sup 3}H)-thymidine uptake by the rat adrenal glands incubated in vitro were examined. It was shown that SMS 201-995 significantly inhibited the ({sup 3}H)-thymidine uptake and, additionally, suppressed the stimulatory effect of a single angiotensin II injection.

  18. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A.

    PubMed

    Módis, Katalin; Panopoulos, Panagiotis; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-11-01

    Although hydrogen sulfide (H₂S) is generally known as a mitochondrial poison, recent studies show that lower concentrations of H₂S play a physiological role in the stimulation of mitochondrial electron transport and cellular bioenergetics. This effect involves electron donation at Complex II. Other lines of recent studies demonstrated that one of the biological actions of H₂S involves inhibition of cAMP and cGMP phosphodiesterases (PDEs). Given the emerging functional role of the mitochondrial isoform of cAMP PDE (PDE2A) in the regulation of mitochondrial function the current study investigated whether cAMP-dependent mechanisms participate in the stimulatory effect of NaHS on mitochondrial function. In isolated rat liver mitochondria, partial digestion studies localized PDE2A into the mitochondrial matrix. NaHS exerted a concentration-dependent inhibitory effect on recombinant PDE2A enzyme in vitro. Moreover, NaHS induced an elevation of cAMP levels when added to isolated mitochondria and stimulated the mitochondrial electron transport. The latter effect was inhibited by Rp-cAMP, an inhibitor of the cAMP-dependent protein kinase (PKA). The current findings suggest that the direct electron donating effect of NaHS is amplified by an intramitochondrial cAMP system, which may involve the inhibition of PDE2A and subsequent, cAMP-mediated stimulation of PKA.

  19. Inhibition of K+-stimulated [3H]dopamine and [14C]acetylcholine release by the putative dopamine autoreceptor agonist, B-HT 920.

    PubMed

    Schmidt, C J; Lobur, A; Lovenberg, W

    1986-12-01

    The inhibition of K+-stimulated [3H]dopamine and [14C]acetylcholine release from preloaded rat striatal slices was used to examine the presynaptic selectivity of the putative dopamine autoreceptor agonist, B-HT 920. In the micromolar range, B-HT 920 caused a concentration-dependent inhibition of the release of both labeled neurotransmitters as evoked by 20 mM K+. The effect of B-HT 920 on both [3H]dopamine and [14C]acetylcholine release was completely blocked by (+) butaclamol but not by (-) butaclamol. Sulpiride, a selective D2 antagonist, similarly blocked the inhibitory effect of B-HT 920 on the release of both labeled neurotransmitters indicating both responses were mediated by D2 receptors. (+) Butaclamol alone elevated stimulated [3H]dopamine release suggesting a significant amount of autoreceptor occupancy by endogenously released dopamine. Experiments with tolazoline and the alpha 2 agonist, B-HT 933, did not suggest any involvement of alpha-adrenoceptor activity in the inhibitory effects of B-HT 920 on the release of either transmitter. Inhibition of release was a selective effect of B-HT 920 as the drug was without effect on the K+-stimulated release of [3H]serotonin. The results indicate that in vitro B-HT 920 is active of both pre- and postsynaptic dopamine receptors in contrast to the pattern of effects observed after its in vivo administration.

  20. Regulation of Lipolysis and Adipose Tissue Signaling during Acute Endotoxin-Induced Inflammation: A Human Randomized Crossover Trial

    PubMed Central

    Rittig, Nikolaj; Bach, Ermina; Thomsen, Henrik Holm; Pedersen, Steen Bønlykke; Nielsen, Thomas Sava; Jørgensen, Jens O.; Jessen, Niels; Møller, Niels

    2016-01-01

    Background Lipolysis is accelerated during the acute phase of inflammation, a process being regulated by pro-inflammatory cytokines (e.g. TNF-α), stress-hormones, and insulin. The intracellular mechanisms remain elusive and we therefore measured pro- and anti-lipolytic signaling pathways in adipocytes after in vivo endotoxin exposure. Methods Eight healthy, lean, male subjects were investigated using a randomized cross over trial with two interventions: i) bolus injection of saline (Placebo) and ii) bolus injection of lipopolysaccharide endotoxin (LPS). A 3H-palmitate tracer was used to measure palmitate rate of appearance (Rapalmitate) and indirect calorimetry was performed to measure energy expenditures and lipid oxidation rates. A subcutaneous abdominal fat biopsy was obtained during both interventions and subjected to western blotting and qPCR quantifications. Results LPS caused a mean increase in serum free fatty acids (FFA) concentrations of 90% (CI-95%: 37–142, p = 0.005), a median increase in Rapalmitate of 117% (CI-95%: 77–166, p<0.001), a mean increase in lipid oxidation of 49% (CI-95%: 1–96, p = 0.047), and a median increase in energy expenditure of 28% (CI-95%: 16–42, p = 0.001) compared with Placebo. These effects were associated with increased phosphorylation of hormone sensitive lipase (pHSL) at ser650 in adipose tissue (p = 0.03), a trend towards elevated pHSL at ser552 (p = 0.09) and cAMP-dependent protein kinase A (PKA) phosphorylation of perilipin 1 (PLIN1) (p = 0.09). Phosphatase and tensin homolog (PTEN) also tended to increase (p = 0.08) while phosphorylation of Akt at Thr308 tended to decrease (p = 0.09) during LPS compared with Placebo. There was no difference between protein or mRNA expression of ATGL, G0S2, and CGI-58. Conclusion LPS stimulated lipolysis in adipose tissue and is associated with increased pHSL and signs of increased PLIN1 phosphorylation combined with a trend toward decreased insulin signaling. The combination of

  1. Salvianolic Acid B Inhibits ERK and p38 MAPK Signaling in TGF-β1-Stimulated Human Hepatic Stellate Cell Line (LX-2) via Distinct Pathways

    PubMed Central

    Lv, Zhigang; Xu, Lieming

    2012-01-01

    Salvianolic acid B (SA-B) is water-soluble component of Radix Salvia miltiorrhiza. The previous work indicated that SA-B can inhibit MAPK and Smad signaling in activated hepatic stellate cells (HSCs) to perform anti-fibrotic activity Lv et al. 2010. However, some studies have shown that there is cross-talk between MAPK and Smad in certain cell types. Thus, the anti-fibrotic action of SA-B may be through the cross-talk. In order to clarify the mechanism of SA-B further, we knocked down Smad in LX-2 cells (SRV4) via RNAi, and then added TGF-β1, and PD98059 or SB203580 and SA-B. The levels of p-MEK and p-p38 were inhibited by SA-B in SRV4 independent of TGF-β1. The expression of Col I and α-SMA in SRV4 could be reduced by SA-B independent TGF-β1. SB203580 had not significant effect on p-MEK in SRV4 stimulated by TGF-β1. The levels of p-MEK in SRV4 were not increased significantly after TGF-β1 stimulation. PD98059 had no effect on the levels of p-p38 in SRV4 irrespective of TGF-β1. In conclusion, SA-B inhibits the synthesis of Col I in LX-2 cells independent of TGF-β1 stimulation, and the anti-fibrotic effect of SA-B is due to direct inhibition of p38 signaling and inhibition the cross-talk of Smad to ERK signaling. PMID:21860657

  2. Lonicera japonica THUNB. Extract Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses by Suppressing NF-κB Signaling in BV-2 Microglial Cells.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hong, Sa-Ik; Lee, Seok-Yong; Jang, Choon-Gon

    2015-07-01

    In the current study, we evaluated the anti-inflammatory effects of Lonicera japonica THUNB. (LJ) and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Our results indicated that LJ significantly inhibits LPS-stimulated production of nitric oxide (NO) and prostaglandin E2 (PGE2). In addition, LJ inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both the protein and mRNA levels. In LPS-stimulated BV-2 microglial cells, LJ inhibited proinflammatory cytokines and chemokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) enzymatic activities, and/or mRNA expression, as well as reactive oxygen species (ROS) production. LJ significantly suppressed activation of nuclear factor-κB (NF-κB) and its translocation from the cytosol to the nucleus and suppressed the DNA-binding activity of NF-κB. Furthermore, LJ significantly inhibited phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinases (PI3K)/Akt, and Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT)1/3. Collectively, our findings indicated that the antineuroinflammatory properties of LJ in LPS-induced BV-2 microglial cells is due to downregulation of proinflammatory cytokines and chemokines downstream of inhibition of NF-κB activation.

  3. Green Light Inhibits GnRH-I Expression by Stimulating the Melatonin-GnIH Pathway in the Chick Brain.

    PubMed

    Zhang, Liwei; Chen, Funing; Cao, Jing; Dong, Yulan; Wang, Zixu; Hu, Man; Chen, Yaoxing

    2017-03-14

    To study the mechanism by which monochromatic light affects gonadotropin-releasing hormone (GnRH) expression in chicken hypothalamus, a total of 192 newly hatched chicks were divided into intact, sham-operated and pinealectomy groups and exposed to white (WL), red (RL), green (GL) and blue (BL) lights using a light-emitting diode (LED) system for 2 wk. In the GL intact group, the mRNA and protein levels of GnRH-I in the hypothalamus, the mean cell area and mean cell optical density (OD) of the GnRH-I-ir cells of the nucleus commissurae pallii (nCPa) were decreased by 13.2-34.5%, 5.7-39.1% and 9.9-17.3% compared to those in the chicks exposed to the WL, RL and BL, respectively. GL decreased these factors related to GnRH-I expression and the effect of GL was not observed in pinealectomized (PINX) birds. However, the mRNA and protein levels of hypothalamic gonadotropin-inhibitory hormone (GnIH) and GnIH receptor (GnIHR), the mean cell area and mean cell OD of the GnIH-ir cells of the paraventricularis magnocellularis (PVN), and the plasma melatonin concentration in the chicks exposed to GL were increased by 18.6-49.2%, 21.1-60.0%, and 8.6-30.6% compared to the WL, RL and BL intact groups, respectively. The plasma melatonin concentration showed a negative correlation with GnRH-I protein and a positive correlation with GnIH and GnIHR proteins. Both protein expressions of GnRH-I and GnIHR showed a negative correlation in the hypothalamus. After pinealectomy, GnRH-I expression increased, whereas plasma melatonin concentration, GnIH and GnIHR expressions decreased, and there were no significant differences among the WL, RL, GL and BL groups. Double-labeled immunofluorescence showed that GnIH axon terminals were near GnRH-I neurons, some GnRH-I neurons coexpressed with GnIHR, and GnIH neurons coexpressed with melatonin receptor subtype QR2. These results demonstrated that green light inhibits GnRH-I expression by increasing melatonin secretion and stimulating melatonin

  4. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

    PubMed

    Tiago, Teresa; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2004-05-11

    Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.

  5. Glycoprotein isolated from Rhus verniciflua Stokes inhibits inflammation-related protein and nitric oxide production in LPS-stimulated RAW 264.7 cells.

    PubMed

    Oh, Phil-Sun; Lee, Sei-Jung; Lim, Kye-Taek

    2007-01-01

    Rhus verniciflua Stokes (RVS) has traditionally been used for medical purpose, such as healing of inflammatory diseases in South Korea. Glycoprotein (36 kDa) was isolated from RVS fruit, purified and used to evaluate the inhibitory effect on inflammatory-related proteins and nitric oxide (NO) production in lipopolysaccharide (LPS, 200 ng/ml)-stimulated RAW 264.7 (murine macrophage cell line). Our results were showed that RVS glycoprotein has a strong antioxidative activity against lipid peroxyl radicals in cell-free system, and inhibits NO production in LPS-stimulated RAW 264.7 cells. To elucidate the inhibitory effect of RVS glycoprotein on activities of inflammatory-related proteins, we firstly evaluated the amount of intracellular reactive oxygen species (ROS), and expression of intracellular protein kinase C (PKC), nuclear factor (NF)-kappaB, and activator protein-1 (AP-1). The results in the present study showed that RVS glycoprotein (200 microg/ml) inhibits ROS production and PKCalpha translocation, and down-regulates the expression of NF-kappaB and AP-1. Such upstream signals consequently inhibited the levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 expression. Therefore, we speculate that RVS glycoprotein inhibits the inflammatory-related protein and can act as an anti-inflammatory agent.

  6. Sarcophine-Diol, a Skin Cancer Chemopreventive Agent, Inhibits Proliferation and Stimulates Apoptosis in Mouse Melanoma B16F10 Cell Line

    PubMed Central

    Szymanski, Pawel T.; Kuppast, Bhimanna; Ahmed, Safwat A.; Khalifa, Sherief; Fahmy, Hesham

    2011-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B16F10 cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B16F10 tumor cells. PMID:22363217

  7. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    PubMed

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells.

  8. Intravenous immunoglobulin G (IVIG) inhibits IL-1- and TNF-α-dependent, but not chemotactic-factor-stimulated, neutrophil transendothelial migration.

    PubMed

    Issekutz, Andrew C; Rowter, Derek; Macmillan, Heather F

    2011-11-01

    High-dose intravenous immunoglobulin (IVIG) has anti-inflammatory effects via incompletely understood mechanisms. By investigating whether IVIG might modulate neutrophil (PMN) recruitment, we observed that IVIG dose-dependently inhibited (by 30-50%) PMN transendothelial migration (TEM) across human umbilical vein endothelial cells (EC) stimulated with IL-1α, IL-1β, TNF-α or IL-1β+TNF-α. Inhibition required the presence of IVIG with the responding PMNs, was attributable to the F(ab)(2) portion and was unrelated to putative contaminants in IVIG. IVIG did not inhibit IL-1β- or TNF-α-induced increase of PMN adhesion to EC, nor did it affect C5a- or IL-8-induced PMN TEM across unstimulated EC. Effects of IVIG and F(ab)(2) fragments were not associated with PMN activation, assessed by CD62L shedding, CD11b upregulation or PMN shape. Thus, IVIG selectively inhibits PMN TEM across inflammatory-cytokine-stimulated - but not unstimulated - EC, perhaps contributing to therapeutic benefit in chronic inflammation with minimal impact on chemotactic-factor-induced PMN recruitment during acute infection.

  9. Proangiogenic stimulation of bone marrow endothelium engages mTOR and is inhibited by simultaneous blockade of mTOR and NF-κB

    PubMed Central

    Costa, Lara F.; Balcells, Mercedes; Edelman, Elazer R.; Nadler, Lee M.; Cardoso, Angelo A.

    2006-01-01

    Most bone marrow (BM) malignancies develop in association with an angiogenic phenotype and increased numbers of endothelial cells. The molecular mechanisms involved in the modulation and recruitment of BM endothelium are largely unknown and may provide novel therapeutic targets for neoplastic diseases. We observed that angiogenic stimulation of BM endothelial cells activates mTOR and engages its downstream pathways 4E-BP1 and S6K1, which are inhibited by the mTOR-specific blockers rapamycin and CCI-779. Both mTOR blockers significantly inhibit growth factor- and leukemia-induced proliferation of BM endothelium by inducing G0/G1 cell-cycle arrest. This effect is associated with down-regulation of cyclin D1 and cdk2 phosphorylation, and up-regulation of the cdk inhibitors p27kip1 and p21cip1. Under conditions that reproduce the biomechanical fluidic environment of the BM, CCI-779 is equally effective in inhibiting BM endothelial-cell proliferation. Finally, simultaneous blockade of mTOR and NF-κB pathways synergize to significantly inhibit or abrogate the proliferative responses of BM endothelial cells to mitogenic stimuli. This study identifies mTOR as an important pathway for the proangiogenic stimulation of BM endothelium. Modulation of this pathway may serve as a valid therapeutic intervention in BM malignancies evolving in association with an angiogenic phenotype. PMID:16141350

  10. Carbamazepine directly inhibits adipocyte differentiation through activation of the ERK 1/2 pathway

    PubMed Central

    Turpin, E; Muscat, A; Vatier, C; Chetrite, G; Corruble, E; Moldes, M; Fève, B

    2013-01-01

    Background and Purpose Carbamazepine (CBZ), known for its anti-epileptic, analgesic and mood-stabilizing properties, is also known to induce weight gain but the pathophysiology of this adverse effect is still largely unknown. We tested the hypothesis that CBZ could have a direct effect on adipocyte development and metabolism. Experimental Research We studied the effects of CBZ on morphological biochemical and molecular markers of adipogenesis, using several pre-adipocyte murine cell lines (3T3-L1, 3T3-F442A and T37i cells) and primary cultures of human pre-adipocytes. To delineate the mechanisms underlying the effect of CBZ, clonal expansion of pre-adipocytes, pro-adipogenic transcription factors, glucose uptake and lipolysis were also examined. Key Results CBZ strongly inhibited pre-adipocyte differentiation and triglyceride accumulation in a time- and dose-dependent manner in all models. Pleiotropic mechanisms were at the basis of the inhibitory effects of CBZ on adipogenesis and cell lipid accumulation. They included suppression of both clonal expansion and major adipogenic transcription factors such as PPAR-γ and CCAAT/enhancer binding protein-α, activation of basal lipolysis and decrease in insulin-stimulated glucose transport. Conclusions and Implications The effect of CBZ on adipogenesis involves activation of the ERK1/2 pathway. Our results show that CBZ acts directly on pre-adipocytes and adipocytes to alter adipose tissue development and metabolism. PMID:22889231

  11. Effect of a high fat diet on rat adipocyte lipolysis: responses to epinephrine, forskolin, methylisobutylxanthine, dibutyryl cyclic AMP, insulin and nicotinic acid.

    PubMed

    Tepperman, H M; Dewitt, J; Tepperman, J

    1986-10-01

    An earlier report from this laboratory showed that feeding rats a high fat diet decreased epinephrine-stimulated lipolysis in their adipose tissue. Experiments were designed to explore further the effects of such diets on adipocyte response to epinephrine and to several other lipolytic and antilipolytic agents. Rats were fed diets with 67% of energy consisting of glucose or lard for 5 to 7 d. Adipocytes were prepared from epididymal fat pads and lipolysis measured by the release of glycerol into the medium during 1-h incubations. The cells from the rats fed the high fat diet showed lower lipolytic responses to stimulation by epinephrine, forskolin and dibutyryl cyclic AMP than those from rats fed the high glucose diet. The lard diet effect on the lipolytic response to isobutylmethylxanthine varied among experiments, but it also decreased it in some of them. However, the high fat diet did not induce decreased sensitivity or responsiveness to the antilipolytic effect of insulin, although previous reports have demonstrated resistance to other actions of insulin in rats fed a high fat diet. The antilipolytic effect of nicotinic acid was also similar in cells from rats fed a high fat diet to that found for cells from rats fed the high glucose diet.

  12. Flavonoid myricetin inhibits TNF-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR and NF-κB pathways in human keratinocytes.

    PubMed

    Lee, Da Hee; Lee, Chung Soo

    2016-08-05

    Flavonoid myricetin has been shown to exhibit anti-inflammatory and anti-oxidant effects. Nevertheless, the effect of myricetin on the TNF-α-stimulated production of inflammatory mediators in keratinocytes has not been studied. Using human keratinocytes, we examined the effect of myricetin on the TNF-α-stimulated production of inflammatory mediators in relation to the Akt, mTOR and NF-κB pathways, which regulate the transcription genes involved in immune and inflammatory responses. TNF-α stimulated production of the inflammatory mediators and reactive oxygen species in keratinocytes, and activation of the Akt, mTOR and NF-κB pathways in HaCaT cells and primary keratinocytes. Myricetin, Akt inhibitor, Bay 11-7085 (an inhibitor of NF-κB activation), rapamycin (mTOR inhibitor) and N-acetylcysteine attenuated TNF-α-induced activation of Akt, mTOR and NF-κB. Myricetin and N-acetylcysteine attenuated the TNF-α-stimulated production of cytokines and chemokines, and production of reactive oxygen species in keratinocytes. The results show that myricetin may reduce TNF-α-stimulated inflammatory mediator production in keratinocytes by suppressing the activation of the Akt, mTOR and NF-κB pathways. The effect of myricetin appears to be associated with inhibition of the production of reactive oxygen species. Further, myricetin appears to attenuate the proinflammatory mediator-induced inflammatory skin diseases.

  13. PHA665752 inhibits the HGF-stimulated migration and invasion of cells by blocking PI3K/AKT pathway in human cell line uveal melanoma.

    PubMed

    Wang, Z; He, C; Liu, L; Ma, N; Chen, X; Zheng, D; Qiu, G H

    2017-03-03

    HGF/c-MET is frequently associated with tumor metastasis in many cancers, including uveal melanoma (UM). PHA665752, a selective c-MET inhibitor, exhibits anticancer activity through inhibiting cell motility in some cancers. In this study, we investigated the effects of PHA665752 on UM cell lines M17 and SP6.5. Our data show that HGF stimulated the motility of UM cells, and induced the activation of both c-MET and PI3K/AKT, but not ERK1/2. Moreover, consistent with the amount of c-MET within the nucleus, PHA665752 significantly inhibited HGF-promoted cell motility and suppressed the phosphorylation of c-MET and PI3K/AKT, but not ERK1/2 induced by HGF. Additionally, the effects of PHA665752 on both the inhibition of HGF-induced cell motility and the suppression of active AKT are similar to those of PI3K inhibitor LY294002. In xenograft models, PHA665752 significantly inhibited tumor growth in nude mice and similarly suppressed the phosphorylation of c-MET and PI3K/AKT. Our current findings, combined with previous results, demonstrate that PHA665752 inhibits HGF-induced motility via the inhibition of PI3K/AKT. This study suggests that targeting HGF/c-MET could be a promising therapeutic strategy for UM by preventing cell motility.

  14. Adenosine A2a receptor stimulation blocks development of nonalcoholic steatohepatitis in mice by multilevel inhibition of signals that cause immunolipotoxicity.

    PubMed

    Alchera, Elisa; Rolla, Simona; Imarisio, Chiara; Bardina, Valentina; Valente, Guido; Novelli, Francesco; Carini, Rita

    2016-12-06

    Lipotoxicity and immunoinflammation are associated with the evolution of steatosis toward nonalcoholic steatohepatitis (NASH). This study reports the ability of adenosine A2a receptor (A2aR) activation to inhibit NASH development by modulating the responses of CD4(+) T-helper (Th) cells to avoid an immuno-mediated potentiation of lipotoxicity. The effect of the A2aR agonist CGS21680 on immunoinflammatory signals, CD4(+)Th cell infiltration and immunolipotoxicity was analyzed in steatotic C57BL/6 mice fed with a methionine-choline-deficient (MCD) diet and in mouse hepatocytes exposed to palmitic acid (PA). CGS21680 inhibited NASH development in steatotic mice and decreased cytokines and chemokines involved in Th cell recruitment or polarization (namely CXCL10, CCL2, tumor necrosis factor alfa [TNFα], tumor growth factor [TGFβ], and IL-12). CGS21680 also reduced the expansion of Th17, Th22, and Th1 cells and increased the immunosuppressive activity of T regulatory cells. In PA-treated mice hepatocytes, CGS21680 inhibited the production of CXCL10, TNFα, TGFβ, IL-12, and CCL2; CGS21680 also prevented JNK-dependent lipotoxicity and its intensification by IL-17 or IL-17 plus IL-22 through Akt/PI3-kinase stimulation and inhibition of the negative regulator of PI3-kinase, (phosphatase and tensin homologue deleted from chromosome 10 (PTEN), which is upregulated by IL-17. In MCD livers, CGS21680 reduced JNK activation and PTEN expression and increased Akt phosphorylation. In conclusion, A2aR stimulation inhibited NASH development by reducing Th17 cell expansion and inhibiting the exacerbation of the IL-17-induced JNK-dependent lipotoxicity. These data promote the implementation of further studies to evaluate the potential clinical application of A2aR agonists that, by being able to function as both cytoprotective and immunomodulatory agents, could efficiently antagonize the multi-faced pathogenesis of NASH.

  15. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    PubMed

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  16. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism

    PubMed Central

    Roux, Jérémie; McNicholas, Carmel M.; Carles, Michel; Goolaerts, Arnaud; Houseman, Benjamin T.; Dickinson, Dale A.; Iles, Karen E.; Ware, Lorraine B.; Matthay, Michael A.; Pittet, Jean-François

    2013-01-01

    Patients with acute lung injury (ALI) who retain maximal alveolar fluid clearance (AFC) have better clinical outcomes. Experimental and small clinical studies have shown that β2-adrenergic receptor (β2AR) agonists enhance AFC via a cAMP-dependent mechanism. However, two multicenter phase 3 clinical trials failed to show that β2AR agonists provide a survival advantage in patients with ALI. We hypothesized that IL-8, an important mediator of ALI, directly antagonizes the alveolar epithelial response to β2AR agonists. Short-circuit current and whole-cell patch-clamping experiments revealed that IL-8 or its rat analog CINC-1 decreases by 50% β2AR agonist-stimulated vectorial Cl− and net fluid transport across rat and human alveolar epithelial type II cells via a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis. This reduction was mediated by heterologous β2AR desensitization and down-regulation (50%) via the G-protein-coupled receptor kinase 2 (GRK2)/PI3K signaling pathway. Inhibition of CINC-1 restored β2AR agonist-stimulated AFC in an experimental model of ALI in rats. Finally, consistent with the experimental results, high pulmonary edema fluid levels of IL-8 (>4000 pg/ml) were associated with impaired AFC in patients with ALI. These results demonstrate a novel role for IL-8 in inhibiting β2AR agonist-stimulated alveolar epithelial fluid transport via GRK2/PI3K-dependent mechanisms.—Roux, J., McNicholas, C. M., Carles, M., Goolaerts, A., Houseman, B. T., Dickinson, D. A., Iles, K. E., Ware, L. B., Matthay, M. A., Pittet, J.-F. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism. PMID:23221335

  17. Bone morphogenetic protein 4 inhibits TGF-beta2 stimulation of extracellular matrix proteins in optic nerve head cells: role of gremlin in ECM modulation.

    PubMed

    Zode, Gulab S; Clark, Abbot F; Wordinger, Robert J

    2009-05-01

    The characteristic cupping of the optic nerve head (ONH) in glaucoma is associated with elevated TGF-beta2 and increased synthesis and deposition of extracellular matrix (ECM) proteins. In addition to TGF-beta2, the human ONH also expresses bone morphogenetic proteins (BMPs) and BMP receptors, which are members of the TGF-beta superfamily. We examined the potential effects of BMP4 and the BMP antagonist gremlin on TGF-beta2 induction of ECM proteins in ONH cells. BMP-4 dose dependently inhibited TGF-beta2-induced fibronectin (FN) and PAI-1 expression in ONH astrocytes and lamina cribrosa (LC) cells and also reduced TGF-beta2 stimulation of collagen I, collagen VI, and elastin. Addition of gremlin blocked this BMP-4 response, increasing cellular and secreted FN as well as PAI-1 levels in both cell types. Gremlin was expressed in ONH tissues and ONH cells, and gremlin protein levels were significantly increased in the LC region of human glaucomatous ONH tissues. Interestingly, recombinant gremlin dose dependently increased ECM protein expression in cultured ONH astrocytes and LC cells. Gremlin stimulation of ECM required activation of TGF-beta receptor and R-Smad3. TGF-beta2 increased gremlin mRNA expression and protein levels in ONH cells. Inhibition of either the type I TGF-beta receptor or Smad3 phosphorylation blocked TGF-beta2-induced gremlin expression. In conclusion, BMP4 blocked the TGF-beta2 induction of ECM proteins in ONH cells. The BMP antagonist gremlin reversed this inhibition, allowing TGF-beta2 stimulation of ECM synthesis. Increased expression of gremlin in the glaucomatous ONH may further exacerbate TGF-beta2 effects on ONH ECM metabolism by inhibiting BMP-4 antagonism of TGF-beta2 signaling. Modulation of the ECM via gremlin provides a novel therapeutic target for glaucoma.

  18. Inhibition of Antigen-Specific and Nonspecific Stimulation of Bovine T and B Cells by Lymphostatin from Attaching and Effacing Escherichia coli

    PubMed Central

    Blackburn, Elizabeth A.; Bell, Charlotte R.; Elshina, Elizaveta; Hope, Jayne C.; Stevens, Mark P.

    2016-01-01

    ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are enteric bacterial pathogens of worldwide importance. Most EPEC and non-O157 EHEC strains express lymphostatin (also known as LifA), a chromosomally encoded 365-kDa protein. We previously demonstrated that lymphostatin is a putative glycosyltransferase that is important in intestinal colonization of cattle by EHEC serogroup O5, O111, and O26 strains. However, the nature and consequences of the interaction between lymphostatin and immune cells from the bovine host are ill defined. Using purified recombinant protein, we demonstrated that lymphostatin inhibits mitogen-activated proliferation of bovine T cells and, to a lesser extent, proliferation of cytokine-stimulated B cells, but not NK cells. It broadly affected the T cell compartment, inhibiting all cell subsets (CD4, CD8, WC-1, and γδ T cell receptor [γδ-TCR]) and cytokines examined (interleukin 2 [IL-2], IL-4, IL-10, IL-17A, and gamma interferon [IFN-γ]) and rendered T cells refractory to mitogen for a least 18 h after transient exposure. Lymphostatin was also able to inhibit proliferation of T cells stimulated by IL-2 and by antigen presentation using a Theileria-transformed cell line and autologous T cells from Theileria-infected cattle. We conclude that lymphostatin is likely to act early in T cell activation, as stimulation of T cells with concanavalin A, but not phorbol 12-myristate 13-acetate combined with ionomycin, was inhibited. Finally, a homologue of lymphostatin from E. coli O157:H7 (ToxB; L7095) was also found to possess comparable inhibitory activity against T cells, indicating a potentially conserved strategy for interference in adaptive responses by attaching and effacing E. coli. PMID:27920212

  19. Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata) adipocytes.

    PubMed

    Albalat, A; Gómez-Requeni, P; Rojas, P; Médale, F; Kaushik, S; Vianen, G J; Van den Thillart, G; Gutiérrez, J; Pérez-Sánchez, J; Navarro, I

    2005-07-01

    We examined the effects of diet composition and fasting on lipolysis of freshly isolated adipocytes from gilthead seabream (Sparus aurata). We also analyzed the effects of insulin, glucagon, and growth hormone (GH) in adipocytes isolated from fish fed with different diets. Basal lipolysis, measured as glycerol release, increased proportionally with cell concentration and time of incubation, which validates the suitability of these cell preparations for the study of hormonal regulation of this metabolic process. Gilthead seabream were fed two different diets, FM (100% of fish meal) and PP (100% of plant protein supplied by plant sources) for 6 wk. After this period, each diet group was divided into two groups: fed and fasted (for 11 days). Lipolysis was significantly higher in adipocytes from PP-fed fish than in adipocytes from FM-fed fish. Fasting provoked a significant increase in the lipolytic rate, about threefold in isolated adipocytes regardless of nutritional history. Hormone effects were similar in the different groups: glucagon increased the lipolytic rate, whereas insulin had almost no effect. GH was clearly lipolytic, although the relative increase in glycerol over control was lower in isolated adipocytes from fasted fish compared with fed fish. Together, we demonstrate for the first time that lipolysis, measured in isolated seabream adipocytes, is affected by the nutritional state of the fish. Furthermore, our data suggest that glucagon and especially GH play a major role in the control of adipocyte lipolysis.

  20. Signaling the signal, cyclic AMP-dependent protein kinase inhibition by insulin-formed H2O2 and reactivation by thioredoxin.

    PubMed

    de Piña, Martha Zentella; Vázquez-Meza, Héctor; Pardo, Juan Pablo; Rendón, Juan Luis; Villalobos-Molina, Rafael; Riveros-Rosas, Héctor; Piña, Enrique

    2008-05-02

    Catecholamines in adipose tissue promote lipolysis via cAMP, whereas insulin stimulates lipogenesis. Here we show that H(2)O(2) generated by insulin in rat adipocytes impaired cAMP-mediated amplification cascade of lipolysis. These micromolar concentrations of H(2)O(2) added before cAMP suppressed cAMP activation of type IIbeta cyclic AMP-dependent protein kinase (PKA) holoenzyme, prevented hormone-sensitive lipase translocation from cytosol to storage droplets, and inhibited lipolysis. Similarly, H(2)O(2) impaired activation of type IIalpha PKA holoenzyme from bovine heart and from that reconstituted with regulatory IIalpha and catalytic alpha subunits. H(2)O(2) was ineffective (a) if these PKA holoenzymes were preincubated with cAMP, (b) if added to the catalytic alpha subunit, which is active independently of cAMP activation, and (c) if the catalytic alpha subunit was substituted by its C199A mutant in the reconstituted holoenzyme. H(2)O(2) inhibition of PKA activation remained after H(2)O(2) elimination by gel filtration but was reverted with dithiothreitol or with thioredoxin reductase plus thioredoxin. Electrophoresis of holoenzyme in SDS gels showed separation of catalytic and regulatory subunits after cAMP incubation but a single band after H(2)O(2) incubation. These data strongly suggest that H(2)O(2) promotes the formation of an intersubunit disulfide bond, impairing cAMP-dependent PKA activation. Phylogenetic analysis showed that Cys-97 is conserved only in type II regulatory subunits and not in type I regulatory subunits; hence, the redox regulation mechanism described is restricted to type II PKA-expressing tissues. In conclusion, phylogenetic analysis results, selective chemical behavior, and the privileged position in holoenzyme lead us to suggest that Cys-97 in regulatory IIalpha or IIbeta subunits is the residue forming the disulfide bond with Cys-199 in the PKA catalytic alpha subunit. A new molecular point for cross-talk among heterologous signal

  1. Prostaglandin E2 inhibits platelet-derived growth factor-stimulated cell proliferation through a prostaglandin E receptor EP2 subtype in rat hepatic stellate cells.

    PubMed

    Koide, Shigeki; Kobayashi, Yoshimasa; Oki, Yutaka; Nakamura, Hirotoshi

    2004-09-01

    Prostaglandin (PG) E2 inhibits hepatic stellate cell (HSC) mitogenesis. PGE-specific receptors are divided into four subtypes that are coupled either to Ca2+ mobilization (EP1 and EP3) or to the stimulation of adenyl cyclase (EP2 and EP4). The aims of the current study were to identify PGE receptor subtypes in cultured rat HSC and to examine which PGE receptor subtype(s) mediates the inhibitory effect of PGE2 on platelet-derived growth factor (PDGF)-stimulated proliferation. Reverse transcription-polymerase chain reaction analysis was performed to detect PGE receptor subtype mRNA expression. Cell proliferation was determined by measuring [3H]thymidine incorporation, and intracellular cyclic AMP was measured by radioimmunoassay. Cultured rat HSC expressed mRNAs for all four subtypes of PGE receptor. PGE2- and EP2-selective agonist produced dose-dependent inhibitory effects on PDGF-stimulated proliferation. Neither EP1-, EP3-, nor EP4-selective agonists showed any inhibitory effect. An adenylate cyclase inhibitor strongly blunted the inhibition of DNA synthesis elicited by PGE2 and the EP2 agonist. The EP2 agonist generated higher and more prolonged increases in intracellular cyclic AMP than the EP4 agonist. Activation of the PGE EP2 receptor has an antiproliferative effect in HSC that may be mediated by cyclic AMP-related signal transduction pathways.

  2. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine but not trichloroacetate inhibits pathogen-stimulated TNF-α in human extraplacental membranes in vitro.

    PubMed

    Boldenow, Erica; Hassan, Iman; Chames, Mark C; Xi, Chuanwu; Loch-Caruso, Rita

    2015-04-01

    Extraplacental membranes define the gestational compartment and provide a barrier to infectious microorganisms ascending the gravid female reproductive tract. We tested the hypothesis that bioactive metabolites of trichloroethylene (TCE) decrease pathogen-stimulated innate immune response of extraplacental membranes. Extraplacental membranes were cultured for 4, 8, and 24h with the TCE metabolites trichloroacetate (TCA) or S-(1,2-dichlorovinyl)-l-cysteine (DCVC) in the absence or presence of lipoteichoic acid (LTA) or lipopolysaccharide (LPS) to simulate infection. In addition, membranes were cocultured with DCVC and Group B Streptococcus (GBS). DCVC (5-50μM) significantly inhibited LTA-, LPS-, and GBS-stimulated cytokine release from tissue cultures as early as 4h (P≤0.05). In contrast, TCA (up to 500μM) did not inhibit LTA-stimulated cytokine release from tissue punches. Because cytokines are important mediators for host response to infectious microorganisms these findings suggest that TCE exposure could potentially modify susceptibility to infection during pregnancy.

  3. The Trichloroethylene Metabolite S-(1,2-dichlorovinyl)-L-cysteine but not Trichloroacetate Inhibits Pathogen-Stimulated TNF-α in Human Extraplacental Membranes In Vitro

    PubMed Central

    Boldenow, Erica; Hassan, Iman; Chamesb, Mark C.; Xi, Chuanwu; Loch-Caruso, Rita

    2015-01-01

    Extraplacental membranes define the gestational compartment and provide a barrier to infectious microorganisms ascending the gravid female reproductive tract. We tested the hypothesis that bioactive metabolites of trichloroethylene (TCE) decrease pathogen-stimulated innate immune response of extraplacental membranes. Extraplacental membranes were cultured for 4, 8, and 24 h with the TCE metabolites trichloroacetate (TCA) or S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in the absence or presence of lipoteichoic acid (LTA) or lipopolysaccharide (LPS) to simulate infection. In addition, membranes were cocultured with DCVC and Group B Streptococcus (GBS). DCVC (5-50 μM) significantly inhibited LTA-, LPS-, and GBS-stimulated cytokine release from tissue punch cultures as early as 4 h (p ≤ 0.05). In contrast, TCA (up to 500 μM) did not inhibit LTA-stimulated cytokine release from tissue punches. Because cytokines are important mediators for host response to infectious microorganisms these findings suggest that TCE exposure could potentially modify susceptibility to infection during pregnancy. PMID:25653212

  4. Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis.

    PubMed Central

    Nollet, L; Demeyer, D; Verstraete, W

    1997-01-01

    Evidence is provided that reductive acetogenesis can be stimulated in ruminal samples during short-term (24-h) incubations when methanogenesis is inhibited selectively. While addition of the reductive acetogen Peptostreptococcus productus ATCC 35244 alone had no significant influence on CH4 and volatile fatty acid (VFA) production in ruminal samples, the addition of this strain together with 2-bromoethanesulfonic acid (BES) (final concentration, 0.01 or 0.03 mM) resulted in stimulation of acetic acid production and H2 consumption. Since acetate production exceeded amounts that could be attributed to reductive acetogenesis, as measured by H2 consumption, it was found that P. productus also fermented C6 units (glucose and fructose) heterotrophically to mainly acetate (> 99% of the total VFA). Using 14CH3COOH, we concluded that addition of BES and BES plus P. productus did not alter the consumption of acetate in ruminal samples. The addition of P. productus to BES-treated ruminal samples caused supplemental inhibition of CH4 production and stimulation of VFA production, representing a possible energy gain of about 13 to 15%. PMID:8979351

  5. The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets.

    PubMed

    Masiello, P; Novelli, M; Bombara, M; Fierabracci, V; Vittorini, S; Prentki, M; Bergamini, E

    2002-01-01

    This study intended to test the hypothesis that intracellular lipolysis in the pancreatic beta cells is implicated in the regulation of insulin secretion stimulated by nutrient secretagogues or cyclic adenosine monophosphate (cAMP) agonists. Indeed, although lipid signaling molecules were repeatedly reported to influence beta-cell function, the contribution of intracellular triglycerides to the generation of these molecules has remained elusive. Thus, we have studied insulin secretion of isolated rat pancreatic islets in response to various secretagogues in the presence or absence of 3,5-dimethylpyrazole (DMP), a water-soluble and highly effective antilipolytic agent, as previously shown in vivo. In vitro exposure of islets to DMP resulted in an inhibition (by approximately 50%) of the insulin release stimulated not only by high glucose, but also by another nutrient secretagogue, 2-ketoisocaproate, as well as the cAMP agonists 3-isobutyl-1-methylxanthine and glucagon. The inhibitory effect of DMP, which was not due to alteration of islet glucose oxidation, could be reversed upon addition of sn-1,2-dioctanoylglycerol, a synthetic diglyceride, which activates protein kinase C. The results provide direct pharmacologic evidence supporting the concept that endogenous beta-cell lipolysis plays an important role in the generation of lipid signaling molecules involved in the control of insulin secretion in response to both fuel stimuli and cAMP agonists.

  6. The expression of type III hyperlipoproteinemia: involvement of lipolysis genes

    PubMed Central

    Henneman, Peter; van der Sman-de Beer, Femke; Moghaddam, Payman Hanifi; Huijts, Petra; Stalenhoef, Anton FH; Kastelein, John JP; van Duijn, Cornelia M; Havekes, Louis M; Frants, Rune R; van Dijk, Ko Willems; Smelt, Augustinus HM

    2009-01-01

    Type III hyperlipoproteinemia (HLP) is mainly found in homozygous apolipoprotein (APO) E2 (R158C) carriers. Genetic factors contributing to the expression of type III HLP were investigated in 113 hyper- and 52 normolipidemic E2/2 subjects, by testing for polymorphisms in APOC3, APOA5, HL (hepatic lipase) and LPL (lipoprotein lipase) genes. In addition, 188 normolipidemic Dutch control panels (NDCP) and 141 hypertriglyceridemic (HTG) patients were genotyped as well. No associations were found for four HL gene polymorphisms and two LPL gene polymorphisms and type III HLP. The frequency of the rare allele of APOC3 3238 G>C and APOA5 −1131 T>C (in linkage disequilibrium) was significantly higher in type III HLP patients when compared with normolipidemic E2/2 subjects, 15.6 vs 6.9% and 15.1 vs 5.8%, respectively, (P<0.05). Furthermore, the frequencies of the APOA5 c.56 G>C polymorphism and LPL c.27 G>A mutation were higher in type III HLP patients, though not significant. Some 58% of the type III HLP patients carried either the APOA5 −1131 T>C, c.56 G>C and/or LPL c.27 G>A mutation as compared to 27% of the normolipidemic APOE2/2 subjects (odds ratio 3.7, 95% confidence interval=1.8–7.5, P<0.0001). The HTG patients showed similar allele frequencies of the APOA5, APOC3 and LPL polymorphisms, whereas the NDCP showed similar allele frequencies as the normolipidemic APOE2/2. Patients with the APOC3 3238 G>C/APOA5 −1131 T>C polymorphism showed a more severe hyperlipidemia than patients without this polymorphism. Polymorphisms in lipolysis genes associate with the expression and severity of type III HLP in APOE2/2. PMID:19034316

  7. Prostaglandin-mediated inhibition of PTH-stimulated β-catenin signaling in osteoblasts by bone marrow macrophages

    PubMed Central

    Estus, Thomas L.; Choudhary, Shilpa; Pilbeam, Carol C.

    2016-01-01

    Bone marrow macrophages (BMMs), in the presence of cyclooxygenase-2 (Cox2) produced PGE2, secrete an inhibitory factor in response to Rankl that blocks PTH-stimulated osteoblastic differentiation. This study was to determine if the inhibitory factor also blocks PTH-stimulated Wnt signaling. Primary calvarial osteoblasts (POBs) were co-cultured with conditioned medium (CM) from Rankl-treated wild type (WT) BMMs, which make the inhibitory factor, and Cox2 knockout (KO) BMMs, which do not. PTH induced cAMP production was blocked by WT CM but not by KO CM. In the presence of KO CM, PTH induced phosphorylation at β-catenin serine sites, ser552 and ser675, previously shown to be phosphorylated by protein kinase A (PKA). Phosphorylation was blocked by WT CM and by H89, a PKA inhibitor. PTH did not increase total β-catenin. PTH-stimulated transcription factor/lymphoid enhancer-binding factor response element activity in POBs was blocked by WT CM and by serum amyloid A (SAA), the human recombinant analog of murine Saa3, which has recently been shown to be the inhibitory factor. In POBs cultured with Cox2 KO CM, PTH increased expression of multiple genes associated with the anabolic actions of PTH and decreased expression of Wnt antagonists. This differential regulation of gene expression was not seen in POBs cultured with WT CM. These data highlight the ability of PTH to phosphorylate β-catenin directly via PKA and demonstrate the ability of a Cox2-dependent inhibitory factor, secreted by Rankl-stimulated BMMs, to abrogate PTH stimulated β-catenin signaling. Our results suggest that PTH can stimulate a novel negative feedback of its anabolic actions by stimulating Rankl and Cox2 expression. PMID:26851123

  8. Inhibition of G-protein βγ signaling enhances T cell receptor-stimulated interleukin 2 transcription in CD4+ T helper cells.

    PubMed

    Yost, Evan A; Hynes, Thomas R; Hartle, Cassandra M; Ott, Braden J; Berlot, Catherine H

    2015-01-01

    G-protein-coupled receptor (GPCR) signaling modulates the expression of cytokines that are drug targets for immune disorders. However, although GPCRs are common targets for other diseases, there are few GPCR-based pharmaceuticals for inflammation. The purpose of this study was to determine whether targeting G-protein βγ (Gβγ) complexes could provide a useful new approach for modulating interleukin 2 (IL-2) levels in CD4+ T helper cells. Gallein, a small molecule inhibitor of Gβγ, increased levels of T cell receptor (TCR)-stimulated IL-2 mRNA in primary human naïve and memory CD4+ T helper cells and in Jurkat human CD4+ leukemia T cells. Gβ1 and Gβ2 mRNA accounted for >99% of Gβ mRNA, and small interfering RNA (siRNA)-mediated silencing of Gβ1 but not Gβ2 enhanced TCR-stimulated IL-2 mRNA increases. Blocking Gβγ enhanced TCR-stimulated increases in IL-2 transcription without affecting IL-2 mRNA stability. Blocking Gβγ also enhanced TCR-stimulated increases in nuclear localization of nuclear factor of activated T cells 1 (NFAT1), NFAT transcriptional activity, and levels of intracellular Ca2+. Potentiation of IL-2 transcription required continuous Gβγ inhibition during at least two days of TCR stimulation, suggesting that induction or repression of additional signaling proteins during T cell activation and differentiation might be involved. The potentiation of TCR-stimulated IL-2 transcription that results from blocking Gβγ in CD4+ T helper cells could have applications for autoimmune diseases.

  9. Stimulation and inhibition of the sodium pump by cardioactive steroids in relation to their binding sites and their inotropic effect on guinea-pig isolated atria.

    PubMed

    Ghysel-Burton, J; Godfraind, T

    1979-06-01

    1 The actions of ouabain, ouabagenin and dihydroouabain on the contractility and on the ionic content have been investigated in left guinea-pig atria stimulated at 3.3 Hz. The specific binding of ouabain and its displacement by the other cardenolides have been determined. 2 The action of either ouabain or ouabagenin on Na and K content was qualitatively different according to the concentration employed. Low doses evoked a reduction of Nai whereas high doses produced an increase. Dihydroouabain evoked only a Nai gain. 3 The increase of KCl concentration from 2.7 to 12 mM decreased Nai in untreated atria and displaced ouabain dose-effect curves to the right. 4 ED50 values for the positive inotropic effect were lower than ED50 values for the inhibition of the pump and were not similarly affected by an increase in KCl concentration. 5 The specific binding of ouabain occurred at high and low affinity sites, related to Na pump stimulation and inhibition respectively. 6 The increase in KCl reduced the affinity of the two groups of sites for ouabain and increased the capacity of the high-affinity sites whereas the capacity of the other sites remained unchanged. 7 The results confirm the existence of two specific binding sites for ouabain in guinea-pig heart and suggest that the inhibition of the Na pump is not the only mechanism responsible for the positive inotropic effect of cardiac glycosides.

  10. Stimulation and inhibition of the sodium pump by cardioactive steroids in relation to their binding sites and their inotropic effect on guinea-pig isolated atria.

    PubMed Central

    Ghysel-Burton, J.; Godfraind, T.

    1979-01-01

    1 The actions of ouabain, ouabagenin and dihydroouabain on the contractility and on the ionic content have been investigated in left guinea-pig atria stimulated at 3.3 Hz. The specific binding of ouabain and its displacement by the other cardenolides have been determined. 2 The action of either ouabain or ouabagenin on Na and K content was qualitatively different according to the concentration employed. Low doses evoked a reduction of Nai whereas high doses produced an increase. Dihydroouabain evoked only a Nai gain. 3 The increase of KCl concentration from 2.7 to 12 mM decreased Nai in untreated atria and displaced ouabain dose-effect curves to the right. 4 ED50 values for the positive inotropic effect were lower than ED50 values for the inhibition of the pump and were not similarly affected by an increase in KCl concentration. 5 The specific binding of ouabain occurred at high and low affinity sites, related to Na pump stimulation and inhibition respectively. 6 The increase in KCl reduced the affinity of the two groups of sites for ouabain and increased the capacity of the high-affinity sites whereas the capacity of the other sites remained unchanged. 7 The results confirm the existence of two specific binding sites for ouabain in guinea-pig heart and suggest that the inhibition of the Na pump is not the only mechanism responsible for the positive inotropic effect of cardiac glycosides. PMID:465868

  11. Relationships between root density of the African grass Hyparrhenia diplandra and nitrification at the decimetric scale: an inhibition-stimulation balance hypothesis.

    PubMed Central

    Lata, J C; Guillaume, K; Degrange, V; Abbadie, L; Lensi, R

    2000-01-01

    Previous studies have shown that Lamto savannah exhibits two different types of nitrogen cycle with high and low nitrification sites and suggested that the perennial grass Hyparrhenia diplandra is responsible for this duality at a subpopulation level, with one ecotype being thought to be able to inhibit nitrification. The present work aimed to investigate the relationships between nitrification and the roots of H. diplandra at two scales. (i) Site-scale experiments gave new insight into the hypothesized control of nitrification by H. diplandra tussocks: the two ecotypes exhibited opposite influences, inhibition in a low nitrification site (A) and stimulation in a high nitrification site (B). (ii) Decimetric-scale experiments demonstrated close negative or positive relationships (in sites A or B, respectively) between the roots and nitrification (in the 0-10 cm soil layer), showing an unexpectedly high sensitivity of the nitrification process to root density. In both soils, the correlation between the roots and nitrification decreased with depth and practically disappeared in the 20-30 cm soil layer (where the nitrification potential was found to be very low). Therefore, the impact of H. diplandra on nitrification may be viewed as an inhibition-stimulation balance. PMID:10787164

  12. Inhibition of follicle-stimulating hormone-induced preovulatory follicles in rats treated with a nonsteroidal negative allosteric modulator of follicle-stimulating hormone receptor.

    PubMed

    Dias, James A; Campo, Brice; Weaver, Barbara A; Watts, Julie; Kluetzman, Kerri; Thomas, Richard M; Bonnet, Béatrice; Mutel, Vincent; Poli, Sonia M

    2014-01-01

    We previously described a negative allosteric modulator (NAM) of FSHR (ADX61623) that blocked FSH-induced cAMP and progesterone production but did not block estradiol production. That FSHR NAM did not affect FSH-induced preovulatory follicle development as evidenced by the lack of an effect on the number of FSH-dependent oocytes found in the ampullae following ovulation with hCG. A goal is the development of a nonsteroidal contraceptive. Toward this end, a high-throughput screen using human FSHR identified an additional nonsteroidal small molecule (ADX68692). Although ADX68692 behaved like ADX61623 in inhibiting production of cAMP and progesterone, it also inhibited FSH-induced estradiol in an in vitro rat granulosa primary cell culture bioassay. When immature, noncycling female rats were injected subcutaneously or by oral dosing prior to exogenous FSH administration, it was found that ADX68692 decreased the number of oocytes recovered from the ampullae. The estrous cycles of mature female rats were disrupted by administration by oral gavage of 25 mg/kg and 10 mg/kg ADX68692. In the highest dose tested (25 mg/kg), 55% of animals cohabited with mature males had implantation sites compared to 33% in the 10 mg/kg group and 77% in the control group. A surprising finding was that a structural analog ADX68693, while effectively blocking progesterone production with similar efficacy as ADX68692, did not block estrogen production and despite better oral availability did not decrease the number of oocytes found in the ampullae even when used at 100 mg/kg. These data demonstrate that because of biased antagonism of the FSHR, nonsteroidal contraception requires that both arms of the FSHR steroidogenic pathway must be effectively blocked, particularly estrogen biosynthesis. Thus, a corollary to these findings is that it seems reasonable to propose that the estrogen-dependent diseases such as endometriosis may benefit from inhibition of FSH action at the ovary using the FSHR

  13. Starter bacteria are the prime agents of lipolysis in cheddar cheese.

    PubMed

    Hickey, Dara K; Kilcawley, Kieran N; Beresford, Tom P; Wilkinson, Martin G

    2006-10-18

    To assess the contribution of starter lactic acid bacteria (LAB) to lipolysis in Cheddar cheese, the evolution of free fatty acids (FFAs) was monitored in Cheddar cheeses manufactured from pasteurized milks with or without starter. Starter-free cheeses were acidified by a combination of lactic acid and glucono-delta-lactone. Starter cultures were found to actively produce FFAs in the cheese vat, and mean levels of FFAs were significantly higher in starter cheeses over ripening. The contribution of nonstarter LAB toward lipolysis appears minimal, especially in starter-acidified cheeses. It is postulated that the moderate increases in FFAs in Cheddar cheese are primarily due to lack of access of esterase of LAB to suitable lipid substrate. The results of this study indicate that starter esterases are the primary contributors to lipolysis in Cheddar cheese made from good quality pasteurized milk.

  14. Effects of stimulation of group I afferents from flexor muscles on heterosynaptic facilitation of monosynaptic reflexes produced by Ia and descending inputs: a test for presynaptic inhibition.

    PubMed

    Rudomin, P; Jiménez, I; Enriquez, M

    1991-01-01

    1. In the chloralose anesthetized cat, conditioning stimulation of group I flexor afferents depresses the monosynaptic potentials generated by Ia afferents in single spinal motoneurons or in populations of motoneurons without affecting the monosynaptic potentials produced by stimulation of descending fibers in the ipsilateral ventromedial fasciculus (VMF). 2. Heterosynaptic facilitation of monosynaptic reflexes was used to test changes in the presynaptic effectiveness of excitatory inputs with direct connections with motoneurons. We found that the heterosynaptic facilitation of Ia origin was reduced by conditioning stimulation of group I afferents from flexors, without affecting the heterosynaptic facilitation produced by stimulation of the VMF. 3. These results confirm and expand previous observations showing that the synaptic effectiveness of descending fibers synapsing with motoneurons is not subjected to a presynaptic control mechanism of the type acting on Ia fiber terminals, and provide further basis for the use of changes in heterosynaptic facilitation of monosynaptic reflexes of Ia origin as an estimate of changes in presynaptic inhibition of Ia fibers (Hultborn et al. 1987a).

  15. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells

    PubMed Central

    Salinthone, Sonemany; Schillace, Robynn V.; Marracci, Gail H.; Bourdette, Dennis N.; Carr, Daniel W.

    2008-01-01

    The antioxidant lipoic acid (LA) treats and prevents the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In an effort to understand the therapeutic potential of LA in MS, we sought to define the cellular mechanisms that mediate the effects of LA on human natural killer (NK) cells, which are important in innate immunity as the first line of defense against invading pathogens and tumor cells. We discovered that LA stimulates cAMP production in NK cells in a dose-dependent manner. Studies using pharmacological inhibitors and receptor transfection experiments indicate that LA stimulates cAMP production via activation of the EP2 and EP4 prostanoid receptors and adenylyl cyclase. In addition, LA suppressed interleukin (IL)-12/IL-18 induced IFNγ secretion and cytotoxicity in NK cells. These novel findings suggest that LA may inhibit NK cell function via the cAMP signaling pathway. PMID:18562016

  16. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells.

    PubMed

    Salinthone, Sonemany; Schillace, Robynn V; Marracci, Gail H; Bourdette, Dennis N; Carr, Daniel W

    2008-08-13

    The antioxidant lipoic acid (LA) treats and prevents the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In an effort to understand the therapeutic potential of LA in MS, we sought to define the cellular mechanisms that mediate the effects of LA on human natural killer (NK) cells, which are important in innate immunity as the first line of defense against invading pathogens and tumor cells. We discovered that LA stimulates cAMP production in NK cells in a dose-dependent manner. Studies using pharmacological inhibitors and receptor transfection experiments indicate that LA stimulates cAMP production via activation of the EP2 and EP4 prostanoid receptors and adenylyl cyclase. In addition, LA suppressed interleukin (IL)-12/IL-18 induced IFNgamma secretion and cytotoxicity in NK cells. These novel findings suggest that LA may inhibit NK cell function via the cAMP signaling pathway.

  17. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption.

    PubMed

    Agné, Alisa M; Baldin, Jan-Peter; Benjamin, Audra R; Orogo-Wenn, Maria C; Wichmann, Lukas; Olson, Kenneth R; Walters, Dafydd V; Althaus, Mike

    2015-04-01

    In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance.

  18. Compound K inhibits MMP-1 expression through suppression of c-Src-dependent ERK activation in TNF-α-stimulated dermal fibroblast.

    PubMed

    Lee, Chang Seok; Bae, Il-Hong; Han, Jiwon; Choi, Gye-young; Hwang, Kyung-Hwan; Kim, Dong-Hyun; Yeom, Myeong-Hun; Park, Young-Ho; Park, Miyoung

    2014-11-01

    Compound K (CK) is one of the major metabolites of ginsenosides exhibiting a variety of pharmacological properties such as anti-ageing, anti-oxidation and anti-inflammatory activities. However, the protective efficacy of CK in abnormal skin conditions with inflammatory responses was not examined. Here, we investigated the effects of CK on matrix metalloproteinase-1 (MMP-1) and type I procollagen production in tumor necrosis factor-α (TNF-α)-stimulated human skin fibroblasts HS68 cells and human skin equivalents. We found that CK suppressed MMP-1 secretion and increased the level of reduced type I procollagen secretion, caused by the inhibition of extracellular signal-regulated kinase (ERK) activation, but not p38 and c-Jun N-terminal kinase (JNK) activation in TNF-α-stimulated HS68 cells. Then, we focused on the involvement of the c-Src and epidermal growth factor receptor (EGFR) as upstream signalling molecules for ERK activation by TNF-α in HS68 cells. CK suppressed the phosphorylation of c-Src/EGFR by TNF-α, which led to the inactivation of downstream signalling molecules including AKT and MEK. In addition, CK suppressed AP-1 (c-jun and c-fos) phosphorylation as downstream transcription factors of active ERK for MMP-1 expression in TNFα-stimulated HS68 cells. These results showed novel mechanisms by which CK inhibits TNF-α-induced MMP-1 expression through the inactivation of c-Src/EGFR-dependent ERK/AP-1 signalling pathway, resulting in the inhibition of collagen degradation in human fibroblast cells. Therefore, CK may be a promising protective agent for the treatment of inflammatory skin conditions such as skin ageing and atopic dermatitis.

  19. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Hwang, I.; Sze, H.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The magnitude and duration of a cytosolic Ca(2+) release can potentially be altered by changing the rate of Ca(2+) efflux. In plant cells, Ca(2+) efflux from the cytoplasm is mediated by H(+)/Ca(2+)-antiporters and two types of Ca(2+)-ATPases. ACA2 was recently identified as a calmodulin-regulated Ca(2+)-pump located in the endoplasmic reticulum. Here, we show that phosphorylation of its N-terminal regulatory domain by a Ca(2+)-dependent protein kinase (CDPK isoform CPK1), inhibits both basal activity ( approximately 10%) and calmodulin stimulation ( approximately 75%), as shown by Ca(2+)-transport assays with recombinant enzyme expressed in yeast. A CDPK phosphorylation site was mapped to Ser(45) near a calmodulin binding site, using a fusion protein containing the N-terminal domain as an in vitro substrate for a recombinant CPK1. In a full-length enzyme, an Ala substitution for Ser(45) (S45/A) completely blocked the observed CDPK inhibition of both basal and calmodulin-stimulated activities. An Asp substitution (S45/D) mimicked phosphoinhibition, indicating that a negative charge at this position is sufficient to account for phosphoinhibition. Interestingly, prior binding of calmodulin blocked phosphorylation. This suggests that, once ACA2 binds calmodulin, its activation state becomes resistant to phosphoinhibition. These results support the hypothesis that ACA2 activity is regulated as the balance between the initial kinetics of calmodulin stimulation and CDPK inhibition, providing an example in plants for a potential point of crosstalk between two different Ca(2+)-signaling pathways.

  20. Transcranial Alternating Current Stimulation at Beta Frequency: Lack of Immediate Effects on Excitation and Interhemispheric Inhibition of the Human Motor Cortex

    PubMed Central

    Rjosk, Viola; Kaminski, Elisabeth; Hoff, Maike; Gundlach, Christopher; Villringer, Arno; Sehm, Bernhard; Ragert, Patrick

    2016-01-01

    Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1) or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI), remains elusive. Transcranial magnetic stimulation (TMS) is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz) over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (motor evoked potential (MEP) size, resting motor threshold (RMT), IHI from left to right M1 and vice versa) was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT) and/or IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and IHI. PMID:27857687

  1. Transcranial Alternating Current Stimulation at Beta Frequency: Lack of Immediate Effects on Excitation and Interhemispheric Inhibition of the Human Motor Cortex.

    PubMed

    Rjosk, Viola; Kaminski, Elisabeth; Hoff, Maike; Gundlach, Christopher; Villringer, Arno; Sehm, Bernhard; Ragert, Patrick

    2016-01-01

    Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1) or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI), remains elusive. Transcranial magnetic stimulation (TMS) is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz) over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (motor evoked potential (MEP) size, resting motor threshold (RMT), IHI from left to right M1 and vice versa) was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT) and/or IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and IHI.

  2. Exposure to an Extremely-Low-Frequency Magnetic Field Stimulates Adrenal Steroidogenesis via Inhibition of Phosphodiesterase Activity in a Mouse Adrenal Cell Line

    PubMed Central

    Kitaoka, Kazuyoshi; Kawata, Shiyori; Yoshida, Tomohiro; Kadoriku, Fumiya; Kitamura, Mitsuo

    2016-01-01

    Extremely low-frequency magnetic fields (ELF-MFs) are generated by power lines and household electrical devices. In the last several decades, some evidence has shown an association between ELF-MF exposure and depression and/or anxiety in epidemiological and animal studies. The mechanism underlying ELF-MF-induced depression is considered to involve adrenal steroidogenesis, which is triggered by ELF-MF exposure. However, how ELF-MFs stimulate adrenal steroidogenesis is controversial. In the current study, we investigated the effect of ELF-MF exposure on the mouse adrenal cortex-derived Y-1 cell line and the human adrenal cortex-derived H295R cell line to clarify whether the ELF-MF stimulates adrenal steroidogenesis directly. ELF-MF exposure was found to significantly stimulate adrenal steroidogenesis (p < 0.01–0.05) and the expression of adrenal steroid synthetic enzymes (p < 0.05) in Y-1 cells, but the effect was weak in H295R cells. Y-1 cells exposed to an ELF-MF showed significant decreases in phosphodiesterase activity (p < 0.05) and intracellular Ca2+ concentration (p < 0.01) and significant increases in intracellular cyclic adenosine monophosphate (cAMP) concentration (p < 0.001–0.05) and cAMP response element-binding protein phosphorylation (p < 0.05). The increase in cAMP was not inhibited by treatment with NF449, an inhibitor of the Gs alpha subunit of G protein. Our results suggest that ELF-MF exposure stimulates adrenal steroidogenesis via an increase in intracellular cAMP caused by the inhibition of phosphodiesterase activity in Y-1 cells. The same mechanism may trigger the increase in adrenal steroid secretion in mice observed in our previous study. PMID:27100201

  3. In vivo demonstration of H3-histaminergic inhibition of cardiac sympathetic stimulation by R-alpha-methyl-histamine and its prodrug BP 2.94 in the dog.

    PubMed

    Mazenot, C; Ribuot, C; Durand, A; Joulin, Y; Demenge, P; Godin-Ribuot, D

    1999-01-01

    1. The aim of this study was to investigate whether histamine H3-receptor agonists could inhibit the effects of cardiac sympathetic nerve stimulation in the dog. 2. Catecholamine release by the heart and the associated variation of haemodynamic parameters were measured after electrical stimulation of the right cardiac sympathetic nerves (1-4 Hz, 10 V, 10 ms) in the anaesthetized dog treated with R-alpha-methyl-histamine (R-HA) and its prodrug BP 2.94 (BP). 3. Cardiac sympathetic stimulation induced a noradrenaline release into the coronary sinus along with a tachycardia and an increase in left ventricular pressure and contractility without changes in mean arterial pressure. Intravenous administration of H3-receptor agonists significantly decreased noradrenaline release by the heart (R-HA at 2 micromol kg(-1) h(-1): +77 +/- 25 vs +405 +/- 82; BP 2.94 at 1 mg kg(-1): +12 +/- 11 vs +330 +/- 100 pg ml(-1) in control conditions, P < or = 0.05), and increases in heart rate (R-HA at 2 micromol kg(-1) h(-1): +26 +/- 8 vs +65 +/- 10 and BP 2.94 at 1 mg kg(-1): +30 +/- 8 vs 75 +/- 6 beats min(-1), in control conditions P < or = 0.05), left ventricular pressure, and contractility. Treatment with SC 359 (1 mg kg(-1)) a selective H3-antagonist, reversed the effects of H3-receptor agonists. Treatment with R-HA at 2 micromol kg(-1) h(-1) and BP 2.94 at 1 mg kg(-1) tended to decrease, while that with SC 359 significantly increased basal heart rate (from 111 +/- 3 to 130 +/- 5 beats min(-1), P < or = 0.001). 4. Functional H3-receptors are present on sympathetic nerve endings in the dog heart. Their stimulation by R-alpha-methyl-histamine or BP 2.94 can inhibit noradrenaline release by the heart and its associated haemodynamic effects.

  4. Evodiamine Inhibits Insulin-Stimulated mTOR-S6K Activation and IRS1 Serine Phosphorylation in Adipocytes and Improves Glucose Tolerance in Obese/Diabetic Mice

    PubMed Central

    Wang, Ting; Kusudo, Tatsuya; Takeuchi, Tamaki; Yamashita, Yukari; Kontani, Yasuhide; Okamatsu, Yuko; Saito, Masayuki; Mori, Nozomu; Yamashita, Hitoshi

    2013-01-01

    Evodiamine, an alkaloid extracted from the dried unripe fruit of the tree Evodia rutaecarpa Bentham (Rutaceae), reduces obesity and insulin resistance in obese/diabetic mice; however, the mechanism underlying the effect of evodiamine on insulin resistance is unknown. This study investigated the effect of evodiamine on signal transduction relating to insulin resistance using obese/diabetic KK-Ay mice and an in vitro adipocyte culture. There is a significant decrease in the mammalian target of rapamycin (mTOR) and ribosomal S6 protein kinase (S6K) signaling in white adipose tissue (WAT) in KK-Ay mice treated with evodiamine, in which glucose tolerance is improved. In addition, reduction of insulin receptor substrate 1 (IRS1) serine phosphorylation, an indicator of insulin resistance, was detected in their WAT, suggesting suppression of the negative feedback loop from S6K to IRS1. As well as the stimulation of IRS1 and Akt serine phosphorylation, insulin-stimulated phosphorylation of mTOR and S6K is time-dependent in 3T3-L1 adipocytes, whereas evodiamine does not affect their phosphorylation except for an inhibitory effect on mTOR phosphorylation. Moreover, evodiamine inhibits the insulin-stimulated phosphorylation of mTOR and S6K, leading to down-regulation of IRS1 serine phosphorylation in the adipocytes. Evodiamine also stimulates phosphorylation of AMP-activated protein kinase (AMPK), an important regulator of energy metabolism, which may cause down-regulation of mTOR signaling in adipocytes. A similar effect on AMPK, mTOR and IRS1 phosphorylation was found in adipocytes treated with rosiglitazone. These results suggest evodiamine improves glucose tolerance and prevents the progress of insulin resistance associated with obese/diabetic states, at least in part, through inhibition of mTOR-S6K signaling and IRS1 serine phosphorylation in adipocytes. PMID:24391749

  5. Peptide IDR-1002 Inhibits NF-κB Nuclear Translocation by Inhibition of IκBα Degradation and Activates p38/ERK1/2–MSK1-Dependent CREB Phosphorylation in Macrophages Stimulated with Lipopolysaccharide

    PubMed Central

    Huante-Mendoza, Alejandro; Silva-García, Octavio; Oviedo-Boyso, Javier; Hancock, Robert E. W.; Baizabal-Aguirre, Víctor M.

    2016-01-01

    The inflammatory response is a critical molecular defense mechanism of the innate immune system that mediates the elimination of disease-causing bacteria. Repair of the damaged tissue, and the reestablishment of homeostasis, must be accomplished after elimination of the pathogen. The innate defense regulators (IDRs) are short cationic peptides that mimic natural host defense peptides and are effective in eliminating pathogens by enhancing the activity of the immune system while controlling the inflammatory response. Although the role of different IDRs as modulators of inflammation has been reported, there have been only limited studies of the signaling molecules regulated by this type of peptide. The present study investigated the effect of IDR-1002 on nuclear factor κB (NF-κB) and cAMP-response element-binding protein (CREB) transcription factors that are responsible for triggering and controlling inflammation, respectively, in macrophages. We found that TNF-α and COX-2 expression, IκBα phosphorylation, and NF-κB nuclear translocation were strongly inhibited in macrophages pre-incubated with IDR-1002 and then stimulated with lipopolysaccharide (LPS). IDR-1002 also increased CREB phosphorylation at Ser133 via activation of the p38/ERK1/2–MSK1 signaling pathways without detectable expression of the cytokines IL-4, IL-10, and IL-13 involved is suppressing inflammation or alternative activation. Transcriptional activation of NF-κB and CREB is known to require interaction with the transcriptional coactivator CREB-binding protein (CBP). To test for CBP–NF-κB and CBP–CREB complex formation, we performed co-immunoprecipitation assays. These assays showed that IDR-1002 inhibited the interaction between CBP and NF-κB in macrophages stimulated with LPS, which might explain the inhibition of TNF-α and COX-2 expression. Furthermore, the complex between CBP and CREB in macrophages stimulated with IDR-1002 was also inhibited, which might explain why IDR-1002 did

  6. Studies on reduction of lipolysis in adipose tissue on freezing and thawing.

    PubMed

    Saito, Y; Matsuoka, N; Kumagai, A; Okuda, H; Fujii, S

    1978-02-01

    Adrenaline-induced lipolysis in fat cells was remarkably reduced when the cells were preincubated in a dry ice-aceton bath, but their adenylcyclase and lipase activities were not reduced. In the reconstructed lipid micelles which consisted of lipase-depleted lipid micelles and lipase-containing adipose tissue extract, adrenaline, theophylline and DBcAMP-induced lipolysis was not found when lipase-depleted lipid micelles were preincubated in a dry ice-aceton bath but was found when lipase was preincubated.

  7. Protein kinase C activators selectively inhibit insulin-stimulated system A transport activity in skeletal muscle at a post-receptor level.

    PubMed Central

    Gumà, A; Camps, M; Palacín, M; Testar, X; Zorzano, A

    1990-01-01

    We have investigated the role of phorbol esters on different biological effects induced by insulin in muscle, such as activation of system A transport activity, glucose utilization and insulin receptor function. System A transport activity was measured by monitoring the uptake of the system A-specific analogue alpha-(methyl)aminoisobutyric acid (MeAIB), by intact rat extensor digitorum longus muscle. The addition of 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.5 microM) for 60 or 180 min did not modify basal MeAIB uptake by muscle, suggesting that insulin signalling required to stimulate MeAIB transport does not involve protein kinase C activation. However, TPA added 30 min before insulin (100 nM) markedly inhibited insulin-stimulated MeAIB uptake. The addition of polymyxin B (0.1 mM) or H-7 (1 mM), protein kinase C inhibitors, alone or in combination with TPA leads to impairment of insulin-stimulated MeAIB uptake. This paradoxical pattern is incompatible with a unique action of Polymyxin B or H-7 on protein kinase C activity. Therefore these agents are not suitable tools with which to investigate whether a certain insulin effect is mediated by protein kinase C. TPA did not cause a generalized inhibition of insulin action. Thus both TPA and insulin increased 3-O-methylglucose uptake by muscle, and their effects were not additive. Furthermore, TPA did not modify insulin-stimulated lactate production by muscle. In keeping with this selective modification of insulin action, treatment of muscles with TPA did not modify insulin receptor binding or kinase activities. In conclusion, phorbol esters do not mimic insulin action on system A transport activity; however, they markedly inhibit insulin-stimulated amino acid transport, with no modification of insulin receptor function in rat skeletal muscle. It is suggested that protein kinase C activation causes a selective post-receptor modification on the biochemical pathway by which insulin activates system A amino acid

  8. Dietary supplement increases plasma norepinephrine, lipolysis, and metabolic rate in resistance trained men

    PubMed Central

    Bloomer, Richard J; Fisher-Wellman, Kelsey H; Hammond, Kelley G; Schilling, Brian K; Weber, Adrianna A; Cole, Bradford J

    2009-01-01

    Background Dietary supplements targeting fat loss and increased thermogenesis are prevalent within the sport nutrition/weight loss market. While some isolated ingredients have been reported to be efficacious when used at high dosages, in particular in animal models and/or via intravenous delivery, little objective evidence is available pertaining to the efficacy of a finished product taken by human subjects in oral form. Moreover, many ingredients function as stimulants, leading to increased hemodynamic responses. The purpose of this investigation was to determine the effects of a finished dietary supplement on plasma catecholamine concentration, markers of lipolysis, metabolic rate, and hemodynamics. Methods Ten resistance trained men (age = 27 ± 4 yrs; BMI = 25 ± 3 kg· m-2; body fat = 9 ± 3%; mean ± SD) ingested a dietary supplement (Meltdown®, Vital Pharmaceuticals) or a placebo, in a random order, double blind cross-over design, with one week separating conditions. Fasting blood samples were collected before, and at 30, 60, and 90 minutes post ingestion and were assayed for epinephrine (EPI), norepinephrine (NE), glycerol, and free fatty acids (FFA). Area under the curve (AUC) was calculated for all variables. Gas samples were collected from 30–60 minutes post ingestion for measurement of metabolic rate. Heart rate and blood pressure were recorded at all blood collection times. Results AUC was greater for the dietary supplement compared to the placebo for NE (1332 ± 128 pg·mL-1·90 min-1 vs. 1003 ± 133 pg·mL-1·90 min-1; p = 0.03), glycerol (44 ± 3 μg·mL-1·90 min-1 vs. 26 ± 2 μg·mL-1·90 min-1; p < 0.0001), and FFA (1.24 ± 0.17 mmol·L-1·90 min-1 vs. 0.88 ± 0.12 mmol·L-1·90 min-1; p = 0.0003). No difference between conditions was noted for EPI AUC (p > 0.05). For all variables, values were highest at 90 minutes post ingestion. Total kilocalorie expenditure during the 30 minute collection period was 29.6% greater (p = 0.02) for the

  9. Inhibition of G-Protein βγ Signaling Decreases Levels of Messenger RNAs Encoding Proinflammatory Cytokines in T Cell Receptor-Stimulated CD4+ T Helper Cells

    PubMed Central

    Hynes, Thomas R.; Yost, Evan A.; Hartle, Cassandra M.; Ott, Braden J.

    2015-01-01

    Background: Inhibition of G-protein βγ (Gβγ) signaling was found previously to enhance T cell receptor (TCR)-stimulated increases in interleukin 2 (IL-2) mRNA in CD4+ T helper cells, suggesting that Gβγ might be a useful drug target for treating autoimmune diseases, as low dose IL-2 therapy can suppress autoimmune responses. Because IL-2 may counteract autoimmunity in part by shifting CD4+ T helper cells away from the Type 1 T helper cell (TH1) and TH17 subtypes towards the TH2 subtype, the purpose of this study was to determine if blocking Gβγ signaling affected the balance of TH1, TH17, and TH2 cytokine mRNAs produced by CD4+ T helper cells. Methods: Gallein, a small molecule inhibitor of Gβγ, and siRNA-mediated silencing of the G-protein β1 subunit (Gβ1) were used to test the effect of blocking Gβγ on mRNA levels of cytokines in primary human TCR-stimulated CD4+ T helper cells. Results: Gallein and Gβ1 siRNA decreased interferon-γ (IFN-γ) and IL-17A mRNA levels in TCR-stimulated CD4+ T cells grown under TH1-promoting conditions. Inhibiting Gβγ also decreased mRNA levels of STAT4, which plays a positive role in TH1 differentiation and IL-17A production. Moreover, mRNA levels of the STAT4-regulated TH1-associated proteins, IL-18 receptor β chain (IL-18Rβ), mitogen-activated protein kinase kinase kinase 8 (MAP3K8), lymphocyte activation gene 3 (LAG-3), natural killer cell group 7 sequence (NKG7), and oncostatin M (OSM) were also decreased upon Gβγ inhibition. Gallein also increased IL-4, IL-5, IL-9, and IL-13 mRNA levels in TCR-stimulated memory CD4+ T cells grown in TH2-promoting conditions. Conclusions: Inhibiting Gβγ to produce these shifts in cytokine mRNA production might be beneficial for patients with autoimmune diseases such as rheumatoid arthritis (RA), Crohn’s disease (CD), psoriasis, multiple sclerosis (MS), and Hashimoto’s thyroiditis (HT), in which both IFN-γ and IL-17A are elevated. PMID:27095999

  10. Inhibition of cAMP-Dependent PKA Activates β2-Adrenergic Receptor Stimulation of Cytosolic Phospholipase A2 via Raf-1/MEK/ERK and IP3-Dependent Ca2+ Signaling in Atrial Myocytes

    PubMed Central

    Ji, X.; Maxwell, J. T.; Mignery, G. A.; Samarel, A. M.; Lipsius, S. L.

    2016-01-01

    We previously reported in atrial myocytes that inhibition of cAMP-dependent protein kinase (PKA) by laminin (LMN)-integrin signaling activates β2-adrenergic receptor (β2-AR) stimulation of cytosolic phospholipase A2 (cPLA2). The present study sought to determine the signaling mechanisms by which inhibition of PKA activates β2-AR stimulation of cPLA2. We therefore determined the effects of zinterol (0.1 μM; zint-β2-AR) to stimulate ICa,L in atrial myocytes in the absence (+PKA) and presence (-PKA) of the PKA inhibitor (1 μM) KT5720 and compared these results with atrial myocytes attached to laminin (+LMN). Inhibition of Raf-1 (10 μM GW5074), phospholipase C (PLC; 0.5 μM edelfosine), PKC (4 μM chelerythrine) or IP3 receptor (IP3R) signaling (2 μM 2-APB) significantly inhibited zint-β2-AR stimulation of ICa,L in–PKA but not +PKA myocytes. Western blots showed that zint-β2-AR stimulation increased ERK1/2 phosphorylation in–PKA compared to +PKA myocytes. Adenoviral (Adv) expression of dominant negative (dn) -PKCα, dn-Raf-1 or an IP3 affinity trap, each inhibited zint-β2-AR stimulation of ICa,L in + LMN myocytes compared to control +LMN myocytes infected with Adv-βgal. In +LMN myocytes, zint-β2-AR stimulation of ICa,L was enhanced by adenoviral overexpression of wild-type cPLA2 and inhibited by double dn-cPLA2S505A/S515A mutant compared to control +LMN myocytes infected with Adv-βgal. In–PKA myocytes depletion of intracellular Ca2+ stores by 5 μM thapsigargin failed to inhibit zint-β2-AR stimulation of ICa,L via cPLA2. However, disruption of caveolae formation by 10 mM methyl-β-cyclodextrin inhibited zint-β2-AR stimulation of ICa,L in–PKA myocytes significantly more than in +PKA myocytes. We conclude that inhibition of PKA removes inhibition of Raf-1 and thereby allows β2-AR stimulation to act via PKCα/Raf-1/MEK/ERK1/2 and IP3-mediated Ca2+ signaling to stimulate cPLA2 signaling within caveolae. These findings may be relevant to the

  11. Macrophage cell lines P388D1 and IC-21 stimulated with gamma interferon fail to inhibit the intracellular growth of Histoplasma capsulatum.

    PubMed Central

    Wu-Hsieh, B; Howard, D H

    1989-01-01

    Histoplasma capsulatum, a facultative intracellular parasite of macrophages, grows within mononuclear cells of the P388D1 and IC-21 cell lines with a generation time comparable to that with which it grows in normal resident peritoneal macrophages (10 +/- 2 h). Recombinant murine gamma interferon (rMuIFN-gamma) activates P388D1 cells to express la antigens but not to inhibit the intracellular growth of H. capsulatum, alone or in combination with lipopolysaccharide. IC-21 cells also could not be activated to fungistasis with rMuIFN-gamma. Explanted resident peritoneal macrophages of the C57BL/6 (from which the IC-21 cell line derives), C3H/HeJ, DBA/2 (from which the P388D1 cell line derives), A/J, and SJL/J strains of mice were all stimulated by rMuIFN-gamma to inhibit the fungus. PMID:2503448

  12. Tpl2 and ERK transduce antiproliferative T cell receptor signals and inhibit transformation of chronically stimulated T cells.

    PubMed

    Tsatsanis, Christos; Vaporidi, Katerina; Zacharioudaki, Vassiliki; Androulidaki, Ariadne; Sykulev, Yuri; Margioris, Andrew N; Tsichlis, Philip N

    2008-02-26

    The protein kinase encoded by the Tpl2 protooncogene plays an obligatory role in the transduction of Toll-like receptor and death receptor signals in macrophages, B cells, mouse embryo fibroblasts, and epithelial cells in culture and promotes inflammatory responses in animals. To address its role in T cell activation, we crossed the T cell receptor (TCR) transgene 2C, which recognizes class I MHC presented peptides, into the Tpl2(-/-) genetic background. Surprisingly, the TCR2C(tg/tg)/Tpl2(-/-) mice developed T cell lymphomas with a latency of 4-6 months. The tumor cells were consistently TCR2C(+)CD8(+)CD4(-), suggesting that they were derived either from chronically stimulated mature T cells or from immature single positive (ISP) cells. Further studies showed that the population of CD8(+) ISP cells was not expanded in the thymus of TCR2C(tg/tg)/Tpl2(-/-) mice, making the latter hypothesis unlikely. Mature peripheral T cells of Tpl2(-/-) mice were defective in ERK activation and exhibited enhanced proliferation after TCR stimulation. The same cells were defective in the induction of CTLA4, a negative regulator of the T cell response, which is induced by TCR signals via ERK. These findings suggest that Tpl2 functions normally in a feedback loop that switches off the T cell response to TCR stimulation. As a result, Tpl2, a potent oncogene, functions as a tumor suppressor gene in chronically stimulated T cells.

  13. Opposite in vivo effects of agents that stimulate or inhibit the glutamate/cysteine exchanger system xc- on the inhibition of hippocampal LTP by Aß.

    PubMed

    Zhang, Dainan; Jin, Baozhe; Ondrejcak, Tomas; Rowan, Michael J

    2016-12-01

    Aggregated amyloid ß-protein (Aß) is pathognomonic of Alzheimer's disease and certain assemblies of Aß are synaptotoxic. Excess glutamate or diminished glutathione reserve are both implicated in mediating or modulating Aß-induced disruption of synaptic plasticity. The system xc- antiporter promotes Na(+) -independent exchange of cystine with glutamate thereby providing a major source of extracellular glutamate and intracellular glutathione concentrations. Here we probed the ability of two drugs with opposite effects on system xc-, the inhibitor sulfasalazine and facilitator N-acetylcysteine, to modulate the ability of Aß1-42 to inhibit long-term potentiation (LTP) in the CA1 area of the anaesthetized rat. Whereas acute systemic treatment with sulfasalazine lowered the threshold for Aß to interfere with synaptic plasticity, N-acetylcysteine prevented the inhibition of LTP by Aß alone or in combination with sulfasalazine. Moreover acute N-acetylcysteine also prevented the inhibition of LTP by TNFα, a putative mediator of Aß actions, and repeated systemic N-acetylcysteine treatment for 7 days reversed the delayed deleterious effect of Aß on LTP. Since both of these drugs are widely used clinically, further evaluation of their potential beneficial and deleterious actions in early Alzheimer's disease seems warranted. © 2016 Wiley Periodicals, Inc.

  14. Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission and inhibition of mechanical hypersensitivity by Aβ-fiber stimulation.

    PubMed

    Yang, Fei; Xu, Qian; Shu, Bin; Tiwari, Vinod; He, Shao-Qiu; Vera-Portocarrero, Louis P; Dong, Xinzhong; Linderoth, Bengt; Raja, Srinivasa N; Wang, Yun; Guan, Yun

    2016-11-01

    Activation of Aβ-fibers is an intrinsic feature of spinal cord stimulation (SCS) pain therapy. Cannabinoid receptor type 1 (CB1) is important to neuronal plasticity and pain modulation, but its role in SCS-induced pain inhibition remains unclear. In this study, we showed that CB1 receptors are expressed in both excitatory and inhibitory interneurons in substantia gelatinosa (SG). Patch-clamp recording of the evoked excitatory postsynaptic currents (eEPSCs) in mice after spinal nerve ligation (SNL) showed that electrical stimulation of Aβ-fibers (Aβ-ES) using clinical SCS-like parameters (50 Hz, 0.2 millisecond, 10 μA) induced prolonged depression of eEPSCs to C-fiber inputs in SG neurons. Pretreatment with CB1 receptor antagonist AM251 (2 μM) reduced the inhibition of C-eEPSCs by Aβ-ES in both excitatory and inhibitory SG neurons. We further determined the net effect of Aβ-ES on spinal nociceptive transmission in vivo by recording spinal local field potential in SNL rats. Epidural SCS (50 Hz, Aβ-plateau, 5 minutes) attenuated C-fiber-evoked local field potential. This effect of SCS was partially reduced by spinal topical application of AM251 (25 μg, 50 μL), but not CB2 receptor antagonist AM630 (100 μg). Finally, intrathecal pretreatment with AM251 (50 μg, 15 μL) in SNL rats blocked the inhibition of behavioral mechanical hypersensitivity by SCS (50 Hz, 0.2 millisecond; 80% of motor threshold, 60 minutes). Our findings suggest that activation of spinal CB1 receptors may contribute to synaptic depression to high-threshold afferent inputs in SG neurons after Aβ-ES and may be involved in SCS-induced inhibition of spinal nociceptive transmission after nerve injury.

  15. Perfluorododecanoic acid-induced steroidogenic inhibition is associated with steroidogenic acute regulatory protein and reactive oxygen species in cAMP-stimulated Leydig cells.

    PubMed

    Shi, Zhimin; Feng, Yixing; Wang, Jianshe; Zhang, Hongxia; Ding, Lina; Dai, Jiayin

    2010-04-01

    Perfluorododecanoic acid (PFDoA) can be detected in environmental matrices and human serum and has been shown to inhibit testicular steroidogenesis in rats. However, the mechanisms that are responsible for the toxic effects of PFDoA remain unknown. The aims of this study were to investigate the mechanism of steroidogenesis inhibition by PFDoA and to identify the molecular target of PFDoA in Leydig cells. The effects of PFDoA on steroid synthesis in Leydig cells were assessed by radioimmunoassay. The expression of key genes and proteins in steroid biosynthesis was determined by real-time PCR and Western blot analysis. Reactive oxygen species (ROS) and hydrogen peroxide (H(2)O(2)) levels were determined using bioluminescence assays. PFDoA inhibited adenosine 3',5'-cyclophosphate (cAMP)-stimulated steroidogenesis in mouse Leydig tumor cells (mLTC-1) and primary rat Leydig cells in a dose-dependent manner. However, PFDoA (1-100 microM) did not exhibit effects on cell viability and cellular ATP levels in mLTC-1 cells. PFDoA inhibited steroidogenic acute regulatory protein (StAR) promoter activity and StAR expression at the messenger RNA (mRNA) and protein levels but did not affect mRNA levels of peripheral-type benzodiazepine receptor, cholesterol side-chain cleavage enzyme, or 3beta-hydroxysteroid dehydrogenase in cAMP-stimulated mLTC-1 cells. PFDoA treatment also resulted in increased levels of mitochondrial ROS and H(2)O(2). After excessive ROS and H(2)O(2) were eliminated in PFDoA-treated mLTC-1 cells by MnTMPyP (a superoxide dismutase analog), progesterone production was partially restored and StAR mRNA and protein levels were partially recovered. These data show that PFDoA inhibits steroidogenesis in cAMP-stimulated Leydig cells by reducing the expression of StAR through a model of action involving oxidative stress.

  16. Noxious mechanical heterotopic stimulation induces inhibition of the spinal dorsal horn neuronal network: analysis of spinal somatosensory-evoked potentials.

    PubMed

    Meléndez-Gallardo, J; Eblen-Zajjur, A

    2016-09-01

    Most of the endogenous pain modulation (EPM) involves the spinal dorsal horn (SDH). EPM including diffuse noxious inhibitory controls have been extensively described in oligoneuronal electrophysiological recordings but less attention had been paid to responses of the SDH neuronal population to heterotopic noxious stimulation (HNS). Spinal somatosensory-evoked potentials (SEP) offer the possibility to evaluate the neuronal network behavior, reflecting the incoming afferent volleys along the entry root, SDH interneuron activities and the primary afferent depolarization. SEP from de lumbar cord dorsum were evaluated during mechanical heterotopic noxious stimuli. Sprague-Dawley rats (n = 12) were Laminectomized (T10-L3). The sural nerve of the left hind paw was electrically stimulated (5 mA, 0.5 ms, 0.05 Hz) to induce lumbar SEP. The HNS (mechanic clamp) was applied sequentially to the tail, right hind paw, right forepaw, muzzle and left forepaw during sural stimulation. N wave amplitude decreases (-16.6 %) compared to control conditions when HNS was applied to all areas of stimulation. This effect was more intense for muzzle stimulation (-23.5 %). N wave duration also decreased by -23.6 %. HNS did not change neither the amplitude nor the duration of the P wave but dramatically increases the dispersion of these two parameters. The results of the present study strongly suggest that a HNS applied to different parts of the body is able to reduce the integrated electrical response of the SDH, suggesting that not only wide dynamic range neurons but many others in the SDH are modulated by the EPM.

  17. The flavonols quercetin, myricetin, kaempferol, and galangin inhibit the net oxygen consumption by immune complex-stimulated human and rabbit neutrophils.

    PubMed

    Figueiredo-Rinhel, Andréa S G; Santos, Everton O L; Kabeya, Luciana M; Azzolini, Ana Elisa C S; Simões-Ambrosio, Livia M C; Lucisano-Valim, Yara M

    2014-01-01

    Stimulated human neutrophils exhibit increased net oxygen consumption (NOC) due to the conversion of O2 into the superoxide anion by the NADPH oxidase enzymatic complex during the respiratory burst. In several inflammatory diseases, overproduction of these oxidants causes tissue damage. The present study aims to: (a) optimize the experimental conditions used to measure the NOC in serum-opsonized zymosan (OZ)- and insoluble immune complex (i-IC)-stimulated human and rabbit neutrophils; and (b) compare the effect of four flavonols (quercetin, myricetin, kaempferol, and galangin) on this activity. We used a Clark-type oxygen electrode to measure the NOC of stimulated neutrophils. Eliciting the neutrophil respiratory burst with OZ and i-IC yielded similar maximum O2 uptake levels within the same species, but the human neutrophil NOC was almost four times higher than the rabbit neutrophil NOC. The optimal experimental conditions established for both cell types were 4 x 10(6) neutrophils mL(-1), 2 mg mL(-1) OZ, and 240 microg mL(-1) i-IC. Upon stimulation with OZ or i-IC, the tested flavonols reduced the human and rabbit neutrophil NOC in the same order of potency--quercetin and galangin were the most and the least potent, respectively. These compounds were around four times more effective in inhibiting the rabbit as compared to the human neutrophil NOC, respectively. The four flavonols were not toxic to human or rabbit neutrophils. The experimental conditions used are suitable for both the determination of human and rabbit neutrophil NOC and for the assessment of the modulatory effects of natural compounds on these activities. The relationship between the level of NOC and the inhibitory potency of the flavonols suggests that rabbit neutrophils can be useful experimental models to predict the effect of drugs on immune complex-stimulated human neutrophils.

  18. Electrical stimulation of the rostral medial prefrontal cortex in rabbits inhibits the expression of conditioned eyelid responses but not their acquisition

    PubMed Central

    Leal-Campanario, Rocío; Fairén, Alfonso; Delgado-García, José M.; Gruart, Agnès

    2007-01-01

    We have studied the role of rostral medial prefrontal cortex (mPFC) on reflexively evoked blinks and on classically conditioned eyelid responses in alert-behaving rabbits. The rostral mPFC was identified by its afferent projections from the medial half of the thalamic mediodorsal nuclear complex. Classical conditioning consisted of a delay paradigm using a 370-ms tone as the conditioned stimulus (CS) and a 100-ms air puff directed at the left cornea as the unconditioned stimulus (US). The CS coterminated with the US. Electrical train stimulation of the contralateral rostral mPFC produced a significant inhibition of air-puff-evoked blinks. The same train stimulation of the rostral mPFC presented during the CS–US interval for 10 successive conditioning sessions significantly reduced the generation of conditioned responses (CRs) as compared with values reached by control animals. Interestingly, the percentage of CRs almost reached control values when train stimulation of the rostral mPFC was removed from the fifth conditioning session on. The electrical stimulation of the rostral mPFC in well conditioned animals produced a significant decrease in the percentage of CRs. Moreover, the stimulation of the rostral mPFC was also able to modify the kinematics (latency, amplitude, and velocity) of evoked CRs. These results suggest that the rostral mPFC is a potent inhibitor of reflexively evoked and classically conditioned eyeblinks but that activation prevents only the expression of CRs, not their latent acquisition. Functional and behavioral implications of this inhibitory role of the rostral mPFC are discussed. PMID:17592148

  19. Lobaric Acid Inhibits VCAM-1 Expression in TNF-α-Stimulated Vascular Smooth Muscle Cells via Modulation of NF-κB and MAPK Signaling Pathways.

    PubMed

    Kwon, Ii-Seul; Yim, Joung-Han; Lee, Hong-Kum; Pyo, Suhkneung

    2016-01-01

    Lichens have been known to possess multiple biological activities, including anti-proliferative and anti-inflammatory activities. Vascular cell adhesion molecule-1 (VCAM-1) may play a role in the development of atherosclerosis. Hence, VCAM-1 is a possible therapeutic target in the treatment of the inflammatory disease. However, the effect of lobaric acid on VCAM-1 has not yet been investigated and characterized. For this study, we examined the effect of lobaric acid on the inhibition of VCAM-1 in tumor necrosis factor-alpha (TNF-α)-stimulated mouse vascular smooth muscle cells. Western blot and ELISA showed that the increased expression of VCAM-1 by TNF-α was significantly suppressed by the pre-treatment of lobaric acid (0.1-10 μg/ml) for 2 h. Lobaric acid abrogated TNF-α-induced NF-κB activity through preventing the degradation of IκB and phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 mitogen activated protein (MAP) kinase. Lobaric acid also inhibited the expression of TNF-α receptor 1 (TNF-R1). Overall, our results suggest that lobaric acid inhibited VCAM-1 expression through the inhibition of p38, ERK, JNK and NF-κB signaling pathways, and downregulation of TNF-R1 expression. Therefore, it is implicated that lobaric acid may suppress inflammation by altering the physiology of the atherosclerotic lesion.