Sample records for inhibited platelet function

  1. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling.

    PubMed

    Vaiyapuri, Sakthivel; Ali, Marfoua S; Moraes, Leonardo A; Sage, Tanya; Lewis, Kirsty R; Jones, Chris I; Gibbins, Jonathan M

    2013-12-01

    Dietary flavonoids have long been appreciated in reducing cardiovascular disease risk factors, but their mechanisms of action are complex in nature. In this study, the effects of tangeretin, a dietary flavonoid, were explored on platelet function, signaling, and hemostasis. Tangeretin inhibited agonist-induced human platelet activation in a concentration-dependent manner. It inhibited agonist-induced integrin αIIbβ3 inside-out and outside-in signaling, intracellular calcium mobilization, and granule secretion. Tangeretin also inhibited human platelet adhesion and subsequent thrombus formation on collagen-coated surfaces under arterial flow conditions in vitro and reduced hemostasis in mice. Further characterization to explore the mechanism by which tangeretin inhibits platelet function revealed distinctive effects of platelet signaling. Tangeretin was found to inhibit phosphoinositide 3-kinase-mediated signaling and increase cGMP levels in platelets, although phosphodiesterase activity was unaffected. Consistent with increased cGMP levels, tangeretin increased the phosphorylation of vasodilator-stimulated phosphoprotein at S239. This study provides support for the ability and mechanisms of action of dietary flavonoids to modulate platelet signaling and function, which may affect the risk of thrombotic disease.

  2. Beta-lactam antibiotic-induced platelet dysfunction: Evidence for irreversible inhibition of platelet activation in vitro and in vivo after prolonged exposure to penicillin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burroughs, S.F.; Johnson, G.J.

    beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of (14C)-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; butmore » no irreversible inhibition of alpha 2 adrenergic receptors, measured with (3H)-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist (3H)-U46619 and antagonist (3H)-SQ29548, occurred. However, low-affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ((Ca2+)i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in (Ca2+)i. The loss of low-affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane.« less

  3. Extracellular cyclophilin A activates platelets via EMMPRIN (CD147) and PI3K/Akt signaling, which promotes platelet adhesion and thrombus formation in vitro and in vivo.

    PubMed

    Seizer, Peter; Ungern-Sternberg, Saskia N I V; Schönberger, Tanja; Borst, Oliver; Münzer, Patrick; Schmidt, Eva-Maria; Mack, Andreas F; Heinzmann, David; Chatterjee, Madhumita; Langer, Harald; Malešević, Miroslav; Lang, Florian; Gawaz, Meinrad; Fischer, Gunter; May, Andreas E

    2015-03-01

    Cyclophilin A (CyPA) is secreted under inflammatory conditions by various cell types. Whereas the important role of intracellular CyPA for platelet function has been reported, the effect of extracellular CyPA on platelet function has not been investigated yet. Inhibition of extracellular CyPA through a novel specific inhibitor MM284 reduced thrombus after ferric chloride-induced injury in vivo. In vitro extracellular CyPA enhanced thrombus formation even in CyPA(-/-) platelets. Treatment of isolated platelets with recombinant CyPA resulted in platelet degranulation in a time- and dose-dependent manner. Inhibition of the platelet surface receptor extracellular matrix metalloproteinase inducer (cluster of differentiation 147) by an anticluster of differentiation 147 monoclonal antibody significantly reduced CyPA-dependent platelet degranulation. Pretreatment of platelets with CyPA enhanced their recruitment to mouse carotid arteries after arterial injury, which could be inhibited by an anticluster of differentiation 147 monoclonal antibody (intravital microscopy). The role of extracellular CyPA in adhesion could be confirmed by infusing CyPA(-/-) platelets in CyPA(+/+) mice and by infusing CyPA(+/+) platelets in CyPA(-/-) mice. Stimulation of platelets with CyPA induced phosphorylation of Akt, which could in turn be inhibited in the presence of phosphoinositid-3-kinase inhibitors. Akt-1(-/-) platelets revealed a markedly decreased degranulation on CyPA stimulation. Finally, ADP-induced platelet aggregation was attenuated by MM284, as well as by inhibiting paracrine-secreted CyPA without directly affecting Ca(2+)-signaling. Extracellular CyPA activates platelets via cluster of differentiation 147-mediated phosphoinositid-3-kinase/Akt-signaling, leading to enhanced adhesion and thrombus formation independently of intracellular CyPA. Targeting extracellular CyPA via a specific inhibitor may be a promising strategy for platelet inhibition without affecting critical functions of intracellular CyPA. © 2014 American Heart Association, Inc.

  4. Clopidogrel (Plavix) and cardiac surgical patients: implications for platelet function monitoring and postoperative bleeding.

    PubMed

    Tanaka, Kenichi A; Szlam, Fania; Kelly, Andrew B; Vega, J David; Levy, Jerrold H

    2004-08-01

    The use of clopidogrel (Plavix), an inhibitor of adenosine diphosphate (ADP)-induced platelet aggregation, has been proven to reduce ischemic events in cardiovascular patients, but little information is available for optimal monitoring of platelet function in patients receiving the drug preoperatively. In the first part of the study we compared different testing modalities (thrombelastography (TEG), platelet aggregometry, and whole blood aggregation) to assess platelet ADP receptor inhibition. Because clopidogrel is a pro-drug, we used an in vitro model of ADP inhibition with 5'-p-fluorosulfonylbenzoyladenosine (FSBA). FSBA at final concentration of 80 microM completely inhibited platelet aggregation but had no effect on TEG maximum amplitude (MA). In the second part of the study, antiplatelet effects of clopidogrel were clinically assessed and correlated to postoperative bleeding in 18 coronary bypass surgery patients. Preoperative TEG results were normal or hypercoagulable in clopidogrel-treated patients, although platelet aggregation responses to ADP were inhibited. Clopidogrel-treated patients who underwent cardiopulmonary bypass had a high incidence (84.6%) of platelet transfusion therapy due to increased chest tube drainage. In conclusion, we have demonstrated that normal preoperative TEG-MA does not preclude clopidogrel-induced ADP receptor blockade; however, TEG can be a reliable monitor for CPB-induced platelet dysfunction related to GPIIb/IIIa. For monitoring clopidogrel, it is necessary to perform more specific platelet function tests (aggregometry or platelet count ratio) using ADP as an activator.

  5. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor.

    PubMed

    Stamler, J; Mendelsohn, M E; Amarante, P; Smick, D; Andon, N; Davies, P F; Cooke, J P; Loscalzo, J

    1989-09-01

    Recent evidence suggests that endothelium-derived relaxing factor exhibits properties of nitric oxide. Like nitric oxide, it inhibits platelet function and mediates its effects by elevating intracellular cyclic GMP. In this study we have investigated the role of reduced thiol in the mechanism of action of endothelium-derived relaxing factor on platelets. Bovine aortic endothelial cells were grown on microcarrier beads and pretreated with aspirin before use. Endothelial cells stimulated with bradykinin or exposed to stirred medium expressed a dose-dependent inhibition of platelet aggregation that was potentiated by the reduced thiol, N-acetylcysteine. Endothelial cell-mediated platelet inhibition was attenuated by methylene blue. Inhibition of platelet aggregation by endothelial cells was associated with a rise in platelet intracellular cyclic GMP, an effect that was enhanced by N-acetylcysteine. These data show that 1) the reduced thiol N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor and 2) this effect is associated with increasing intracellular platelet cyclic GMP levels.

  6. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.

    PubMed

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2009-12-01

    Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.

  7. Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation

    PubMed Central

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2013-01-01

    Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis. PMID:19917882

  8. Dual Regulation of Glycogen Synthase Kinase 3 (GSK3)α/β by Protein Kinase C (PKC)α and Akt Promotes Thrombin-mediated Integrin αIIbβ3 Activation and Granule Secretion in Platelets*

    PubMed Central

    Moore, Samantha F.; van den Bosch, Marion T. J.; Hunter, Roger W.; Sakamoto, Kei; Poole, Alastair W.; Hers, Ingeborg

    2013-01-01

    Glycogen synthase kinase-3 is a Ser/Thr kinase, tonically active in resting cells but inhibited by phosphorylation of an N-terminal Ser residue (Ser21 in GSK3α and Ser9 in GSK3β) in response to varied external stimuli. Recent work suggests that GSK3 functions as a negative regulator of platelet function, but how GSK3 is regulated in platelets has not been examined in detail. Here, we show that early thrombin-mediated GSK3 phosphorylation (0–30 s) was blocked by PKC inhibitors and largely absent in platelets from PKCα knock-out mice. In contrast, late (2–5 min) GSK3 phosphorylation was dependent on the PI3K/Akt pathway. Similarly, early thrombin-mediated inhibition of GSK3 activity was blocked in PKCα knock-out platelets, whereas the Akt inhibitor MK2206 reduced late thrombin-mediated GSK3 inhibition and largely prevented GSK3 inhibition in PKCα knock-out platelets. More importantly, GSK3 phosphorylation contributes to platelet function as knock-in mice where GSK3α Ser21 and GSK3β Ser9 were mutated to Ala showed a significant reduction in PAR4-mediated platelet aggregation, fibrinogen binding, and P-selectin expression, whereas the GSK3 inhibitor CHIR99021 enhanced these responses. Together, these results demonstrate that PKCα and Akt modulate platelet function by phosphorylating and inhibiting GSK3α/β, thereby relieving the negative effect of GSK3α/β on thrombin-mediated platelet activation. PMID:23239877

  9. Comparison of the inhibitory effects of cilostazol, acetylsalicylic acid and ticlopidine on platelet functions ex vivo. Randomized, double-blind cross-over study.

    PubMed

    Ikeda, Y; Kikuchi, M; Murakami, H; Satoh, K; Murata, M; Watanabe, K; Ando, Y

    1987-05-01

    A randomized double-blind cross-over study was conducted to determine the inhibitory effects of acetylsalicylic acid (ASA), ticlopidine (TP) and cilostazol (OPC-13013; in the following briefly called CS), a new antithrombotic agent on platelet functions ex vivo. Nine patients with cerebral thrombosis were enrolled in this study. Patients were given each of the three drugs for one week in a complete cross-over design according to a randomization schedule, followed by a wash-out period with a placebo for one week. It was found that CS and TP significantly inhibited platelet aggregation induced by ADP. Collagen- and arachidonic acid-induced platelet aggregation was all inhibited by CS, TP and ASA. Duncan's multiple range test to compare the anti-platelet effects of the three drugs revealed that: CS greater than ASA and TP greater than ASA in inhibiting ADP-induced platelet aggregation and CS greater than TP and ASA greater than TP in inhibiting arachidonic acid-induced platelet aggregation. These results may suggest that CS is superior to ASA and TP in inhibiting platelet aggregation ex vivo.

  10. [Effects of lysine clonixinate on platelet function. Comparison with other non-steroidal anti-inflammatory agents].

    PubMed

    Kramer, E H; Sassetti, B; Kaminker, A J; De Los Santos, A R; Martí, M L; Di Girolamo, G

    2001-01-01

    One of the mechanisms of action of non steroid antiinflammatory drugs (NSAIDs) consists of inhibition of prostaglandin synthesis. This explains many of the pharmacological effects and adverse events observed in medical practice. Administration of NSAIDs to patients with hemostatic disorders or perioperative conditions entails the risk of bleeding due to inhibition of platelet function. This study deals with platelet changes induced by lysine clonixinate vs diclofenac, ibuprofen and aspirin in classical tests such as platelet count, platelet factor 3 (PF3) activity and platelet aggregation with various inductors and more recent procedures such as P-selectin measurement by flow cytometry. Unlike control drugs, lysine clonixinate did not induce changes in platelet count or function when administered to healthy volunteers at the commonly used therapeutic doses.

  11. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    PubMed

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  12. Selective serotonin reuptake inhibitors: measurement of effect on platelet function.

    PubMed

    McCloskey, Donna Jo; Postolache, Teodor T; Vittone, Bernard J; Nghiem, Khanh L; Monsale, Jude L; Wesley, Robert A; Rick, Margaret E

    2008-03-01

    Selective serotonin reuptake inhibitors (SSRIs) reduce platelet serotonin and are associated with increased gastrointestinal bleeding, an effect that is enhanced when taken with NSAIDs or aspirin. The best method to evaluate hemorrhagic events in patients taking SSRIs has not been determined. Platelet aggregation, which is not widely available, shows SSRI inhibition of platelet function; we tested whether a platelet function analyzer could detect SSRI inhibition of platelet function. Two groups of outpatients with mood disorders were recruited; each patient was taking a stable dose of either an SSRI or bupropion for at least 6 weeks. They were tested using the platelet function analyzer-100 (PFA-100; Dade International Inc, Miami, Fla) concomitantly with platelet aggregation. Fifty-eight patients were analyzed. We detected significant differences between the groups using aggregation methods with arachidonic acid (aggregation, P = 0.00001; release, P = 0.009) and collagen (aggregation, P = 0.016; release, P = 0.006). The PFA-100 did not detect differences between the groups or results outside the reference range. The PFA-100 does not detect the inhibitory effects of SSRIs on platelet function, but it can be used to direct evaluation of bleeding in a patient taking an SSRI. Abnormal PFA-100 results suggest additional evaluation for von Willebrand disease, other platelet inhibitory medications, or underlying intrinsic platelet dysfunction.

  13. Platelet function analysis with two different doses of aspirin.

    PubMed

    Aydinalp, Alp; Atar, Ilyas; Altin, Cihan; Gülmez, Oykü; Atar, Asli; Açikel, Sadik; Bozbaş, Hüseyin; Yildirir, Aylin; Müderrisoğlu, Haldun

    2010-06-01

    We aimed to compare the level of platelet inhibition using the platelet function analyzer (PFA)-100 in patients receiving low and medium doses of aspirin. On a prospective basis, 159 cardiology outpatients (83 men, 76 women; mean age 60.9 ± 9.9 years) taking 100 mg/day or 300 mg/day aspirin at least for the previous 15 days were included. Of these, 79 patients (50%) were on 100 mg and 80 patients (50.3%) were on 300 mg aspirin treatment. Blood samples were collected between 09:30 and 11:00 hours in the morning. Platelet reactivity was measured with the PFA-100 system. Incomplete platelet inhibition was defined as a normal collagen/epinephrine closure time (< 165 sec) despite aspirin treatment. Baseline clinical and laboratory characteristics of the patient groups taking 100 mg or 300 mg aspirin were similar. The overall prevalence of incomplete platelet inhibition was 22% (35 patients). The prevalence of incomplete platelet inhibition was significantly higher in patients treated with 100 mg of aspirin (n = 24/79, 30.4%) compared with those treated with 300 mg of aspirin (n = 11/80, 13.8%) (p = 0.013). In univariate analysis, female sex (p = 0.002) and aspirin dose (p = 0.013) were significantly correlated with incomplete platelet inhibition. In multivariate analysis, female sex (OR: 0.99; 95% CI 0.9913-0.9994; p = 0.025) and aspirin dose (OR: 3.38; 95% CI 1.4774-7.7469; p = 0.003) were found as independent factors predictive of incomplete platelet inhibition. Our findings suggest that treatment with higher doses of aspirin can reduce incomplete platelet inhibition especially in female patients.

  14. Impact of Intravenous Lysine Acetylsalicylate Versus Oral Aspirin on Prasugrel-Inhibited Platelets: Results of a Prospective, Randomized, Crossover Study (the ECCLIPSE Trial).

    PubMed

    Vivas, David; Martín, Agustín; Bernardo, Esther; Ortega-Pozzi, María Aranzazu; Tirado, Gabriela; Fernández, Cristina; Vilacosta, Isidre; Núñez-Gil, Iván; Macaya, Carlos; Fernández-Ortiz, Antonio

    2015-05-01

    Prasugrel and ticagrelor, new P2Y12-adenosine diphosphate receptor antagonists, are associated with greater pharmacodynamic inhibition and reduction of cardiovascular events compared with clopidogrel in patients with an acute coronary syndrome. However, evidence is lacking about the effects of achieving faster and stronger cyclooxygenase inhibition with intravenous lysine acetylsalicylate (LA) compared with oral aspirin on prasugrel-inhibited platelets. This was a prospective, randomized, single-center, open, 2-period crossover platelet function study conducted in 30 healthy volunteers. Subjects were randomly assigned to receive a loading dose of intravenous LA 450 mg plus oral prasugrel 60 mg or loading dose of aspirin 300 mg plus prasugrel 60 mg orally in a crossover fashion after a 2-week washout period between treatments. Platelet function was evaluated at baseline, 30 minutes, 1 h, 4 h, and 24 h using light transmission aggregometry and vasodilator-stimulated phosphoprotein phosphorylation. The primary end point of the study, inhibition of platelet aggregation after arachidonic acid 1.5 mmol/L at 30 minutes, was significantly higher in subjects treated with LA compared with aspirin: 85.3% versus 44.3%, respectively, P=0.003. This differential effect was observed at 1 hour (P=0.002) and 4 hours (P=0.048), but not at 24 hours. Subjects treated with LA presented less variability and faster and greater inhibition of platelet aggregation with arachidonic acid compared with aspirin. The administration of intravenous LA resulted in a significant reduction of platelet reactivity compared with oral aspirin on prasugrel-inhibited platelets. Loading dose of LA achieves an earlier platelet inhibition and with less variability than aspirin. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02243137. © 2015 American Heart Association, Inc.

  15. R1: Platelets and Megakaryocytes contain functional NF-κB

    PubMed Central

    Spinelli, Sherry L.; Casey, Ann E.; Pollock, Stephen J.; Gertz, Jacqueline M.; McMillan, David H.; Narasipura, Srinivasa D.; Mody, Nipa A.; King, Michael R.; Maggirwar, Sanjay B.; Francis, Charles W.; Taubman, Mark B.; Blumberg, Neil; Phipps, Richard P.

    2010-01-01

    The Nuclear Factor (NF)-κB transcription factor family is well-known for their role in eliciting inflammation and promoting cell survival. We discovered that human megakaryocytes and platelets express the majority of NF-κB family members including the regulatory Inhibitor (I)-κB and Inhibitor Kappa Kinase (IKK) molecules. Objective Investigate the presence and role of NF-κB proteins in megakaryocytes and platelets. Methods and Results Anucleate platelets exposed to NF-κB inhibitors demonstrated impaired fundamental functions involved in repairing vascular injury and thrombus formation. Specifically, NF-κB inhibition diminished lamellapodia formation, decreased clot retraction times and reduced thrombus stability. Moreover, inhibition of I-κB-α phosphorylation (BAY-11-7082) reverts fully spread platelets back to a spheroid morphology. Addition of recombinant IKK-β or I-κB-α protein to BAY inhibitor-treated platelets partially restore platelet spreading in I-κB-α inhibited platelets, and addition of active IKK-β increased endogenous I-κB-α phosphorylation levels. Conclusions These novel findings support a crucial and non-classical role for the NF-κB family in modulating platelet function and reveal that platelets are sensitive to NF-κB inhibitors. As NF-κB inhibitors are being developed as anti-inflammatory and anti-cancer agents, they may have unintended effects on platelets. Based on these data, NF-κB is also identified as a new target to dampen unwanted platelet activation. PMID:20042710

  16. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    PubMed

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  17. Nitric oxide decreases coagulation protein function in rabbits as assessed by thromboelastography.

    PubMed

    Nielsen, V G

    2001-02-01

    Nitric oxide (NO) is administered via infusion of donors such as nitroglycerin or in inhaled form for treatment of ischemia and pulmonary hypertension, respectively. In rabbits, the NO donor, DETANONOate, decreases whole blood clotting function as assessed by thromboelastographic variables (R, reaction time; alpha, angle; and G, a measure of clot strength). I hypothesized that DETANONOate-derived NO would adversely affect coagulation protein and platelet function. Blood obtained from ear arteries of conscious rabbits (n = 8) anticoagulated with sodium citrate. The blood was then incubated with 0 or 10mM DETANONOate for 30 min. After incubation and recalcification, thromboelastography was performed for 60 min under four conditions: 1) 0mM DETANONOate, 2) 0mM DETANONOate with platelet inhibition with cytochalasin D, 3) 10mM DETANONOate, and 4) 10mM DETANONOate with platelet inhibition. DETANONOate significantly (P < 0.05) increased R and decreased alpha and G in samples with or without platelet inhibition, compared with samples not exposed to DETANONOate. Lastly, the percentage of total G (G(T)) attributable to platelet function (G(P)) was significantly more in the absence of DETANONOate (G(P) = 92.3% +/- 1.6%; mean +/- SD) than after exposure to DETANONOate (G(P) = 90.2% +/- 2.3%). DETANONOate-derived NO significantly decreased coagulation protein function and platelet function. Coagulation protein function may be similarly affected in clinical situations involving the administration of NO or NO donors.

  18. Effects of hormones on platelet aggregation.

    PubMed

    Farré, Antonio López; Modrego, Javier; Zamorano-León, José J

    2014-04-01

    Platelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.

  19. Lactodifucotetraose, a human milk oligosaccharide, attenuates platelet function and inflammatory cytokine release.

    PubMed

    Newburg, David S; Tanritanir, Ayse C; Chakrabarti, Subrata

    2016-07-01

    Human milk strongly quenches inflammatory processes in vitro, and breastfed infants have lower incidence of inflammatory diseases than those fed artificially. Platelets from neonates, in contrast to those from adults, are less responsive to platelet agonists such as collagen, thrombin, ADP, and epinephrine. Breastfed infants absorb oligosaccharides intact from the human milk in their gut to the circulation. This study was to determine whether these oligosaccharides can attenuate platelet function and platelet secretion of pro-inflammatory proteins, and to identify the active component. The natural mixture of oligosaccharides from human milk and pure individual human milk oligosaccharides were tested for their ability to modulate responses of platelets isolated from human blood following exposure to thrombin, ADP, and collagen. Human milk and the natural mixture of human milk oligosaccharides inhibited platelet release of inflammatory proteins. Of the purified human milk oligosaccharides tested, only lactodifucotetraose (LDFT) significantly inhibited thrombin induced release of the pro-inflammatory proteins RANTES and sCD40L. LDFT also inhibited platelet adhesion to a collagen-coated surface, as well as platelet aggregation induced by ADP or collagen. These data indicate that LDFT may help modulate hemostasis by suppressing platelet-induced inflammatory processes in breastfed infants. This activity suggests further study of LDFT for its potential as a therapeutic agent in infants and adults.

  20. Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib

    PubMed Central

    Bye, Alexander P.; Unsworth, Amanda J.; Desborough, Michael J.; Hildyard, Catherine A. T.; Appleby, Niamh; Bruce, David; Kriek, Neline; Nock, Sophie H.; Sage, Tanya; Hughes, Craig E.

    2017-01-01

    The Bruton tyrosine kinase (Btk) inhibitor ibrutinib induces platelet dysfunction and causes increased risk of bleeding. Off-target inhibition of Tec is believed to contribute to platelet dysfunction and other side effects of ibrutinib. The second-generation Btk inhibitor acalabrutinib was developed with improved specificity for Btk over Tec. We investigated platelet function in patients with non-Hodgkin lymphoma (NHL) receiving ibrutinib or acalabrutinib by aggregometry and by measuring thrombus formation on collagen under arterial shear. Both patient groups had similarly dysfunctional aggregation responses to collagen and collagen-related peptide, and comparison with mechanistic experiments in which platelets from healthy donors were treated with the Btk inhibitors suggested that both drugs inhibit platelet Btk and Tec at physiological concentrations. Only ibrutinib caused dysfunctional thrombus formation, whereas size and morphology of thrombi following acalabrutinib treatment were of normal size and morphology. We found that ibrutinib but not acalabrutinib inhibited Src family kinases, which have a critical role in platelet adhesion to collagen that is likely to underpin unstable thrombus formation observed in ibrutinib patients. We found that platelet function was enhanced by increasing levels of von Willebrand factor (VWF) and factor VIII (FVIII) ex vivo by addition of intermediate purity FVIII (Haemate P) to blood from patients, resulting in consistently larger thrombi. We conclude that acalabrutinib avoids major platelet dysfunction associated with ibrutinib therapy, and platelet function may be enhanced in patients with B-cell NHL by increasing plasma VWF and FVIII. PMID:29296914

  1. Inhibitory effects of Cyperus digitatus extract on human platelet function in vitro.

    PubMed

    Fuentes, Eduardo; Forero-Doria, Oscar; Alarcón, Marcelo; Palomo, Iván

    2015-01-01

    The purpose of this research was to investigate the mechanisms of antiplatelet action of Cyperus digitatus. The antiplatelet action of C. digitatus was studied on platelet function: secretion, adhesion, aggregation, and sCD40L release. The platelet ATP secretion and aggregation were significantly inhibited by CDA (ethyl acetate extract) at 0.1 mg/ml and after the incubation of whole blood with CDA, the platelet coverage was inhibited by 96 ± 3% (p < 0.001). At the same concentration, CDA significantly decreased sCD40L levels. The mechanism of antiplatelet action of CDA could be by NF-κB inhibition and that is cAMP independent. In conclusion, C. digitatus extract may serve as a new source of antiplatelet agents for food and nutraceutical applications.

  2. The neuropeptide substance P stimulates the effector functions of platelets.

    PubMed Central

    Damonneville, M; Monté, D; Auriault, C; Capron, A

    1990-01-01

    Sensory neuropeptides, such as substance P, appear as potent mediators of various immunological reactions, and inhibit or stimulate a wide range of functions of immune inflammatory cells. Platelets were recently shown to participate as effector cells in an IgE or lymphokine-dependent killing of parasites. Substance P and its carboxy-terminal fragment SP (4-11) induce the cytotoxic activity of platelets towards the larvae of Schistosoma mansoni, respectively, by 90% and 40%, whereas the modified C terminal SP, the SP-free acid, exhibits no effect on the platelets. The neuropeptide effects occur at low doses (10(-8) M), are specific as shown by inhibition studies with a substance P antagonist, the D-SP. Binding data obtained after flow cytofluorometry with FITC-SP lead to the conclusion that SP binds specifically to about 20% of the homogenous population of platelets. Moreover, IgE could modulate the SP-dependent functions of platelets since the pre-incubation with myeloma human IgE or with AP2 monoclonal antibodies--known to inhibit the IgE-dependent killing of these cells-leads to a dramatic decrease of the SP dependent cytotoxic activity of platelets towards the larvae. These findings identify a potent mechanism for nervous system regulation of host defence responses. PMID:1696868

  3. Modulation of platelet aggregation by areca nut and betel leaf ingredients: roles of reactive oxygen species and cyclooxygenase.

    PubMed

    Jeng, Jiiang-Huei; Chen, Shiao-Yun; Liao, Chang-Hui; Tung, Yuan-Yii; Lin, Bor-Ru; Hahn, Liang-Jiunn; Chang, Mei-Chi

    2002-05-01

    There are 2 to 6 billion betel quid (BQ) chewers in the world. Areca nut (AN), a BQ component, modulates arachidonic acid (AA) metabolism, which is crucial for platelet function. AN extract (1 and 2 mg/ml) stimulated rabbit platelet aggregation, with induction of thromboxane B2 (TXB2) production. Contrastingly, Piper betle leaf (PBL) extract inhibited AA-, collagen-, and U46619-induced platelet aggregation, and TXB2 and prostaglandin-D2 (PGD2) production. PBL extract also inhibited platelet TXB2 and PGD2 production triggered by thrombin, platelet activating factor (PAF), and adenosine diphosphate (ADP), whereas little effect on platelet aggregation was noted. Moreover, PBL is a scavenger of O2(*-) and *OH, and inhibits xanthine oxidase activity and the (*)OH-induced PUC18 DNA breaks. Deferoxamine, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and neomycin prevented AN-induced platelet aggregation and TXB2 production. Indomethacin, genistein, and PBL extract inhibited only TXB2 production, but not platelet aggregation. Catalase, superoxide dismutase, and dimethylthiourea (DMT) showed little effect on AN-induced platelet aggregation, whereas catalase and DMT inhibited the AN-induced TXB2 production. These results suggest that AN-induced platelet aggregation is associated with iron-mediated reactive oxygen species production, calcium mobilization, phospholipase C activation, and TXB2 production. PBL inhibited platelet aggregation via both its antioxidative effects and effects on TXB2 and PGD2 production. Effects of AN and PBL on platelet aggregation and AA metabolism is crucial for platelet activation in the oral mucosa and cardiovascular system in BQ chewers.

  4. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies.

    PubMed

    Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván

    2013-01-01

    The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5'-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1  μ m(2) (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods.

  5. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies

    PubMed Central

    Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván

    2013-01-01

    The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5′-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1 μm2 (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods. PMID:24159349

  6. Aspirin administered to women at 100 mg every other day produces less platelet inhibition than aspirin administered at 81 mg per day: implications for interpreting the women's health study.

    PubMed

    Swaim, Lisa; Hillman, Robert S

    2009-07-01

    We aimed to determine the relative level of platelet inhibition achieved with low-dose aspirin (81 mg daily) compared with a very low-dose (100 mg every other day). The Womens Health Study (WHS) found that a dose of 100 mg every other day of aspirin provided protection against stroke as primary prophylaxis, but not myocardial infarction. In the United States, the most commonly prescribed dose of aspirin for primary prophylaxis is 81 mg per day. As a result, it is important to know whether these doses are equivalent before extrapolating the results of the WHS to women in the U.S. To achieve this goal, we have studied the effects of these two dosing regimens on platelet function in healthy women meeting the WHS inclusion criteria using a randomized design. We enrolled 49 healthy female volunteers and used a sequential, crossover design to compare the two regimens. The participants received a 17-day course of each aspirin-dosing regimen separated by a 7-day washout period. The degree of platelet inhibition was measured on days 14-17 of each dosing regimen using a point-of-care platelet function assay utilizing arachidonic acid to activate platelets (VerifyNow-Aspirin). Participants platelet response, expressed as Aspirin Response Unit (ARU) attained a significantly greater level of platelet inhibition on days 14-17 while taking aspirin 81 mg daily compared to aspirin 100 mg every other day (31.3% vs. 12.7%, P < 0.0001) with mean +/- SD ARU values of 445 +/- 50 and 570 +/- 68, P < 0.0001. Significantly more daily readings in participants were >or=550 ARU, a value correlated with clinical outcomes in several studies, with the 100 mg every other day regimen (72.0% vs. 6.4% with 81 mg daily, P < 0.0001), and this alternate-day regimen also resulted in more day-to-day variability in platelet function (P = 0.0002). We found significantly less inhibition of platelet function with the dose used in the WHS than the usual U.S. dose. We observed that the degree of platelet inhibition was significantly less with aspirin 100 mg every other day compared with aspirin 81 mg daily, suggesting that results of the Women's Health Study may have underestimated both the efficacy and toxicity of aspirin as it is commonly administered. These data need to be considered when developing recommendations about the use of aspirin in the primary prevention of cardiovascular disease in women.

  7. A randomized comparison of platelet reactivity in patients after treatment with various commercial clopidogrel preparations: the CLO-CLO trial.

    PubMed

    Oberhänsli, Markus; Lehner, Cédric; Puricel, Serban; Lehmann, Sonja; Togni, Mario; Stauffer, Jean-Christophe; Baeriswyl, Gérard; Goy, Jean-Jacques; Cook, Stéphane

    2012-11-01

    The salt linked to the clopidogrel molecule in generic preparations is suspected to affect its clinical efficacy. There is a lack of information about inhibition of platelet reactivity by generic preparations. To compare the effect of original clopidogrel (clopidogrel bisulphate [Plavix(®)]), generic clopidogrel preparations (clopidogrel hydrochloride [Clopidogrel-Mepha(®)]; clopidogrel besylate [Clopidogrel Sandoz(®)]) and prasugrel (Efient(®)) on platelet reactivity in patients with coronary artery disease. Patients with coronary artery disease treated with stents received, in a random sequence, original clopidogrel bisulphate, clopidogrel hydrochloride and clopidogrel besylate. Platelet function was assessed with the Multiplate analyser after an initial loading dose (600 mg) and at day 10 after each treatment period. Prasugrel was given for another 10 days. An adenosine diphosphate (ADP) test value<46 antiaggregation units (U) was defined as therapeutic platelet inhibition. Sixty patients (mean age 69 ± 10 years; 50 men) were randomized. Original clopidogrel bisulphate, clopidogrel hydrochloride and clopidogrel besylate provided similar inhibition of platelet reactivity with values of 31 ± 25, 33 ± 28 and 28 ± 23 U, respectively (P not significant). Prasugrel provided better inhibition of platelet function (10 ± 11 vs. 31 ± 25 U for clopidogrel bisulphate; P<0.001). An ADP test value>46 U was measured in 11 patients (18%) with clopidogrel bisulphate, 13 (22%) with clopidogrel besylate and 13 (22%) with clopidogrel hydrochloride compared with only one (2%) with prasugrel. Generic clopidogrel preparations provided similar inhibition of platelet reactivity to original clopidogrel bisulphate, although prasugrel was more efficient. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Opposing Effects of Platelet-Activating Factor and Lyso-Platelet-Activating Factor on Neutrophil and Platelet ActivationS⃞

    PubMed Central

    Welch, Emily J.; Naikawadi, Ram P.; Li, Zhenyu; Lin, Phoebe; Ishii, Satoshi; Shimizu, Takao; Tiruppathi, Chinnaswamy; Du, Xiaoping; Subbaiah, Papasani V.; Ye, Richard D.

    2009-01-01

    Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an inactive precursor and metabolite of PAF. However, lysoPAF has not been carefully studied in its own context. Here we report that lysoPAF has an opposing effect of PAF in the activation of neutrophils and platelets. Whereas PAF potentiates neutrophil NADPH oxidase activation, lysoPAF dose-dependently inhibits this function. Inhibition by lysoPAF is not affected by the use of a PAF receptor antagonist or genetic deletion of the PAF receptor gene. The mechanism of lysoPAF-mediated inhibition of neutrophils involves an elevation in the intracellular cAMP level, and pharmacological blockade of adenylyl cyclase completely reverses the inhibitory effect of lysoPAF. In addition, lysoPAF increases intracellular cAMP levels in platelets and inhibits thrombin-induced platelet aggregation, which can be reversed by inhibition of protein kinase A. These findings identify lysoPAF as a bioactive lipid with opposing functions of PAF and suggest a novel and intrinsic regulatory mechanism for balance of the potent activity of PAF. PMID:18931035

  9. Dark chocolate inhibits platelet aggregation in healthy volunteers.

    PubMed

    Innes, Andrew J; Kennedy, Gwen; McLaren, Margaret; Bancroft, Anne J; Belch, Jill J F

    2003-08-01

    Cardiovascular disease is a leading cause of death in the UK. The flavonoids found in cocoa may produce a cardio-protective role for chocolate with a high cocoa content. Thirty healthy volunteers were randomised to receive 100 g of white, milk or dark chocolate, and assessments of platelet function were undertaken on venous blood samples before and after chocolate consumption. White and milk chocolate had no significant effect on platelets. However dark chocolate inhibited collagen-induced platelet aggregation in platelet rich plasma. In the future dark chocolate may have a role in prevention of cardiovascular and thromboembolic diseases.

  10. Lymphocyte-mediated inhibition of platelet cytotoxic functions during Hymenoptera venom desensitization: characterization of a suppressive lymphokine.

    PubMed

    Tsicopoulos, A; Tonnel, A B; Vorng, H; Joseph, M; Wallaert, B; Kusnierz, J P; Pestel, J; Capron, A

    1990-06-01

    Recently, it has been shown that platelets, through a receptor for the Fc fragment of IgE, could be specially triggered by venom allergens in hypersensitivity to hymenoptera, generating cytocidal mediators toward Schistosoma mansoni larvae, and oxygen metabolites measured by chemiluminescence. After rush immunotherapy, a depressed platelet response was demonstrated to be associated with the production of lymphokine(s). Here we report the characterization of a factor present in supernatants of antigen-stimulated T cells from patients after hymenoptera venom desensitization which is able to inhibit platelet cytotoxic functions in a dose-dependent manner. The optimal inhibition was observed with supernatants obtained after T lymphocyte stimulated with 10(-5) micrograms venom allergen/ml. Once specifically produced the platelet-suppressive effect of lymphocyte supernatants was not antigen specific. The producing T cell subpopulation was identified as CD8+. This lymphokine had an approximate molecular mass of 25 kDa and a pI of 4.8. It was heat and acid stable and sensitive to trypsin and proteinase K but not to neuraminidase. This platelet inhibitory activity was absorbed by platelet membrane suggesting its binding to a receptor. These properties were very similar to a previously described platelet activity suppressive lymphokine, suggesting the participation of this lymphokine in the mechanisms of rush desensitization.

  11. [27- Hydroxycholesterol reverses estradiol induced inhibition of platelet aggregation in postmenopausal women].

    PubMed

    Rocha, Gladys; Sierralta, Walter; Valladares, Luis

    2016-11-01

    The decline of estrogen levels increases cardiovascular risk in women. Platelets express estrogen receptors and 17β-estradiol- (E2) can produce a protective effect on thrombus formation. The hydroxylation of cholesterol generates several sterols and 27-hydroxycholesterol (27HC) predominates in circulation. To evaluate the effect of 27HC as an endogenous antagonist of the anti-aggregating properties of E2 in platelets of postmenopausal women. Platelet function of postmenopausal women was evaluated ex-vivo. Platelets pre-incubated with 27HC in the presence or absence of E2, were stimulated with collagen. Aggregation was evaluated using turbidimetry using a Chrono-log aggregometer. Collagen-stimulated platelet aggregation was significantly inhibited by E2. The inhibitory effect of E2 on collagen-stimulated platelet aggregation was significantly reversed in the presence of 27HC. The suppressive effect of E2 on platelet aggregation is inhibited by 27HC, which could contribute to increase cardiovascular risk in postmenopausal women.

  12. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations.

    PubMed

    Hom, Sarah; Chen, Li; Wang, Tony; Ghebrehiwet, Berhane; Yin, Wei; Rubenstein, David A

    2016-11-01

    Tobacco smoke extracts prepared from both mainstream and sidestream smoking have been associated with heightened platelet activation, aggregation, adhesion, and inflammation. Conversely, it has been shown that pure nicotine inhibits similar platelet functions. In this work, we 1) evaluated the effects of e-cigarette extracts on platelet activities and 2) elucidated the differences between the nicotine-dependent and non-nicotine dependent (e.g. fine particulate matter or toxic compounds) effects of tobacco and e-cigarette products on platelet activities. To accomplish these goals, platelets from healthy volunteers (n = 50) were exposed to tobacco smoke extracts, e-cigarette vapor extracts, and pure nicotine and changes in platelet activation, adhesion, aggregation, and inflammation were evaluated, using optical aggregation, flow cytometry, and ELISA methods. Interestingly, the exposure of platelets to e-vapor extracts induced a significant up-regulation in the expression of the pro-inflammatory gC1qR and cC1qR and induced a marked increase in the deposition of C3b as compared with traditional tobacco smoke extracts. Similarly, platelet activation, as measured by a prothrombinase based assay, and platelet aggregation were also significantly enhanced after exposure to e-vapor extracts. Finally, platelet adhesion potential toward fibrinogen, von Willebrand factor, and other platelets was also enhanced after exposure to e-cigarette vapor extracts. In the presence of pure nicotine, platelet functions were observed to be inhibited, which further suggests that other constituents of tobacco smoke and electronic vapor can antagonize platelet functions, however, the presence of nicotine in extracts somewhat perpetuated the platelet functional changes in a dose-dependent manner.

  13. Aspirin Inhibits Platelet-Derived Sphingosine-1-Phosphate Induced Endothelial Cell Migration.

    PubMed

    Polzin, Amin; Knoop, Betül; Böhm, Andreas; Dannenberg, Lisa; Zurek, Mark; Zeus, Tobias; Kelm, Malte; Levkau, Bodo; Rauch, Bernhard H

    2018-01-01

    Aspirin plays a crucial role in the prevention of cardiovascular diseases. We previously described that aspirin has effects beyond inhibition of platelet aggregation, as it inhibited thrombin-mediated release of sphingosine-1-phosphate (S1P) from human platelets. S1P is a bioactive lipid with important functions on inflammation and apoptosis. In endothelial cells (EC), S1P is a key regulator of cell migration. In this study, we aimed to analyze the effects of aspirin on platelet-induced EC migration. Human umbilical EC migration was measured by Boyden chamber assay. EC migration was induced by platelet supernatants of thrombin receptor-activating peptide-1 (AP1) stimulated platelets. To investigate the S1P receptor subtype that promotes EC migration, specific inhibitors of S1P receptor subtypes were applied. S1P induced EC migration in a concentration-dependent manner. EC migration induced by AP1-stimulated platelet supernatants was reduced by aspirin. S1P1 receptor inhibition almost completely abolished EC migration induced by activated platelets. The inhibition of S1P2 or S1P3 receptor had no effect. Aspirin inhibits EC migration induced by activated platelets that is in part due to S1P and mediated by the endothelial S1P1 receptor. The clinical significance of this novel mechanism of aspirin action has to be investigated in future studies. © 2017 S. Karger AG, Basel.

  14. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation

    PubMed Central

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T.; Mundell, Stuart J.; Coxon, Carmen H.

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents. PMID:27716777

  15. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    PubMed

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T; Mundell, Stuart J; Coxon, Carmen H

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  16. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization.

    PubMed

    Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H

    2007-09-01

    Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. We tested the effect of HC on platelet aggregation, thromboxane B(2) (TXB(2)) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB(2) production. HC inhibited the thrombin-induced TXB(2) production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB(2) production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca(2+) mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB(2) production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions.

  17. Compression force sensing regulates integrin αIIbβ3 adhesive function on diabetic platelets.

    PubMed

    Ju, Lining; McFadyen, James D; Al-Daher, Saheb; Alwis, Imala; Chen, Yunfeng; Tønnesen, Lotte L; Maiocchi, Sophie; Coulter, Brianna; Calkin, Anna C; Felner, Eric I; Cohen, Neale; Yuan, Yuping; Schoenwaelder, Simone M; Cooper, Mark E; Zhu, Cheng; Jackson, Shaun P

    2018-03-14

    Diabetes is associated with an exaggerated platelet thrombotic response at sites of vascular injury. Biomechanical forces regulate platelet activation, although the impact of diabetes on this process remains ill-defined. Using a biomembrane force probe (BFP), we demonstrate that compressive force activates integrin α IIb β 3 on discoid diabetic platelets, increasing its association rate with immobilized fibrinogen. This compressive force-induced integrin activation is calcium and PI 3-kinase dependent, resulting in enhanced integrin affinity maturation and exaggerated shear-dependent platelet adhesion. Analysis of discoid platelet aggregation in the mesenteric circulation of mice confirmed that diabetes leads to a marked enhancement in the formation and stability of discoid platelet aggregates, via a mechanism that is not inhibited by therapeutic doses of aspirin and clopidogrel, but is eliminated by PI 3-kinase inhibition. These studies demonstrate the existence of a compression force sensing mechanism linked to α IIb β 3 adhesive function that leads to a distinct prothrombotic phenotype in diabetes.

  18. Effects of omega-3 polyunsaturated fatty acids and aspirin, alone and combined, on canine platelet function.

    PubMed

    Westgarth, S; Blois, S L; D Wood, R; Verbrugghe, A; Ma, D W

    2018-05-01

    To compare haemostatic function in healthy dogs after treatment with low-dose aspirin alone, fish oil alone or a combination of these two therapies. Double-blinded randomised controlled clinical trial on 16 healthy client-owned dogs. Comprehensive haemostatic testing was performed at baseline and after 7 days of therapy with low-dose aspirin in all dogs. Following a 14-day washout, six dogs received fish oil, and nine dogs received combination therapy of aspirin plus fish oil; haemostatic testing was performed before and at 7 and 28 days after treatment initiation. Aspirin was associated with significantly decreased platelet function as measured by a collagen-epinephrine cartridge and inhibited arachidonic acid-induced whole-blood platelet aggregometry. Fish oil alone did not significantly affect any haemostatic tests. The combination of aspirin plus fish oil therapy caused a significantly greater inhibition of adenosine diphosphate and collagen-induced whole blood aggregometry compared to aspirin alone. Fish oil added to aspirin therapy appears to augment inhibition of some measures of platelet function in healthy dogs. © 2017 British Small Animal Veterinary Association.

  19. Effects of protopine on blood platelet aggregation. III. Effect of protopine on the metabolic system of arachidonic acid in platelets.

    PubMed

    Shiomoto, H; Matsuda, H; Kubo, M

    1991-02-01

    The mode of action of protopine on blood platelet aggregation was investigated in the metabolic system of arachidonic acid and in liberation of platelet activating factor using in vitro experimental models. Protopine inhibited the releases of arachidonic acid and platelet activating factor from platelet membrane phospholipids. Protopine also inhibited the conversion of prostaglandin G2 to thromboxane A2, as well as carboxyheptyl imidazole, a thromboxane synthetase inhibitor. These results indicated that protopine functions both as a phospholipase inhibitor and a thromboxane synthetase inhibitor. It is expected that protopine can be applied for treatment of thrombosis as an antiplatelet drug.

  20. Pharmacogenetic testing for clopidogrel using the rapid INFINITI analyzer: a dose-escalation study.

    PubMed

    Gladding, Patrick; White, Harvey; Voss, Jamie; Ormiston, John; Stewart, Jim; Ruygrok, Peter; Bvaldivia, Badi; Baak, Ruth; White, Catherine; Webster, Mark

    2009-11-01

    Our aim was to assess whether a higher clopidogrel maintenance dose has a greater antiplatelet effect in CYP2C19*2 allele carriers compared with noncarriers. Clopidogrel is a prodrug that is biotransformed by the cytochrome P450 enzymes CYP2C19, 2C9, and 3A4, 2B6, 1A2. The CYPC219*2 loss of function variant has been associated with a reduced antiplatelet response to clopidogrel and a 3-fold risk of stent thrombosis. Forty patients on standard maintenance dosage clopidogrel (75 mg), for 9.4 +/- 9.2 weeks, were enrolled into a dose escalation study. Platelet function was assessed at baseline and after 1 week of 150 mg once daily using the VerifyNow platelet function analyzer (Accumetrics Ltd., San Diego, California). Genomic DNA was hybridized to a BioFilmChip microarray on the INFINITI analyzer (AutoGenomics Inc., Carlsbad, California) and analyzed for the CYP19*2, *4, *17, and CYP2C9*2, *3 polymorphisms. Platelet inhibition increased over 1 week, mean +8.6 +/- 13.5% (p = 0.0003). Carriers of the CYP2C19*2 allele had significantly reduced platelet inhibition at baseline (median 18%, range 0% to 72%) compared with wildtype (wt) (median 59%, range 11% to 95%, p = 0.01) and at 1 week (p = 0.03). CYP2C19*2 allele carriers had an increase in platelet inhibition of (mean +9 +/- 11%, p = 0.03) and reduction in platelet reactivity (mean -26 +/- 38 platelet response unit, p = 0.04) with a higher dose. Together CYP2C19*2 and CYP2C9*3 loss of function carriers had a greater change in platelet inhibition with 150 mg daily than wt/wt (+10.9% vs. +0.7%, p = 0.04). Increasing the dose of clopidogrel in patients with nonresponder polymorphisms can increase antiplatelet response. Personalizing clopidogrel dosing using pharmacogenomics may be an effective method of optimizing treatment.

  1. Modulation of platelet functions by crude rice (Oryza sativa) bran policosanol extract.

    PubMed

    Wong, Wai-Teng; Ismail, Maznah; Imam, Mustapha Umar; Zhang, Yi-Da

    2016-07-28

    Rice bran is bioactive-rich and has proven health benefits for humans. Moreover, its source, the brown rice has antioxidant, hypolipidemic and other functional properties that are increasingly making it a nutritional staple especially in Asian countries. This study investigated the antiplatelet aggregation mechanisms of crude hexane/methanolic rice bran extract, in which policosanol was the targeted bioactive. Platelets play a vital role in pathogenesis of atherosclerosis and cardiovascular diseases, and their increased activities could potentially cause arterial thrombus formation or severe bleeding disorders. Thus, in this study, platelet aggregation and adhesion of platelets to major components of basal lamina were examined in vitro. In addition, cellular protein secretion was quantified as a measurement of platelet activation. Adenosine diphosphate (ADP), collagen, and arachidonic acid (AA)-induced aggregation were studied using the microtiter technique. Rat platelets were pre-treated with various concentrations of policosanol extract, and the adhesion of platelets onto collagen- and laminin-coated surface (extracellular matrix) was studied using the acid phosphatase assay. The effect of crude policosanol extract on released proteins from activated platelets was measured using modified Lowry determination method. Rice bran policosanol extract significantly inhibited in vitro platelet aggregation induced by different agonists in a dose dependent manner. The IC50 of ADP-, collagen-, and AA-induced platelet aggregation were 533.37 ± 112.16, 635.94 ± 78.45 and 693.86 ± 70.57 μg/mL, respectively. The present study showed that crude rice bran policosanol extract significantly inhibited platelet adhesion to collagen in a dose dependent manner. Conversely, at a low concentration of 15.625 μg/mL, the extract significantly inhibited platelet adhesion to laminin stimulated by different platelet agonists. In addition to the alteration of cell adhesive properties, cellular protein secretion of the treated platelets towards different stimulants were decreased upon crude extract treatment. Our results showed that crude rice bran policosanol extract could inhibit in vitro platelet adhesion, aggregation and secretion upon activation using agonists. These findings serve as a scientific platform to further explore alternative therapies in cardiovascular diseases related to platelet malfunction.

  2. Exogenous modification of platelet membranes with the omega-3 fatty acids EPA and DHA reduces platelet procoagulant activity and thrombus formation.

    PubMed

    Larson, Mark K; Tormoen, Garth W; Weaver, Lucinda J; Luepke, Kristen J; Patel, Ishan A; Hjelmen, Carl E; Ensz, Nicole M; McComas, Leah S; McCarty, Owen J T

    2013-02-01

    Several studies have implicated the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in inhibition of normal platelet function, suggesting a role for platelets in EPA- and DHA-mediated cardioprotection. However, it is unclear whether the cardioprotective mechanisms arise from alterations to platelet-platelet, platelet-matrix, or platelet-coagulation factor interactions. Our previous results led us to hypothesize that EPA and DHA alter the ability of platelets to catalyze the generation of thrombin. We tested this hypothesis by exogenously modifying platelet membranes with EPA and DHA, which resulted in compositional changes analogous to increased dietary EPA and DHA intake. Platelets treated with EPA and DHA showed reductions in the rate of thrombin generation and exposure of platelet phosphatidylserine. In addition, treatment of platelets with EPA and DHA decreased thrombus formation and altered the processing of thrombin precursor proteins. Furthermore, treatment of whole blood with EPA and DHA resulted in increased occlusion time and a sharply reduced accumulation of fibrin under flow conditions. These results demonstrate that EPA and DHA inhibit, but do not eliminate, the ability of platelets to catalyze thrombin generation in vitro. The ability of EPA and DHA to reduce the procoagulant function of platelets provides a possible mechanism behind the cardioprotective phenotype in individuals consuming high levels of EPA and DHA.

  3. [Antiplatelet properties of nitrogen monoxide].

    PubMed

    Adrie, C

    1996-11-01

    Nitric (correction of nitrous) oxide (NO) plays a fundamental part in the haemostatic equilibrium between the endothelium and platelets, an equilibrium of established clinical importance in cardiovascular disease. NO stimulates the enzyme guanylate cyclase which is responsible for synthesis of GMPc, the increase of which results in platelet inhibition. Synthesis of NO may have endogenous auto or paracrine origine from platelets or endothelial cells and participates in the local regulation of platelet function in association with other products of endothelial or platelet synthesis. Exogenous administration is common in therapeutics either in molecules which release NO (nitrate derivatives, sodium nitropruside, molsidomine, etc) or by NO gas administered by inhalation. The antiplatelet effect of NO has been clearly demonstrated in vitro, in vivo or ex vivo, in animals and humans, and probably explains, at least partially, the efficacy of nitrate derivatives in ischaemic coronary artery disease. Nevertheless, the platelet inhibition observed with intravenous NO releasing drugs is associated with potentially harmful systemic hypotension. Platelet inhibition by inhalation of NO could be an alternative means of avoiding this unwanted effect.

  4. The antiplatelet effect of higher loading and maintenance dose regimens of clopidogrel: the PRINC (Plavix Response in Coronary Intervention) trial.

    PubMed

    Gladding, Patrick; Webster, Mark; Zeng, Irene; Farrell, Helen; Stewart, Jim; Ruygrok, Peter; Ormiston, John; El-Jack, Seif; Armstrong, Guy; Kay, Patrick; Scott, Douglas; Gunes, Arzu; Dahl, Marja-Liisa

    2008-12-01

    This study evaluated the antiplatelet effect of a higher loading and maintenance dose regimen of clopidogrel and a possible drug interaction with verapamil. Clopidogrel loading doses above 600 mg have not resulted in more rapid or complete platelet inhibition. Higher maintenance dosages may be more effective than 75 mg/day. A double-blind, randomized, placebo-controlled trial was undertaken in 60 patients undergoing percutaneous coronary intervention. All patients received clopidogrel 600 mg at the start of the procedure. Using a 2 x 2 design, patients were allocated to clopidogrel 600 mg given 2 h later or matching placebo, and to verapamil 5 mg intra-arterial or placebo. Platelet function was measured using the VerifyNow P2Y12 analyzer (Accumetrics Ltd., San Diego, California) at 2, 4, and 7 h. Patients were further randomized to receive a clopidogrel 75 or 150 mg once daily, with platelet function assessed after 1 week. Two hours after the second dose of clopidogrel or placebo, platelet inhibition was 42 +/- 27% with clopidogrel, compared with 24 +/- 22% with placebo (p = 0.0006). By 5 h after the second dose, platelet inhibition was 49 +/- 30% with clopidogrel, compared with 29 +/- 22% with placebo (p = 0.01). No drug interaction was seen with verapamil. A clopidogrel maintenance dosage of 150 mg daily for 1 week resulted in greater platelet inhibition than 75 mg daily (50 +/- 28% vs. 29 +/- 19%, p = 0.01). In an unselected population undergoing percutaneous coronary intervention a clopidogrel 1,200-mg loading dose, given as two 600-mg doses 2 h apart, results in more rapid and complete platelet inhibition than a single 600-mg dose. A maintenance dosage of 150 mg daily produces greater platelet inhibition than 75 mg daily. (The PRINC trial; ACTRN12606000129583).

  5. Shear-induced integrin signaling in platelet phosphatidylserine exposure, microvesicle release and coagulation.

    PubMed

    Pang, Aiming; Cui, Yujie; Chen, Yunfeng; Cheng, Ni; Delaney, M Keegan; Gu, Minyi; Stojanovic-Terpo, Aleksandra; Zhu, Cheng; Du, Xiaoping

    2018-05-31

    It is currently unclear why agonist-stimulated platelets require shear force to efficiently externalize the procoagulant phospholipid phosphatidylserine (PS) and release PS-exposed microvesicles (MVs). We reveal that integrin outside-in signaling is an important mechanism for this requirement. PS exposure and MV release were inhibited in β 3 -/- platelets or by integrin antagonists. The impaired MV release and PS exposure in β 3 -/- platelets were rescued by expressing wild type β 3 but not a Gα 13 binding-deficient β 3 mutant (E 733 EE to AAA), which blocks outside-in signaling but not ligand binding. Inhibition of Gα 13 or Src also diminished agonist/shear-dependent PS exposure and MV release, further indicating a role for integrin outside-in signaling. PS exposure in activated platelets was induced by application of pulling force via an integrin ligand, which was abolished by inhibiting Gα 13 -integrin interaction, suggesting that GGα 13 -dependent transmission of mechanical signals by integrins induces PS exposure. Inhibition of Gα 13 delayed coagulation in vitro. Furthermore, inhibition or platelet-specific knockout of Gα 13 diminished laser-induced intravascular fibrin formation in arterioles in vivo. Thus, β 3 integrins serve as a shear sensor activating the Gα 13 -dependent outside-in signaling pathway to facilitate platelet procoagulant function. Pharmacological targeting of Gα 13 -integrin interaction prevents occlusive thrombosis in vivo by inhibiting both coagulation and platelet thrombus formation. Copyright © 2018 American Society of Hematology.

  6. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization

    PubMed Central

    Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H

    2007-01-01

    Background and purpose: Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. Experimental approach: We tested the effect of HC on platelet aggregation, thromboxane B2 (TXB2) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. Key results: HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB2 production. HC inhibited the thrombin-induced TXB2 production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB2 production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca2+ mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. Conclusions and implications: HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB2 production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions. PMID:17641677

  7. The P2Y12 Antagonists, 2-Methylthioadenosine 5′-Monophosphate Triethylammonium Salt and Cangrelor (ARC69931MX), Can Inhibit Human Platelet Aggregation through a Gi-independent Increase in cAMP Levels*

    PubMed Central

    Srinivasan, Subhashini; Mir, Fozia; Huang, Jin-Sheng; Khasawneh, Fadi T.; Lam, Stephen C.-T.; Le Breton, Guy C.

    2009-01-01

    ADP plays an integral role in the process of hemostasis by signaling through two platelet G-protein-coupled receptors, P2Y1 and P2Y12. The recent use of antagonists against these two receptors has contributed a substantial body of data characterizing the ADP signaling pathways in human platelets. Specifically, the results have indicated that although P2Y1 receptors are involved in the initiation of platelet aggregation, P2Y12 receptor activation appears to account for the bulk of the ADP-mediated effects. Based on this consideration, emphasis has been placed on the development of a new class of P2Y12 antagonists (separate from clopidogrel and ticlopidine) as an approach to the treatment of thromboembolic disorders. The present work examined the molecular mechanisms by which two of these widely used adenosine-based P2Y12 antagonists (2-methylthioadenosine 5′-monophosphate triethylammonium salt (2MeSAMP) and ARC69931MX), inhibit human platelet activation. It was found that both of these compounds raise platelet cAMP to levels that substantially inhibit platelet aggregation. Furthermore, the results demonstrated that this elevation of cAMP did not require Gi signaling or functional P2Y12 receptors but was mediated through activation of a separate G protein-coupled pathway, presumably involving Gs. However, additional experiments revealed that neither 2MeSAMP nor ARC69931MX (cangrelor) increased cAMP through activation of A2a, IP, DP, or EP2 receptors, which are known to couple to Gs. Collectively, these findings indicate that 2MeSAMP and ARC69931MX interact with an unidentified platelet G protein-coupled receptor that stimulates cAMP-mediated inhibition of platelet function. This inhibition is in addition to that derived from antagonism of P2Y12 receptors. PMID:19346255

  8. Update: Acute coronary syndromes (V). Personalized antiplatelet therapy.

    PubMed

    Gurbel, Paul A; Rafeedheen, Rahil; Tantry, Udaya S

    2014-06-01

    It is well established that high on-treatment platelet reactivity to adenosine diphosphate during clopidogrel therapy is an independent risk factor for ischemic event occurrences in a postpercutaneous coronary intervention patients. However, the precise role of platelet function testing remains debated. Platelet function testing to ensure optimal platelet inhibition has been recommended by some authorities to improve outcomes in patients treated with clopidogrel. Recent prospective, randomized trials of personalized antiplatelet therapy have failed to demonstrate a benefit of platelet function testing in improving outcomes. In this review article, we discuss the mechanisms responsible for clopidogrel nonreponsiveness, recent trials of platelet function testing, and other new developments in the field of personalized antiplatelet therapy. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  9. [Effect of protopine on rabbit platelet function].

    PubMed

    Ma, G Y; Zhang, Z Z; Chen, Z H

    1994-07-01

    Protopine (Pro) inhibited dose-dependently rabbit platelet aggregation induced by ADP, arachidonic acid (AA), collagen, or aggregoserpentin of Trimeresurus mucrosquamatus venom (TMVA) in vitro. Their IC50 were 25.3, 30.5, 46.9, 33.4 mumol.L-1, respectively. Pro 10, 20 mg.kg-1 iv also inhibited the platelet aggregation induced by these inducers. The effects (maximal at 5 min) lasted 1 h. By using fluorophotometry and RIA, it was seen that Pro suppressed the release of 5-HT from platelets during aggregation induced by collagen, AA, or TMVM in vitro. Pro did not block the formation of thromboxane A2 during aggregation induced by AA and did not increase the content of cAMP in rabbit platelet, but increased the content of cGMP in rabbit platelets. The antiplatelet effect of Pro may be related to an increase cGMP in rabbit platelets and the suppression of the release of the active substances from platelets.

  10. Plant Food Delphinidin-3-Glucoside Significantly Inhibits Platelet Activation and Thrombosis: Novel Protective Roles against Cardiovascular Diseases

    PubMed Central

    Yang, Yan; Shi, Zhenyin; Reheman, Adili; Jin, Joseph W.; Li, Conglei; Wang, Yiming; Andrews, Marc C.; Chen, Pingguo; Zhu, Guangheng; Ling, Wenhua; Ni, Heyu

    2012-01-01

    Delphinidin-3-glucoside (Dp-3-g) is one of the predominant bioactive compounds of anthocyanins in many plant foods. Although several anthocyanin compounds have been reported to be protective against cardiovascular diseases (CVDs), the direct effect of anthocyanins on platelets, the key players in atherothrombosis, has not been studied. The roles of Dp-3-g in platelet function are completely unknown. The present study investigated the effects of Dp-3-g on platelet activation and several thrombosis models in vitro and in vivo. We found that Dp-3-g significantly inhibited human and murine platelet aggregation in both platelet-rich plasma and purified platelets. It also markedly reduced thrombus growth in human and murine blood in perfusion chambers at both low and high shear rates. Using intravital microscopy, we observed that Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for vessel occlusion. Dp-3-g also significantly inhibited thrombus growth in a carotid artery thrombosis model. To elucidate the mechanisms, we examined platelet activation markers via flow cytometry and found that Dp-3-g significantly inhibited the expression of P-selectin, CD63, CD40L, which reflect platelet α- and δ-granule release, and cytosol protein secretion, respectively. We further demonstrated that Dp-3-g downregulated the expression of active integrin αIIbβ3 on platelets, and attenuated fibrinogen binding to platelets following agonist treatment, without interfering with the direct interaction between fibrinogen and integrin αIIbβ3. We found that Dp-3-g reduced phosphorylation of adenosine monophosphate-activated protein kinase, which may contribute to the observed inhibitory effects on platelet activation. Thus, Dp-3-g significantly inhibits platelet activation and attenuates thrombus growth at both arterial and venous shear stresses, which likely contributes to its protective roles against thrombosis and CVDs. PMID:22624015

  11. Tyrosine phosphorylated c-Cbl regulates platelet functional responses mediated by outside-in signaling

    PubMed Central

    Buitrago, Lorena; Langdon, Wallace Y.

    2011-01-01

    c-Cbl protein functions as an E3 ligase and scaffolding protein, where 3 residues, Y700, Y731, and Y774, upon phosphorylation, have been shown to initiate several signaling cascades. In this study, we investigated the role of these phospho-tyrosine residues in the platelet functional responses after integrin engagement. We observed that c-Cbl Y700, Y731 and Y774 undergo phosphorylation upon platelet adhesion to immobilized fibrinogen, which was inhibited in the presence of PP2, a pan-src family kinase (SFK) inhibitor, suggesting that c-Cbl is phosphorylated downstream of SFKs. However, OXSI-2, a Syk inhibitor, significantly reduced c-Cbl phosphorylation at residues Y774 and Y700, without affecting Y731 phosphorylation. Interestingly, PP2 inhibited both platelet-spreading on fibrinogen as well as clot retraction, whereas OXSI-2 blocked only platelet-spreading, suggesting a differential role of these tyrosine residues. The physiologic role of c-Cbl and Y731 was studied using platelets from c-Cbl KO and c-CblYF/YF knock-in mice. c-Cbl KO and c-CblYF/YF platelets had a significantly reduced spreading over immobilized fibrinogen. Furthermore, clot retraction with c-Cbl KO and c-CblYF/YF platelets was drastically delayed. These results indicate that c-Cbl and particularly its phosphorylated residue Y731 plays an important role in platelet outside-in signaling contributing to platelet-spreading and clot retraction. PMID:21967979

  12. Glycoxidized HDL, HDL enriched with oxidized phospholipids and HDL from diabetic patients inhibit platelet function

    PubMed Central

    Lê, Quang Huy; El Alaoui, Meddy; Véricel, Evelyne; Ségrestin, Bérénice; Soulère, Laurent; Guichardant, Michel; Lagarde, Michel; Moulin, Philippe; Calzada, Catherine

    2015-01-01

    Context High-density lipoproteins (HDL) possess atheroprotective properties including anti-thrombotic and antioxidant effects. Very few studies relate to the functional effects of oxidized HDL on platelets in type 2 diabetes (T2D). Objective The objective of our study was to investigate the effects of in vitro glycoxidized HDL, and HDL from T2D patients on platelet aggregation and arachidonic acid signaling cascade. At the same time, the contents of hydroxylated fatty acids were assessed in HDL. Results Compared to control HDL, in vitro glycoxidized HDL had decreased proportions of linoleic (LA) and arachidonic (AA) acids in phospholipids and cholesteryl esters, and increased concentrations of hydroxy-octadecadienoic acids (9-HODE and 13-HODE) and 15-hydroxy-eicosatetraenoic acid (15-HETE), derived from LA and AA respectively, especially hydroxy derivatives esterified in phospholipids. Glycoxidized HDL dose-dependently decreased collagen-induced platelet aggregation by binding to SR-BI. Glycoxidized HDL prevented collagen-induced increased phosphorylation of platelet p38 MAPK and cytosolic phospholipase A2, as well as intracellular calcium mobilization. HDL enriched with oxidized phospholipids, namely PC(16:0/13-HODE) dose-dependently inhibited platelet aggregation. Increased concentrations of 9-HODE, 13-HODE and 15-HETE in phospholipids (2.1, 2.1 and 2.4-fold increase respectively) were found in HDL from patients with T2D, and these HDL also inhibited platelet aggregation via SR-BI. Conclusions Altogether, our results indicate that in vitro glycoxidized HDL as well as HDL from T2D patients inhibit platelet aggregation, and suggest that oxidized LA-containing phospholipids may contribute to the anti-aggregatory effects of glycoxidized HDL and HDL from T2D patients. PMID:25794249

  13. The disulfide isomerase ERp57 is required for fibrin deposition in vivo.

    PubMed

    Zhou, J; Wu, Y; Wang, L; Rauova, L; Hayes, V M; Poncz, M; Essex, D W

    2014-11-01

    ERp57 is required for platelet function; however, whether ERp57 contributes to fibrin generation is unknown. Using an inhibitory anti-ERp57 antibody (mAb1), Pf4-Cre/ERp57(fl/fl) mice, Tie2-Cre/ERp57(fl/fl) mice, and mutants of ERp57, we analyzed the function of ERp57 in laser-induced thrombosis. Fibrin deposition was decreased in Pf4-Cre/ERp57(fl/fl) mice, consistent with a role for platelet ERp57 in fibrin generation. Fibrin deposition was further decreased with infusion of mAb1 and in Tie2-Cre/ERp57(fl/fl) mice, consistent with endothelial cells also contributing to fibrin deposition. Infusion of eptibifatide inhibited platelet and fibrin deposition, confirming a role for platelets in fibrin deposition. Infusion of recombinant ERp57 corrected the defect in fibrin deposition but not platelet accumulation, suggesting a direct effect of ERp57 on coagulation. mAb1 inhibited thrombin generation in vitro, consistent with a requirement for ERp57 in coagulation. Platelet accumulation was decreased to similar extents in Pf4-Cre/ERp57(fl/fl) mice, Tie2-Cre/ERp57(fl/fl) mice and normal mice infused with mAb1. Infusion of completely inactivated ERp57 or ERp57 with a non-functional second active site inhibited fibrin deposition and platelet accumulation, indicating that the isomerase activity of the second active site is required for these processes. ERp57 regulates thrombosis via multiple targets. © 2014 International Society on Thrombosis and Haemostasis.

  14. Gallic Acid Attenuates Platelet Activation and Platelet-Leukocyte Aggregation: Involving Pathways of Akt and GSK3β

    PubMed Central

    Chang, Shih-Sheng; Lee, Viola S. Y.; Tseng, Yu-Lun; Chang, Kuan-Cheng; Chen, Kuen-Bao; Chen, Yuh-Lien; Li, Chi-Yuan

    2012-01-01

    Platelet activation and its interaction with leukocytes play an important role in atherothrombosis. Cardiovascular diseases resulted from atherothrombosis remain the major causes of death worldwide. Gallic acid, a major constituent of red wine and tea, has been believed to have properties of cardiovascular protection, which is likely to be related to its antioxidant effects. Nonetheless, there were few and inconsistent data regarding the effects of gallic acid on platelet function. Therefore, we designed this in vitro study to determine whether gallic acid could inhibit platelet activation and the possible mechanisms. From our results, gallic acid could concentration-dependently inhibit platelet aggregation, P-selectin expression, and platelet-leukocyte aggregation. Gallic acid prevented the elevation of intracellular calcium and attenuated phosphorylation of PKCα/p38 MAPK and Akt/GSK3β on platelets stimulated by the stimulants ADP or U46619. This is the first mechanistic explanation for the inhibitory effects on platelets from gallic acid. PMID:22811749

  15. Incomplete inhibition of platelet function as assessed by the platelet function analyzer (PFA-100) identifies a subset of cardiovascular patients with high residual platelet response while on aspirin.

    PubMed

    Crescente, M; Mezzasoma, A M; Del Pinto, M; Palmerini, F; Di Castelnuovo, A; Cerletti, C; De Gaetano, G; Gresele, P

    2011-01-01

    Sixty-six patients with a history of ischemic events (myocardial infarction, unstable angina, or stroke) on chronic aspirin therapy were studied by different platelet function tests: 37 patients had suffered a recurrent event while on aspirin and 29 were without recurrences. Based on results from light transmission aggregometry (LTA) induced by arachidonic acid (AA) and serum TxB(2) both COX-1-dependent methods, only one patient could be identified as aspirin "resistant". However, when methods only partially-dependent on platelet COX-1 activity were considered, the prevalence of aspirin non-responders ranged, according to the different tests, from 0 to 52%. No difference was observed between patients with recurrences and those without. Among patients with recurrent events, those with an incomplete inhibition of platelet function, as assessed by the PFA-100, had significantly higher residual serum TxB(2) (2.4 ± 2.4 ng/mL vs 0.4 ± 0.1 ng/mL, p = 0.03), residual LTA-AA (9.2 ± 10.6% vs 2.0 ± 1.6%, p = 0.008), LTA-Coll (49.3 ± 14.6% vs 10.2 ± 8.3%, p = 0.007) and LTA-ADP (50.9 ± 16.2% vs 34.3 ± 11.0%, p = 0.04). In conclusion, laboratory tests solely exploring the AA-mediated pathway of platelet function, while being the most appropriate to detect the effect of aspirin on its pharmacologic target (platelet COX-1), may fail to reveal the functional interactions between minimal residual TxA(2) and additional stimuli or primers potentially leading to aspirin-insensitive platelet aggregation. High residual platelet response in platelet function tests only partially dependent on COX-1 may reveal a condition of persistent platelet reactivity in a subset of aspirin-treated patients characterizing them as a subgroup at higher vascular risk.

  16. Involvement of nuclear factor κB in platelet CD40 signaling.

    PubMed

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis.

    PubMed

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas D Y; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan W M; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-02-17

    A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug. © 2014 American Heart Association, Inc.

  18. DUSP3 Phosphatase Deficiency or Inhibition Limit Platelet Activation and Arterial Thrombosis

    PubMed Central

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A.; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas DY; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan WM; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-01-01

    Background A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. Better understanding of the molecular mechanisms leading to platelet activation is of importance for the development of improved therapies. Recently, protein tyrosine phosphatases (PTPs) have emerged as critical regulators of platelet function. Methods and Results This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated through the collagen receptor glycoprotein VI (GPVI) and the C-type lectin-like receptor 2 (CLEC-2). DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism, compared to wild-type mice, and showed severely impaired thrombus formation upon ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of PLCγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen and CLEC-2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. Conclusions DUSP3 plays a selective and essential role in collagen- and CLEC-2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a PTP, implicated in platelet signaling, has been targeted with a small-molecule drug. PMID:25520375

  19. Farnesoid X Receptor and Liver X Receptor Ligands Initiate Formation of Coated Platelets

    PubMed Central

    Unsworth, Amanda J.; Bye, Alexander P.; Tannetta, Dionne S.; Desborough, Michael J.R.; Kriek, Neline; Sage, Tanya; Allan, Harriet E.; Crescente, Marilena; Yaqoob, Parveen; Warner, Timothy D.; Jones, Chris I.

    2017-01-01

    Objectives— The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity. Approach and Results— We, therefore, investigated whether ligands for the LXR and FXR receptors were capable of priming platelets to the activated state without stimulation by platelet agonists. Treatment of platelets with ligands for LXR and FXR converted platelets to the procoagulant state, with increases in phosphatidylserine exposure, platelet swelling, reduced membrane integrity, depolarization of the mitochondrial membrane, and microparticle release observed. Additionally, platelets also displayed features associated with coated platelets such as P-selectin exposure, fibrinogen binding, fibrin generation that is supported by increased serine protease activity, and inhibition of integrin αIIbβ3. LXR and FXR ligand-induced formation of coated platelets was found to be dependent on both reactive oxygen species and intracellular calcium mobilization, and for FXR ligands, this process was found to be dependent on cyclophilin D. Conclusions— We conclude that treatment with LXR and FXR ligands initiates coated platelet formation, which is thought to support coagulation but results in desensitization to platelet stimuli through inhibition of αIIbβ3 consistent with their ability to inhibit platelet function and stable thrombus formation in vivo. PMID:28619996

  20. Dual antiplatelet therapy with clopidogrel and aspirin increases mortality in 4T1 metastatic breast cancer-bearing mice by inducing vascular mimicry in primary tumour

    PubMed Central

    Smeda, Marta; Kieronska, Anna; Proniewski, Bartosz; Jasztal, Agnieszka; Selmi, Anna; Wandzel, Krystyna; Zakrzewska, Agnieszka; Wojcik, Tomasz; Przyborowski, Kamil; Derszniak, Katarzyna; Stojak, Marta; Kaczor, Dawid; Buczek, Elzbieta; Watala, Cezary; Wietrzyk, Joanna; Chlopicki, Stefan

    2018-01-01

    Platelet inhibition has been considered an effective strategy for combating cancer metastasis and compromising disease malignancy although recent clinical data provided evidence that long-term platelet inhibition might increase incidence of cancer deaths in initially cancer-free patients. In the present study we demonstrated that dual anti-platelet therapy based on aspirin and clopidogrel (ASA+Cl), a routine regiment in cardiovascular patients, when given to cancer-bearing mice injected orthotopically with 4T1 breast cancer cells, promoted progression of the disease and reduced mice survival in association with induction of vascular mimicry (VM) in primary tumour. In contrast, treatment with ASA+Cl or platelet depletion did reduce pulmonary metastasis in mice, if 4T1 cells were injected intravenously. In conclusion, distinct platelet-dependent mechanisms inhibited by ASA+Cl treatment promoted cancer malignancy and VM in the presence of primary tumour and afforded protection against pulmonary metastasis in the absence of primary tumour. In view of our data, long-term inhibition of platelet function by dual anti-platelet therapy (ASA+Cl) might pose a hazard when applied to a patient with undiagnosed and untreated malignant cancer prone to undergo VM. PMID:29707148

  1. Metabolic plasticity in resting and thrombin activated platelets.

    PubMed

    Ravi, Saranya; Chacko, Balu; Sawada, Hirotaka; Kramer, Philip A; Johnson, Michelle S; Benavides, Gloria A; O'Donnell, Valerie; Marques, Marisa B; Darley-Usmar, Victor M

    2015-01-01

    Platelet thrombus formation includes several integrated processes involving aggregation, secretion of granules, release of arachidonic acid and clot retraction, but it is not clear which metabolic fuels are required to support these events. We hypothesized that there is flexibility in the fuels that can be utilized to serve the energetic and metabolic needs for resting and thrombin-dependent platelet aggregation. Using platelets from healthy human donors, we found that there was a rapid thrombin-dependent increase in oxidative phosphorylation which required both glutamine and fatty acids but not glucose. Inhibition of fatty acid oxidation or glutamine utilization could be compensated for by increased glycolytic flux. No evidence for significant mitochondrial dysfunction was found, and ATP/ADP ratios were maintained following the addition of thrombin, indicating the presence of functional and active mitochondrial oxidative phosphorylation during the early stages of aggregation. Interestingly, inhibition of fatty acid oxidation and glutaminolysis alone or in combination is not sufficient to prevent platelet aggregation, due to compensation from glycolysis, whereas inhibitors of glycolysis inhibited aggregation approximately 50%. The combined effects of inhibitors of glycolysis and oxidative phosphorylation were synergistic in the inhibition of platelet aggregation. In summary, both glycolysis and oxidative phosphorylation contribute to platelet metabolism in the resting and activated state, with fatty acid oxidation and to a smaller extent glutaminolysis contributing to the increased energy demand.

  2. A Study of Platelet Inhibition, Using a 'Point of Care' Platelet Function Test, following Primary Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction [PINPOINT-PPCI].

    PubMed

    Johnson, Thomas W; Mumford, Andrew D; Scott, Lauren J; Mundell, Stuart; Butler, Mark; Strange, Julian W; Rogers, Chris A; Reeves, Barnaby C; Baumbach, Andreas

    2015-01-01

    Rapid coronary recanalization following ST-elevation myocardial infarction (STEMI) requires effective anti-platelet and anti-thrombotic therapies. This study tested the impact of door to end of procedure ('door-to-end') time and baseline platelet activity on platelet inhibition within 24hours post-STEMI. 108 patients, treated with prasugrel and procedural bivalirudin, underwent Multiplate® platelet function testing at baseline, 0, 1, 2 and 24hours post-procedure. Major adverse cardiac events (MACE), bleeding and stent thrombosis (ST) were recorded. Baseline ADP activity was high (88.3U [71.8-109.0]), procedural time and consequently bivalirudin infusion duration were short (median door-to-end time 55minutes [40-70] and infusion duration 30minutes [20-42]). Baseline ADP was observed to influence all subsequent measurements of ADP activity, whereas door-to-end time only influenced ADP immediately post-procedure. High residual platelet reactivity (HRPR ADP>46.8U) was observed in 75% of patients immediately post-procedure and persisted in 24% of patients at 2hours. Five patients suffered in-hospital MACE (4.6%). Acute ST occurred in 4 patients, all were <120mins post-procedure and had HRPR. No significant bleeding was observed. In a post-hoc analysis, pre-procedural morphine use was associated with significantly higher ADP activity following intervention. Baseline platelet function, time to STEMI treatment and opiate use all significantly influence immediate post-procedural platelet activity.

  3. Inhibition of blood platelet adhesion by phenolics' rich fraction of Hippophae rhamnoides L. fruits.

    PubMed

    Olas, B; Kontek, B; Szczesna, M; Grabarczyk, L; Stochmal, A; Zuchowski, J

    2017-04-01

    Beneficial influence of fruits on human health may be their ability to prevent the hyperactivation of blood platelets and cardiovascular disorders. Effects of the phenolic fraction from Hippophae rhamnoides fruit on different stages of blood platelet activation (platelet adhesion and aggregation) were studied in vitro. We also examined effects of the H. rhamnoides fraction on metabolism of thiol groups, which plays an important role in platelet functions. The effects of the H. rhamnoides fraction on adhesion of blood platelets to collagen and fibrinogen were determined with Tuszynski's and Murphy's method. The platelet aggregation was determined with turbidimetry. The action of the H. rhamnoides fraction on the level of thiol groups in platelet proteins and a level of glutathione (GSH) in platelets was estimated with 5,5'-dithio-bis(2-nitro-benzoic acid). The tested fraction of H. rhamnoides (0.5 - 50 μg/ml; 30 min of the incubation time 30 min) inhibited blood platelets adhesion to collagen and fibrinogen. The effect of the tested fraction on blood platelet adhesion depended on concentration of fraction. In presence of the highest tested concentration which was 50 μg/ml, inhibition of platelet adhesion for thrombin-activated platelets was about 55%. On the other hand, tested plant fraction had no anti-aggregatory properties. Our results showed anti-adhesive properties of phenolic fraction from H. rhamnoides fruit and we suggest that it may be beneficial for prevention of cardiovascular diseases.

  4. Casual chocolate consumption and inhibition of platelet function.

    PubMed

    Bordeaux, Bryan; Yanek, Lisa R; Moy, Taryn F; White, Linda W; Becker, Lewis C; Faraday, Nauder; Becker, Diane M

    2007-01-01

    Observational studies have associated reduced cardiovascular mortality with chocolate consumption. Feeding studies of high-dose, flavanol-rich chocolate show antiplatelet effects, but the effect of casual chocolate consumption on platelet function is unknown. Healthy adults (N=1535) were proscribed from consuming foods affecting platelet function, including chocolate, for 48 hours and completed a 24-hour dietary recall before ex vivo platelet testing with the Platelet Function Analyzer (PFA)-100 (Dade Behring, Inc, Deerfield, IL) test and in vivo testing with urinary 11-dehydro thromboxane B2 (Tx-M) measurements. Some participants (n=141) reported ignoring the prohibition of consuming chocolate before platelet testing. Despite having similar baseline characteristics, chocolate consumers had longer PFA closure times (130 vs 123 seconds, P=.005) and decreased Tx-M levels (175 vs 290 ng/mol creatinine, P=.03). Chocolate remained a significant independent predictor of both ex vivo and in vivo platelet function testing after adjusting for confounders. The authors concluded that even consuming modest amounts of commercial chocolate has important antiplatelet effects.

  5. Functional factor XIII-A is exposed on the stimulated platelet surface

    PubMed Central

    Mitchell, Joanne L.; Lionikiene, Ausra S.; Fraser, Steven R.; Whyte, Claire S.; Booth, Nuala A.

    2014-01-01

    Factor XIII (FXIII) stabilizes thrombi against fibrinolysis by cross-linking α2-antiplasmin (α2AP) to fibrin. Cellular FXIII (FXIII-A) is abundant in platelets, but the extracellular functions of this pool are unclear because it is not released by classical secretion mechanisms. We examined the function of platelet FXIII-A using Chandler model thrombi formed from FXIII-depleted plasma. Platelets stabilized FXIII-depleted thrombi in a transglutaminase-dependent manner. FXIII-A activity on activated platelets was unstable and was rapidly lost over 1 hour. Inhibiting platelet activation abrogated the ability of platelets to stabilize thrombi. Incorporating a neutralizing antibody to α2AP into FXIII-depleted thrombi revealed that the stabilizing effect of platelet FXIII-A on lysis was α2AP dependent. Platelet FXIII-A activity and antigen were associated with the cytoplasm and membrane fraction of unstimulated platelets, and these fractions were functional in stabilizing FXIII-depleted thrombi against lysis. Fluorescence confocal microscopy and flow cytometry revealed exposure of FXIII-A on activated membranes, with maximal signal detected with thrombin and collagen stimulation. FXIII-A was evident in protruding caps on the surface of phosphatidylserine-positive platelets. Our data show a functional role for platelet FXIII-A through exposure on the activated platelet membrane where it exerts antifibrinolytic function by cross-linking α2AP to fibrin. PMID:25331118

  6. Human recombinant alkaline phosphatase inhibits ex vivo platelet activation in humans.

    PubMed

    Tunjungputri, Rahajeng N; Peters, Esther; van der Ven, André; de Groot, Philip G; de Mast, Quirijn; Pickkers, Peter

    2016-11-30

    Sepsis-associated acute kidney injury (AKI) is associated with high morbidity and mortality. Excessive platelet activation contributes to AKI through the formation of microthrombi and amplification of systemic inflammation. Two phase II trials demonstrated that bovine-intestinal alkaline phosphatase (AP) improved renal function in critically ill patients with sepsis-associated AKI. In this study, we characterised the platelet-inhibiting effects of a human recombinant AP. Whole blood and platelet-rich plasma (PRP) of healthy volunteers (n=6) was pre-treated ex vivo with recAP, whereafter platelet reactivity to ADP, collagen-related peptide (CRP-XL) and Pam3CSK4 was determined by flow cytometry. RecAP (40 U/ml) reduced the platelet reactivity to ADP (inhibition with a median of 47 %, interquartile range 43-49 %; p<0.001) and tended to reduce platelet reactivity to CRP-XL (9 %, 2-25 %; p=0.08) in whole blood. The platelet-inhibiting effects of recAP were more pronounced in PRP both for ADP- (64 %, 54-68 %; p=0.002) and CRP-XL-stimulated samples (60 %, 46-71 %; p=0.002). RecAP rapidly converted ADP into adenosine, whereas antagonism of the A2A adenosine receptor partially reversed the platelet inhibitory effects of recAP. Platelets of septic shock patients (n=5) showed a 31% (22-34%; p=0.03) more pronounced reactivity compared to healthy volunteers, and this was completely reversed by recAP treatment. In conclusion, we demonstrate that recAP inhibits ex vivo human platelet activation through dephosphorylation of ADP and formation of adenosine as its turnover product. RecAP is able to reverse the platelet hyperreactivity present in septic shock patients. These effects may contribute to the beneficial effects of recAP as a new therapeutic candidate for sepsis-associated AKI.

  7. Platelet Aggregometry Testing: Molecular Mechanisms, Techniques and Clinical Implications

    PubMed Central

    Koltai, Katalin; Kesmarky, Gabor; Feher, Gergely; Tibold, Antal

    2017-01-01

    Platelets play a fundamental role in normal hemostasis, while their inherited or acquired dysfunctions are involved in a variety of bleeding disorders or thrombotic events. Several laboratory methodologies or point-of-care testing methods are currently available for clinical and experimental settings. These methods describe different aspects of platelet function based on platelet aggregation, platelet adhesion, the viscoelastic properties during clot formation, the evaluation of thromboxane metabolism or certain flow cytometry techniques. Platelet aggregometry is applied in different clinical settings as monitoring response to antiplatelet therapies, the assessment of perioperative bleeding risk, the diagnosis of inherited bleeding disorders or in transfusion medicine. The rationale for platelet function-driven antiplatelet therapy was based on the result of several studies on patients undergoing percutaneous coronary intervention (PCI), where an association between high platelet reactivity despite P2Y12 inhibition and ischemic events as stent thrombosis or cardiovascular death was found. However, recent large scale randomized, controlled trials have consistently failed to demonstrate a benefit of personalised antiplatelet therapy based on platelet function testing. PMID:28820484

  8. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers.

    PubMed

    Carnevale, R; Loffredo, L; Pignatelli, P; Nocella, C; Bartimoccia, S; Di Santo, S; Martino, F; Catasca, E; Perri, L; Violi, Francesco

    2012-01-01

    Dark chocolate is reported to decrease platelet activation but the underlying mechanism is still undefined. Dark chocolate is rich in polyphenols that could exert an antiplatelet action via inhibition of oxidative stress. The aim of the present study was to assess if dark chocolate inhibits platelet reactive oxidant species (ROS) formation and platelet activation. Twenty healthy subjects (HS) and 20 smokers were randomly allocated to receive 40 g of dark (cocoa > 85%) or milk chocolate (cocoa < 35%) in a cross-over, single-blind study. There was an interval of 7 days between the two phases of the study. At baseline and 2 h after chocolate ingestion, platelet recruitment (PR), platelet ROS, platelet isoprostane 8-ISO-prostaglandin F2α (8-iso-PGF2α), Thromboxane (TxA2) and platelet activation of NOX2, the catalytic sub-unit of NADPH oxidase, and serum epicatechin were measured. Compared with HS, smokers showed enhanced PR, platelet formation of ROS and eicosanoids and NOX2 activation. After dark chocolate, platelet ROS (-48%, P < 0.001), 8-iso-PGF2α (-10%, P < 0.001) and NOX2 activation (-22%, P < 0.001) significantly decreased; dark chocolate did not affect platelet variables in HS. No effect of milk chocolate was detected in both groups. Serum epicatechin increased after dark chocolate in HS (from 0.454 ± 0.3 nm to 118.3 ± 53.7 nm) and smokers (from 0.5 ± 0.28 nm to 120.9 ± 54.2 nm). Platelet incubation with 0.1-10 μm catechin significantly reduced PR, platelet 8-iso-PGF2α and ROS formation and NOX2 activation only in platelets from smokers. Dark chocolate inhibits platelet function by lowering oxidative stress only in smokers; this effect seems to be dependent on its polyphenolic content. © 2011 International Society on Thrombosis and Haemostasis.

  9. [The effect of electromagnetic waves of very high frequency of molecular spectra of radiation and absorption of nitric oxide on the functional activity of platelets].

    PubMed

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.

  10. In vitro anti-platelet effects of simple plant-derived phenolic compounds are only found at high, non-physiological concentrations.

    PubMed

    Ostertag, Luisa M; O'Kennedy, Niamh; Horgan, Graham W; Kroon, Paul A; Duthie, Garry G; de Roos, Baukje

    2011-11-01

    Bioactive polyphenols from fruits, vegetables, and beverages have anti-platelet effects and may thus affect the development of cardiovascular disease. We screened the effects of 26 low molecular weight phenolic compounds on two in vitro measures of human platelet function. After platelets had been incubated with one of 26 low molecular weight phenolic compounds in vitro, collagen-induced human platelet aggregation and in vitro TRAP-induced P-selectin expression (as marker of platelet activation) were assessed. Incubation of platelet-rich plasma from healthy volunteers with 100 μmol/L hippuric acid, pyrogallol, catechol, or resorcinol significantly inhibited collagen-induced platelet aggregation (all p<0.05; n≥15). Incubation of whole blood with concentrations of 100 μmol/L salicylic acid, p-coumaric acid, caffeic acid, ferulic acid, 4-hydroxyphenylpropionyl glycine, 5-methoxysalicylic acid, and catechol significantly inhibited TRAP-induced surface P-selectin expression (all p<0.05; n=10). Incubation with lower concentrations of phenolics affected neither platelet aggregation nor activation. As concentrations of 100 μmol/L are unlikely to be reached in the circulation, it is doubtful whether consumption of dietary phenolics in nutritionally attainable amounts plays a major role in inhibition of platelet activation and aggregation in humans. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of a novel function-blocking antibody targeted against the platelet P2Y1 receptor.

    PubMed

    Karim, Zubair A; Vemana, Hari Priya; Alshbool, Fatima Z; Lin, Olivia A; Alshehri, Abdullah M; Javaherizadeh, Payam; Paez Espinosa, Enma V; Khasawneh, Fadi T

    2015-03-01

    Platelet hyperactivity is associated with vascular disease and contributes to the genesis of thrombotic disorders. ADP plays an important role in platelet activation and activates platelets through 2 G-protein-coupled receptors, the Gq-coupled P2Y1 receptor (P2Y1R), and the Gi-coupled P2Y12 receptor. Although the involvement of the P2Y1R in thrombogenesis is well established, there are no antagonists that are currently available for clinical use. Our goal is to determine whether a novel antibody targeting the ligand-binding domain, ie, second extracellular loop (EL2) of the P2Y1R (EL2Ab) could inhibit platelet function and protect against thrombogenesis. Our results revealed that the EL2Ab does indeed inhibit ADP-induced platelet aggregation, in a dose-dependent manner. Furthermore, EL2Ab was found to inhibit integrin GPIIb-IIIa activation, dense and α granule secretion, and phosphatidylserine exposure. These inhibitory effects translated into protection against thrombus formation, as evident by a prolonged time for occlusion in a FeCl3-induced thrombosis model, but this was accompanied by a prolonged tail bleeding time. We also observed a dose-dependent displacement of the radiolabeled P2Y1R antagonist [(3)H]MRS2500 from its ligand-binding site by EL2Ab. Collectively, our findings demonstrate that EL2Ab binds to and exhibits P2Y1R-dependent function-blocking activity in the context of platelets. These results add further evidence for a role of the P2Y1R in thrombosis and validate the concept that targeting it is a relevant alternative or complement to current antiplatelet strategies. © 2015 American Heart Association, Inc.

  12. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function.

    PubMed

    Murphy, Karen J; Chronopoulos, Andriana K; Singh, Indu; Francis, Maureen A; Moriarty, Helen; Pike, Marilyn J; Turner, Alan H; Mann, Neil J; Sinclair, Andrew J

    2003-06-01

    Flavonoids may be partly responsible for some health benefits, including antiinflammatory action and a decreased tendency for the blood to clot. An acute dose of flavanols and oligomeric procyanidins from cocoa powder inhibits platelet activation and function over 6 h in humans. This study sought to evaluate whether 28 d of supplementation with cocoa flavanols and related procyanidin oligomers would modulate human platelet reactivity and primary hemostasis and reduce oxidative markers in vivo. Thirty-two healthy subjects were assigned to consume active (234 mg cocoa flavanols and procyanidins/d) or placebo (< or = 6 mg cocoa flavanols and procyanidins/d) tablets in a blinded parallel-designed study. Platelet function was determined by measuring platelet aggregation, ATP release, and expression of activation-dependent platelet antigens by using flow cytometry. Plasma was analyzed for oxidation markers and antioxidant status. Plasma concentrations of epicatechin and catechin in the active group increased by 81% and 28%, respectively, during the intervention period. The active group had significantly lower P selectin expression and significantly lower ADP-induced aggregation and collagen-induced aggregation than did the placebo group. Plasma ascorbic acid concentrations were significantly higher in the active than in the placebo group (P < 0.05), whereas plasma oxidation markers and antioxidant status did not change in either group. Cocoa flavanol and procyanidin supplementation for 28 d significantly increased plasma epicatechin and catechin concentrations and significantly decreased platelet function. These data support the results of acute studies that used higher doses of cocoa flavanols and procyanidins.

  13. Extract from Aronia melanocarpa fruits potentiates the inhibition of platelet aggregation in the presence of endothelial cells

    PubMed Central

    Luzak, Boguslawa; Golanski, Jacek; Rozalski, Marek; Krajewska, Urszula; Olas, Beata

    2010-01-01

    Introduction Some polyphenolic compounds extracted from Aronia melanocarpa fruits (AM) have been reported to be cardioprotective agents. In this study we evaluated the ability of AM extract to increase the efficacy of human umbilical vein endothelial cells (HUVECs) to inhibit platelet functions in vitro. Material and methods This study encompasses two models of monitoring platelet reactivity: optical aggregation and platelet degranulation (monitored as the surface CD62P expression) in PRP upon the stimulation with ADP. Results We observed that only at low concentrations (5 µg/ml) did AM extract significantly improve antiplatelet action of HUVECs towards ADP-activated platelets in the aggregation test. Conclusions It is concluded that the potentiating effect of AM extract on the endothelial cell-mediated inhibition of platelet aggregation clearly depends on the used concentrations of Aronia-derived active compounds. Therefore, despite these encouraging preliminary outcomes on the beneficial effects of AM extract polyphenols, more profound dose-effect studies should certainly be considered before the implementation of Aronia-originating compounds in antiplatelet therapy and the prevention of cardiovascular diseases. PMID:22371737

  14. PPARbeta/delta agonists modulate platelet function via a mechanism involving PPAR receptors and specific association/repression of PKCalpha--brief report.

    PubMed

    Ali, Ferhana Y; Hall, Matthew G; Desvergne, Béatrice; Warner, Timothy D; Mitchell, Jane A

    2009-11-01

    Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) is a nuclear receptor found in platelets. PPARbeta/delta agonists acutely inhibit platelet function within a few minutes of addition. As platelets are anucleated, the effects of PPARbeta/delta agonists on platelets must be nongenomic. Currently, the particular role of PPARbeta/delta receptors and their intracellular signaling pathways in platelets are not known. We have used mice lacking PPARbeta/delta (PPARbeta/delta(-/-)) to show the effects of the PPARbeta/delta agonist GW501516 on platelet adhesion and cAMP levels are mediated specifically by PPARbeta/delta, however GW501516 had no PPARbeta/delta-specific effect on platelet aggregation. Studies in human platelets showed that PKCalpha, which can mediate platelet activation, was bound and repressed by PPARbeta/delta after platelets were treated with GW501516. These data provide evidence of a novel mechanism by which PPAR receptors influence platelet activity and thereby thrombotic risk.

  15. Inhibition of platelet function by low-dose plain and micro-encapsulated acetylsalicylic acid.

    PubMed

    Waldemar, G; Petersen, P; Boysen, G; Knudsen, J B

    1988-04-15

    The effect of two acetylsalicylic acid (ASA) formulations, plain (Magnyl) and micro-encapsulated (Globentyl), on platelet aggregation, thromboxane formation, and bleeding time was studied in 12 healthy volunteers in a randomized double-blind cross-over study. All subjects were treated with Magnyl and Globentyl (75 mg daily) in periods of 2 weeks, separated by a wash-out period of 2 weeks. Both drugs significantly depressed platelet aggregation and thromboxane formation and prolonged bleeding time without difference in mode of action of the drugs. It is concluded that significant inhibition of platelet activity may be achieved by low-dose ASA treatment with micro-encapsulated as well as with plain formulations.

  16. Arsenic trioxide at conventional dosage does not aggravate hemorrhage in the first-line treatment of adult acute promyelocytic leukemia.

    PubMed

    Cui, Wen; Wang, Jin; Nie, Rui-Min; Zhao, Ling-Ling; Gao, Meng-Qing; Zhu, Hong-Ming; Chen, Li; Hu, Jiong; Li, Jun-Min; Shen, Zhi-Xiang; Wang, Zhen-Yi; Chen, Sai-Juan; Chen, Zhu; Wang, Kan-Kan; Xi, Xiao-Dong; Mi, Jian-Qing

    2018-04-01

    The arsenic trioxide (ATO) plus all-trans retinoic acid (ATRA) therapy has demonstrated a tremendous success in the first-line treatment of acute promyelocytic leukemia (APL). Actually, early death (ED) is currently thought as a major challenge in APL. ATO has been reported to inhibit platelet function in vitro, and whether it increases the ED rate by exacerbating the hemorrhagic symptoms remains to be investigated. Effects of ATO on platelet aggregation and adhesion were evaluated in vitro and in thirty-two complete remission (CR) and four newly diagnosed APL patients. Furthermore, concentrations of plasma total arsenic were monitored in APL patients via ICP-MS. The inhibition of platelet function, either aggregation or adhesion, did occur in vitro when the concentration of ATO reached 2 μmol/L. However, in CR APL patients receiving ATO with normal platelet count, the platelets responded normally when being activated and so did those in the newly diagnosed patients with thrombocytopenia. Our data further showed that the conventional dosage of ATO reached a plasma concentration substantially below the required concentration to inhibit platelets. In the first-line treatment of APL, the use of ATO is safe and effective and does not compromise the hemostatic potential that may eventually increase ED rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed Central

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-01-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets. PMID:10947961

  18. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-09-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.

  19. Ex vivo and in vivo studies of CME-1, a novel polysaccharide purified from the mycelia of Cordyceps sinensis that inhibits human platelet activation by activating adenylate cyclase/cyclic AMP.

    PubMed

    Lu, Wan-Jung; Chang, Nen-Chung; Jayakumar, Thanasekaran; Liao, Jiun-Cheng; Lin, Mei-Jiun; Wang, Shwu-Huey; Chou, Duen-Suey; Thomas, Philip Aloysius; Sheu, Joen-Rong

    2014-12-01

    CME-1, a novel water-soluble polysaccharide, was purified from the mycelia of Cordyceps sinensis, and its chemical structure was characterized to contain mannose and galactose in a ratio of 4:6 (27.6 kDa). CME-1 was originally observed to exert a potent inhibitory effect on tumor migration and a cytoprotective effect against oxidative stress. Activation of platelets caused by arterial thrombosis is relevant to various cardiovascular diseases (CVDs). However, no data are available concerning the effects of CME-1 on platelet activation. Hence, the purpose of this study was to examine the ex vivo and in vivo antithrombotic effects of CME-1 and its possible mechanisms in platelet activation. The aggregometry, immunoblotting, flow cytometric analysis and platelet functional analysis were used in this study. CME-1 (2.3-7.6 μM) exhibited highly potent activity in inhibiting human platelet aggregation when stimulated by collagen, thrombin, and arachidonic acid but not by U46619. CME-1 inhibited platelet activation accompanied by inhibiting Akt, mitogen-activated protein kinases (MAPKs), thromboxane B2 (TxB2) and hydroxyl radical (OH(●)) formation. However, CME-1 interrupted neither FITC-triflavin nor FITC-collagen binding to platelets. CME-1 markedly increased cyclic AMP levels, but not cyclic GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ, an inhibitor of guanylate cyclase, obviously reversed the CME-1-mediated effects on platelet aggregation and vasodilator-stimulated phosphoprotein (VASP), Akt, p38 MAPK phosphorylation, and TxB2 formation. CME-1 substantially prolonged the closure time of whole blood and the occlusion time of platelet plug formation. This study demonstrates for the first time that CME-1 exhibits highly potent antiplatelet activity that may initially activate adenylate cyclase/cyclic AMP and, subsequently, inhibit intracellular signals (such as Akt and MAPKs), ultimately inhibiting platelet activation. This novel role of CME-1 indicates that CME-1 exhibits high potential for application in treating and preventing CVDs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. High glucose inhibits the aspirin-induced activation of the nitric oxide/cGMP/cGMP-dependent protein kinase pathway and does not affect the aspirin-induced inhibition of thromboxane synthesis in human platelets.

    PubMed

    Russo, Isabella; Viretto, Michela; Barale, Cristina; Mattiello, Luigi; Doronzo, Gabriella; Pagliarino, Andrea; Cavalot, Franco; Trovati, Mariella; Anfossi, Giovanni

    2012-11-01

    Since hyperglycemia is involved in the "aspirin resistance" occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5-25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1-300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA-induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA-induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action.

  1. Cyclooxygenase Expression and Platelet Function in Healthy Dogs Receiving Low Dose Aspirin

    PubMed Central

    Dudley, Alicia; Thomason, John; Fritz, Sara; Grady, Jesse; Stokes, John; Wills, Robert; Pinchuk, Lesya; Mackin, Andrew; Lunsford, Kari

    2014-01-01

    Background Low dose aspirin is used to prevent thromboembolic complications in dogs, but some animals are non-responsive to the anti-platelet effects of aspirin (‘aspirin resistance’). Hypothesis/Objectives That low dose aspirin would inhibit platelet function, decrease thromboxane synthesis, and alter platelet cyclooxygenase (COX) expression. Animals Twenty-four healthy dogs Methods A repeated measures study. Platelet function (PFA-100® closure time, collagen/epinephrine), platelet COX-1 and COX-2 expression, and urine 11-dehydro-thromboxane B2 (11-dTXB2) was evaluated prior to and during aspirin administration (1 mg/kg Q24 hours PO, 10 days). Based on prolongation of closure times after aspirin administration, dogs were divided into categories according to aspirin responsiveness: responders, non-responders, and inconsistent responders. Results Low dose aspirin increased closure times significantly (62% by Day 10, P<0.001), with an equal distribution among aspirin responsiveness categories, 8 dogs per group. Platelet COX-1 mean fluorescent intensity (MFI) increased significantly during treatment, 13% on Day 3 (range, −29.7%–136.1%) (P=0.047) and 72% on Day 10 (range, −0.37–210.36%) (P<0.001). Platelet COX-2 MFI increased significantly by 34% (range, −29.2–270.4%) on Day 3 (P = 0.003) and 74% (range, −19.7–226.2%) on Day 10 (P<0.001). Urinary 11-dTXB2 concentrations significantly (P=0.005, P<0.001) decreased at both time points. There was no difference between aspirin responsiveness and either platelet COX expression or thromboxane production. Conclusions and Clinical Importance Low dose aspirin consistently inhibits platelet function in approximately one third of healthy dogs, despite decreased thromboxane synthesis and increased platelet COX expression in most dogs. Pre-treatment COX isoform expression did not predict aspirin resistance. PMID:23278865

  2. Progranulin inhibits platelet aggregation and prolongs bleeding time in rats.

    PubMed

    Al-Yahya, A M; Al-Masri, A A; El Eter, E A; Hersi, A; Lateef, R; Mawlana, O

    2018-05-01

    Several adipokines secreted by adipose tissue have an anti-thrombotic and anti-atherosclerotic function. Recently identified adipokine progranulin was found to play a protective role in atherosclerosis. Bearing in mind the central role of platelets in inflammation and atherosclerosis, we aimed, in this study, to examine the effect of progranulin on platelet function and coagulation profile in rats. Healthy male albino Wistar rats weighing (250-300 g) were divided into 4 groups. Three groups were given increasing doses of progranulin (0.001 µg, 0.01 µg, and 0.1 µg) intraperitoneally, while the control group received phosphate-buffered saline (PBS). Bleeding time, prothrombin time, activated partial thromboplastin time and platelet aggregation responses to adenosine diphosphate and arachidonic acid were assessed. Administration of progranulin resulted in a significant inhibition of platelet aggregation in response to both adenosine diphosphate, and arachidonic acid. Bleeding time, prothrombin time and activated partial thromboplastin time were significantly prolonged in all groups that received progranulin, in particular, the 0.1 µg dose, in comparison to the control group. This preliminary data is first suggesting that the antiplatelet and anticoagulant action of progranulin could have a physiological protective function against thrombotic disorders associated with obesity and atherosclerosis. However, these results merit further exploration.

  3. Thrombosis Is Reduced by Inhibition of COX-1, but Unaffected by Inhibition of COX-2, in an Acute Model of Platelet Activation in the Mouse

    PubMed Central

    Armstrong, Paul C.; Kirkby, Nicholas S.; Zain, Zetty N.; Emerson, Michael; Mitchell, Jane A.; Warner, Timothy D.

    2011-01-01

    Background Clinical use of selective inhibitors of cyclooxygenase (COX)-2 appears associated with increased risk of thrombotic events. This is often hypothesised to reflect reduction in anti-thrombotic prostanoids, notably PGI2, formed by COX-2 present within endothelial cells. However, whether COX-2 is actually expressed to any significant extent within endothelial cells is controversial. Here we have tested the effects of acute inhibition of COX on platelet reactivity using a functional in vivo approach in mice. Methodology/Principal Findings A non-lethal model of platelet-driven thromboembolism in the mouse was used to assess the effects of aspirin (7 days orally as control) diclofenac (1 mg.kg−1, i.v.) and parecoxib (0.5 mg.kg−1, i.v.) on thrombus formation induced by collagen or the thromboxane (TX) A2-mimetic, U46619. The COX inhibitory profiles of the drugs were confirmed in mouse tissues ex vivo. Collagen and U46619 caused in vivo thrombus formation with the former, but not latter, sensitive to oral dosing with aspirin. Diclofenac inhibited COX-1 and COX-2 ex vivo and reduced thrombus formation in response to collagen, but not U46619. Parecoxib inhibited only COX-2 and had no effect upon thrombus formation caused by either agonist. Conclusions/Significance Inhibition of COX-1 by diclofenac or aspirin reduced thrombus formation induced by collagen, which is partly dependent upon platelet-derived TXA2, but not that induced by U46619, which is independent of platelet TXA2. These results are consistent with the model demonstrating the effects of COX-1 inhibition in platelets, but provide no support for the hypothesis that acute inhibition of COX-2 in the circulation increases thrombosis. PMID:21629780

  4. Does non-acetylated salicylate inhibit thromboxane biosynthesis in human platelets?

    PubMed

    Danesh, B J; McLaren, M; Russell, R I; Lowe, G D; Forbes, C D

    1988-08-01

    Ingestion of aspirin (acetyl salicylic acid: ASA) may promote bleeding complications due to inhibition of thromboxane biosynthesis, which results in the prolongation of bleeding time. The effect is believed to be achieved by the irreversible acetylation of the enzyme cyclooxygenase by aspirin. This alteration in platelet function by aspirin prohibits its use in patients with bleeding disorders such as haemophiliacs. Choline magnesium trisalicylate (CMT; Napp Laboratories Ltd) is a non-acetylated salicylate with analgesic and anti-inflammatory effects similar to that of aspirin. However, despite a comparable salicylate absorption from the two drugs, CMT is found to have no inhibitory action in platelet aggregation and to cause less gastric mucosal damage and gastrointestinal blood loss than aspirin. To investigate the role of the acetyl moiety in the inhibition of platelet thromboxane biosynthesis, we studied the effect of CMT and ASA on bleeding time, serum thromboxane B2 (TxB2) and thromboxane (Tx) generation in healthy volunteers.

  5. Antiplatelet properties of escitalopram in patients with the metabolic syndrome: a dose-ranging in vitro study.

    PubMed

    Atar, Dan; Malinin, Alex; Pokov, Alex; van Zyl, Louis; Frasure-Smith, Nancy; Lesperance, Francois; Serebruany, Victor L

    2007-11-01

    There is an increasing body of evidence suggesting that selective serotonin reuptake inhibitors exhibit clinical benefit beyond treating depression, by simultaneously inhibiting platelet activity. We recently demonstrated that escitalopram (ESC), but not its major metabolites, inhibits multiple platelet biomarkers in healthy volunteers. Considering that the metabolic syndrome represents one of the major risk factors for vascular disease, we here determined how ESC affects platelet activity in such patients. We assessed the in vitro effects of preincubation with escalating (50-200 nM/l) concentrations of ESC on platelet aggregation, expression of major surface receptors by flow cytometry, and quantitatively by platelet function analyzers. Blood samples were obtained from 20 aspirin-naïve patients with documented metabolic syndrome. Pretreatment of blood samples with medium (150 nM/l), or high (200 nM/l) doses of ESC resulted in a significant inhibition of platelet aggregation induced by ADP (p=0.007) and by collagen (p=0.004). Surface platelet expression of GPIb (CD42, p=0.03), LAMP-3 (CD63, p=0.04), and GP37 (CD165, p=0.03) was decreased in the ESC-pretreated samples. Closure time by the PFA-100 analyzer was prolonged after the 200 nM/l dose (p=0.02), indicating platelet inhibition under high shear conditions. On the other hand, the lowest tested concentration of ESC (50 nM/l) did not affect platelet activity in these patients. The in vitro antiplatelet characteristics of ESC in patients with the metabolic syndrome are similar to those in healthy volunteers. However, higher ESC doses are required to induce equally potent platelet inhibition. These data justify prospective ex vivo studies with the highest therapeutic dose to determine the potential clinical advantage of ESC in high-risk patients with vascular disease.

  6. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation

    PubMed Central

    Zou, Siying; Teixeira, Alexandra M.; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferruccio, Juliana; Zhang, Ping-xia; Hwa, John; Min, Wang; Krause, Diane S.

    2018-01-01

    Summary Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal hemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout, shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using 2 different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice. PMID:27345948

  7. Leukaemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation.

    PubMed

    Zou, Siying; Teixeira, Alexandra M; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferrucio, Juliana; Zhang, Ping-Xia; Hwa, John; Min, Wang; Krause, Diane S

    2016-08-30

    Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal haemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout (KO), shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using two different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice.

  8. Short-term exposure of platelets to glucose impairs inhibition of platelet aggregation by cyclooxygenase inhibitors.

    PubMed

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2011-01-01

    Aspirin treatment reduces cardiovascular events and deaths in high-risk non-diabetic patients, but not in patients suffering from diabetes. In these patients, hyperglycemia has been found to cause reduced platelet sensitivity to aspirin. It is supposed that long-term exposure of platelets to glucose leads to non-enzymatic glycosylation and impairs aspirin inhibition of platelet aggregation. On the other hand, short-term exposure of platelets to glucose also attenuates the effect of aspirin on platelets. The aim of the present work was to analyse the effect of short-term exposure of glucose on the inhibition of platelet aggregation by aspirin and other cyclooxygenase (COX) inhibitors. Already a 15 min exposure of platelets to glucose impaired aspirin inhibition of the platelet aggregation induced by collagen, thrombin, adenosine diphosphate (ADP), and arachidonic acid (AA). Aspirin inhibition of platelet aggregation in platelet-rich plasma (PRP) was attenuated by 5.6, 11.2, 16.8, and 22.4 mM of glucose in a concentration-dependent way. The same effect was observed with indomethacin and acetaminophen used as cyclooxygenase inhibitors instead of aspirin. N-methyl-L-arginine, an inhibitor of nitric oxide synthase, prevented the effect of glucose on aspirin, indomethacin and acetaminophen inhibition of platelet aggregation. Other monosaccharides, for example fructose and galactose, impaired aspirin inhibition as did glucose. Lactic acid (0.1, 0.2, 0.4, 0.8 mM), the end product of anaerobic glycolysis in platelets, impaired the inhibition of platelet aggregation with aspirin in a concentration-dependent way but did not affect indomethacin. It is suggested that lactic acid might be a mediator of the effect of glucose on aspirin inhibition in platelets.

  9. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets.

    PubMed

    Makhoul, Stephanie; Walter, Elena; Pagel, Oliver; Walter, Ulrich; Sickmann, Albert; Gambaryan, Stepan; Smolenski, Albert; Zahedi, René P; Jurk, Kerstin

    2018-06-01

    Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca 2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Neonatal intraventricular haemorrhage associated with maternal use of paroxetine

    PubMed Central

    Duijvestijn, Yvonne C M; Kalmeijer, Mathijs D; Passier, Anneke L M; Dahlem, Peter; Smiers, Frans

    2003-01-01

    Selective serotonin reuptake inhibitors (SSRIs) have been reported to inhibit serotonin uptake into platelets, resulting in decreased platelet function. We report a case of a large intraventricular haemorrhage in a 6-h-old boy, whose mother used paroxetine during pregnancy. PMID:14651736

  11. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmis, Lars; Tanner, Felix C.; Center for Integrative Human Physiology, University of Zuerich, Zuerich

    2010-01-22

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysismore » showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.« less

  12. JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets

    PubMed Central

    Naik, Meghna U.; Stalker, Timothy J.; Brass, Lawrence F.

    2012-01-01

    Mounting evidence suggests that agonist-initiated signaling in platelets is closely regulated to avoid excessive responses to injury. A variety of physiologic agonists induce a cascade of signaling events termed as inside-out signaling that culminate in exposure of high-affinity binding sites on integrin αIIbβ3. Once platelet activation has occurred, integrin αIIbβ3 stabilizes thrombus formation by providing agonist-independent “outside-in” signals mediated in part by contractile signaling. Junctional adhesion molecule A (JAM-A), a member of the cortical thymocyte marker of the Xenopus (CTX) family, was initially identified as a receptor for a platelet stimulatory mAb. Here we show that JAM-A in resting platelets functions as an endogenous inhibitor of platelet function. Genetic ablation of Jam-A in mice enhances thrombotic function of platelets in vivo. The absence of Jam-A results in increase in platelet aggregation ex vivo. This gain of function is not because of enhanced inside-out signaling because granular secretion, Thromboxane A2 (TxA2) generation, as well as fibrinogen receptor activation, are normal in the absence of Jam-A. Interestingly, integrin outside-in signaling such as platelet spreading and clot retraction is augmented in Jam-A–deficient platelets. We conclude that JAM-A normally limits platelet accumulation by inhibiting integrin outside-in signaling thus preventing premature platelet activation. PMID:22271446

  13. ARQ 092, an orally-available, selective AKT inhibitor, attenuates neutrophil-platelet interactions in sickle cell disease

    PubMed Central

    Kim, Kyungho; Li, Jing; Barazia, Andrew; Tseng, Alan; Youn, Seock-Won; Abbadessa, Giovanni; Yu, Yi; Schwartz, Brian; Andrews, Robert K.; Gordeuk, Victor R.; Cho, Jaehyung

    2017-01-01

    Previous studies identified the Ser/Thr protein kinase, AKT, as a therapeutic target in thrombo-inflammatory diseases. Here we report that specific inhibition of AKT with ARQ 092, an orally-available AKT inhibitor currently in phase Ib clinical trials as an anti-cancer drug, attenuates the adhesive function of neutrophils and platelets from sickle cell disease patients in vitro and cell-cell interactions in a mouse model of sickle cell disease. Studies using neutrophils and platelets isolated from sickle cell disease patients revealed that treatment with 50–500 nM ARQ 092 significantly blocks αMβ2 integrin function in neutrophils and reduces P-selectin exposure and glycoprotein Ib/IX/V-mediated agglutination in platelets. Treatment of isolated platelets and neutrophils with ARQ 092 inhibited heterotypic cell-cell aggregation under shear conditions. Intravital microscopic studies demonstrated that short-term oral administration of ARQ 092 or hydroxyurea, a major therapy for sickle cell disease, diminishes heterotypic cell-cell interactions in venules of sickle cell disease mice challenged with tumor necrosis factor-α. Co-administration of hydroxyurea and ARQ 092 further reduced the adhesive function of neutrophils in venules and neutrophil transmigration into alveoli, inhibited expression of E-selectin and intercellular adhesion molecule-1 in cremaster vessels, and improved survival in these mice. Ex vivo studies in sickle cell disease mice suggested that co-administration of hydroxyurea and ARQ 092 efficiently blocks neutrophil and platelet activation and that the beneficial effect of hydroxyurea results from nitric oxide production. Our results provide important evidence that ARQ 092 could be a novel drug for the prevention and treatment of acute vaso-occlusive complications in patients with sickle cell disease. PMID:27758820

  14. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders.« less

  15. Novel iridium (III)‑derived organometallic compound for the inhibition of human platelet activation.

    PubMed

    Shyu, Kou-Gi; Velusamy, Marappan; Hsia, Chih-Wei; Yang, Chih-Hao; Hsia, Chih-Hsuan; Chou, Duen-Suey; Jayakumar, Thanasekaran; Sheu, Joen-Rong; Li, Jiun-Yi

    2018-05-01

    Since cisplatin achieved clinical success, transition metal platinum (Pt) drugs have been effectively used for the treatment of cancer. Iridium (Ir) compounds are considered to be potential alternatives to Pt compounds, as they possess promising anticancer effects with minor side effects. Platelet activation is associated with the metastasis and progression of cancer, and also with arterial thrombosis. Therefore, it is necessary to develop novel, effective antithrombotic agents. An Ir (III)‑derived complex, [Ir (Cp*) 1‑(2‑pyridyl)‑3‑(3‑methoxyphenyl)imidazo[1,5‑a]pyridine Cl]BF4 (Ir‑3), was developed as a novel antiplatelet drug. Ir‑3 exerted more potent inhibitory activity on platelet aggregation stimulated by collagen compared with other agonists, including thrombin. In collagen‑activated platelets, Ir‑3 also inhibited adenosine trisphosphate release, intracellular Ca+2 mobilization and surface P‑selectin expression, as well as the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), protein kinase B (Akt) and c‑Jun N‑terminal kinase (JNK) 1, but not p38 mitogen‑activated protein kinase or extracellular signal‑regulated kinases. Ir‑3 did not markedly affect phorbol 12, 13‑dibutyrate‑stimulated platelet aggregation. Neither the adenylate cyclase inhibitor SQ22536 nor the guanylate cyclase inhibitor 1H‑[1, 2, 4] oxadiazolo [4,3‑a]quinoxalin‑1‑one significantly reversed the Ir‑3‑mediated inhibition of platelet aggregation. Furthermore, Ir‑3 had no considerable diminishing effects on OH radical signals in collagen‑stimulated platelets or Fenton reaction solution. In conclusion, Ir‑3 serves a novel function in the inhibition of platelet aggregation through inhibiting the PLCγ2‑PKC cascade, and the subsequent suppression of Akt and JNK1 activation. Therefore, Ir‑3 may be a potential novel therapeutic agent for the treatment of thromboembolic disorders, or the interplay between platelets and tumor cells which contributes to tumor cell proliferation and progression.

  16. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK–dependent integrin outside-in retractile signaling pathway

    PubMed Central

    Flevaris, Panagiotis; Li, Zhenyu; Zhang, Guoying; Zheng, Yi; Liu, Junling

    2009-01-01

    Mitogen-activated protein kinases (MAPK), p38, and extracellular stimuli-responsive kinase (ERK), are acutely but transiently activated in platelets by platelet agonists, and the agonist-induced platelet MAPK activation is inhibited by ligand binding to the integrin αIIbβ3. Here we show that, although the activation of MAPK, as indicated by MAPK phosphorylation, is initially inhibited after ligand binding to integrin αIIbβ3, integrin outside-insignaling results in a late but sustained activation of MAPKs in platelets. Furthermore, we show that the early agonist-induced MAPK activation and the late integrin-mediated MAPK activation play distinct roles in different stages of platelet activation. Agonist-induced MAPK activation primarily plays an important role in stimulating secretion of platelet granules, while integrin-mediated MAPK activation is important in facilitating clot retraction. The stimulatory role of MAPK in clot retraction is mediated by stimulating myosin light chain (MLC) phosphorylation. Importantly, integrin-dependent MAPK activation, MAPK-dependent MLC phosphorylation, and clot retraction are inhibited by a Rac1 inhibitor and in Rac1 knockout platelets, indicating that integrin-induced activation of MAPK and MLC and subsequent clot retraction is Rac1-dependent. Thus, our results reveal 2 different activation mechanisms of MAPKs that are involved in distinct aspects of platelet function and a novel Rac1-MAPK–dependent cell retractile signaling pathway. PMID:18957688

  17. Human Cancer and Platelet Interaction, a Potential Therapeutic Target.

    PubMed

    Wang, Shike; Li, Zhenyu; Xu, Ren

    2018-04-20

    Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.

  18. Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922).

    PubMed

    Zheng, Zhaohua; Pinson, Jo-Anne; Mountford, Simon J; Orive, Stephanie; Schoenwaelder, Simone M; Shackleford, David; Powell, Andrew; Nelson, Erin M; Hamilton, Justin R; Jackson, Shaun P; Jennings, Ian G; Thompson, Philip E

    2016-10-21

    A series of amino-substituted triazines were developed and examined for PI3Kβ inhibition and anti-platelet function. Structural adaptations of a morpholine ring of the prototype pan-PI3K inhibitor ZSTK474 yielded PI3Kβ selective compounds, where the selectivity largely derives from an interaction with the non-conserved Asp862 residue, as shown by site directed mutagenesis. The most PI3Kβ selective inhibitor from the series was studied in detail through a series of in vitro and in vivo functional studies. MIPS-9922, 10 potently inhibited ADP-induced washed platelet aggregation. It also inhibited integrin αIIbβ3 activation and αIIbβ3 dependent platelet adhesion to immobilized vWF under high shear. It prevented arterial thrombus formation in the in vivo electrolytic mouse model of thrombosis without inducing prolonged bleeding or excess blood loss. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Acetaminophen and meloxicam inhibit platelet aggregation and coagulation in blood samples from humans.

    PubMed

    Martini, Angela K; Rodriguez, Cassandra M; Cap, Andrew P; Martini, Wenjun Z; Dubick, Michael A

    2014-12-01

    Acetaminophen (Ace) and meloxicam (Mel) are the two types of analgesic and antipyretic medications. This study investigated the dose responses of acetaminophen and meloxicam on platelet aggregation and coagulation function in human blood samples. Blood samples were collected from six healthy humans and processed to make platelet-adjusted (100 × 10 cells/μl) blood samples. Acetaminophen (Tylenol, Q-PAP, 100 mg/ml) was added at the doses of 0 μg/ml (control), 214 μg/ml (the standard dose, 1 ×), 4 ×, 8 ×, 10 ×, 12 ×, 16 ×, and 20 ×. Similarly, meloxicam (Metacam, 5 mg/ml) was added at doses of 0 μg/ml (control), 2.85 μg/ml (the standard dose, 1 ×), 4 ×, 8 ×, 10 ×, 12 ×, 16 ×, and 20 ×. Fifteen minutes after the addition of acetaminophen and/or meloxicam, platelet aggregation was stimulated with collagen (2 μg/ml) or arachidonic acid (0.5 mmol/l) and assessed using a Chrono-Log 700 aggregometer. Coagulation function was assessed by prothrombin time (PT), activated partial thromboplastin time (aPTT), and using Rotem thrombelastogram. A robust inhibition by acetaminophen and/or meloxicam was observed in arachidonic acid-stimulated platelet aggregation starting at 1 × dose. Collagen-stimulated platelet aggregation was inhibited by ACE starting at 1 × (78 ± 10% of control), and by meloxicam starting at 4 × (72 ± 5% of control, both P < 0.05). The inhibitions by acetaminophen and meloxicam combined were similar to those by acetaminophen or meloxicam. aPTT was prolonged by meloxicam starting at 4 ×. No changes were observed in PT or any of Rotem measurements by acetaminophen and/or meloxicam. Acetaminophen and meloxicam compromised platelet aggregation and aPTT. Further effort is warranted to characterize the effects of acetaminophen and meloxicam on bleeding in vivo.

  20. Effects of single oral doses of lysine clonixinate and acetylsalicylic acid on platelet functions in man.

    PubMed

    Pallapies, D; Muhs, A; Bertram, L; Rohleder, G; Nagyiványi, P; Peskar, B A

    1996-01-01

    Lysine clonixinate is an analgesic drug with a so far unknown mechanism of action. We have determined its effect on platelet cyclooxygenase in man. Biosynthesis of thromboxane (TX)B2 and prostaglandin (PG)F2 alpha in clotting whole blood ex vivo as well as collagen-induced platelet aggregation measured before and at various time points after oral administration of 125 mg lysine clonixinate were compared to results obtained with 500 mg acetylsalicylic acid (ASA). While biosynthesis of both TXB2 and PGF2 alpha measured radioimmunologically was inhibited significantly 2.5 h, but not 6 h, after administration of lysine clonixinate, inhibition by ASA was much greater and still highly significant after 48 h. Similarly, collagen-induced aggregation of platelet-rich plasma was inhibited for a longer period and to a greater extent after administration of ASA than after lysine clonixinate. Our results indicate that lysine clonixinate is a cyclooxygenase inhibitor of moderate potency. It remains to be investigated whether mechanisms other than inhibition of cyclooxygenase contribute to the analgesic activity of lysine clonixinate.

  1. Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation.

    PubMed

    Bou Khzam, Lara; Bouchereau, Olivier; Boulahya, Rahma; Hachem, Ahmed; Zaid, Younes; Abou-Saleh, Haissam; Merhi, Yahye

    2015-11-09

    Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet aggregation. EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional characteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface markers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells (HUVECs). The levels of the anti-platelet agents' nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were also assessed. We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like phenotype. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)-and inducible (iNOS)-NOS isoforms, and COX-1 and weakly express COX-2, whereas EOCs do not constitutively express these NO and PGI2 producing enzymes. The different morphological, phenotypic and more importantly the release of the anti-aggregating agents PGI2 and NO in each EPC subtype are implicated in their respective roles in platelet function and thus, may be linked to the increased efficiency of ECFCs in inhibiting platelet aggregation as compared to EOCs.

  2. A pharmacodynamic comparison of prasugrel vs. high-dose clopidogrel in patients with type 2 diabetes mellitus and coronary artery disease: results of the Optimizing anti-Platelet Therapy In diabetes MellitUS (OPTIMUS)-3 Trial

    PubMed Central

    Angiolillo, Dominick J.; Badimon, Juan Jose; Saucedo, Jorge F.; Frelinger, Andrew L.; Michelson, Alan D.; Jakubowski, Joseph A.; Zhu, Baojin; Ojeh, Clement K.; Baker, Brian A.; Effron, Mark B.

    2011-01-01

    Aims Patients with diabetes mellitus (DM) have increased platelet reactivity and reduced platelet response to clopidogrel compared with patients without DM. Prasugrel, a more potent antiplatelet agent, is associated with greater reductions in ischaemic events compared with clopidogrel, particularly in patients with DM. The aim of this study was to perform serial pharmacodynamic assessments of prasugrel with high-dose clopidogrel in patients with DM. Methods and results Optimizing anti-Platelet Therapy In diabetes MellitUS (OPTIMUS)-3 was a prospective, randomized, double-blind, crossover study in patients with type 2 DM and coronary artery disease (CAD). Patients (n= 35) were randomly assigned to either prasugrel 60 mg loading dose (LD)/10 mg maintenance dose (MD) or clopidogrel 600 mg LD/150 mg MD over two 1-week treatment periods separated by a 2-week washout period. Platelet function was assessed by VerifyNow® P2Y12 assay, light transmission aggregometry, and vasodilator-stimulated phosphoprotein phosphorylation at 0, 1, 4, and 24 h and 7 days. Greater platelet inhibition by VerifyNow® P2Y12 was achieved by prasugrel compared with clopidogrel at 4 h post-LD (least squares mean, 89.3 vs. 27.7%, P< 0.0001; primary endpoint). The difference in platelet inhibition between prasugrel and clopidogrel was significant from 1 h through 7 days (P < 0.0001). Similar results were obtained using all other platelet function measures. Prasugrel resulted in fewer poor responders at all time points irrespective of definition used. Conclusion In patients with type 2 DM and CAD, standard-dose prasugrel is associated with greater platelet inhibition and better response profiles during both the loading and maintenance periods when compared with double-dose clopidogrel. Clinical trial identifier: www.clinicaltrials.gov—NCT00642174 PMID:21252171

  3. Oxidized LDL activates blood platelets through CD36/NOX2–mediated inhibition of the cGMP/protein kinase G signaling cascade

    PubMed Central

    Magwenzi, Simbarashe; Woodward, Casey; Wraith, Katie S.; Aburima, Ahmed; Raslan, Zaher; Jones, Huw; McNeil, Catriona; Wheatcroft, Stephen; Yuldasheva, Nadira; Febbriao, Maria; Kearney, Mark

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36−/− murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2−/− mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3′,5′-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling. PMID:25710879

  4. Platelet Dynamics during Natural and Pharmacologically Induced Torpor and Forced Hypothermia

    PubMed Central

    de Vrij, Edwin L.; Vogelaar, Pieter C.; Goris, Maaike; Houwertjes, Martin C.; Herwig, Annika; Dugbartey, George J.; Boerema, Ate S.; Strijkstra, Arjen M.; Bouma, Hjalmar R.; Henning, Robert H.

    2014-01-01

    Hibernation is an energy-conserving behavior in winter characterized by two phases: torpor and arousal. During torpor, markedly reduced metabolic activity results in inactivity and decreased body temperature. Arousal periods intersperse the torpor bouts and feature increased metabolism and euthermic body temperature. Alterations in physiological parameters, such as suppression of hemostasis, are thought to allow hibernators to survive periods of torpor and arousal without organ injury. While the state of torpor is potentially procoagulant, due to low blood flow, increased viscosity, immobility, hypoxia, and low body temperature, organ injury due to thromboembolism is absent. To investigate platelet dynamics during hibernation, we measured platelet count and function during and after natural torpor, pharmacologically induced torpor and forced hypothermia. Splenectomies were performed to unravel potential storage sites of platelets during torpor. Here we show that decreasing body temperature drives thrombocytopenia during torpor in hamster with maintained functionality of circulating platelets. Interestingly, hamster platelets during torpor do not express P-selectin, but expression is induced by treatment with ADP. Platelet count rapidly restores during arousal and rewarming. Platelet dynamics in hibernation are not affected by splenectomy before or during torpor. Reversible thrombocytopenia was also induced by forced hypothermia in both hibernating (hamster) and non-hibernating (rat and mouse) species without changing platelet function. Pharmacological torpor induced by injection of 5′-AMP in mice did not induce thrombocytopenia, possibly because 5′-AMP inhibits platelet function. The rapidness of changes in the numbers of circulating platelets, as well as marginal changes in immature platelet fractions upon arousal, strongly suggest that storage-and-release underlies the reversible thrombocytopenia during natural torpor. Possibly, margination of platelets, dependent on intrinsic platelet functionality, governs clearance of circulating platelets during torpor. PMID:24722364

  5. Gap Junctions and Connexin Hemichannels Underpin Haemostasis and Thrombosis

    PubMed Central

    Vaiyapuri, Sakthivel; Jones, Chris I.; Sasikumar, Parvathy; Moraes, Leonardo A.; Munger, Stephanie J.; Wright, Joy R.; Ali, Marfoua S.; Sage, Tanya; Kaiser, William J.; Tucker, Katherine L.; Stain, Christopher J.; Bye, Alexander P.; Jones, Sarah; Oviedo-Orta, Ernesto; Simon, Alexander M.; Mahaut-Smith, Martyn P.; Gibbins, Jonathan M.

    2012-01-01

    Background Connexins are a widespread family of membrane proteins that assemble into hexameric hemichannels, also known as connexons. Connexons regulate membrane permeability in individual cells or couple between adjacent cells to form gap junctions and thereby provide a pathway for regulated intercellular communication. We have now examined the role of connexins in platelets, blood cells that circulate in isolation, but upon tissue injury adhere to each other and the vessel wall to prevent blood loss and facilitate wound repair. Methods and Results We report the presence of connexins in platelets, notably connexin37, and that the formation of gap junctions within platelet thrombi is required for the control of clot retraction. Inhibition of connexin function modulated a range of platelet functional responses prior to platelet-platelet contact, and reduced laser induced thrombosis in vivo in mice. Deletion of the Cx37 gene (Gja4) in transgenic mice reduced platelet aggregation, fibrinogen binding, granule secretion and clot retraction indicating an important role for Cx37 hemichannels and gap junctions in platelet thrombus function. Conclusions Together, these data demonstrate that platelet gap junctions and hemichannels underpin the control of haemostasis and thrombosis and represent potential therapeutic targets. PMID:22528526

  6. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase

    PubMed Central

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase. PMID:26867010

  7. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase.

    PubMed

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase.

  8. N-octanoyl-dopamine is a potent inhibitor of platelet function.

    PubMed

    Ait-Hsiko, Lamia; Kraaij, Tineke; Wedel, Johannes; Theisinger, Bastian; Theisinger, Sonja; Yard, Benito; Bugert, Peter; Schedel, Angelika

    2013-01-01

    Dopamine (DA) is a co-agonist for platelet activation; yet, donor DA treatment is associated with improved transplantation outcome in renal and heart recipients. Recently, N-octanoyl-dopamine (NOD) was developed which displays superior effects compared to DA in terms of graft protecting properties. Whereas DA is a known platelet co-agonist, the effect of NOD on platelet function is unknown. This is a hypothesis generating study with the aim to assess the effects and molecular mechanisms of NOD and NOD-like compounds on platelet function. The influence of DA, NOD, and NOD-like compounds on platelet responses to classical agonists (adenosine 5'-diphosphate (ADP), U46619) was investigated in six healthy donors by applying whole blood aggregometry (Multiplate®) and flow cytometry for Pac-1, CD62P, and CD63 expression. Changes in platelet cAMP concentrations were assessed by ELISA. While DA showed synergy in platelet activation by ADP and U46619, NOD caused significant inhibition of platelet function both in whole blood aggregometry and flow cytometry. The inhibitory effect of NOD was not mediated via cAMP levels. The nonredox-active NOD-analog N-octanoyl-tyramine had no effects on platelet function. Acetylated NOD conferred to NOD by intracellular esterases showed similar inhibitory effects as NOD. In contrast to DA, NOD is a potent inhibitor of platelet function most likely through intracellular redox-active processes. This adds to the overall protective effect of NOD on pre-transplantation injury and makes NOD an attractive candidate compound for donor or organ conditioning prior to transplantation.

  9. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis.

    PubMed Central

    Freedman, J E; Loscalzo, J; Benoit, S E; Valeri, C R; Barnard, M R; Michelson, A D

    1996-01-01

    Highly reactive oxygen species rapidly inactivate nitric oxide (NO), and endothelial product which inhibits platelet activation. We studied platelet inhibition by NO in two brothers with a cerebral thrombotic disorder. Both children had hyperreactive platelets, as determined by whole blood platelet aggregometry and flow cytometric analysis of the platelet surface expression of P-selectin. Mixing experiments showed that the patients'platelets behaved normally in control plasma; however, control platelets suspended in patient plasma were not inhibited by NO. As determined by flow cytometry, in the presence of plasma from either patient there was normal inhibition of the thrombin-induced expression of platelet surface P-selectin by prostacyclin, but not NO. Using a scopoletin assay, we measured a 2.7-fold increase in plasma H2O2 generation in one patient and a 3.4-fold increase in the second patient, both compared woth control plasma. Glutathione peroxidase (GSH-Px) activity was decreased in the patients' plasmas compared with control plasma. The addition of exogenous GSH-Px led to restoration of platelet inhibition by NO. These data show that, in these patients' plasmas, impaired metabolism of reactive oxygen species reduces the bioavailability of NO and impairs normal platelet inhibitory mechanisms. These findings suggest that attenuated NO-mediated platelet inhibition produced by increased reactive oxygen species or impaired antioxidant defense may cause a thrombotic disorder in humans. PMID:8613552

  10. Potent antiplatelet activity of sesamol in an in vitro and in vivo model: pivotal roles of cyclic AMP and p38 mitogen-activated protein kinase.

    PubMed

    Chang, Chao C; Lu, Wan J; Chiang, Cheng W; Jayakumar, Thanasekaran; Ong, Eng T; Hsiao, George; Fong, Tsorng H; Chou, Duen S; Sheu, Joen R

    2010-12-01

    Sesamol is a potent phenolic antioxidant which possesses antimutagenic, antihepatotoxic and antiaging properties. Platelet activation is relevant to a variety of acute thrombotic events and coronary heart diseases. There have been few studies on the effect of sesamol on platelets. Therefore, the aim of this study was to systematically examine the detailed mechanisms of sesamol in preventing platelet activation in vitro and in vivo. Sesamol (2.5-5 μM) exhibited more potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists. Sesamol inhibited collagen-stimulated platelet activation accompanied by [Ca(2+)](i) mobilization, thromboxane A(2) (TxA(2)) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) phosphorylation in washed platelets. Sesamol markedly increased cAMP and cGMP levels, endothelial nitric oxide synthase (eNOS) expression and NO release, as well as vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the sesamol-mediated inhibitory effects on platelet aggregation and p38 MAPK phosphorylation, and sesamol-mediated stimulatory effects on VASP and eNOS phosphorylation, and NO release. Sesamol also reduced hydroxyl radical (OH(●)) formation in platelets. In an in vivo study, sesamol (5 mg/kg) significantly prolonged platelet plug formation in mice. The most important findings of this study demonstrate for the first time that sesamol possesses potent antiplatelet activity, which may involve activation of the cAMP-eNOS/NO-cGMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA(2) cascade, and, finally, inhibition of platelet aggregation. Sesamol treatment may represent a novel approach to lowering the risk of or improving function in thromboembolism-related disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Trimucrin, an Arg-Gly-Asp containing disintegrin, attenuates myocardial ischemia-reperfusion injury in murine by inhibiting platelet function.

    PubMed

    Hung, Yu-Chun; Kuo, Yu-Ju; Huang, Shiang-Suo; Huang, Tur-Fu

    2017-10-15

    Trimucrin, a novel small-mass Arg-Gly-Asp (RGD)-containing disintegrin, has been demonstrated to possess anti-platelet and anti-inflammatory effect through blockade of platelet αIIbβ3 and phagocyte αvβ3 integrin. In this study, we found that the platelet-rich plasma prepared from trimucrin-treated rats platelet aggregation was diminished in response to adenosine diphosphate (ADP). We tried to determine whether trimucrin is cardioprotective in rats subjected to myocardial ischemia-reperfusion (I-R) injury. The left anterior descending coronary artery of anesthetized rats was subjected to 1h occlusion and 3h reperfusion. The animals received intravenous trimucrin or saline, and the severities of I-R-induced arrhythmia and infarction were compared. Trimucrin significantly reduced I-R-induced arrhythmias and reduced mortality, as well as infarct volume, troponin-I levels, creatine kinase, and lactate dehydrogenase activity in carotid blood compared with vehicle-treated animals during the same period. Trimucrin also improved cardiac function and survival rates after I-R injury. In addition, trimucrin concentration-dependently inhibited platelet adhesion on collagen- and fibrinogen-coated surfaces without affecting platelet counts. Trimucrin also significantly reduced neutrophil infiltration into heart tissues after I-R compared with controls. Furthermore, trimucrin treatment caused significant downregulation of Bax, Caspase-3 apoptotic proteins and upregulation of anti-apoptotic Bcl-2 protein. These results demonstrate that trimucrin exerts cardioprotective property against myocardial I-R injury mediated through antiplatele, anti-inflammatory, anti-apoptotic mechanism, as well as improvements in cardiac function. Copyright © 2017. Published by Elsevier B.V.

  12. Is platelet function as measured by Thrombelastograph monitoring in whole blood affected by platelet inhibitors?

    PubMed

    Bailey, Lori A; Sistino, Joseph J; Uber, Walter E

    2005-03-01

    Platelet inhibitors, especially the glycoprotein (GP) IIb/IIIa receptor antagonists, have demonstrated their effectiveness in reducing the acute ischemic complications of percutaneous coronary intervention (PCI) and in improving clinical outcomes in patients with acute coronary crisis. Three common platelet inhibitors observed in emergent cardiopulmonary bypass (CPB) for failed PCI are abciximab, eptifibatide, and tirofiban. An in vitro model was constructed in two parts to determine whether platelet aggregation inhibition induced by platelet inhibitors would be demonstrated by the Thrombelastograph (TEG) monitor when compared with baseline samples with no platelet inhibitor. In part A, 20 mL of fresh whole blood was divided into four groups: group I = baseline, group A = abcix-imab microg/mL, group E = eptifibatide ng/mL, and group T = tirofiban ng/mL. Platelet inhibitor concentrations in whole blood were derived starting with reported serum concentrations with escalation to achieve 80% platelet inhibition using the Medtronic hemoSTATUS and/or Lumi-aggregometer. A concentration range determined by our in vitro tests were chosen for each drug using concentrations achieving less than, equal to, or greater than 80% platelet inhibition. In part B, TEG analysis was then performed using baseline and concentrations for each drug derived in part A. Parameters measured were clot formation reaction time (R), coagulation time (K), maximum amplitude (MA) and alpha angle (A). Groups E1000 and E2000 extended R over control by 37% and 23%, respectively (p = 0.01 and 0.03). Groups E1000 and E2000 increased K times by 45% and 58% (p = .02 and .04). T160 samples prolonged K by 20% (p = 0.01). The angle or clot strength (A) was decreased in groups T160 and E1000 by 23% (+ 7.06 SD) and 18% (+ 11.23 SD), respectively (p = 0.001 and 0.01). The MA decrease was statistically significant in the T160, E1000 and E2000 by 9%, 6% and 13% respectively (p = 0.01). Samples treated with abciximab were comparable to control values for all parameters measured. Although statistical significance could be demonstrated with some parameters, sensitivity was only observed at increased doses and was not seen with all agents tested. In our in vitro model, the TEG monitor was unable to demonstrate clinically significant differences in platelet function and may not be reflective of platelet function in samples which have been treated with these GP IIb/IIIa inhibitors.

  13. Inhibitory effects of Atractylodis lanceae rhizoma and Poria on collagen- or thromboxane A2-induced aggregation in rabbit platelets.

    PubMed

    Nasu, Yuiko; Iwashita, Masaya; Saito, Masaki; Fushiya, Shinji; Nakahata, Norimichi

    2009-05-01

    Kami-shoyo-san (Jia-Wei-Xiao-Yao-San), Toki-shakuyaku-san (Dang-Gui-Shao-Yao-San) and Toki-shigyaku-ka-goshuyu-shokyo-to (Dang-Gui-Si-Ni-Jia-Wu-Zhu-Yu-Sheng-Jiang-Tang) are Kampo (traditional Chinese) medicines which are traditionally and effectively used for the treatment of chilly sensation (Hiesho) in Japan, but the active components and their detailed mechanisms have not yet been clarified. Etiologies of Hiesho include poor peripheral blood circulation and platelet aggregability contributes to peripheral blood circulation; therefore, we investigated the effect of Kampo medicines on platelet aggregation using rabbit platelets in vitro. Collagen and U46619, a thromboxane A(2) receptor agonist, caused rabbit platelet aggregation, which was potently inhibited by pretreatment of platelets with Kami-shoyo-san and Toki-shakuyaku-san in vitro. Toki-shigyaku-ka-goshuyu-shokyo-to, however, did not significantly inhibit collagen- or U46619-induced platelet aggregation. Therefore, we examined the effect on platelet aggregation of two herbal medicines, Atractylodis Lanceae Rhizoma and Poria, both of which are contained in Kami-shoyo-san and Toki-shakuyaku-san but not in Toki-shigyaku-ka-goshuyu-shokyo-to. As the results indicate, Atractylodis Lanceae Rhizoma inhibited platelet aggregation induced by collagen but not by U46619. Poria effectively inhibited U46619-induced platelet aggregation and it partially inhibited collagen-induced platelet aggregation. On the other hand, Atractylodis Lanceae Rhizoma and Poria did not inhibit adrenaline/adenosine diphosphate- or adrenaline/serotonin-induced platelet aggregation. These results suggest the possibility that the inhibition of platelet aggregation by two Kampo medicines, Kami-shoyo-san and Toki-shakuyaku-san, is one of the mechanisms underlying the improvement of Hiesho. Furthermore, Atractylodis Lanceae Rhizoma and Poria are possible herbal medicines for the inhibition of platelet aggregation.

  14. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions.

    PubMed

    Li, Suping; Shi, Quanwei; Liu, Guanglei; Zhang, Weilin; Wang, Zhicheng; Wang, Yuedan; Dai, Kesheng

    2010-05-01

    Serious thrombotic and hemorrhagic problems or even fatalities evoked by either microgravity or hypergravity occur commonly in the world. We recently reported that platelet functions are inhibited in microgravity environments and activated under high-G conditions, which reveals the pathogenesis for gravity change-related hemorrhagic and thrombotic diseases. However, the mechanisms of platelet functional variations under different gravity conditions remain unclear. In this study we show that the amount of filamin A coimmunoprecipitated with GPIbalpha was enhanced in platelets exposed to modeled microgravity and, in contrast, was reduced in 8 G-exposed platelets. Hypergravity induced actin filament formation and redistribution, whereas actin filaments were reduced in platelets treated with modeled microgravity. Furthermore, intracellular Ca2+ levels were elevated by hypergravity. Pretreatment of platelets with the cell-permeable Ca2+ chelator BAPTA-AM had no effect on cytoskeleton reorganization induced by hypergravity but significantly reduced platelet aggregation induced by ristocetin/hypergravity. Two anti-platelet agents, aspirin and tirofiban, effectively reversed the shortened tail bleeding time and reduced the death rate of mice exposed to hypergravity. Furthermore, the increased P-selectin surface expression was obviously reduced in platelets from mice treated with aspirin/hypergravity compared with those from mice treated with hypergravity alone. These data suggest that the actin cytoskeleton reorganization and intracellular Ca2+ level play key roles in the regulation of platelet functions in different gravitational environments. The results with anti-platelet agents not only further confirm the activation of platelets in vivo but also suggest a therapeutic potential for hypergravity-induced thrombotic diseases.

  15. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice.

    PubMed

    Karshovska, Ela; Zhao, Zhen; Blanchet, Xavier; Schmitt, Martin M N; Bidzhekov, Kiril; Soehnlein, Oliver; von Hundelshausen, Philipp; Mattheij, Nadine J; Cosemans, Judith M E M; Megens, Remco T A; Koeppel, Thomas A; Schober, Andreas; Hackeng, Tilman M; Weber, Christian; Koenen, Rory R

    2015-02-13

    Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbβ3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbβ3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbβ3 signaling in vitro. Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease. © 2014 American Heart Association, Inc.

  16. Modulation of Platelet Activation and Thrombus Formation Using a Pan-PI3K Inhibitor S14161

    PubMed Central

    Ren, Lijie; Liu, Xiaohui; Wang, Qi; He, Sudan; Wu, Qingyu; Hu, Hu; Mao, Xinliang; Zhu, Li

    2014-01-01

    The phosphatidylinositol 3–kinase (PI3K) signaling pathway is critical in modulating platelet functions. In the present study, we evaluated the effect of S14161, a recently identified pan-class I PI3K inhibitor, on platelet activation and thrombus formation. Results showed that S14161 inhibited human platelet aggregation induced by collagen, thrombin, U46619, and ADP in a dose-dependent manner. Flow cytometric studies showed that S14161 inhibited convulxin- or thrombin-induced P-selectin expression and fibrinogen binding of single platelet. S14161 also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in signaling. Using a microfluidic chamber we demonstrated that S14161 decreased platelet adhesion on collagen-coated surface by about 80%. Western blot showed that S14161 inhibited phosphorylation of Akt at both Ser473 and Thr308 sites, and GSK3β at Ser9 in response to collagen, thrombin, or U46619. Comparable studies showed that S14161 has a higher potential bioavailability than LY294002, a prototypical inhibitor of pan-class I PI3K. Finally, the effects of S14161 on thrombus formation in vivo were measured using a ferric chloride-induced carotid artery injury model in mice. The intraperitoneal injection of S14161 (2 mg/kg) to male C57BL/6 mice significantly extended the first occlusion time (5.05±0.99 min, n = 9) compared to the vehicle controls (3.72±0.95 min, n = 8) (P<0.05), but did not prolong the bleeding time (P>0.05). Taken together, our data showed that S14161 inhibits platelet activation and thrombus formation without significant bleeding tendency and toxicity, and considering its potential higher bioavailability, it may be developed as a novel therapeutic agent for the prevention of thrombotic disorders. PMID:25115838

  17. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor.

    PubMed

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew; Mundell, Stuart J

    2016-12-08

    Ticagrelor is a potent antagonist of the P2Y 12 receptor (P2Y 12 R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5'-diphosphate (ADP)-induced Ca 2+ release in washed platelets vs other P2Y 12 R antagonists. This additional effect of ticagrelor beyond P2Y 12 R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of G s -coupled adenosine A 2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor-independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y 12 R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y 12 R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y 12 R, limiting basal G i -coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca 2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y 12 R that contribute to its effective inhibition of platelet activation. © 2016 by The American Society of Hematology.

  18. GAS6/TAM Pathway Signaling in Hemostasis and Thrombosis.

    PubMed

    Law, Luke A; Graham, Douglas K; Di Paola, Jorge; Branchford, Brian R

    2018-01-01

    The GAS6/TYRO3-AXL-MERTK (TAM) signaling pathway is essential for full and sustained platelet activation, as well as thrombus stabilization. Inhibition of this pathway decreases platelet aggregation, shape change, clot retraction, aggregate formation under flow conditions, and surface expression of activation markers. Transgenic mice deficient in GAS6, or any of the TAM family of receptors that engage this ligand, exhibit in vivo protection against arterial and venous thrombosis but do not demonstrate either spontaneous or prolonged bleeding compared to their wild-type counterparts. Comparable results are observed in wild-type mice treated with pharmacological inhibitors of the GAS6-TAM pathway. Thus, GAS6/TAM inhibition offers an attractive novel therapeutic option that may allow for a moderate reduction in platelet activation and decreased thrombosis while still permitting the primary hemostatic function of platelet plug formation.

  19. Role of the recombinant protein of the platelet receptor for type I collagen in the release of nitric oxide during platelet aggregation.

    PubMed

    Chiang, T M; Wang, Y B; Kang, E S

    2000-12-01

    Nitric oxide plays an important role in platelet function and platelets possess the endothelial isoform of nitric oxide synthase. Several reports have indicated that nitric oxide is released upon exposure of platelets to collagen. We have reported that a non-integrin platelet protein of 65 kDa is a receptor for type I collagen. By direct measurement of NO release from washed human platelets suspended in Tyrode buffer with a ISO-NO Mark II, World Precision Instruments, Sarasota, FL, USA, p30 sensor, type I collagen, but not ADP and epinephrine, induces the release of NO in a time-dependent manner. The production of NO is inhibited either by preincubation of type I collagen with the platelet type I collagen receptor recombinant protein or by preincubation of platelets with the antibody to the receptor protein, the anti-65 antibody. However, preincubation of platelets with anti-P-selectin and anti-glycoprotein IIb/IIIa did not affect the release of NO by platelets. These results suggest that the 65 kDa platelet receptor for type I collagen is specifically linked to the generation of NO, and that the 65 kDa platelet receptor for type I collagen plays an important new role in platelet function.

  20. Platelet functional and transcriptional changes induced by intralipid infusion.

    PubMed

    Beaulieu, Lea M; Vitseva, Olga; Tanriverdi, Kahraman; Kucukural, Alper; Mick, Eric; Hamburg, Naomi; Vita, Joseph; Freedman, Jane E

    2016-06-02

    Multiple studies have shown the effects of long-term exposure to high-fat or western diets on the vascular system. There is limited knowledge on the acute effects of high circulating fat levels, specifically on platelets, which have a role in many processes, including thrombosis and inflammation. This study investigated the effects of acute, high-fat exposure on platelet function and transcript profile. Twenty healthy participants were given an intravenous infusion of 20% Intralipid emulsion and heparin over 6 hours. Blood samples were taken prior to and the day after infusion to measure platelet function and transcript expression levels. Platelet aggregation was not significantly affected by Intralipid infusion, but, when mitochondria function was inhibited by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) or oligomycin, platelet aggregation was higher in the post-infusion state compared to baseline. Through RNA sequencing, and verified by RT-qPCR, 902 miRNAs and 617 mRNAs were affected by Intralipid infusion. MicroRNAs increased include miR-4259 and miR-346, while miR-517b and miR-517c are both decreased. Pathway analysis identified two clusters significantly enriched, including cell motility. In conclusion, acute exposure to high fat affects mitochondrial-dependent platelet function, as well as the transcript profile.

  1. Dose response of surfactants to attenuate gas embolism related platelet aggregation

    NASA Astrophysics Data System (ADS)

    Eckmann, David M.; Eckmann, Yonaton Y.; Tomczyk, Nancy

    2014-03-01

    Intravascular gas embolism promotes blood clot formation, cellular activation, and adhesion events, particularly with platelets. Populating the interface with surfactants is a chemical-based intervention to reduce injury from gas embolism. We studied platelet activation and platelet aggregation, prominent adverse responses to blood contact with bubbles. We examined dose-response relationships for two chemically distinct surfactants to attenuate the rise in platelet function stimulated by exposure to microbubbles. Significant reduction in platelet aggregation and platelet activation occurred with increasing concentration of the surfactants, indicating presence of a saturable system. A population balance model for platelet aggregation in the presence of embolism bubbles and surfactants was developed. Monte Carlo simulations for platelet aggregation were performed. Results agree qualitatively with experimental findings. Surfactant dose-dependent reductions in platelet activation and aggregation indicate inhibition of the gas/liquid interface's ability to stimulate cellular activation mechanically.

  2. Antibody-mediated platelet phagocytosis by human macrophages is inhibited by siRNA specific for sequences in the SH2 tyrosine kinase, Syk.

    PubMed

    Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin

    2011-01-01

    Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Platelet proteomics: from discovery to diagnosis.

    PubMed

    Looße, Christina; Swieringa, Frauke; Heemskerk, Johan W M; Sickmann, Albert; Lorenz, Christin

    2018-05-22

    Platelets are the smallest cells within the circulating blood with key roles in physiological haemostasis and pathological thrombosis regulated by the onset of activating/inhibiting processes via receptor responses and signalling cascades. Areas covered: Proteomics as well as genomic approaches have been fundamental in identifying and quantifying potential targets for future diagnostic strategies in the prevention of bleeding and thrombosis, and uncovering the complexity of platelet functions in health and disease. In this article, we provide a critical overview on current functional tests used in diagnostics and the future perspectives for platelet proteomics in clinical applications. Expert commentary: Proteomics represents a valuable tool for the identification of patients with diverse platelet associated defects. In-depth validation of identified biomarkers, e.g. receptors, signalling proteins, post-translational modifications, in large cohorts is decisive for translation into routine clinical diagnostics.

  4. [Comparative evaluation of the efficiency of the effect of very high frequency electromagnetic waves on platelet functional activity].

    PubMed

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A comparative analysis was made of the effect of two kinds of EMI MMD-radiation: EMI MMD-waves, generated by a vehicle "Jav-1 M" (42.2 and 53.5 HHz), and EMI MMD-waves exerting influence with frequencies of molecular spectrum of radiation and nitric oxide absorption (150.176-150.644 HHz), obtained with a specially created generator, with respect to their influence on the functional ability of platelets of unstable angina pectoris patients. It was shown that in vitro EMI MMD-fluctuations with frequencies of molecular spectrum of radiation and nitric oxide absorption exert a stronger inhibiting influence on the functional activity of platelets of unstable angina pectoris patients. Features of the action of various kinds of EMI MMD-effect on the activative-high-speed characteristics of platelet aggregation are shown.

  5. Ibrutinib Inhibits Platelet Integrin αIIbβ3 Outside-In Signaling and Thrombus Stability But Not Adhesion to Collagen.

    PubMed

    Bye, Alexander P; Unsworth, Amanda J; Vaiyapuri, Sakthivel; Stainer, Alexander R; Fry, Michael J; Gibbins, Jonathan M

    2015-11-01

    Ibrutinib is an irreversible Bruton tyrosine kinase inhibitor approved for treatment of Waldenstrom macroglobulinemia, chronic lymphocytic leukemia, and mantle cell lymphoma that increases the risk of bleeding among patients. Platelets from ibrutinib-treated patients exhibit deficiencies in collagen-evoked signaling in suspension; however, the significance of this observation and how it relates to bleeding risk is unclear, as platelets encounter immobile collagen in vivo. We sought to clarify the effects of ibrutinib on platelet function to better understand the mechanism underlying bleeding risk. By comparing signaling in suspension and during adhesion to immobilized ligands, we found that the collagen signaling deficiency caused by ibrutinib is milder during adhesion to immobilized collagen. We also found that platelets in whole blood treated with ibrutinib adhered to collagen under arterial shear but formed unstable thrombi, suggesting that the collagen signaling deficiency caused by ibrutinib may not be the predominant cause of bleeding in vivo. However, clot retraction and signaling evoked by platelet adhesion to immobilized fibrinogen were also inhibited by ibrutinib, indicating that integrin αIIbβ3 outside-in signaling is also effected in addition to GPVI signaling. When ibrutinib was combined with the P2Y12 inhibitor, cangrelor, thrombus formation under arterial shear was inhibited additively. These findings suggest that (1) ibrutinib causes GPVI and integrin αIIbβ3 platelet signaling deficiencies that result in formation of unstable thrombi and may contribute toward bleeding observed in vivo and (2) combining ibrutinib with P2Y12 antagonists, which also inhibit thrombus stability, may have a detrimental effect on hemostasis. © 2015 American Heart Association, Inc.

  6. Coated platelets function in platelet-dependent fibrin formation via integrin αIIbβ3 and transglutaminase factor XIII

    PubMed Central

    Mattheij, Nadine J.A.; Swieringa, Frauke; Mastenbroek, Tom G.; Berny-Lang, Michelle A.; May, Frauke; Baaten, Constance C.F.M.J.; van der Meijden, Paola E.J.; Henskens, Yvonne M.C.; Beckers, Erik A.M.; Suylen, Dennis P.L.; Nolte, Marc W.; Hackeng, Tilman M.; McCarty, Owen J.T.; Heemskerk, Johan W.M.; Cosemans, Judith M.E.M.

    2016-01-01

    Coated platelets, formed by collagen and thrombin activation, have been characterized in different ways: i) by the formation of a protein coat of α-granular proteins; ii) by exposure of procoagulant phosphatidylserine; or iii) by high fibrinogen binding. Yet, their functional role has remained unclear. Here we used a novel transglutaminase probe, Rhod-A14, to identify a subpopulation of platelets with a cross-linked protein coat, and compared this with other platelet subpopulations using a panel of functional assays. Platelet stimulation with convulxin/thrombin resulted in initial integrin αIIbβ3 activation, the appearance of a platelet population with high fibrinogen binding, (independently of active integrins, but dependent on the presence of thrombin) followed by phosphatidylserine exposure and binding of coagulation factors Va and Xa. A subpopulation of phosphatidylserine-exposing platelets bound Rhod-A14 both in suspension and in thrombi generated on a collagen surface. In suspension, high fibrinogen and Rhod-A14 binding were antagonized by combined inhibition of transglutaminase activity and integrin αIIbβ3. Markedly, in thrombi from mice deficient in transglutaminase factor XIII, platelet-driven fibrin formation and Rhod-A14 binding were abolished by blockage of integrin αIIbβ3. Vice versa, star-like fibrin formation from platelets of a patient with deficiency in αIIbβ3 (Glanzmann thrombasthenia) was abolished upon blockage of transglutaminase activity. We conclude that coated platelets, with initial αIIbβ3 activation and high fibrinogen binding, form a subpopulation of phosphatidylserine-exposing platelets, and function in platelet-dependent star-like fibrin fiber formation via transglutaminase factor XIII and integrin αIIbβ3. PMID:26721892

  7. [Effects of silkworm pupa oil on serum lipids level and platelet function in rats].

    PubMed

    Yang, Xuefeng; Huang, Lianzhen; Hu, Jianping; Li, Tao

    2002-08-01

    To observe the effects of silkworm pupa oil on serum lipids level and platelet function in rats, according to serum TG, TC level, 40 male Wistar rats are divided into four groups (normal control group, high fat control group, silkworm pupa oil group and silkworm pupa oil + VE group). The rats are fed different diets and six weeks later, serum lipids level and platelet function are measured. The results show that (1) Compared with high fat control group, serum TC, TG, LDL-C level, AI value, Platelet aggregability, plasma TXB2 level and T/P ratio decrease significantly while HDL-C level and 6-k-PGF1 level increase in silkworm pupa oil group; (2) Serum TC, LDL-C level, T/P ratio and platelet aggregability are significantly lower in silkworm pupa oil + VE group than in silkworm pupa oil group. It is suggested that silkworm pupa oil rich in alpha-linolenic acid can reduce serum lipids level and inhibit platelet aggregation, which is more effective with the supplementation with VE.

  8. Autologous Platelet-Rich Plasma Preparations

    PubMed Central

    Schippinger, Gert; Prüller, Florian; Divjak, Manuela; Mahla, Elisabeth; Fankhauser, Florian; Rackemann, Steve; Raggam, Reinhard Bernd

    2015-01-01

    Background Autologous platelet-rich plasma (PRP) has been widely used for the treatment of sports injuries. It has been associated with improved healing and regeneration of soft tissues in elite athletes. Athletes are commonly receiving nonsteroidal anti-inflammatory drugs (NSAIDs). As yet, the effect of these drugs on platelet function in PRP formulations has not been taken into consideration. Hypothesis The function of platelets in PRP produced under the influence of NSAIDs is inhibited and may lessen a possible healing effect on the site of injury. Study Design Controlled laboratory study. Methods PRP was collected from patients receiving NSAIDs after elective orthopaedic surgery, and platelet function was evaluated using light transmission aggregometry (LTA). Results were compared with those obtained from healthy volunteers without a history of NSAID intake during the previous 2 weeks. Two different systems for blood collection and PRP production (Arthrex ACP double-syringe system and standard 4.5-mL sodium citrate blood collection tubes) were used and compared regarding the quality of PRP that was produced. Results For both groups, the baseline platelet counts of whole blood and the platelet counts of PRP formulations were found to be in the normal range. Both collection systems for PRP produced comparable results without significant differences between the groups. Platelet function testing with LTA revealed significantly impaired platelet aggregation in both PRP preparations, obtained from patients taking NSAIDs, irrespective of the type of NSAID (P < .001). All subjects from the control group showed normal platelet aggregation patterns when tested with LTA. Conclusion Autologous PRP produced from subjects after NSAID medication shows significantly impaired platelet function and may result in lower quality regarding the content of bioactive compounds. Clinical Relevance If required, the administration of NSAIDs should be performed after blood collection for preparation of autologous PRP; otherwise, the therapeutic effect may be limited. PMID:26665098

  9. Drug-Free Platelets Can Act as Seeds for Aggregate Formation During Antiplatelet Therapy

    PubMed Central

    Hoefer, Thomas; Armstrong, Paul C.; Finsterbusch, Michaela; Chan, Melissa V.; Kirkby, Nicholas S.

    2015-01-01

    Objective— Reduced antiplatelet drug efficacy occurs in conditions of increased platelet turnover, associated with increased proportions of drug-free, that is, uninhibited, platelets. Here, we detail mechanisms by which drug-free platelets promote platelet aggregation in the face of standard antiplatelet therapy. Approach and Results— To model standard antiplatelet therapy, platelets were treated in vitro with aspirin, the P2Y12 receptor blocker prasugrel active metabolite, or aspirin plus prasugrel active metabolite. Different proportions of uninhibited platelets were then introduced. Light transmission aggregometry analysis demonstrated clear positive associations between proportions of drug-free platelets and percentage platelet aggregation in response to a range of platelet agonists. Using differential platelet labeling coupled with advanced flow cytometry and confocal imaging we found aggregates formed in mixtures of aspirin-inhibited platelets together with drug-free platelets were characterized by intermingled platelet populations. This distribution is in accordance with the ability of drug-free platelets to generate thromboxane A2 and so drive secondary platelet activation. Conversely, aggregates formed in mixtures of prasugrel active metabolite–inhibited or aspirin plus prasugrel active metabolite–inhibited platelets together with drug-free platelets were characterized by distinct cores of drug-free platelets. This distribution is consistent with the ability of drug-free platelets to respond to the secondary activator ADP. Conclusions— These experiments are the first to image the interactions of inhibited and uninhibited platelets in the formation of platelet aggregates. They demonstrate that a general population of platelets can contain subpopulations that respond strikingly differently to overall stimulation of the population and so act as the seed for platelet aggregation. PMID:26272940

  10. Antiplatelet effects of protopine isolated from Corydalis tubers.

    PubMed

    Ko, F N; Wu, T S; Lu, S T; Wu, Y C; Huang, T F; Teng, C M

    1989-10-15

    Protopine inhibited the aggregation and ATP release of rabbit platelets induced by ADP, arachidonic acid, PAF, collagen and ionophore A23187. Although the platelet aggregation caused by thrombin was not inhibited by protopine (100 micrograms/ml), the release reaction was partially suppressed. In rabbit platelet-rich plasma, protopine also inhibited the platelet aggregation caused by ADP, arachidonic acid, PAF and collagen. The thromboxane B2 formation of washed platelets caused by arachidonic acid, collagen, ionophore A23187 and thrombin was suppressed by protopine. Protopine inhibited the intracellular calcium increase caused by arachidonic acid in quin-2/AM loaded rabbit platelets. In the presence of indomethacin, the intracellular calcium increase caused by collagen and PAF was completely suppressed by protopine, and the intracellular calcium increase caused by thrombin was partially inhibited. The phosphoinositides breakdown caused by collagen and PAF was inhibited by protopine, but that by thrombin was not affected significantly. Protopine did not cause the elevation of cyclic AMP level of platelets. It is concluded that the antiplatelet effects of protopine is due to inhibition on thromboxane formation and phosphoinositides breakdown and then lead to the decrease of intracellular calcium concentration.

  11. Platelets activate a pathogenic response to blood-stage Plasmodium infection but not a protective immune response.

    PubMed

    Gramaglia, Irene; Velez, Joyce; Combes, Valery; Grau, Georges E R; Wree, Melanie; van der Heyde, Henri C

    2017-03-23

    Clinical studies indicate that thrombocytopenia correlates with the development of severe falciparum malaria, suggesting that platelets either contribute to control of parasite replication, possibly as innate parasite killer cells or function in eliciting pathogenesis. Removal of platelets by anti-CD41 mAb treatment, platelet inhibition by aspirin, and adoptive transfer of wild-type (WT) platelets to CD40-KO mice, which do not control parasite replication, resulted in similar parasitemia compared with control mice. Human platelets at a physiologic ratio of 1 platelet to 9 red blood cells (RBCs) did not inhibit the in vitro development or replication of blood-stage Plasmodium falciparum The percentage of Plasmodium -infected (iRBCs) with bound platelets during the ascending parasitemia in Plasmodium chabaudi - and Plasmodium berghei -infected mice and the 48-hour in vitro cycle of P falciparum was <10%. P chabaudi and P berghei iRBCs with apoptotic parasites (TdT + ) exhibited minimal platelet binding (<5%), which was similar to nonapoptotic iRBCs. These findings collectively indicate platelets do not kill bloodstage Plasmodium at physiologically relevant effector-to-target ratios. P chabaudi primary and secondary parasitemia was similar in mice depleted of platelets by mAb-injection just before infection, indicating that activation of the protective immune response does not require platelets. In contrast to the lack of an effect on parasite replication, adoptive transfer of WT platelets to CD40-KO mice, which are resistant to experimental cerebral malaria, partially restored experimental cerebral malaria mortality and symptoms in CD40-KO recipients, indicating platelets elicit pathogenesis and platelet CD40 is a key molecule. © 2017 by The American Society of Hematology.

  12. Functional expression of cysteinyl leukotriene receptors on human platelets.

    PubMed

    Hasegawa, Shunji; Ichiyama, Takashi; Hashimoto, Kunio; Suzuki, Yasuo; Hirano, Reiji; Fukano, Reiji; Furukawa, Susumu

    2010-01-01

    Normal peripheral blood leukocytes, such as basophils, eosinophils, B lymphocytes and monocytes/macrophages, have a cysteinyl leukotriene 1 (CysLT1) receptor, while the cysteinyl leukotriene 2 (CysLT2) receptor is expressed in cardiac Purkinje cells, endothelium, brain and leukocytes. However, it is unknown whether or not platelets express the CysLT1 or CysLT2 receptor. In this study we identify and characterize the biological function of the CysLT receptor of human platelets. We determined the CysLT1 or CysLT2 receptor mRNA expression in normal human platelets by RT-PCR and determined protein expression by Western blotting and flow cytometry. Moreover, we examined the effect of cysteinyl leukotrienes (CysLTs) in platelets on the induction of RANTES (Regulated on Activation, Normal T Expressed, and presumably Secreted). We also investigated whether the CysLT1 receptor antagonist pranlukast inhibits CysLT-induced RANTES release. In conclusion, we showed the functional expression of CysLT receptors on human platelets and demonstrated that CysLTs induced the release of significant amounts of RANTES, which suggests a novel role for human platelets in CysLT-mediated allergic inflammation.

  13. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins.

    PubMed

    O'Connor, Marie N; Salles, Isabelle I; Cvejic, Ana; Watkins, Nicholas A; Walker, Adam; Garner, Stephen F; Jones, Chris I; Macaulay, Iain C; Steward, Michael; Zwaginga, Jaap-Jan; Bray, Sarah L; Dudbridge, Frank; de Bono, Bernard; Goodall, Alison H; Deckmyn, Hans; Stemple, Derek L; Ouwehand, Willem H

    2009-05-07

    In this study, we demonstrate the suitability of the vertebrate Danio rerio (zebrafish) for functional screening of novel platelet genes in vivo by reverse genetics. Comparative transcript analysis of platelets and their precursor cell, the megakaryocyte, together with nucleated blood cell elements, endothelial cells, and erythroblasts, identified novel platelet membrane proteins with hitherto unknown roles in thrombus formation. We determined the phenotype induced by antisense morpholino oligonucleotide (MO)-based knockdown of 5 of these genes in a laser-induced arterial thrombosis model. To validate the model, the genes for platelet glycoprotein (GP) IIb and the coagulation protein factor VIII were targeted. MO-injected fish showed normal thrombus initiation but severely impaired thrombus growth, consistent with the mouse knockout phenotypes, and concomitant knockdown of both resulted in spontaneous bleeding. Knockdown of 4 of the 5 novel platelet proteins altered arterial thrombosis, as demonstrated by modified kinetics of thrombus initiation and/or development. We identified a putative role for BAMBI and LRRC32 in promotion and DCBLD2 and ESAM in inhibition of thrombus formation. We conclude that phenotypic analysis of MO-injected zebrafish is a fast and powerful method for initial screening of novel platelet proteins for function in thrombosis.

  14. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins

    PubMed Central

    O'Connor, Marie N.; Salles, Isabelle I.; Cvejic, Ana; Watkins, Nicholas A.; Walker, Adam; Garner, Stephen F.; Jones, Chris I.; Macaulay, Iain C.; Steward, Michael; Zwaginga, Jaap-Jan; Bray, Sarah L.; Dudbridge, Frank; de Bono, Bernard; Goodall, Alison H.; Stemple, Derek L.; Ouwehand, Willem H.

    2009-01-01

    In this study, we demonstrate the suitability of the vertebrate Danio rerio (zebrafish) for functional screening of novel platelet genes in vivo by reverse genetics. Comparative transcript analysis of platelets and their precursor cell, the megakaryocyte, together with nucleated blood cell elements, endothelial cells, and erythroblasts, identified novel platelet membrane proteins with hitherto unknown roles in thrombus formation. We determined the phenotype induced by antisense morpholino oligonucleotide (MO)–based knockdown of 5 of these genes in a laser-induced arterial thrombosis model. To validate the model, the genes for platelet glycoprotein (GP) IIb and the coagulation protein factor VIII were targeted. MO-injected fish showed normal thrombus initiation but severely impaired thrombus growth, consistent with the mouse knockout phenotypes, and concomitant knockdown of both resulted in spontaneous bleeding. Knockdown of 4 of the 5 novel platelet proteins altered arterial thrombosis, as demonstrated by modified kinetics of thrombus initiation and/or development. We identified a putative role for BAMBI and LRRC32 in promotion and DCBLD2 and ESAM in inhibition of thrombus formation. We conclude that phenotypic analysis of MO-injected zebrafish is a fast and powerful method for initial screening of novel platelet proteins for function in thrombosis. PMID:19109564

  15. Potentiation by adrenaline of human platelet activation and the inhibition by the alpha-adrenergic antagonist nicergoline of platelet adhesion, secretion and aggregation.

    PubMed

    Lanza, F; Cazenave, J P; Beretz, A; Sutter-Bay, A; Kretz, J G; Kieny, R

    1986-08-01

    Adrenaline (1 to 10 microM) can induce the aggregation of human platelets suspended in citrated plasma but does not induce the aggregation of washed human platelets at doses as high as 1 mM, although these platelets respond normally to ADP, PAF-acether, collagen, arachidonic acid, thrombin, the endoperoxide analog U-46619 and the Ca2+ ionophore A23187. Adrenaline (0.5 microM) potentiates the aggregation and secretion induced by all the previous agonists in citrated platelet-rich plasma (cPRP) or in washed platelets. The activation by adrenaline of human platelets is mediated by alpha 2-adrenergic receptors, as demonstrated by inhibition with a series of adrenergic antagonists. The alpha-adrenergic antagonist nicergoline inhibits the activation of human platelets by adrenaline in the following situations: nicergoline inhibits the aggregation and secretion caused by adrenaline in cPRP (IC50 0.22 microM and 0.28 microM respectively); nicergoline inhibits the aggregation and secretion induced by the combination of adrenaline and each aggregating agent listed above in cPRP (IC50 ranging from 0.1 to 2.5 microM) or in washed platelets (IC50 ranging from 0.1 to 0.8 microM); nicergoline inhibits the binding of 3H-yohimbine to washed human platelets (IC50 0.26 microM); the intravenous administration of nicergoline (0.5 mg/kg per day) to patients inhibits significantly the ex vivo response of their platelets to adrenaline in cPRP. High concentrations of nicergoline also inhibit the aggregation and secretion induced by the aggregating agents listed above in cPRP (IC50 range 108 to 670 microM) and in washed platelets (IC50 range 27 to 140 microM) and the adhesion of platelets to collagen-coated surfaces. This latter effect is not mediated through blockade of alpha-adrenoceptors. A possible role of adrenaline in platelet activation in vivo could justify the use of nicergoline (Sermion), an alpha-adrenergic antagonist in combination therapy to prevent arterial thrombosis.

  16. Inhibitory effects of ethyl pyruvate on platelet aggregation and phosphatidylserine exposure.

    PubMed

    Li, Wenjin; Yang, Xinyu; Peng, Minyuan; Li, Can; Mu, Guangfu; Chen, Fangping

    2017-06-03

    Ethyl pyruvate (EP) is a stable lipophilic pyruvate derivative. Studies demonstrated that EP shows potent anti-oxidation, anti-inflammatory and anti-coagulant effects. Inflammation and coagulation are closely interacted with platelet activation. However, it is unclear whether EP has anti-platelet effects. Therefore, we investigated the anti-platelet effect of EP in this study in vitro. We found that EP inhibited agonists induced platelets aggregation, ATP release and adhesion to collagen. Flow cytometric analysis revealed that EP inhibited agonist induced platelets PAC-1 binding, as well as P-selectin and CD40L expression. The underlying mechanism of action may involve the inhibition of platelet PI3K/Akt and Protein Kinase C (PKC) signaling pathways. Additionally, EP dose dependently inhibited platelet PS exposure induced by high concentration thrombin. Lactate dehydrogenase (LDH) activity assay and mice platelet count implied that EP may have no toxic effect on platelets. Therefore, we are the first to report that EP has potent anti-platelet activity and attenuates platelet PS exposure in vitro, suggesting that the inhibitory effects of EP on platelets may also play important roles in improvement of inflammation and coagulation disorder in related animal models. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Platelet activation suppresses HIV-1 infection of T cells

    PubMed Central

    2013-01-01

    Background Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. Results We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. Conclusions Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens. PMID:23634812

  18. Platelet activation suppresses HIV-1 infection of T cells.

    PubMed

    Solomon Tsegaye, Theodros; Gnirß, Kerstin; Rahe-Meyer, Niels; Kiene, Miriam; Krämer-Kühl, Annika; Behrens, Georg; Münch, Jan; Pöhlmann, Stefan

    2013-05-01

    Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens.

  19. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine

    PubMed Central

    Novakovic, Valerie A.; Shi, Jialan; Rasmussen, Jan; Pipe, Steven W.

    2015-01-01

    Thrombin-stimulated platelets expose very little phosphatidylserine (PS) but express binding sites for factor VIII (fVIII), casting doubt on the role of exposed PS as the determinant of binding sites. We previously reported that fVIII binding sites are increased three- to sixfold when soluble fibrin (SF) binds the αIIbβ3 integrin. This study focuses on the hypothesis that platelet-bound SF is the major source of fVIII binding sites. Less than 10% of fVIII was displaced from thrombin-stimulated platelets by lactadherin, a PS-binding protein, and an fVIII mutant defective in PS-dependent binding retained platelet affinity. Therefore, PS is not the determinant of most binding sites. FVIII bound immobilized SF and paralleled platelet binding in affinity, dependence on separation from von Willebrand factor, and mediation by the C2 domain. SF also enhanced activity of fVIII in the factor Xase complex by two- to fourfold. Monoclonal antibody (mAb) ESH8, against the fVIII C2 domain, inhibited binding of fVIII to SF and platelets but not to PS-containing vesicles. Similarly, mAb ESH4 against the C2 domain, inhibited >90% of platelet-dependent fVIII activity vs 35% of vesicle-supported activity. These results imply that platelet-bound SF is a component of functional fVIII binding sites. PMID:26162408

  20. [Influence of S-nitrosoglutathione on agglutination and nitric oxide concentration in frozen platelets].

    PubMed

    Wu, Tao; Liu, Jing-Han; Li, Hui; Zhou, Wu; Wang, Shu-Ying

    2012-04-01

    The aim of this study was to investigate the influence of S-nitrosoglutathione (GSNO) on agglutination and nitric oxide (NO) concentration in frozen platelets. The agglutination of platelets was detected by using platelet agglutination apparatus, the level of NO in platelets was detected by the nitrate enzyme reduction method. The results showed that the rates of agglutination in freeze platelets and frozen platelets treated with GSNO were (35.47 ± 2.93) and (24.43 ± 3.07), which were significantly lower than that in fresh liquid platelets (63.44 ± 2.96). The level of NO concentration in frozen platelets was (22.16 ± 6.38), which was significantly lower than that in fresh liquid platelets (31.59 ± 16.88). The level of NO concentration in frozen platelets treated with GSNO was (45.64 ± 6.31), which was significantly higher than that in fresh liquid platelets (P < 0.01). It is concluded that GSNO increases the concentration of NO in frozen platelets, inhibits platelet activation and maintains platelet function, thus GSNO can be used as a frozen protective agent.

  1. Comparison of increased aspirin dose versus combined aspirin plus clopidogrel therapy in patients with diabetes mellitus and coronary heart disease and impaired antiplatelet response to low-dose aspirin.

    PubMed

    Duzenli, Mehmet Akif; Ozdemir, Kurtulus; Aygul, Nazif; Soylu, Ahmet; Tokac, Mehmet

    2008-08-15

    The effects of therapy with aspirin 300 mg/day and with combined aspirin 100 mg/day plus clopidogrel 75 mg/day on platelet function were compared in patients with diabetes mellitus and coronary artery disease and impaired antiplatelet responses to aspirin 100 mg/day. The study population consisted of 151 outpatients with type II diabetes mellitus and coronary artery disease who were taking aspirin 100 mg/day. Of the 151 patients, a subgroup of subjects with impaired aspirin response were selected on the basis of the results of platelet aggregometry. Nonresponsiveness to aspirin was defined as mean aggregation > or =69% with 3 micromol/L adenosine diphosphate and mean aggregation > or =70% with 2 micromol/L collagen. Aspirin semiresponders were defined as meeting 1 but not both of these criteria. Nonresponders and semiresponders were randomized equally to aspirin 300 mg/day and aspirin 100 mg/day plus clopidogrel 75 mg/day, and aggregation tests were repeated after 2 weeks. Sixty of the 151 patients with diabetes (40%) were found to respond to aspirin inadequately. Platelet aggregation induced by adenosine diphosphate and collagen decreased significantly after aspirin 300 mg/day or combined therapy. Combined treatment was found to have a stronger inhibitory effect on platelet aggregation induced by adenosine diphosphate than aspirin 300 mg/day (p = 0.002). Impaired aspirin response was resolved by increasing the aspirin dose or adding clopidogrel to aspirin (p <0.0001 for each). However, desired platelet inhibition was achieved in significantly more patients by combined treatment than by aspirin 300 mg/day (p <0.05). In conclusion, aspirin 100 mg/day does not inhibit platelet function adequately in a significant number of patients with diabetes mellitus and coronary artery disease. Increasing the aspirin dose to 300 mg/day or adding clopidogrel to aspirin can provide adequate platelet inhibition in a significant number of those patients with impaired responses to low-dose aspirin.

  2. How does measurement of platelet P-selectin compare with other methods of measuring platelet function as a means of determining the effectiveness of antiplatelet therapy?

    PubMed

    Fox, Susan C; May, Jane A; Dovlatova, Natalia; Glenn, Jackie R; Johnson, Andrew; White, Ann E; Radhakrishnan, Ashwin; Heptinstall, Stan

    2018-02-20

    Measurement of P-selectin on activated platelets as a means of measuring platelet function utilizing the technology described here has the advantage of not requiring immediate access to specialist equipment and expertise. Blood samples are activated, fixed, stored, and transported to a central laboratory for flow cytometric analysis. Here we have compared P-selectin with other more traditional approaches to measuring platelet function in blood and/or platelet-rich plasma (PRP) from patients with acute coronary syndromes on treatment for at least 1 month with either aspirin and clopidogrel or aspirin with prasugrel. The comparators were light transmission aggregometry (LTA), VerifyNow and Multiplate aggregometry (for determining the effects of aspirin) and LTA, VerifyNow and Multiplate together with the BioCytex VASP phosphorylation assay (for the P2Y 12 antagonists). The P-selectin Aspirin Test revealed substantial inhibition of platelet function in all but three of 96 patients receiving aspirin with clopidogrel and in none of 51 patients receiving aspirin and prasugrel. The results were very similar to those obtained using LTA. There was only one patient with high residual platelet aggregation and low P-selectin expression. The same patients identified as "non-responders" to aspirin also presented with the highest residual platelet activity as measured using the VerifyNow system, although not quite as well separated from the other values. With the Multiplate test only one of these patients clearly stood out from the others. The results obtained using the P-selectin P2Y 12 Test in 102 patients taking aspirin and clopidogrel were similar to the more traditional approaches in that a wide scatter of results was obtained. Generally, high values seen with the P-selectin P2Y 12 Test were also high with the LTA, VerifyNow, Multiplate, and BioCytex VASP P2Y 12 Tests. Similarly, low residual platelet function using the P2Y 12 test was seen irrespective of the testing procedure used. However, there were differences in some patients. Prasugrel was always more effective than clopidogrel in inhibiting platelet function with none of 56 patients (P-selectin and VerifyNow), only 2 of 56 patients (Multiplate) and only 3 of 56 patients (Biocytex VASP) demonstrating high on-treatment residual platelet reactivity (HRPR) defined using previously published cut-off values. The exception was LTA where there were 11 of 56 patients with HRPR. It remains to be seen which experimental approach provides the most useful information regarding outcomes after adjusting therapies in treated patients.

  3. G-protein-coupled receptors signaling pathways in new antiplatelet drug development.

    PubMed

    Gurbel, Paul A; Kuliopulos, Athan; Tantry, Udaya S

    2015-03-01

    Platelet G-protein-coupled receptors influence platelet function by mediating the response to various agonists, including ADP, thromboxane A2, and thrombin. Blockade of the ADP receptor, P2Y12, in combination with cyclooxygenase-1 inhibition by aspirin has been among the most widely used pharmacological strategies to reduce cardiovascular event occurrence in high-risk patients. The latter dual pathway blockade strategy is one of the greatest advances in the field of cardiovascular medicine. In addition to P2Y12, the platelet thrombin receptor, protease activated receptor-1, has also been recently targeted for inhibition. Blockade of protease activated receptor-1 has been associated with reduced thrombotic event occurrence when added to a strategy using P2Y12 and cyclooxygenase-1 inhibition. At this time, the relative contributions of these G-protein-coupled receptor signaling pathways to in vivo thrombosis remain incompletely defined. The observation of treatment failure in ≈10% of high-risk patients treated with aspirin and potent P2Y12 inhibitors provides the rationale for targeting novel pathways mediating platelet function. Targeting intracellular signaling downstream from G-protein-coupled receptor receptors with phosphotidylionisitol 3-kinase and Gq inhibitors are among the novel strategies under investigation to prevent arterial ischemic event occurrence. Greater understanding of the mechanisms of G-protein-coupled receptor-mediated signaling may allow the tailoring of antiplatelet therapy. © 2015 American Heart Association, Inc.

  4. Endothelial progenitor cells inhibit platelet function in a P-selectin-dependent manner.

    PubMed

    Abou-Saleh, Haissam; Hachem, Ahmed; Yacoub, Daniel; Gillis, Marc-Antoine; Merhi, Yahye

    2015-05-07

    The role of endothelial progenitor cells (EPCs) in vascular repair is related to their recruitment at the sites of injury and their interaction with different components of the circulatory system. We have previously shown that EPCs bind and inhibit platelet function and impair thrombus formation via prostacyclin secretion, but the role of EPC binding to platelet P-selectin in this process has not been fully characterized. In the present study, we assessed the impact of EPCs on thrombus formation and we addressed the implication of P-selectin in this process. EPCs were generated from human peripheral blood mononuclear cells cultured on fibronectin in conditioned media. The impact of EPCs on platelet aggregation and thrombus formation was investigated in P-selectin deficient (P-sel(-/-)) mice and their wild-type (WT) counterparts. EPCs significantly and dose-dependently impaired collagen-induced whole blood platelet aggregation in WT mice, whereas no effects were observed in P-sel(-/-) mice. Moreover, in a ferric chloride-induced arterial thrombosis model, infusion of EPCs significantly reduced thrombus formation in WT, but not in P-sel(-/-) mice. Furthermore, the relative mass of thrombi generated in EPC-treated P-sel(-/-) mice were significantly larger than those in EPC-treated WT mice, and the number of EPCs recruited within the thrombi and along the arterial wall was reduced in P-sel(-/-) mice as compared to WT mice. This study shows that EPCs impair platelet aggregation and reduce thrombus formation via a cellular mechanism involving binding to platelet P-selectin. These findings add new insights into the role of EPC-platelet interactions in the regulation of thrombotic events during vascular repair.

  5. A Critical Role for the Transient Receptor Potential Channel Type 6 in Human Platelet Activation

    PubMed Central

    Conlon, Christine; Khasawneh, Fadi T.

    2015-01-01

    While calcium signaling is known to play vital roles in platelet function, the mechanisms underlying its receptor-operated calcium entry component (ROCE) remain poorly understood. It has been proposed, but never proven in platelets, that the canonical transient receptor potential channel-6 (TRPC6) mediates ROCE. Nonetheless, we have previously shown that the mouse TRPC6 regulates hemostasis, thrombogenesis by regulating platelet aggregation. In the present studies, we used a pharmacological approach to characterize the role of TRPC6 in human platelet biology. Thus, interestingly, we observed that a TRPC6 inhibitor exerted significant inhibitory effects on human platelet aggregation in a thromboxane receptor (TPR)-selective manner; no additional inhibition was observed in the presence of the calcium chelator BAPTA. This inhibitor also significantly inhibited human platelet secretion (dense and alpha granules), integrin IIb-IIIa, Akt and ERK phosphorylation, again, in a TPR-selective manner; no effects were observed in response to ADP receptor stimulation. Furthermore, there was a causal relationship between these inhibitory effects, and the capacity of the TRPC6 inhibitor to abrogate elevation in intracellular calcium, that was again found to be TPR-specific. This effect was not found to be due to antagonism of TPR, as the TRPC6 inhibitor did not displace the radiolabeled antagonist [3H]SQ29,548 from its binding sites. Finally, our studies also revealed that TRPC6 regulates human clot retraction, as well as physiological hemostasis and thrombus formation, in mice. Taken together, our findings demonstrate, for the first time, that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Moreover, these data highlight TRPC6 as a novel promising therapeutic strategy for managing thrombotic disorders. PMID:25928636

  6. Platelets Inhibit Migration of Canine Osteosarcoma Cells.

    PubMed

    Bulla, S C; Badial, P R; Silva, R C; Lunsford, K; Bulla, C

    2017-01-01

    The interaction between platelets and tumour cells is important for tumour growth and metastasis. Thrombocytopenia or antiplatelet treatment negatively impact on cancer metastasis, demonstrating potentially important roles for platelets in tumour progression. To our knowledge, there is no information regarding the role of platelets in cancer progression in dogs. This study was designed to test whether canine platelets affected the migratory behaviour of three canine osteosarcoma cell lines and to give insights of molecular mechanisms. Intact platelets, platelet lysate and platelet releasate inhibited the migration of canine osteosarcoma cell lines. Addition of blood leucocytes to the platelet samples did not alter the inhibitory effect on migration. Platelet treatment also significantly downregulated the transcriptional levels of SNAI2 and TWIST1 genes. The interaction between canine platelets or molecules released during platelet activation and these tumour cell lines inhibits their migration, which suggests that canine platelets might antagonize metastasis of canine osteosarcoma. This effect is probably due to, at least in part, downregulation of genes related to epithelial-mesenchymal transition. Copyright © 2016. Published by Elsevier Ltd.

  7. Identification of berberine as a direct thrombin inhibitor from traditional Chinese medicine through structural, functional and binding studies

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Zhang, Yuxin; Yang, Ying; Wu, Xia; Fan, Hantian; Qiao, Yanjiang

    2017-03-01

    Thrombin acts as a key enzyme in the blood coagulation cascade and represents a potential drug target for the treatment of several cardiovascular diseases. The aim of this study was to identify small-molecule direct thrombin inhibitors from herbs used in traditional Chinese medicine (TCM). A pharmacophore model and molecular docking were utilized to virtually screen a library of chemicals contained in compositions of traditional Chinese herbs, and these analyses were followed by in vitro bioassay validation and binding studies. Berberine (BBR) was first confirmed as a thrombin inhibitor using an enzymatic assay. The BBR IC50 value for thrombin inhibition was 2.92 μM. Direct binding studies using surface plasmon resonance demonstrated that BBR directly interacted with thrombin with a KD value of 16.39 μM. Competitive binding assay indicated that BBR could bind to the same argartroban/thrombin interaction site. A platelet aggregation assay demonstrated that BBR had the ability to inhibit thrombin-induced platelet aggregation in washed platelets samples. This study proved that BBR is a direct thrombin inhibitor that has activity in inhibiting thrombin-induced platelet aggregation. BBR may be a potential candidate for the development of safe and effective thrombin-inhibiting drugs.

  8. A Novel Direct Factor Xa Inhibitory Peptide with Anti-Platelet Aggregation Activity from Agkistrodon acutus Venom Hydrolysates.

    PubMed

    Chen, Meimei; Ye, Xiaohui; Ming, Xin; Chen, Yahui; Wang, Ying; Su, Xingli; Su, Wen; Kong, Yi

    2015-06-02

    Snake venom is a natural substance that contains numerous bioactive proteins and peptides, nearly all of which have been identified over the last several decades. In this study, we subjected snake venom to enzymatic hydrolysis to identify previously unreported bioactive peptides. The novel peptide ACH-11 with the sequence LTFPRIVFVLG was identified with both FXa inhibition and anti-platelet aggregation activities. ACH-11 inhibited the catalytic function of FXa towards its substrate S-2222 via a mixed model with a Ki value of 9.02 μM and inhibited platelet aggregation induced by ADP and U46619 in a dose-dependent manner. Furthermore, ACH-11 exhibited potent antithrombotic activity in vivo. It reduced paralysis and death in an acute pulmonary thrombosis model by 90% and attenuated thrombosis weight in an arterio-venous shunt thrombosis model by 57.91%, both at a dose of 3 mg/kg. Additionally, a tail cutting bleeding time assay revealed that ACH-11 did not prolong bleeding time in mice at a dose of 3 mg/kg. Together, our results reveal that ACH-11 is a novel antithrombotic peptide exhibiting both FXa inhibition and anti-platelet aggregation activities, with a low bleeding risk. We believe that it could be a candidate or lead compound for new antithrombotic drug development.

  9. Effect of atherosclerosis on endothelium-dependent inhibition of platelet activation in humans.

    PubMed

    Diodati, J G; Dakak, N; Gilligan, D M; Quyyumi, A A

    1998-07-07

    We investigated whether luminal release of nitric oxide (NO) contributes to inhibition of platelet activation and whether these effects are reduced in patients with atherosclerosis. Femoral blood flow velocity and ex vivo whole blood platelet aggregation by impedance aggregometry were measured in femoral venous blood during femoral arterial infusion of acetylcholine (ACh; 30 microg/min) in 30 patients, 19 of whom had angiographic atherosclerosis. Measurements were repeated with sodium nitroprusside (40 microg/min), L-arginine (160 micromol/min), and N(G)-monomethyl-L-arginine (L-NMMA; 16 micromol/min). There was significant inhibition of collagen-induced platelet aggregation with ACh (45+/-9.5% lower, P<0.001), and this inhibition was greater in patients without atherosclerosis (68.7+/-10.4% reduction) than in those with atherosclerosis (32.5+/-8.1%, P=0.04). The magnitude of inhibition correlated with vasodilation with ACh, indicating an association between the smooth muscle and antiplatelet effects of endothelium-dependent stimulation. Neither L-NMMA nor sodium nitroprusside altered platelet aggregation. L-Arginine inhibited platelet aggregation equally in vitro (34+/-8% reduction, P<0.01) and in vivo (37+/-13% reduction, P<0.01). Stimulation of NO release into the vascular lumen with ACh inhibits platelet aggregation, an effect that is attenuated in patients with atherosclerosis and endothelial dysfunction. Basal NO release does not appear to contribute to platelet passivation in vivo. L-Arginine inhibited platelet aggregation by its direct action on platelets. These findings provide a pathophysiological basis for the observed increase in thrombotic events in atherosclerosis. Use of L-arginine and other strategies to improve endothelial NO activity may impact favorably on thrombotic events in atherosclerosis.

  10. Inhibitory effects of yuzu and its components on human platelet aggregation.

    PubMed

    Kim, Tae-Ho; Kim, Hye-Min; Park, Se Won; Jung, Yi-Sook

    2015-03-01

    Our previous study demonstrated that yuzu has an anti-platelet effect in rat blood. In the present study, we examined whether the anti-platelet effect of yuzu can be extended to human blood by investigating its ability to inhibit aggregations induced by various agonists in human platelet rich plasma (PRP). This study also investigated the underlying mechanism of yuzu focusing on ADP granule secretion, TXB2 formations, and PLCγ/Akt signaling. The results from this study showed that ethanolic yuzu extract (YE), and its components, hesperidin and naringin, inhibited human platelet aggregation in a concentration-dependent manner. YE, hesperidin and naringin also inhibited TXB2 formation and ADP release. The phosphorylation of PLCγ and Akt was significantly inhibited by YE, heperidin and naringin. Furthermore, we demonstrated that YE, heperidin and naringin has anti-platelet effects in rat ex vivo studies, and lower side effects in mice tail bleeding time studies. The results from this study suggest that YE, hesperidin and naringin can inhibit human platelet aggregation, at least partly through the inhibition of PLCγ and Akt, leading to a decrease in TXB2 formation and granule secretion.

  11. A detailed examination of platelet function inhibition by nitric oxide in platelet-rich plasma and whole blood.

    PubMed

    Zimmermann, Robert; Krueger, Julia; Filipović, Milos R; Ivanović-Burmazović, Ivana; Calatzis, Andreas; Weiss, Dominik R; Eckstein, Reinhold

    2013-01-01

    The question of whether novel instruments such as multiple electrode aggregometry (MEA) can be used for measurement of the effects of nitric oxide (NO) on platelets (PLTs) has not been examined. Therefore, we compared the effects of NO concentrations (1, 10, and 100 microM) on the PLT aggregation response to ADP, arachidonic acid (AA), collagen, ristocetin, and thrombin receptor-activating peptide 6 (TRAP6) using light transmission aggregometry (LTA) and multiple electrode aggregometry (MEA) and examined the effects of NO using the platelet function analyzer (PFA)-100. The response of PLTs to ADP and AA was strongly inhibited by all NO concentrations in LTA and MEA. The inhibition of the responses to ristocetin and collagen was detectable in MEA at lower NO concentrations than in LTA. However, the typically increasing lag phase between collagen addition and the aggregation response in the presence of NO was more obvious in LTA. TRAP caused a reproducible early response in the presence of NO in LTA which was followed by rapid PLT disaggregation, whereas even 100 microM NO did not inhibit the response to TRAP in MEA. Finally, NO prolonged the in-vitro bleeding time remarkably more in the PFA-100 collagen-epinephrin cartridge than in the collagen-ADP cartridge. Whole blood versus PLT rich plasma, citrate versus hirudin, and high versus low shear influenced the effects of NO. This shows that a careful selection of models and potentially a combination of different methods is appropriate for a differentiated evaluation of pharmacological or physiological mechanisms of NO-donors or of NO-inhibitors.

  12. Glaucocalyxin A Inhibits Platelet Activation and Thrombus Formation Preferentially via GPVI Signaling Pathway

    PubMed Central

    Li, Qiang; Ren, Lijie; Liu, Xiaohui; Chu, Chunjun; Ozaki, Yukio; Zhang, Jian; Zhu, Li

    2013-01-01

    Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA), an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01μg/ml, 0.1μg/ml) significantly inhibited platelet aggregation induced by collagen (P<0.001) and CRP (P<0.01), a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibition effect of GLA on platelet activation and its in vivo effect on thrombus formation, suggesting that GLA could potentially be developed as an antiplatelet and antithrombotic agent. PMID:24386454

  13. Platelet Arachidonic Acid Deficiency May Contribute to Abnormal Platelet Function During Parenteral Fish Oil Monotherapy in a Piglet Model.

    PubMed

    Turner, Justine M; Field, Catherine J; Goruk, Sue; Wizzard, Pamela; Dicken, Bryan J; Bruce, Aisha; Wales, Paul W

    2016-05-01

    Fish oil monotherapy has been an advance for treating intestinal failure-associated liver disease (IFALD). However, such patients are at risk of bleeding complications from liver disease and because fish oil can inhibit thrombosis. We have previously reported abnormal platelet function in neonatal piglets given fish oil monotherapy during parenteral nutrition (PN). The purpose of this study was to determine if abnormal fatty acid composition of the platelets could explain the prior observed antiplatelet effect. Neonatal piglets were assigned to 2 treatments: PN with fish oil monotherapy (FO; n = 4) or PN with soy oil (SO; n = 5). On day 14, plasma was collected and platelets isolated by centrifuging. The fatty acid content in plasma and platelet plug were measured using gas liquid chromatography and compared with controls (CON; n = 5). The arachidonic acid (AA) content in the FO group was on average half that of the SO group, in both the platelets (FO, 3.5% vs SO, 7.6%; P = .021; CON, 4.5%-11%) and the plasma (FO, 3.8% vs SO, 9.2%; P = .002; CON, 6.1%-9.5%). No bleeding complications were observed for any piglets during PN treatment. Using platelet mapping, we have previously shown that neonatal piglets given fish oil monotherapy have abnormal platelet function in the AA pathway. This report demonstrates that such an abnormality can be explained by platelet AA deficiency. Platelet mapping and platelet fatty acid analysis should be undertaken in human infants treated with fish oil monotherapy during PN. © 2015 American Society for Parenteral and Enteral Nutrition.

  14. Nitric oxide and cardiovascular effects: new insights in the role of nitric oxide for the management of osteoarthritis.

    PubMed

    Mackenzie, Isla S; Rutherford, Daniel; MacDonald, Thomas M

    2008-01-01

    Nitric oxide (NO) is an important mediator in both health and disease. In addition to its effects on vascular tone and platelet function, it plays roles in inflammation and pain perception that may be of relevance in osteoarthritis. Many patients with osteoarthritis take nonsteroidal anti-inflammatory drugs (NSAIDs) long term for pain control. Over recent years concern has been raised about the possible cardiovascular side effects of NSAIDs. The reasons for this possible increased cardiovascular risk with NSAIDs are not yet entirely clear, although changes in blood pressure, renal salt handling and platelet function may contribute. Recently, drugs that chemically link a NSAID with a NO donating moiety (cyclo-oxygenase-inhibiting NO-donating drugs [CINODs]) were developed. NO is an important mediator of endothelial function, acting as a vasodilator and an inhibitor of platelet aggregation, and having anti-inflammatory properties. The potential benefits of CINODs include the combination of effective analgesic and anti-inflammatory actions with NO release, which might counterbalance any adverse cardiovascular effects of NSAIDs. Effects of CINODs in animal studies include inhibition of vasopressor responses, blood pressure reduction in hypertensive rats and inhibition of platelet aggregation. CINODs may also reduce ischemic damage to compromised myocardial tissue. In addition, endothelial dysfunction is a recognized feature of inflammatory arthritides, and therefore a drug that might provide slow release of NO to the vasculature while treating pain is an attractive prospect in these conditions. Further studies of the effects of CINODs in humans are required, but these agents represent a potential exciting advance in the management of osteoarthritis.

  15. A new clopidogrel (Plavix) point-of-care assay: rapid determination of antiplatelet activity in trauma patients.

    PubMed

    Bansal, Vishal; Fortlage, Dale; Lee, Jeanne; Doucet, Jay; Potenza, Bruce; Coimbra, Raul

    2011-01-01

    An increasing proportion of trauma patients are on anticoagulation or antiplatelet therapy. Unlike warfarin, where measuring international normalized ratio can help direct management, measuring platelet inhibition from clopidogrel (Plavix) is not standardized. We report the use of a new P2Y12 point-of-care assay (VerifyNow; Accumetrics, San Diego, CA) to determine the magnitude of platelet inhibition in trauma patients using clopidogrel. Trauma patients in 2009 were queried for clopidogrel use by prehospital personnel and the trauma team. Blood was obtained on admission for patients reportedly taking clopidogrel and was assayed for platelet inhibition using the VerfiyNow-P2Y12 device that measures P2Y12 reaction units and photometrically determines platelet inhibition percentage within 30 minutes. Patient demographics including age, Injury Severity Score, mechanism of injury, and complications from hemorrhage were also analyzed. In the time studied, 46 patients taking clopidogrel were assayed for platelet inhibition. The mean age was 75.9 years±11.8 years, and the most common mechanism of injury was fall (86.9%). Platelet inhibition ranged from 0% to 89%. There were no deaths, and only two patients, from the 0% and>30% inhibition group, had hemorrhagic complications (increased intracranial hemorrhage). The P2Y12 point-of-care assay determined that a large percentage of patients had undetectable or low platelet inhibition despite reportedly being on clopidogrel therapy. These patients may be clopidogrel nonresponders or noncompliant. It is unlikely that clopidogrel reversal therapies, such as platelet transfusions or Desmopressin, would be beneficial in this group. Further studies stratifying the percent platelet inhibition needed to increase bleeding complications is warranted to optimize management strategies.

  16. Inhibition of the biosynthesis of prostaglandin E2 by low dose aspirin: implications for adenocarcinoma metastasis

    PubMed Central

    Boutaud, Olivier; Sosa, I. Romina; Amin, Taneem; Oram, Denise; Adler, David; Hwang, Hyun S.; Crews, Brenda C.; Milne, Ginger; Harris, Bradford K.; Hoeksema, Megan; Knollmann, Bjorn C.; Lammers, Philip E.; Marnett, Lawrence J.; Massion, Pierre P.; Oates, John A.

    2016-01-01

    Meta-analyses have demonstrated that low dose aspirin reduces the risk of developing adenocarcinoma metastasis, and when colon cancer is detected during aspirin treatment, there is a remarkable 83% reduction in risk of metastasis. As platelets participate in the metastatic process, the anti-platelet action of low dose aspirin likely contributes to its anti-metastatic effect. Cycloxooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) also contributes to metastasis, and we addressed the hypothesis that low dose aspirin also inhibits PGE2 biosynthesis. We show that low dose aspirin inhibits systemic PGE2 biosynthesis by 45% in healthy volunteers (p <0.0001). Aspirin is found to be more potent in colon adenocarcinoma cells than in the platelet, and in lung adenocarcinoma cells its inhibition is equivalent to that in the platelet. Inhibition of COX by aspirin in colon cancer cells is in the context of the metastasis of colon cancer primarily to the liver, the organ exposed to the same high concentrations of aspirin as the platelet. We find that the interaction of activated platelets with lung adenocarcinoma cells up-regulates COX-2 expression and PGE2 biosynthesis, and inhibition of platelet COX-1 by aspirin inhibits PGE2 production by the platelet-tumor cell aggregates. In conclusion, low dose aspirin has a significant effect on extraplatelet cyclooxygenase, and potently inhibits COX-2 in lung and colon adenocarcinoma cells. This supports a hypothesis that the remarkable prevention of metastasis from adenocarcinomas, and particularly from colon adenocarcinomas, by low dose aspirin results from its effect on platelet COX-1 combined with inhibition of PGE2 biosynthesis in metastasizing tumor cells. PMID:27554763

  17. Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom.

    PubMed

    Chanda, Chandrasekhar; Sarkar, Angshuman; Sistla, Srinivas; Chakrabarty, Dibakar

    2013-11-22

    A low molecular weight anti-platelet peptide (6.9 kDa) has been purified from Naja kaouthia venom and was named KT-6.9. MALDI-TOF/TOF mass spectrometry analysis revealed the homology of KT-6.9 peptide sequence with many three finger toxin family members. KT-6.9 inhibited human platelet aggregation process in a dose dependent manner. It has inhibited ADP, thrombin and arachidonic acid induced platelet aggregation process in dose dependent manner, but did not inhibit collagen and ristocetin induced platelet aggregation. Strong inhibition (70%) of the ADP induced platelet aggregation by KT-6.9 suggests competition with ADP for its receptors on platelet surface. Anti-platelet activity of KT-6.9 was found to be 25 times stronger than that of anti-platelet drug clopidogrel. Binding of KT-6.9 to platelet surface was confirmed by surface plasma resonance analysis using BIAcore X100. Binding was also observed by a modified sandwich ELISA method using anti-KT-6.9 antibodies. KT-6.9 is probably the first 3 FTx from Indian monocled cobra venom reported as a platelet aggregation inhibitor. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Effects of clopidogrel and aspirin combination versus aspirin alone on platelet aggregation and major receptor expression in patients with heart failure: the Plavix Use for Treatment Of Congestive Heart Failure (PLUTO-CHF) trial.

    PubMed

    Serebruany, Victor L; Malinin, Alex I; Jerome, Scott D; Lowry, David R; Morgan, Athol W; Sane, David C; Tanguay, Jean-François; Steinhubl, Steven R; O'connor, Christopher M

    2003-10-01

    Persistent platelet activation may contribute to thrombotic events in patients with congestive heart failure (CHF). Chronic use of mild platelet inhibitors could therefore represent an independent avenue to improve morbidity, mortality, and quality of life in this expanding population. Although clopidogrel is widely used in patients with acute coronary syndromes and ischemic stroke, the ability of this novel ADP-receptor antagonist to inhibit platelet function in patients with CHF is unknown. We assessed antiplatelet properties of clopidogrel with aspirin (C+A) versus aspirin alone (A) in patients with CHF with heightened platelet activity. Patients with left ventricular ejection fraction <40%, or CHF symptoms in the setting of preserved systolic function and New York Heart Association class II-IV were screened. Patients were considered to have platelet activation when 4 of the following 5 parameters were met: ADP-induced platelet aggregation >60%; collagen-induced aggregation >70%; whole blood aggregation >18 ohms; expression of GP IIb/IIIa >220 log MFI; and P-selectin cell positivity >8%. All patients were treated with 325 mg of acetylsalycilic acid (ASA) for at least 1 month. Patients receiving an antithrombotic agent other than ASA were excluded. Patients meeting clinical and laboratory criteria were randomly assigned to C+A (n=25), A (n=25) groups, or represent screen failures (n=38). Platelet studies (conventional and whole blood aggregometry, shear-induced activation, expression of 10 major receptors and formation of platelet-leukocyte microparticles) were performed at baseline and after 30 days of therapy. There were no deaths, hospitalizations, or serious adverse events. There were no changes in platelet parameters in the A group. In contrast, therapy with C+A resulted in a significant inhibition of platelet activity assessed by ADP-induced (P =.00001), and epinephrine-induced (P =.0016) aggregation, closure time (P =.04), expression of PECAM-1 (P =.009), GP Ib (P =.006), GP IIb/IIIa antigen (P =.0001), GP IIb/IIIa activity with PAC-1 (P =.0021), and CD151 (P =.0026) when compared with the A group. Therapy with C+A also resulted in the reduced formation of platelet-leukocyte microparticles (P =.021). Collagen-induced aggregation in plasma and in whole blood, expression of vitronectin receptor, P-selectin, CD63, CD107a, and CD107b did not differ among groups. Treatment with C+A for 1 month provides significantly greater inhibition of platelet activity than ASA alone in patients with CHF. Patients with CHF with heightened platelet activity represent a potential target population in which addition of clopidogrel may decrease mortality rates by reducing the incidence of thrombotic vascular events.

  19. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity

    PubMed Central

    Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi

    2017-01-01

    Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity. PMID:28282426

  20. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  1. Inhibition of Glycoprotein VI Clustering by Collagen as a Mechanism of Inhibiting Collagen-Induced Platelet Responses: The Example of Losartan

    PubMed Central

    Jiang, Peng; Loyau, Stéphane; Tchitchinadze, Maria; Ropers, Jacques; Jondeau, Guillaume; Jandrot-Perrus, Martine

    2015-01-01

    Exposure of platelets to collagen triggers the formation of a platelet clot. Pharmacological agents capable of inhibiting platelet activation by collagen are thus of potential therapeutic interest. Thrombus formation is initiated by the interaction of the GPIb-V-IX complex with collagen-bound vWF, while GPVI interaction with collagen triggers platelet activation that is reinforced by ADP and thromboxane A2. Losartan is an angiotensin II (Ang II) type I receptor (AT1R) antagonist proposed to have an antiplatelet activity via the inhibition of both the thromboxane A2 (TXA2) receptor (TP) and the glycoprotein VI (GPVI). Here, we characterized in vitro the effects of losartan at different doses on platelet responses: losartan inhibited platelet aggregation and secretion induced by 1 μg.mL-1 and 10 μg.mL-1 of collagen with an IC50 of ~ 6 μM. Losartan inhibited platelet responses induced by the GPVI specific collagen related peptide but not by the α2β1 specific peptide. However, losartan did not inhibit the binding of recombinant GPVI to collagen, which is not in favor of a simple competition. Indeed, the clustering of GPVI observed in flow cytometry and using the Duolink methodology, was inhibited by losartan. The impact of a therapeutic dose of losartan (100 mg/day) on platelet responses was analyzed ex vivo in a double blind study. No statistically significant differences were observed between losartan-treated (n=25) and non-treated (n=30) patients in terms of collagen and U46619-induced platelet activation. These data indicate that in treated patients, losartan does not achieve a measurable antiplatelet effect but provide the proof of concept that inhibiting collagen-induced GPVI clustering is of pharmacological interest to obtain an antithrombotic efficacy. Trial Registration ClinicalTrials.gov NCT00763893 PMID:26052700

  2. Platelet inhibition during ticagrelor monotherapy versus ticagrelor plus aspirin in patients with coronary artery disease (TEMPLATE study): study protocol for a randomised controlled trial.

    PubMed

    Baos, Sarah; Underwood, Wendy; Culliford, Lucy; Reeves, Barnaby C; Rogers, Chris A; Bowles, Ruth; Johnson, Tom; Baumbach, Andreas; Mumford, Andrew

    2017-11-09

    Dual antiplatelet therapy (DAPT) with aspirin (ASP) and a P2Y 12 blocker is currently standard care after percutaneous coronary intervention (PCI) with stent insertion, and aims to inhibit platelet function in order to prevent stent thrombosis. The P2Y 12 blocker ticagrelor (TIC) has greater antiplatelet effect than the previously used members of this class, such as clopidogrel. In healthy volunteers, TIC is sufficient to cause strong platelet inhibition, with little additional effect from ASP. Omission of ASP may improve the safety of antiplatelet regimes by reducing bleeding. However, the effect of single antiplatelet treatment with TIC, compared to DAPT with TIC + ASP, has not been studied in detail in patients with coronary artery disease. To compare TIC with TIC + ASP, we have initiated a single centre, open-label randomised controlled trial (TEMPLATE study) in adults receiving DAPT following PCI with a sample size of 110 patients. Patients are invited to join the study when, as part of standard care, they are due to switch from DAPT (ASP + any P2Y 12 blocker) to single antiplatelet treatment with ASP alone after 6-12 months. Patients are randomised to receive either TIC or TIC + ASP for 4 weeks. All patients then revert to standard care with ASP alone. Blood samples and clinical data are collected at three study visits: at baseline during treatment with ASP + any P2Y 12 blocker (visit 1); approximately 4 weeks after visit 1 during treatment with either TIC or TIC + ASP (visit 2); and approximately 8 weeks after visit 1 when treatment has reverted to ASP alone (visit 3). The primary outcome is the extent of platelet inhibition, measured by light transmission aggregation, flow cytometry, flow chamber and plasma biomarker tests. The primary analysis will compare the extent of platelet inhibition between the TIC and TIC + ASP groups at visit 2, adjusted for baseline platelet reactivity. Secondary analyses will compare the extent of platelet inhibition at visit 2 with that at visit 3. This is the first study to compare in detail the extent of platelet inhibition in patients who are receiving TIC compared with TIC + ASP. The study findings will complement larger-scale trials of the clinical efficacy and safety of TIC compared to TIC + ASP. ISRCTN registry, identifier ISRCTN84335288 . Registered on 23 June 2014.

  3. Platelet Surface-Associated Activation and Secretion-Mediated Inhibition of Coagulation Factor XII

    PubMed Central

    Zakharova, Natalia V.; Artemenko, Elena O.; Podoplelova, Nadezhda A.; Sveshnikova, Anastasia N.; Demina, Irina A.; Ataullakhanov, Fazly I.; Panteleev, Mikhail A.

    2015-01-01

    Coagulation factor XII (fXII) is important for arterial thrombosis, but its physiological activation mechanisms are unclear. In this study, we elucidated the role of platelets and platelet-derived material in fXII activation. FXII activation was only observed upon potent platelet stimulation (with thrombin, collagen-related peptide, or calcium ionophore, but not ADP) accompanied by phosphatidylserine exposure and was localised to the platelet surface. Platelets from three patients with grey platelet syndrome did not activate fXII, which suggests that platelet-associated fXII-activating material might be released from α-granules. FXII was preferentially bound by phosphotidylserine-positive platelets and annexin V abrogated platelet-dependent fXII activation; however, artificial phosphotidylserine/phosphatidylcholine microvesicles did not support fXII activation under the conditions herein. Confocal microscopy using DAPI as a poly-phosphate marker did not reveal poly-phosphates associated with an activated platelet surface. Experimental data for fXII activation indicates an auto-inhibition mechanism (k i/k a = 180 molecules/platelet). Unlike surface-associated fXII activation, platelet secretion inhibited activated fXII (fXIIa), particularly due to a released C1-inhibitor. Platelet surface-associated fXIIa formation triggered contact pathway-dependent clotting in recalcified plasma. Computer modelling suggests that fXIIa inactivation was greatly decreased in thrombi under high blood flow due to inhibitor washout. Combined, the surface-associated fXII activation and its inhibition in solution herein may be regarded as a flow-sensitive regulator that can shift the balance between surface-associated clotting and plasma-dependent inhibition, which may explain the role of fXII at high shear and why fXII is important for thrombosis but negligible in haemostasis. PMID:25688860

  4. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity.

    PubMed

    Harper, M T; Poole, A W

    2013-12-19

    Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca(2+)-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl(-) channels, though the role of Cl(-) fluxes in platelet procoagulant activity has not been explored. We found that Cl(-) channel blockers or removal of extracellular Cl(-) inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca(2+)-dependent scrambling since Ca(2+) ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca(2+-)dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl(-) channel. Instead, Cl(-) channel blockade inhibited agonist-induced Ca(2+) entry. Importantly, Cl(-) channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl(-) entry through Cl(-) channels is required for this hyperpolarization, maintaining the driving force for Ca(2+) entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl(-) channels in controlling platelet death and procoagulant activity.

  5. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI.

    PubMed

    Puy, Cristina; Tucker, Erik I; Ivanov, Ivan S; Gailani, David; Smith, Stephanie A; Morrissey, James H; Gruber, András; McCarty, Owen J T

    2016-01-01

    Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin. Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma. Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.

  6. Characterization of the aggregation responses of camel platelets.

    PubMed

    Al Ghumlas, Abeer K; Gader, Abdel Galil M Abdel

    2013-09-01

    Despite evidence of active hemostasis, camel platelets barely respond to common aggregating agents at standard doses used for human platelet aggregation. The purpose of the study was to find out whether camel platelets can be activated by high doses or combinations of aggregation agonists, and to characterize the receptor that mediates the aggregation response to adenosine diphosphate (ADP), the most potent agonist for camel platelets known so far. Aggregation studies were performed with platelet-rich plasma (PRP) in response to multiple doses or combinations of ADP, epinephrine (EPN), collagen, and arachidonic acid (AA). Aggregation responses to ADP were performed before and after the addition of the ADP receptor (P2Y12) antagonist Clopidogrel. Camel platelets responded to ADP at doses higher than the standard dose for human platelets, and to combinations of EPN and other agonists, while no aggregation was elicited with EPN or AA alone. Clopidogrel blocked the ADP-induced aggregation responses in a dose-dependent fashion in vitro. Camel platelet aggregation can be activated by increasing the dose of some agonists such as ADP, but not AA or EPN. Irreversible aggregation of camel platelets could also be triggered by a combination of EPN and ADP, and collagen and AA. Inhibition with clopidogrel suggests that camel platelets express the ADP receptor, P2Y12. Understanding platelet function in camels will add to the understanding of platelet function in health and disease. © 2013 American Society for Veterinary Clinical Pathology.

  7. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less

  8. Platelet receptors for the Streptococcus sanguis adhesin and aggregation-associated antigens are distinguished by anti-idiotypical monoclonal antibodies.

    PubMed Central

    Gong, K; Wen, D Y; Ouyang, T; Rao, A T; Herzberg, M C

    1995-01-01

    Platelets aggregate in response to an adhesin and the platelet aggregation-associated protein (PAAP) expressed on the cell surfaces of certain strains of Streptococcus sanguis. We sought to identify the corresponding PAAP receptor and accessory adhesin binding sites on platelets. Since the adhesion(s) of S. sanguis for platelets has not been characterized, an anti-idiotype (anti-id) murine monoclonal antibody (MAb2) strategy was developed. First, MAb1s that distinguished the adhesin and PAAP antigens on the surface of S. sanguis I 133-79 were selected. Fab fragments of MAb1.2 (immunoglobulin G2b [IgG2b]; 70 pmol) reacted with 5 x 10(7) cells of S. sanguis to completely inhibit the aggregation of human platelets in plasma. Under similar conditions, MAb1.1 (IgG1) inhibited the adhesion of S. sanguis cells to platelets by a maximum of 34%, with a comparatively small effect on platelet aggregation. Together, these two MAb1s inhibited S. sanguis-platelet adhesion by 63%. In Western immunoblots, both MAb1s reacted with S. sanguis 133-79 87- and 150-kDa surface proteins and MAb1.2 also reacted with purified type I collagen. The hybridomas producing MAb1.1 and MAb1.2 were then injected into BALB/c mice. Enlarged spleens were harvested, and a panel of MAb2 hybridomas was prepared. To identify anti-ids against the specific MAb1s, the MAb2 panel was screened by enzyme-linked immunosorbent assay for reaction with rabbit polyclonal IgG antibodies against the 87- and 150-kDa antigens. The reactions between the specific rabbit antibodies and anti-ids were inhibited by the 87- and 150-kDa antigens. When preincubated with platelets, MAb2.1 (counterpart of MAb1.1) inhibited adhesion to platelets maximally by 46% and MAb2.2 (anti-MAb1.2) inhibited adhesion to platelets maximally by 35%. Together, both MAb2s inhibited the adhesion of S. sanguis to platelets by 81%. MAb2.2 also inhibited induction of platelet aggregation. MAb2.2 immunoprecipitated a biotinylated platelet membrane antigen of 170 kDa (unreduced); MAb2.1 precipitated membrane antigens of 175- and 230-kDa (unreduced). Therefore, platelet binding sites and the receptor for the S. sanguis adhesin and PAAP, respectively, are distinguished by the anti-id MAb2s. PMID:7642300

  9. Piperine Inhibits the Activities of Platelet Cytosolic Phospholipase A2 and Thromboxane A2 Synthase without Affecting Cyclooxygenase-1 Activity: Different Mechanisms of Action Are Involved in the Inhibition of Platelet Aggregation and Macrophage Inflammatory Response

    PubMed Central

    Son, Dong Ju; Akiba, Satoshi; Hong, Jin Tae; Yun, Yeo Pyo; Hwang, Seock Yeon; Park, Young Hyun; Lee, Sung Eun

    2014-01-01

    PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum) and long pepper (Piper longum), was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX)-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA) metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2), COX-1, COX-2, and thromboxane A2 (TXA2) synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PG)E2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms. PMID:25153972

  10. Inhibitory Effects of Yuzu and Its Components on Human Platelet Aggregation

    PubMed Central

    Kim, Tae-Ho; Kim, Hye-Min; Park, Se Won; Jung, Yi-Sook

    2015-01-01

    Our previous study demonstrated that yuzu has an anti-platelet effect in rat blood. In the present study, we examined whether the anti-platelet effect of yuzu can be extended to human blood by investigating its ability to inhibit aggregations induced by various agonists in human platelet rich plasma (PRP). This study also investigated the underlying mechanism of yuzu focusing on ADP granule secretion, TXB2 formations, and PLCγ/Akt signaling. The results from this study showed that ethanolic yuzu extract (YE), and its components, hesperidin and naringin, inhibited human platelet aggregation in a concentration-dependent manner. YE, hesperidin and naringin also inhibited TXB2 formation and ADP release. The phosphorylation of PLCγ and Akt was significantly inhibited by YE, heperidin and naringin. Furthermore, we demonstrated that YE, heperidin and naringin has anti-platelet effects in rat ex vivo studies, and lower side effects in mice tail bleeding time studies. The results from this study suggest that YE, hesperidin and naringin can inhibit human platelet aggregation, at least partly through the inhibition of PLCγ and Akt, leading to a decrease in TXB2 formation and granule secretion. PMID:25767683

  11. Characteristics of platelet gels combined with silk

    PubMed Central

    Pallotta, Isabella; Kluge, Jonathan A.; Moreau, Jodie; Calabrese, Rossella

    2014-01-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  12. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets.

    PubMed

    Etulain, Julia; Negrotto, Soledad; Carestia, Agostina; Pozner, Roberto Gabriel; Romaniuk, María Albertina; D'Atri, Lina Paola; Klement, Giannoula Lakka; Schattner, Mirta

    2012-01-01

    Acidosis is one of the hallmarks of tissue injury such as trauma, infection, inflammation, and tumour growth. Although platelets participate in the pathophysiology of all these processes, the impact of acidosis on platelet biology has not been studied outside of the quality control of laboratory aggregation assays or platelet transfusion optimization. Herein, we evaluate the effect of physiologically relevant changes in extracellular acidosis on the biological function of platelets, placing particular emphasis on haemostatic and secretory functions. Platelet haemostatic responses such as adhesion, spreading, activation of αIIbβ3 integrin, ATP release, aggregation, thromboxane B2 generation, clot retraction and procoagulant activity including phosphatidilserine exposure and microparticle formation, showed a statistically significant inhibition of thrombin-induced changes at pH of 7.0 and 6.5 compared to the physiological pH (7.4). The release of alpha granule content was differentially regulated by acidosis. At low pH, thrombin or collagen-induced secretion of vascular endothelial growth factor and endostatin were dramatically reduced. The release of von Willebrand factor and stromal derived factor-1α followed a similar, albeit less dramatic pattern. In contrast, the induction of CD40L was not changed by low pH, and P-selectin exposure was significantly increased. While the generation of mixed platelet-leukocyte aggregates and the increased chemotaxis of neutrophils mediated by platelets were further augmented under acidic conditions in a P-selectin dependent manner, the increased neutrophil survival was independent of P-selectin expression. In conclusion, our results indicate that extracellular acidosis downregulates most of the haemostatic platelet functions, and promotes those involved in amplifying the neutrophil-mediated inflammatory response.

  13. Equol is more active than soy isoflavone itself to compete for binding to thromboxane A(2) receptor in human platelets.

    PubMed

    Muñoz, Yenny; Garrido, Argelia; Valladares, Luis

    2009-03-01

    Several dietary intervention studies examining the health effect of soy isoflavones allude to the importance of equol in establishing the cardiovascular response to soy protein. Although, the specific mechanism by which this action occurs has not been established. The aim of this study was to investigate the inhibitory effect of soy-isoflavones and the metabolite of daidzein, equol, on agonist-induced platelet responses dependent on thromboxane A(2) (TxA(2)) receptor. Competitive radioligand binding assay was used to screen for affinity of these compounds to the TxA(2) receptor. The effect of equol on platelet activation, evaluate through of release of the ATP, by analogs of TxA(2) was analyzed. The effect of equol on platelet aggregation was investigated with ADP, U46619 (a TxA(2) mimic) and the calcium ionophore A23187. The data showed that aglycone isoflavones and equol bind to TxA(2) receptor in the micromol/L range, whereas their glucoside derivates had very low binding activity for this receptor. Under equilibrium conditions, the following order of the relative affinity in inhibiting [(3)H]-SQ29585 binding was: equol>genistein>daidzein>glycitein>genistin, daidzin, glycitin. Equol interaction was reversible and competitive for labeled-SQ29548 with not apparent decrease in the number of TxA(2) binding sites. In addition, from platelet activation studies, equol effectively inhibited ATP secretion elicited by the TxA(2) analog U46619. On the other hand, equol inhibited the platelet aggregation induced by U46619 and A23187, while it failed to inhibit that induced by ADP. The aglycone isoflavones from soy, and particularly equol, have been found to have biological effects attributable to thromboxane A(2) receptor antagonism. These findings may help elucidate how dietary isoflavone modulate platelet function and explain why soy-rich foods are claimed to have beneficial effects in the prevention of thrombotic events.

  14. Ginsenoside-Rp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling.

    PubMed

    Irfan, Muhammad; Jeong, Da Hye; Kwon, Hyuk-Woo; Shin, Jung-Hae; Park, Sang-Joon; Kwak, Dongmi; Kim, Tae-Hwan; Lee, Dong-Ha; Park, Hwa-Jin; Rhee, Man Hee

    2018-06-08

    Ginseng (Panax ginseng C.A. Mayer) contains saponin fractions called ginsenosides, which are thought to be the main components responsible for its various pharmacological activities. Ginsenosides have cardioprotective and antiplatelet effects. In the present study, we evaluated the effects of ginsenoside Rp3 (G-Rp3) on platelet function. The in vitro effects of G-Rp3 were evaluated on agonist-induced human and rat platelet aggregation, while [Ca 2+ ] i mobilization, granule secretion, integrin α IIb β 3 activation, and clot retraction were assessed in rat platelets. Its effects on vasodilator-stimulated phosphoprotein (VASP) expression, phosphorylation of MAPK signaling molecules, and PI3K/Akt activation were also studied. Moreover, the tyrosine phosphorylation of components of the P 2 Y 12 receptor downstream signaling pathway was also examined. The in vivo effects of G-Rp3 were studied using an acute pulmonary thromboembolism model and lung histopathology. G-Rp3 significantly inhibited collagen, ADP, and thrombin-induced platelet aggregation. G-Rp3 elevated cAMP levels and VASP phosphorylation and suppressed agonist-induced [Ca 2+ ] i mobilization, ATP release, and P-selectin expression along with fibrinogen binding to integrin α IIb β 3 , fibronectin adhesion, and clot retraction. G-Rp3 also attenuated the phosphorylation of MAPK, Src, and PLCγ2 as well as PI3K/Akt activation. Furthermore, it inhibited tyrosine phosphorylation of the Src family kinases (Src, Fyn, and Lyn) and PLCγ2 and protected mice from thrombosis. G-Rp3 modulates agonist-induced platelet activation and thrombus formation by inhibiting granule secretion, integrin α IIb β 3 activation, MAPK signaling, and Src, PLCγ2, and PI3K/Akt activation, and VASP stimulation. Our data suggest that G-Rp3 has therapeutic potential as a treatment for platelet-related cardiovascular disorders. Copyright © 2017. Published by Elsevier Inc.

  15. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    PubMed Central

    2010-01-01

    Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin) may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin). Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs) phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and endothelial nitric oxide synthase (eNOS) expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP-eNOS/NO-cyclic GMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA2 cascade, and finally inhibition of platelet aggregation. PMID:20525309

  16. Molecular cloning, expression and characterization of albolamin: a type P-IIa snake venom metalloproteinase from green pit viper (Cryptelytrops albolabris).

    PubMed

    Jangprasert, Panchalee; Rojnuckarin, Ponlapat

    2014-03-01

    Snake venom metalloproteinases (SVMPs) can damage vessel wall, degrade clotting factors, inhibit integrins and block platelet functions. Studying them not only gives us deeper insights in pathogenesis of snakebites, but also potentially yields novel therapeutic agents. Here, we discovered a clone of an RGD-containing SVMP from the green pit viper (Cryptelytrops albolabris) venom gland cDNA library. Sequence analysis revealed that it belonged to the P-IIa subclass of SVMP comprising signal peptide, prodomain, metalloproteinase and disintegrin. Compared with other P-II SVMPs, it contained 2 additional conserved cysteines that were predicted to prevent the release of disintegrin from the metalloproteinase domain in the mature protein. The N-terminal histidine-tagged construct of metalloproteinase and disintegrin domains of albolamin was inserted into the pPICZαA vector and expressed in Pichia pastoris. The recombinant protein molecular weight was approximately 35 kDa on Western blot probed with anti-polyhistidine antibody. The recombinant albolamin could digest human type IV collagen starting within 15 min after incubation. In addition, it dose-dependently inhibited collagen-induced platelet aggregation with the IC50 of 1.8 μM. However, there was no effect on ADP-induced platelet aggregation. Therefore, the inhibition mechanism is probably through blocking collagen receptor(s). Albolamin activities probably contributed to pathology of green pit viper bites. Its disintegrin domain deserves further studies for the potential to be a useful agent affecting platelet functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation.

    PubMed

    Mammadova-Bach, Elmina; Ollivier, Véronique; Loyau, Stéphane; Schaff, Mathieu; Dumont, Bénédicte; Favier, Rémi; Freyburger, Geneviève; Latger-Cannard, Véronique; Nieswandt, Bernhard; Gachet, Christian; Mangin, Pierre H; Jandrot-Perrus, Martine

    2015-07-30

    Fibrin, the coagulation end product, consolidates the platelet plug at sites of vascular injury and supports the recruitment of circulating platelets. In addition to integrin αIIbβ3, another as-yet-unidentified receptor is thought to mediate platelet interaction with fibrin. Platelet glycoprotein VI (GPVI) interacts with collagen and several other adhesive macromolecules. We evaluated the hypothesis that GPVI could be a functional platelet receptor for fibrin. Calibrated thrombin assays using platelet-rich plasma (PRP) showed that tissue factor-triggered thrombin generation was impaired in GPVI-deficient patients and reduced by the anti-GPVI Fab 9O12. Assays on reconstituted PRP and PRP from fibrinogen-deficient patients revealed a fibrinogen-dependent enhancement of thrombin generation, which relied on functional GPVI. The effect of GPVI was found to depend on fibrin polymerization. A binding assay showed a specific interaction between GPVI-Fc and fibrin, inhibited by the Fab 9O12. This Fab also reduced platelet adhesion to fibrin at low (300 s(-1)) and high (1500 s(-1)) wall shear rates. Platelets adherent to fibrin displayed shape change, exposure of procoagulant phospholipids, and the formation of small clots. When hirudinated blood was perfused at 1500 s(-1) over preformed fibrin-rich clots, the Fab 9O12 decreased the recruitment of platelets by up to 85%. This study identifies GPVI as a platelet receptor for polymerized fibrin with 2 major functions: (1) amplification of thrombin generation and (2) recruitment of circulating platelets to clots. These so-far-unrecognized properties of GPVI confer on it a key role in thrombus growth and stabilization. © 2015 by The American Society of Hematology.

  18. The effect of aspirin dosing on platelet function in diabetic and nondiabetic patients: an analysis from the aspirin-induced platelet effect (ASPECT) study.

    PubMed

    DiChiara, Joseph; Bliden, Kevin P; Tantry, Udaya S; Hamed, Miruais S; Antonino, Mark J; Suarez, Thomas A; Bailon, Oscar; Singla, Anand; Gurbel, Paul A

    2007-12-01

    Diabetic patients may have a higher prevalence of platelet aspirin resistance than nondiabetic patients. Our goal was to analyze platelet aspirin responsiveness to various aspirin doses in diabetic and nondiabetic patients. We examined the effect of aspirin (81, 162, and 325 mg/day for 4 weeks each) on platelet aspirin responsiveness in 120 stable outpatients (30 diabetic patients and 90 nondiabetic patients) with coronary artery disease (CAD) using light transmittance aggregometry (LTA), VerifyNow, platelet function analyzer (PFA)-100, and levels of urinary 11-dehydro-thromboxane B(2) (11-dh-TxB(2)). In the total group, a low prevalence (0-2%) of aspirin resistance was observed with all aspirin doses as determined by arachidonic acid-induced LTA. Aspirin resistance was higher at the 81-mg dose in diabetic versus nondiabetic patients using collagen-induced LTA (27 vs. 4%, P = 0.001), VerifyNow (13 vs. 3%, P = 0.05), and urinary 11-dh-TxB(2) (37 vs. 17%, P = 0.03). Diabetic patients treated with 81 mg exhibited higher platelet function measured by VerifyNow, collagen- and ADP-induced LTA, and 11-dh-TxB(2) levels (P

  19. CYP2C19*17 increases clopidogrel-mediated platelet inhibition but does not alter the pharmacokinetics of the active metabolite of clopidogrel.

    PubMed

    Pedersen, Rasmus Steen; Nielsen, Flemming; Stage, Tore Bjerregaard; Vinholt, Pernille Just; el Achwah, Alaa Bilal; Damkier, Per; Brosen, Kim

    2014-11-01

    The aim of the present study was to determine the impact of CYP2C19*17 on the pharmacokinetics and pharmacodynamics of the active metabolite of clopidogrel and the pharmacokinetics of proguanil. Thus, we conducted an open-label two-phase cross-over study in 31 healthy male volunteers (11 CYP2C19*1/*1, 11 CYP2C19*1/*17 and nine CYP2C19*17/*17). In Phase A, the pharmacokinetics of the derivatized active metabolite of clopidogrel (CAMD) and platelet function were determined after administration of a single oral dose of 600 mg clopidogrel (Plavix; Sanofi-Avensis, Horsholm, Denmark). In Phase B, the pharmacokinetics of proguanil and its metabolites cycloguanil and 4-chlorphenylbiguanide (4-CPB) were determined in 29 of 31 subjects after a single oral dose of 200 mg proguanil given as the combination drug Malarone (GlaxoSmithKline Pharma, Brondby, Denmark). Significant correlations were found between the area under the time-concentration curve (AUC0-∞ ) of CAMD and both the absolute ADP-induced P2Y12 receptor-activated platelet aggregation (r = -0.60, P = 0.0007) and the percentage inhibition of aggregation (r = 0.59, P = 0.0009). In addition, the CYP2C19*17/*17 and CYP2C19*1/*17 genotype groups had significantly higher percentage inhibition of platelet aggregation compared with the CYP2C19*1/*1 subjects (geometric mean percentage inhibition of 84%, 73% and 63%, respectively; P = 0.014). Neither the absolute ADP-induced P2Y12 receptor-activated platelet aggregation, exposure to CAMD nor the pharmacokinetic parameters of proguanil, cycloguanil and 4-CPB exhibited any significant differences among the genotype groups. In conclusion, carriers of CYP2C19*17 exhibit higher percentage inhibition of platelet aggregation, but do not have significantly lower absolute P2Y12 receptor-activated platelet aggregation or higher exposure to the active metabolite after a single oral administration of 600 mg clopidogrel. © 2014 Wiley Publishing Asia Pty Ltd.

  20. Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell‐Derived Platelets

    PubMed Central

    Hirata, Shinji; Murata, Takahiko; Suzuki, Daisuke; Nakamura, Sou; Jono‐Ohnishi, Ryoko; Hirose, Hidenori; Sawaguchi, Akira; Nishimura, Satoshi; Sugimoto, Naoshi

    2016-01-01

    Abstract Donor‐independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature‐dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen‐activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC‐derived GPIbα+ platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP‐457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP‐457 blocked GPIbα shedding from iPSC platelets at a lower half‐maximal inhibitory concentration than panmetalloproteinase inhibitor GM‐6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP‐457 exhibited improved GPIbα‐dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP‐457 exerted better hemostatic function in vivo. Our findings suggest that KP‐457, unlike GM‐6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC‐derived platelets at 37°C, which is an important step toward their clinical application. Stem Cells Translational Medicine 2017;6:720–730 PMID:28297575

  1. Studies of Platelet 5-Hydroxytryptamine (Serotonin) in Storage Pool Disease and Albinism

    PubMed Central

    Weiss, Harvey J.; Tschopp, Thomas B.; Rogers, John; Brand, Harvey

    1974-01-01

    Platelets in patients with storage pool disease are markedly deficient in a nonmetabolic (storage) pool of ADP that is important in platelet aggregation. They are also deficient in ATP, although to a lesser degree. In seven patients with this disorder, including one with albinism, platelet 5-hydroxytryptamine (5-HT) levels were reduced in proportion to the reduction in ATP (r = 0.94). Their platelets show diminished capacity to absorb [14C]5-HT, and the type of defect was similar to that produced in normal platelets by reserpine, a drug known to inhibit the uptake of 5-HT by the platelet dense granules. Storage pool-deficient platelets also converted more [3H]5-HT to [3H]5-hydroxyindoleacetic acid than did normal platelets, and the platelets in one of two patients studied contained increased amounts of 5-HT metabolites. The above findings, together with those reported previously, support the conclusion that the capacity of the dense granules (which may be either diminished or functionally abnormal) for storing 5-HT is decreased in storage pool disease; as a result, the 5-HT that enters the platelet may be more exposed to monoamine oxidases present on mitochondrial membranes. This diminished storage capacity (for 5-HT) may also explain why preincubating platelet-rich plasma with 5-HT for 45 min without stirring inhibits subsequent platelet aggregation by 5-HT to a greater degree in patients with storage pool disease than in normal subjects. The latter finding is also consistent with the theory that the aggregation of platelets by 5-HT is mediated by the same receptors on the plasma membrane that are involved in its uptake. The diminished release of platelet-bound [14C]5-HT by collagen that we found in these patients, as well as findings in previous studies, suggests that the release reaction may also be abnormal in storage pool disease. Images PMID:4847252

  2. Anti-platelet and anti-thrombotic effect of a traditional herbal medicine Kyung-Ok-Ko.

    PubMed

    Kim, Tae-Ho; Lee, Kyoung Mee; Hong, Nam Doo; Jung, Yi-Sook

    2016-02-03

    Kyung-Ok-Ko (KOK), a traditional herbal prescription, contains six main ingredients; Rehmannia glutinosa var. purpurae, Lycium chinense, Aquillaria agallocha, Poria cocos, Panax ginseng, and honey. KOK has been widely taken as a traditional oriental medicine for improving blood circulation or age-related symptoms, such as dementia and stroke. However, the effect of KOK on platelet activity has not been clarified. To evaluate the effect of KOK on platelet function, we evaluated its effect on functional markers of platelet activation such as aggregation and shape change. As a mechanism study for the effect of KOK, we examined its effect on granule secretion, intracellular Ca(2+) increase, and PLCγ and Akt activation. To investigate the effect of orally administered KOK (0.5, 1, 2 g/kg), we examined its ex vivo effect on platelet aggregation in rat, and its in vivo anti-thrombotic effect in mice thromboembolism model. Furthermore, the effect of KOK on bleeding time was examined to estimate its potential side effect. KOK (0.3, 1, 3, 10 mg/ml) inhibited collagen-induced platelet aggregation and shape change in rat platelets in a concentration-dependent manner. The mechanism for the anti-platelet effect of KOK seems to involve the inhibition of ATP release, intracellular Ca(2+) elevation, and the phosphorylation of PLCγ and Akt. In rat ex vivo study, KOK (2 g/kg, p.o. for 1 day, and 0.5, 1, 2 g/kg, p.o. for 7 days) also had significant inhibitory effects on collagen-induced platelet aggregation. In addition, KOK showed a significant protective effect against thrombosis attack in mice. The prolongation of bleeding time by KOK was much less than that by ASA, suggesting a beneficial potential of KOK than ASA in view of side effect. These findings suggest that KOK elicits remarkable anti-platelet and anti-thrombotic effects with less side effect of bleeding, and therefore, it may have a therapeutic potential for the prevention of platelet-associated cardiovascular diseases. Copyright © 2015. Published by Elsevier Ireland Ltd.

  3. Platelet Inhibition by 81 and 325 mg Aspirin Daily in Men vs. Women without Clinically Apparent Cardiovascular Disease

    PubMed Central

    Qayyum, Rehan; Becker, Diane M.; Yanek, Lisa R.; Moy, Taryn F.; Becker, Lewis C.; Faraday, Nauder; Vaidya, Dhananjay

    2011-01-01

    Compared to men, women have greater platelet aggregation before and after low-dose aspirin. It is not known whether high-dose aspirin therapy brings residual platelet aggregation in women closer to men. Our objective was to compare the inhibition of platelet aggregation in women and men after low and high-dose aspirin. We enrolled healthy subjects (N=106) in a trial of 14 days of aspirin 81 mg/day followed by 14 days of 325 mg/day. Platelet function was measured at baseline and following both aspirin doses. Women had greater baseline platelet activation measures. After both aspirin doses, both sexes had near complete suppression of platelet aggregation to arachidonic acid in whole blood and in platelet-rich plasma (PRP), the direct cyclooxygenase-1 (COX-1) pathway affected by aspirin. For indirect pathways, women had significantly greater residual platelet activation to collagen and adenosine diphosphate (ADP) in whole blood after both aspirin doses and in response to collagen and ADP in PRP after aspirin 325 mg/day only. After aspirin 325 mg/day, women continued to have greater residual platelet aggregation compared to men after aspirin 81 mg/day in response to collagen (p=0.016 in whole blood and p=0.037 in PRP), ADP (p<0.001 in whole blood and p=0.012 in PRP), and epinephrine (p=0.03 in PRP). Excretion of urinary thromboxane metabolite (urinary 11-dehydro thromboxane B2) decreased after aspirin to a similar extent in both sexes. In conclusion, women continue to have greater residual platelet activity after high-dose aspirin even when compared to men treated with a lower dose of aspirin. PMID:18435972

  4. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    PubMed

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Amarogentin, a secoiridoid glycoside, abrogates platelet activation through PLC γ 2-PKC and MAPK pathways.

    PubMed

    Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung

    2014-01-01

    Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60  μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC) γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLC γ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders.

  6. Amarogentin, a Secoiridoid Glycoside, Abrogates Platelet Activation through PLCγ2-PKC and MAPK Pathways

    PubMed Central

    Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong

    2014-01-01

    Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60 μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLCγ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders. PMID:24868545

  7. Platelets and atherogenesis: Platelet anti-aggregation activity and endothelial protection from tomatoes (Solanum lycopersicum L.)

    PubMed Central

    PALOMO, IVÁN; FUENTES, EDUARDO; PADRÓ, TERESA; BADIMON, LINA

    2012-01-01

    In recent years, it has been shown that platelets are not only involved in the arterial thrombotic process, but also that they play an active role in the inflammatory process of atherogenesis from the beginning. The interaction between platelets and endothelial cells occurs in two manners: activated platelets unite with intact endothelial cells, or platelets in resting adhere to activated endothelium. In this context, inhibition of the platelet function (adhesion/aggregation) could contribute to the prevention of atherothrombosis, the leading cause of cardiovascular morbidity. This can be achieved with antiplatelet agents. However, at the public health level, the level of primary prevention, a healthy diet has also been shown to exert beneficial effects. Among those elements of a healthy diet, the consumption of tomatoes (Solanum lycopersicum L.) stands out for its effect on platelet anti-aggregation activity and endothelial protection, which may be beneficial for cardiovascular health. This article briefly discusses the involvement of platelets in atherogenesis and the possible mechanisms of action provided by tomatoes for platelet anti-aggregation activity and endothelial protection. PMID:22969932

  8. High on-treatment platelet reactivity in patients with ischemic cerebrovascular disease: assessment of prevalence and stability over time using four platelet function tests.

    PubMed

    Jover, Eva; Rodríguez, José M; Bernal, Agustina; Arroyo, Ana B; Iniesta, Juan A; Guiú, Isabel Sánchez; Martínez, Constantino; Vicente, Vicente; Lozano, María L; Rivera, José

    2014-09-01

    High on-treatment platelet reactivity (HTPR), referred to as a higher than expected platelet reactivity in patients under antiplatelet therapy, could influence outcome in cerebrovascular disease (CVD), but its prevalence and its stability over time is uncertain. Platelet reactivity was assessed in 18 patients with ischemic stroke/transient ischemic attack (TIA) 7 days (D7) and 90 days (D90) after prescription of clopidogrel, using four methods: light transmission aggregometry with 5 μmol/l ADP (LTA-ADP), vasodilator-stimulated phosphoprotein (VASP), Verify Now P2Y12 and platelet function analyzer (PFA) P2Y. HTPR was defined as LTA-ADP more than 46%; PFA-100-P2Y closure time less than 106 s; VerifyNow P2Y12, PRU greater than 235, VASP, PRI greater than 50%. Patients displayed, both at D7 and D90, a marked inhibition of platelet reactivity towards ADP in all tests as compared with reference levels. Correlations between the results obtained with all the tests at D7 and D90 and between measurements on each day in each test were low-to-moderate. The prevalence of HTPR for all the tests was 40% at D7 and 42% at D90. There was a moderate degree of agreement (k statistic < 0.5) between tests with regard to categorizing patients as HTPR/No-HTPR (D7 and D90). The on-clopidogrel platelet reactivity phenotype, HTPR/No-HTPR, remained stable in 55-72% of patients, depending on the test. A high prevalence of HTPR is found among CVD patients treated with clopidogrel and this platelet reactivity phenotype remains over time. There is poor agreement between the different platelet function tests for categorizing the platelet reactivity phenotype in these patients. The new PFA-100 P2Y equals other platelet function assays for evaluating HTPR in CVD.

  9. Comparison of the effect of aspirin and choline magnesium trisalicylate on thromboxane biosynthesis in human platelets: role of the acetyl moiety.

    PubMed

    Danesh, B J; McLaren, M; Russell, R I; Lowe, G D; Forbes, C D

    1989-01-01

    Parameters of platelet thromboxane biosynthesis were measured 24 h after ingestion of equivalent salicylate doses (500 mg) of aspirin (ASA) and choline magnesium trisalicylate (CMT), a non-acetylated salicylate. In random order, 10 healthy volunteers received these drugs on 2 separate days, 2 weeks apart. While ASA significantly prolonged bleeding time, and decreased plasma thromboxane generation and serum thromboxane B2 levels, CMT failed to produce such effects. Thus CMT, which lacks an acetyl moiety in its structure, has no inhibitory effect on platelet thromboxane biosynthesis, and may therefore be considered safer than ASA for therapeutic use, when inhibition of platelet function can be hazardous.

  10. Mutant botrocetin-2 inhibits von Willebrand factor-induced platelet agglutination.

    PubMed

    Matsui, T; Hori, A; Hamako, J; Matsushita, F; Ozeki, Y; Sakurai, Y; Hayakawa, M; Matsumoto, M; Fujimura, Y

    2017-03-01

    Essentials Botrocetin-2 (Bot2) binds to von Willebrand factor (VWF) and induces platelet agglutination. We identified Bot2 residues that are required for binding to VWF and glycoprotein (GP) Ib. We produced a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Mutant Bot2 could be used as a potential anti-thrombotic reagent to block VWF-GPIb interaction. Background Botrocetin-2 (Bot2) is a botrocetin-like protein composed of α and β subunits that have been cloned from the snake Bothrops jararaca. Bot2 binds specifically to von Willebrand factor (VWF), and the complex induces glycoprotein (GP) Ib-dependent platelet agglutination. Objectives To exploit Bot2's VWF-binding capacity in order to attempt to create a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Methods and Results Several point mutations were introduced into Bot2 cDNA, and the recombinant protein (recombinant Bot2 [rBot2]) was purified on an anti-botrocetin column. The mutant rBot2 with either Ala at Asp70 in the β subunit (Aspβ70Ala), or Argβ115Ala and Lysβ117Ala, showed reduced platelet agglutination-inducing activity. rBot2 with Aspβ70Ala showed little binding activity towards immobilized VWF on an ELISA plate, whereas rBot2 with Argβ115Ala/Lysβ117Ala showed reduced binding activity towards GPIb (glycocalicin) after forming a complex with VWF. rBot2 point-mutated to oppositely charged Glu at both Argβ115 and Lysβ117 showed normal binding activity towards VWF but no platelet-agglutinating activity. Furthermore, this doubly mutated protein inhibited ristocetin-induced or high shear stress-induced platelet aggregation, and restrained thrombus formation under flow conditions. Conclusions Asp70 in the β subunit of botrocetin is important for VWF binding, and Arg115 and Lys117 in the β subunit are essential for interaction with GPIb. Doubly mutated rBot2, with Argβ115Glu and Lysβ117Glu, repels GPIb and might have potential as an antithrombotic reagent that specifically blocks VWF function. This is the first report on an artificial botrocetin that can inhibit the VWF-GPIb interaction. © 2017 International Society on Thrombosis and Haemostasis.

  11. The in vitro and in vivo pharmacological profiles of a platelet glycoprotein IIb/IIIa antagonist, NSL-9403.

    PubMed

    Katada, J; Takiguchi, Y; Muramatsu, M; Fujiyoshi, T; Uno, I

    1997-10-01

    The in vitro and in vivo pharmacological profiles of NSL-9403 [orotyl-serylarginyl-glycyl-asparatyl-tryptophane], a platelet glycoprotein IIb/IIIa (GpIIb/IIIa) antagonist, has been studied. NSL-9403 inhibited platelet aggregation of human platelet-rich plasma (PRP) with IC50 values of 4.3 +/- 0.4 microM (collagen) and 1.8 +/- 0.3 microM (ADP), which was about 100 times more potent than RGDS. It also inhibited the binding of fibrinogen to activated platelets. Ex vivo collagen and ADP-induced platelet aggregation in a guinea pig was inhibited after a bolus intravenous administration of NSL-9403 at 1.25 mg/kg and above. NSL-9403 had an anti-thrombotic effect in in vivo thrombosis models. In a platelet agonist-induced pulmonary embolic sudden death model, where a bolus injection of collagen and epinephrine induced sudden death in mice, intravenous administration of NSL-9403 before an injection of collagen and epinephrine inhibited this platelet-agonist induced death in a dose dependent manner. In an arterio-venous shunt, infusion of NSL-9403 at 3 mg/kg/hour prevented an increase in circulation pressure due to thrombus formation in the shunt circuit and platelet loss. Infusion of NSL-9403 at 1 to 10 mg/kg/hour produced a complete inhibition of platelet-dependent arterial thrombosis in a dog femoral arterial thrombosis model. Thus NSL-9403 is a potent inhibitor or platelet aggregation in vitro and a potent anti-thrombotic agent in vivo with a relatively short duration of action.

  12. Parsley extract inhibits in vitro and ex vivo platelet aggregation and prolongs bleeding time in rats.

    PubMed

    Gadi, Dounia; Bnouham, Mohamed; Aziz, Mohammed; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq; Legrand, Chantal; Lafeve, Françoise Fauvel; Mekhfi, Hassane

    2009-08-17

    Many cardiovascular diseases are associated with an increase in blood platelet activity. In Morocco, parsley (Petroselinum crispum, Apiaceae) is one of the medicinal herbs used to treat cardiovascular diseases such as arterial hypertension. In this study, crude aqueous extract (CAE) of parsley was evaluated for its anti-platelet activity in experimental animals on platelet aggregation in vitro and ex vivo; and on bleeding time in vivo. The in vitro aggregation was monitored after pre-incubation of platelets with CAE. The bleeding time and ex vivo aggregation were performed after oral treatment. CAE inhibited dose dependently platelet aggregation in vitro induced by thrombin, ADP, collagen and epinephrine. The oral administration of CAE (3g/kg) inhibited significantly (p<0.001) platelet aggregation ex vivo and prolonged bleeding time (p<0.001) without changes in the platelet amount. The prolongation of bleeding time by CAE may be attributed to the observed inhibition of platelet aggregation. These effects could be related in part to the polyphenolic compounds present in the extract. These results support the hypothesis that the dietary intake of parsley may be benefit in the normalization of platelet hyperactivation, in the nutritional prevention of cardiovascular diseases and are potentially interesting in the development of new prevention strategies.

  13. Point of care platelet activity measurement in primary PCI [PINPOINT-PPCI]: a protocol paper.

    PubMed

    Johnson, Thomas W; Marsden, Debbie; Mumford, Andrew; Pike, Katie; Mundell, Stuart; Butler, Mark; Strange, Julian W; Bowles, Ruth; Rogers, Chris; Baumbach, Andreas; Reeves, Barnaby C

    2014-04-04

    Optimal treatment of acute ST-elevation myocardial infarction (STEMI) involves rapid diagnosis, and transfer to a cardiac centre capable of percutaneous coronary intervention (PCI) for immediate mechanical revascularisation. Successful treatment requires rapid return of perfusion to the myocardium achieved by thromboaspiration, passivation of the culprit lesion with stent scaffolding and systemic inhibition of thrombosis and platelet activation. A delicate balance exists between thrombosis and bleeding and consequently anti-thrombotic and antiplatelet treatment regimens continue to evolve. The desire to achieve reperfusion as soon as possible, in the setting of high platelet reactivity, requires potent and fast-acting anti-thrombotic/anti-platelet therapies. The associated bleeding risk may be minimised by use of short-acting anti-thrombotic intravenous agents. However, effective oral platelet inhibition is required to prevent recurrent thrombosis. The interaction between baseline platelet reactivity, timing of revascularisation and effective inhibition of thrombosis is yet to be formally investigated. We present a protocol for a prospective observational study in patients presenting with acute STEMI treated with primary PCI (PPCI) and receiving bolus/infusion bivalirudin and prasugrel therapy. The objective of this study is to describe variation in platelet reactivity, as measured by the multiplate platelet function analyser, at presentation, the end of the PPCI procedure and 1, 2, & 24 hours post-procedure. We intend to assess the prevalence of high residual platelet reactivity within 24 hours of PPCI in acute STEMI patients receiving prasugrel and bivalirudin. Additionally, we will investigate the association between high platelet reactivity before and after PPCI and the door-to-procedure completion time.This is a single centre study with a target sample size of 108 participants. The baseline platelet reactivity on presentation with a STEMI may impact on the effect of acute anti-thrombotic and anti-platelet therapy and expose patients to a heightened risk of bleeding or ongoing thrombosis. This study will define the baseline variation in platelet reactivity in a population of patients experiencing acute STEMI and assess the pharmacodynamic response to combined treatment with bivalirudin and prasugrel. The data obtained from this trial will be hypothesis generating for future trials testing alternative pharmacotherapies in the acute phase of treatment for STEMI. This study has approval from Wiltshire research ethics committee (10/H0106/87) and is registered with current controlled trials (http://www.controlled-trials.com/ISRCTN82257414).

  14. Evaluation of the effect of phosphodiesterase on equine platelet activation and the effect of antigen challenge on platelet phosphodiesterase activity in horses with recurrent airway obstruction.

    PubMed

    Dunkel, Bettina; Rickards, Karen J; Werling, Dirk; Page, Clive P; Cunningham, Fiona M

    2010-05-01

    To determine whether expression of equine platelet activation-dependent surface markers is influenced by phospodiesterase (PDE) isoenzyme activity and whether antigen challenge alters platelet PDE activity in horses with recurrent airway obstruction (RAO). 16 horses. 7 healthy horses were used for in vitro experiments, 6 horses with RAO were used for antigen challenge, and 6 healthy horses were used as control animals. Three of the healthy horses had also been used in the in vitro experiments. Effects of PDE inhibition and activation of adenylyl cyclase on CD41/61 and CD62P expression on platelets and platelet-neutrophil aggregate formation in vitro were investigated via flow cytometry. Platelet PDE activity and sensitivity to inhibition of PDE3 and PDE5 isoenzymes were examined in horses with RAO and control horses before and after antigen challenge. Inhibition of PDE or activation of adenylyl cyclase significantly inhibited stimulus-induced expression of CD41/61 and CD62P (by approx 94% and 40%, respectively) and percentage of CD62P positive cells (by approx 30%). Only the PDE3 inhibitor, trequinsin, caused a significant (53%) reduction in platelet-neutrophil aggregate formation. Platelet PDE activity decreased following antigen challenge in RAO-affected horses and control horses. In horses with RAO, a significant increase in sensitivity of platelet PDE to inhibition by the PDE5 inhibitor zaprinast was observed after 5 hours. Results provided further evidence that PDE3 is an important regulator of equine platelet activation and suggested that changes in regulation of platelet PDE5 may contribute to antigen-induced response in horses with RAO.

  15. The potent inhibition of vapiprost, a novel thromboxane A2 receptor antagonist, on the secondary aggregation and ATP release of human platelets.

    PubMed

    Horie, S; Yamada, M; Satoh, M; Noritake, S; Hiraishi, S; Kizaki, K; Kurusu, O; Nakahara, T; Ishii, H; Kazama, M

    1997-06-01

    The inhibitory effects of vapiprost hydrochloride (vapiprost), a novel thromboxane A2 receptor antagonist, on platelet aggregation and ATP release were studied using platelet rich plasma (PRP) of humans, guinea pigs, rabbits and rats. In in vitro experiments with human platelet, vapiprost inhibited the aggregation and ATP release stimulated with U-46619, collagen or arachidonic acid (AA) at an IC50 of less than 2.1 x 10(-8) M. Vapiprost did not inhibit the primary aggregation or ATP release of human platelets stimulated with adenosine 5'-diphosphate (ADP), epinephrine (Epi) or platelet activating factor (PAF), but inhibited the secondary aggregation stimulated with those agonists at an IC50 of less than 1.3 x 10(-7) M. The sensitivity of platelets in various species of animals to vapiprost was in the following order: human > or = guinea pigs > rats > rabbits. In ex vivo experiments with guinea pigs which received a single oral dose of vapiprost, the agent demonstrated strong inhibition of ATP release from platelets stimulated with U-46619, collagen or AA at an ID50 of less than 25.8 micrograms/kg. These inhibitory effects were observed within 30 min and sustained for 24 h at a single dosage of 5 mg/kg of vapiprost. In AA-induced pulmonary infarction models of mice, the sudden death rates decreased significantly with the oral administration of 10 mg/kg or more of vapiprost. These results indicate that vapiprost effectively inhibits the secondary aggregation and ATP release of human platelets stimulated with various agonists, and that guinea pig and human platelets are similar in response to vapiprost. Furthermore, it was demonstrated in ex vivo experiments with guinea pigs that the inhibitory action of vapiprost appears rapidly and lasts for long periods.

  16. Selective inhibition by a synthetic hirudin peptide of fibrin-dependent thrombosis in baboons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadroy, Y.; Hanson, S.R.; Harker, L.A.

    1991-02-15

    To determine the importance of the thrombin substrate recognition exosite for fibrinogen binding in the formation of both arterial and venous thrombi the authors evaluated the antithrombotic effects of the tyrosine-sulfated dodecapeptide from residues 53-64 of hirudin (H peptide) in a nonhuman primate model. This peptide was studied because it inhibits thrombin cleavages of fibrinogen by simple competition without blocking enzyme catalytic-site function. When an exteriorized arteriovenous access shunt model was used in baboons (Papio anubis), thrombus formation was induced by placing a thrombogenic device made of (i) a segment of tubing coated covalently with type I collagen, which generatedmore » platelet-rich thrombi under arterial flow conditions, and (ii) two subsequent annular regions of flow expansion that produced fibrin-rich thrombi typically associated with venous valves and veins. Thrombus formation was quantified by measurements of {sup 111}In-labeled platelet and {sup 125}I-labeled fibrinogen deposition in both arterial-flow and venous-flow portions of the device. These finding suggest that, by competitive inhibition of fibrinogen binding to thrombin, fibrin-rich venous-type thrombus formation may be selectively prevented. This strategy may be therapeutically attractive for preserving normal platelet function when conventional anticoagulant therapy is contraindicated.« less

  17. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis

    PubMed Central

    Zhou, Junsong; Wu, Yi; Wang, Lu; Rauova, Lubica; Hayes, Vincent M.; Poncz, Mortimer; Essex, David W.

    2015-01-01

    Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbβ3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation. PMID:26529254

  18. Effect of diazepam and clonazepam on the function of isolated rat platelet and neutrophil.

    PubMed

    Rajtar, Grazyna; Zółkowska, Dorota; Kleinrok, Zdzisław

    2002-04-01

    Benzodiazepine binding sites distinct from the GABA-receptor-chloride-complex in the central nervous system have been recognized in many peripheral tissues, but their physiological role remains unexplained. Our study was undertaken to examine the effects of diazepam, clonazepam, and PK 11195, a peripheral benzodiazepine receptor antagonist, on the functional and biochemical responses of platelets and neutrophils stimulated by different physiological agonists. The experiments were conducted on isolated washed rat platelets activated by arachidonic acid (AA), adenosine 5'-diphosphate (ADP), or thrombin and on isolated rat neutrophils activated by a chemotactic peptide, formyl methionyl leucyl phenylalanine (fMLP). The results showed that neither diazepam nor clonazepam nor PK 11195 alone augmented the response of resting platelets or modified neutrophil response, but diazepam and clonazepam in a concentration-dependent manner inhibited thrombin, ADP or AA-stimulated platelet aggregation and the thrombin-induced increase in free intracellular Ca2+. Both drugs also exerted an inhibitory effect on reactive oxygen species (ROS) produced by fMLP-stimulated neutrophils. However, diazepam was about 10 times more effective than clonazepam. PK11195 did not influence platelet and neutrophil function stimulated by agonists, but reversed the inhibitory action of both benzodiazepines on platelet activation and ROS production. The results indicated that in vitro diazepam, and in a much smaller degree clonazepam, may down-regulate platelet activation and release of some proinflammatory mediators by stimulated neutrophils. These effects are probably exerted by a specific benzodiazepine binding sites.

  19. A randomized, double-blind, placebo- controlled study on the anti-haemostatic effects of Curcuma longa, Angelica sinensis and Panax ginseng.

    PubMed

    Fung, Foon Yin; Wong, Wan Hui; Ang, Seng Kok; Koh, Hwee Ling; Kun, Mei Ching; Lee, Lai Heng; Li, Xiaomei; Ng, Heng Joo; Tan, Chuen Wen; Zhao, Yan; Linn, Yeh Ching

    2017-08-15

    Herbs with "blood-activating" properties by traditional medicine theory often raise concerns for their possible anti-platelet or anticoagulation effects based on reports from in vitro studies. Such herbs have been implicated for bleeding manifestations based on only anecdotal reports. In particular, the combination of such herbs with anti-platelet agents is often empirically advised against despite lack of good clinical evidence. Here we studied 3 commonly used herbal preparations Curcuma longa, Angelica sinensis and Panax ginseng on their respective anti-platelet and anticoagulation effect, alone and in combination with aspirin. This is a randomized, double-blind, placebo-controlled trial involving 25 healthy volunteers for each herbal preparation. Each subject underwent 3 phases comprising of herbal product alone, aspirin alone and aspirin with herbal product, where each phase lasted for 3 weeks with 2 weeks of washout between phases. PT/APTT, platelet function by light transmission aggregometry and thrombin generation assay by calibrated automated thrombogram were measured at baseline and after each phase. Information on adverse reaction including bleeding manifestations was collected after each phase. On the whole there was no clinically relevant impact on platelet and coagulation function. With the exception of 5 of 24 subjects in the Curcuma longa group, 2 of 24 subjects in the Angelica sinensis group and 1 of 23 subjects in the Panax ginseng group who had an inhibition in arachidonic-acid induced platelet aggregation, there was no effect of these 3 herbals products on platelet aggregation by other agonists. Combination of these herbal products with aspirin respectively did not further aggravate platelet inhibition caused by aspirin. None of the herbs impaired PT/APTT or thrombin generation. There was no significant bleeding manifestation. This study on healthy volunteers provides good evidence on the lack of bleeding risks of Curcuma longa, Angelica sinensis and Panax ginseng either used alone or in combination with aspirin. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. High Residual Collagen-Induced Platelet Reactivity Predicts Development of Restenosis in the Superficial Femoral Artery After Percutaneous Transluminal Angioplasty in Claudicant Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, Thomas, E-mail: thomas.gary@medunigraz.at; Prüller, Florian, E-mail: florian.prueller@klinikum-graz.at; Raggam, Reinhard, E-mail: reinhard.raggam@klinikum-graz.at

    PurposeAlthough platelet reactivity is routinely inhibited with aspirin after percutaneous angioplasty (PTA) in peripheral arteries, the restenosis rate in the superficial femoral artery (SFA) is high. Interaction of activated platelets and the endothelium in the region of intervention could be one reason for this as collagen in the subendothelium activates platelets.Materials and MethodsA prospective study evaluating on-site platelet reactivity during PTA and its influence on the development of restenosis with a total of 30 patients scheduled for PTA of the SFA. Arterial blood was taken from the PTA site after SFA; platelet function was evaluated with light transmission aggregometry. Aftermore » 3, 6, 12, and 24 months, duplex sonography was performed and the restenosis rate evaluated.ResultsEight out of 30 patients developed a hemodynamically relevant restenosis (>50 % lumen narrowing) in the PTA region during the 24-month follow-up period. High residual collagen-induced platelet reactivity defined as AUC >30 was a significant predictor for the development of restenosis [adjusted odds ratio 11.8 (9.4, 14.2); P = .04].ConclusionsHigh residual collagen-induced platelet reactivity at the interventional site predicts development of restenosis after PTA of the SFA. Platelet function testing may be useful for identifying patients at risk.« less

  1. Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors.

    PubMed

    Chang, Hung; Yanachkov, Ivan B; Michelson, Alan D; Li, YouFu; Barnard, M R; Wright, George E; Frelinger, Andrew L

    2010-02-01

    Diadenosine 5',5'''-P(1),P(4)- tetraphosphate (Ap(4)A) is stored in platelet dense granules, but its effects on platelet function are not well understood. We examined the effects of Ap(4)A on platelet purinergic receptors P2Y(1), P2Y(12) and P2X(1). Flow cytometry was used to measure the effects of Ap(4)A in the presence or absence of ADP on: a) P2Y(12)-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y(1)-mediated increase in platelet cytosolic Ca(2+), and c) P2X(1)-mediated intraplatelet entry of extracellular Ca(2+). ADP-stimulated platelet shape change (P2Y(1)-mediated) and aggregation (P2Y(1)- and P2Y(12)-mediated) were measured optically. Ap(4)A inhibited 3 microM ADP-induced: a) platelet aggregation (IC(50) 9.8+/-2.8 microM), b) P2Y(1)-mediated shape change, c) P2Y(1)-mediated increase in platelet cytosolic Ca(2+) (IC(50) 40.8+/-12.3 microM), and d) P2Y(12)-mediated decrease in VASP phosphorylation (IC(50)>250 microM). In the absence of added ADP, Ap(4)A had agonist effects on platelet P2X(1) and P2Y(12), but not P2Y(1), receptors. Ap(4)A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y(1) and P2Y(12) receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X(1) and P2Y(12) receptors. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Agonist and Antagonist Effects of Diadenosine Tetraphosphate, a Platelet Dense Granule Constituent, on Platelet P2Y1, P2Y12 and P2X1 Receptors

    PubMed Central

    Chang, Hung; Yanachkov, Ivan B.; Michelson, Alan D.; Li, YouFu; Barnard, M.R.; Wright, George E.; Frelinger, Andrew L.

    2010-01-01

    Introduction Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) is stored in platelet dense granules, but its effects on platelet function are not well understood. Methods and Results We examined the effects of Ap4A on platelet purinergic receptors P2Y1, P2Y12 and P2X1. Flow cytometry was used to measure the effects of Ap4A in the presence or absence of ADP on: a) P2Y12-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y1-mediated increase in platelet cytosolic Ca2+, and c) P2X1-mediated intraplatelet entry of extracellular Ca2+. ADP-stimulated platelet shape change (P2Y1-mediated) and aggregation (P2Y1- and P2Y12-mediated) were measured optically. Ap4A inhibited 3 µM ADP-induced: a) platelet aggregation (IC50 9.8 ± 2.8 µM), b) P2Y1-mediated shape change, c) P2Y1-mediated increase in platelet cytosolic Ca2+ (IC50 40.8 ± 12.3 µM), and d) P2Y12-mediated decrease in VASP phosphorylation (IC50 >250 µM). In the absence of added ADP, Ap4A had agonist effects on platelet P2X1 and P2Y12, but not P2Y1, receptors. Conclusion Ap4A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y1 and P2Y12 receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X1 and P2Y12 receptors. PMID:19945153

  3. Amifostine, a reactive oxigen species scavenger with radiation- and chemo-protective properties, inhibits in vitro platelet activation induced by ADP, collagen or PAF.

    PubMed

    Porta, C; Maiolo, A; Tua, A; Grignani, G

    2000-08-01

    Reactive oxygen species (ROS) generation has been suggested to represent an important regulatory mechanism of platelet reactivity in both physiologic and pathologic conditions; consistent with this hypothesis is the observation that free-radical scavengers may inhibit platelet activation, thus contributing to the regulation of their reactivity. The purpose of the present study is to study the in vitro effects of amifostine (WR-2721, ethyol ), a selective cytoprotective agent for normal tissues against the toxicities of chemotherapy and radiation, on platelet activation induced by the physiologic agonists ADP, collagen and PAF. The effect of amifostine, added to the experimental system at final concentrations ranging from 10(-7) M to 10(-5) M, was studied on platelet aggregation induced by the following physiologic agonists at the given concentrations: ADP (1 microM), collagen (2 microg/mL), and PAF (0.1 microg/mL). Platelet aggregation was investigated using a platelet ionized calcium aggregometer and was expressed as the percentage change in light transmission. Furthermore, thromboxane B((2)) (TxB((2))) levels and nitric oxide (NO) production were determined by radioimmunoassay and by evaluating the total nitrite/nitrate concentration using a commercially available colorimetric kit, respectively, both in the control system and after the addition of amifostine. Amifostine inhibited both platelet aggregation and TxB((2)) production induced by ADP, collagen and PAF, in a dose-dependent manner. Amifostine proved to be an effective inhibitor of platelet function and the effect was more pronounced if platelets were stimulated with ADP, intermediate when collagen was the chosen agonist, and less evident, though present, when PAF was used. Platelets stimulated with ADP, collagen or PAF produced significant amounts of NO over the baseline. When amifostine was added at a final concentration of 5 microM, it significantly increased ADP, collagen and PAF-induced NO production, which suggests that NO release by activated platelets was involved in the inhibitory effect of amifostine. Amifostine proved to be an effective inhibitor of platelet activation induced in vitro by physiologic inducers. This previously unrecognized effect was more evident with the weak agonist ADP and was related to reduced NO consumption by free radicals generated during platelet activation. Amifostine proved to be not only a powerful cytoprotectant, but, more generally, a therapeutic agent endowed with several relevant, though largely unknown, biological effects. Finally, our data once again support the concept that oxidative balance is of crucial importance in regulating platelet reactivity in both health and disease.

  4. Peptide-Mediated Platelet Capture at Gold Micropore Arrays.

    PubMed

    Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E

    2016-11-30

    Ordered spherical cap gold cavity arrays with 5.4, 1.6, and 0.98 μm diameter apertures were explored as capture surfaces for human blood platelets to investigate the impact of surface geometry and chemical modification on platelet capture efficiency and their potential as platforms for surface enhanced Raman spectroscopy of single platelets. The substrates were chemically modified with single-constituent self-assembled monolayers (SAM) or mixed SAMs comprised of thiol-functionalized arginine-glycine-aspartic acid (RGD, a platelet integrin target) with or without 1-octanethiol (adhesion inhibitor). As expected, platelet adhesion was promoted and inhibited at RGD and alkanethiol modified surfaces, respectively. Platelet adhesion was reversible, and binding efficiency at the peptide modified substrates correlated inversely with pore diameter. Captured platelets underwent morphological change on capture, the extent of which depended on the topology of the underlying substrate. Regioselective capture of the platelets enabled study for the first time of the surface enhanced Raman spectroscopy of single blood platelets, yielding high quality Raman spectroscopy of individual platelets at 1.6 μm diameter pore arrays. Given the medical importance of blood platelets across a range of diseases from cancer to psychiatric illness, such approaches to platelet capture may provide a useful route to Raman spectroscopy for platelet related diagnostics.

  5. Aspirin inhibits surface glycoprotein IIb/IIIa, P-selectin, CD63, and CD107a receptor expression on human platelets.

    PubMed

    McKenzie, Marcus E; Malinin, Alex I; Bell, Christopher R; Dzhanashvili, Alex; Horowitz, Eric D; Oshrine, Benjamin R; Atar, Dan; Serebruany, Victor L

    2003-04-01

    Platelet inhibition after aspirin therapy reduces the risk for the development of acute coronary syndromes. However, the mechanism by which aspirin affect platelets other than by prostaglandin blockade is unclear. We sought to determine the in vitro effects of aspirin on the surface expression of nine platelet receptors using whole blood flow cytometry. Blood from 24 healthy volunteers was incubated for 30 min with 1.8 and 7.2 mg/l phosphate-buffered saline-diluted acetylsalicylic acid in the presence or absence of apyrase. Platelet serotonin release, and the surface expression of platelet receptors with or without apyrase were determined using the following monoclonal antibodies: anit-CD41 [glycoprotein (GP)IIb/IIIa], CD42b (GPIb), CD62p (P-selectin), CD51/CD61 (vitronectin receptor), CD31 [platelet/endothelial cellular adhesion molecule-1 (PECAM-1)], CD107a [lysosomal associated membrane protein (LAMP)-1], CD107b (LAMP-2), CD63 (LIMP or LAMP-3), and CD151 (PETA-3). Samples were then immediately fixed with 2% paraformaldehyde, and run on the flow cytometer within 48 h. Aspirin does not affect serotonin release from human platelets. Dose-dependent inhibition of GPIIb/IIIa, P-selectin, CD63, and CD107a receptor expression was observed in the aspirin-treated whole-blood samples. Apyrase potentiates the effects of aspirin, and independently inhibits PECAM-1. In addition to the known effect of irreversibly inhibiting platelet cyclooxygenase-1, thereby blocking thromboxane A(2) synthesis, it appears that aspirin exhibits direct effects on selective major platelet receptors.

  6. Modified diadenosine tetraphosphates with dual specificity for P2Y1 and P2Y12 are potent antagonists of ADP-induced platelet activation

    PubMed Central

    CHANG, H.; YANACHKOV, I. B.; DIX, E. J.; LI, Y. F.; BARNARD, M. R.; WRIGHT, G. E.; MICHELSON, A. D.; FRELINGER, A. L.

    2017-01-01

    Summary Background Diadenosine 5′,5‴-P1,P4-tetraphosphate (Ap4A), a natural compound stored in platelet dense granules, inhibits ADP-induced platelet aggregation. Ap4A inhibits the platelet ADP receptors P2Y1 and P2Y12, is a partial agonist of P2Y12, and is a full agonist of the platelet ATP-gated ion channel P2X1. Modification of the Ap4A tetraphosphate backbone enhances inhibition of ADP-induced platelet aggregation. However, the effects of these Ap4A analogs on human platelet P2Y1, P2Y12 and P2X1 are unclear. Objective To determine the agonist and antagonist activities of diadenosine tetraphosphate analogs towards P2Y1, P2Y12, and P2X1. Methods We synthesized the following Ap4A analogs: P1,P4-dithiotetraphosphate; P2,P3-chloromethylenetetraphosphate; P1-thio-P2,P3-chloromethylenetetraphosphate; and P1,P4-dithio-P2,P3-chloromethylenetetraphosphate. We then measured the effects of these analogs on: (i) ADP-induced platelet aggregation; (ii) P2Y1-mediated changes in cytosolic Ca2+; (iii) P2Y12-mediated changes in vasodilator-stimulated phosphoprotein phosphorylation; and (iv) P2X1-mediated entry of extracellular Ca2+. Results Ap4A analogs with modifications in the phosphate backbone inhibited both P2Y1 and P2Y12, and showed no agonist activity towards these receptors. The dithio modification increased inhibition of P2Y1, P2Y12, and platelet aggregation, whereas the chloromethylene modification increased inhibition of P2Y12 and platelet aggregation, but decreased P2Y1 inhibition. Combining the dithio and chloromethylene modifications increased P2Y1 and P2Y12 inhibition. As compared with Ap4A, each modification decreased agonist activity towards P2X1, and the dual modification completely eliminated P2X1 agonist activity. Conclusions As compared with Ap4A, tetraphosphate backbone analogs of Ap4A have diminished activity towards P2X1 but inhibit both P2Y1 and P2Y12 and, with greater potency, inhibit ADP-induced platelet aggregation. Thus, diadenosine tetraphosphate analogs with dual receptor selectivity may have potential as antiplatelet drugs. PMID:23083103

  7. Antioxidants change platelet responses to various stimulating events

    PubMed Central

    Sobotková, Alžběta; Mášová-Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Májek, Pavel; Reicheltová, Zuzana; Kotlín, Roman; Weisel, John W.; Malý, Martin; Dyr, Jan E.

    2010-01-01

    The role of platelets in hemostasis may be influenced by alteration of the platelet redox state—the presence of antioxidants and the formation of reactive oxygen and nitrogen species. We investigated the effects of two antioxidants, resveratrol and trolox, on platelet activation. Trolox and resveratrol inhibited aggregation of washed platelets and platelet-rich plasma activated by ADP, collagen, and thrombin receptor-activating peptide. Resveratrol was a more effective agent in reducing platelet static and dynamic adhesion in comparison with trolox. The antioxidant capacity of resveratrol was, however, the same as that of trolox. After incubation of platelets with antioxidants, the resveratrol intraplatelet concentration was about five times lower than the intracellular concentration of trolox. Although both antioxidants comparably lowered hydroxyl radical and malondialdehyde production in platelets stimulated with collagen, TxB2 levels were decreased by resveratrol much more effectively than by trolox. Cyclooxygenase 1 was inhibited by resveratrol and not by trolox. Our data indicate that antioxidants, apart from nonspecific redox or radical-quenching mechanisms, inhibit platelet activation also by specific interaction with target proteins. The results also show the importance of studying platelet activation under conditions of real blood flow in contact with reactive surfaces, e.g., using dynamic adhesion experiments. PMID:19766712

  8. Antioxidants change platelet responses to various stimulating events.

    PubMed

    Sobotková, Alzbeta; Másová-Chrastinová, Leona; Suttnar, Jirí; Stikarová, Jana; Májek, Pavel; Reicheltová, Zuzana; Kotlín, Roman; Weisel, John W; Malý, Martin; Dyr, Jan E

    2009-12-15

    The role of platelets in hemostasis may be influenced by alteration of the platelet redox state-the presence of antioxidants and the formation of reactive oxygen and nitrogen species. We investigated the effects of two antioxidants, resveratrol and trolox, on platelet activation. Trolox and resveratrol inhibited aggregation of washed platelets and platelet-rich plasma activated by ADP, collagen, and thrombin receptor-activating peptide. Resveratrol was a more effective agent in reducing platelet static and dynamic adhesion in comparison with trolox. The antioxidant capacity of resveratrol was, however, the same as that of trolox. After incubation of platelets with antioxidants, the resveratrol intraplatelet concentration was about five times lower than the intracellular concentration of trolox. Although both antioxidants comparably lowered hydroxyl radical and malondialdehyde production in platelets stimulated with collagen, TxB(2) levels were decreased by resveratrol much more effectively than by trolox. Cyclooxygenase 1 was inhibited by resveratrol and not by trolox. Our data indicate that antioxidants, apart from nonspecific redox or radical-quenching mechanisms, inhibit platelet activation also by specific interaction with target proteins. The results also show the importance of studying platelet activation under conditions of real blood flow in contact with reactive surfaces, e.g., using dynamic adhesion experiments.

  9. Inhibiting platelets aggregation could aggravate the acute infection caused by Staphylococcus aureus.

    PubMed

    Zhang, Xin; Liu, Yu; Gao, Yaping; Dong, Jie; Mu, Chunhua; Lu, Qiang; Shao, Ningsheng; Yang, Guang

    2011-01-01

    Several fibrinogen binding proteins (Fibs) play important roles in the pathogenesis of Staphylococcus aureus (S. aureus). Most Fibs can promote the aggregation of platelets during infection, but the extracellular fibrinogen-binding protein (Efb) is an exception. It is reported that Efb can specifically bind fibrinogen and inhibit the aggregation of platelet with its N terminal. However, the biological significance of platelet aggregation inhibition in the infection caused by S. aureus is unclear until now. Here, we demonstrated that the persistence and aggregation of platelets were important for killing S. aureus in whole blood. It was found that the N terminal of Efb (EfbN) and platelets inhibitors could increase the survival of S. aureus in whole blood. The study in vivo also showed that EfbN and platelets inhibitors could reduce the killing of S. aureus and increase the lethality rate of S. aureus in the acute infection mouse model.

  10. Effect of preoperative antiplatelet drugs on vascular prostacyclin synthesis.

    PubMed

    Karwande, S V; Weksler, B B; Gay, W A; Subramanian, V A

    1987-03-01

    Patients undergoing aortocoronary bypass using autogenous saphenous veins were randomly divided into three comparable groups. Group 1 (n = 10) acted as a control, Group 2 (n = 14) received 80 mg of aspirin at midnight before the operation, and Group 3 (n = 12) received 80 mg of aspirin and 75 mg of dipyridamole at midnight and an additional 75-mg dose of dipyridamole at 6 AM. The purpose was to determine which regimen would maximally inhibit platelet function without depressing vascular prostacyclin synthesis. Serum thromboxane A2, saphenous vein wall and aortic wall prostacyclin, platelet aggregation, and bleeding time were measured in all patients. None was restarted on a regimen of aspirin or dipyridamole postoperatively. Aspirin alone and in combination with dipyridamole significantly inhibited thromboxane A2 and platelet aggregation in all treated patients but spared venous prostacyclin synthesis. Aortic prostacyclin synthesis was partially inhibited in both treated groups. Chest tube drainage was comparable in all three groups. These results indicate that the combination of aspirin and dipyridamole offers no measurable advantage over aspirin alone in the perioperative period.

  11. Mapuche herbal medicine inhibits blood platelet aggregation.

    PubMed

    Falkenberg, Susan Skanderup; Tarnow, Inge; Guzman, Alfonso; Mølgaard, Per; Simonsen, Henrik Toft

    2012-01-01

    12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM) and collagen- (2.0 μg/mL) induced aggregations in human blood. These four species in respective extracts (in brackets) were Blechnum chilense (MeOH), Luma apiculata (H(2)O), Amomyrtus luma (DCM : MeOH 1 : 1) and Cestrum parqui (DCM : MeOH 1 : 1). The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1), and L. apiculata (H(2)O) were substantial and confirmed by inhibition of platelet surface activation markers.

  12. Mapuche Herbal Medicine Inhibits Blood Platelet Aggregation

    PubMed Central

    Falkenberg, Susan Skanderup; Tarnow, Inge; Guzman, Alfonso; Mølgaard, Per; Simonsen, Henrik Toft

    2012-01-01

    12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM) and collagen- (2.0 μg/mL) induced aggregations in human blood. These four species in respective extracts (in brackets) were Blechnum chilense (MeOH), Luma apiculata (H2O), Amomyrtus luma (DCM : MeOH 1 : 1) and Cestrum parqui (DCM : MeOH 1 : 1). The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1), and L. apiculata (H2O) were substantial and confirmed by inhibition of platelet surface activation markers. PMID:22028732

  13. Monitoring aspirin therapy in children after interventional cardiac catheterization: laboratory measures, dose response, and clinical outcomes.

    PubMed

    Schmugge, Markus; Speer, Oliver; Kroiss, Sabine; Knirsch, Walter; Kretschmar, Oliver; Rand, Margaret L; Albisetti, Manuela

    2015-07-01

    Very few studies have investigated dose response of aspirin and agreement of different platelet function assays in children. One hundred five children were studied at baseline and after interventional cardiac catheterization during aspirin treatment and, in cases of aspirin resistance (AR), after dose increase. Results from arachidonate-induced aggregation (AA) were compared with aggregation induced by ADP, PFA-100 closure times (CTs), urinary 11-dehydro-thromboxane B2 (urinary 11-dhTxB2) levels, and Impact-R % surface coverage. Aspirin at 2-5 mg/kg/day inhibited platelet function in a large majority. While 19 % showed bruising and mild epistaxis, no thrombotic complications were recorded. AR was detected by AA in seven children (6.7 %). After dose increase, the majority showed inhibition by aspirin. Infants had higher urinary 11-dhTxB2 baseline levels; this assay showed some correlation with AA. Both assays manifested high sensitivity and specificity for aspirin while inferior results were found for the other assays. With the PFA-100, 15.2 % of patients were found to have AR, but this corresponded to AR by AA in only one of seven children. While there was poor agreement among assays, AA and urinary 11-dhTxB2 show good specificity for the monitoring of aspirin therapy in children. Aspirin at 2-5 mg/kg inhibits platelet function; AR in children is rare and can be overcome by dose increase.

  14. Mesenchymal Stem Cells Suppress Chronic Rejection in Heterotopic Small Intestine Transplant Rat Models Via Inhibition of CD68, Transforming Growth Factor- β1, and Platelet-Derived Growth Factor Expression.

    PubMed

    Li, Fuxin; Cao, Jisen; Zhao, Zhicheng; Li, Chuan; Qi, Feng; Liu, Tong

    2017-04-01

    Mesenchymal stem cells are easy to obtain and expand, with characteristics of low immunogenicity and strong tissue repair capacity. In this study, our aim was to investigate the role of mesenchymal stem cells in chronic immune rejection of heterotopic small intestine transplant in rats. After successfully constructing a rat chronic immune rejection model of heterotopic small intestine transplant, we infused mesenchymal stem cells into the animal recipients. We observed mesenchymal stem cell location in the recipients, recipient survival, pathology changes, and the expression of CD68, transforming growth factor β1, and platelet-derived growth factor C in the donor intestine. Mesenchymal stem cells inhibited the lymphocyte proliferation caused by concanavalin A in vitro. After stem cells were infused into recipients, they were mainly located in the donor intestine, as well as in the spleen and thymus. Recovery after transplant and pathology changes of the donor intestine in rats with stem cell infusion were better than in the control group; however, we observed no differences in survival time, accompanied by downregulated expression of CD68, transforming growth factor β1, and platelet-derived growth factor C. Mesenchymal stem cells, to a certain extent, could inhibit the process of chronic rejection. The mechanisms may include the inhibited function of these cells on lymphocyte proliferation, reduced infiltration of macrophages, and reduced expression of transforming growth factor β1 and platelet-derived growth factor C.

  15. Glucose impairs aspirin inhibition in platelets through a NAD(P)H oxidase signaling pathway.

    PubMed

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2017-07-01

    Hyperglycemia has been suggested to play a role in the increased platelet resistance to antiplatelet therapy in patients with diabetes mellitus. Exposure to high glucose impairs platelet inhibition by aspirin. It has been found that antioxidant agents reduce the effect of glucose, confirming the involvement of reactive oxygen species (ROS) in the effect of glucose. The aim of the study was to examine the mechanism of ROS increase by high glucose in aspirin-treated platelets. Platelet aggregation was measured by the optical method, and the production of ROS was detected using luminol-dependent horseradish peroxidase-enhanced chemiluminescence. We found that glucose did not affect ADP-induced platelet aggregation. However, it reduced the effect of aspirin on platelet aggregation, which was accompanied by an increase in ROS generation. The inhibition of NAD(P)H oxidase (NOX) prevented the glucose effect and ROS generation. The same result was recorded after the inhibition of p38 mitogen-activated protein kinases (p38 MAPK), phospholipase A 2 (PLA 2 ) or 12-lipoxygenase (12-LOX). The inhibition of TxA 2 receptor did not decrease the effect of glucose indicating that the effect was not caused by activation of TxA 2 receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. VERifyNow in DIabetes high-on-treatment platelet reactivity: a pharmacodynamic study on switching from clopidogrel to prasugrel.

    PubMed

    Cubero Gómez, José M; Acosta Martínez, Juan; Mendias Benítez, Crsitina; Díaz De La Llera, Luis S; Fernández-Quero, Mónica; Guisado Rasco, Agustí; Villa Gil-Ortega, Manuel; Sánchez González, Ángel

    2015-12-01

    Diabetic patients with an acute coronary syndrome undergoing percutaneous coronary intervention frequently exhibit high platelet reactivity while on clopidogrel. We hypothesized that in diabetic patients undergoing percutaneous coronary intervention, who exhibit high-platelet-reactivity after standard treatment with clopidogrel, a 60-mg prasugrel loading dose is superior to standard treatment with clopidogrel for optimal P2Y12 inhibition within the first 24-36 h post-angioplasty. VERDI was a prospective, randomized, single-centre, single-blind, parallel-design study (NCT01684813). Consecutive diabetic patients with an non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention and loaded with clopidogrel were considered for platelet reactivity assessment immediately before angioplasty with the VerifyNow assay measured in P2Y12 reaction units (PRU). Fifty of 63 screened patients (79.4%) had high platelet reactivity (PRU ≥ 208) and were randomized to receive a 60-mg prasugrel loading dose (n = 25) versus clopidogrel standard dose (n = 25). Platelet function was assessed again 24 hours post-angioplasty. Prasugrel achieved greater platelet inhibition than clopidogrel 24 hours post-angioplasty (median [interquartile range], 38 [9-72] vs 285 [240-337], respectively; P < 0.001). The non-high-platelet-reactivity rate (PRU < 208) at 24 h post-angioplasty (primary end point) was higher with prasugrel; 25 patients (100%) in the prasugrel group achieved optimal antiaggregation vs 4 patients (16%) in the clopidogrel group (P < 0.001). No significant acute bleeding was documented in either group. Among type 2 diabetic patients suffering an acute coronary syndrome with high-platelet-reactivity undergoing percutaneous coronary intervention, switching from clopidogrel to prasugrel was superior to standard treatment with clopidogrel for the achievement of optimal antiaggregation within the first 24 hours post-angioplasty.

  17. First Selective 12-LOX Inhibitor, ML355, Impairs Thrombus Formation and Vessel Occlusion In Vivo With Minimal Effects on Hemostasis.

    PubMed

    Adili, Reheman; Tourdot, Benjamin E; Mast, Katherine; Yeung, Jennifer; Freedman, John C; Green, Abigail; Luci, Diane K; Jadhav, Ajit; Simeonov, Anton; Maloney, David J; Holman, Theodore R; Holinstat, Michael

    2017-10-01

    Adequate platelet reactivity is required for maintaining hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi. Platelet 12(S)-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated to regulate platelet function and thrombosis ex vivo, supporting a key role for 12-LOX in the regulation of in vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Here, we studied the effect of the first highly selective 12-LOX inhibitor, ML355, on in vivo thrombosis and hemostasis. ML355 dose-dependently inhibited human platelet aggregation and 12-LOX oxylipin production, as confirmed by mass spectrometry. Interestingly, the antiplatelet effects of ML355 were reversed after exposure to high concentrations of thrombin in vitro. Ex vivo flow chamber assays confirmed that human platelet adhesion and thrombus formation at arterial shear over collagen were attenuated in whole blood treated with ML355 comparable to aspirin. Oral administration of ML355 in mice showed reasonable plasma drug levels by pharmacokinetic assessment. ML355 treatment impaired thrombus growth and vessel occlusion in FeCl 3 -induced mesenteric and laser-induced cremaster arteriole thrombosis models in mice. Importantly, hemostatic plug formation and bleeding after treatment with ML355 was minimal in mice in response to laser ablation on the saphenous vein or in a cremaster microvasculature laser-induced rupture model. Our data strongly support 12-LOX as a key determinant of platelet reactivity in vivo, and inhibition of platelet 12-LOX with ML355 may represent a new class of antiplatelet therapy. © 2017 American Heart Association, Inc.

  18. Usefulness of the VerifyNow P2Y12 assay to evaluate the antiplatelet effects of ticagrelor and clopidogrel therapies.

    PubMed

    Jeong, Young-Hoon; Bliden, Kevin P; Antonino, Mark J; Park, Ki-Soo; Tantry, Udaya S; Gurbel, Paul A

    2012-07-01

    We analyzed the antiplatelet effects of different P2Y(12) receptor blockers with VerifyNow P2Y12 assay (VN-P2Y12) and light transmittance aggregometry (LTA). The point-of-care VN-P2Y12 has been used to assess the antiplatelet effects in clopidogrel-treated patients but has not been evaluated in detail in patients treated with ticagrelor. Patients were randomly assigned to either ticagrelor [180 mg loading/90 mg twice daily (n = 37)] or clopidogrel [600 mg loading/75 mg daily (n = 39)] on top of aspirin treatment, and platelet reactivity was measured serially during onset, maintenance, and offset phases. High on-treatment platelet reactivity (HPR) was defined as 5 and 20 μM adenosine diphosphate-induced maximal platelet aggregation ≥46% and ≥59%, respectively, and P2Y12 reaction units ≥235. Platelet function measured by VN-P2Y12 correlated well with LTA (.812 ≤ ρ ≤ .823, P < .001). VN-P2Y12 "BASE" values were consistent during administration of both agents. Calculated and reported percent inhibitions by VN-P2Y12 were similar (difference, -0.6%; 95% agreement limits, -22.9% to 21.6%). Platelet inhibition by VN-P2Y12 during clopidogrel and ticagrelor administrations was comparable to platelet inhibition by LTA. HPR determined by LTA and VN-P2Y12 were well matched, and the risk stratification between the two methods showed strong agreement after both therapies (κ > .7). The VerifyNow P2Y12 assay is effective in assessing the antiplatelet effects and in identifying HPR during clopidogrel or ticagrelor therapy. Copyright © 2012 Mosby, Inc. All rights reserved.

  19. The administration of a loading dose of aspirin to patients presenting with acute myocardial infarction while receiving chronic aspirin treatment reduces thromboxane A2-dependent platelet reactivity.

    PubMed

    Santos, Maria Teresa; Madrid, Isabel; Moscardo, Antonio; Latorre, Ana M; Bonastre, Juan; Ruano, Miguel; Valles, Juana

    2014-01-01

    Abstract The optimal dose of aspirin for patients presenting with acute myocardial infarction (AMI) while receiving chronic aspirin therapy has not been clearly established. We evaluated whether continued treatment with 100 mg of aspirin or a loading dose (200-500 mg) influences thromboxane A2 (TX) suppression or platelet reactivity. Sixty-four consecutive patients with AMI and 98 healthy subjects (82 aspirin-free and 16 receiving 100 mg daily for a week) were evaluated. Treatment was at the discretion of the attending physician. Collagen (1 µg/ml)-induced TX synthesis, (14)C-serotonin-release, platelet aggregation, and the PFA-100 assay were evaluated. The platelet TX synthesis of patients receiving a loading dose of aspirin was sixfold lower than that of patients receiving 100 mg of aspirin (p<0.005). This was associated with marked reductions in (14)C-serotonin-release and arachidonic-acid-induced aggregation and an increase in the PFA-100 closure time (p<0.01). Categorization of patients according to their TX synthesis (<95% or ≥ 95% inhibition vs. healthy aspirin-free subjects) revealed that 8% of the patients treated with loading doses had a poor response (<95% inhibition) vs. 53% of those treated with 100 mg (p<0.001). Patients with lower TX inhibition had higher serum NT-Pro-BNP (p<0.005), a marker of poor left ventricular systolic function. Administration of a loading dose of aspirin to patients with AMI during existing chronic aspirin treatment induced greater reductions in platelet TX synthesis and TX-dependent platelet reactivity than the continued treatment alone.

  20. Beneficial impacts of regular exercise on platelet function in sedentary older adults: Evidence from a randomized 6-month walking trial.

    PubMed

    Haynes, Andrew; Linden, Matthew D; Robey, Elisa; Naylor, Louise H; Ainslie, Philip N; Cox, Kay L; Lautenschlager, Nicola T; Green, Daniel J

    2018-04-12

    Platelet activation, including the formation of monocyte platelet aggregates (MPAs), contributes to atherosclerosis, thrombus formation and acute coronary syndromes. Regular participation in exercise can lower cardiovascular risk, but little is known regarding the impact of exercise training on platelet function. We investigated the effect of 6 months of walking exercise on platelet function in sedentary older adults without significant cardiovascular disease. Twenty-seven participants were randomly allocated to 6 months of either: no-exercise (n=13) or 3 x 50 mins/wk of supervised centre-based walking (n=14). Circulating and agonist induced MPAs were assessed using flow cytometry before (month 0 0M) and after (month 6 6M) the intervention. Circulating MPAs increased from 0M (3.7 {plus minus} 1.0%) to 6M (4.7 {plus minus} 1.6%) in the no-exercise group (P = 0.009), whereas a non-significant decrease was observed in the walking group (0M 4.3 {plus minus} 1.7% vs 6M 3.7 {plus minus} 1.2, P = 0.052). The change in MPAs between groups was significant (P = 0.001). There were no differences between groups in platelet responses to agonists across the interventions (all P > 0.05). Collectively, these data suggest that the absence of regular exercise may increase MPAs, which are cellular mediators involved in atherosclerosis, whilst regular walking inhibits such increases. The thrombotic function of platelets appear to be relatively unaltered by exercise training. This study provides novel data related to the cardio-protective effects associated with participation in exercise.

  1. SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice.

    PubMed

    Cherpokova, Deya; Bender, Markus; Morowski, Martina; Kraft, Peter; Schuhmann, Michael K; Akbar, Sarah M; Sultan, Cheryl S; Hughes, Craig E; Kleinschnitz, Christoph; Stoll, Guido; Dragone, Leonard L; Watson, Steve P; Tomlinson, Michael G; Nieswandt, Bernhard

    2015-01-01

    Glycoprotein VI and C-type lectin-like receptor 2 are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease, which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter proteins (SLAP and SLAP2) are involved in the regulation of immune cell surface expression and signaling, but their function in platelets is unknown. In this study, we show that platelets expressed both SLAP isoforms and that overexpression of either protein in a heterologous cell line almost completely inhibited glycoprotein VI and C-type lectin-like receptor 2 signaling. In mice, single deficiency of SLAP or SLAP2 had only moderate effects on platelet function, whereas double deficiency of both adapters resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity, and thrombin generation in response to (hem)ITAM-coupled, but not G protein-coupled, receptor activation. In vivo, constitutive SLAP/SLAP2 knockout mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. This was attributed to the absence of both adapter proteins in platelets, as demonstrated by adoptive transfer of Slap(-/-)/Slap2(-/-) platelets into wild-type mice. Our results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke. © 2015 by The American Society of Hematology.

  2. Pharmacogenomics of Anti-platelet Therapy: How much evidence is enough for clinical implementation?

    PubMed Central

    Perry, Christina G.; Shuldiner, Alan R.

    2013-01-01

    Pharmacogenomics, the study of the genomics of drug response and adverse effects, holds great promise for more effective individualized (personalized) medicine. Recent evidence supports a role of loss-of-function variants in the cytochrome P450 enzyme CYP2C19 as a determinant of clopidogrel response. Those who carry loss-of-function variants do not metabolize clopidogrel, a prodrug, into its active form resulting in decreased inhibition of platelet function and a higher likelihood of recurrent cardiovascular events. Despite a large body of evidence supporting clinical utility, adoption of anti-platelet pharmacogenetics into clinical practice has been slow. In this review, we summarize the pharmacokinetic, pharmacodynamics, and clinical evidence, identify gaps in knowledge and other barriers that appear to be slowing adoption, and describe CYP2C19 pharmacogenetics implementation projects currently underway. Only when we surmount these barriers will the astute clinician be able to use pharmacogenetic information in conjunction with the history, physical exam, and other medical tests and information to choose the most efficacious anti-platelet therapy for each individual patient. PMID:23697979

  3. Point of care platelet activity measurement in primary PCI [PINPOINT-PPCI]: a protocol paper

    PubMed Central

    2014-01-01

    Background Optimal treatment of acute ST-elevation myocardial infarction (STEMI) involves rapid diagnosis, and transfer to a cardiac centre capable of percutaneous coronary intervention (PCI) for immediate mechanical revascularisation. Successful treatment requires rapid return of perfusion to the myocardium achieved by thromboaspiration, passivation of the culprit lesion with stent scaffolding and systemic inhibition of thrombosis and platelet activation. A delicate balance exists between thrombosis and bleeding and consequently anti-thrombotic and antiplatelet treatment regimens continue to evolve. The desire to achieve reperfusion as soon as possible, in the setting of high platelet reactivity, requires potent and fast-acting anti-thrombotic/anti-platelet therapies. The associated bleeding risk may be minimised by use of short-acting anti-thrombotic intravenous agents. However, effective oral platelet inhibition is required to prevent recurrent thrombosis. The interaction between baseline platelet reactivity, timing of revascularisation and effective inhibition of thrombosis is yet to be formally investigated. Methods/Design We present a protocol for a prospective observational study in patients presenting with acute STEMI treated with primary PCI (PPCI) and receiving bolus/infusion bivalirudin and prasugrel therapy. The objective of this study is to describe variation in platelet reactivity, as measured by the multiplate platelet function analyser, at presentation, the end of the PPCI procedure and 1, 2, & 24 hours post-procedure. We intend to assess the prevalence of high residual platelet reactivity within 24 hours of PPCI in acute STEMI patients receiving prasugrel and bivalirudin. Additionally, we will investigate the association between high platelet reactivity before and after PPCI and the door-to-procedure completion time. This is a single centre study with a target sample size of 108 participants. Discussion The baseline platelet reactivity on presentation with a STEMI may impact on the effect of acute anti-thrombotic and anti-platelet therapy and expose patients to a heightened risk of bleeding or ongoing thrombosis. This study will define the baseline variation in platelet reactivity in a population of patients experiencing acute STEMI and assess the pharmacodynamic response to combined treatment with bivalirudin and prasugrel. The data obtained from this trial will be hypothesis generating for future trials testing alternative pharmacotherapies in the acute phase of treatment for STEMI. Trial registration This study has approval from Wiltshire research ethics committee (10/H0106/87) and is registered with current controlled trials (http://www.controlled-trials.com/ISRCTN82257414). PMID:24708700

  4. Abacavir increases platelet reactivity via competitive inhibition of soluble guanylyl cyclase

    PubMed Central

    Baum, Paul D.; Sullam, Paul M.; Stoddart, Cheryl A.; McCune, Joseph M.

    2011-01-01

    Objective To provide a molecular mechanism that explains the association of the antiretroviral guanosine analogue, abacavir, with an increased risk of myocardial infarction. Design Drug effects were studied with biochemical and cellular assays. Methods Human platelets were incubated with nucleoside analogue drugs ex vivo. Platelet activation stimulated by ADP was studied by measuring surface P-selectin with flow cytometry. Inhibition of purified soluble guanylyl cyclase was quantified using an ELISA to measure cGMP production. Results Pre-incubation of platelets in abacavir significantly increased activation in response to ADP in a time and dose-dependent manner. The active anabolite of abacavir, carbovir triphosphate, competitively inhibited soluble guanylyl cyclase activity with a Ki of 55 μmol/l. Conclusion Abacavir competitively inhibits guanylyl cyclase, leading to platelet hyper-reactivity. This may explain the observed increased risk of myocardial infarction in HIV patients taking abacavir. PMID:21941165

  5. Cbl-b is a novel physiologic regulator of glycoprotein VI-dependent platelet activation.

    PubMed

    Daniel, James L; Dangelmaier, Carol A; Mada, Sripal; Buitrago, Lorena; Jin, Jianguo; Langdon, Wallace Y; Tsygankov, Alexander Y; Kunapuli, Satya P; Sanjay, Archana

    2010-06-04

    Cbl-b, a member of the Cbl family of E3 ubiquitin ligases, plays an important role in the activation of lymphocytes. However, its function in platelets remains unknown. We show that Cbl-b is expressed in human platelets along with c-Cbl, but in contrast to c-Cbl, it is not tyrosine-phosphorylated upon glycoprotein VI (GPVI) stimulation. Cbl-b, unlike c-Cbl, is not required for Syk ubiquitylation downstream of GPVI activation. Phospholipase Cgamma2 (PLCgamma2) and Bruton's tyrosine kinase (BTK) are constituently associated with Cbl-b. Cbl-b-deficient (Cbl-b(-/-)) platelets display an inhibition in the concentration-response curve for GPVI-specific agonist-induced aggregation, secretion, and Ca(2+) mobilization. A parallel inhibition is found for activation of PLCgamma2 and BTK. However, Syk activation is not affected by the absence of Cbl-b, indicating that Cbl-b acts downstream of Syk but upstream of BTK and PLCgamma2. When Cbl-b(-/-) mice were tested in the ferric chloride thrombosis model, occlusion time was increased and clot stability was reduced compared with wild type controls. These data indicate that Cbl-b plays a positive modulatory role in GPVI-dependent platelet signaling, which translates to an important regulatory role in hemostasis and thrombosis in vivo.

  6. IMMUNOREACTIONS INVOLVING PLATELETS

    PubMed Central

    Shulman, N. Raphael

    1958-01-01

    Quantitative aspects of platelet agglutination and inhibition of clot retraction by the antibody of quinidine purpura were described. The reactions appeared to depend on formation of types of antibody-quinidine-platelet complexes which could fix complement but complement was not necessary for these reactions. Complement fixation was at least 10 times more sensitive than platelet agglutination or inhibition of clot retraction for measurement and detection of antibody activity. Although it has been considered that antibodies of drug purpura act as platelet lysins in the presence of complement and that direct lysis of platelets accounts for development of thrombocytopenia in drug purpura, the present study suggests that attachment of antibody produces a change in platelets which is manifested in vitro only by increased susceptibility to non-specific factors which can alter the stability of platelets in the absence of antibody. The attachment of antibody to platelets in vivo may only indirectly affect platelet survival. In contrast to human platelets, dog, rabbit, and guinea pig platelets, and normal or trypsin-treated human red cells did not agglutinate, fix complement, or adsorb antibody; and intact human endothelial cells did not fix complement or adsorb antibody. Rhesus monkey platelets were not agglutinated by the antibody but did adsorb antibody and fix complement although their activity in these reactions differed quantitatively from that of human platelets. Cinchonine could be substituted for quinidine in agglutination and inhibition of clot retraction reactions but quinine and cinchonidine could not. Attempts to cause passive anaphylaxis in guinea pigs with the antibody of quinidine purpura were not successful. PMID:13525580

  7. Mechanism of inhibition of cyclo-oxygenase in human blood platelets by carbamate insecticides.

    PubMed Central

    Krug, H F; Hamm, U; Berndt, J

    1988-01-01

    Carbamates are a widely used class of insecticides and herbicides. They were tested for their ability to affect human blood platelet aggregation and arachidonic acid metabolism in platelets. (1) The herbicides of the carbamate type have no, or only little, influence up to a concentration of 100 microM; the carbamate insecticides, however, inhibit both aggregation and arachidonic acid metabolism in a dose- and time-dependent manner. (2) Carbaryl, the most effective compound, inhibits platelet aggregation and cyclo-oxygenase activity completely at 10 microM. The liberation of arachidonic acid from phospholipids and the lipoxygenase pathway are not affected, whereas the products of the cyclo-oxygenase pathway are drastically decreased. (3) By using [14C]carbaryl labelled in the carbamyl or in the ring moiety, it could be proved that the carbamyl residue binds covalently to platelet proteins. In contrast with acetylsalicylic acid, which acetylates only one protein, carbaryl carbamylates a multitude of platelet proteins. (4) One of the carbamylated proteins was found to be the platelet cyclo-oxygenase, indicating that carbaryl resembles in this respect acetylsalicylic acid, which is known to inhibit this enzyme specifically by acetylation. Images Fig. 4. PMID:3128272

  8. mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets

    PubMed Central

    Weyrich, Andrew S.; Denis, Melvin M.; Schwertz, Hansjorg; Tolley, Neal D.; Foulks, Jason; Spencer, Eliott; Kraiss, Larry W.; Albertine, Kurt H.; McIntyre, Thomas M.

    2007-01-01

    New activities of human platelets continue to emerge. One unexpected response is new synthesis of proteins from previously transcribed RNAs in response to activating signals. We previously reported that activated human platelets synthesize B-cell lymphoma-3 (Bcl-3) under translational control by mammalian target of rapamycin (mTOR). Characterization of the ontogeny and distribution of the mTOR signaling pathway in CD34+ stem cell–derived megakaryocytes now demonstrates that they transfer this regulatory system to developing proplatelets. We also found that Bcl-3 is required for condensation of fibrin by activated platelets, demonstrating functional significance for mTOR-regulated synthesis of the protein. Inhibition of mTOR by rapamycin blocks clot retraction by human platelets. Platelets from wild-type mice synthesize Bcl-3 in response to activation, as do human platelets, and platelets from mice with targeted deletion of Bcl-3 have defective retraction of fibrin in platelet-fibrin clots mimicking treatment of human platelets with rapamycin. In contrast, overexpression of Bcl-3 in a surrogate cell line enhanced clot retraction. These studies identify new features of post-transcriptional gene regulation and signal-dependant protein synthesis in activated platelets that may contribute to thrombus and wound remodeling and suggest that posttranscriptional pathways are targets for molecular intervention in thrombotic disorders. PMID:17110454

  9. The effect of anthocyanin supplementation in modulating platelet function in sedentary population: a randomised, double-blind, placebo-controlled, cross-over trial.

    PubMed

    Thompson, Kiara; Hosking, Holly; Pederick, Wayne; Singh, Indu; Santhakumar, Abishek B

    2017-09-01

    The anti-thrombotic properties of anthocyanin (ACN) supplementation was evaluated in this randomised, double-blind, placebo (PBO) controlled, cross-over design, dietary intervention trial in sedentary population. In all, sixteen participants (three males and thirteen females) consumed ACN (320 mg/d) or PBO capsules for 28 d followed by a 2-week wash-out period. Biomarkers of thrombogenesis and platelet activation induced by ADP; platelet aggregation induced by ADP, collagen and arachidonic acid; biochemical, lipid, inflammatory and coagulation profile were evaluated before and after supplementation. ACN supplementation reduced monocyte-platelet aggregate formation by 39 %; inhibited platelet endothelial cell adhesion molecule-1 expression by 14 %; reduced platelet activation-dependant conformational change and degranulation by reducing procaspase activating compound-1 (PAC-1) (↓10 %) and P-selectin expression (↓14 %), respectively; and reduced ADP-induced whole blood platelet aggregation by 29 %. Arachidonic acid and collagen-induced platelet aggregation; biochemical, lipid, inflammatory and coagulation parameters did not change post-ACN supplementation. PBO treatment did not have an effect on the parameters tested. The findings suggest that dietary ACN supplementation has the potential to alleviate biomarkers of thrombogenesis, platelet hyperactivation and hyper-aggregation in sedentary population.

  10. Antiplatelet effect of phloroglucinol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A{sub 2} production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Mei-Chi; Chang, Hsiao-Hua; Chan, Chiu-Po

    2012-09-15

    Platelet dysfunction is a major risk factor of cardiovascular diseases such as atherosclerosis, stroke and myocardial infarction. Many antiplatelet agents are used for prevention and treatment of these diseases. In this study, phloroglucinol (2.5–25 μM) suppressed AA-induced platelet aggregation and thromboxane B{sub 2} (TXB{sub 2}) production, but not U46619-induced platelet aggregation. Phloroglucinol (100–250 μM) showed little cytotoxicity to platelets. Phloroglucinol inhibited the COX-1 and COX-2 activities by 45–74% and 49–72% respectively at concentrations of 10–50 μM. At concentrations of 1 and 5 μM, phloroglucinol attenuated the AA-induced ROS production in platelets by 30% and 53%, with an IC{sub 50} ofmore » 13.8 μM. Phloroglucinol also inhibited the PMA-stimulated ROS production in PMN. Preincubation of platelets by phloroglucinol (10–25 μM) markedly attenuated the AA-induced ERK and p38 phosphorylation. Intravenous administration of phloroglucinol (2.5 and 5 μmol/mouse) suppressed the ex vivo AA-induced platelet aggregation by 57–71%. Phloroglucinol administration also elevated the mice tail bleeding time. Moreover, phloroglucinol inhibited the IL-1β-induced PGE{sub 2} production in pulp fibroblasts. These results indicate that antiplatelet and anti-inflammatory effects of phloroglucinol are related to inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation in platelets. Phloroglucinol further suppress PMA-induced ROS production in PMN. The antiplatelet effect of phloroglucinol was confirmed by ex vivo study. Clinically, the consumption of phloroglucinol-containing food/natural products as nutritional supplement may be helpful to cardiovascular health. Phloroglucinol has potential pharmacological use. -- Highlights: ► Phloroglucinol suppressed AA-induced platelet aggregation and thromboxane production. ► Phloroglucinol inhibited COX activity and IL-1b-induced PGE2 production in fibroblast. ► Phloroglucinol declined platelet and PMN ROS production and ERK/p38 phosphorylation. ► Phloroglucinol suppressed ex vivo AA-induced platelet aggregation. ► Phloroglucinol may prevent and for treatment of atherosclerosis/ vascular diseases.« less

  11. Fruitflow®: the first European Food Safety Authority-approved natural cardio-protective functional ingredient.

    PubMed

    O'Kennedy, Niamh; Raederstorff, Daniel; Duttaroy, Asim K

    2017-03-01

    Hyperactive platelets, in addition to their roles in thrombosis, are also important mediators of atherogenesis. Antiplatelet drugs are not suitable for use where risk of a cardiovascular event is relatively low. It is therefore important to find alternative safe antiplatelet inhibitors for the vulnerable population who has hyperactive platelets in order to reduce the risk of cardiovascular disease. Potent antiplatelet factors were identified in water-soluble tomato extract (Fruitflow ® ), which significantly inhibited platelet aggregation. Human volunteer studies demonstrated the potency and bioavailability of active compounds in Fruitflow ® . Fruitflow ® became the first product in Europe to obtain an approved, proprietary health claim under Article 13(5) of the European Health Claims Regulation 1924/2006 on nutrition and health claims made on foods. Fruitflow ® is now commercially available in different countries worldwide. In addition to its reduction in platelet reactivity, Fruitflow ® contains anti-angiotensin-converting enzyme and anti-inflammatory factors, making it an effective and natural cardio-protective functional food.

  12. Hyperglycemia-Induced Platelet Activation in Type 2 Diabetes Is Resistant to Aspirin but Not to a Nitric Oxide–Donating Agent

    PubMed Central

    Gresele, Paolo; Marzotti, Stefania; Guglielmini, Giuseppe; Momi, Stefania; Giannini, Silvia; Minuz, Pietro; Lucidi, Paola; Bolli, Geremia B.

    2010-01-01

    OBJECTIVE Acute, short-term hyperglycemia enhances high shear stress–induced platelet activation in type 2 diabetes. Several observations suggest that platelets in type 2 diabetes are resistant to inhibition by aspirin. Our aim was to assess comparatively the effect of aspirin, a nitric oxide–donating agent (NCX 4016), their combination, or placebo on platelet activation induced by acute hyperglycemia in type 2 diabetes. RESEARCH DESIGN AND METHODS In a double-blind, placebo-controlled, randomized trial, 40 type 2 diabetic patients were allocated to 100 mg aspirin once daily, 800 mg NCX 4016 b.i.d., both of them, or placebo for 15 days. On day 15, 1 h after the morning dose, a 4-h hyperglycemic clamp (plasma glucose 13.9 mmol/l) was performed, and blood samples were collected before and immediately after it for platelet activation and cyclooxygenase-1 (COX-1) inhibition studies. RESULTS Acute hyperglycemia enhanced shear stress–induced platelet activation in placebo-treated patients (basal closure time 63 ± 7.1 s, after hyperglycemia 49.5 ± 1.4 s, −13.5 ± 6.3 s, P < 0.048). Pretreatment with aspirin, despite full inhibition of platelet COX-1, did not prevent it (−12.7 ± 6.9 s, NS vs. placebo). On the contrary, pretreatment with the NO donor NCX 4016, alone or in combination with aspirin, suppressed platelet activation induced by acute hyperglycemia (NCX 4016 +10.5 ± 8.3 s; NCX 4016 plus aspirin: +12.0 ± 10.7 s, P < 0.05 vs. placebo for both). Other parameters of shear stress–dependent platelet activation were also more inhibited by NCX 4016 than by aspirin, despite lesser inhibition of COX-1. CONCLUSIONS Acute hyperglycemia-induced enhancement of platelet activation is resistant to aspirin; a NO-donating agent suppresses it. Therapeutic approaches aiming at a wider platelet inhibitory action than that exerted by aspirin may prove useful in patients with type 2 diabetes. PMID:20299485

  13. Consistent platelet inhibition during long-term maintenance-dose clopidogrel therapy among 359 compliant outpatients with documented vascular disease.

    PubMed

    Serebruany, Victor L; Malinin, Alex I; Atar, Dan; Hanley, Dan F

    2007-03-01

    Numerous reports have dichotomized responses after clopidogrel therapy using varying definitions and platelet tests in patients immediately after acute vascular events; however, no large study has assessed platelet characteristics in outpatients receiving long-term treatment for more than 30 days with the maintenance dose (75 mg/d) of clopidogrel. The aim of this study was to describe the responses of ex vivo measures of platelet aggregation and activation to long-term clopidogrel therapy in a large population of outpatients after coronary stenting or ischemic stroke. We conducted a secondary post hoc analysis of a data set represented by presumably compliant patients after coronary stenting (n = 237) or a documented ischemic stroke (n = 122) treated with clopidogrel-and-aspirin combination antiplatelet therapy. The mean duration of treatment was 5.8 months (range 1-21 months). Every patient exhibited a significant inhibition of adenosine diphosphate-induced platelet aggregation (mean 52.9%, range 36%-70%) as compared with the preclopidogrel measures. Inhibition of aggregation strongly correlated with a diminished expression of PECAM-1 (platelet/endothelial cell adhesion molecule 1, r = 0.75), glycoprotein IIb/IIIa (r = 0.62), and PAR-1 (protease-activated receptor 1, r = 0.71). None of the patients developed hyporesponsiveness (reduction from the baseline <15%) or profound inhibition (residual platelet activity <10%). In contrast to the wide variability of responses that exists in the acute setting, long-term therapy with clopidogrel leads to consistent and much less variable platelet inhibition. Lack of nonresponse and profound inhibition with clopidogrel allow for the maintenance of a delicate balance between proven efficacy and acceptable bleeding risks for long-term secondary prevention in outpatients after acute vascular events.

  14. Effect of ticlopidine ex vivo on platelet intracellular calcium mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derian, C.K.; Friedman, P.A.

    1988-04-01

    The antiplatelet compound ticlopidine exerts its potent inhibitory activity through an as yet undetermined mechanism(s). The goal of this study was to determine the effect, if any, of ticlopidine ex vivo on platelet calcium mobilization. Ticlopidine inhibited ADP-induced platelet aggregation by 50-80%. In the presence of 1 mM EGTA, ticlopidine inhibited ADP- and thrombin-stimulated increases in (Ca2+)i in fura-2 loaded platelets. We evaluated further the effect of ticlopidine on calcium mobilization by examining both agonist-stimulated formation of inositol trisphosphate in intact platelets and the ability of inositol trisphosphate to release /sup 45/Ca from intracellular sites in permeabilized cells. We showmore » here that while ticlopidine significantly affected agonist-induced intracellular calcium mobilization in intact platelets, the drug was without effect on agonist-stimulated formation of inositol trisphosphate in intact platelets and on inositol trisphosphate-induced /sup 45/Ca release in saponin-permeabilized platelets. Our study demonstrates that ticlopidine exerts at least part of its effect via inhibition of intracellular calcium mobilization but that its site of action remains to be determined.« less

  15. Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis.

    PubMed

    Koseoglu, Secil; Dilks, James R; Peters, Christian G; Fitch-Tewfik, Jennifer L; Fadel, Nathalie A; Jasuja, Reema; Italiano, Joseph E; Haynes, Christy L; Flaumenhaft, Robert

    2013-03-01

    Platelet granule exocytosis serves a central role in hemostasis and thrombosis. Recently, single-cell amperometry has shown that platelet membrane fusion during granule exocytosis results in the formation of a fusion pore that subsequently expands to enable the extrusion of granule contents. However, the molecular mechanisms that control platelet fusion pore expansion and collapse are not known. We identified dynamin-related protein-1 (Drp1) in platelets and found that an inhibitor of Drp1, mdivi-1, blocked exocytosis of both platelet dense and α-granules. We used single-cell amperometry to monitor serotonin release from individual dense granules and, thereby, measured the effect of Drp1 inhibition on fusion pore dynamics. Inhibition of Drp1 increased spike width and decreased prespike foot events, indicating that Drp1 influences fusion pore formation and expansion. Platelet-mediated thrombus formation in vivo after laser-induced injury of mouse cremaster arterioles was impaired after infusion of mdivi-1. These results demonstrate that inhibition of Drp1 disrupts platelet fusion pore dynamics and indicate that Drp1 can be targeted to control thrombus formation in vivo.

  16. Flavocoxid, an anti-inflammatory agent of botanical origin, does not affect coagulation or interact with anticoagulation therapies.

    PubMed

    Pillai, Lakshmi; Levy, Robert M; Yimam, Mesfin; Zhao, Yuan; Jia, Qi; Burnett, Bruce P

    2010-06-01

    Flavocoxid, a botanical, anti-inflammatory agent, nonspecifically inhibits the peroxidase activity of cyclooxygenase (COX-1 and COX-2) enzymes and 5-lipooxygenase (5-LOX). Due to the concomitant use of aspirin or warfarin in many osteoarthritis (OA) patients with increased cardiovascular risk, we felt it necessary to assess the anticoagulation properties of flavocoxid. Three different studies were used: 1) a mouse model to assess effects on bleeding times when combined with aspirin; 2) the effect on platelet function as evaluated by platelet aggregation and bleed times in healthy human subjects; and 3) the effect on international normalized ratio in previously warfarinized patients with OA. Flavocoxid at a human equivalent dose (HED) of 569 mg (within the standard human dosing range of 500 mg) produced no significant increases in bleeding time in mice. There was also no inhibition or synergistic increase in bleed times when flavocoxid was combined with aspirin (370 mg HED). Flavocoxid did not significantly inhibit thromboxane production or platelet aggregation, and did not increase bleeding times in healthy volunteers. Finally, flavocoxid did not inhibit or potentiate the anticoagulant effect of warfarin. These results suggest that flavocoxid does not affect the primary or extrinsic pathways of secondary hemostasis and, by not inhibiting the anticoagulation effects of aspirin, may have utility in cardiovascular patients with OA.

  17. Evidence for shear-mediated Ca2+ entry through mechanosensitive cation channels in human platelets and a megakaryocytic cell line.

    PubMed

    Ilkan, Zeki; Wright, Joy R; Goodall, Alison H; Gibbins, Jonathan M; Jones, Chris I; Mahaut-Smith, Martyn P

    2017-06-02

    The role of mechanosensitive (MS) Ca 2+ -permeable ion channels in platelets is unclear, despite the importance of shear stress in platelet function and life-threatening thrombus formation. We therefore sought to investigate the expression and functional relevance of MS channels in human platelets. The effect of shear stress on Ca 2+ entry in human platelets and Meg-01 megakaryocytic cells loaded with Fluo-3 was examined by confocal microscopy. Cells were attached to glass coverslips within flow chambers that allowed applications of physiological and pathological shear stress. Arterial shear (1002.6 s -1 ) induced a sustained increase in [Ca 2+ ] i in Meg-01 cells and enhanced the frequency of repetitive Ca 2+ transients by 80% in platelets. These Ca 2+ increases were abrogated by the MS channel inhibitor Grammostola spatulata mechanotoxin 4 (GsMTx-4) or by chelation of extracellular Ca 2+ Thrombus formation was studied on collagen-coated surfaces using DiOC 6 -stained platelets. In addition, [Ca 2+ ] i and functional responses of washed platelet suspensions were studied with Fura-2 and light transmission aggregometry, respectively. Thrombus size was reduced 50% by GsMTx-4, independently of P2X1 receptors. In contrast, GsMTx-4 had no effect on collagen-induced aggregation or on Ca 2+ influx via TRPC6 or Orai1 channels and caused only a minor inhibition of P2X1-dependent Ca 2+ entry. The Piezo1 agonist, Yoda1, potentiated shear-dependent platelet Ca 2+ transients by 170%. Piezo1 mRNA transcripts and protein were detected with quantitative RT-PCR and Western blotting, respectively, in both platelets and Meg-01 cells. We conclude that platelets and Meg-01 cells express the MS cation channel Piezo1, which may contribute to Ca 2+ entry and thrombus formation under arterial shear. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. 2',5'-Dihydroxychalcone as a potent chemical mediator and cyclooxygenase inhibitor.

    PubMed

    Lin, C N; Lee, T H; Hsu, M F; Wang, J P; Ko, F N; Teng, C M

    1997-05-01

    Eleven chalcone derivatives have been tested for their inhibitory effects on platelet aggregation in rabbit platelet suspension and the activation of mast cells and neutrophils. Arachidonic acid-induced platelet aggregation was potently inhibited by almost all the compounds and some also had a potent inhibitory effect on collagen-induced platelet aggregation and cyclooxygenase. Some hydroxychalcone derivatives showed strong inhibitory effects on the release of beta-glucuronidase and lysozyme, and on superoxide formation by rat neutrophils stimulated with the peptide fMet-Leu-Phe (fMLP). We found that the anti-inflammatory effect of 2',5'-dihydroxychalcone was greater than that of trifluoperazine. 2'5'-Dihydroxy and 2',3,4,5'-tetrahydroxyl chalcones, even at low concentration (50 microM), tested in platelet-rich plasma from man almost completely inhibited secondary aggregation induced by adrenaline. These results suggest that the anti-platelet effects of the chalcones are mainly a result of inhibition of thromboxane formation.

  19. Antioxidative and antiplatelet effects of aqueous inflorescence Piper betle extract.

    PubMed

    Lei, Daniel; Chan, Chiu-Po; Wang, Ying-Jan; Wang, Tong-Mei; Lin, Bor-Ru; Huang, Chun-Hsun; Lee, Jang-Jaer; Chen, Hsin-Ming; Jeng, Jiiang-Huei; Chang, Mei-Chi

    2003-03-26

    Piper betle, belonging to the Piperaceae family, is a tropical plant, and its leaf and inflorescence are popularly consumed by betel quid (BQ) chewers in Taiwan and many other South and Southeast Asian countries. However, little is known about the biochemical properties of inflorescence Piper betle (IPB) toward reactive oxygen species (ROS) and platelet functions. In the present work, aqueous IPB extract was shown to be a scavenger of H(2)O(2), superoxide radical, and hydroxyl radical with a 50% inhibitory concentration (IC(50)) of about 80, 28, and 73 microg/mL, respectively. IPB extract also prevented the hydroxyl radical induced PUC18 plasmid DNA breaks at concentrations higher than 40 microg/mL. Since ROS are crucial for platelet aggregation, we further found that IPB extract also inhibited the arachidonic acid (AA) induced and collagen-induced platelet aggregation, with an IC(50) of 207 and 335 microg/mL, respectively. IPB extract also inhibited the AA-, collagen- (>100 microg/mL of IPB), and thrombin (>250 microg/mL of IPB)-induced thromboxane B(2) (TXB(2)) production by more than 90%. However, IPB extract showed little effect on thrombin-induced aggregation. These results indicated that aqueous components of IPB are potential ROS scavengers and may prevent the platelet aggregation possibly via scavenging ROS or inhibition of TXB(2) production.

  20. Cumulative inhibitory effect of low-dose aspirin on vascular prostacyclin and platelet thromboxane production in patients with atherosclerosis.

    PubMed

    Weksler, B B; Tack-Goldman, K; Subramanian, V A; Gay, W A

    1985-02-01

    The relationship between the antithrombotic and antiplatelet effects of aspirin is complex, since aspirin influences other systems that protect against thrombosis as well as inhibiting platelet function. We investigated possible cumulative effects of low-dose aspirin on vascular production of prostacyclin in patients with documented atherosclerotic cardiovascular disease. Candidates for coronary artery vein graft bypass ingested 20 mg of aspirin daily during the week before surgery, and platelet aggregation, platelet formation of thromboxane A2 (TXA2), aortic and saphenous vein production of prostacyclin (PGI2), and hemostatic status were measured at the time of the bypass surgery. Low-dose aspirin markedly inhibited platelet aggregation responses and reduced TXA2 generation by greater than 90%, effects similar to those observed with much higher doses of aspirin. Both aortic and saphenous vein production of PGI2 were inhibited by 50% compared with PGI2 produced by vascular tissues of control subjects who received no aspirin preoperatively (51 +/- 10 pg 6-keto-PGF1 alpha/mg aortic wet weight [mean +/- SEM] in aspirin-treated subjects vs 130 +/- 16 pg/mg in control subjects, and 71 +/- 8 pg/mg saphenous vein wet weight vs 131 +/- 17 pg/mg). Blood loss at surgery was not significantly increased by preoperative low-dose aspirin as measured by chest tube drainage (754 +/- 229 ml in aspirin-treated subjects vs 645 +/- 271 ml in control subjects), hematocrit nadir (31.2 +/- 1.9% vs 31.8 +/- 1.7%), or transfusions (2.2 +/- 1.3 units of red blood cells vs 2.2 +/- 1.7 units).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Comparative effect on platelet function of a fixed-dose aspirin and clopidogrel combination versus separate formulations in patients with coronary artery disease: A phase IV, multicenter, prospective, 4-week non-inferiority trial.

    PubMed

    Oh, Pyung Chun; Ahn, Taehoon; Kim, Dong Woon; Hong, Bum-Kee; Kim, Dong-Soo; Kwan, Jun; Choi, Cheol Ung; Yang, Yong-Mo; Bae, Jang Ho; Jung, Kyung Tae; Choi, Woong Gil; Jeon, Dong Woon; Cho, Deok Kyu; Pyun, Wook Bum; Cha, Kwang Soo; Cha, Tae-Joon; Chun, Kook Jin; Kim, Young Dae; Kim, Byung Soo; Kim, Doo-Il; Kim, Tae Ik

    2016-01-01

    The effect of aspirin and clopidogrel in a fixed-dose combination (FDC) on platelet function was compared with separate formulations in patients that had undergone percutaneous coronary intervention (PCI) with drug-eluting stent (DES). This was a phase IV, prospective, multicenter, single-arm, non-inferiority study. Patients that had taken aspirin 100 mg and clopidogrel 75 mg once daily as separate formulations for >6 months after PCI with DES were enrolled, and then switched to an aspirin/clopidogrel FDC once-daily for 4 weeks. Platelet reactivity was determined using the VerifyNow® P2Y12 assay at baseline (immediately prior to switching) and 4 weeks later. A total of 648 patients (the full-analysis population; age, 63.6±9.0 years; male, 76.5%) finished the study, and 565 (the per-protocol population) completed without protocol violations. In the per-protocol population, the % inhibitions of P2Y12 and ARU were not significantly different between baseline and after 4 weeks of FDC treatment (29.2±20.0% to 29.0±19.9%, P=0.708; 445.1±69.2 to 446.2±63.0, P=0.799, respectively) and the difference in P2Y12 inhibition observed did not exceed the predetermined limit of non-inferiority (95% CI, -0.9 to 1.3). In the full-analysis population, the % inhibitions of P2Y12, PRU, and ARU were not significantly changed after 4 weeks of FDC treatment. This study demonstrates that the efficacy of platelet inhibition by an aspirin/clopidogrel FDC was not inferior to that of separate aspirin and clopidogrel formulations in patients that had undergone PCI with DES. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. Salivary Antigen-5/CAP Family Members Are Cu2+-dependent Antioxidant Enzymes That Scavenge O2⨪ and Inhibit Collagen-induced Platelet Aggregation and Neutrophil Oxidative Burst*

    PubMed Central

    Assumpção, Teresa C. F.; Ma, Dongying; Schwarz, Alexandra; Reiter, Karine; Santana, Jaime M.; Andersen, John F.; Ribeiro, José M. C.; Nardone, Glenn; Yu, Lee L.; Francischetti, Ivo M. B.

    2013-01-01

    The function of the antigen-5/CAP family of proteins found in the salivary gland of bloodsucking animals has remained elusive for decades. Antigen-5 members from the hematophagous insects Dipetalogaster maxima (DMAV) and Triatoma infestans (TIAV) were expressed and discovered to attenuate platelet aggregation, ATP secretion, and thromboxane A2 generation by low doses of collagen (<1 μg/ml) but no other agonists. DMAV did not interact with collagen, glycoprotein VI, or integrin α2β1. This inhibitory profile resembles the effects of antioxidants Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in platelet function. Accordingly, DMAV was found to inhibit cytochrome c reduction by O2⨪ generated by the xanthine/xanthine oxidase, implying that it exhibits antioxidant activity. Moreover, our results demonstrate that DMAV blunts the luminescence signal of O2⨪ generated by phorbol 12-myristate 13-acetate-stimulated neutrophils. Mechanistically, inductively coupled plasma mass spectrometry and fluorescence spectroscopy revealed that DMAV, like Cu,Zn-SOD, interacts with Cu2+, which provides redox potential for catalytic removal of O2⨪. Notably, surface plasmon resonance experiments (BIAcore) determined that DMAV binds sulfated glycosaminoglycans (e.g. heparin, KD ∼100 nmol/liter), as reported for extracellular SOD. Finally, fractions of the salivary gland of D. maxima with native DMAV contain Cu2+ and display metal-dependent antioxidant properties. Antigen-5/CAP emerges as novel family of Cu2+-dependent antioxidant enzymes that inhibit neutrophil oxidative burst and negatively modulate platelet aggregation by a unique salivary mechanism. PMID:23564450

  3. Premature aging of cardiovascular/platelet function in polycystic ovarian syndrome.

    PubMed

    Chan, Wai Ping A; Ngo, Doan T; Sverdlov, Aaron L; Rajendran, Sharmalar; Stafford, Irene; Heresztyn, Tamila; Chirkov, Yuliy Y; Horowitz, John D

    2013-07-01

    The objective of this study was to compare the impact of aging on nitric oxide (NO) modulation of platelet and vascular function in healthy women and women with polycystic ovary syndrome. A case-control study of women ages 18 to 60 years, comparing women with polycystic ovarian syndrome against age-matched healthy controls, was performed. A total of 242 women, of whom 109 had polycystic ovarian syndrome (based on Rotterdam criteria), participated in the study. Women who were pregnant or on clopidogrel were excluded from the study. Inhibition of platelet aggregation by nitric oxide (primary outcome measure), vascular endothelial function, plasma concentrations of N(G), N(G)-dimethyl-L-arginine (ADMA), endothelial progenitor cell count, and high-sensitivity C-reactive protein (markers of endothelial dysfunction and inflammation) were assessed. With increasing age in control women, there was progressive attenuation of platelet responses to NO, impairment of endothelial function, and elevation of ADMA levels (P ≤.001). Irrespective of age, women with polycystic ovarian syndrome exhibited greater impairment of all these parameters (all P <.05, 2-way analysis of variance) and demonstrated these anomalies earlier in life. Normal aging in women is associated with attenuation of NO-based signaling in platelets and blood vessels. In women with polycystic ovarian syndrome, these changes are present from early adult life and may contribute to premature atherogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svensson Holm, Ann-Charlotte B., E-mail: ann-charlotte.svensson@liu.se; Experimental Pathology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping; Bengtsson, Torbjoern

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blockingmore » antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.« less

  5. Effects of a garlic-derived principle (ajoene) on aggregation and arachidonic acid metabolism in human blood platelets.

    PubMed

    Srivastava, K C; Tyagi, O D

    1993-08-01

    When garlic cloves are chopped or crushed several dialkyl thiosulfinates are rapidly formed by the action of the enzyme alliin lyase or alliinase (EC 4.4.1.4) on S(+)-alkyl-L-cysteine sulfoxides. Allicin (diallyl thiosulfinate or allyl 2-propene thiosulfinate) is the dominant thiosulfinate released. A variety of sulfur containing compounds are formed from allicin and other thiosulfinates depending on the way in which garlic is handled. One such compound identified recently is ajoene which has been reported to possess antithrombotic properties. We present here data on the antiplatelet properties of ajoene together with its effects on the metabolism of arachidonic acid (AA) in intact platelets. Thus, ajoene was found to inhibit platelet aggregation induced by AA, adrenaline, collagen, adenosine diphosphate (ADP) and calcium ionophore A23187; the nature of the inhibition was irreversible. In washed platelets stimulated by labelled arachidonate, ajoene inhibited the formation of thromboxane A2; 12-lipoxygenase product(s) were reduced at higher ajoene concentrations. This garlic-derived substance inhibited the incorporation of labelled AA into platelet phospholipids at higher concentration. In labelled platelets, on stimulation with either calcium ionophore A23187 or collagen, reduced amounts of thromboxane and 12-HETE (12-hydroxyeicosatetraenoic acid) were produced in ajoene-treated platelets compared to control platelets. This substance had no effect on the deacylation of platelet phospholipids. The results suggest that at least one of the mechanisms by which ajoene shows antiplatelet effects could be related to altered metabolism of AA.

  6. Onset and extent of platelet inhibition by clopidogrel loading in patients undergoing elective coronary stenting: the Plavix Reduction Of New Thrombus Occurrence (PRONTO) trial.

    PubMed

    Gurbel, Paul A; Cummings, Charles C; Bell, Christopher R; Alford, Amanda B; Meister, Andrew F; Serebruany, Victor L

    2003-02-01

    Despite the common practice of clopidogrel loading for coronary stenting, the time dependence and degree of platelet inhibition after this therapy are not well defined. We sought to establish an optimal clopidogrel dosing regimen for sustained platelet inhibition in stented patients. Platelets were assessed by conventional aggregation with 5 micromol/L adenosine diphosphate (ADP), 1 microg/mL collagen (COLL), and 750 micromol/L arachidonic acid; whole blood aggregation by 1 microg/mL collagen (WBA); shear-induced closure time (CT); contractile force (CF); and expression of 9 surface receptors by flow cytometry in 100 patients undergoing elective stent placement without glycoprotein (GP) IIb/IIIa receptor antagonists. Blood was obtained at baseline and serially over 5 days poststenting after different clopidogrel loading regimens: 300 mg 24 hours before (Group A), 12 hours before (Group B), 3 to 6 hours before (Group C), and 75 mg at the time of intervention (Group D). Before stenting, ADP, COLL, CT, and WBA were reduced by clopidogrel loading (P <.05). CF was not affected by clopidogrel. Before stenting, GP IIb/IIIa expression increased in groups A through C (P <.05), whereas PECAM-1 and CD107a were reduced (P <.05). At 2 hours and 2 days poststenting, platelets, in general, exhibited an increase in activity that was most inhibited by clopidogrel loading. Clopidogrel inhibited GP Ib, platelet/endothelial cell adhesion molecule-1, CD 107a, CD 151, and GP IIb/IIIa expression at day 5 poststenting. A 300 mg clopidogrel load given 3 to 24 hours before stenting inhibits platelets at the time of the procedure and reduces poststent activity more than a 75 mg dose given at the time of the procedure. The inhibition of adhesive molecule expression may also contribute an antithrombotic effect. Poststent activation of platelets may warrant higher periprocedural dosing.

  7. Non-redundant roles of phosphoinositide 3-kinase isoforms alpha and beta in glycoprotein VI-induced platelet signaling and thrombus formation.

    PubMed

    Gilio, Karen; Munnix, Imke C A; Mangin, Pierre; Cosemans, Judith M E M; Feijge, Marion A H; van der Meijden, Paola E J; Olieslagers, Servé; Chrzanowska-Wodnicka, Magdalena B; Lillian, Rivka; Schoenwaelder, Simone; Koyasu, Shigeo; Sage, Stewart O; Jackson, Shaun P; Heemskerk, Johan W M

    2009-12-04

    Platelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cgamma2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet activation, because this activity modulates the autocrine effects of secreted ADP. Here, we identified the PI3K isoforms directly downstream of GPVI in human and mouse platelets and determined their role in GPVI-dependent thrombus formation. The targeting of platelet PI3Kalpha or -beta strongly and selectively suppressed GPVI-induced Ca(2+) mobilization and inositol 1,4,5-triphosphate production, thus demonstrating enhancement of phospholipase Cgamma2 by PI3Kalpha/beta. That PI3Kalpha and -beta have a non-redundant function in GPVI-induced platelet activation and thrombus formation was concluded from measurements of: (i) serine phosphorylation of Akt, (ii) dense granule secretion, (iii) intracellular Ca(2+) increases and surface expression of phosphatidylserine under flow, and (iv) thrombus formation, under conditions where PI3Kalpha/beta was blocked or p85alpha was deficient. In contrast, GPVI-induced platelet activation was insensitive to inhibition or deficiency of PI3Kdelta or -gamma. Furthermore, PI3Kalpha/beta, but not PI3Kgamma, contributed to GPVI-induced Rap1b activation and, surprisingly, also to Rap1b-independent platelet activation via GPVI. Together, these findings demonstrate that both PI3Kalpha and -beta isoforms are required for full GPVI-dependent platelet Ca(2+) signaling and thrombus formation, partly independently of Rap1b. This provides a new mechanistic explanation for the anti-thrombotic effect of PI3K inhibition and makes PI3Kalpha an interesting new target for anti-platelet therapy.

  8. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization.

    PubMed

    Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M

    2017-06-01

    The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.

  9. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study.

    PubMed

    Sawardekar, Swapna B; Patel, Tejal C; Uchil, Dinesh

    2016-01-01

    The objective was to compare antiplatelet effect of lycopene with aspirin and to study effect of combination of the two on platelet aggregation in vitro, using platelets from healthy volunteers. Platelets were harvested; platelet count of platelet-rich plasma adjusted to 2.5 Χ 10(5)/μL. Aspirin (140 μmol/L) and lycopene (4, 6, 8, 10, and 12 μmol/L) were studied in vitro against adenosine-5'- diphosphate (ADP) (2.5 μM/L) and collagen. All the concentrations of lycopene (4-12 μmol/L) exhibited reduction in maximum platelet aggregation induced by aggregating agents ADP and collagen (P < 0.01 vs. vehicle) and were comparable with aspirin. Lycopene at concentration 10 μmol/L showed maximum platelet inhibition (47.05% ± 19.56%) against ADP, whereas lycopene at concentration 8 μmol/L showed maximum platelet inhibition (54.26% ± 30.71%) against collagen. Four μmol/L of lycopene combined with 140 μmol/L and 70 μmol/L aspirin showed greater inhibition of platelets as compared to aspirin 140 μmol/L alone, against both ADP and collagen. The study favorably compares lycopene and aspirin with respect to their antiplatelet activities against ADP and collagen. Lycopene can be considered as a potential target for modifying the thrombotic and pro-inflammatory events associated with platelet activation.

  10. New Therapeutic Agent against Arterial Thrombosis: An Iridium(III)-Derived Organometallic Compound.

    PubMed

    Hsia, Chih-Wei; Velusamy, Marappan; Tsao, Jeng-Ting; Hsia, Chih-Hsuan; Chou, Duen-Suey; Jayakumar, Thanasekaran; Lee, Lin-Wen; Li, Jiun-Yi; Sheu, Joen-Rong

    2017-12-05

    Platelet activation plays a major role in cardio and cerebrovascular diseases, and cancer progression. Disruption of platelet activation represents an attractive therapeutic target for reducing the bidirectional cross talk between platelets and tumor cells. Platinum (Pt) compounds have been used for treating cancer. Hence, replacing Pt with iridium (Ir) is considered a potential alternative. We recently developed an Ir(III)-derived complex, [Ir(Cp*)1-(2-pyridyl)-3-(2-hydroxyphenyl)imidazo[1,5-a]pyridine Cl]BF₄ (Ir-11), which exhibited strong antiplatelet activity; hence, we assessed the therapeutic potential of Ir-11 against arterial thrombosis. In collagen-activated platelets, Ir-11 inhibited platelet aggregation, adenosine triphosphate (ATP) release, intracellular Ca 2+ mobilization, P-selectin expression, and OH · formation, as well as the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and Akt. Neither the adenylate cyclase inhibitor nor the guanylate cyclase inhibitor reversed the Ir-11-mediated antiplatelet effects. In experimental mice, Ir-11 prolonged the bleeding time and reduced mortality associated with acute pulmonary thromboembolism. Ir-11 plays a crucial role by inhibiting platelet activation through the inhibition of the PLCγ2-PKC cascade, and the subsequent suppression of Akt and MAPK activation, ultimately inhibiting platelet aggregation. Therefore, Ir-11 can be considered a new therapeutic agent against either arterial thrombosis or the bidirectional cross talk between platelets and tumor cells.

  11. AD6 (8-monochloro-3-beta-diethylamino-ethyl-4-methyl-7-ethoxycarbonyl-meth oxy coumarin) inhibits the release of arachidonic acid in human platelets stimulated by thrombin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porcellati, S.; Costantini, V.; Prosdocimi, M.

    1987-07-01

    The coumarin derivative AD6 is known to inhibit platelet aggregation and release and it possesses vasodilatory properties on coronary arteries of laboratory animals. Furthermore, the inhibition of the production of TxB2 from endogenous substrates after stimulation of human platelets with collagen has been demonstrated. The present report demonstrates that AD6 inhibits the production of labeled arachidonic acid and diglycerides from phospholipids of platelets stimulated with thrombin. This effect is dose-dependent and is already evident at a concentration of the drug (25 microM) which is unable to prevent the aggregation. Apparently, AD6 inhibits the release of arachidonic acid from phosphatidylinositol andmore » choline phosphoglycerides which are the main sources of the substrate for the synthesis of prostaglandins and thromboxanes.« less

  12. Protein A Sepharose immunoadsorption can restore the efficacy of platelet concentrates in patients with Glanzmann's thrombasthenia and anti-glycoprotein IIb-IIIa antibodies.

    PubMed

    Martin, Isabelle; Kriaa, Fayçal; Proulle, Valérie; Guillet, Benoît; Kaplan, Cécile; D'Oiron, Roseline; Debré, Marianne; Fressinaud, Edith; Laurian, Yyes; Tchernia, Gil; Charpentier, Bernard; Lambert, Thierry; Dreyfus, Marie

    2002-12-01

    Type I Glanzmann's thrombasthenia is a rare congenital platelet function disorder, characterized by undetectable platelet membrane glycoprotein IIb-IIIa (GPIIb-IIIa). Severe bleeding is controlled by transfusion of normal platelets, leading in some cases to the occurrence of anti-GPIIb-IIIa isoantibodies, which induces a loss of transfused platelet efficacy. We used immunoadsorption on protein A Sepharose (IA-PA), which has been shown to be efficient in decreasing the titre of antibodies in several immune diseases, in three patients with Glanzmann's thrombasthenia and anti-GPIIb-IIIa isoantibodies on five different occasions. IA-PA was well tolerated with no deleterious side-effects reported. It induced a dramatic decrease of total immunoglobulin (Ig)G, including anti-GPIIb-IIIa isoantibody levels, as assessed by the monoclonal antibody-specific immobilization of platelet antigens test and the ex vivo inhibition of normal platelet aggregation induced by the patient's platelet-rich or platelet-poor plasma. Elimination of the antibody was associated with a correction of the bleeding time following platelet transfusion. IA-PA combined with platelet transfusion made it possible to control two life-threatening haemorrhages, and allowed two surgical procedures and one bone marrow transplantation to be performed safely. Our experience suggests that IA-PA, which restores the haemostatic efficacy of platelet transfusion, is a valuable therapeutic strategy in patients with Glanzmann's thrombasthenia and anti-GPIIb-IIIa isoantibodies.

  13. Antiplatelet mechanism of an herbal mixture prepared from the extracts of Phyllostachys pubescens leaves and Prunus mume fruits.

    PubMed

    Son, Eunjung; Kim, Seung-Hyung; Yang, Won-Kyung; Kim, Dong-Seon; Cha, Jimin

    2017-12-19

    Bamboo (Phyllostachys pubescens) leaves and Japanese apricot (Mume fructus) fruit are traditionally recognized to be safe herbs broadly used for food and medicinal purposes in Southeast Asia. Our group previously explored their antiplatelet effects. This study was designed to confirm inhibition effects of PM21 (a 2:1 mixture of bamboo leaf extract and Japanese apricot fruit extract) on platelet aggregation and evaluate its potency to use as an herbal remedy to prevent and/or treat the diseases caused by platelet aggregation and thrombus formation. Washed platelets were prepared and platelet aggregation was induced by adding 5 μg/mL collagen. Anti-platelet effects of PM21 (75 mg/kg, 150 mg/kg, and 300 mg/kg for ex vivo and in vivo assays, and 50, 100, 200 μg/mL for in vitro assays) were evaluated. In ex vivo assays, PM21 was orally administered to rats daily after overnight fasting for 3 days and blood was collected 1 h after the final treatment. In vivo antithrombotic effect of PM21 was observed from a carrageenan induced mouse tail thrombosis model. In ex vivo assay, PM21 inhibited platelet aggregation significantly. PM21 showed a strong antithrombotic effect by reducing significantly the length of mouse tail thrombus. PM21 increased intracellular cAMP level and reduced the release of ATP, TXA 2 , and serotonin. PM21 also reduced intracellular concentration of calcium ion, fibrinogen binding to integrin α IIb β 3 , and phosphorylation of ERK2, p38, PLCγ2, and PI3 K. PM21 showed remarkable inhibitory effects on platelet aggregation and thrombus formation. Its inhibitory function seems to influence on GPVI binding to its ligand and subsequent initiation of a signaling cascade that involves activation of effector proteins and secretion of effector molecules, such as ATP, TXA 2 , serotonin, and Ca 2+ . PM21 also appears to exert its anti-platelet effect by deactivation of ERKs activation pathway as well as inhibition of fibrinogen binding to integrin α IIb β 3 .

  14. Detection of platelet sensitivity to inhibitors of COX-1, P2Y1, and P2Y12 using a whole blood microfluidic flow assay

    PubMed Central

    Li, Ruizhi; Diamond, Scott L.

    2014-01-01

    BACKGROUND Microfluidic devices recreate the hemodynamic conditions of thrombosis. METHODS Whole blood inhibited with PPACK was treated ex vivo with inhibitors and perfused over collagen for 300 s (wall shear rate = 200 s−1) using a microfluidic flow assay. Platelet accumulation was measured in the presence of COX-1 inhibitor (aspirin, ASA), P2Y1 inhibitor (MRS 2179), P2Y12 inhibitor (2MeSAMP) or combined P2Y1 and P2Y12 inhibitors. RESULTS High dose ASA (500 μM), 2MeSAMP (100 μM), MRS 2179 (10 μM),or combined 2MeSAMP and MRS 2179 decreased total platelet accumulation by 27.5%, 75.6%, 77.7%, and 87.9% (p < 0.01), respectively. ASA reduced secondary aggregation rate between 150 and 300 s without effect on primary deposition rate on collagen from 60 to 150 s. In contrast, 2MeSAMP and MRS 2179 acted earlier and reduced primary deposition to collagen between 60 and 105 s and secondary aggregation between 105 and 300 s. RCOX and RP2Y (defined as a ratio of secondary aggregation rate to primary deposition rate) demonstrated 9 of 10 subjects had RCOX < 1 or RP2Y < 1 following ASA or 2MeSAMP addition, while 6 of 10 subjects had RP2Y < 1 following MRS 2179 addition. Combined MRS 2179 and 2MeSAMP inhibited primary platelet deposition rate and platelet secondary aggregation beyond that of each individual inhibitor. Receiver-Operator Characteristic area under the curve (AUC) indicated the robustness of RCOX and RP2Y to detect inhibition of secondary platelet aggregation by ASA, 2MeSAMP, and MRS 2179 (AUC of 0.874 0.966, and 0.889, respectively). CONCLUSIONS Microfluidic devices can detect platelet sensitivity to antiplatelet agents. The R-value can serve as a self-normalized metric of platelet function for a single blood sample. PMID:24365044

  15. Naringin administration inhibits platelet aggregation and release by reducing blood cholesterol levels and the cytosolic free calcium concentration in hyperlipidemic rabbits

    PubMed Central

    XIAO, YANG; LI, LAI-LAI; WANG, YAN-YAN; GUO, JING-JING; XU, WEN-PING; WANG, YAN-YAN; WANG, YI

    2014-01-01

    This study investigated the effects of naringin on platelet aggregation and release in hyperlipidemic rabbits, and the underlying mechanisms. The safety of naringin was also investigated. The rabbits were orally administered 60, 30 or 15 mg/kg of naringin once a day for 14 days after being fed a high fat/cholesterol diet for four weeks. Following the two weeks of drug administration, the degree of platelet aggregation induced by arachidonic acid, adenosine diphosphate and collagen was significantly reduced by naringin at certain doses compared with those in the rabbits of the model group (P<0.01). The levels of P-selectin and platelet factor 4 (PF4) also decreased following treatment with naringin compared with those of the model group. Certain doses of naringin significantly reduced the total cholesterol (TC) levels and elevated the ratio of high-density lipoprotein cholesterol to TC compared with those in the model group, and significantly decreased the cytosolic free calcium concentration ([Ca2+]i). No significant difference in the coagulation function was observed between the control and drug-treatment groups. These results indicate that naringin improved platelet aggregation and inhibited the excessive release of P-selectin and PF4 in hyperlipidemic rabbits. This study suggests that the antiplatelet effect of naringin may be due to its ability to regulate the levels of blood cholesterol and [Ca2+]i in platelets. Naringin also did not cause bleeding in the hyperlipidemic rabbits. PMID:25120631

  16. Antiplatelet Aggregation Activity of Walnut Hull Extract via Suppression of Reactive Oxygen Species Generation and Caspase Activation.

    PubMed

    Meshkini, Azadeh; Tahmasbi, Masoumeh

    2017-06-01

    Walnut hull (wal hull) is an agricultural by-product that is widely used in traditional medicine for alleviating pain and treating skin diseases, however, recently it has gained much attention in modern pharmacology due to its antioxidant properties. The current study was aimed to determine the total phenolic, flavonoid, and tannin content of Persian wal hull extract and evaluate its biological effects on platelet function. Experimental data showed that acetone extract of wal hulls has a high content of polyphenolic compounds and antioxidant properties. The analytical study of crude extract by gas chromatography-mass spectrometry demonstrated different types of high- and low-molecular-weight compounds that are basically and biologically important. Moreover, an in vitro study revealed that wal hull extract at a concentration of 50 μg/mL inhibited thrombin-induced platelet aggregation and protein secretion by 50%, without any cytotoxic effects on platelets. The examined extract suppressed reactive oxygen species generation and also caspase activation in thrombin-stimulated platelets. Identically, N-acetylcysteine inhibited the increase of reactive oxygen species level induced by thrombin in platelets, and supported a link between cellular redox status and caspase activation in activated platelets. Presumably, the antiplatelet activity of wal hull extract is related to its polyphenolic compounds and their antioxidant properties. Therefore, wal hulls can be considered as a candidate for thrombotic disorders. Copyright © 2017. Published by Elsevier B.V.

  17. Neutrophil stunning by metoprolol reduces infarct size

    PubMed Central

    García-Prieto, Jaime; Villena-Gutiérrez, Rocío; Gómez, Mónica; Bernardo, Esther; Pun-García, Andrés; García-Lunar, Inés; Crainiciuc, Georgiana; Fernández-Jiménez, Rodrigo; Sreeramkumar, Vinatha; Bourio-Martínez, Rafael; García-Ruiz, José M; del Valle, Alfonso Serrano; Sanz-Rosa, David; Pizarro, Gonzalo; Fernández-Ortiz, Antonio; Hidalgo, Andrés; Fuster, Valentín; Ibanez, Borja

    2017-01-01

    The β1-adrenergic-receptor (ADRB1) antagonist metoprolol reduces infarct size in acute myocardial infarction (AMI) patients. The prevailing view has been that metoprolol acts mainly on cardiomyocytes. Here, we demonstrate that metoprolol reduces reperfusion injury by targeting the haematopoietic compartment. Metoprolol inhibits neutrophil migration in an ADRB1-dependent manner. Metoprolol acts during early phases of neutrophil recruitment by impairing structural and functional rearrangements needed for productive engagement of circulating platelets, resulting in erratic intravascular dynamics and blunted inflammation. Depletion of neutrophils, ablation of Adrb1 in haematopoietic cells, or blockade of PSGL-1, the receptor involved in neutrophil–platelet interactions, fully abrogated metoprolol's infarct-limiting effects. The association between neutrophil count and microvascular obstruction is abolished in metoprolol-treated AMI patients. Metoprolol inhibits neutrophil–platelet interactions in AMI patients by targeting neutrophils. Identification of the relevant role of ADRB1 in haematopoietic cells during acute injury and the protective role upon its modulation offers potential for developing new therapeutic strategies. PMID:28416795

  18. Inhibition of cyclooxygenase-independent platelet aggregation by sodium salicylate.

    PubMed

    Violi, F; Alessandri, C; Praticò, D; Guzzo, A; Ghiselli, A; Balsano, F

    1989-06-15

    The effect of acetylsalicylic acid (ASA) on platelet aggregation (PA) and thromboxane A2 (TxA2) formation was investigated in vitro and ex vivo after 1 g or 300 mg ASA administration to healthy subjects. 50-100 microM ASA inhibited PA by single aggregating agent such as platelet aggregating factor (PAF) or epinephrine and reduced to less than or equal to 5% of control platelet TxB2 formation, but did not influence PA by epinephrine plus PAF. The latter was inhibited by increasing ASA concentration. In samples incubated with 100 microM ASA and stimulated with epinephrine plus PAF, PA could be inhibited by the addition of 100-300 microM sodium salicylate. After 300 mg-1 g ASA administration to healthy subjects, the inhibition of PA by epinephrine plus PAF was more marked by highest doses of ASA. This study suggests that aspirin inhibits PA with a cyclooxygenase-independent mechanism; this effect is mediated, at least in vitro, by salicylic acid.

  19. Reversible inhibition of the platelet procoagulant response through manipulation of the Gardos channel.

    PubMed

    Wolfs, Jef L; Wielders, Simone J; Comfurius, Paul; Lindhout, Theo; Giddings, John C; Zwaal, Robert F; Bevers, Edouard M

    2006-10-01

    The platelet procoagulant response requires a sustained elevation of the intracellular Ca2+ concentration, [Ca2+]i, causing exposure of phosphatidylserine (PS) at the outer surface of the plasma membrane. An increased [Ca2+]i also activates Ca2+-dependent K+ channels. Here, we investigated the contribution of the efflux of K+ ions on the platelet procoagulant response in collagen-thrombin-activated platelets using selective K+ channel blockers. The Gardos channel blockers clotrimazol, charybdotoxin, and quinine caused a similar decrease in prothrombinase activity as well as in the number of PS-exposing platelets detected by fluorescence-conjugated annexin A5. Apamin and iberiotoxin, inhibitors of other K+ channels, were without effect. Only clotrimazol showed a significant inhibition of the collagen-plus-thrombin-induced intracellular calcium response. Clotrimazol and charybdotoxin did not inhibit aggregation and release under the conditions used. Inhibition by Gardos channel blockers was reversed by valinomycin, a selective K+ ionophore. The impaired procoagulant response of platelets from a patient with Scott syndrome was partially restored by pretreatment with valinomycin, suggesting a possible defect of the Gardos channel in this syndrome. Collectively, these results provide evidence for the involvement of efflux of K+ ions through Ca2+-activated K+ channels in the procoagulant response of platelets, opening potential strategies for therapeutic interventions.

  20. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    PubMed

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  1. Does patchouli oil change blood platelet monoamine oxidase-A activity of adult mammals?

    PubMed

    Karim, Md Fazlul; Banerjee, Soumyabrata; Poddar, Mrinal K

    2018-05-01

    Patchouli oil, an essential aroma oil extracted from patchouli leaf during short-term exposure with five and ten drops either inhibited (at 1 or 2 h) or stimulated (at 4 h) the platelet MAO-A activity depending on the dosages of the aroma oil mainly due to inhibition or stimulation of its K m . The long-term 15 consecutive days exposure (with two or five drops) of patchouli oil, on the other hand, maximally stimulated the platelet MAO-A activity with five drops patchouli oil for 1 h exposure, but further continuation of its exposure with same doses (two or five drops) for 30 consecutive days significantly stimulated (with two drops) and inhibited (with five drops) the platelet MAO-A activity due to stimulation and inhibition respectively of its corresponding both K m and V max . These results thus suggest that this aroma oil exposure may modulate the blood platelet serotonergic regulation depending on the dose, duration, and conditions of exposure.

  2. Use of thromboelastography to tailor dual-antiplatelet therapy in patients undergoing treatment of intracranial aneurysms with the Pipeline embolization device.

    PubMed

    McTaggart, Ryan A; Choudhri, Omar A; Marcellus, Mary L; Brennan, Tom; Steinberg, Gary K; Dodd, Robert L; Do, Huy M; Marks, Michael P

    2015-06-01

    Platelet function testing is controversial and not well studied in patients with neurovascular disease. To evaluate the performance of thromboelastography (TEG) as a platelet function test in neurovascular patients treated with the Pipeline embolization device (PED). A prospective protocol was instituted for platelet function testing in patients undergoing repair of intracranial aneurysms with the PED. All patients received dual antiplatelet therapy (DAT) and their response to both P2Y12 inhibitors and aspirin was quantified with TEG. Each patient's DAT induction strategy was tailored based on the percentage ADP-induced and percentage arachidonic acid-induced platelet inhibition reported by TEG. Data collected included clinical presentation, aneurysm characteristics, treatment details, and periprocedural events. Patients were followed up clinically and/or angiographically at 30 days, 6 months, and 1 year. Thirty-four PED procedures were performed on 31 patients. TEG results altered the DAT strategy in 35% of patients. Technical success with the Pipeline placement was 100%. Two patients had minor strokes and five had transient ischemic attacks (TIAs). There have been no hemorrhagic complications. No patient had permanent neurologic deficits. Six of eight (75%) of patients with thromboembolic/TIA events were ADP-induced hyporesponders by TEG. Our 6- and 12-month angiographic occlusion rates were 78.9% and 89.5%, respectively. The 19 major branches covered by the PED that were assessed by follow-up imaging have all remained patent. Platelet function testing with TEG altered our DAT induction strategy in a significant number of cases. No hemorrhagic or disabling thromboembolic complications were seen in this series. Future studies should compare methods of platelet function testing and, possibly, no platelet function testing in neurovascular patients undergoing flow diversion and/or stent-assisted treatment of intracranial aneurysms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. A novel ruthenium (II)-derived organometallic compound, TQ-6, potently inhibits platelet aggregation: Ex vivo and in vivo studies.

    PubMed

    Hsia, Chih-Hsuan; Velusamy, Marappan; Sheu, Joen-Rong; Khamrang, Themmila; Jayakumar, Thanasekaran; Lu, Wan-Jung; Lin, Kuan-Hung; Chang, Chao-Chien

    2017-08-25

    Arterial thrombosis plays a key role in cardiovascular diseases. Hence, developing more effective antithrombotic agents is necessary. We designed a ruthenium (II)-derived complex, [Ru(η 6 -cymene)2-(1H-benzoimidazol-2-yl)-quinoline Cl]BF 4 (TQ-6), as a new antiplatelet drug. TQ-6 (0.3 µM) exhibited extremely strong inhibitory activity against platelet aggregation, Src, and Syk phosphorylation stimulated by agonists in human platelets. In collagen-activated platelets, TQ-6 also inhibited ATP-release, [Ca +2 ]i, P-selectin expression, FITC-PAC-1 binding, and hydroxyl radical formation, as well as the phosphorylation of phospholipase Cγ2, protein kinase C, mitogen-activated protein kinases, and Akt. Neither FITC-JAQ1 nor FITC-triflavin binding or integrin β 3 phosphorylation stimulated by immobilized fibrinogen were diminished by TQ-6. Furthermore, TQ-6 had no effects in cyclic nucleotide formation. Moreover, TQ-6 substantially prolonged the closure time in whole blood, increased the occlusion time of thrombotic platelet plug formation and bleeding time in mice. In conclusion, TQ-6 has a novel role in inhibiting platelet activation through the inhibition of the agonist receptors-mediated inside-out signaling such as Src-Syk-PLCγ2 cascade and subsequent suppression of granule secretion, leading to disturb integrin α IIb β 3 -mediated outside-in signaling, and ultimately inhibiting platelet aggregation. Therefore, TQ-6 has potential to develop as a therapeutic agent for preventing or treating thromboembolic disorders.

  4. Comparison of sea turtle thrombocyte aggregation to human platelet aggregation in whole blood.

    PubMed

    Soslau, Gerald; Prest, Phillip J; Class, Reiner; George, Robert; Paladino, Frank; Violetta, Gary

    2005-11-01

    The endangered sea turtles are living "fossils" that afford us an opportunity to study the hemostatic process as it likely existed millions of years ago. There are essentially no data about turtle thrombocyte aggregation prior to our studies. Thrombocytes are nucleated cells that serve the same hemostatic functions as the anucleated mammalian platelet. Sea turtle thrombocytes aggregate in response to collagen and beta-thrombin. Ristocetin induces an agglutination/aggregation response indicating the presence of a von Willebrand-like receptor, GPIb, found in all mammalian platelets. Samples treated with alpha-thrombin plus gamma-thrombin followed by ristocetin results in a rapid, stronger response than ristocetin alone. These responses are inhibited by the RGDS peptide that blocks fibrinogen cross-linking of mammalian platelets via the fibrinogen receptor, GPIIb/IIIa. Three platelet-like proteins, GPIb, GPIIb/IIIa and P-selection are detected in sea turtle thrombocytes by fluorescence activated cell sorting. Turtle thrombocytes do not respond to ADP, epinephrine, serotonin, thromboxane A2 mimetic, U46619, trypsin, or alpha-thrombin and gamma-thrombin added alone. Comparison of hemostasis in sea turtles to other vertebrates could provide a framework for understanding the structure/function and evolution of these pathways and their individual components.

  5. Clinical effects of phosphodiesterase 3A mutations in inherited hypertension with brachydactyly.

    PubMed

    Toka, Okan; Tank, Jens; Schächterle, Carolin; Aydin, Atakan; Maass, Philipp G; Elitok, Saban; Bartels-Klein, Eireen; Hollfinger, Irene; Lindschau, Carsten; Mai, Knut; Boschmann, Michael; Rahn, Gabriele; Movsesian, Matthew A; Müller, Thomas; Doescher, Andrea; Gnoth, Simone; Mühl, Astrid; Toka, Hakan R; Wefeld-Neuenfeld, Yvette; Utz, Wolfgang; Töpper, Agnieszka; Jordan, Jens; Schulz-Menger, Jeanette; Klussmann, Enno; Bähring, Sylvia; Luft, Friedrich C

    2015-10-01

    Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features. Untreated patients die prematurely of stroke; however, hypertension-induced target-organ damage is otherwise hardly apparent. We conducted clinical studies of vascular function, cardiac functional imaging, platelet function in affected and nonaffected persons, and cell-based assays. Large-vessel and cardiac functions indeed seem to be preserved. The platelet studies showed normal platelet function. Cell-based studies demonstrated that available phosphodiesterase 3A inhibitors suppress the mutant isoforms. However, increasing cGMP to indirectly inhibit the enzyme seemed to have particular use. Our results shed more light on phosphodiesterase 3A activation and could be relevant to the treatment of severe hypertension in the general population. © 2015 American Heart Association, Inc.

  6. The properties of B-form monoamine oxidase in mitochondria from monkey platelet.

    PubMed

    Obata, Toshio; Aomine, Masahiro

    The present study was examined the effect of the properties of monkey platelet monoamine oxidase (MAO) based on inhibitor sensitivity. Monkey platelet showed a high MAO activity with beta-phenylethylamine (beta-PEA) as substrate and a very low A-form MAO activity with 5 hydroxytryptamine (5-HT) as substrate. Moreover, monkey platelet MAO was sensitive to the drugs deprenyl as B-form MAO inhibitor and less sensitive to clorgyline and harmaline as A form MAO inhibitor with beta-PEA as the B-form MAO substrate. B-form MAO from monkey platelet was more stable against heat treatment at 55 degrees C than B-form MAO in brain. After digestion with trypsin at 37 degrees C for 4 hrs, it was found that MAO from platelet was inhibited about 70% with beta-PEA as substrate with brain. The tricyclic antidepressant imipramine and nortriptyline inhibited B-form MAO activity more potency than B-form MAO in brain. However, when the noncyclic antidepressant nomifensine was used, monkey platelet B-form MAO activities were less potently inhibited. All these reagents were noncompetitive inhibitors of B form MAO in monkey platelet. The present studies demonstrated that monkey platelet MAO is a single of B-form MAO and sensitive to tricyclic antidepressants.

  7. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol.

    PubMed

    Erlund, Iris; Koli, Raika; Alfthan, Georg; Marniemi, Jukka; Puukka, Pauli; Mustonen, Pirjo; Mattila, Pirjo; Jula, Antti

    2008-02-01

    Berries are a particularly rich source of polyphenols. They also contain other bioactive substances, such as vitamin C. Previous studies indicated that the consumption of polyphenol-rich foods (eg, cocoa, tea, and red wine) may induce beneficial changes in pathways related to cardiovascular health. Whether the consumption of berries has similar effects is unknown. We aimed to investigate the effects of berry consumption on hemostatic function, serum lipids, and blood pressure (BP). Middle-aged unmedicated subjects (n = 72) with cardiovascular risk factors consumed moderate amounts of berry or control products for 8 wk in a single-blind, randomized, placebo-controlled intervention trial. Berry consumption inhibited platelet function as measured with a platelet function analyzer (using collagen and ADP as platelet activator) [changes: 11% and -1.4% in the berry and control groups, respectively; P = 0.018, analysis of covariance (ANCOVA)]. Plasma biomarkers of platelet activation, coagulation, and fibrinolysis did not change during the intervention. Serum HDL-cholesterol concentrations increased significantly more (P = 0.006, ANCOVA) in the berry than in the control group (5.2% and 0.6%, respectively), but total cholesterol and triacylglycerol remained unchanged. Systolic BP decreased significantly (P = 0.050, ANCOVA); the decrease mostly occurred in subjects with high baseline BP (7.3 mm Hg in highest tertile; P = 0.024, ANCOVA). Polyphenol and vitamin C concentrations in plasma increased, whereas other nutritional biomarkers (ie, folate, tocopherols, sodium, and potassium) were unaffected. The consumption of moderate amounts of berries resulted in favorable changes in platelet function, HDL cholesterol, and BP. The results indicate that regular consumption of berries may play a role in the prevention of cardiovascular disease.

  8. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Platelet–Eosinophil Interactions As a Potential Therapeutic Target in Allergic Inflammation and Asthma

    PubMed Central

    Shah, Sajeel A.; Page, Clive P.; Pitchford, Simon C.

    2017-01-01

    The importance of platelet activation during hemostasis is well understood. An understanding of these mechanisms has led to the use of several classes of anti-platelet drugs to inhibit aggregation for the prevention of thrombi during cardiovascular disease. It is now also recognized that platelets can function very differently during inflammation, as part of their role in the innate immune response against pathogens. This dichotomy in platelet function occurs through distinct physiological processes and alternative signaling pathways compared to that of hemostasis (leading to platelet aggregation) and is manifested as increased rheological interactions with leukocytes, the ability to undergo chemotaxis, communication with antigen-presenting cells, and direct anti-pathogen responses. Mounting evidence suggests platelets are also critical in the pathogenesis of allergic diseases such as asthma, where they have been associated with antigen presentation, bronchoconstriction, bronchial hyperresponsiveness, airway inflammation, and airway remodeling in both clinical and experimental studies. In particular, platelets have been reported bound to eosinophils in the blood of patients with asthma and the incidence of these events increases after both spontaneous asthma attacks in a biphasic manner, or after allergen challenge in the clinic. Platelet depletion in animal models of allergic airway inflammation causes a profound reduction in eosinophil recruitment to the lung, suggesting that the association of platelets with eosinophils is indeed an important event during eosinophil activation. Furthermore, in cases of severe asthma, and in animal models of allergic airways inflammation, platelet–eosinophil complexes move into the lung through a platelet P-selectin-mediated, eosinophil β1-integrin activation-dependent process, while platelets increase adherence of eosinophils to the vascular endothelium in vitro, demonstrating a clear interaction between these cell types in allergic inflammatory diseases. This review will explore non-thrombotic platelet activation in the context of allergy and the association of platelets with eosinophils, to reveal how these phenomena may lead to the discovery of novel therapeutic targets. PMID:28848732

  10. Antiplatelet activity of L-sulforaphane by regulation of platelet activation factors, glycoprotein IIb/IIIa and thromboxane A2.

    PubMed

    Oh, Chung-Hun; Shin, Jang-In; Mo, Sang Joon; Yun, Sung-Jo; Kim, Sung-Hoon; Rhee, Yun-Hee

    2013-07-01

    L-sulforaphane was identified as an anticarcinogen that could produce quinine reductase and a phase II detoxification enzyme. In recent decades, multi-effects of L-sulforaphane may have been investigated, but, to the authors' knowledge, the antiplatelet activation of L-sulforaphane has not been studied yet.In this study, 2 μg/ml of collagen, 50 μg/ml of ADP and 5 μg/ml of thrombin were used for platelet aggregations with or without L-sulforaphane. L-sulforaphane inhibited the platelet aggregation dose-dependently. Among these platelet activators, collagen was most inhibited by L-sulforaphane, which markedly decreased collagen-induced glycoprotein IIb/IIIa activation and thromboxane A2 (TxA2) formation in vitro. L-sulforaphane also reduced the collagen and epinephrine-induced pulmonary embolism, but did not affect prothrombin time (PT) in vivo. This finding demonstrated that L-sulforaphane inhibited the platelet activation through an intrinsic pathway.L-sulforaphane had a beneficial effect on various pathophysiological pathways of the collagen-induced platelet aggregation and thrombus formation as a selective inhibition of cyclooxygenase and glycoprotein IIb/IIIa antagonist. Thus, we recommend L-sulforaphane as a potential antithrombotic drug.

  11. Concomitant nitrates enhance clopidogrel response during dual anti-platelet therapy.

    PubMed

    Lee, Dong Hyun; Kim, Moo Hyun; Guo, Long Zhe; De Jin, Cai; Cho, Young Rak; Park, Kyungil; Park, Jong Sung; Park, Tae-Ho; Serebruany, Victor

    2016-01-15

    Despite advances in modern anti-platelet strategies, clopidogrel still remains the cornerstone of dual anti-platelet therapy (DAPT) in patients undergoing percutaneous coronary interventions (PCI). There is some inconclusive evidence that response after clopidogrel may be impacted by concomitant medications, potentially affecting clinical outcomes. Sustained released nitrates (SRN) are commonly used together with clopidogrel in post-PCI setting for mild vasodilatation and nitric oxide-induced platelet inhibition. We prospectively enrolled 458 patients (64.5 ± 9.6 years old, and 73.4% males) following PCI undergoing DAPT with clopidogrel and aspirin. Platelet reactivity was assessed by the VerifyNow™ P2Y12 assay at the maintenance outpatient setting. Concomitant SRN (n=266) significantly (p=0.008) enhanced platelet inhibition after DAPT (251.6 ± 80.9PRU) when compared (232.1 ± 73.5PRU) to the SRN-free (n=192) patients. Multivariate logistic regression analysis with the cut-off value of 253 PRU for defining heightened platelet reactivity confirmed independent correlation of more potent platelet inhibition during DAPT and use of SRN (Relative risk=1.675; Odds ratio [1.059-2.648]; p=0.027). In contrast, statins, calcium-channel blockers, beta blockers, angiotensin receptor blockers, ACE-inhibitors, diuretics, and anti-diabetic agents did not significantly impact platelet inhibition following DAPT. The synergic ability of SRN to enhance response during DAPT may have important clinical implications with regard to better cardiovascular protection, but extra bleeding risks, requiring further confirmation in a large randomized study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Aerobic exercise training lowers platelet reactivity and improves platelet sensitivity to prostacyclin in pre- and postmenopausal women.

    PubMed

    Lundberg Slingsby, M H; Nyberg, M; Egelund, J; Mandrup, C M; Frikke-Schmidt, R; Kirkby, N S; Hellsten, Y

    2017-12-01

    Essentials It is unknown how regular exercise affects platelet function after menopause. We studied the effect of 3-months of high-intensity exercise in pre- and postmenopausal women. Platelet sensitivity to the inhibitory effect of arterially infused prostacyclin was increased. Reduced basal platelet reactivity was seen in the premenopausal women only. Background The risk of atherothrombotic events increases after the menopause. Regular physical activity has been shown to reduce platelet reactivity in younger women, but it is unknown how regular exercise affects platelet function after the menopause. Objectives To examine the effects of regular aerobic exercise in late premenopausal and recent postmenopausal women by testing basal platelet reactivity and platelet sensitivity to prostacyclin and nitric oxide. Methods Twenty-five sedentary, but healthy, late premenopausal and 24 matched recently postmenopausal women, mean (95% confidence interval) 49.1 (48.2-49.9) and 53.7 (52.5-55.0) years old, participated in an intervention study: 3-month high-intensity supervised aerobic spinning-cycle training (1 h, × 3/week). Basal platelet reactivity was analyzed in platelet-rich plasma from venous blood as agonist-induced % aggregation. In a subgroup of 13 premenopausal and 14 postmenopausal women, platelet reactivity was tested ex vivo after femoral arterial infusion of prostacyclin, acetylcholine, a cyclooxygenase inhibitor, and after acute one-leg knee extensor exercise. Results Basal platelet reactivity (%aggregation) to TRAP-6 (1 μm) was higher in the postmenopausal, 59% (50-68), than the premenopausal women, 45% (35-55). Exercise training reduced basal platelet reactivity to collagen (1 μg mL -1 ) in the premenopausal women only: from 63% (55-71%) to 51% (41-62%). After the training intervention, platelet aggregation was more inhibited by the arterial prostacyclin infusion and the acute exercise in both premenopausal and postmenopausal women. Conclusions These results highlight previously unknown cardioprotective aspects of regular aerobic exercise in premenopausal and postmenopausal women, improving their regulation of platelet reactivity through an increased platelet sensitivity to prostacyclin, which may counterbalance the increased atherothrombotic risk associated with the menopause. © 2017 International Society on Thrombosis and Haemostasis.

  13. The pharmacogenetics and pharmacodynamics of clopidogrel response: an analysis from the PRINC (Plavix Response in Coronary Intervention) trial.

    PubMed

    Gladding, Patrick; Webster, Mark; Zeng, Irene; Farrell, Helen; Stewart, Jim; Ruygrok, Peter; Ormiston, John; El-Jack, Seif; Armstrong, Guy; Kay, Patrick; Scott, Douglas; Gunes, Arzu; Dahl, Marja-Liisa

    2008-12-01

    This study assessed the effect of pharmacogenetics on the antiplatelet effect of clopidogrel. Variability in clopidogrel response might be influenced by polymorphisms in genes coding for drug metabolism enzymes (cytochrome P450 [CYP] family), transport proteins (P-glycoprotein) and/or target proteins for the drug (adenosine diphosphate-receptor P2Y12). Sixty patients undergoing elective percutaneous coronary intervention in the randomized PRINC (Plavix Response in Coronary Intervention) trial had platelet function measured using the VerifyNow P2Y12 analyzer after a 600-mg or split 1,200-mg loading dose and after a 75- or 150-mg daily maintenance dosage. Polymerase chain reaction-based genotyping evaluated polymorphisms in the CYP2C19, CYP2C9, CYP3A4, CYP3A5, ABCB1, P2Y12, and CES genes. CYP2C19*1*1 carriers had greater platelet inhibition 2 h after a 600-mg dose (median: 23%, range: 0% to 66%), compared with platelet inhibition in CYP2C19*2 or *4 carriers (10%, 0% to 56%, p = 0.029) and CYP2C19*17 carriers (9%, 0% to 98%, p = 0.026). CYP2C19*2 or *4 carriers had greater platelet inhibition with the higher loading dose than with the lower dose at 4 h (37%, 8% to 87% vs. 14%, 0% to 22%, p = 0.002) and responded better with the higher maintenance dose regimen (51%, 15% to 86% vs. 14%, 0% to 67%, p = 0.042). Carriers of the CYP2C19*2 and *4 alleles showed reduced platelet inhibition after a clopidogrel 600-mg loading dose but responded to higher loading and maintenance dose regimens. Genotyping for the relevant gene polymorphisms may help to individualize and optimize clopidogrel treatment. (Australia New Zealand Clinical Trials Registry; ACTRN12606000129583).

  14. Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite exclusion or control of polymorphisms (CYP2C19, ABCB1, PON1), noncompliance, diet, smoking, co-medications (including proton pump inhibitors), and pre-existent variability in platelet function.

    PubMed

    Frelinger, Andrew L; Bhatt, Deepak L; Lee, Ronald D; Mulford, Darcy J; Wu, Jingtao; Nudurupati, Sai; Nigam, Anu; Lampa, Michael; Brooks, Julie K; Barnard, Marc R; Michelson, Alan D

    2013-02-26

    This study sought to determine whether known genetic, drug, dietary, compliance, and lifestyle factors affecting clopidogrel absorption and metabolism fully account for the variability in clopidogrel pharmacokinetics and pharmacodynamics. Platelet inhibition by clopidogrel is highly variable. Patients with reduced inhibition have increased risk for major adverse cardiovascular events. Identification of factors contributing to clopidogrel's variable response is needed to improve platelet inhibition and reduce risk for cardiovascular events. Healthy subjects (n = 160; ages 20 to 53 years; homozygous CYP2C19 extensive metabolizer genotype; no nicotine for 6 weeks, prescription drugs for 4 weeks, over-the-counter drugs for 2 weeks, and no caffeine or alcohol for 72 h; confined; restricted diet) received clopidogrel 75 mg/day for 9 days, at which time clopidogrel pharmacokinetic and pharmacodynamic endpoints were measured. At steady-state, clopidogrel active metabolite (clopidogrel(AM)) pharmacokinetics varied widely between subjects (coefficients of variation [CVs] 33.8% and 40.2% for clopidogrel(AM) area under the time-concentration curve and peak plasma concentration, respectively). On-treatment vasodilator stimulated phosphoprotein P2Y(12) platelet reactivity index (PRI), maximal platelet aggregation (MPA) to adenosine phosphate, and VerifyNow P2Y12 platelet response units (PRU) also varied widely (CVs 32% to 53%). All identified factors together accounted for only 18% of intersubject variation in pharmacokinetic parameters and 32% to 64% of intersubject variation in PRI, MPA, and PRU. High on-treatment platelet reactivity was present in 45% of subjects. Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite rigorous exclusion or control of known disease, polymorphisms (CYP2C19, CYP3A5, ABCB1, PON1), noncompliance, co-medications, diet, smoking, alcohol, demographics, and pre-treatment platelet hyperreactivity. Thus, as yet unidentified factors contribute to high on-treatment platelet reactivity with its known increased risk of major adverse cardiovascular events. (A Study of the Effects of Multiple Doses of Dexiansoprazole, Lansoprazole, Omeprazole or Esomeprazole on the Pharmacokinetics and Pharmacodynamics of Clopidogrel in Healthy Participants: NCT00942175). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study.

    PubMed

    Hubbard, Gary P; Wolffram, Siegfried; de Vos, Ric; Bovy, Arnaud; Gibbins, Jonathan M; Lovegrove, Julie A

    2006-09-01

    Epidemiological data suggest that those who consume a diet rich in quercetin-containing foods may have a reduced risk of CVD. Furthermore, in vitro and ex vivo studies have observed the inhibition of collagen-induced platelet activation by quercetin. The aim of the present study was to investigate the possible inhibitory effects of quercetin ingestion from a dietary source on collagen-stimulated platelet aggregation and signalling. A double-blind randomised cross-over pilot study was undertaken. Subjects ingested a soup containing either a high or a low amount of quercetin. Plasma quercetin concentrations and platelet aggregation and signalling were assessed after soup ingestion. The high-quercetin soup contained 69 mg total quercetin compared with the low-quercetin soup containing 5 mg total quercetin. Plasma quercetin concentrations were significantly higher after high-quercetin soup ingestion than after low-quercetin soup ingestion and peaked at 2.59 (sem 0.42) mumol/l. Collagen-stimulated (0.5 mug/ml) platelet aggregation was inhibited after ingestion of the high-quercetin soup in a time-dependent manner. Collagen-stimulated tyrosine phosphorylation of a key component of the collagen-signalling pathway via glycoprotein VI, Syk, was significantly inhibited by ingestion of the high-quercetin soup. The inhibition of Syk tyrosine phosphorylation was correlated with the area under the curve for the high-quercetin plasma profile. In conclusion, the ingestion of quercetin from a dietary source of onion soup could inhibit some aspects of collagen-stimulated platelet aggregation and signalling ex vivo. This further substantiates the epidemiological data suggesting that those who preferentially consume high amounts of quercetin-containing foods have a reduced risk of thrombosis and potential CVD risk.

  16. Unfractionated and Low-Molecular-Weight Heparin and the Phosphodiesterase Inhibitors, IBMX and Cilostazol, Block Ex Vivo Equid Herpesvirus Type-1-Induced Platelet Activation.

    PubMed

    Stokol, Tracy; Serpa, Priscila Beatriz da Silva; Zahid, Muhammad N; Brooks, Marjory B

    2016-01-01

    Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo . We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1-0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation. These drugs have potential as adjunctive therapy to reduce the serious complications associated with EHV-1-induced thrombosis. Treatment trials are warranted to determine whether these drugs yield clinical benefit when administered to horses infected with EHV-1.

  17. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study

    PubMed Central

    Sawardekar, Swapna B.; Patel, Tejal C.; Uchil, Dinesh

    2016-01-01

    Introduction: The objective was to compare antiplatelet effect of lycopene with aspirin and to study effect of combination of the two on platelet aggregation in vitro, using platelets from healthy volunteers. Materials and Methods: Platelets were harvested; platelet count of platelet-rich plasma adjusted to 2.5 Χ 105/μL. Aspirin (140 μmol/L) and lycopene (4, 6, 8, 10, and 12 μmol/L) were studied in vitro against adenosine-5’- diphosphate (ADP) (2.5 μM/L) and collagen Results: All the concentrations of lycopene (4–12 μmol/L) exhibited reduction in maximum platelet aggregation induced by aggregating agents ADP and collagen (P < 0.01 vs. vehicle) and were comparable with aspirin. Lycopene at concentration 10 μmol/L showed maximum platelet inhibition (47.05% ± 19.56%) against ADP, whereas lycopene at concentration 8 μmol/L showed maximum platelet inhibition (54.26% ± 30.71%) against collagen. Four μmol/L of lycopene combined with 140 μmol/L and 70 μmol/L aspirin showed greater inhibition of platelets as compared to aspirin 140 μmol/L alone, against both ADP and collagen. Conclusion: The study favorably compares lycopene and aspirin with respect to their antiplatelet activities against ADP and collagen. Lycopene can be considered as a potential target for modifying the thrombotic and pro-inflammatory events associated with platelet activation. PMID:26997718

  18. Hydrogen peroxide (H/sub 2/O/sub 2/) stimulates the active transport of 5-hydroxytryptamine (5-HT) into platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosin, T.R.

    1986-03-01

    Platelets function in a variety of physiological and pathological processes which may be altered by oxidant injury. One such process is the active transport 5-HT, which is an important mechanism in the control of circulating 5-HT levels. Exposure of mouse platelets (10/sup 8//ml) to H/sub 2/O/sub 2/ caused a time-dependent and dose-dependent increase in 5-HT (10/sup -7/M) uptake. The uptake 4 and 10 min following H/sub 2/O/sub 2/ (50 ..mu..M) was 228% and 145% of control values, respectively. Fluoxetine (10/sup -6/M) blocked all 5-HT uptake and catalase (1500 U/ml) blocked the H/sub 2/O/sub 2/-stimulated uptake. Enzymatically produced H/sub 2/O/sub 2/more » (glucose/glucose oxidase) and xanthine (X)/xanthine oxidase (XO) generated oxygen radicals produced quantitatively and qualitatively similar results. The stimulatory response of platelets to X/XO generated oxidants was unaffected by superoxide dismutase (250 U/ml) but, was inhibited using heat-denatured XO, allopurinol (0.5 mM) and catalase; fluoxetine inhibited all 5-HT uptake. Platelets exposed to X/XO in the presence of chelated (EDTA, 100 ..mu..M) or unchelated FeSO/sub 4/, FeNH/sub 4/(SO/sub 4/)/sub 2/ or CuCl (50 ..mu..M) did not have altered 5-HT uptake. These data indicate that brief exposure of platelets to physiological levels of H/sub 2/O/sub 2/ results in marked, reversible stimulation of active 5-HT uptake which may represent a homeostatic defense mechanism when H/sub 2/O/sub 2/ is elevated in the platelet microenvironment.« less

  19. Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets.

    PubMed

    Cognasse, Fabrice; Hamzeh-Cognasse, Hind; Chabert, Adrien; Jackson, Elke; Arthaud, Charles-Antoine; Garraud, Olivier; McNicol, Archie

    2014-04-22

    Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, 2 and 9 and the pro-inflammatory mediators SDF-1, VEGF and sCD40L, from platelets and to subsequently pharmacologically address the release mechanism (s). S.sanguinis stimulated the release of MMP-1, SDF-1, VEGF and sCD40L from platelets and inhibitors of cyclooxygenase and phosphatidylinositol 3-kinase, and antagonists of the αIIbβ3 integrin and glycoprotein Ib, each inhibited the secretion of all factors. Therefore the release of MMP-1, SDF-1, VEGF and sCD40L occurs late in the platelet response to S.sanguinis and highlights the complex intracellular signalling pathways stimulated in response to S.sanguinis which lead to haemostasis, MMP and pro-inflammatory mediator secretion.

  20. Cordycepin-enriched WIB801C from Cordyceps militaris inhibits ADP-induced [Ca(2+)] i mobilization and fibrinogen binding via phosphorylation of IP 3R and VASP.

    PubMed

    Lee, Dong-Ha; Kwon, Hyuk-Woo; Kim, Hyun-Hong; Lim, Deok Hwi; Nam, Gi Suk; Shin, Jung-Hae; Kim, Yun-Yi; Kim, Jong-Lae; Lee, Jong-Jin; Kwon, Ho-Kyun; Park, Hwa-Jin

    2015-01-01

    In this study, we investigated the effect of cordycepin-enriched (CE)-WIB801C from Cordyceps militaris on ADP (20 µM)-stimulated platelet aggregation. CE-WIB801C dose-dependently inhibited ADP-induced platelet aggregation, and its IC50 value was 18.5 μg/mL. CE-WIB801C decreased TXA2 production, but did not inhibit the activities of COX-1 and thromboxane synthase (TXAS) in ADP-activated platelets, which suggests that the inhibition of TXA2 production by CE-WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. CE-WIB801C inhibited ATP release and [Ca(2+)]i mobilization, and increased cAMP level and IP3RI (Ser(1756)) phosphorylation in ADP-activated platelets. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased CE-WIB801C-inhibited [Ca(2+)]i mobilization, and strongly inhibited CE-WIB801C-increased IP3RI (Ser(1756)) phosphorylation. CE-WIB801C elevated the phosphorylation of VASP (Ser(157)), an A-kinase substrate, but inhibited fibrinogen binding to αIIb/β3. These results suggest that CE-WIB801C-elevated cAMP involved in IP3RI (Ser(1756)) phosphorylation to inhibit [Ca(2+)]i mobilization and, VASP (Ser(157)) phosphorylation to inhibit αIIb/β3 activation. Therefore, in this study, we demonstrate that CE-WIB801C may have a preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

  1. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis.

    PubMed

    Struyf, Sofie; Burdick, Marie D; Proost, Paul; Van Damme, Jo; Strieter, Robert M

    2004-10-29

    Platelet factor-4 (PF-4)/CXCL4 was the first chemokine described to inhibit neovascularization. Here, the product of the nonallelic variant gene of CXCL4, PF-4var1/PF-4alt, designated CXCL4L1, was isolated for the first time from thrombin-stimulated human platelets and purified to homogeneity. Although secreted CXCL4 and CXCL4L1 differ in only three amino acids, CXCL4L1 was more potent in inhibiting chemotaxis of human microvascular endothelial cells toward interleukin-8 (IL-8)/CXCL8 or basic fibroblast growth factor (bFGF). In vivo, CXCL4L1 was also more effective than CXCL4 in inhibiting bFGF-induced angiogenesis in rat corneas. Thus, activated platelets release CXCL4L1, a potent regulator of endothelial cell biology, which affects angiogenesis and vascular diseases.

  2. Modular flow chamber for engineering bone marrow architecture and function.

    PubMed

    Di Buduo, Christian A; Soprano, Paolo M; Tozzi, Lorenzo; Marconi, Stefania; Auricchio, Ferdinando; Kaplan, David L; Balduini, Alessandra

    2017-11-01

    The bone marrow is a soft, spongy, gelatinous tissue found in the hollow cavities of flat and long bones that support hematopoiesis in order to maintain the physiologic turnover of all blood cells. Silk fibroin, derived from Bombyx mori silkworm cocoons, is a promising biomaterial for bone marrow engineering, because of its tunable architecture and mechanical properties, the capacity of incorporating labile compounds without loss of bioactivity and demonstrated ability to support blood cell formation. In this study, we developed a bone marrow scaffold consisting of a modular flow chamber made of polydimethylsiloxane, holding a silk sponge, prepared with salt leaching methods and functionalized with extracellular matrix components. The silk sponge was able to support efficient platelet formation when megakaryocytes were seeded in the system. Perfusion of the chamber allowed the recovery of functional platelets based on multiple activation tests. Further, inhibition of AKT signaling molecule, which has been shown to be crucial in regulating physiologic platelet formation, significantly reduced the number of collected platelets, suggesting the applicability of this tissue model for evaluation of the effects of bone marrow exposure to compounds that may affect platelet formation. In conclusion, we have bioengineered a novel modular system that, along with multi-porous silk sponges, can provide a useful technology for reproducing a simplified bone marrow scaffold for blood cell production ex vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.

    PubMed

    Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa

    2013-11-07

    Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.

  4. Inhibitory mechanisms of CME-1, a novel polysaccharide from the mycelia of Cordyceps sinensis, in platelet activation.

    PubMed

    Chang, Yi; Hsu, Wen-Hsien; Lu, Wan-Jung; Jayakumar, Thanasekaran; Liao, Jiun-Cheng; Lin, Mei-Jiun; Wang, Shwu-Huey; Geraldine, Pitchairaj; Lin, Kuan-Hung; Sheu, Joen-Rong

    2015-01-01

    CME-1 is a polysaccharide purified from the mycelia of medicinal mushroom Cordyceps sinensis, its molecular weight was determined to be 27.6 kDa by using nuclear magnetic resonance and gas chromatography-mass spectrometry. The initiation of arterial thromboses is relevant to various cardiovascular diseases (CVDs) and is believed to involve platelet activation. Our recent study exhibited that CME-1 has potent antiplatelet activity via the activation of adenylate cyclase/cyclic AMP ex vivo and in vivo. The aggregometry, and immunoblotting were used in this study. In this study, the mechanisms of CME-1 in platelet activation is further investigated and found that CME-1 inhibited platelet aggregation as well as the ATP-release reaction, relative intracellular [Ca(+2)] mobilization, and the phosphorylation of phospholipase C (PLC)γ2 and protein kinase C (PKC) stimulated by collagen. CME-1 has no effects on inhibiting either convulxin, an agonist of glycoprotein VI, or aggretin, an agonist of integrin α2β1 stimulated platelet aggregation. Moreover, this compound markedly diminished thrombin and arachidonic acid (AA) induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 2, c-Jun N-terminal kinase 1, and Akt. Treatment with SQ22536, an inhibitor of adenylate cyclase, markedly diminished the CME-1-mediated increasing of cyclic AMP level and reversed prostaglandin E1- or CME-1-mediated inhibition of platelet aggregation and p38 MAPK and Akt phosphorylation stimulated by thrombin or AA. Furthermore, phosphodiesterase activity of human platelets was not altered by CME-1. The crucial finding of this study is that the antiplatelet activity of CME-1 may initially inhibit the PLCγ2-PKC-p47 cascade, and inhibit PI3-kinase/Akt and MAPK phosphorylation through adenylate cyclase/ cyclic AMP activation, then inhibit intracellular [Ca(+2)] mobilization, and, ultimately, inhibit platelet activation. The novel role of CME-1 in antiplatelet activity indicates that this compound exhibits high therapeutic potential for treating or preventing CVDs.

  5. Increased ability of tirofiban to maintain its inhibitory effects on the binding of fibrinogen to platelets in blood from patients with and without diabetes mellitus.

    PubMed

    Schneider, David J; Keating, Friederike K; Baumann, Patricia Q; Whitaker, Deborah A; Sobel, Burton E

    2006-02-01

    Both tirofiban and eptifibatide release rapidly from glycoprotein IIb-IIIa but have different dissociation constants (KD of tirofiban=15 nmol/l, of eptifibatide=120 nmol/l). Binding of fibrinogen to glycoprotein IIb-IIIa is biphasic, forming an initial reversible complex (KD=155-180 nmol/l) and a second more stable complex (KD=20-70 nmol/l). Diabetes is known to alter platelet function. To determine the influence of affinity on inhibitory effects in blood from patients with (n=20) and without (n=20) diabetes mellitus, we characterized the extent of inhibition as a function of time. Blood was added to reaction tubes containing tirofiban 100 ng/ml or eptifibatide 1.7 microg/ml (concentrations previously defined to be optimal) plus a platelet agonist (1 micromol/l adenosine diphosphate or 25 micromol/l thrombin receptor agonist peptide), and fluorochrome-labeled fibrinogen before analysis by flow cytometry. The extent of inhibition early on (30 s to 3 min) was similar (>85%) with either agent in blood from those with and without diabetes mellitus, whereas the extent of inhibition 10-15 min later was maintained more effectively with tirofiban than with eptifibatide (difference in slope P<0.01). After 15 min, the extent of inhibition in response to adenosine diphosphate in those with diabetes mellitus was 95+/-6% for tirofiban and 70+/-15% for eptifibatide (P<0.001); in those without diabetes mellitus, it was 91+/-9% for tirofiban and 73+/-19% for eptifibatide (P<0.001). For glycoprotein IIb-IIIa antagonists with a rapid rate of release, the biphasic binding of fibrinogen influences to a similar extent their ability to maintain inhibitory effects in blood from patients with and without diabetes mellitus.

  6. Platelet-derived chemokines in atherogenesis: what's new?

    PubMed

    Gleissner, Christian A

    2012-09-01

    Over the past decade, platelets have been demonstrated to have various functions beyond their role in hemostasis. Platelets possess a rich repertoire of chemokines that are stored in their alpha granules and can be released upon activation. The pro-atherogenic effects of activated platelets are most likely mediated by release of these pro-inflammatory mediators that promote recruitment, activation or differentiation of other cell types including endothelial cells and leukocytes. These effects have been excellently reviewed in the past by various authors. The current review will therefore focus on novel findings. A specific focus will be put on CXCL4, on which a lot of new data have been published since 2008. Thus, the effects of CXCL4 on macrophage differentiation have been studied in detail revealing that CXCL4 induces a specific macrophage phenotype. Furthermore, novel data on CXCL4L1, a protein similar to CXCL4 that is probably transcribed from a duplication of the PF4 gene coding for CXCL4, will be discussed. A very interesting study has recently demonstrated that the inhibition of heterophilic chemokine interactions using a specifically designed small molecule can inhibit atherogenesis in Apoe-/- mice, thereby demonstrating the clinical potential of tackling platelet chemokines as therapeutic targets in atherosclerosis. Finally, novel data on CXCL1 and CCL5 will be discussed. Overall, while our understanding of the role of platelet chemokines in atherogenesis has significantly improved over the past years, it seems that there may still be many buried treasures in this field that could improve disease prevention or lead to novel clinical therapies.

  7. "Platelet-associated regulatory system (PARS)" with particular reference to female reproduction.

    PubMed

    Bódis, József; Papp, Szilárd; Vermes, István; Sulyok, Endre; Tamás, Péter; Farkas, Bálint; Zámbó, Katalin; Hatzipetros, Ioannis; Kovács, Gábor L

    2014-01-01

    Blood platelets play an essential role in hemostasis, thrombosis and coagulation of blood. Beyond these classic functions their involvement in inflammatory, neoplastic and immune processes was also investigated. It is well known, that platelets have an armament of soluble molecules, factors, mediators, chemokines, cytokines and neurotransmitters in their granules, and have multiple adhesion molecules and receptors on their surface. Selected relevant literature and own views and experiences as clinical observations have been used. Considering that platelets are indispensable in numerous homeostatic endocrine functions, it is reasonable to suppose that a platelet-associated regulatory system (PARS) may exist; internal or external triggers and/or stimuli may complement and connect regulatory pathways aimed towards target tissues and/or cells. The signal (PAF, or other tissue/cell specific factors) comes from the stimulated (by the e.g., hypophyseal hormones, bacteria, external factors, etc.) organs or cells, and activates platelets. Platelet activation means their aggregation, sludge formation, furthermore the release of the for-mentioned biologically very powerful factors, which can locally amplify and deepen the tissue specific cell reactions. If this process is impaired or inhibited for any reason, the specifically stimulated organ shows hypofunction. When PARS is upregulated, organ hyperfunction may occur that culminate in severe diseases. Based on clinical and experimental evidences we propose that platelets modulate the function of hypothalamo-hypophyseal-ovarian system. Specifically, hypothalamic GnRH releases FSH from the anterior pituitary, which induces and stimulates follicular and oocyte maturation and steroid hormone secretion in the ovary. At the same time follicular cells enhance PAF production. Through these pathways activated platelets are accumulated in the follicular vessels surrounding the follicle and due to its released soluble molecules (factors, mediators, chemokines, cytokines, neurotransmitters) locally increase oocyte maturation and hormone secretion. Therefore we suggest that platelets are not only a small participant but may be the conductor or active mediator of this complex regulatory system which has several unrevealed mechanisms. In other words platelets are corpuscular messengers, or are more than a member of the family providing hemostasis.

  8. Platelet inhibition with ticagrelor versus clopidogrel in Hispanic patients with stable coronary artery disease with or without diabetes mellitus.

    PubMed

    Clavijo, Leonardo C; Maya, Juan; Carlson, Glenn; Angiolillo, Dominick J; Teng, Renli; Caplan, Richard; Price, Matthew J

    2015-12-01

    Diabetes mellitus (DM) disproportionately affects Hispanic patients. DM patients have enhanced platelet reactivity and reduced sensitivity to clopidogrel. Ticagrelor demonstrated a more rapid onset and greater magnitude of platelet inhibition than clopidogrel in Hispanic patients with stable coronary artery disease (CAD). This subgroup analysis examined the onset and level of platelet inhibition of ticagrelor and clopidogrel in Hispanic patients with DM. This was a subgroup analysis of a randomized, open-label, crossover study in which 40 Hispanic patients with stable CAD received ticagrelor 180 mg loading dose (LD)/90 mg twice-daily maintenance dose (MD) then clopidogrel 600 mg LD/75 mg once-daily MD, or vice versa. The primary end point was on-treatment platelet reactivity at 2 hours post-LD using the VerifyNow™ P2Y12 test. 21 patients had DM and 19 were non-diabetic. At 2 hours post-LD, mean platelet reactivity in the diabetic group was 34.5 PRU with ticagrelor versus 219.3 PRU with clopidogrel (P<0.001), and in the non-diabetic group was 33.7 PRU with ticagrelor versus 181.0 PRU with clopidogrel (P<0.001). In both diabetic and non-diabetic subgroups, mean platelet reactivity declined to a significantly greater extent with ticagrelor than clopidogrel at all time points evaluated (0.5, 2, and 8 hours post LD and after 7-9 days of MD). Patients were significantly more likely to have high on-treatment platelet reactivity (≥208 PRU) during treatment with clopidogrel compared with ticagrelor, regardless of diabetic status. Among Hispanic patients with stable CAD, ticagrelor achieves a faster onset and greater magnitude of platelet inhibition compared with clopidogrel, irrespective of diabetic status. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Meloxicam, 15 mg/day, spares platelet function in healthy volunteers.

    PubMed

    de Meijer, A; Vollaard, H; de Metz, M; Verbruggen, B; Thomas, C; Novakova, I

    1999-10-01

    To study the influence of meloxicam, a cyclooxygenase-2 (COX-2) preferential nonsteroidal anti-inflammatory drug, on serum thromboxane and platelet function in healthy volunteers with use of the maximum recommended daily dosage of 15 mg/day. This study used an open, randomized crossover design. Indomethacin (INN, indometacin) was given as a positive control for nonsteroidal anti-inflammatory drug-induced inhibition of platelet function. The following variables were recorded: thromboxane B2 serum concentrations by radioimmunoassay, platelet aggregation by whole blood aggregometry in response to collagen 1.1 microg/L and to arachidonic acid 0.35 mmol/L, and closure time with use of the PFA-100. Serum thromboxane B2 at baseline was 535+/-233 nmol/L (mean +/- SD) and was reduced for 95% by indomethacin to 26+/-19 nmol/L (P < .001) and for 66% by meloxicam to 183+/-62 nmol/L (P < .001). Maximal platelet aggregation in response to collagen at baseline was 18.7+/-1.6 ohms (ohms). It was reduced by indomethacin to 7.3+/-4.5 ohms (P < .001), but not by meloxicam (19+/-2.5 ohms). Platelet aggregation in response to arachidonic acid at baseline was 12.2+/-2.0 ohms. It was reduced by indomethacin in all subjects to 0 ohms, but not by meloxicam (11+/-2.4 ohms). Closure time at baseline was 128+/-24 seconds and was prolonged by indomethacin to 286+/-38 seconds (P < .001). Meloxicam caused a minor prolongation of the closure time (141+/-32 seconds; P < .05). Meloxicam, 15 mg/day caused a major reduction of maximum thromboxane production but no reduction in collagen- or arachidonic acid-induced platelet aggregation and only minor increase of the closure time.

  10. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation

    PubMed Central

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung

    2013-01-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387

  11. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation.

    PubMed

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung; Rhee, Man Hee; Kim, Yun-Bae

    2013-12-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow.

  12. Antiatherosclerotic Effects of 1-Methylnicotinamide in Apolipoprotein E/Low-Density Lipoprotein Receptor-Deficient Mice: A Comparison with Nicotinic Acid.

    PubMed

    Mateuszuk, Lukasz; Jasztal, Agnieszka; Maslak, Edyta; Gasior-Glogowska, Marlena; Baranska, Malgorzata; Sitek, Barbara; Kostogrys, Renata; Zakrzewska, Agnieszka; Kij, Agnieszka; Walczak, Maria; Chlopicki, Stefan

    2016-02-01

    1-Methylnicotinamide (MNA), the major endogenous metabolite of nicotinic acid (NicA), may partially contribute to the vasoprotective properties of NicA. Here we compared the antiatherosclerotic effects of MNA and NicA in apolipoprotein E (ApoE)/low-density lipoprotein receptor (LDLR)-deficient mice. ApoE/LDLR(-/-) mice were treated with MNA or NicA (100 mg/kg). Plaque size, macrophages, and cholesterol content in the brachiocephalic artery, endothelial function in the aorta, systemic inflammation, platelet activation, as well as the concentration of MNA and its metabolites in plasma and urine were measured. MNA and NicA reduced atherosclerotic plaque area, plaque inflammation, and cholesterol content in the brachiocephalic artery. The antiatherosclerotic actions of MNA and NicA were associated with improved endothelial function, as evidenced by a higher concentration of 6-keto-prostaglandin F1 α and nitrite/nitrate in the aortic ring effluent, inhibition of platelets (blunted thromboxane B2 generation), and inhibition of systemic inflammation (lower plasma concentration of serum amyloid P, haptoglobin). NicA treatment resulted in an approximately 2-fold higher concentration of MNA and its metabolites in urine and a 4-fold higher nicotinamide/MNA ratio in plasma, compared with MNA treatment. In summary; MNA displays pronounced antiatherosclerotic action in ApoE/LDLR(-/-) mice, an effect associated with an improvement in prostacyclin- and nitric oxide-dependent endothelial function, inhibition of platelet activation, inhibition of inflammatory burden in plaques, and diminished systemic inflammation. Despite substantially higher MNA availability after NicA treatment, compared with an equivalent dose of MNA, the antiatherosclerotic effect of NicA was not stronger. We suggest that detrimental effects of NicA or its metabolites other than MNA may limit beneficial effects of NicA-derived MNA. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Relative activities on and uptake by human blood platelets of 5-hydroxytryptamine and several analogues

    PubMed Central

    Born, G. V. R.; Juengjaroen, Kanchana; Michal, F.

    1972-01-01

    1. The specificity of platelet receptor sites for 5-HT uptake and for the rapid morphological change and aggregation was investigated with 5-hydroxy-tryptamine (5-HT) and seventeen analogues as well as with some antagonists of 5-HT. 2. The analogues, with the exception of 5-hydroxy-N'N'-dibutyltryptamine, caused the rapid morphological change in platelets. In concentrations below those needed to produce the agonistic action (viz. 0.05-2.0 μM), these analogues themselves inhibited competitively the shape change caused by 5-HT. 3. The velocity of change in shape caused by 5-HT was reduced in low Na media. 4. Ten analogues produced platelet aggregation; three of these, viz. 5-methoxy-α-methyltryptamine, 5-hydroxy-α-methyltryptamine and 5-hydroxy-N'N'-diisopropyltryptamine), were approximately equipotent with 5-HT. Six analogues did not induce platelet aggregation. 5. All the analogues which prevented the initial change in shape of platelets caused by 5-HT also inhibited its aggregating effect, apparently competitively with low Ki values (0.02-1.6 μM). 6. As with the inhibition of shape change, the inhibition of aggregation shows relatively low structural specificity of the receptor site. 7. Methysergide was a potent inhibitor of shape change and aggregation (Ki∼0.03 μM); imipramine was much less inhibitory (Ki∼5-10 μM). 8. Only one analogue (5-hydroxy-α-methyltryptamine) was taken up like 5-HT by platelets. All the other analogues inhibited the uptake of 5-HT by platelets (Ki=0.2-2.7 μM). 9. Methysergide was a weak inhibitor of 5-HT uptake (Ki∼125 μM) whereas imipramine was very effective (Ki∼0.3 μM). 10. Our results show that the initial change in shape of platelets is required for and precedes aggregation. The structural specificity of the platelet receptor concerned with shape change and aggregation caused by 5-HT appears low whereas the uptake mechanism is a highly specific one. The uptake probably proceeds through more than one step, the relationship between the steps is not yet clear. PMID:5015032

  14. Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli.

    PubMed

    Bennewitz, Margaret F; Jimenez, Maritza A; Vats, Ravi; Tutuncuoglu, Egemen; Jonassaint, Jude; Kato, Gregory J; Gladwin, Mark T; Sundd, Prithu

    2017-01-12

    In patients with sickle cell disease (SCD), the polymerization of intraerythrocytic hemoglobin S promotes downstream vaso-occlusive events in the microvasculature. While vaso-occlusion is known to occur in the lung, often in the context of systemic vaso-occlusive crisis and the acute chest syndrome, the pathophysiological mechanisms that incite lung injury are unknown. We used intravital microscopy of the lung in transgenic humanized SCD mice to monitor acute vaso-occlusive events following an acute dose of systemic lipopolysaccharide sufficient to trigger events in SCD but not control mice. We observed cellular microembolism of precapillary pulmonary arteriolar bottlenecks by neutrophil-platelet aggregates. Blood from SCD patients was next studied under flow in an in vitro microfluidic system. Similar to the pulmonary circulation, circulating platelets nucleated around arrested neutrophils, translating to a greater number and duration of neutrophil-platelet interactions compared with normal human blood. Inhibition of platelet P-selectin with function-blocking antibody attenuated the neutrophil-platelet interactions in SCD patient blood in vitro and resolved pulmonary arteriole microembolism in SCD mice in vivo. These results establish the relevance of neutrophil-platelet aggregate formation in lung arterioles in promoting lung vaso-occlusion in SCD and highlight the therapeutic potential of targeting platelet adhesion molecules to prevent acute chest syndrome.

  15. Inhibition of platelet aggregation and in vitro free radical scavenging activity of dried fruiting bodies of Pleurotus eous.

    PubMed

    Suseem, S R; Saral, Mary

    2015-07-01

    To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.

  16. Increased nitric oxide production in platelets from severe chronic renal failure patients.

    PubMed

    Siqueira, Mariana Alves de Sá; Brunini, Tatiana M C; Pereira, Natália Rodrigues; Martins, Marcela Anjos; Moss, Monique Bandeira; Santos, Sérgio F; Lugon, Jocemir R; Mendes-Ribeiro, Antônio C

    2011-02-01

    Nitric oxide (NO) production occurs through oxidation of the amino acid L-arginine by NO synthase (NOS). NO inhibits platelet activation by increasing the levels of cyclic guanosine monophosphate (cGMP), thus maintaining vascular homeostasis. Our group previously demonstrated (da Silva et al. 2005) an enhancement of the L-arginine-NO-cGMP pathway in platelets taken from chronic renal failure (CRF) patients on haemodialysis associated with reduced platelet aggregation. We investigate the platelet L-arginine-NO-cGMP pathway, platelet function, and inflammation from patients in CRF on conservative treatment. A total of 42 CRF patients and 42 controls (creatinine clearance = 27 ± 3 vs. 93 ± 1 mL per min per 1.73 m2, respectively) participated in this study. NOS activity and expression and cGMP concentration were measured in platelets. Platelet aggregation induced by collagen or ADP was evaluated and plasma levels of fibrinogen were determined by the Clauss method. A marked increase in basal NOS activity was seen in undialysed CRF patients compared with controls, accompanied by an elevation of fibrinogen plasma levels. There were no differences in expression of NOS and in cGMP levels. In this context, platelet aggregation was not affected. We provide the first evidence of increased intraplatelet NO biosynthesis in undialysed CRF patients, which can be an early marker of future haemostatic abnormalities during dialysis treatment.

  17. Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen*

    PubMed Central

    Gilio, Karen; Harper, Matthew T.; Cosemans, Judith M. E. M.; Konopatskaya, Olga; Munnix, Imke C. A.; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D.; Heemskerk, Johan W. M.; Poole, Alastair W.

    2010-01-01

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen. PMID:20479008

  18. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen.

    PubMed

    Gilio, Karen; Harper, Matthew T; Cosemans, Judith M E M; Konopatskaya, Olga; Munnix, Imke C A; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D; Heemskerk, Johan W M; Poole, Alastair W

    2010-07-23

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent alpha-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCalpha and PKCbeta, whereas the novel isoform, PKC, negatively regulates these events. PKCdelta also negatively regulates thrombus formation but not alpha-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCalpha or PKCbeta showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKC. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.

  19. Thromboxane Formation Assay to Identify High On-Treatment Platelet Reactivity to Aspirin.

    PubMed

    Mohring, Annemarie; Piayda, Kerstin; Dannenberg, Lisa; Zako, Saif; Schneider, Theresa; Bartkowski, Kirsten; Levkau, Bodo; Zeus, Tobias; Kelm, Malte; Hohlfeld, Thomas; Polzin, Amin

    2017-01-01

    Platelet inhibition by aspirin is indispensable in the secondary prevention of cardiovascular events. Nevertheless, impaired aspirin antiplatelet effects (high on-treatment platelet reactivity [HTPR]) are frequent. This is associated with an enhanced risk of cardiovascular events. The current gold standard to evaluate platelet hyper-reactivity despite aspirin intake is the light-transmittance aggregometry (LTA). However, pharmacologically, the most specific test is the measurement of arachidonic acid (AA)-induced thromboxane (TX) B2 formation. Currently, the optimal cut-off to define HTPR to aspirin by inhibition of TX formation is not known. Therefore, in this pilot study, we aimed to calculate a TX formation cut-off value to detect HTPR defined by the current gold standard LTA. We measured platelet function in 2,507 samples. AA-induced TX formation by ELISA and AA-induced LTA were used to measure aspirin antiplatelet effects. TX formation correlated nonlinearly with the maximum of aggregation in the AA-induced LTA (Spearman's rho R = 0.7396; 95% CI 0.7208-0.7573, p < 0.0001). Receiver operating characteristic analysis and Youden's J statistics revealed 209.8 ng/mL as the optimal cut-off value to detect HTPR to aspirin with the TX ELISA (area under the curve: 0.92, p < 0.0001, sensitivity of 82.7%, specificity of 90.3%). In summary, TX formation ELISA is reliable in detecting HTPR to aspirin. The calculated cut-off level needs to be tested in trials with clinical end points. © 2017 S. Karger AG, Basel.

  20. Prevalence of ex vivo high on-treatment platelet reactivity on antiplatelet therapy after transient ischemic attack or ischemic stroke on the PFA-100(®) and VerifyNow(®).

    PubMed

    Kinsella, Justin A; Tobin, W Oliver; Cox, Dermot; Coughlan, Tara; Collins, Ronan; O'Neill, Desmond; Murphy, Raymond P; McCabe, Dominick J H

    2013-10-01

    The prevalence of ex vivo high on-treatment platelet reactivity (HTPR) to commonly prescribed antiplatelet regimens after transient ischemic attack (TIA) or ischemic stroke is uncertain. Platelet function inhibition was simultaneously assessed with modified light transmission aggregometry (VerifyNow; Accumetrics Inc, San Diego, CA) and with a moderately high shear stress platelet function analyzer (PFA-100; Siemens Medical Solutions USA, Inc, Malvern, PA) in a pilot, cross-sectional study of TIA or ischemic stroke patients. Patients were assessed on aspirin-dipyridamole combination therapy (n = 51) or clopidogrel monotherapy (n = 25). On the VerifyNow, HTPR on aspirin was identified in 4 of 51 patients (8%) on aspirin-dipyridamole combination therapy (≥ 550 aspirin reaction units on the aspirin cartridge). Eleven of 25 (44%) patients had HTPR on clopidogrel (≥ 194 P2Y12 reaction units on the P2Y12 cartridge). On the PFA-100, 21 of 51 patients (41%) on aspirin-dipyridamole combination therapy had HTPR on the collagen-epinephrine (C-EPI) cartridge. Twenty-three of 25 patients (92%) on clopidogrel had HTPR on the collagen-adenosine diphosphate (C-ADP) cartridge. The proportion of patients with antiplatelet HTPR was lower on the VerifyNow than PFA-100 in patients on both regimens (P < .001). The prevalence of ex vivo antiplatelet HTPR after TIA or ischemic stroke is markedly influenced by the method used to assess platelet reactivity. The PFA-100 C-ADP cartridge is not sensitive at detecting the antiplatelet effects of clopidogrel ex vivo. Larger prospective studies with the VerifyNow and with the PFA-100 C-EPI and recently released Innovance PFA P2Y cartridges (Siemens Medical Solutions USA, Inc) in addition to newer tests of platelet function are warranted to assess whether platelet function monitoring predicts clinical outcome in ischemic cerebrovascular disease. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. Prolonging shelf-life of platelets by low-level laser

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Lu, Min; Wu, Mei X.

    2018-02-01

    It remains significant challenges to extend a shelf life of platelets beyond the conventional five days. Unlike red blood cells that can be stored at 4°C for a few weeks, platelets are stored at room temperature only, which results in a gradual loss of their quality owing to a switch of energy metabolism from aerobic oxidative phosphorylation toward anaerobic glycolysis. Given the well-documented beneficial effect of near infrared low-level laser (LLL) on mitochondrial functions in a variety of cells under stress, we explored a potential for LLL to extend the shelf life of platelets beyond the five days. We found that exposure of a platelet-containing storage bag to LLL at 830nm at 0.5J/cm2 prior to storage could significantly retain a pH value and viability of the platelets stored within the bag under a standard condition for eight days with improved quality compared to those platelets stored similarly for five days in controls. LLL inhibited reactive oxygen species (ROS) and lactate production, but sustained ATP production, mitochondrial membrane potential, and morphology in the stored platelets. While preserving their metabolic activity, LLL didn't activate platelets but increased their aggregation capacity and in vivo survival as suggested by similar levels of surface CD62p expression and enhanced agonist-induced aggregation and recovery following infusion in the presence compared to the absence of LLL treatment. This simple, addition-free, cost-effective, noninvasive laser illumination can be readily incorporated into the current platelet storage system to prolong shelf life of platelets with improved quality of stored platelets.

  2. Effects of clopidogrel and aspirin in combination versus aspirin alone on platelet activation and major receptor expression in patients after recent ischemic stroke: for the Plavix Use for Treatment of Stroke (PLUTO-Stroke) trial.

    PubMed

    Serebruany, Victor L; Malinin, Alex I; Ziai, Wendy; Pokov, Alex N; Bhatt, Deepak L; Alberts, Mark J; Hanley, Dan F

    2005-10-01

    Clopidogrel is widely used in patients after recent ischemic stroke; however, its ability to yield additional antiplatelet protection on top of aspirin has never been explored in a controlled study. To determine whether clopidogrel with aspirin (C+ASA) will produce more potent platelet inhibition than aspirin alone (ASA) in patients after ischemic stroke, we conducted the Plavix Use for Treatment of Stroke trial. Seventy patients after ischemic stroke were randomly assigned to C+ASA or ASA groups. Platelet studies included aggregometry; cartridge-based analyzers; expression of PECAM-1, P-selectin, GP IIb/IIIa (antigen and activity), vitronectin receptor, and formation of platelet-leukocyte microparticles by flow cytometry. Platelet tests were performed at baseline and after 30 days after randomization. There were no deaths, hospitalizations, or serious adverse events. There were no differences in the baseline platelet characteristics between C+ASA and ASA groups, or significant changes in platelet parameters in the ASA group, except diminished collagen-induced aggregation (P=0.001). In contrast, therapy with C+ASA resulted in a significant inhibition of platelet activity assessed by ADP- (P=0.00001) and collagen-induced (P=0.02) aggregation; closure time prolongation (P=0.03), and reduction of platelet activation units with Ultegra (P=0.00001); expression of PECAM-1 (P=0.01), and GP IIb/IIIa activity with PAC-1 (P=0.02) when compared with ASA group. Therapy with C+ASA also resulted in the reduced formation of platelet-leukocyte microparticles (P=0.02). Treatment with C+ASA for 1 month provides significantly greater inhibition of platelet activity than ASA alone in patients after recent ischemic stroke in the frame of the small randomized trial.

  3. Inhibition of carrageenin-induced rat paw oedema by crotapotin, a polypeptide complexed with phospholipase A2.

    PubMed Central

    Landucci, E C; Antunes, E; Donato, J L; Faro, R; Hyslop, S; Marangoni, S; Oliveira, B; Cirino, G; de Nucci, G

    1995-01-01

    1. The effect of purified crotapotin, a non-toxic non-enzymatic chaperon protein normally complexed to a phospholipase A2 (PLA2) in South America rattlesnake venom, was studied in the acute inflammatory response induced by carrageenin (1 mg/paw), compound 48/80 (3 micrograms/paw) and 5-hydroxytryptamine (5-HT) (3 micrograms/paw) in the rat hind-paw. The effects of crotapotin on platelet aggregation, mast cell degranulation and eicosanoid release from guinea-pig isolated lung were also investigated. 2. Subplantar co-injection of crotapotin (1 and 10 micrograms/paw) with carrageenin or injection of crotapotin (10 micrograms/paw) into the contralateral paw significantly inhibited the carrageenin-induced oedema. This inhibition was also observed when crotapotin (10-30 micrograms/paw) was administered either intraperitoneally or orally. Subplantar injection of heated crotapotin (15 min at 60 degrees C) failed to inhibit carrageenin-induced oedema. Subplantar injection of crotapotin (10 micrograms/paw) also significantly inhibited the rat paw oedema induced by compound 48/80, but it did not affect 5-HT-induced oedema. 3. In adrenalectomized animals, subplantar injection of crotapotin markedly inhibited the oedema induced by carrageenin. The inhibitory effect of crotapotin was also observed in rats depleted of histamine and 5-HT stores. 4. Crotapotin (30 micrograms/paw) had no effect on either the histamine release induced by compound 48/80 in vitro or on the platelet aggregation induced by both arachidonic acid (1 nM) and platelet activating factor (1 microM) in human platelet-rich plasma. The platelet aggregation and thromboxane B2 (TXB2) release induced by thrombin (100 mu ml-1) in washed human platelets were also not affected by crotapotin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7537590

  4. A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function.

    PubMed

    Kargl, Julia; Brown, Andrew J; Andersen, Liisa; Dorn, Georg; Schicho, Rudolf; Waldhoer, Maria; Heinemann, Akos

    2013-07-01

    The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol (LPI) receptor that is also responsive to certain cannabinoids. Although GPR55 has been implicated in several (patho)physiologic functions, its role remains enigmatic owing mainly to the lack of selective GPR55 antagonists. Here we show that the compound CID16020046 ((4-[4-(3-hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1H,4H,5H,6H-pyrrolo[3,4-c]pyrazol-5-yl] benzoic acid) is a selective GPR55 antagonist. In yeast cells expressing human GPR55, CID16020046 antagonized agonist-induced receptor activation. In human embryonic kidney (HEK293) cells stably expressing human GPR55, the compound behaved as an antagonist on LPI-mediated Ca²⁺ release and extracellular signal-regulated kinases activation, but not in HEK293 cells expressing cannabinoid receptor 1 or 2 (CB₁ or CB₂). CID16020046 concentration dependently inhibited LPI-induced activation of nuclear factor of activated T-cells (NFAT), nuclear factor κ of activated B cells (NF-κB) and serum response element, translocation of NFAT and NF-κB, and GPR55 internalization. It reduced LPI-induced wound healing in primary human lung microvascular endothelial cells and reversed LPI-inhibited platelet aggregation, suggesting a novel role for GPR55 in platelet and endothelial cell function. CID16020046 is therefore a valuable tool to study GPR55-mediated mechanisms in primary cells and tissues.

  5. Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets.

    PubMed

    Interlandi, Gianluca; Yakovenko, Olga; Tu, An-Yue; Harris, Jeff; Le, Jennie; Chen, Junmei; López, José A; Thomas, Wendy E

    2017-11-10

    The plasma protein von Willebrand factor (VWF) is essential for hemostasis initiation at sites of vascular injury. The platelet-binding A1 domain of VWF is connected to the VWF N-terminally located D'D3 domain through a relatively unstructured amino acid sequence, called here the N-terminal linker. This region has previously been shown to inhibit the binding of VWF to the platelet surface receptor glycoprotein Ibα (GpIbα). However, the molecular mechanism underlying the inhibitory function of the N-terminal linker has not been elucidated. Here, we show that an aspartate at position 1261 is the most critical residue of the N-terminal linker for inhibiting binding of the VWF A1 domain to GpIbα on platelets in blood flow. Through a combination of molecular dynamics simulations, mutagenesis, and A1-GpIbα binding experiments, we identified a network of salt bridges between Asp 1261 and the rest of A1 that lock the N-terminal linker in place such that it reduces binding to GpIbα. Mutations aimed at disrupting any of these salt bridges activated binding unless the mutated residue also formed a salt bridge with GpIbα, in which case the mutations inhibited the binding. These results show that interactions between charged amino acid residues are important both to directly stabilize the A1-GpIbα complex and to indirectly destabilize the complex through the N-terminal linker. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation1[S

    PubMed Central

    Ikei, Kenneth N.; Yeung, Jennifer; Apopa, Patrick L.; Ceja, Jesús; Vesci, Joanne; Holinstat, Michael

    2012-01-01

    Human platelet-type 12-lipoxygenase (12-LOX) has recently been shown to play an important role in regulation of human platelet function by reacting with arachidonic acid (AA). However, a number of other fatty acids are present on the platelet surface that, when cleaved from the phospholipid, can be oxidized by 12-LOX. We sought to characterize the substrate specificity of 12-LOX against six essential fatty acids: AA, dihomo-γ-linolenic acid (DGLA), eicosapentaenoic acid (EPA), α-linolenic acid (ALA), eicosadienoic acid (EDA), and linoleic acid (LA). Three fatty acids were comparable substrates (AA, DGLA, and EPA), one was 5-fold slower (ALA), and two showed no reactivity with 12-LOX (EDA and LA). The bioactive lipid products resulting from 12-LOX oxidation of DGLA, 12-(S)-hydroperoxy-8Z,10E,14Z-eicosatrienoic acid [12(S)-HPETrE], and its reduced product, 12(S)-HETrE, resulted in significant attenuation of agonist-mediated platelet aggregation, granule secretion, αIIbβ3 activation, Rap1 activation, and clot retraction. Treatment with DGLA similarly inhibited PAR1-mediated platelet activation as well as platelet clot retraction. These observations are in surprising contrast to our recent work showing 12(S)-HETE is a prothrombotic bioactive lipid and support our hypothesis that the overall effect of 12-LOX oxidation of fatty acids in the platelet is dependent on the fatty acid substrates available at the platelet membrane. PMID:22984144

  7. Statistical analysis plan for the WOMAN-ETAPlaT study: Effect of tranexamic acid on platelet function and thrombin generation

    PubMed Central

    Dallaku, Kastriot; Shakur, Haleema; Edwards, Phil; Beaumont, Danielle; Roberts, Ian; Huque, Sumaya; Delius, Maria; Mansmann, Ulrich

    2017-01-01

    Background. Postpartum haemorrhage (PPH) is a potentially life-threatening complication for women, and the leading cause of maternal mortality. Tranexamic acid (TXA) is an antifibrinolytic used worldwide to treat uterine haemorrhage and to reduce blood loss in general surgery. TXA may have effects on thrombin generation, platelet function and coagulation factors as a result of its inhibition on the plasmin. Methods. WOMAN ETAPlaT is a sub-study of the World Maternal Antifibrinolitic trial (WOMAN trial). All adult women clinically diagnosed with PPH after a vaginal delivery or caesarean section, are eligible for inclusion in the study. Blood samples will be collected at the baseline and 30 minutes after the first dose of study treatment is given. Platelet function will be evaluated in whole blood immediately after sampling with Multiplate® tests (ADPtest and TRAPtest). Thrombin generation, fibrinogen, D-dimer, and coagulation factors vW, V and VIII will be analysed using platelet poor plasma. Results. Recruitment to WOMAN ETAPlaT started on 04 November 2013 and closed on 13 January 2015, during this time  188 patients were recruited. The final participant follow-up was completed on 04 March 2015. This article introduces the statistical analysis plan for the study, without reference to unblinded data.   Conclusion. The data from this study will provide evidence for the effect of TXA on thrombin generation, platelet function and coagulation factors in women with PPH. Trial registration: ClinicalTrials.gov Identifier: NCT00872469; ISRCTN76912190 PMID:28413832

  8. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo.

    PubMed

    Massberg, Steffen; Konrad, Ildiko; Bültmann, Andreas; Schulz, Christian; Münch, Götz; Peluso, Mario; Lorenz, Michael; Schneider, Simon; Besta, Felicitas; Müller, Iris; Hu, Bin; Langer, Harald; Kremmer, Elisabeth; Rudelius, Martina; Heinzmann, Ulrich; Ungerer, Martin; Gawaz, Meinrad

    2004-02-01

    Platelet-collagen interactions play a fundamental role in the process of arterial thrombosis. The major platelet collagen receptor is the glycoprotein VI (GPVI). Here, we determined the effects of a soluble dimeric form of GPVI on platelet adhesion in vitro and in vivo. We fused the extracellular domain of GPVI with the human immunoglobulin Fc domain. The soluble dimeric form of GPVI (GPVI-Fc) specifically bound to immobilized collagen. Binding of GPVI-Fc to collagen was inhibited competitively by soluble GPVI-Fc, but not control Fc lacking the external GPVI domain. GPVI-Fc inhibited the adhesion of CHO cells that stably express human GPVI and of platelets on collagen and attenuated thrombus formation under shear conditions in vitro. To test the effects of GPVI-Fc in vivo, arterial thrombosis was induced in the mouse carotid artery, and platelet-vessel wall interactions were visualized by intravital fluorescence microscopy. Infusion of GPVI-Fc but not of control Fc virtually abolished stable arrest and aggregation of platelets following vascular injury. Importantly, GPVI-Fc but not control Fc, was detected at areas of vascular injury. These findings further substantiate the critical role of the collagen receptor GPVI in the initiation of thrombus formation at sites of vascular injury and identify soluble GPVI as a promising antithrombotic strategy.

  9. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice.

    PubMed

    Praticò, D; Tillmann, C; Zhang, Z B; Li, H; FitzGerald, G A

    2001-03-13

    The cyclooxygenase (COX) product, prostacyclin (PGI(2)), inhibits platelet activation and vascular smooth-muscle cell migration and proliferation. Biochemically selective inhibition of COX-2 reduces PGI(2) biosynthesis substantially in humans. Because deletion of the PGI(2) receptor accelerates atherogenesis in the fat-fed low density lipoprotein receptor knockout mouse, we wished to determine whether selective inhibition of COX-2 would accelerate atherogenesis in this model. To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF(1alpha) by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1. By contrast, the isoform nonspecific inhibitor, indomethacin, suppressed platelet function and thromboxane formation ex vivo and in vivo, coincident with effects on PGI(2) biosynthesis indistinguishable from nimesulide. Indomethacin reduced the extent of atherosclerosis by 55 +/- 4%, whereas nimesulide failed to increase the rate of atherogenesis. Despite their divergent effects on atherogenesis, both drugs depressed two indices of systemic inflammation, soluble intracellular adhesion molecule-1, and monocyte chemoattractant protein-1 to a similar but incomplete degree. Neither drug altered serum lipids and the marked increase in vascular expression of COX-2 during atherogenesis. Accelerated progression of atherosclerosis is unlikely during chronic intake of specific COX-2 inhibitors. Furthermore, evidence that COX-1-derived prostanoids contribute to atherogenesis suggests that controlled evaluation of the effects of nonsteroidal anti-inflammatory drugs and/or aspirin on plaque progression in humans is timely.

  10. Von Willebrand's disease with spontaneous platelet aggregation induced by an abnormal plasma von Willebrand factor.

    PubMed Central

    Grainick, H R; Williams, S B; McKeown, L P; Rick, M E; Maisonneuve, P; Jenneau, C; Sultan, Y

    1985-01-01

    We have investigated and characterized the abnormalities in four unrelated patients with von Willebrand's disease (vWd) who have (a) enhanced ristocetin-induced platelet aggregation (RIPA) at low ristocetin concentrations, (b) absence of the largest plasma von Willebrand factor (vWf) multimers, and (c) thrombocytopenia. The platelet-rich plasma of these patients aggregates spontaneously without the addition of any agonists. When isolated normal platelets are resuspended in patient plasma spontaneous aggregation occurs; however, the patients' plasmas did not induce platelet aggregation of normal washed formalinized platelets. When the patients' platelets are suspended in normal plasma, spontaneous aggregation is not observed. The spontaneous platelet aggregation (SPA) is associated with dense granule secretion as measured by ATP release and alpha granule release as measured by beta-thromboglobulin and platelet factor 4 release. The SPA is totally inhibited by 5 mM EDTA, prostaglandin I2, and dibutryl cyclic AMP, while it is only partially inhibited by 1 mM EDTA, acetylsalicylic acid, or apyrase. A monoclonal antibody directed against glycoprotein Ib (GPIb) and/or a monoclonal antibody against the glycoprotein IIb/IIIa (GPIIb/IIIa) complex totally inhibits the SPA. The vWf was isolated from the plasma of one of these patients. The purified vWf induced platelet aggregation of normal platelets resuspended in either normal or severe vWd plasma, but the vWf did not induce platelet aggregation of normal platelets resuspended in afibrinognemic plasma. Sialic acid and galactose quantification of the patient's vWf revealed approximately a 50% reduction compared with normal vWf. These studies indicate that a form of vWd exists, which is characterized by SPA that is induced by the abnormal plasma vWf. The SPA is dependent on the presence of plasma fibrinogen, and the availability of the GPIb and the GPIIb/IIIa complex. In this variant form of vWd the abnormal vWf causes enhanced RIPA, SPA, and thrombocytopenia. Images PMID:2932469

  11. Structure-Antiplatelet Activity Relationships of Novel Ruthenium (II) Complexes: Investigation of Its Molecular Targets.

    PubMed

    Hsia, Chih-Hsuan; Jayakumar, Thanasekaran; Sheu, Joen-Rong; Tsao, Shin-Yi; Velusamy, Marappan; Hsia, Chih-Wei; Chou, Duen-Suey; Chang, Chao-Chien; Chung, Chi-Li; Khamrang, Themmila; Lin, Kao-Chang

    2018-02-22

    The regulation of platelet function by pharmacological agents that modulate platelet signaling has proven to be a positive approach to the prevention of thrombosis. Ruthenium complexes are fascinating for the development of new drugs, as they possess numerous chemical and biological properties. The present study aims to evaluate the structure-activity relationship (SAR) of newly synthesized ruthenium (II) complexes, TQ-1, TQ-2 and TQ-3 in agonists-induced washed human platelets. Silica gel column chromatography, aggregometry, immunoblotting, NMR, and X-ray analyses were performed in this study. Of the three tested compounds, TQ-3 showed a concentration (1-5 μM) dependent inhibitory effect on platelet aggregation induced by collagen (1 μg/mL) and thrombin (0.01 U/mL) in washed human platelets; however, TQ-1 and TQ-2 had no response even at 250 μM of collagen and thrombin-induced aggregation. TQ-3 was effective with inhibiting collagen-induced ATP release, calcium mobilization ([Ca 2+ ]i) and P-selectin expression without cytotoxicity. Moreover, TQ-3 significantly abolished collagen-induced Lyn-Fyn-Syk, Akt-JNK and p38 mitogen-activated protein kinases (p38 MAPKs) phosphorylation. The compound TQ-3 containing an electron donating amino group with two phenyl groups of the quinoline core could be accounted for by its hydrophobicity and this nature might be the reason for the noted antiplatelet effects of TQ-3. The present results provide a molecular basis for the inhibition by TQ-3 in collagen-induced platelet aggregation, through the suppression of multiple machineries of the signaling pathway. These results may suggest that TQ-3 can be considered a potential agent for the treatment of vascular diseases.

  12. Dual Therapy with Aspirin and Cilostazol May Improve Platelet Aggregation in Noncardioembolic Stroke Patients: A Pilot Study.

    PubMed

    Ohnuki, Yoichi; Ohnuki, Yuko; Kohara, Saori; Shimizu, Mie; Takizawa, Shunya

    2017-01-01

    Objective Some previous studies have found clinical benefit of dual antiplatelet therapy with aspirin and cilostazol for prevention of secondary stroke, but the physiological mechanism involved remains unknown. We aimed to clarify the effects of aspirin/cilostazol therapy on the platelet and endothelial functions of patients with acute noncardioembolic ischemic stroke, in comparison to patients who were treated with aspirin alone. Methods The present randomized prospective pilot study enrolled 24 patients within a week after the onset of noncardioembolic ischemic stroke. The patients were randomly allocated to receive aspirin (100 mg/day) (A group; 11 patients) or cilostazol (200 mg/day) plus aspirin (100 mg/day) (CA group; 13 patients). We measured platelet aggregation, platelet activation, and the thrombomodulin (TM), highly sensitive C-reactive protein (hs-CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and von Willebrand (vWF) antigen levels and vWF activity over a 4-week period after enrollment. Results There was no significant difference in the platelet functions of the A and CA groups. However, the platelet aggregation induced by adenosine diphosphate (ADP) was decreased at 2 and 4 weeks (p<0.05) after treatment in comparison to the pre-treatment values in the CA group, but not in the A group. Platelet activation, and the hs-CRP, TM, ICAM-1, VCAM-1 and vWF values did not significantly decrease after treatment in either group. Conclusion Although there were no significant differences in platelet aggregation, platelet activation or the endothelial biomarker levels of the A and CA groups, dual therapy with aspirin and cilostazol inhibited platelet aggregation in comparison to the pre-treatment values, similarly to patients who received aspirin alone. This may suggest the clinical usefulness of dual therapy with aspirin and cilostazol in the treatment of patients with noncardioembolic ischemic stroke.

  13. Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets

    PubMed Central

    2014-01-01

    Background Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. Results The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, 2 and 9 and the pro-inflammatory mediators SDF-1, VEGF and sCD40L, from platelets and to subsequently pharmacologically address the release mechanism (s). S.sanguinis stimulated the release of MMP-1, SDF-1, VEGF and sCD40L from platelets and inhibitors of cyclooxygenase and phosphatidylinositol 3-kinase, and antagonists of the αIIbβ3 integrin and glycoprotein Ib, each inhibited the secretion of all factors. Conclusions Therefore the release of MMP-1, SDF-1, VEGF and sCD40L occurs late in the platelet response to S.sanguinis and highlights the complex intracellular signalling pathways stimulated in response to S.sanguinis which lead to haemostasis, MMP and pro-inflammatory mediator secretion. PMID:24755160

  14. Mechanism of platelet activation induced by endocannabinoids in blood and plasma.

    PubMed

    Brantl, S Annette; Khandoga, Anna L; Siess, Wolfgang

    2014-01-01

    Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that pharmacological CB1- and CB2-receptor ligands will not affect platelets and platelet-dependent progression and complications of cardiovascular diseases.

  15. The H(2)-receptor antagonist ranitidine interferes with clopidogrel-mediated P2Y(12) inhibition in platelets.

    PubMed

    Schäfer, Andreas; Flierl, Ulrike; Pförtsch, Stephanie; Seydelmann, Nora; Micka, Jan; Bauersachs, Johann

    2010-10-01

    Use of proton-pump inhibitors (PPIs) is common in patients on dual antiplatelet therapy (DAT). Recent warnings about potential interactions of PPIs with clopidogrel metabolism leading to impaired DAT efficacy has prompted the recommendation of substituting PPIs with H(2)-receptor antagonists such as ranitidine. We investigated whether ranitidine interacts with P2Y(12) inhibition on the platelet level. Blood was collected from 15 patients with stable coronary artery disease, who had undergone elective coronary intervention. Clopidogrel responsiveness was assessed 24h after the administration of a 600mg loading dose using the P2Y(12) specific platelet-reactivity-index (PRI) and light-transmittance aggregometry in the presence and absence of a pharmacologically relevant concentration of the H(2)-receptor antagonist ranitidine (400ng/ml). Adding ranitidine enhanced P2Y(12)-mediated platelet reactivity to ADP assessed by the PRI (mean PRI+/-SEM: before ranitidine 28+/-5%; after ranitidine 37+/-5%, p=0.0025). Similarly, prostaglandin E1 (PGE(1))-mediated inhibition of ADP-induced aggregation was abrogated in the presence of ranitidine (Agg(max)+/-SEM: before PGE(1) 41+/-2%; after PGE(1) 29+/-2%, p<0.01 vs. before PGE(1); after PGE(1)+ranitidine 42+/-2%, p<0.01 vs. after PGE(1)). Exposition of platelets with ranitidine significantly enhanced their responsiveness to ADP and contributed to impaired P2Y(12) inhibition suggesting that ranitidine interacts with clopidogrel efficacy through adenylyl cyclase inhibition on the platelet level. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    PubMed

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-05

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Modulation of the cationic amino acid transport system y+L by surface potential, ouabain and thrombin in human platelets: effects of uremia.

    PubMed

    Alves de Sá Siqueira, Mariana; Martins, Marcela Anjos; Rodrigues Pereira, Natália; Bandeira Moss, Monique; Santos, Sérgio F F; Mann, Giovanni E; Mendes-Ribeiro, Antônio C; Brunini, Tatiana M C

    2007-01-01

    Nitric oxide (NO), a key endogenous mediator involved in the maintenance of platelet function, is synthesized from the amino acid L-arginine. We have shown that L-arginine transport in platelets is rate-limiting for NO synthesis. A disturbance in the L-arginine-NO pathway in platelets was previously described in chronic renal failure (CRF) patients. Detailed kinetic studies were performed in platelets from controls (n = 60) and hemodialysis patients (n = 26). The transport of L-arginine in platelets is mediated via system y+L, which is competitively inhibited by L-leucine in the presence of Na+ and by the irreversible inhibitor pCMB. In platelets, system y+L is markedly stimulated by an Na+/K+-ATPase inhibitor, ouabain, and by changes in surface potential, while it is downregulated by intraplatelet amino acid depletion (zero-trans) and by thrombin. In CRF patients, activation of L-arginine transport was limited to well-nourished patients compared to malnourished patients and controls, where it was reduced and did not differ significantly among the groups under zero-trans conditions. Our results provide the first evidence that system y+L in platelets is modulated by zero-trans conditions, surface potential, thrombin and intraplatelet Na+ concentration. Our findings suggest that enhanced transport in CRF involves increased L-arginine exchange with intraplatelet neutral amino acids.

  18. Homozygosity for aquaporin 7 G264V in three unrelated children with hyperglyceroluria and a mild platelet secretion defect.

    PubMed

    Goubau, Christophe; Jaeken, Jaak; Levtchenko, Elena N; Thys, Chantal; Di Michele, Michela; Martens, Geert A; Gerlo, Erik; De Vos, Rita; Buyse, Gunnar M; Goemans, Nathalie; Van Geet, Chris; Freson, Kathleen

    2013-01-01

    Aquaporin 7 (AQP7) belongs to the aquaglyceroporin family, which transports glycerol and water. AQP7-deficient mice develop obesity, insulin resistance, and hyperglyceroluria. However, AQP7's pathophysiologic role in humans is not yet known. Three children with psychomotor retardation and hyperglyceroluria were screened for AQP7 mutations. The children were from unrelated families. Urine and plasma glycerol levels were measured using a three-step enzymatic approach. Platelet morphology and function were studied using electron microscopy, aggregations, and adenosine triphosphate (ATP) secretion tests. The index patients were homozygous for AQP7 G264V, which has previously been shown to inhibit transport of glycerol in Xenopus oocytes. We also detected a subclinical platelet secretion defect with reduced ATP secretion, and the absence of a secondary aggregation wave after epinephrine stimulation. Electron microscopy revealed round platelets with centrally located granules. Immunostaining showed AQP7 colocalization, with dense granules that seemed to be released after strong platelet activation. Healthy relatives of these patients, who were homozygous (not heterozygous) for G264V, also had hyperglyceroluria and platelet granule abnormalities. The discovery of an association between urine glycerol loss and a platelet secretion defect is a novel one, and our findings imply the involvement of AQPs in platelet secretion. Additional studies are needed to define whether AQP7 G264V is also a risk factor for mental disability.

  19. Rho Associated Coiled-Coil Kinase-1 Regulates Collagen-Induced Phosphatidylserine Exposure in Platelets

    PubMed Central

    Dasgupta, Swapan K.; Le, Anhquyen; Haudek, Sandra B.; Entman, Mark L.; Rumbaut, Rolando E.; Thiagarajan, Perumal

    2013-01-01

    Background The transbilayer movement of phosphatidylserine mediates the platelet procoagulant activity during collagen stimulation. The Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 inhibits senescence induced but not activation induced phosphatidylserine exposure. To investigate further the specific mechanisms, we now utilized mice with genetic deletion of the ROCK1 isoform. Methods and Results ROCK1-deficient mouse platelets expose significantly more phosphatidylserine and generate more thrombin upon activation with collagen compared to wild-type platelets. There were no significant defects in platelet shape change, aggregation, or calcium response compared to wild-type platelets. Collagen-stimulated ROCK1-deficient platelets also displayed decreased phosphorylation levels of Lim Kinase-1 and cofilin-1. However, there was no reduction in phosphorylation levels of myosin phosphatase subunit-1 (MYPT1) or myosin light chain (MLC). In an in vivo light/dye-induced endothelial injury/thrombosis model, ROCK1-deficient mice presented a shorter occlusion time in cremasteric venules when compared to wild-type littermates (3.16 ± 1.33 min versus 6.6 ± 2.6 min; p = 0.01). Conclusions These studies define ROCK1 as a new regulator for collagen-induced phosphatidylserine exposure in platelets with functional consequences on thrombosis. This effect was downstream of calcium signaling and was mediated by Lim Kinase-1 / cofilin-1-induced cytoskeletal changes. PMID:24358370

  20. Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture.

    PubMed

    Yoshida, Ryu; Cheng, Mingyu; Murray, Martha M

    2014-02-01

    Tissue engineering is one new strategy being developed to treat ACL ruptures. One such approach is bio-enhanced ACL repair, where a suture repair is supplemented with a bio-active scaffold containing platelets. However, the optimal concentration of platelets to stimulate ACL healing is not known. We hypothesized that increasing platelet concentrations in the scaffold would enhance critical cell behaviors. Porcine ACL fibroblasts were obtained from explant culture and suspended in platelet poor plasma (PPP), 1× platelet-rich plasma (PRP), 3× PRP, 5× PRP, or phosphate buffered saline (PBS). The cell suspensions were cultured in a 3D collagen scaffold. Cellular metabolism (MTT assay), apoptosis (TUNEL assay), and gene expression for type I and type III collagen were measured. 1× PRP significantly outperformed 5× PRP in all parameters studied: Type I and III collagen gene expression, apoptosis prevention, and cell metabolism stimulation. ACL fibroblasts cultured with 1× PRP had the highest type I and type III collagen gene expression. 1× PRP and PPP groups had the highest cell metabolism and lowest apoptosis rates. Concentration of platelets had significant effects on the behavior of ACL fibroblasts; thus, it is an important parameter that should be specified in clinical or basic science studies. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Greater Collagen‐Induced Platelet Aggregation Following Cyclooxygenase 1 Inhibition Predicts Incident Acute Coronary Syndromes

    PubMed Central

    Becker, Diane M.; Yanek, Lisa R.; Faraday, Nauder; Vaidya, Dhananjay; Mathias, Rasika; Kral, Brian G.; Becker, Lewis C.

    2014-01-01

    Abstract Greater ex vivo platelet aggregation to agonists may identify individuals at risk of acute coronary syndromes (ACS). However, increased aggregation to a specific agonist may be masked by inherent variability in other activation pathways. In this study, we inhibited the cyclooxygenase‐1 (COX1) pathway with 2‐week aspirin therapy and measured residual aggregation to collagen and ADP to determine whether increased aggregation in a non‐COX1 pathway is associated with incident ACS. We assessed ex vivo whole blood platelet aggregation in 1,699 healthy individuals with a family history of early‐onset coronary artery disease followed for 6±1.2 years. Incident ACS events were observed in 22 subjects. Baseline aggregation was not associated with ACS. After COX1 pathway inhibition, collagen‐induced aggregation was significantly greater in participants with ACS compared with those without (29.0 vs. 23.6 ohms, p < 0.001). In Cox proportional hazards models, this association remained significant after adjusting for traditional cardiovascular risk factors (HR = 1.10, 95%CI = 1.06–1.15; p < 0.001). In contrast, ADP‐induced aggregation after COX1 inhibition was not associated with ACS. After COX1 pathway inhibition, subjects with greater collagen‐induced platelet aggregation demonstrated a significant excess risk of incident ACS. These data suggest that platelet activation related to collagen may play an important role in the risk of ACS. PMID:25066685

  2. Recombinant P-selectin glycoprotein-ligand-1 delays thrombin-induced platelet aggregation: a new role for P-selectin in early aggregation

    PubMed Central

    Théorêt, Jean-François; Chahrour, Wissam; Yacoub, Daniel; Merhi, Yahye

    2006-01-01

    P-selectin is involved, with P-selectin glycoprotein (GP)-ligand-1 (PSGL-1), in platelet/leukocyte interactions during thrombo-inflammatory reactions; it also stabilizes platelet aggregates. Its antagonism accelerates thrombolysis and enhances the anti-aggregatory effects of GPIIb–IIIa inhibitors. This study was designed to investigate the mechanisms of P-selectin-mediated platelet aggregation. In freshly isolated human platelets, P-selectin translocation after thrombin stimulation increased rapidly to 48, 72, and 86% positive platelets after 60, 120, and 300 s, respectively. Platelet aggregation at 60 s post-stimulation averaged 46.7±1.9% and its extent followed closely the kinetics of P-selectin translocation. Pre-treatment of platelets with P-selectin antagonists, a recombinant PSGL-1 (rPSGL-Ig) or a blocking monoclonal antibody, significantly delayed platelet aggregation in a dose-dependent manner. At 100 μg ml−1 of rPSGL-Ig, platelet aggregation was completely inhibited up to 60 s post-stimulation and increased thereafter to reach maximal aggregation at 5 min. The second phase of platelet aggregation, in the presence of rPSGL-Ig, was completely prevented by the addition of a GPIIb–IIIa antagonist (Reopro) at 60 s, whereas its addition in the absence of rPSGL-Ig was without any significant effect. Combination of rPSGL-Ig with Reopro or with an inhibitor of Pi3K (LY294002), which reduces GPIIb–IIIa activation, showed to be more effective in inhibiting platelet aggregation, in comparison to the effects observed individually. rPSGL-Ig blocks P-selectin, whereas Reopro and LY294002 block GPIIb–IIIa and its activation, respectively, without a major effect on the percentage of platelets expressing P-selectin. In summary, platelet P-selectin participates with GPIIb–IIIa in the initiation of platelet aggregation. Its inhibition, with rPSGL-Ig, delays the aggregation process and increases the anti-aggregatory potency of Reopro. Thus, combination of P-selectin and GPIIb–IIIa antagonism may constitute a promising therapeutic option in the management of thrombotic disorders. PMID:16633357

  3. Recombinant P-selectin glycoprotein-ligand-1 delays thrombin-induced platelet aggregation: a new role for P-selectin in early aggregation.

    PubMed

    Théorêt, Jean-François; Chahrour, Wissam; Yacoub, Daniel; Merhi, Yahye

    2006-06-01

    1. P-selectin is involved, with P-selectin glycoprotein (GP)-ligand-1 (PSGL-1), in platelet/leukocyte interactions during thrombo-inflammatory reactions; it also stabilizes platelet aggregates. Its antagonism accelerates thrombolysis and enhances the anti-aggregatory effects of GPIIb-IIIa inhibitors. This study was designed to investigate the mechanisms of P-selectin-mediated platelet aggregation. 2. In freshly isolated human platelets, P-selectin translocation after thrombin stimulation increased rapidly to 48, 72, and 86% positive platelets after 60, 120, and 300 s, respectively. Platelet aggregation at 60 s post-stimulation averaged 46.7 +/- 1.9% and its extent followed closely the kinetics of P-selectin translocation. 3. Pre-treatment of platelets with P-selectin antagonists, a recombinant PSGL-1 (rPSGL-Ig) or a blocking monoclonal antibody, significantly delayed platelet aggregation in a dose-dependent manner. At 100 microg ml(-1) of rPSGL-Ig, platelet aggregation was completely inhibited up to 60 s post-stimulation and increased thereafter to reach maximal aggregation at 5 min. The second phase of platelet aggregation, in the presence of rPSGL-Ig, was completely prevented by the addition of a GPIIb-IIIa antagonist (Reopro) at 60 s, whereas its addition in the absence of rPSGL-Ig was without any significant effect. 4. Combination of rPSGL-Ig with Reopro or with an inhibitor of Pi3K (LY294002), which reduces GPIIb-IIIa activation, showed to be more effective in inhibiting platelet aggregation, in comparison to the effects observed individually. 5. rPSGL-Ig blocks P-selectin, whereas Reopro and LY294002 block GPIIb-IIIa and its activation, respectively, without a major effect on the percentage of platelets expressing P-selectin. 6. In summary, platelet P-selectin participates with GPIIb-IIIa in the initiation of platelet aggregation. Its inhibition, with rPSGL-Ig, delays the aggregation process and increases the anti-aggregatory potency of Reopro. Thus, combination of P-selectin and GPIIb-IIIa antagonism may constitute a promising therapeutic option in the management of thrombotic disorders.

  4. Effects of escalating doses of tirofiban on platelet aggregation and major receptor expression in diabetic patients: hitting the TARGET in the TENACITY trial?

    PubMed

    Serebruany, Victor; Malinin, Alex; Pokov, Alex; Arora, Umesh; Atar, Dan; Angiolillo, Dominick

    2007-01-01

    Ongoing search for the optimal dosing regimens, and valid concerns that some GPIIb/IIIa inhibitors may cause rebound platelet activation are limiting the use of these agents in patients with acute vascular events. We assessed the in vitro effects of preincubation with escalating (12.5-200 ng/mL) concentrations of tirofiban on platelet biomarkers in 20 diabetic patients. Platelet activity was assessed by ADP-, and collagen-induced conventional plasma aggregometry, and by whole blood flow cytometry measuring expression of PECAM-1, GPIb, GP IIb/IIIa antigen and activity, vitronectin, P-selectin, LAMP-1, GP 37, LAMP-3, activated and intact PAR-1 thrombin receptors, GPIV, and platelet-monocyte formation. All patients were treated with aspirin (at least 81 mg daily for 1 month); other antiplatelet agents were not allowed. Significant decrease of ADP-induced platelet aggregation was observed starting at the low 12.5 ng/mL concentration (p=0.0001), with total inhibition occurring at 50 ng/mL of tirofiban dose. Inhibition of collagen-induced platelet aggregability requires 25 ng/ml of tirofiban (p=0.002), and was complete at 100 ng/mL. Dose-dependent blockade of GP IIb/IIIa activity was observed with tirofiban concentrations over 50 ng/mL (p=0.003). Other receptors were unaffected even with the high doses of tirofiban (100-200 ng/mL). Tirofiban completely inhibits ADP- and, with the higher dose, collagen-induced platelet aggregation. Higher loading dose of tirofiban used in the ongoing TENACITY trial (100 ng/mL) may be superior with regard to clinical outcomes to the regimens used in PRISM-PLUS (25 ng/mL), or TARGET (50 ng/mL). Selective inhibition of GPIIb/IIIa activity, and lack of alternative platelet activation beyond the GP IIb/IIIa blockade may represent the therapeutic advantage of tirofiban over other agents.

  5. An investigation of the antiplatelet effects of succinobucol (AGI-1067).

    PubMed

    Houston, Stephanie A; Ugusman, Azizah; Gnanadesikan, Sukanya; Kennedy, Simon

    2017-05-01

    Succinobucol is a phenolic antioxidant with anti-inflammatory and antiplatelet effects. Given the importance of oxidant stress in modulating platelet-platelet and platelet-vessel wall interactions, the aim of this study was to establish if antioxidant activity was responsible for the antiplatelet activity of succinobucol. Platelet aggregation in response to collagen and adenosine diphosphate (ADP) was studied in rabbit whole blood and platelet-rich plasma using impedance aggregometry. The effect of oxidant stress on aggregation, platelet lipid peroxides, and vascular tone was studied by incubating platelets, washed platelets or preconstricted rabbit iliac artery rings respectively with a combination of xanthine and xanthine oxidase (X/XO). To study the effect of succinobucol in vivo, anaesthetized rats were injected with up to 150 mg/kg succinobucol and aggregation measured in blood removed 15 mins later. Succinobucol (10 -5 -10 -4 M) significantly attenuated platelet aggregation to collagen and ADP in whole blood and platelet-rich plasma. X/XO significantly increased aggregation to collagen and platelet lipid peroxides and this was reversed by succinobucol. Addition of X/XO to denuded rabbit iliac arteries caused a dose-dependent relaxation which was significantly inhibited by succinobucol. In vivo administration up to 150 mg/kg had no effect on heart rate or mean arterial blood pressure but significantly inhibited platelet aggregation to collagen ex vivo. In conclusion, succinobucol displays anti-platelet activity in rabbit and rat blood and reverses the increase in platelet aggregation in response to oxidant stress.

  6. In vitro effects of 3% hypertonic saline and 20% mannitol on canine whole blood coagulation and platelet function.

    PubMed

    Adamik, Katja-Nicole; Butty, Emmanuelle; Howard, Judith

    2015-09-24

    Hyperosmolar therapy, using either mannitol or hypertonic saline (HTS), is considered the treatment of choice for intracranial hypertension. However, hyperosmolar agents may impair coagulation and platelet function, limiting their use in patients at risk for hemorrhage. Despite this, studies evaluating the effects of mannitol compared to other hyperosmolar agents in dogs are largely lacking. The aim of this study was to compare the in vitro effects on global hemostasis and platelet function of 20% mannitol and 3% HTS on canine blood. Citrated whole blood from 15 healthy dogs was diluted with 0.9% saline, 20% mannitol and 3% HTS in ratios of 1:16 and 1:8. Rotational thromboelastometry (ROTEM) was used to assess clotting time (CT), clot formation time (CFT) and maximal clot firmness (MCF) following extrinsic activation (Ex-tem) and after platelet inhibition (Fib-tem). A platelet function analyzer (PFA-100) was used to assess closure time (Ct(PFA)). No significant differences were observed between untreated whole blood and samples diluted with saline. Samples diluted with both mannitol and HTS were hypocoagulable compared to untreated whole blood samples. At a dilution of 1:16, no significant differences were found between any measured parameter in samples diluted with saline compared to mannitol or HTS. At a 1:8 dilution, Ct(PFA) was prolonged in samples diluted with mannitol and HTS compared to saline, and Ct(PFA) was prolonged more with mannitol than HTS. Ex-tem CT was increased at a 1:8 dilution with mannitol compared to HTS. Ex-tem CFT was prolonged at a 1:8 dilution with both agents compared to saline, and was prolonged more with mannitol than HTS. Ex-tem MCF was reduced at a 1:8 dilution with both agents compared to saline. Data in this study indicate that both mannitol and HTS affect canine platelet function and whole blood coagulation in vitro in a dose-dependent fashion. The most pronounced effects were observed after high dilutions with mannitol, which impaired platelet aggregation, clot formation time, clot strength, and fibrin formation significantly more than HTS. Further in vivo studies are necessary before recommendations can be made.

  7. Dabigatran and rivaroxaban do not affect AA- and ADP-induced platelet aggregation in patients receiving concomitant platelet inhibitors.

    PubMed

    Olivier, Christoph B; Weik, Patrick; Meyer, Melanie; Weber, Susanne; Diehl, Philipp; Bode, Christoph; Moser, Martin; Zhou, Qian

    2016-08-01

    Dabigatran and rivaroxaban are novel, vitamin K-independent oral anticoagulants (NOACs) and act via antagonism of the coagulation factor (F) IIa (dabigatran) or FXa (rivaroxaban), respectively. Compared to vitamin-K-antagonists, NOACs have shown non-inferiority of risk and benefit in patients with non valvular atrial fibrillation (AF). In clinical practice there is increasing use of NOACs combined with platelet inhibitors in patients with AF and coronary artery disease. However, whether NOACs affect the function of platelet inhibitors remains incompletely known. This observational study aimed to assess the platelet function in patients receiving dabigatran or rivaroxaban and concomitant platelet inhibitors. A single centre observational study was performed analysing the platelet aggregation of patients treated with dabigatran or rivaroxaban with or without concomitant platelet inhibitors. Measurements before the initiation of NOAC therapy served as the respective control group. Platelet aggregation was measured by multiple electrode aggregometry and was induced with adenosine diphosphate (ADP, 6.5 µM) and arachidonic acid (AA, 0.5 mM), respectively. In order to evaluate whether NOACs interact with platelet inhibition by ASA or the P2Y12-antagonist clopidogrel, 87 patients were grouped according to their concomitant antiplatelet medication. Comparing the ADP- and AA-induced platelet aggregation in patients without concomitant platelet inhibitors (n = 45) no significant differences under therapy with dabigatran (d) or rivaroxaban (r) compared to the control group (c) were observed. In patients taking clopidogrel as a concomitant platelet inhibitor (n = 21), neither dabigatran nor rivaroxaban affected the ADP-induced platelet aggregation (c 20 ± 11, d 21 ± 14, r 18 ± 8 AU*min, p = 0.200). Patients receiving dabigatran or rivaroxaban in combination with ASA (n = 42; 21 ASA only, 21 ASA + clopidogrel) showed no significant differences of the AA-induced aggregation compared to the control group (c 10 ± 8, d 9 ± 7, r 10 ± 8 AU*min, p = 0.810). The antiplatelet effects of ASA and clopidogrel monitored by AA- or ADP-induced platelet aggregation were not affected by NOAC therapy.

  8. Refrigeration-Induced Binding of von Willebrand Factor Facilitates Fast Clearance of Refrigerated Platelets.

    PubMed

    Chen, Wenchun; Druzak, Samuel A; Wang, Yingchun; Josephson, Cassandra D; Hoffmeister, Karin M; Ware, Jerry; Li, Renhao

    2017-12-01

    Apheresis platelets for transfusion treatment are currently stored at room temperature because after refrigeration platelets are rapidly cleared on transfusion. In this study, the role of von Willebrand factor (VWF) in the clearance of refrigerated platelets is addressed. Human and murine platelets were refrigerated in gas-permeable bags at 4°C for 24 hours. VWF binding, platelet signaling events, and platelet post-transfusion recovery and survival were measured. After refrigeration, the binding of plasma VWF to platelets was drastically increased, confirming earlier studies. The binding was blocked by peptide OS1 that bound specifically to platelet glycoprotein (GP)Ibα and was absent in VWF - / - plasma. Although surface expression of GPIbα was reduced after refrigeration, refrigeration-induced VWF binding under physiological shear induced unfolding of the GPIbα mechanosensory domain on the platelet, as evidenced by increased exposure of a linear epitope therein. Refrigeration and shear treatment also induced small elevation of intracellular Ca 2+ , phosphatidylserine exposure, and desialylation of platelets, which were absent in VWF -/- platelets or inhibited by OS1, which is a monomeric 11-residue peptide (CTERMALHNLC). Furthermore, refrigerated VWF -/- platelets displayed increased post-transfusion recovery and survival than wild-type ones. Similarly, adding OS1 to transgenic murine platelets expressing only human GPIbα during refrigeration improved their post-transfusion recovery and survival. Refrigeration-induced binding of VWF to platelets facilitates their rapid clearance by inducing GPIbα-mediated signaling. Our results suggest that inhibition of the VWF-GPIbα interaction may be a potential strategy to enable refrigeration of platelets for transfusion treatment. © 2017 American Heart Association, Inc.

  9. Direct factor IXa inhibition with the RNA-aptamer pegnivacogin reduces platelet reactivity in vitro and residual platelet aggregation in patients with acute coronary syndromes.

    PubMed

    Staudacher, Dawid L; Putz, Vera; Heger, Lukas; Reinöhl, Jochen; Hortmann, Marcus; Zelenkofske, Steven L; Becker, Richard C; Rusconi, Christopher P; Bode, Christoph; Ahrens, Ingo

    2017-04-01

    Residual platelet reactivity is a predictor of poor prognosis in patients with acute coronary syndromes (ACSs) undergoing percutaneous coronary intervention. Thrombin is a major platelet activator and upon initiation of the coagulation cascade, it is subsequently produced downstream of factor IXa, which itself is known to be increased in ACS. Pegnivacogin is a novel RNA-aptamer based factor IXa inhibitor featuring a reversal agent, anivamersen. We hypothesized that pegnivacogin could reduce platelet reactivity. Whole blood samples from healthy volunteers were incubated in vitro in the presence and absence of pegnivacogin and platelet reactivity was analysed. In addition, platelet aggregometry was performed in blood samples from ACS patients in the RADAR trial featuring the intravenous administration of pegnivacogin as well as reversal by anivamersen. In vitro, pegnivacogin significantly reduced adenosine diphosphate-induced CD62P-expression (100% vs. 89.79±4.04%, p=0.027, n=9) and PAC-1 binding (100% vs. 83.02±4.08%, p=0.010, n=11). Platelet aggregation was reduced (97.71±5.30% vs. 66.53±9.92%, p=0.013, n=10) as evaluated by light transmission aggregometry. In the presence of the RNA-aptamer reversal agent anivamersen, neither CD62P-expression nor platelet aggregation was attenuated. In patients with ACS treated with aspirin and clopidogrel, residual platelet aggregation was significantly reduced 20 min after intravenous bolus of 1 mg/kg pegnivacogin (100% versus 43.21±8.23%, p=0.020). Inhibition of factor IXa by pegnivacogin decreases platelet activation and aggregation in vitro. This effect was negated by anivamersen. In ACS patients, platelet aggregation was significantly reduced after intravenous pegnivacogin. An aptamer-based anticoagulant inhibiting factor IXa therefore might be a promising antithrombotic strategy in ACS patients.

  10. Inhibitory Effect of Flavonolignans on the P2Y12 Pathway in Blood Platelets.

    PubMed

    Bijak, Michal; Szelenberger, Rafal; Dziedzic, Angela; Saluk-Bijak, Joanna

    2018-02-10

    Adenosine diphosphate (ADP) is the major platelet agonist, which is important in the shape changes, stability, and growth of the thrombus. Platelet activation by ADP is associated with the G protein-coupled receptors P2Y1 and P2Y12. The pharmacologic blockade of the P2Y12 receptor significantly reduces the risk of peripheral artery disease, myocardial infarction, ischemic stroke, and vascular death. Recent studies demonstrated the inhibition of ADP-induced blood platelet activation by three major compounds of the flavonolignans group: silybin, silychristin, and silydianin. For this reason, the aim of the current work was to verify the effects of silybin, silychristin, and silydianin on ADP-induced physiological platelets responses, as well as mechanisms of P2Y12-dependent intracellular signal transduction. We evaluated the effect of tested flavonolignans on ADP-induced blood platelets' aggregation in platelet-rich plasma (PRP) (using light transmission aggregometry), adhesion to fibrinogen (using the static method), and the secretion of PF-4 (using the ELISA method). Additionally, using the double labeled flow cytometry method, we estimated platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation. We demonstrated a dose-dependent reduction of blood platelets' ability to perform ADP-induced aggregation, adhere to fibrinogen, and secrete PF-4 in samples treated with flavonolignans. Additionally, we observed that all of the tested flavonolignans were able to increase VASP phosphorylation in blood platelets samples, which is correlated with P2Y12 receptor inhibition. All of these analyses show that silychristin and silybin have the strongest inhibitory effect on blood platelet activation by ADP, while silydianin also inhibits the ADP pathway, but to a lesser extent. The results obtained in this study clearly demonstrate that silybin, silychristin, and silydianin have inhibitory properties against the P2Y12 receptor and block ADP-induced blood platelet activation.

  11. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism.

    PubMed

    Carnevale, Roberto; Bartimoccia, Simona; Nocella, Cristina; Di Santo, Serena; Loffredo, Lorenzo; Illuminati, Giulio; Lombardi, Elisabetta; Boz, Valentina; Del Ben, Maria; De Marco, Luigi; Pignatelli, Pasquale; Violi, Francesco

    2014-11-01

    Platelets generate oxidized LDL (ox-LDL) via NOX2-derived oxidative stress. We investigated if once generated by activated platelets ox-LDL can propagate platelet activation. Experiments were performed in platelets from healthy subjects (HS), hyper-cholesterolemic patients and patients with NOX2 hereditary deficiency. Agonist-stimulated platelets from HS added with LDL were associated with a dose-dependent increase of reactive oxidant species and ox-LDL. Agonist-stimulated platelets from HS added with a fixed dose of LDL (57.14 μmol/L) or added with homogenized human atherosclerotic plaque showed enhanced ox-LDL formation (approximately +50% and +30% respectively), which was lowered by a NOX2 inhibitor (approximately -35% and -25% respectively). Compared to HS, ox-LDL production was more pronounced in agonist-stimulated platelet rich plasma (PRP) from hyper-cholesterolemic patients but was almost absent in PRP from NOX2-deficient patients. Platelet aggregation and 8-iso-PGF2α-ΙΙΙ formation increased in LDL-treated washed platelets (+42% and +53% respectively) and PRP (+31% and +53% respectively). Also, LDL enhanced platelet-dependent thrombosis at arterial shear rate (+33%) but did not affect platelet activation in NOX2-deficient patients. Platelet activation by LDL was significantly inhibited by CD36 or LOX1 blocking peptides, two ox-LDL receptor antagonists, or by a NOX2 inhibitor. LDL-added platelets showed increased p38MAPK (+59%) and PKC (+51%) phosphorylation, p47(phox) translocation to platelet membrane (+34%) and NOX2 activation (+30%), which were inhibited by ox-LDL receptor antagonists. Platelets oxidize LDL, which in turn amplify platelet activation via specific ox-LDL receptors; both effects are mediated by NOX2 activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Measurement of adhesion of human platelets in plasma to protein surfaces in microplates.

    PubMed

    Eriksson, Andreas C; Whiss, Per A

    2005-01-01

    Platelet adhesion is an initial, crucial and complex event for inhibiting blood loss upon vascular injury. Activation and adhesion of platelets also play a fundamental role in the development of thrombosis. A combination of exposed extracellular matrix proteins in the vascular wall and release of activating compounds from the participating cells activate the platelets. New potent anti-platelet agents are in progress but there is a shortage of methods that measure the concerted action of adhesive surfaces and soluble compounds upon platelet adhesion in vitro. The aim of this work was to develop a method to measure adhesion of platelets in plasma with standard laboratory equipment. Platelet-rich plasma from healthy humans was used in studies to optimise the conditions of the present assay. Different proteins were coated in microplate wells and various soluble platelet activators and inhibitors were added to establish the ability of the current method to detect increased as well as decreased platelet adhesion. The amount of platelet adhesion was measured by the reaction between p-nitrophenyl phosphate and the intracellular enzyme acid phosphatase. Adhesion of platelets in plasma to microplate wells coated with albumin, collagen, fibrinogen and activated plasma showed significant surface dependency. The known soluble platelet activators adenosine diphosphate, adrenaline and ristocetin enhanced the levels of adhesion. Available anti-platelet agents such as prostacyclin, forskolin, acetylsalicylic acid and RGD containing peptides caused dose-dependent inhibition of platelet adhesion. This report describes a further development of a previously described method and offers the advantage to use platelets in plasma to measure platelet adhesion to protein surfaces. The assay is simple and flexible and is suitable in basic research for screening and characterisation of platelet adhesion responsiveness.

  13. Interaction of human platelets with laminin and identification of the 67 kDa laminin receptor on platelets.

    PubMed Central

    Tandon, N N; Holland, E A; Kralisz, U; Kleinman, H K; Robey, F A; Jamieson, G A

    1991-01-01

    A microtitre adhesion assay has been developed to define parameters affecting the adherence of washed platelets to laminin. Adherence was optimally supported by Mg2+ and was inhibited by Ca2+ and by anti-laminin Fab fragments, but significant adhesion (75-90% of control) was found both in heparinized plasma containing physiological levels of bivalent cations and in plasma anti-coagulated with EGTA. Adherence was unaffected by platelet activation with ADP but was decreased by 50% by treatment with alpha-thrombin (1 unit/ml, 5 min). Adherence was unaffected by monospecific polyclonal antibodies to glycoprotein (GP) Ib and GPIV, and was normal with platelets from two patients with Glanzmann's thrombasthaenia, indicating that GPIb, the GPIIb/IIIa complex and GPIV are not involved in platelet-laminin interaction. Affinity chromatography of Triton-solubilized membranes on laminin-Sepharose followed by elution with 0.2 M-glycine/HCl (pH 2.85) identified a major band with a molecular mass of 67 kDa in the reduced and of 53 kDa in the unreduced form. This protein gave a positive reaction on Western blotting with a monospecific polyclonal antibody raised against the high-affinity laminin receptor isolated from human breast carcinoma tissue. The adhesion of platelets to laminin was inhibited by two monoclonal IgM antibodies specific to the LR-1 domain of the 67 kDa receptor. The binding protein was surface-oriented, as shown by flow cytofluorimetry and by the fact that it could be iodinated in intact platelets, but it was not labelled by the periodate-borotritide procedure, suggesting that it did not contain terminal sialic acid. The laminin-derived peptides Tyr-Ile-Gly-Ser-Arg and Cys-Asp-Pro-Gly-Tyr-Ile-Gly-Ser-Arg-NH2, which constitute a complementary binding domain in laminin for the 67 kDa receptor, themselves supported platelet adhesion, bound to the receptor and inhibited the adhesion of platelets to laminin. In addition, Fab fragments of anti-Tyr-Ile-Gly-Ser-Arg antibody inhibited platelet adhesion to laminin. These results demonstrate that the high-affinity 67 kDa laminin receptor previously identified in a range of normal and transformed cells and its complementary Tyr-Ile-Gly-Ser-Arg binding domain play an important role in the interaction of platelets with laminin. Images Fig. 4. Fig. 8. PMID:1826081

  14. Insights into abnormal hemostasis in the Quebec platelet disorder from analyses of clot lysis.

    PubMed

    Diamandis, M; Adam, F; Kahr, W H A; Wang, P; Chorneyko, K A; Arsenault, A L; Rivard, G E; Hayward, C P M

    2006-05-01

    The Quebec platelet disorder (QPD) is inherited and characterized by delayed-onset bleeding following hemostatic challenge. Other characteristics include increased expression and storage of active urokinase-type plasminogen activator (u-PA) in platelets in the setting of normal to increased u-PA in plasma. There is also consumption of platelet plasminogen activator inhibitor-1 and increased generation of plasmin in platelets accompanied by proteolysis of stored alpha-granule proteins, including Factor V. Although fibrinolysis has been proposed to contribute to QPD bleeding, the effects of QPD blood and platelets on clot lysis have not been evaluated. We used thromboelastography (TEG), biochemical evaluations of whole blood clot lysis, assessments of clot ultrastructure, and perfusion of blood over preformed fibrin to gain insights into the disturbed hemostasis in the QPD. Thromboelastography was not sensitive to the increased u-PA in QPD blood. However, there was abnormal plasmin generation in QPD whole blood clots, generated at low shear, with biochemical evidence of increased fibrinolysis. The incorporation of QPD platelets into a forming clot led to progressive disruption of fibrin and platelet aggregates unless drugs were added to inhibit plasmin. In whole blood perfusion studies, QPD platelets showed normal adherence to fibrin, but their adhesion was followed by accelerated fibrinolysis. The QPD is associated with "gain-of-function" abnormalities that increase the lysis of forming or preformed clots. These findings suggest accelerated fibrinolysis is an important contributor to QPD bleeding.

  15. Antiplatelet Activity of Morus alba Leaves Extract, Mediated via Inhibiting Granule Secretion and Blocking the Phosphorylation of Extracellular-Signal-Regulated Kinase and Akt

    PubMed Central

    Rhee, Man Hee; Sung, Yoon-Young; Yang, Won-Kyung; Kim, Seung Hyung; Kim, Ho-Kyoung

    2014-01-01

    Ethnopharmacological Relevance. Morus alba L. leaves (MAE) have been used in fork medicine for the treatment of beriberi, edema, diabetes, hypertension, and atherosclerosis. However, underlying mechanism of MAE on cardiovascular protection remains to be elucidated. Therefore, we investigated whether MAE affect platelet aggregation and thrombosis. Materials and Methods. The anti-platelet activity of MAE was studied using rat platelets. The extent of anti-platelet activity of MAE was assayed in collagen-induced platelet aggregation. ATP and serotonin release was carried out. The activation of integrin α IIb β 3 and phosphorylation of signaling molecules, including MAPK and Akt, were investigated with cytofluorometer and immunoblotting, respectively. The thrombus formation in vivo was also evaluated in arteriovenous shunt model of rats. Results. HPLC chromatographic analysis revealed that MAE contained rutin and isoquercetin. MAE dose-dependently inhibited collagen-induced platelet aggregation. MAE also attenuated serotonin secretion and thromboxane A2 formation. In addition, the extract in vivo activity showed that MAE at 100, 200, and 400 mg/kg significantly and dose-dependently attenuated thrombus formation in rat arterio-venous shunt model by 52.3% (P < 0.001), 28.3% (P < 0.01), and 19.1% (P < 0.05), respectively. Conclusions. MAE inhibit platelet activation, TXB2 formation, serotonin secretion, aggregation, and thrombus formation. The plant extract could be considered as a candidate to anti-platelet and antithrombotic agent. PMID:24701244

  16. An inhibitor of collagen-stimulated platelet activation from the salivary glands of the Haementeria officinalis leech. I. Identification, isolation, and characterization.

    PubMed

    Connolly, T M; Jacobs, J W; Condra, C

    1992-04-05

    A protein that blocks collagen-stimulated platelet aggregation has been identified and isolated from the soluble fraction of salivary glands from Haementeria officinalis leeches. We have named this protein leech antiplatelet protein (LAPP). LAPP was isolated from soluble crude salivary gland extract by heparin-agarose, size exclusion, and C18 reverse phase high-performance chromatography. Its molecular weight is approximately 16,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reduced and nonreduced conditions. The sequences of peptides generated by V8 digestion of LAPP as well as its amino acid composition suggested no homology to other known proteins. The IC50 for LAPP to inhibit platelet aggregation was approximately 60 nM. This inhibitory activity is specific for collagen-induced aggregation. Platelet aggregation in response to ADP, arachidonic acid, U46619, thrombin, and ionophore A23187 was not inhibited by LAPP at a concentration that blocked platelet aggregation to collagen by 100%. In contrast, crude salivary gland-soluble extract contained activity(ies) which inhibited aggregation to all these agonists except thrombin at 1 unit/ml and 2 microM A23187. Thus, the H. officinalis leech has evolved multiple mechanisms to prevent hemostasis, including an inhibitor of collagen-stimulated platelet aggregation. The identification and isolation of LAPP demonstrates the existence of a new type of platelet inhibitor that should be useful to better understand the mechanism of collagen stimulation of platelets.

  17. Platelet aggregation but not activation and degranulation during the acute post-ischemic reperfusion phase in livers with no underlying disease

    PubMed Central

    van Golen, Rowan F.; Stevens, Katarzyna M.; Colarusso, Pina; Jaeschke, Hartmut; Heger, Michal

    2016-01-01

    Background Platelets and P-selectin (CD62P) play an unequivocal role in the pathology of hepatic ischemia/reperfusion (I/R) injury. Inhibition or knock-out of P-selectin or immunodepletion of platelets results in amelioration of post-ischemic inflammation, reduced hepatocellular damage, and improved survival. However, P-selectin expression on platelets and endothelial cells, which concurs with platelet activation, has never been clearly demonstrated in I/R-subjected livers. Aims To determine whether platelets become activated and degranulate in the acute phase of liver I/R and whether the platelets interact with neutrophils. Methods Hepatic I/R was induced in male C57BL/6J mice (N = 12) using 37.5-min ischemia time. Platelets, endothelial cells, and neutrophils were fluorescently labeled by systemic administration of non-blocking antibodies. Cell kinetics were monitored by intravital spinning disk confocal microscopy during 90 min of reperfusion. Image analysis and quantification was performed with dedicated software. Results Platelets adhered to sinusoids more extensively in post-ischemic livers compared to livers not subjected to I/R and formed aggregates, which occurred directly after ischemia. Platelets and endothelial cells did not express P-selectin in post-ischemic livers. There was no interaction between platelets and neutrophils. Conclusions Platelets aggregate but do not become activated and do not degranulate in post-ischemic livers. There is no platelet-neutrophil interplay during the early reperfusion phase in a moderate model of hepatic I/R injury. The mechanisms underlying the biological effects of platelets and P-selectin in this setting warrant further investigation. Relevance for patients I/R in surgical liver patients may compromise outcome due to post-ischemic oxidative stress and sterile inflammation. Both processes are mediated in part by platelets. Understanding platelet function during I/R is key to developing effective interventions for I/R injury and improving clinical outcomes. PMID:26925465

  18. Aspirin has little additional anti-platelet effect in healthy volunteers receiving prasugrel.

    PubMed

    Leadbeater, P D M; Kirkby, N S; Thomas, S; Dhanji, A-R; Tucker, A T; Milne, G L; Mitchell, J A; Warner, T D

    2011-10-01

    Strong P2Y(12) blockade, as can be achieved with novel anti-platelet agents such as prasugrel, has been shown in vitro to inhibit both ADP and thromboxane A(2) -mediated pathways of platelet aggregation, calling into question the need for the concomitant use of aspirin. The present study investigated the hypothesis that aspirin provides little additional anti-aggregatory effect in a group of healthy volunteers taking prasugrel. STUDY PARTICIPANTS/METHODS: In all, 9 males, aged 18 to 40 years, enrolled into the 21-day study. Prasugrel was loaded at 60 mg on day 1 and maintained at 10 mg until day 21. At day 8, aspirin 75 mg was introduced and the dose increased to 300 mg on day 15. On days 0, 7, 14 and 21, platelet function was assessed by aggregometry, response to treatments was determined by VerifyNow and urine samples were collected for quantification of prostanoid metabolites. At day 7, aggregation responses to a range of platelet agonists were reduced and there was only a small further inhibition of aggregation to TRAP-6, collagen and epinephrine at days 14 and 21, when aspirin was included with prasugrel. Urinary prostanoid metabolites were unaffected by prasugrel, and were reduced by the addition of aspirin, independent of dose. In healthy volunteers, prasugrel produces a strong anti-aggregatory effect, which is little enhanced by the addition of aspirin. The addition of aspirin as a dual-therapy with potent P2Y(12) receptor inhibitors warrants further investigation. © 2011 International Society on Thrombosis and Haemostasis.

  19. Ecto-5'-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis.

    PubMed

    Fan, Jingyuan; Zhang, Yongshu; Chuang-Smith, Olivia N; Frank, Kristi L; Guenther, Brian D; Kern, Marissa; Schlievert, Patrick M; Herzberg, Mark C

    2012-01-01

    Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5'-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P<0.05) to onset of platelet aggregation than the wild-type strain, without affecting platelet-bacterial adhesion in vitro (P=0.98). In the absence of nt5e, S. sanguinis caused IE (4 d) in a rabbit model with significantly decreased mass of vegetations (P<0.01) and recovered bacterial loads (log(10)CFU, P=0.01), suggesting that Nt5e contributes to the virulence of S. sanguinis in vivo. As a virulence factor, Nt5e may function by (i) hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. (ii) Nt5e-mediated inhibition of platelet aggregation could also delay presentation of platelet microbicidal proteins to infecting bacteria on heart valves. Both plausible Nt5e-dependent mechanisms would promote survival of infecting S. sanguinis. In conclusion, we now show for the first time that streptococcal Nt5e modulates S. sanguinis-induced platelet aggregation and may contribute to the virulence of streptococci in experimental IE.

  20. Ecto-5′-Nucleotidase: A Candidate Virulence Factor in Streptococcus sanguinis Experimental Endocarditis

    PubMed Central

    Fan, Jingyuan; Zhang, Yongshu; Chuang-Smith, Olivia N.; Frank, Kristi L.; Guenther, Brian D.; Kern, Marissa; Schlievert, Patrick M.; Herzberg, Mark C.

    2012-01-01

    Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5′-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P<0.05) to onset of platelet aggregation than the wild-type strain, without affecting platelet-bacterial adhesion in vitro (P = 0.98). In the absence of nt5e, S. sanguinis caused IE (4 d) in a rabbit model with significantly decreased mass of vegetations (P<0.01) and recovered bacterial loads (log10CFU, P = 0.01), suggesting that Nt5e contributes to the virulence of S. sanguinis in vivo. As a virulence factor, Nt5e may function by (i) hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. (ii) Nt5e-mediated inhibition of platelet aggregation could also delay presentation of platelet microbicidal proteins to infecting bacteria on heart valves. Both plausible Nt5e-dependent mechanisms would promote survival of infecting S. sanguinis. In conclusion, we now show for the first time that streptococcal Nt5e modulates S. sanguinis-induced platelet aggregation and may contribute to the virulence of streptococci in experimental IE. PMID:22685551

  1. Physiopathology of blood platelets and development of platelets substitutes. Progress report, August 1, 1976--October 31, 1977. [/sup 51/Cr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, M G

    1977-07-31

    Progress is reported on the following research projects: the effect of estrogen on platelet aggregability and thrombus formation; the antithrombotic effect of platelet inhibiting agents in a bench model of artificial kidney; the arrest of hemorrhage in severely alloimmunized thrombocytopenic patients; and in vivo elution of /sup 51/Cr from labeled platelets induced by antibody. (HLW)

  2. Monitoring platelet inhibition after clopidogrel with the VerifyNow-P2Y12(R) rapid analyzer: the VERIfy Thrombosis risk ASsessment (VERITAS) study.

    PubMed

    Malinin, Alex; Pokov, Alex; Spergling, Malcolm; Defranco, Anthony; Schwartz, Kenneth; Schwartz, Dianne; Mahmud, Ehtisham; Atar, Dan; Serebruany, Victor

    2007-01-01

    Clopidogrel inhibits platelet P2Y12 ADP receptors, while ADP, as an inductor of aggregation, stimulates both P2Y12 and P2Y1 platelet receptors. Despite a clinical loading dose routine with clopidogrel, some patients still experience coronary stent thrombosis suggesting persistent platelet activation. The VerifyNow-P2Y12 is a rapid assay that test platelet activity over 3 min and uses of the combination of ADP and prostaglandin E1 (PGE1) to directly measure the effects of clopidogrel on the P2Y12 receptor. ADP is used to maximally activate the platelets by binding to the P2Y1 and P2Y12 platelet receptors, while PGE1 is used to suppress the ADP-induced P2Y1-mediated increase in intracellular calcium levels. The VERIfy Thrombosis risk ASsessment (VERITAS) was a prospective study designed to measure platelet response to clopidogrel therapy in subjects with multiple risk factors or history of vascular disease using this novel point-of-care assay. 166 participants were enrolled in 4 participating sites. Data from 147 participants were analyzed after exclusion of 19 patients due to protocol violations. Platelets were assessed twice at baseline (before clopidogrel) and at 24 h post-loading 450 mg (110 participants) or 7 days after chronic clopidogrel treatment (75 mg/day) (37 patients). All participants received aspirin 81-325 mg for at least 2 days before the study enrollment. Results from the VerifyNow-P2Y12 assay are reported in P2Y12 reaction units (PRU). Clopidogrel therapy resulted in a mean 64.0+/-25.3% PRU reduction. No participant reached PRU inhibition below 10% of baseline. Distribution of PRU values for the VerifyNow-P2Y12 assay shows a separation from baseline to post-clopidogrel assay values with some overlap due to high inter-individual variations in response. VerifyNow-P2Y12 is a reliable, fast and sensitive device suitable for monitoring of platelet inhibition during clopidogrel therapy.

  3. Nitric oxide activity in platelets of dengue haemorrhagic fever patients: the apparent paradoxical role of ADMA and l-NMMA.

    PubMed

    Matsuura, Cristiane; Moraes, Thalyta L; Barbosa, Julia B; Moss, Monique B; Siqueira, Mariana A S; Mann, Giovanni E; Neto, Miguel Lemos; Brunini, Tatiana M C; Mendes-Ribeiro, Antonio Claudio

    2012-03-01

    Dengue haemorrhagic fever (DHF) is a prevalent acute disease that occurs in patients infected by an arbovirus in tropical and subtropical regions. We have previously shown increased intraplatelet nitric oxide (NO) production in patients with dengue fever associated with reduced platelet aggregation. In this study, l-arginine transport as well as expression and activity of nitric oxide synthase (NOS) isoforms in the presence or absence of l-arginine analogues were examined in 23 DHF patients. l-arginine transport and NOS activity in platelets were increased in patients with DHF compared with controls. However, platelet endothelial NOS (eNOS) and inducible (iNOS) protein levels did not differ between healthy controls and DHF patients. Endogenous or exogenous analogues did not inhibit platelet NOS activity from DHF patients. In contrast, endogenous l-arginine analogues [N(G)-monomethyl-l-arginine (l-NMMA) and asymmetric dimethylarginine (ADMA)] inhibited NOS activity in platelets from healthy subjects. These results show the first evidence that the intraplatelet l-arginine-NO pathway is activated in DHF patients. The lack of inhibition of NO formation in vitro by all l-arginine analogues tested in DHF platelets may suggest another mechanism by which NOS activity can be regulated. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  4. Mechanisms of the priming effect of low doses of lipopoly-saccharides on leukocyte-dependent platelet aggregation in whole blood.

    PubMed

    Montrucchio, Giuseppe; Bosco, Ornella; Del Sorbo, Lorenzo; Fascio Pecetto, Paolo; Lupia, Enrico; Goffi, Alberto; Omedè, Paola; Emanuelli, Giorgio; Camussi, Giovanni

    2003-11-01

    Several studies focused on the ability of bacterial lipopolysac-charides (LPS) in triggering platelet and/or leukocyte activation. The aim of this study was to investigate the molecular mechanisms involved in the aggregation of platelets and in their interaction with leukocytes in whole blood after stimulation with low doses of LPS. LPS did not directly induce platelet aggregation in whole blood, but they primed the aggregation of platelets induced by epinephrine, adenosine diphosphate and arachidonic acid. As shown by cytofluorimetry, platelets neither bind FITC-LPS, nor express the LPS-receptors CD14 and toll-like receptor 4 (TLR4). On the contrary, LPS primed monocytes and to a lesser extent polymorphonuclear neutrophils to adhere to platelets. Both platelet-leukocyte interaction and platelet aggregation in whole blood were inhibited by blockade of CD14 and TLR4. Moreover, the interaction between platelets and leukocytes was inhibited by P-selectin, and by blockade of PAF and reactive oxygen species, suggesting a role of P-selectin and of leukocyte-derived mediators. In conclusion, these results elucidate the mechanisms leading to platelet activation and interaction with leukocytes triggered by LPS. They suggest that the activation of platelets by LPS is mainly dependent on leukocytes and especially monocytes as a result of CD14 and TLR4 engagement. Moreover, we found that leukocyte-platelet interaction was triggered by the synthesis of PAF and the generation of oxygen radicals that induced upregulation of surface expression of P-selectin.

  5. Traumatic Hemothorax Blood Contains Elevated Levels of Microparticles that are Prothrombotic but Inhibit Platelet Aggregation.

    PubMed

    Mitchell, Thomas A; Herzig, Maryanne C; Fedyk, Chriselda G; Salhanick, Marc A; Henderson, Aaron T; Parida, Bijaya K; Prat, Nicolas J; Dent, Daniel L; Schwacha, Martin G; Cap, Andrew P

    2017-06-01

    Autotransfusion of shed blood from traumatic hemothorax is an attractive option for resuscitation of trauma patients in austere environments. However, previous analyses revealed that shed hemothorax (HX) blood is defibrinated, thrombocytopenic, and contains elevated levels of D-dimer. Mixing studies with normal pooled plasma demonstrated hypercoagulability, evoking concern for potentiation of acute traumatic coagulopathy. We hypothesized that induction of coagulopathic changes by shed HX blood may be due to increases in cellular microparticles (MP) and that these may also affect recipient platelet function. Shed HX blood was obtained from 17 adult trauma patients under an Institutional Review Board approved prospective observational protocol. Blood samples were collected every hour up to 4 h after thoracostomy tube placement. The corresponding plasma was isolated and frozen for analysis. The effects of shed HX frozen plasma (HFP) and isolated HX microparticles (HMP) on coagulation and platelet function were assessed through mixing studies with platelet-rich plasma at various dilutions followed by analysis with thromboelastometry (ROTEM), platelet aggregometry (Multiplate), enzyme-linked immunosorbent assays, and flow cytometry. Furthermore, HFP was assessed for von Willebrand factor antigen levels and multimer content, and plasma-free hemoglobin. ROTEM analysis demonstrated that diluted HFP and isolated HMP samples decreased clotting time, clotting formation time, and increased α angle, irrespective of sample concentrations, when compared with diluted control plasma. Isolated HMP inhibited platelet aggregation in response to adenosine diphosphate, arachidonic acid, and collagen. HFP contained elevated levels of fibrin-degradation products and tissue factor compared with control fresh frozen plasma samples. MP concentrations in HFP were significantly increased and enriched in events positive for phosphatidylserine, tissue factor, CD235, CD45, CD41a, and CD14. von Willebrand factor (vWF) multimer analysis revealed significant loss of high molecular weight multimers in HFP samples. Plasma-free hemoglobin levels were 8-fold higher in HFP compared with fresh frozen plasma. HFP induces plasma hypercoagulability that is likely related to increased tissue factor and phosphatidylserine expression originating from cell-derived MP. In contrast, platelet dysfunction is induced by HMP, potentially aggravated by depletion of high molecular weight multimers of vWF. Thus, autologous transfusion of shed traumatic hemothorax blood may induce a range of undesirable effects in patients with acute traumatic coagulopathy.

  6. Dose Responses of Ibuprofen In Vitro on Platelet Aggregation and Coagulation in Human and Pig Blood Samples.

    PubMed

    Martini, Wenjun Z; Rodriguez, Cassandra M; Deguzman, Rodolfo; Guerra, Jessica B; Martin, Angela K; Pusateri, Anthony E; Cap, Andrew P; Dubick, Michael A

    2016-05-01

    Ibuprofen is commonly used by warfighters in the deployed environment. This study investigated its dose effects on in vitro coagulation in human and pig blood. Blood samples were collected from 6 normal volunteers and 6 healthy pigs and processed to make platelet-adjusted samples (100 × 10(3)/μL, common transfusion trigger in trauma). Ibuprofen was added to the samples at concentrations of 0 μg/mL (control), the concentration from the highest recommended oral dose (163 μg/mL, 1×), and 2×, 4×, 8×, 10×, 12×, 16×, and 20×. Platelet aggregation by Chrono-Log aggregometer and coagulation by rotational thrombelastogram (Rotem) were assessed at 15 minutes after the addition of ibuprofen. A robust inhibition of ibuprofen on arachidonic acid-induced platelet aggregation was observed at all doses tested in human or pig blood. Collagen-stimulated platelet aggregation was inhibited starting at 1× in human blood and 4× in pig blood. Rotem measurements were similarly compromised in pig and human blood starting at 16×, except clot formation time was prolonged at 1× in human blood (all p < 0.05). Ibuprofen inhibited platelet aggregation at recommended doses, and compromised coagulation at higher doses. Human blood was more sensitive to ibuprofen inhibition. Further effort is needed to investigate ibuprofen dose responses on coagulation in vivo. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  7. Cathepsin G-Dependent Modulation of Platelet Thrombus Formation In Vivo by Blood Neutrophils

    PubMed Central

    Faraday, Nauder; Schunke, Kathryn; Saleem, Sofiyan; Fu, Juan; Wang, Bing; Zhang, Jian; Morrell, Craig; Dore, Sylvain

    2013-01-01

    Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies. PMID:23940756

  8. A balance between TFPI and thrombin-mediated platelet activation is required for murine embryonic development

    PubMed Central

    Ellery, Paul E. R.; Maroney, Susan A.; Cooley, Brian C.; Luyendyk, James P.; Zogg, Mark; Weiler, Hartmut

    2015-01-01

    Tissue factor pathway inhibitor (TFPI) is a critical anticoagulant protein present in endothelium and platelets. Mice lacking TFPI (Tfpi−/−) die in utero from disseminated intravascular coagulation. They are rescued by concomitant tissue factor (TF) deficiency, demonstrating that TFPI modulates TF function in vivo. Recent studies have found TFPI inhibits prothrombinase activity during the initiation of coagulation and limits platelet accumulation during thrombus formation, implicating TFPI in modulating platelet procoagulant activity. To examine whether altered platelet function would compensate for the lack of TFPI and rescue TFPI-null embryonic lethality, Tfpi+/− mice lacking the platelet thrombin receptor, protease activated receptor 4 (PAR4; Par4−/−), or its coreceptor, PAR3, were mated. PAR3 deficiency did not rescue Tfpi−/− embryos, but >40% of expected Tfpi−/−:Par4−/− offspring survived to adulthood. Adult Tfpi−/−:Par4−/− mice did not exhibit overt thrombosis. However, they had focal sterile inflammation with fibrin(ogen) deposition in the liver and elevated plasma thrombin-antithrombin complexes, indicating activation of coagulation at baseline. Tfpi−/−:Par4−/− mice have platelet and fibrin accumulation similar to Par4−/− mice following venous electrolytic injury but were more susceptible than Par4−/− mice to TF-induced pulmonary embolism. In addition, ∼30% of the Tfpi−/−:Par4−/− mice were born with short tails. Tfpi−/−:Par4−/− mice are the first adult mice described that lack TFPI with unaltered TF. They demonstrate that TFPI physiologically modulates thrombin-dependent platelet activation in a manner that is required for successful embryonic development and identify a role for TFPI in dampening intravascular procoagulant stimuli that lead to thrombin generation, even in the absence of thrombin-mediated platelet activation. PMID:25954015

  9. Inhibitory Effects of Cytosolic Ca(2+) Concentration by Ginsenoside Ro Are Dependent on Phosphorylation of IP3RI and Dephosphorylation of ERK in Human Platelets.

    PubMed

    Kwon, Hyuk-Woo; Shin, Jung-Hae; Lee, Dong-Ha; Park, Hwa-Jin

    2015-01-01

    Intracellular Ca(2+) ([Ca(2+)] i ) is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca(2+)-antagonistic effect of ginsenoside Ro (G-Ro), an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca(2+)] i , which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI) (Ser(1756)) to inhibit [Ca(2+)] i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser(1756)) by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa), indicating inhibition of Ca(2+) influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser(1756)) phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa) to decrease thrombin-elevated [Ca(2+)] i , which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca(2+)-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.

  10. Ethanol inhibits thrombin-induced secretion by human platelets at a site distinct from phospholipase C or protein kinase C.

    PubMed Central

    Benistant, C; Rubin, R

    1990-01-01

    Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization. Images p495-a PMID:2117442

  11. Several adaptor proteins promote intracellular localisation of the transporter MRP4/ABCC4 in platelets and haematopoietic cells.

    PubMed

    Schaletzki, Yvonne; Kromrey, Marie-Luise; Bröderdorf, Susanne; Hammer, Elke; Grube, Markus; Hagen, Paul; Sucic, Sonja; Freissmuth, Michael; Völker, Uwe; Greinacher, Andreas; Rauch, Bernhard H; Kroemer, Heyo K; Jedlitschky, Gabriele

    2017-01-05

    The multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit β3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knock-down of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leukaemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.

  12. Effect of aliskiren and valsartan combination versus aliskiren monotherapy on hemostatic biomarkers in hypertensive diabetics: Aliskiren and Valsartan Impact in Diabetics pilot trial.

    PubMed

    Serebruany, Victor L; Pokov, Alex N; Aradi, Daniel; Can, Mehmet; DiNicolantonio, James; Kipshidze, Nodar; Atar, Dan

    2014-01-01

    Valsartan is known to inhibit platelet activity in both in vitro and ex vivo clinical setting, whereas aliskiren in vitro modulates antithrombin-III in plasma. The authors tested how aliskiren and valsartan combination versus aliskiren monotherapy will affect hemostatic biomarkers in mild-to-moderate hypertensive diabetics in the frame of the Aliskiren and Valsartan Impact in Diabetics (AVID) trial. A total of 52 patients with type 2 diabetes and mild-to-moderate hypertension were equally randomized to aliskiren (150-300 mg/d) and valsartan (160 mg/d) versus aliskiren (150-300 mg/d) alone for 4 weeks. A total of 25 biomarkers were serially measured, of which 16 are related to platelet function, 6 to coagulation, and 3 to fibrinolysis. Aliskiren monotherapy has no significant impact on any of the assessed biomarkers. In contrast, valsartan on top of aliskiren provided significant inhibition of ADP-induced platelet aggregation (P=0.032), decreased shear-induced activation measured with PFA-100 analyzer (P=0.041), and diminished expression of GP IIb/IIIa activity (P=0.027) measured by PAC-1 antibody, GP Ib (CD42b, P=0.033), vitronectin receptor (CD51/61, P=0.046), P-selectin (CD62p, P=0.026), lysosome-associated membrane protein (CD107a, P=0.042), and CD40-ligand (CD154, P=0.048). In AVID trial, valsartan in combination with aliskiren mildly but significantly inhibited platelets, confirming previous observations. In contrast, aliskiren monotherapy does not enhance antithrombin activity, suggesting that previous data probably represent a laboratory artifact. Importantly, these randomized data were generated on top of low-dose daily aspirin, supporting extra benefit for combination use of angiotensin receptor blockers and renin inhibitors in high-risk diabetic population.

  13. Wine as a biological fluid: history, production, and role in disease prevention.

    PubMed

    Soleas, G J; Diamandis, E P; Goldberg, D M

    1997-01-01

    Wine has been part of human culture for 6,000 years, serving dietary and socio-religious functions. Its production takes place on every continent, and its chemical composition is profoundly influenced by enological techniques, the grape cultivar from which it originates, and climatic factors. In addition to ethanol, which in moderate consumption can reduce mortality from coronary heart disease by increasing high-density lipoprotein cholesterol and inhibiting platelet aggregation, wine (especially red wine) contains a range of polyphenols that have desirable biological properties. These include the phenolic acids (p-coumaric, cinnamic, caffeic, gentisic, ferulic, and vanillic acids), trihydroxy stilbenes (resveratrol and polydatin), and flavonoids (catechin, epicatechin, and quercetin). They are synthesized by a common pathway from phenylalanine involving polyketide condensation reactions. Metabolic regulation is provided by competition between resveratrol synthase and chalcone synthase for a common precursor pool of acyl-CoA derivatives. Polymeric aggregation gives rise, in turn to the viniferins (potent antifungal agents) and procyanidins (strong antioxidants that also inhibit platelet aggregation). The antioxidant effects of red wine and of its major polyphenols have been demonstrated in many experimental systems spanning the range from in vitro studies (human low-density lipoprotein, liposomes, macrophages, cultured cells) to investigations in healthy human subjects. Several of these compounds (notably catechin, quercetin, and resveratrol) promote nitric oxide production by vascular endothelium; inhibit the synthesis of thromboxane in platelets and leukotriene in neutrophils, modulate the synthesis and secretion of lipoproteins in whole animals and human cell lines, and arrest tumour growth as well as inhibit carcinogenesis in different experimental models. Target mechanisms to account for these effects include inhibition of phospholipase A2 and cyclo-oxygenase, inhibition of phosphodiesterase with increase in cyclic nucleotide concentrations, and inhibition of several protein kinases involved in cell signalling. Although their bioavailability remains to be fully established, red wine provides a more favourable milieu than fruits and vegetables, their other dietary source in humans.

  14. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking.

    PubMed

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D

    2016-05-01

    Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.

  15. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Chuang, Wen-Ying; Kung, Po-Hsiung; Kuo, Chih-Yun; Wu, Chin-Chung

    2013-06-01

    Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.

  16. A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase: ex vivo and in vivo studies.

    PubMed

    Jayakumar, Thanasekaran; Chen, Wei-Fan; Lu, Wan-Jung; Chou, Duen-Suey; Hsiao, George; Hsu, Chung-Yi; Sheu, Joen-Rong; Hsieh, Cheng-Ying

    2013-06-01

    Sulforaphane is a naturally occurring isothiocyanate, which can be found in cruciferous vegetables such as broccoli and cabbage. Sulforaphane was found to have very potent inhibitory effects on tumor growth through regulation of diverse mechanisms. However, no data are available concerning the effects of sulforaphane on platelet activation and its relative issues. Activation of platelets caused by arterial thrombosis is relevant to a variety of cardiovascular diseases. Hence, the aim of this study was to examine the in vivo antithrombotic effects of sulforaphane and its possible mechanisms in platelet activation. Sulforaphane (0.125 and 0.25 mg/kg) was effective in reducing the mortality of ADP-induced acute pulmonary thromboembolism in mice. Other in vivo studies also revealed that sulforaphane (0.25 mg/kg) significantly prolonged platelet plug formation in mice. In addition, sulforaphane (15-75 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen. Sulforaphane inhibited platelet activation accompanied by inhibiting relative Ca(2+) mobilization; phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and Akt; and hydroxyl radical (OH(●)) formation. Sulforaphane markedly increased cyclic (c)AMP, but not cyclic (c)GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxal in-1-one), an inhibitor of guanylate cyclase, obviously reversed the sulforaphane-mediated effects on platelet aggregation; PKC activation, p38 MAPK, Akt and VASP phosphorylation; and OH(●) formation. Furthermore, a PI3-kinase inhibitor (LY294002) and a p38 MAPK inhibitor (SB203580) both significantly diminished PKC activation and p38 MAPK and Akt phosphorylation; in contrast, a PKC inhibitor (RO318220) did not diminish p38 MAPK or Akt phosphorylation stimulated by collagen. This study demonstrates for the first time that in addition to it originally being considered as an agent for prevention of tumor growth, sulforaphane possesses potent antiplatelet activity which may initially activate adenylate cyclase/cAMP, followed by inhibiting intracellular signals (such as the PI3-kinase/Akt and PLCγ2-PKC-p47 cascades) and ultimately inhibiting platelet activation. Therefore, this novel role of sulforaphane may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. New Sesquiterpenoids and Anti-Platelet Aggregation Constituents from the Rhizomes of Curcuma zedoaria.

    PubMed

    Chen, Jih-Jung; Tsai, Tung-Han; Liao, Hsiang-Ruei; Chen, Li-Chai; Kuo, Yueh-Hsiung; Sung, Ping-Jyun; Chen, Chun-Lin; Wei, Chun-Sheng

    2016-10-17

    Two new sesquiterpenoids-13-hydroxycurzerenone ( 1 ) and 1-oxocurzerenone ( 2 )-have been isolated from the rhizomes of Curcuma zedoaria , together with 13 known compounds ( 3 - 15 ). The structures of two new compounds were determined through spectroscopic and MS analyses. Among the isolated compounds, 13-hydroxycurzerenone ( 1 ), 1-oxocurzerenone ( 2 ), curzerenone ( 3 ), germacrone ( 4 ), curcolone ( 5 ), procurcumenol ( 6 ), ermanin ( 7 ), curcumin ( 8 ), and a mixture of stigmast-4-en-3,6-dione ( 12 ) and stigmasta-4,22-dien-3,6-dione ( 13 ) exhibited inhibition (with inhibition % in the range of 21.28%-67.58%) against collagen-induced platelet aggregation at 100 μM. Compounds 1 , 5 , 7 , 8 , and the mixture of 12 and 13 inhibited arachidonic acid (AA)-induced platelet aggregation at 100 μM with inhibition % in the range of 23.44%-95.36%.

  18. Virally inactivated human platelet concentrate lysate induces regulatory T cells and immunosuppressive effect in a murine asthma model.

    PubMed

    Lee, Yueh-Lun; Lee, Lin-Wen; Su, Chen-Yao; Hsiao, George; Yang, Yi-Yuan; Leu, Sy-Jye; Shieh, Ying-Hua; Burnouf, Thierry

    2013-09-01

    Platelet concentrate lysates (PCLs) are increasingly used in regenerative medicine. We have developed a solvent/detergent (S/D)-treated PCL. The functional properties of this preparation should be unveiled. We hypothesized that, due to transforming growth factor-β1 (TGF-β1) content, PCLs may exert immunosuppressive and anti-inflammatory functions. PCL was prepared by S/D treatment, oil extraction, and hydrophobic interaction chromatography. The content of TGF-β in PCL was determined by enzyme-linked immunosorbent assay. Cultured CD4+ T cells were used to investigate the effects of PCL on expression of transcription factor forkhead box P3 (Foxp3), the inhibition of T-cell proliferation, and cytokine production. The regulatory function of PCL-converted CD4+ T cells was analyzed by suppressive assay. The BALB/c mice were given PCL-converted CD4+ T cells before ovalbumin (OVA) sensitization and challenge using an asthma model. Inflammatory parameters, such as the level of immunoglobulin E (IgE), airway hyperresponsiveness (AHR), bronchial lavage fluid eosinophils, and cytokines were assayed. Recombinant human (rHu) TGF-β1 was used as control. PCL significantly enhanced the development of CD4+Foxp3+-induced regulatory T cells (iTregs). Converted iTregs produced neither Th1 nor Th2 cytokines and inhibited normal T-cell proliferation. PCL- and rHuTGF-β-converted CD4+ T cells prevented OVA-induced asthma. PCL- and rHuTGF-β-modified T cells both significantly reduced expression levels of OVA-specific IgE and significantly inhibited the development of AHR, airway eosinophilia, and Th2 responses in mice. S/D-treated PCL promotes Foxp3+ iTregs and exerts immunosuppressive and anti-inflammatory properties. This finding may help to understand the clinical properties of platelet lysates. © 2013 American Association of Blood Banks.

  19. Gasomediators (·NO, CO, and H₂S) and their role in hemostasis and thrombosis.

    PubMed

    Olas, Beata

    2015-05-20

    Hemostasis is a group of mechanisms used to prevent the outflow of blood from its vessels, and to ensure its liquidity and flow within them. The system incorporates aspects of the blood vessel wall (mainly the intima), the clotting process, together with its factors (i.e. fibrinogen) and coagulation inhibitors, as well as fibrinolysis, blood platelets and the phagocyte system. The modulation of hemostasis is associated with the pathogenesis of cardiovascular diseases, such as thrombosis. The study examines the action of three selected gasomediators, nitric oxide ((•)NO), carbon monoxide (CO) and hydrogen sulfide (H2S), on hemostasis and thrombosis, although these gasses are also involved in a multitude of other physiological functions. (•)NO inhibits blood platelet activation, relaxes blood vessels and, as a free radical chain, may rapidly react with superoxide anion (O2(-•)) in blood platelets to form peroxynitrite (ONOO(-)). ONOO(-) is a reactive nitrating and nitrosating agent which induces oxidative/nitrative stress in blood platelets and plasma. Moreover, ONOO(-) changes the structure and function of fibrinogen and proteins associated with fibrinolysis. Recently, proteomic studies have provided unequivocal evidence that human platelets lack any expression of nitric oxide synthase isoforms. Other studies have demonstrated that CO and H2S, reduce blood platelet reactivity. Moreover, H2S has been reported to demonstrate anticoagulatory activity, and CO may act not only as an anticoagulant, but also aprocoagulant. This review article summarizes current knowledge of the biological roles of gasomediators (NO, CO, H2S) in hemostasis and in cardiovascular diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Photoaffinity labelling of cyclic GMP-inhibited phosphodiesterase (PDE III) in human and rat platelets and rat tissues: effects of phosphodiesterase inhibitors.

    PubMed

    Tang, K M; Jang, E K; Haslam, R J

    1994-06-15

    Ultraviolet irradiation of human platelet cytosol in the presence of 32P-labelled cyclic GMP (cGMP) can specifically label 110, 80, 55, 49 and 38 kDa proteins; the 110 kDa species is the subunit of cGMP-inhibited phosphodiesterase (PDE III) and the 80 kDa species that of cGMP-dependent protein kinase (Tang et al., 1993, Biochem. J. 294, 329). We have now shown that although photolabelling of platelet PDE III was inhibited by unlabelled cGMP, 8-bromo-cGMP and cyclic AMP (cAMP), it was not affected by phosphorothioate analogues of these cyclic nucleotides. Specific concentration-dependent inhibitions of the photolabelling of PDE III were observed with the following PDE inhibitors: trequinsin (IC50 = 13 +/- 2 nM), lixazinone (IC50 = 22 +/- 4 nM), milrinone (IC50 = 56 +/- 12 nM), cilostamide (IC50 = 70 +/- 9 nM), siguazodan (IC50 = 117 +/- 29 nM) and 3-isobutyl 1-methylxanthine (IBMX) (IC50 = 3950 +/- 22 nM). Thus, measurements of the inhibitory effects of compounds on the photolabelling of platelet PDE III provide a simple quantitative means of investigating their actions at a molecular level that avoids the need to purify the enzyme. Photolabelling of rat platelet lysate or rat heart homogenate by [32P]cGMP showed that the 110 kDa PDE III present in human material was replaced by a 115 kDa protein, labelling of which was also blocked by PDE III inhibitors. Heart and other rat tissues contained much less of this putative 115 kDa PDE III than rat platelets. In contrast, the 80 kDa protein was labelled much less in platelets than in many other rat tissue homogenates (e.g., heart, aorta, uterus and lung). Thus, comparison of the relative amounts of specific photolabelled proteins in different cells may provide an indication of different patterns of cyclic nucleotide action. We compared the abilities of phosphodiesterase inhibitors to block the photolabelling of PDE III in human platelet cytosol and to increase the iloprost-stimulated accumulation of cAMP in intact platelets. Whereas trequinsin (EC50 = 19 +/- 3 nM), lixazinone (EC50 = 122 +/- 8 nM), milrinone (EC50 = 5320 +/- 970 nM) and siguazodan (EC50 = 18880 +/- 3110 nM) all increased platelet cAMP to the same maximum extent, cilostamide and IBMX increased cAMP further, indicating that they inhibited a PDE isozyme in addition to PDE III.

  1. Identification of a receptor for ADP on blood platelets by photoaffinity labelling.

    PubMed Central

    Cristalli, G; Mills, D C

    1993-01-01

    The synthesis of a new analogue of ADP, 2-(p-azidophenyl)-ethythioadenosine 5'-diphosphate (AzPET-ADP), is described. This compound contains a photolabile phenylazide group attached to the ADP molecule by a thioether link at the purine 2 position. It has been prepared in radioactive form with 32P in the beta-phosphate at a specific radioactivity of 100 mCi/mumol. The reagent activated platelets, causing shape change and aggregation, with somewhat lower affinity than ADP. On photolysis the affinity was increased. The reagent also inhibited platelet adenylate cyclase stimulation by prostaglandin E1, with considerably higher affinity than ADP. On photolysis the affinity was decreased. AzPET-ADP competitively inhibited the binding of 2-methylthio[beta-32P]ADP, a ligand for the receptor by which ADP causes inhibition of adenylate cyclase. In the dark, AzPET-[beta-32P]ADP bound reversibly and with high affinity to a single population of sites similar in number to the sites that bind 2-methylthio[beta-32P]ADP. Binding was inhibited by ADP and by ATP and by p-chloromercuribenzenesulphonic acid (pCMBS). On exposure to u.v. light in the presence of platelets, AzPET-[beta-32P]ADP was incorporated covalently but non-specifically into several platelet proteins, although prominent intracellular proteins were not labelled. Specific labelling was confined to a single region of SDS/polyacrylamide gels, overlying but not comigrating with actin. Incorporation of radioactivity into this region was inhibited by ADP and by ATP as well as by ADP beta S, ATP alpha S and pCMBS, but not by adenosine, GDP or AMP. Inhibition of AzPET-[beta-32P]ADP incorporation was closely correlated with inhibition of equilibrium binding of 2-methylthio[beta-32P]ADP. These results suggests that the labelled protein, which migrates with an apparent molecular mass of 43 kDa in reduced gels, is the receptor through which ADP inhibits adenylate cyclase. Images Figure 5 PMID:8387782

  2. Synthesis and evaluation of dual antiplatelet activity of bispidine derivatives of N-substituted pyroglutamic acids.

    PubMed

    Misra, Ankita; Anil Kumar, K S; Jain, Manish; Bajaj, Kirti; Shandilya, Shyamali; Srivastava, Smriti; Shukla, Pankaj; Barthwal, Manoj K; Dikshit, Madhu; Dikshit, Dinesh K

    2016-03-03

    N-aralkylpyroglutamides of substituted bispidine were prepared and evaluated for their ability to inhibit collagen induced platelet aggregation, both in vivo and in vitro. Some compounds showed high anti-platelet efficacy (in vitro) of which six inhibited both collagen as well as U46619 induced platelet aggregation with concentration dependent anti-platelet efficacy through dual mechanism. In particular, the compound 4j offered significant protection against collagen epinephrine induced pulmonary thromboembolism as well as ferric chloride induced arterial thrombosis, without affecting bleeding tendency in mice. Therefore, the present study suggests that the compound 4j displays a remarkable antithrombotic efficacy much better than aspirin and clopidogrel. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Tocotrienols-induced inhibition of platelet thrombus formation and platelet aggregation in stenosed canine coronary arteries.

    PubMed

    Qureshi, Asaf A; Karpen, Charles W; Qureshi, Nilofer; Papasian, Christopher J; Morrison, David C; Folts, John D

    2011-04-14

    Dietary supplementation with tocotrienols has been shown to decrease the risk of coronary artery disease. Tocotrienols are plant-derived forms of vitamin E, which have potent anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and neuroprotective properties. Our objective in this study was to determine the extent to which tocotrienols inhibit platelet aggregation and reduce coronary thrombosis, a major risk factor for stroke in humans. The present study was carried out to determine the comparative effects of α-tocopherol, α-tocotrienol, or tocotrienol rich fraction (TRF; a mixture of α-+γ-+δ-tocotrienols) on in vivo platelet thrombosis and ex vivo platelet aggregation (PA) after intravenous injection in anesthetized dogs, by using a mechanically stenosed circumflex coronary artery model (Folts' cyclic flow model). Collagen-induced platelet aggregation (PA) in platelet rich plasma (PRP) was decreased markedly after treatment with α-tocotrienol (59%; P<0.001) and TRF (92%; P<0.001). α-Tocopherol treatment was less effective, producing only a 22% (P<0.05) decrease in PA. Adenosine diphosphate-induced (ADP) PA was also decreased after treatment with α-tocotrienol (34%; P<0.05) and TRF (42%; P<0.025). These results also indicate that intravenously administered tocotrienols were significantly better than tocopherols in inhibiting cyclic flow reductions (CFRs), a measure of the acute platelet-mediated thrombus formation. Tocotrienols (TRF) given intravenously (10 mg/kg), abolished CFRs after a mean of 68 min (range 22 -130 min), and this abolition of CFRs was sustained throughout the monitoring period (50-160 min).Next, pharmacokinetic studies were carried out and tocol levels in canine plasma and platelets were measured. As expected, α-Tocopherol treatment increased levels of total tocopherols in post- vs pre-treatment specimens (57 vs 18 μg/mL in plasma, and 42 vs 10 μg/mL in platelets). However, treatment with α-tocopherol resulted in slightly decreased levels of tocotrienols in post- vs pre-treatment samples (1.4 vs 2.9 μg/mL in plasma and 2.3 vs 2.8 μg/mL in platelets). α-Tocotrienol treatment increased levels of both tocopherols and tocotrienols in post- vs pre-treatment samples (tocopherols, 45 vs 10 μg/mL in plasma and 28 vs 5 μg/mL in platelets; tocotrienols, 2.8 vs 0.9 μg/mL in plasma and 1.28 vs 1.02 μg/mL in platelets). Treatment with tocotrienols (TRF) also increased levels of tocopherols and tocotrienols in post- vs pre-treatment samples (tocopherols, 68 vs 20 μg/mL in plasma and 31.4 vs 7.9 μg/mL in platelets; tocotrienols, 8.6 vs 1.7 μg/mL in plasma and 3.8 vs 3.9 μg/mL in platelets). The present results indicate that intravenously administered tocotrienols inhibited acute platelet-mediated thrombus formation, and collagen and ADP-induced platelet aggregation. α-Tocotrienols treatment induced increases in α-tocopherol levels of 4-fold and 6-fold in plasma and platelets, respectively. Interestingly, tocotrienols (TRF) treatment induced a less pronounced increase in the levels of tocotrienols in plasma and platelets, suggesting that intravenously administered tocotrienols may be converted to tocopherols. Tocotrienols, given intravenously, could potentially prevent pathological platelet thrombus formation and thus provide a therapeutic benefit in conditions such as stroke and myocardial infarction.

  4. Tocotrienols-induced inhibition of platelet thrombus formation and platelet aggregation in stenosed canine coronary arteries

    PubMed Central

    2011-01-01

    Background Dietary supplementation with tocotrienols has been shown to decrease the risk of coronary artery disease. Tocotrienols are plant-derived forms of vitamin E, which have potent anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and neuroprotective properties. Our objective in this study was to determine the extent to which tocotrienols inhibit platelet aggregation and reduce coronary thrombosis, a major risk factor for stroke in humans. The present study was carried out to determine the comparative effects of α-tocopherol, α-tocotrienol, or tocotrienol rich fraction (TRF; a mixture of α- + γ- + δ-tocotrienols) on in vivo platelet thrombosis and ex vivo platelet aggregation (PA) after intravenous injection in anesthetized dogs, by using a mechanically stenosed circumflex coronary artery model (Folts' cyclic flow model). Results Collagen-induced platelet aggregation (PA) in platelet rich plasma (PRP) was decreased markedly after treatment with α-tocotrienol (59%; P < 0.001) and TRF (92%; P < 0.001). α-Tocopherol treatment was less effective, producing only a 22% (P < 0.05) decrease in PA. Adenosine diphosphate-induced (ADP) PA was also decreased after treatment with α-tocotrienol (34%; P < 0.05) and TRF (42%; P < 0.025). These results also indicate that intravenously administered tocotrienols were significantly better than tocopherols in inhibiting cyclic flow reductions (CFRs), a measure of the acute platelet-mediated thrombus formation. Tocotrienols (TRF) given intravenously (10 mg/kg), abolished CFRs after a mean of 68 min (range 22 -130 min), and this abolition of CFRs was sustained throughout the monitoring period (50 - 160 min). Next, pharmacokinetic studies were carried out and tocol levels in canine plasma and platelets were measured. As expected, α-Tocopherol treatment increased levels of total tocopherols in post- vs pre-treatment specimens (57 vs 18 μg/mL in plasma, and 42 vs 10 μg/mL in platelets). However, treatment with α-tocopherol resulted in slightly decreased levels of tocotrienols in post- vs pre-treatment samples (1.4 vs 2.9 μg/mL in plasma and 2.3 vs 2.8 μg/mL in platelets). α-Tocotrienol treatment increased levels of both tocopherols and tocotrienols in post- vs pre-treatment samples (tocopherols, 45 vs 10 μg/mL in plasma and 28 vs 5 μg/mL in platelets; tocotrienols, 2.8 vs 0.9 μg/mL in plasma and 1.28 vs 1.02 μg/mL in platelets). Treatment with tocotrienols (TRF) also increased levels of tocopherols and tocotrienols in post- vs pre-treatment samples (tocopherols, 68 vs 20 μg/mL in plasma and 31.4 vs 7.9 μg/mL in platelets; tocotrienols, 8.6 vs 1.7 μg/mL in plasma and 3.8 vs 3.9 μg/mL in platelets). Conclusions The present results indicate that intravenously administered tocotrienols inhibited acute platelet-mediated thrombus formation, and collagen and ADP-induced platelet aggregation. α-Tocotrienols treatment induced increases in α-tocopherol levels of 4-fold and 6-fold in plasma and platelets, respectively. Interestingly, tocotrienols (TRF) treatment induced a less pronounced increase in the levels of tocotrienols in plasma and platelets, suggesting that intravenously administered tocotrienols may be converted to tocopherols. Tocotrienols, given intravenously, could potentially prevent pathological platelet thrombus formation and thus provide a therapeutic benefit in conditions such as stroke and myocardial infarction. PMID:21489303

  5. Platelet aggregation inhibitors from Philippine marine invertebrate samples screened in a new microplate assay.

    PubMed

    Pimentel, Sheila Marie V; Bojo, Zenaida P; Roberto, Amy V D; Lazaro, Jose Enrico H; Mangalindan, Gina C; Florentino, Leila M; Lim-Navarro, Pilar; Tasdemir, Deniz; Ireland, Chris M; Concepcion, Gisela P

    2003-01-01

    A new microplate assay for Ca(2+)-induced platelet aggregation as detected by Giemsa dye was used to screen marine invertebrate samples from the Philippines for inhibitors of human platelet aggregation. Out of 261 crude methanol extracts of marine sponges and tunicates, 25 inhibited aggregation at 2 mg/ml. Inhibition of agonist-induced aggregation in an aggregometer was used to confirm results of the microplate assay and to determine the specific mode of inhibition of 2 samples. The marine sponge Xestospongia sp. yielded a xestospongin/araguspongine-type molecule that inhibited collagen-induced aggregation by 87% at 2 micro g/ml, and epinephrine-induced aggregation by 78% at 20 micro g/ml, while the marine sponge Aplysina sp. yielded 5,6-dibromotryptamine, which inhibited epinephrine-induced aggregation by 51% at 20 micro g/ml. In this study we have found that the microplate assay is a simple, inexpensive, yet useful preliminary tool to qualitatively screen a large number of marine samples for antiplatelet aggregation activity.

  6. Meal-induced platelet activation in Type 2 diabetes mellitus: effects of treatment with repaglinide and glibenclamide.

    PubMed

    Yngen, M; Ostenson, C-G; Hjemdahl, P; Wallén, N H

    2006-02-01

    To compare the effects of treatment with repaglinide and glibenclamide on platelet function and endothelial markers in patients with Type 2 diabetes mellitus, before and after a standardized meal. Fifteen patients with Type 2 diabetes were investigated on three occasions: at baseline without oral hypoglycaemic drug treatment, and after 6 weeks' treatment with repaglinide or glibenclamide, respectively, in an open randomized cross-over study. Agonist-induced platelet P-selectin expression and platelet aggregation, urinary thromboxane, soluble P-selectin, von Willebrand factor (VWF), soluble E-selectin, intercellular adhesion molecule (ICAM-1) and C-reactive protein (CRP) were measured. In addition, pre-meal data were compared with non-diabetic control subjects (n = 15), matched for sex, age and BMI. Adenosine diphosphate (ADP)-induced platelet P-selectin expression increased post-meal in Type 2 diabetic patients both at baseline and after treatment with repaglinide and glibenclamide (P < 0.01 for all; repeated measures anova). Repaglinide treatment reduced fasting ADP-induced P-selectin expression compared with baseline (P = 0.01), but did not influence meal-induced platelet hyper-reactivity (P = 0.32). No significant anti-platelet effects of glibenclamide treatment were found. Plasma concentrations of VWF and ICAM-1 were elevated in patients with Type 2 diabetes compared with control subjects (P < 0.05 for both) and were reduced during treatment with repaglinide (P < 0.01 for both) but did not change during glibenclamide treatment. The post-meal state is associated with enhanced platelet reactivity in patients with Type 2 diabetes mellitus. Pre-meal treatment with repaglinide or glibenclamide does not inhibit postprandial platelet activation, but repaglinide treatment is associated with attenuated platelet and endothelial activity in the fasting state.

  7. The possible involvement of protein phosphatase 1 in thrombin-induced Ca2+ influx of human platelets.

    PubMed

    Murata, K; Sakon, M; Kambayashi, J; Yukawa, M; Yano, Y; Fujitani, K; Kawasaki, T; Shiba, E; Mori, T

    1993-04-01

    Protein phosphatase 1 is considered to be involved in thrombin-induced platelet activation (Murata et al., Biochem Int 26:327-334, 1992). To clarify the mechanism, we examined the effects of protein phosphatase 1 and 2A inhibitors (calyculin A, tautomycin, okadaic acid) on Ca2+ influx. In the presence of 1 mM Ca2+, thrombin- (0.1 U/ml) induced platelet aggregation and ATP release were inhibited by calyculin A, while this inhibitory effect was abolished in the absence of Ca2+ (EGTA 1 mM). Furthermore, thrombin-induced Mn2+ influx but not intracellular Ca2+ mobilization was inhibited by calyculin A in a dose-related manner. Calyculin A also blocked the ongoing Ca2+ influx when added 3 min after thrombin stimulation. Similar inhibitory effects were observed with okadaic acid and tautomycin in the same potency sequence as the reported one for protein phosphatase 1 (calyculin A > tautomycin > okadaic acid). These results suggest that the anti-platelet effects of phosphatase inhibitors are due to the inhibition of Ca2+ influx and that protein phosphatase 1 plays a key role in the regulation of receptor operated Ca2+ channel of human platelets.

  8. Time-dependent inhibition by glyceryl trinitrate of platelet aggregation caused by U46619 (a thromboxane/endoperoxide receptor agonist).

    PubMed Central

    Kampf, G; Ritter, J M

    1994-01-01

    Glyceryl trinitrate is a weak inhibitor of platelet aggregation in vitro. Its effect on platelet aggregation in response to U46619 (a thromboxane/endoperoxide receptor agonist) was studied turbidometrically in platelet-rich plasma from healthy volunteers. The object was to determine whether inhibition was influenced by a period of preincubation between preparation of platelet-rich plasma and addition of glyceryl trinitrate. Incubation was performed at 37 degrees C and 22 degrees C. Samples were removed at intervals and transferred to an aggregometer cuvette at 37 degrees C. Glyceryl trinitrate (100 microM) or an equal volume of distilled water was added 5 min before U46619 (2 microM), and aggregation recorded as change in light transmission. Inhibition by glyceryl trinitrate was markedly time and temperature dependent, with a progressive increase in inhibitory potency between 120 and 300 min preincubation at 37 degrees C but not at 22 degrees C. The explanation of this is unknown but the effect was not influenced by lipopolysaccharide or by cycloheximide, so it does not appear to be due to exposure to endotoxin or to enzyme induction in vitro. PMID:7946941

  9. Localization and characterization of an alpha-thrombin-binding site on platelet glycoprotein Ib alpha.

    PubMed

    De Marco, L; Mazzucato, M; Masotti, A; Ruggeri, Z M

    1994-03-04

    Glycoprotein (GP) Ib alpha is required for expression of the highest affinity alpha-thrombin-binding site on platelets, possibly contributing to platelet activation through a pathway involving cleavage of a specific receptor. This function may be important for the initiation of hemostasis and may also play a role in the development of pathological vascular occlusion. We have now identified a discrete sequence in the extracytoplasmic domain of GP Ib alpha, including residues 271-284 of the mature protein, which appears to be part of the high affinity alpha-thrombin-binding site. Synthetic peptidyl mimetics of this sequence inhibit alpha-thrombin binding to GP Ib as well as platelet activation and aggregation induced by subnanomolar concentrations of the agonist; they also inhibit alpha-thrombin binding to purified glycocalicin, the isolated extracytoplasmic portion of GP Ib alpha. The inhibitory peptides interfere with the clotting of fibrinogen by alpha-thrombin but not with the amidolytic activity of the enzyme on a small synthetic substrate, a finding compatible with the concept that the identified GP Ib alpha sequence interacts with the anion-binding exosite of alpha-thrombin but not with its active proteolytic site. The crucial structural elements of this sequence necessary for thrombin binding appear to be a cluster of negatively charged residues as well as three tyrosine residues that, in the native protein, may be sulfated. GP Ib alpha has no significant overall sequence homology with the thrombin inhibitor, hirudin, nor with the specific thrombin receptor on platelets; all three molecules, however, possess a distinct region rich in negatively charged residues that appear to be involved in thrombin binding. This may represent a case of convergent evolution of unrelated proteins for high affinity interaction with the same ligand.

  10. Acetylsalicylic Acid Daily vs Acetylsalicylic Acid Every 3 Days in Healthy Volunteers: Effect on Platelet Aggregation, Gastric Mucosa, and Prostaglandin E2 Synthesis.

    PubMed

    Ferreira, Plinio Minghin Freitas; Gagliano-Jucá, Thiago; Zaminelli, Tiago; Sampaio, Marinalva Ferreira; Blackler, Rory Willian; Trevisan, Miriam da Silva; Novaes Magalhães, Antônio Frederico; De Nucci, Gilberto

    2016-07-01

    Substantial platelet inhibition was observed 3 days after a single administration of acetylsalicylic acid 81 mg to healthy volunteers. Here we investigate prostaglandin E2 (PGE2 ) antrum concentrations and gastrointestinal symptoms in two treatment groups: one receiving losartan and acetylsalicylic acid every day and the other receiving losartan every day and acetylsalicylic acid every 3 days. Twenty-eight healthy volunteers from both sexes received either 50 mg losartan and acetylsalicylic acid 81 mg daily or 50 mg losartan and acetylsalicylic acid 81 every 3 days with placebo on the other days. Therapy was delivered for 30 days for both groups. Gastric endoscopy was performed before and after treatment period. Biopsies were collected for PGE2 quantification. Platelet function tests were carried out before and during treatment and TXB2 release on platelet rich plasma was measured. The every 3 day low-dose acetylsalicylic acid regimen produced complete inhibition of platelet aggregation compared to the daily treatment. Thromboxane B2 release was substantially abolished for both groups during treatment. There was no significant difference on the endoscopic score of both treatment groups after the 30-day treatment (P = .215). There was over 50% suppression of antrum PGE2 content on volunteers receiving acetylsalicylic acid daily (P = .0016), while for the every 3 day dose regimen there was no significant difference between pre and post-treatment antrum PGE2 dosages (P = .4193). Since PGE2 is involved in gastric healing, we understand that this new approach could be safer and as efficient as the standard daily therapy on a long-term basis. © 2015, The American College of Clinical Pharmacology.

  11. Triflavin, an Arg‐Gly‐Asp‐containing Antiplatelet Peptide Inhibits Cell‐substratum Adhesion and Melanoma Cell‐induced Lung Colonization

    PubMed Central

    Sheu, Joen R.; Lin, Chao H.; Chung, Jih L.; Teng, Che M.

    1992-01-01

    Triflavin, an Arg‐Gly‐Asp (RGD) containing peptide purified from Trimeresurus flavoviridis snake venom, inhibits human platelet aggregation by blocking fibrinogen binding to fibrinogen receptors associated with glycoprotein Ilb/IIIa complex. In this study, we show that triflavin (1‐30 μg/mouse) inhibits B16‐F10 melanoma cell‐induced lung colonization in C57BL/6 mice in a dose‐dependent manner. In vitro, triflavin dose‐dependently inhibits adhesion of B16‐F10 melanoma cells to extracellular matrices (ECMs; i.e., fibronectin, fibrinogen, vitronectin, and collagen type I). Triflavin is approximately 600‐800 times more potent than GRGDS at inhibiting cell adhesion. In addition, triflavin dose‐dependently inhibits B16‐F10 cell‐induced platelet aggregation. These results imply that the inhibitory effect of triflavin on the adhesion of tumor cells to ECMs (e.g., fibronectin, vitronectin and collagen type I) and/or tumor cell‐induced platelet aggregation may be partially responsible for its antimetastatic activity in C57BL/6 mice. PMID:1399825

  12. Effect of Immobilized Antithrombin III on the Thromboresistance of Polycarbonate Urethane.

    PubMed

    Lukas, Karin; Stadtherr, Karin; Gessner, Andre; Wehner, Daniel; Schmid, Thomas; Wendel, Hans Peter; Schmid, Christof; Lehle, Karla

    2017-03-24

    The surface of foils and vascular grafts made from a thermoplastic polycarbonate urethanes (PCU) (Chronoflex AR) were chemically modified using gas plasma treatment, binding of hydrogels-(1) polyethylene glycol bisdiamine and carboxymethyl dextran (PEG-DEX) and (2) polyethyleneimine (PEI)-and immobilization of human antithrombin III (AT). Their biological impact was tested in vitro under static and dynamic conditions. Static test methods showed a significantly reduced adhesion of endothelial cells, platelets, and bacteria, compared to untreated PCU. Modified PCU grafts were circulated in a Chandler-Loop model for 90 min at 37 °C with human blood. Before and after circulation, parameters of the hemostatic system (coagulation, platelets, complement, and leukocyte activation) were analyzed. PEI-AT significantly inhibited the activation of both coagulation and platelets and prevented the activation of leukocytes and complement. In conclusion, both modifications significantly reduce coagulation activation, but only PEI-AT creates anti-bacterial and anti-thrombogenic functionality.

  13. Platelet Function Tests: Preanalytical Variables, Clinical Utility, Advantages, and Disadvantages.

    PubMed

    Hvas, Anne-Mette; Grove, Erik Lerkevang

    2017-01-01

    Platelet function tests are mainly used in the diagnostic work-up of platelet disorders. During the last decade, the additional use of platelet function tests to evaluate the effect of antiplatelet therapy has also emerged in an attempt to identify patients with an increased risk of arterial thrombosis. Furthermore, platelet function tests are increasingly used to measure residual effect of antiplatelet therapy prior to surgery with the aim of reducing the risk of bleeding. To a limited extend, platelet function tests are also used to evaluate hyperaggregability as a potential marker of a prothrombotic state outside the setting of antiplatelet therapy. This multifaceted use of platelet function tests and the development of simpler point-of-care tests with narrower application have increased the use of platelet function testing and also facilitated the use of platelet function tests outside the highly specialized laboratories. The present chapter describes the preanalytical variables, which should be taken into account when planning platelet function testing. Also, the most widely used platelet function tests are introduced, and their clinical utility and their relative advantages and disadvantages are discussed.

  14. Insufficient platelet inhibition is related to silent embolic cerebral infarctions after coronary angiography.

    PubMed

    Kim, Bum Joon; Lee, Seung-Whan; Park, Seong-Wook; Kang, Dong-Wha; Kim, Jong S; Kwon, Sun U

    2012-03-01

    Considering that insufficient platelet inhibition is related to thrombotic complications after coronary angiography, we hypothesized that the extent of platelet inhibition by antiplatelet agents is related to the occurrence of silent embolic cerebral infarction (SECI) after coronary angiography. Among the patients scheduled for coronary artery bypass surgery, we retrospectively analyzed the location of SECI on diffusion-weighted imaging of 272 patients, which was performed after coronary angiography, as a presurgical evaluation in Phase 1 study. In Phase 2 study, we have prospectively recruited 102 patients to compare the extent of platelet inhibition measured by the VerifyNow system among patients with and without SECI. SECI is observed in 45 patients (16.5%) in Phase 1 and 17 (16.7%) in Phase 2. The lesions were slightly more frequent in the right hemisphere. In the Phase 2 study, aspirin reaction units and P(2)Y(12) reaction units were higher in the patients with SECI than those without (aspirin reaction units: 490±72 versus 446±53, P=0.03; P(2)Y(12) reaction units: 352±65 versus 300±77, P=0.009). The incidence of SECI increased with the number of resistant antiplatelets; resistance to both antiplatelet agent (50%), resistance to 1 antiplatelet agent (22%), and no resistance (4%; P=0.023). From the result of logistic regression, higher aspirin reaction units, white blood cell count, low hemoglobin, and nonresponsiveness to antiplatelet agents were independent risk factors. Insufficient platelet inhibition after administration of antiplatelet agents is related with SECI appearing after coronary angiography.

  15. GDP beta S enhances the activation of phospholipase C caused by thrombin in human platelets: evidence for involvement of an inhibitory GTP-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberdisse, E.; Lapetina, E.G.

    1987-05-14

    Guanosine 5'-O-thiotriphosphate (GTP gamma S) and thrombin stimulate the activity of phospholipase C in platelets that have been permeabilized with saponin and whose inositol phospholipids have been prelabeled with (/sup 3/H)inositol. Ca/sup 2 +/ has opposite effects on the formation of (/sup 3/H)inositol phosphates induced by thrombin or GTP gamma S. While the action of GTP gamma S on the formation of (/sup 3/H)inositol phosphates is inhibited by Ca/sup 2 +/, action of thrombin is stimulated by Ca/sup 2 +/. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits the function of GTP-binding proteins, also inhibits the effect of GTP gamma Smore » on phospholipase C stimulation but, surprisingly, increases the effect of thrombin. Ca/sup 2 +/ increases the inhibitory effect of GDP beta S on GTP gamma S activation of phospholipase C, but Ca/sup 2 +/ further enhances the stimulatory effect of GDP beta S on the thrombin activation of phospholipase C. This indicates that two mechanisms are responsible for the activation of phospholipase C in platelets. A GTP-binding protein is responsible for regulation of phospholipase C induced by GTP gamma S, while the effect of thrombin on the stimulation of phospholipase C is independent of GTP-binding proteins. However, the effect of thrombin may be modulated by the action of an inhibitory GTP-binding protein.« less

  16. Dual inhibition of HY023016 based on binding properties of platelet membrane receptor subunit glycoprotein Ibα and thrombin exosites.

    PubMed

    Chen, Qiu-Fang; Cui, Shuang; Shen, Hui-Liang; Chen, Xiang; Li, Yun-Zhan; Wu, Qian; Xu, Yun-Gen; Gong, Guo-Qing

    2018-03-05

    Thrombin has long been suggested as a desirable antithrombotic target, but anti-thrombin therapy without anti-platelet thereby has never achieved the ideal effect. HY023016 is a novel compound, in our previous study, it exerted better anti-thrombotic than dabigatran etexilate. The present study aims to illustrate the excess anti-thrombotic molecular mechanisms of HY023016 through thrombin anion exosites and the platelet membrane receptor subunit glycoprotein Ibα (GPIbα). HY023016 strongly inhibited the conversion of fibrinogen to fibrous may via blocking thrombin exosite I. We also discovered that HY023016 remarkably inhibited exosite II by a loss of affinity for the γ'-peptide of fibrinogen and for heparin. Furthermore, a solid phase binding assay revealed that HY023016 inhibited ristocetin-induced washed platelets bind to von Willebrand factor (vWF). In GST pull-down assay, HY023016 decreased the binding of recombinant vWF-A1 to GPIbα N-terminal. Thus, HY023016 provides an innovative idea for designing multi-targeted anti-thrombotic drugs and laying a scientific foundation for reducing "total thrombosis risk" in a clinical drug treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effects of plasma nitric oxide levels on platelet activation in single donor apheresis and random donor concentrates.

    PubMed

    Büyükkağnici, Demet Iren; Ilhan, Osman; Kavas, Güzin Ozelçi; Arslan, Onder; Arat, Mutlu; Dalva, Klara; Ayyildiz, Erol

    2007-02-01

    P-selectin is an useful marker to determine platelet activation and nitric oxide inhibits platelet activation, secretion, adhesion and aggregation. The aim of this study was to investigate the relationship between nitric oxide and P-selectin values in both single donor apheresis and random donor platelet concentrates. According to the results of this study, we found that the best platelet concentrate is freshly prepared single donor apheresis concentrate and it is important to prevent activation at the beginning of the donation. Nitric oxide, which is synthesized from platelets during the storage period, is not sufficient to prevent platelet activation.

  18. CLONING, EXPRESSION, AND HEMOSTATIC ACTIVITIES OF A DISINTEGRIN, r-MOJASTIN 1, FROM THE MOHAVE RATTLESNAKE (Crotalus scutulatus scutulatus)

    PubMed Central

    Sánchez, Elda E.; Lucena, Sara E.; Reyes, Steven; Soto, Julio G.; Cantu, Esteban; Lopez-Johnston, Juan Carlos; Guerrero, Belsy; Salazar, Ana Maria; Rodríguez-Acosta, Alexis; Galán, Jacob A.; Tao, W. Andy; Pérez, John C.

    2012-01-01

    Interactions with exposed subendothelial extracellular proteins and cellular integrins (endothelial cells, platelets and lymphocytes) can cause alterations in the hemostatic system associated with atherothrombotic processes. Many molecules found in snake venoms induce pathophysiological changes in humans, cause edema, hemorrhage, and necrosis. Disintegrins are low molecular weight, non-enzymatic proteins found in snake venom that mediate changes by binding to integrins of platelets or other cells and prevent binding of the natural ligands such as fibrinogen, fibronectin or vitronectin. Disintegrins are of great biomedical importance due to their binding affinities resulting in the inhibition of platelet aggregation, adhesion of cancer cells, and induction of signal transduction pathways. RT-PCR was used to obtain a 216 bp disintegrin cDNA from a C. s. scutulatus snake venom gland. The cloned recombinant disintegrin called r-mojastin 1 codes for 71 amino acids, including 12 cysteines, and an RGD binding motif. r-Mojastin 1 inhibited platelet adhesion to fibronectin with an IC50 of 58.3 nM and ADP-induced platelet aggregation in whole blood with an IC50 of 46 nM. r-Mojastin 1 was also tested for its ability to inhibit platelet ATP release using PRP resulting with an IC50 of 95.6 nM. MALDI-TOF mass spectrum analysis showed that r-mojastin has a mass of 7.9509 kDa. PMID:20598348

  19. Effects of Rivaroxaban on Platelet Activation and Platelet–Coagulation Pathway Interaction

    PubMed Central

    Heitmeier, Stefan; Laux, Volker

    2015-01-01

    Introduction: Activation of coagulation and platelets is closely linked, and arterial thrombosis involves coagulation activation as well as platelet activation and aggregation. In these studies, we investigated the possible synergistic effects of rivaroxaban in combination with antiplatelet agents on thrombin generation and platelet aggregation in vitro and on arterial thrombosis and hemostasis in rat models. Materials and Methods: Thrombin generation was measured by the Calibrated Automated Thrombogram method (0.5 pmol/L tissue factor) using human platelet-rich plasma (PRP) spiked with rivaroxaban (15, 30, or 60 ng/mL), ticagrelor (1.0 µg/mL), and acetylsalicylic acid (ASA; 100 µg/mL). Tissue factor-induced platelet aggregation was measured in PRP spiked with rivaroxaban (15 or 30 ng/mL), ticagrelor (1 or 3 µg/mL), or a combination of these. An arteriovenous (AV) shunt model in rats was used to determine the effects of rivaroxaban (0.01, 0.03, or 0.1 mg/kg), clopidogrel (1 mg/kg), ASA (3 mg/kg), and combinations on arterial thrombosis. Results: Rivaroxaban inhibited thrombin generation in a concentration-dependent manner and the effect was enhanced with ticagrelor and ticagrelor plus ASA. Rivaroxaban and ticagrelor also concentration-dependently inhibited tissue factor-induced platelet aggregation, and their combination increased the inhibition synergistically. In the AV shunt model, rivaroxaban dose-dependently reduced thrombus formation. Combining subefficacious or weakly efficacious doses of rivaroxaban with ASA or ASA plus clopidogrel increased the antithrombotic effect. Conclusion: These data indicate that the combination of rivaroxaban with single or dual antiplatelet agents works synergistically to reduce platelet activation, which may in turn lead to the delayed/reduced formation of coagulation complexes and vice versa, thereby enhancing antithrombotic potency. PMID:25848131

  20. Thrombocytopathy leading to impaired in vivo haemostasis and thrombosis in platelet type von Willebrand disease.

    PubMed

    Kaur, Harmanpreet; Corscadden, Kathryn; Ware, Jerry; Othman, Maha

    2017-02-28

    Platelet defects due to hyper-responsive GPIbα causing enhanced VWF interaction, counter-intuitively result in bleeding rather than thrombosis. The historical explanation of platelet/VWF clearance fails to explain mechanisms of impaired haemostasis particularly in light of reported poor platelet binding to fibrinogen. This study aimed to evaluate the defects of platelets with hyper-responsive GPIbα and their contribution to impaired in vivo thrombosis. Using the PT-VWD mouse model, platelets from the hTg G233V were compared to control hTg WT mice. Platelets' pro-coagulant capacity was evaluated using flowcytometry assessment of P-selectin and annexin V. Whole blood platelet aggregation in response to ADP, collagen and thrombin was tested. Clot kinetics using laser injury thrombosis model and the effect of GPIbα inhibition in vivo using 6B4; a monoclonal antibody, were evaluated. Thrombin-induced platelet P-selectin and PS exposure were significantly reduced in hTg G233V compared to hTg WT and not significantly different when compared to unstimulated platelets. The hTg G233V platelets aggregated normally in response to collagen, and had a delayed response to ADP and thrombin, when compared to hTg WT platelets. Laser injury showed significant impairment of in vivo thrombus formation in hTg G233V compared to hTg WT mice. There was a significant lag in in vitro clot formation in turbidity assay but no impairment in thrombin generation was observed using thromboelastography. The in vivo inhibition of GPIbα facilitated new - unstable - clot formation but did not improve the lag. We conclude platelets with hyper-responsive GPIbα have complex intrinsic defects beyond the previously described mechanisms. Abnormal signalling through GPIbα and potential therapy using inhibitors require further investigations.

  1. Novel Antiplatelet Activity of Minocycline Involves Inhibition of MLK3-p38 Mitogen Activated Protein Kinase Axis

    PubMed Central

    Jackson, Joseph W.; Singh, Meera V.; Singh, Vir B.; Jones, Letitia D.; Davidson, Gregory A.; Ture, Sara; Morrell, Craig N.; Schifitto, Giovanni; Maggirwar, Sanjay B.

    2016-01-01

    Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies. PMID:27270236

  2. Novel Antiplatelet Activity of Minocycline Involves Inhibition of MLK3-p38 Mitogen Activated Protein Kinase Axis.

    PubMed

    Jackson, Joseph W; Singh, Meera V; Singh, Vir B; Jones, Letitia D; Davidson, Gregory A; Ture, Sara; Morrell, Craig N; Schifitto, Giovanni; Maggirwar, Sanjay B

    2016-01-01

    Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies.

  3. Platelet biomechanics, platelet bioenergetics, and applications to clinical practice and translational research.

    PubMed

    George, Mitchell J; Bynum, James; Nair, Prajeeda; Cap, Andrew P; Wade, Charles E; Cox, Charles S; Gill, Brijesh S

    2018-07-01

    The purpose of this review is to explore the relationship between platelet bioenergetics and biomechanics and how this relationship affects the clinical interpretation of platelet function devices. Recent experimental and technological advances highlight platelet bioenergetics and biomechanics as alternative avenues for collecting clinically relevant data. Platelet bioenergetics drive energy production for key biomechanical processes like adhesion, spreading, aggregation, and contraction. Platelet function devices like thromboelastography, thromboelastometry, and aggregometry measure these biomechanical processes. Platelet storage, stroke, sepsis, trauma, or the activity of antiplatelet drugs alters measures of platelet function. However, the specific mechanisms governing these alterations in platelet function and how they relate to platelet bioenergetics are still under investigation.

  4. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.

    PubMed

    Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern

    2015-05-19

    The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo.

    PubMed

    Deprés-Tremblay, Gabrielle; Chevrier, Anik; Tran-Khanh, Nicolas; Nelea, Monica; Buschmann, Michael D

    2017-11-10

    Platelet-rich plasma (PRP) has been used to treat different orthopedic conditions, however, the clinical benefits of using PRP remain uncertain. Chitosan (CS)-PRP implants have been shown to improve meniscus, rotator cuff and cartilage repair in pre-clinical models. The purpose of this current study was to investigate in vitro and in vivo mechanisms of action of CS-PRP implants. Freeze-dried formulations containing 1% (w/v) CS (80% degree of deacetylation and number average molar mass 38 kDa), 1% (w/v) trehalose as a lyoprotectant and 42.2 mM calcium chloride as a clot activator were solubilized in PRP. Gravimetric measurements and molecular/cellular imaging studies revealed that clot retraction is inhibited in CS-PRP hybrid clots through physical coating of platelets, blood cells and fibrin strands by chitosan, which interferes with platelet aggregation and platelet-mediated clot retraction. Flow cytometry and ELISA assays revealed that platelets are activated and granules secreted in CS-PRP hybrid clots and that cumulative release of platelet-derived growth factor (PDGF-AB) and epidermal growth factor is higher from CS-PRP hybrid clots compared to PRP clots in vitro. Finally, CS-PRP implants resided for up to 6 weeks in a subcutaneous implantation model and induced cell recruitment and granulation tissue synthesis, confirming greater residency and bioactivity compared to PRP in vivo.

  6. 5-HT receptor probe (/sup 3/H)8-OH-DPAT labels the 5-HT transporter in human platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ieni, J.R.; Meyerson, L.R.

    1988-01-01

    The present study characterizes a serotonin (5-HT) binding site on human platelet membranes, using (/sup 3/H)8-OH-DPAT as the radioligand. (/sup 3/H)8-OH-DPAT binds specifically and saturably to a site on human platelet membranes with an average K/sub D/ of 43 nM and B/sub max/ of 1078 fmol/mg protein. Determinations of IC/sub 50/ values for various serotonergic characterizing agents in platelets for displacement of (/sup 3/H)8-OH-DPAT were performed. The pharmacological inhibitory profile of the platelet 8-OH-DPAT site is not consistent with profiles reported for brain. 8-OH-DPAT does not inhibit (/sup 3/H) imipramine binding, however, it does inhibit (/sup 3/H)5-HT uptake in humanmore » platelets near 5-HT's K/sub m/ value (IC/sub 50/ = 2-4 ..mu..M). These results suggest that the human platelet site labelled by (/sub 3/H)8-OH-DPAT is pharmocologically different from the neuronal site and probably is a component of the 5-HT transporter. 32 references, 1 figure, 4 tables.« less

  7. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  8. Chromium picolinate inhibits cholesterol-induced stimulation of platelet aggregation in hypercholesterolemic rats.

    PubMed

    Seif, A A

    2015-06-01

    Hypercholesterolemia indirectly increases the risk of myocardial infarction by enhancing platelet aggregation. Chromium has been shown to lower plasma lipids. This study was designed to investigate whether chromium inhibits platelet aggregation under hypercholesterolemic conditions. Albino rats were divided into four groups: control rats fed with a normolipemic diet (NLD group), chromium-supplemented rats fed with NLD (NLD + Cr group), rats fed with a high-fat diet (HF group), and chromium-supplemented rats fed with HF (HF + Cr group). After 10 weeks, blood was collected to determine adenosine diphosphate and collagen-induced platelet aggregation and plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B, and thromboxane B2. Low-density lipoprotein cholesterol was calculated by Friedewald formula. High-fat diet animals displayed significant elevation of plasma lipids and platelet aggregation which was normalized to control levels by chromium supplementation. Chromium supplementation in normolipemic (NLD + Cr) rats did not produce significant changes in either plasma lipids or platelet activity. Chromium supplementation to hypercholesterolemic rats improves the lipid profile and returns platelet hyperaggregability to control levels. This normalization is mostly due to a reduction in plasma cholesterol level.

  9. Effect of racemic ibuprofen dose on the magnitude and duration of platelet cyclo-oxygenase inhibition: relationship between inhibition of thromboxane production and the plasma unbound concentration of S(+)-ibuprofen.

    PubMed

    Evans, A M; Nation, R L; Sansom, L N; Bochner, F; Somogyi, A A

    1991-02-01

    1. Four healthy male subjects received racemic ibuprofen (200, 400, 800 and 1200 mg), orally, on four occasions, 2 weeks apart, according to a four-way Latin-square design, in order to investigate the influence of increasing dose of ibuprofen on the magnitude and duration of its antiplatelet effect as well as on the relationship between such effect and drug concentration. 2. The antiplatelet effect of ibuprofen was assessed by measuring the inhibition of platelet thromboxane B2 (TXB2) generation during the controlled clotting of whole blood. The plasma unbound concentration of S(+)-ibuprofen, the enantiomer shown in an in vitro study to be responsible for the inhibitory effect of platelet TXB2 generation, was measured using an enantioselective method. 3. The maximum percentage inhibition of TXB2 generation increased significantly with dose from a mean +/- s.d. of 93.4 +/- 1.2% after the 200 mg dose to 98.8 +/- 0.3% after the 1200 mg dose, and there was an increase with dose in the duration of inhibition of TXB2 generation. The effect of ibuprofen on platelet TXB2 generation was transient and mirrored the time-course of unbound S(+)-ibuprofen in plasma; on all but one of the 16 occasions, serum TXB2 concentrations returned to at least within 10% of the pretreatment concentrations within 24 h of ibuprofen administration. 4. For each subject, the relationship between the percentage inhibition of TXB2 generation and the unbound concentration of S(+)-ibuprofen in plasma was modelled according to a sigmoidal Emax equation. The mean plasma unbound concentration of S(+)-ibuprofen required to inhibit platelet TXB2 generation by 50% (EC50) was 9.8 +/- 1.0 micrograms l-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. A Nitric Oxide-Releasing Heparin Conjugate for Delivery of a Combined Antiplatelet/Anticoagulant Agent

    PubMed Central

    2015-01-01

    Heparin is a widely used anticoagulant due to its ability to inhibit key components in the coagulation cascade such as Factor Xa and thrombin (Factor IIa). Its potential to preferentially bind to antithrombin (ATIII) results in a conformational change and activation that leads to the prevention of fibrin formation from fibrinogen and ultimately obstructs a hemostatic plug from forming. Nitric oxide (NO) exhibits potent antiplatelet activity attributed to its capacity to increase the amount of cyclic guanosine monophosphate (cGMP) within platelets, which decreases the Ca2+ concentration required for platelet activation. Currently there is no single agent that combines the functions of both antiplatelet and anticoagulant (anti-Xa and anti-IIa) activities to effectively block both the extrinsic and the intrinsic coagulation pathways. The research reported herein demonstrates the ability to combine the physiological capabilities of both heparin and NO into one functional compound via use of a spermine derivative of heparin, thus enabling formation of a novel diazeniumdiolate (NONOate). The heparin–spermine NONOate has a half-life of 85 min at 25 °C (pH 7.4). The heparin backbone of the conjugate maintains its anticoagulant activity as demonstrated via an anti-Xa assay, providing an anticoagulant conversion of 3.6 μg/mL of the heparin–spermine–NONO conjugate being equivalent to 2.5 μg/mL (0.50 IU/mL) of underivatized heparin in terms of anti-Xa activity. Using standard platelet aggregometry, it is shown that the functionality of the NO release portion of the heparin conjugate prevents (nearly 100%) platelet aggregation in the presence of adenosine diphosphate (ADP, platelet agonist). PMID:24423090

  11. Ultrastructural Localization of Peroxidase Activity in Human Platelets and Megakaryocytes

    PubMed Central

    Breton-Gorius, Janine; Guichard, Josette

    1972-01-01

    Normal human platelets and megakaryocytes were examined for peroxidase activity by the diaminobenzidine (DAB) cytochemical technic. When the fixation and the incubation were adequate, a strong reaction was present in the dense tubular system of platelets suspended in plasma or spread on carbon. The black reaction product was ascribed to enzyme activity, since the reaction was completely eliminated when H2O2 or DAB were omitted, or when H2O2 was in excess. In addition, the reaction was inhibited by aminotriazole, cyanide and azide. In the human megakaryocytes, the reaction was localized in the endoplasmic reticulum including the perinuclear envelope. The Golgi complex and the clear vacuolar system were negative for the reaction. After platelet release, the reaction was always seen in the perinuclear space. The nature and function of the enzyme, as well as its possible relationships with catalase, are discussed. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 8Fig 9Fig 10Fig 11Fig 1Fig 2Fig 12Fig 13Fig 14Fig 15Fig 16 PMID:5009974

  12. Delineating the roles of the GPIIb/IIIa and GP-Ib-IX-V platelet receptors in mediating platelet adhesion to adsorbed fibrinogen and albumin.

    PubMed

    Sivaraman, Balakrishnan; Latour, Robert A

    2011-08-01

    Platelet adhesion to adsorbed plasma proteins, such as fibrinogen (Fg), has been conventionally thought to be mediated by the GPIIb/IIIa receptor binding to Arg-Gly-Asp (RGD)-like motifs in the adsorbed protein. In previous studies, we showed that platelet adhesion response to adsorbed Fg and Alb was strongly influenced by the degree of adsorption-induced protein unfolding and that platelet adhesion was only partially blocked by soluble RGD, with RGD-blocked platelets adhering without activation. Based on these results, we hypothesized that in addition to the RGD-specific GPIIb/IIIa receptor, which mediates both adhesion and activation, a non-RGD-specific receptor set likely also plays a role in platelet adhesion (but not activation) to both Fg and albumin (Alb). To identify and elucidate the role of these receptors, in addition to GPIIb/IIIa, we also examined the GPIb-IX-V receptor complex, which has been shown to mediate platelet adhesion (but not activation) in studies by other groups. The platelet suspension was pretreated with either a GPIIb/IIIa-antagonist drug Aggrastat(®) or monoclonal antibodies 6B4 or 24G10 against GPIb-IX-V prior to adhesion on Fg- and Alb-coated OH- and CH(3)-functionalized alkanethiol self-assembled monolayer surfaces. The results revealed that GPIIb/IIIa is the primary receptor set involved in platelet adhesion to adsorbed Fg and Alb irrespective of their degree of adsorption-induced unfolding, while the GPIb-IX-V receptor complex plays an insignificant role. Overall, these studies provide novel insights into the molecular-level mechanisms mediating platelet interactions with adsorbed plasma proteins, thereby assisting the biomaterials field develop potent strategies for inhibiting platelet-protein interactions in the design of more hemocompatible cardiovascular biomaterials and effective anti-thrombotic therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. NP-184[2-(5-methyl-2-furyl) benzimidazole], a novel orally active antithrombotic agent with dual antiplatelet and anticoagulant activities.

    PubMed

    Kuo, Heng-Lan; Lien, Jin-Cherng; Chung, Ching-Hu; Chang, Chien-Hsin; Lo, Shyh-Chyi; Tsai, I-Chun; Peng, Hui-Chin; Kuo, Sheng-Chu; Huang, Tur-Fu

    2010-06-01

    The established antiplatelet and anticoagulant agents show beneficial effects in the treatment of thromboembolic diseases; however, these drugs still have considerable limitations. The effects of NP-184, a synthetic compound, on platelet functions, plasma coagulant activity, and mesenteric venule thrombosis in mice were investigated. NP-184 concentration-dependently inhibited the human platelet aggregation induced by collagen, arachidonic acid (AA), and U46619, a thromboxane (TX)A(2) mimic, with IC(50) values of 4.5 +/- 0.2, 3.9 +/- 0.1, and 9.3 +/- 0.5 microM, respectively. Moreover, NP-184 concentration-dependently suppressed TXA(2) formations caused by collagen and AA. In exploring effects of NP-184 on enzymes involved in TXA(2) synthesis, we found that NP-184 selectively inhibited TXA(2) synthase activity with an IC(50) value of 4.3 +/- 0.2 microM. Furthermore, NP-184 produced a right shift of the concentration-response curve of U46619, indicating a competitive antagonism on TXA(2)/prostaglandin H(2) receptor. Intriguingly, NP-184 also caused a concentration-dependent prolongation of the activated partial thromboplastin time (aPTT) with no changes in the prothrombin and thrombin time, indicating that it selectively impairs the intrinsic coagulation pathway. Oral administration of NP-184 significantly inhibited thrombus formation of the irradiated mesenteric venules in fluorescein sodium-treated mice without affecting the bleeding time induced by tail transection. However, after oral administration, NP-184 inhibited the ex vivo mouse platelet aggregation triggered by collagen and U46619 and also prolonged aPTT. Taken together, the dual antiplatelet and anticoagulant activities of NP-184 may have therapeutic potential as an oral antithrombotic agent in the treatment of thromboembolic disorders.

  14. Therapeutic potential of choline magnesium trisalicylate as an alternative to aspirin for patients with bleeding tendencies.

    PubMed

    Danesh, B J; Saniabadi, A R; Russell, R I; Lowe, G D

    1987-12-01

    We have compared the effects of acetyl salicylic acid (ASA, aspirin) and choline magnesium trisalicylate (CMT), a non-acetylated salicylate product, on platelet aggregation in human whole blood ex-vivo. Using a whole blood platelet counter, platelet aggregation was quantified by measuring the fall in the number of single platelets at peak aggregation in response to collagen, arachidonic acid (AA), as well as spontaneous aggregation. In double blind and random order, 12 healthy volunteers received, on two separate occasions 10 days apart, a single oral dose of 652 mg ASA or 655 mg CMT. Despite a comparable absorption of salicylic acid from the two drugs, ingestion of ASA resulted in a marked inhibition of platelet aggregation induced by collagen (p less than 0.005), AA (p less than 0.01) and spontaneous aggregation (p less than 0.01), whereas such effects were not observed after CMT ingestion. We suggest that CMT may have therapeutic potential as an alternative to aspirin when inhibition of platelet aggregation can induce bleeding complications.

  15. The impact of generic clopidogrel bisulfate on platelet inhibition in patients with coronary artery stents: results of the ACCEL-GENERIC study.

    PubMed

    Jeong, Young-Hoon; Koh, Jin-Sin; Kang, Min-Kyung; Ahn, Yeon-Jeong; Kim, In-Suk; Park, Yongwhi; Hwang, Seok-Jae; Kwak, Choong Hwan; Hwang, Jin-Yong

    2010-06-01

    In patients with coronary artery stents, the cost of clopidogrel has been cited as a factor in the premature discontinuation of therapy. Thus, the introduction of lower-cost generic clopidogrel may increase patient compliance. However, platelet inhibition by generic clopidogrel has not been compared to the original clopidogrel formulation in patients with coronary artery stents. We prospectively enrolled 20 patients receiving chronic therapy with the original clopidogrel bisulfate (Plavix). After assessing patient compliance with Plavix, maintenance therapy was switched to generic clopidogrel bisulfate (Plavitor). Platelet reactivity was assessed at baseline and 30-day after the switch using conventional aggregometry and the VerifyNow P2Y12 assay. All patients completed maintenance therapy with Plavitor. Before and after switching therapy maximal (36.5 +/- 7.9% vs. 39.8 +/- 16.2%, p = 0.280) and late platelet aggregation (23.5 +/- 10.9% vs. 29.1 +/- 18.3%, p = 0.156) with 5 micromol/L adenosine diphosphate (ADP) stimulus did not differ. Likewise, 20 micromol/L ADP-induced platelet aggregation and P2Y12 reaction unit in patients on Plavitor therapy was comparable to that in patients on Plavix therapy. However, Bland-Altman analysis showed wide limits of agreement between measured platelet reactivity on Plavix vs. Plavitor therapies. Among patients on Plavix maintenance therapy with coronary stents, replacement with Plavitor shows a comparable inhibition of ADP-induced platelet aggregation. However, due to poor inter-therapy agreement, between two regimens, physicians may be cautious when introducing generic clopidogrel bisulfate.

  16. Monitoring ASA and P2Y12-specific platelet inhibition--comparison of conventional (single) and multiple electrode aggregometry.

    PubMed

    Krüger, Jan-Christopher; Meves, Saskia H; Kara, Kaffer; Mügge, Andreas; Neubauer, Horst

    2014-10-01

    Several platelet function test systems exist for the evaluation of the platelet inhibitory effect in patients on P2Y12 inhibitors and/or acetylsalicylic acid (ASA, aspirin) therapy. Studies comparing different available assays found only a poor correlation. The objective of the present study was to evaluate the correlation and agreement between single electrode (SEA) and multiple electrode (MEA) aggregometry. In whole blood arachidonic acid (AA) and adenosine diphosphate (ADP)-induced platelet aggregation was measured simultaneously using SEA (Chrono-Log) and MEA (Multiplate). We analyzed a total of 226 measurements taken from 58 patients on single ASA therapy or dual antiplatelet therapy with ASA and a thienopyridine. A cut-off value for clopidogrel/prasugrel high on-treatment platelet reactivity (HPR) of > 47 units (U) was chosen for MEA testing using hirudin and > 5 Ohm for SEA with citrate anticoagulated blood samples. The respective cut-off values for ASA HPR were > 30 U for the MEA assay and > 1 Ohm for SEA testing. There was a good correlation of the prevalence of thienopyridine-HPR in both whole blood assays (Spearman rank correlation coefficient r = 0.698) and a good inter-rate accordance (Cohen's Kappa statistic κ = 0.648). For AA-induced aggregation, the correlation of the results obtained was significant (r = 0.536; p < 0.001) and detecting ASA-HPR revealed a moderate (κ = 0.482) correlation between both impedance aggregometry assays. Platelet function testing using SEA and MEA provided both good accordance and correlation and therefore study results obtained by these two assays similarly enabled the detection of HPR of thienopyridine (and ASA) therapy.

  17. Morusinol extracted from Morus alba inhibits arterial thrombosis and modulates platelet activation for the treatment of cardiovascular disease.

    PubMed

    Lee, Jung-Jin; Yang, Hyun; Yoo, Yeong-Min; Hong, Seong Su; Lee, Dongho; Lee, Hyun-Jung; Lee, Hak-Ju; Myung, Chang-Seon; Choi, Kyung-Chul; Jeung, Eui-Bae

    2012-01-01

    Morus alba (white mulberry) has been used in traditional Chinese medicine as an anti-headache, diuretic, expectorant, and anti-diabetic agent. In previous studies, extracts of Morus alba demonstrated favorable biological properties, such as antioxidant activity, suppression of lipoxygenase (LOX)-1, cytotoxicity against cancer cells, and inhibition of the invasion and migration of cancer cells. This study further evaluated the effects of morusinol, a flavonoid derived from Morus alba root bark, on platelet aggregation and thromboxane B(2) (TXB(2) formation in vitro and thrombus formation in vivo. The antiplatelet potential of morusinol was measured using in vitro rabbit platelet aggregation and TXB(2) formation assays. Arterial thrombus formation was investigated using an in vivo ferric chloride (FeCl(3)-induced thrombosis model. Morusinol significantly inhibited collagen- and arachidonic acid-induced platelet aggregation and TXB(2) formation in cultured platelets in a concentration-dependent manner. Thrombus formation was reduced by 32.1, 42.0, and 99.0% for collagen-induced TXB(2) formation, and 8.0, 24.1, and 29.2% for arachadonic acid-induced TXB(2) formation, with 5, 10, and 30 µg/mL morusinol, respectively. Moreover, oral morusinol (20 mg/kg) or aspirin (20 mg/kg) for three days significantly increased the time to occlusion in vivo by 20.3±5.0 or 6.8±2.9 min, respectively, compared with the control (1% CMC, carboxymethyl cellulose). Taken together, these results indicate that morusinol may significantly inhibit arterial thrombosis in vivo due to antiplatelet activity. Thus, morusinol may exert beneficial effects on transient ischemic attacks or stroke via the modulation of platelet activation.

  18. Disorders of Platelet Function

    PubMed Central

    Huebsch, Lothar B.; Harker, Laurence A.

    1981-01-01

    Platelets play an important role in hemostasis, and alterations in platelet function may be the cause of abnormal bleeding in a wide variety of congenital and acquired clinical disorders. Platelet dysfunction may be classified as disorders of (1) substrate connective tissue, (2) adhesion, (3) aggregation and (4) platelet-release reaction. The congenital defects of platelet function, although uncommon, have provided important insights into platelet physiology and pathophysiology and, as a group, are less common, better characterized and more readily classified than the acquired defects. The severity of bleeding resulting from platelet dysfunction varies greatly and is substantially increased when another defect of hemostasis coexists. A disorder of platelet function is suspected on the basis of the history and physical examination and is confirmed by the finding of a prolonged bleeding time in the presence of an adequate number of platelets. A specific diagnosis often requires measurements of the factor VIII and von Willebrand factor complex and other tests of platelet function. Some of these tests may be available only in specialized laboratories. Therapy for bleeding episodes resulting from platelet dysfunction is directed at (1) removing or treating the underlying cause of the platelet disorder; (2) replacing the missing plasma cofactors needed to support normal platelet function (such as by the transfusion of cryoprecipitate in patients with von Willebrand disease, and (3) transfusing functional platelets in the form of platelet concentrates in patients with disorders of intrinsic platelet dysfunction. ImagesFigure 1.Figure 2.Figure 3. PMID:7013276

  19. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling.

    PubMed

    Schweigel, Hardy; Geiger, Jörg; Beck, Florian; Buhs, Sophia; Gerull, Helwe; Walter, Ulrich; Sickmann, Albert; Nollau, Peter

    2013-03-01

    Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans

    PubMed Central

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A.; Wilensky, Robert L.; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A.

    2012-01-01

    The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1–dependent formation of PGD2 and PGE2 followed by COX-2–dependent production of PGE2. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD2 receptor DP1. NSAID-mediated suppression of COX-2–derived PGI2 has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD2. Here, we show that PGD2 biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1–derived PGD2 biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD2 was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD2, like PGI2, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy. PMID:22406532

  1. Demonstration of a specific C3a receptor on guinea pig platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, Y.; Hugli, T.E.

    1988-05-15

    Guinea pig platelets reportedly contain receptors specific for the anaphylatoxin C3a based on both ligand-binding studies and functional responses. A portion of the human 125I-C3a that binds to guinea pig platelets is competitively displaced by excess unlabeled C3a; however, the majority of ligand uptake was nonspecific. Uptake of 125I-C3a by guinea pig platelets is maximal in 1 min, and stimulation of guinea pig platelets by thrombin, ADP, or the Ca2+ ionophore A23187 showed little influence on binding of the ligand. Scatchard analysis indicated that approximately 1200 binding sites for C3a exist per cell with an estimated Kd of 8 xmore » 10(-10) M. Human C3a des Arg also binds to guinea pig platelets, but Scatchard analysis indicated that no specific binding occurred. Because the ligand-binding studies were complicated by high levels of nonspecific uptake, we attempted to chemically cross-link the C3a molecule to a specific component on the platelet surface. Cross-linkage of 125I-C3a to guinea pig platelets with bis(sulfosuccinimidyl)suberate revealed radioactive complexes at 105,000 and 115,000 m.w. on SDS-PAGE gels by autoradiographic analysis. In the presence of excess unlabeled C3a, complex formation was inhibited. No cross-linkage could be demonstrated between the inactive 125I-C3a des Arg and the putative C3a-R on guinea pig platelets. Human C3a, but not C3a des Arg induces serotonin release and aggregation of the guinea pig platelets. Human C3a was unable to induce either serotonin release or promote aggregation of human platelets. Uptake of human 125I-C3a by human platelets was not saturable, and Scatchard analysis was inconclusive. Attempts to cross-link 125I-C3a to components on the surface of human platelets also failed to reveal a ligand-receptor complex. Therefore, we conclude that guinea pig platelets have specific surface receptors to C3a and that human platelets appear devoid of receptors to the anaphylatoxin.« less

  2. Coming safely to a stop: a review of platelet activity after cessation of antiplatelet drugs.

    PubMed

    Ford, Isobel

    2015-08-01

    The platelet P2Y12 antagonists are widely used, usually in combination with aspirin, to prevent atherothrombotic events in patients with acute coronary syndromes during percutaneous coronary intervention and after placement of arterial stents. Inhibition by clopidogrel or prasugrel lasts for the lifetime of the affected platelets and platelet haemostatic function gradually recovers after stopping the drug, as new unaffected platelets are formed. The optimal durations for dual antiplatelet therapy are prescribed by clinical guidelines. Continuation beyond the recommended duration is associated with an increased mortality, mainly associated with major bleeding. Fear of a 'rebound' of prothrombotic platelet activity on stopping the drug has provoked much discussion and many studies. However, review of the available literature reveals no evidence for production of hyper-reactive platelets after cessation of clopidogrel in patients who are stable. Any increase in acute coronary and other vascular events after stopping seems most likely therefore to be due to premature discontinuation or disruption of treatment while thrombotic risk is still high. No difference in rebound was found with the newer P2Y12 inhibitors, although ticagrelor and prasugrel are more potent platelet inhibitors than clopidogrel. Recent randomized controlled trials confirm it is safe to stop the thienopyridine and continue with aspirin alone in most patients after the duration of treatment recommended by the guidelines. Decisions on when to stop therapy in individuals, however, remain challenging and there is a growing rationale for platelet testing to assist clinical judgement in certain situations such as patients stopping dual antiplatelet therapy before surgery or in individuals at highest bleeding or thrombotic risk.

  3. Splenectomy Is Modifying the Vascular Remodeling of Thrombosis

    PubMed Central

    Frey, Maria K.; Alias, Sherin; Winter, Max P.; Redwan, Bassam; Stübiger, Gerald; Panzenboeck, Adelheid; Alimohammadi, Arman; Bonderman, Diana; Jakowitsch, Johannes; Bergmeister, Helga; Bochkov, Valery; Preissner, Klaus T.; Lang, Irene M.

    2014-01-01

    Background Splenectomy is a clinical risk factor for complicated thrombosis. We hypothesized that the loss of the mechanical filtering function of the spleen may enrich for thrombogenic phospholipids in the circulation, thereby affecting the vascular remodeling of thrombosis. Methods and Results We investigated the effects of splenectomy both in chronic thromboembolic pulmonary hypertension (CTEPH), a human model disease for thrombus nonresolution, and in a mouse model of stagnant flow venous thrombosis mimicking deep vein thrombosis. Surgically excised thrombi from rare cases of CTEPH patients who had undergone previous splenectomy were enriched for anionic phospholipids like phosphatidylserine. Similar to human thrombi, phosphatidylserine accumulated in thrombi after splenectomy in the mouse model. A postsplenectomy state was associated with larger and more persistent thrombi. Higher counts of procoagulant platelet microparticles and increased leukocyte–platelet aggregates were observed in mice after splenectomy. Histological inspection revealed a decreased number of thrombus vessels. Phosphatidylserine‐enriched phospholipids specifically inhibited endothelial proliferation and sprouting. Conclusions After splenectomy, an increase in circulating microparticles and negatively charged phospholipids is enhanced by experimental thrombus induction. The initial increase in thrombus volume after splenectomy is due to platelet activation, and the subsequent delay of thrombus resolution is due to inhibition of thrombus angiogenesis. The data illustrate a potential mechanism of disease in CTEPH. PMID:24584745

  4. Effect of transdermic acetylsalicylic acid on hemostasis in healthy volunteers.

    PubMed

    Martínez, Adriana B; Funosas, Esteban; Maestri, Lorella; Lucena, Perla Hermida

    2007-01-01

    Acetylsalicylic acid (ASA) exerts an antiaggregatory effect on platelets by irreversible inhibition of the enzyme thrombocyte cyclooxigenase when it is administered orally at doses above 80 mg/day. For several years ASA has been available as a solution that can be topically applied on the skin. It is widely used by athletes and individuals with chronic rheumatic disorders. However, it has not been established to date whether the plasma levels that result from these doses of ASA affect hemostasis during odontological procedures that involve bleeding, causing platelet dysfunction. The aim of the present study was to evaluate whether topical application is capable of affecting hemostasis. Three studies were conducted: A, B y C. Each of the 3 groups included 12 healthy volunteers of both sexes. The aim of study A was to evaluate if the formulation for topical application resulted in plasma levels of ASA that resembled those observed for the oral formulation and affect hemostasis. In experiment A, plasma levels of salicylic acid (SA) were assessed for each volunteer at 30 minutes, 60 minutes, 6 hours, 12 hours and 24 hours after oral administration of a dose of 500 mg ASA. Experiment B was identical to experiment A except for the fact that ASA was topically applied employing a commercial preparation Aspirub in a predetermined area at a rate of 2 ml/day over a period of 15 days. Experiment C was designed in the same way as experiment B, for a higher dose and a longer period of time (4 ml/day over a period of 30 days). One of the volunteers exhibited detectable salicylemia that could affect hemostasis as occurs with the oral formulation. The following two studies (C1 and C2) employed doses of Aspirub of 8 and 16 ml/day respectively, over a period of 30 days. We measured biochemical parameters associated to platelet function. The dose of 8 ml/day induced moderate alterations in all the parameters related to platelet function and the daily dose of 16 ml inhibited platelet aggregation in all the volunteers involved.

  5. Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton.

    PubMed Central

    Rosado, J A; Graves, D; Sage, S O

    2000-01-01

    We have recently reported that store-mediated Ca(2+) entry in platelets is likely to be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, a model termed 'secretion-like coupling'. In this model the actin cytoskeleton plays a key regulatory role. Since tyrosine kinases have been shown to be important for Ca(2+) entry in platelets and other cells, we have now investigated the possible involvement of tyrosine kinases in the secretion-like-coupling model. Treatment of platelets with thrombin or thapsigargin induced actin polymerization by a calcium-independent pathway. Methyl 2,5-dihydroxycinnamate, a tyrosine kinase inhibitor, prevented thrombin- or thapsigargin-induced actin polymerization. The effects of tyrosine kinases in store-mediated Ca(2+) entry were found to be entirely dependent on the actin cytoskeleton. PP1, an inhibitor of the Src family of proteins, partially inhibited store-mediated Ca(2+) entry. In addition, depletion of intracellular Ca(2+) stores stimulated cytoskeletal association of the cytoplasmic tyrosine kinase pp60(src), a process that was sensitive to treatment with cytochalasin D and PP1, but not to inhibition of Ras proteins using prenylcysteine analogues. Finally, combined inhibition of both Ras proteins and tyrosine kinases resulted in complete inhibition of Ca(2+) entry, suggesting that these two families of proteins have independent effects in the activation of store-mediated Ca(2+) entry in human platelets. PMID:11023829

  6. Protective mechanisms of adenosine 5'-monophosphate in platelet activation and thrombus formation.

    PubMed

    Fuentes, E; Badimon, L; Caballero, J; Padró, T; Vilahur, G; Alarcón, M; Pérez, P; Palomo, I

    2014-03-03

    Platelet activation is relevant to a variety of acute thrombotic events. We sought to examine adenosine 5'-monophosphate (AMP) mechanisms of action in preventing platelet activation, thrombus formation and platelet-related inflammatory response. We assessed the effect of AMP on 1) P-selectin expression and GPIIb/IIIa activation by flow cytometry; 2) Platelet aggregation and ATP secretion induced by ADP, collagen, TRAP-6, convulxin and thrombin; 3) Platelet rolling and firm adhesion, and platelet-leukocyte interactions under flow-controlled conditions; and, 4) Platelet cAMP levels, sP-selectin, sCD40L, IL-1β, TGF-β1 and CCL5 release, PDE3A activity and PKA phosphorylation. The effect of AMP on in vivo thrombus formation was also evaluated in a murine model. The AMP docking with respect to A2 adenosine receptor was determined by homology. AMP concentration-dependently (0.1 to 3 mmol/l) inhibited P-selectin expression and GPIIb/IIIa activation, platelet secretion and aggregation induced by ADP, collagen, TRAP-6 and convulxin, and diminished platelet rolling and firm adhesion. Furthermore, AMP induced a marked increase in the rolling speed of leukocytes retained on the platelet surface. At these concentrations AMP significantly decreased inflammatory mediator from platelet, increased intraplatelet cAMP levels and inhibited PDE3A activity. Interestingly, SQ22536, ZM241385 and SCH58261 attenuated the antiplatelet effect of AMP. Docking experiments revealed that AMP had the same orientation that adenosine inside the A2 adenosine receptor binding pocket. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. Considering the successful use of combined antiplatelet therapy, AMP may be further developed as a novel antiplatelet agent.

  7. Dual roles for hepatic lectin receptors in the clearance of chilled platelets.

    PubMed

    Rumjantseva, Viktoria; Grewal, Prabhjit K; Wandall, Hans H; Josefsson, Emma C; Sørensen, Anne Louise; Larson, Göran; Marth, Jamey D; Hartwig, John H; Hoffmeister, Karin M

    2009-11-01

    Rapid chilling causes glycoprotein-Ib (GPIb) receptors to cluster on blood platelets. Hepatic macrophage beta(2) integrin binding to beta-N-acetylglucosamine (beta-GlcNAc) residues in the clusters leads to rapid clearance of acutely chilled platelets after transfusion. Although capping the beta-GlcNAc moieties by galactosylation prevents clearance of short-term-cooled platelets, this strategy is ineffective after prolonged refrigeration. We report here that prolonged refrigeration increased the density and concentration of exposed galactose residues on platelets such that hepatocytes, through Ashwell-Morell receptor binding, become increasingly involved in platelet removal. Macrophages rapidly removed a large fraction of transfused platelets independent of their storage conditions. With prolonged platelet chilling, hepatocyte-dependent clearance further diminishes platelet recovery and survival after transfusion. Inhibition of chilled platelet clearance by both beta(2) integrin and Ashwell-Morell receptors may afford a potentially simple method for storing platelets in the cold.

  8. Acute Coagulopathy of Trauma in the Rat

    DTIC Science & Technology

    2013-01-01

    coagulation and include prothrombin complex con- centrate, recombinant activated FVII , tranexamic acid, and fibrinogen (13, 14). The degree of coagulopathy...extrinsic pathway using tissue factor to initiate coagulation as would be expected following tissue injury. Cytochalasin D (inhibit platelet function in...chalasin D. ! Angle was elevated, and clotting time was shortened, suggesting that coagulation factors were activated and adequate to support thrombin

  9. Regulation of platelet granule exocytosis by S-nitrosylation

    PubMed Central

    Morrell, Craig N.; Matsushita, Kenji; Chiles, Kelly; Scharpf, Robert B.; Yamakuchi, Munekazu; Mason, Rebecca J. A.; Bergmeier, Wolfgang; Mankowski, Joseph L.; Baldwin, William M.; Faraday, Nauder; Lowenstein, Charles J.

    2005-01-01

    Nitric oxide (NO) regulates platelet activation by cGMP-dependent mechanisms and by mechanisms that are not completely defined. Platelet activation includes exocytosis of platelet granules, releasing mediators that regulate interactions between platelets, leukocytes, and endothelial cells. Exocytosis is mediated in part by N-ethylmaleimide-sensitive factor (NSF), an ATPase that disassembles complexes of soluble NSF attachment protein receptors. We now demonstrate that NO inhibits exocytosis of dense granules, lysosomal granules, and α-granules from human platelets by S-nitrosylation of NSF. Platelets lacking endothelial NO synthase show increased rolling on venules, increased thrombosis in arterioles, and increased exocytosis in vivo. Regulation of exocytosis is thus a mechanism by which NO regulates thrombosis. PMID:15738422

  10. EV-077 in vitro inhibits platelet aggregation in type-2 diabetics on aspirin.

    PubMed

    Sakariassen, Kjell S; Femia, Eti A; Daray, Federico M; Podda, Gian M; Razzari, Cristina; Pugliano, Mariateresa; Errasti, Andrea E; Armesto, Arnaldo R; Nowak, Wanda; Alberts, Pēteris; Meyer, Jean-Philippe; Sorensen, Alexandra S; Cattaneo, Marco; Rothlin, Rodolfo P

    2012-11-01

    This study aimed to characterize the in vitro effect of EV-077, a compound that antagonises the binding of prostanoids and isoprostanes to the thromboxane receptor (TP) and inhibits the thromboxane synthase (TS), on platelet aggregation of patients with type-2 diabetes and coronary artery disease (CAD) on chronic aspirin treatment. The effect of EV-077 on 8-iso-PGE(2)-mediated TP receptor contraction of human arteries was also investigated. Fifty-two type-2 diabetics with CAD on chronic aspirin (100 mg) treatment were studied. Arachidonic acid-induced platelet aggregation was measured by impedance aggregometry in platelet-rich plasma (PRP) and whole blood anticoagulated with hirudin, and by light transmission aggregometry in citrate-anticoagulated PRP following 10-min in vitro exposure to EV-077 (100 nmol/l) or control. The effect of EV-077 was measured on isometric contraction of 24 human umbilical arteries induced by isoprostane 8-iso-PGE(2). Arachidonic acid (1 mmol/l) induced substantial aggregation in hirudin-anticoagulated whole blood (63 ± 4 AU), which was significantly reduced by in vitro exposure to EV-077 (38 ± 3 AU, P<0.001). Virtually no arachidonic acid-induced aggregation in citrate-anticoagulated or hirudin-anticoagulated PRP was observed. EV-077 potently, competitively and reversibly inhibited TP mediated contraction of umbilical arteries by 8-iso-PGE(2) (P<0.01). Aspirin did not completely inhibit arachidonic acid-induced platelet aggregation in whole blood from type-2 diabetics with CAD. This aggregation is likely induced by prostanoids and/or isoprostanes produced by leukocytes, because it was significantly reduced by EV-077. The TP receptor-mediated contraction of human arteries induced by isoprostane 8-iso-PGE(2) was effectively inhibited by EV-077. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Biologic variability and correlation of platelet function testing in healthy dogs.

    PubMed

    Blois, Shauna L; Lang, Sean T; Wood, R Darren; Monteith, Gabrielle

    2015-12-01

    Platelet function tests are influenced by biologic variability, including inter-individual (CVG ) and intra-individual (CVI ), as well as analytic (CVA ) variability. Variability in canine platelet function testing is unknown, but if excessive, would make it difficult to interpret serial results. Additionally, the correlation between platelet function tests is poor in people, but not well described in dogs. The aims were to: (1) identify the effect of variation in preanalytic factors (venipuncture, elapsed time until analysis) on platelet function tests; (2) calculate analytic and biologic variability of adenosine diphosphate (ADP) and arachidonic acid (AA)-induced thromboelastograph platelet mapping (TEG-PM), ADP-, AA-, and collagen-induced whole blood platelet aggregometry (WBA), and collagen/ADP and collagen/epinephrine platelet function analysis (PFA-CADP, PFA-CEPI); and (3) determine the correlation between these variables. In this prospective observational trial, platelet function was measured once every 7 days, for 4 consecutive weeks, in 9 healthy dogs. In addition, CBC, TEG-PM, WBA, and PFA were performed. Overall coefficients of variability ranged from 13.3% to 87.8% for the platelet function tests. Biologic variability was highest for AA-induced maximum amplitude generated during TEG-PM (MAAA; CVG = 95.3%, CVI = 60.8%). Use of population-based reference intervals (RI) was determined appropriate only for PFA-CADP (index of individuality = 10.7). There was poor correlation between most platelet function tests. Use of population-based RI appears inappropriate for most platelet function tests, and tests poorly correlate with one another. Future studies on biologic variability and correlation of platelet function tests should be performed in dogs with platelet dysfunction and those treated with antiplatelet therapy. © 2015 American Society for Veterinary Clinical Pathology.

  12. A critical role for the regulation of Syk from agglutination to aggregation in human platelets.

    PubMed

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2014-01-10

    Agglucetin, a tetrameric glycoprotein (GP) Ibα agonist from Formosan Agkistrodon acutus venom, has been characterized as an agglutination inducer in human washed platelets (WPs). In platelet-rich plasma (PRP), agglucetin dramatically elicits a biphasic response of agglutination and subsequent aggregation. For clarifying the intracellular signaling events from agglutination to aggregation in human platelets, we examined the essential signaling molecules involved through the detection of protein tyrosine phosphorylation (PTP). In WPs, an anti-GPIbα monoclonal antibody (mAb) AP1, but not a Src kinase inhibitor PP1, completely inhibited agglucetin-induced agglutination. However, PP1 but not AP1 had a potent suppression on platelet aggregation by a GPVI activator convulxin. The PTP analyses showed agglucetin alone can cause a weak pattern involving sequential phosphorylation of Lyn/Fyn, Syk, SLP-76 and phospholipase Cγ2 (PLCγ2). Furthermore, a Syk-selective kinase inhibitor, piceatannol, significantly suppressed the aggregating response in agglucetin-activated PRP. Analyzed by flow cytometry, the binding capacity of fluorophore-conjugated PAC-1, a mAb recognizing activated integrin αIIbβ3, was shown to increase in agglucetin-stimulated platelets. Again, piceatannol but not PP1 had a concentration-dependent suppression on agglucetin-induced αIIbβ3 exposure. Moreover, the formation of signalosome, including Syk, SLP-76, VAV, adhesion and degranulation promoting adapter protein (ADAP) and PLCγ2, are required for platelet aggregation in agglucetin/fibrinogen-activated platelets. In addition, GPIbα-ligation via agglucetin can substantially promote the interactions between αIIbβ3 and fibrinogen. Therefore, the signal pathway of Lyn/Fyn/Syk/SLP-76/ADAP/VAV/PLCγ2/PKC is sufficient to trigger platelet aggregation in agglucetin/fibrinogen-pretreated platelets. Importantly, Syk may function as a major regulator for the response from GPIbα-initiated agglutination to integrin αIIbβ3-dependent aggregation in human platelets. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Anti-thrombotic and anti-inflammatory activities of protopine.

    PubMed

    Saeed, S A; Gilani, A H; Majoo, R U; Shah, B H

    1997-07-01

    The effects of protopine on human platelet aggregation and arachidonic acid (AA) metabolism via cyclooxygenase (COX) and lipoxygenase (LOP) enzymes were examined. Platelet aggregation induced by various platelet agonists (AA, ADP, collagen and PAF) was strongly inhibited by protopine in a concentration-related manner. The IC50 values (microM) of protopine (mean +/- SEM) against: AA; 12 +/- 2: ADP; 9 +/- 2: collagen; 16 +/- 2 and PAF; 11 +/- 1, were much less than those observed for aspirin. In addition, protopine selectively inhibited the synthesis of thromboxane A2 (TXA2) via COX pathway and had no effect on the LOP pathway in platelets. In vivo, pretreatment with protopine (50-100 mg kg-1) protected rabbits from the lethal effects of AA (2 mg kg-1) or PAF (11 micrograms kg-1) in dose-dependent fashion. Protopine (50-100 mg kg-1) also inhibited carrageenan-induced rat paw oedema with a potency of three-fold as compared to aspirin. These results are suggestive that protopine acts as a potent inhibitor of thromboxane synthesis and PAF with anti-inflammatory properties.

  14. Preventive and therapeutic effect of brozopine on stroke in Dahl Salt-sensitive hypertensive rats.

    PubMed

    Gao, Yuan; Wang, Yan; Li, Miao; Liu, Yali; Chang, Junbiao; Qiao, Hailing

    2017-10-01

    Our aim was to explore the preventive and therapeutic effects of sodium (±)-5-bromo-2-(α-hydroxypentyl) benzoate (brand name: brozopine, BZP) on stroke in Dahl Salt-sensitive (Dahl-SS) hypertensive rats. Dahl-SS rats were fed a high-salt diet to observe the effect of BZP on blood pressure, and brain, heart, and kidney tissues. Additionally, the incidence of stroke was recorded according to the neurological score. The relative mechanisms investigated included anti-oxidative effects and anti-platelet aggregation. BZP reduced the incidence of stroke, neuronal necrosis in the brain, and cell swelling and inflammatory infiltration in the kidney. Its mechanisms were related to the increased activities of gluthatione peroxidase and catalase and the decreased level of plasma nitric oxide. BZP inhibited arachidonic acid (AA) - induced platelet aggregation (IC 50 : 12µM) rather than that of adenosine diphosphate (ADP) - and/or thrombin-induced platelet aggregation in vitro. Interestingly, BZP inhibited ADP-, thrombin-, or AA-induced platelet aggregation and elevated the level of AMP-activated protein kinase, cyclic guanosine monophosphate, and vasodilator-stimulated-phosphoprotein, and attenuated ATP contents and mitogen-activated protein kinase levels in platelet and inhibited thrombus formation in a carotid artery thrombosis model, dose-dependently, in Dahl-SS hypertensive-induced stroke rats. In conclusion, BZP can have therapeutic and preventive effects on stroke in Dahl-SS hypertensive rats, the mechanisms of which may be related to anti-oxidant, anti-platelet aggregation and anti-thrombus formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Aspirin inhibition of platelet deposition at angioplasty sites: demonstration by platelet scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuningham, D.A.; Kumar, B.; Siegel, B.A.

    In-111 platelet scintigraphy was used to evaluate the effects of prior aspirin administration on the accumulation of In-111-labeled autologous platelets at sites of arterial injury resulting from iliac, femoral, or popliteal transluminal angioplasty in a nonrandomized study of 17 men. The degree of platelet localization at angioplasty sites was significantly less in nine men who had received aspirin in varying doses within the 4 days before angioplasty than in eight men who had not received aspirin for at least two weeks. The results suggest that aspirin treatment before angioplasty limits the early platelet deposition at the angioplasty site in men.

  16. The roles of prostaglandin endoperoxides, thromboxane A2 and adenosine diphosphate in collagen-induced aggregation in man and the rat.

    PubMed Central

    Emms, H.; Lewis, G. P.

    1986-01-01

    The effects of aspirin, carboxyheptylimidazole (CHI) and creatine phosphate/creatine phosphokinase (CP/CPK) on platelet aggregation and thromboxane B2 (TxB2) formation induced by collagen have been examined in vitro. Platelets from two species, man and the rat, have been used. In man, aspirin and CHI abolished TxB2 production but only partially inhibited aggregation. CP/CPK partially inhibited aggregation and TxB2 formation. In the rat, aspirin and CHI abolished TxB2 formation but had no effect on aggregation. CP/CPK completely inhibited aggregation and partially inhibited TxB2 generation. In man, collagen-induced aggregation is largely dependent on ADP and to a lesser extent on arachidonate metabolites whereas, in the rat, ADP alone mediates aggregation induced by this agonist. The results with CP/CPK suggest that TxB2 formation is dependent either on the prior release of platelet ADP or on aggregation itself rather than being responsible for the aggregation response. PMID:3082399

  17. Congenital platelet function defects

    MedlinePlus

    Platelet storage pool disorder; Glanzmann's thrombasthenia; Bernard-Soulier syndrome; Platelet function defects - congenital ... This disorder may also cause severe bleeding. Platelet storage pool disorder (also called platelet secretion disorder) occurs ...

  18. Assessment of platelet function in acute ischemic stroke patients previously treated with aspirin.

    PubMed

    Lago, Aida; Parkhutik, Vera; Tembl, Jose Ignacio; Vallés, Juana; Santos, Maria Teresa; Moscardó, Antonio

    2014-01-01

    Platelet inhibition measured by platelet function tests could be critical to understand the reasons for early recurrence and to guide therapeutic recommendations. We assess the platelet function during the acute phase of ischemic stroke in patients pretreated with aspirin who continue their treatment with aspirin only, are started on clopidogrel only, or add clopidogrel to aspirin. Sixty-four patients were taking aspirin before the stroke. Depending on the administered antiplatelet, 3 groups were defined: ASA: patients who continued on aspirin orally or intravenous acetylsalicylate of lysine, n = 30; CLO: patients who discontinued aspirin and were started on clopidogrel, n = 16; and ASA + CLO: patients who were prescribed both aspirin and clopidogrel, n = 10. Collagen-induced thromboxane A2 (TXA2) synthesis, ADP (adenosine diphosphate)-induced aggregation, and occlusion time (PF-100) were measured. CLO group only had a marked elevation of TXA2 (17.44 ± 15.62 ng/mL, P = .000) and a shortening of the platelet function analyzer (PFA)-100 closure time (157.13 ± 88 seconds, P = .047) compared with the other 2 groups (ASA: TXA2, .62 ± 1.59 ng/mL; ASA + CLO: TXA2 1.79 ± 4.59 ng/mL). They achieved a small (13%) but significant reduction of ADP-induced aggregation (87.00 ± 23.06 mm, P = .008) compared with the ASA group (102.82 ± 22.38 seconds). Stopping aspirin intake within the first 72 hours of the acute stroke drastically increases TXA2 synthesis. During the same time window, the freshly prescribed clopidogrel manages to reduce the ADP-induced aggregation only slightly (13%). This study offers analytic proof that the common practice of replacing aspirin with clopidogrel does not leave stroke patients fully protected during the first days after an ischemic stroke. Possible solutions could be to preserve aspirin during a few days or to use loading doses of clopidogrel at hospital admission. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin

    NASA Technical Reports Server (NTRS)

    Reed, G. L.; Matsueda, G. R.; Haber, E.

    1992-01-01

    Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.

  20. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice.

    PubMed

    Koenen, Rory R; von Hundelshausen, Philipp; Nesmelova, Irina V; Zernecke, Alma; Liehn, Elisa A; Sarabi, Alisina; Kramp, Birgit K; Piccinini, Anna M; Paludan, Søren R; Kowalska, M Anna; Kungl, Andreas J; Hackeng, Tilman M; Mayo, Kevin H; Weber, Christian

    2009-01-01

    Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXCL4) and RANTES (CCL5), triggering monocyte arrest on inflamed endothelium. Homo-oligomerization is required for the recruitment functions of CCL5, and chemokine heteromerization has more recently emerged as an additional regulatory mechanism, as evidenced by a mutual modulation of CXCL8 and CXCL4 activities and by enhanced monocyte arrest resulting from CCL5-CXCL4 interactions. The CCL5 antagonist Met-RANTES reduces diet-induced atherosclerosis; however, CCL5 antagonism may not be therapeutically feasible, as suggested by studies using Ccl5-deficient mice which imply that direct CCL5 blockade would severely compromise systemic immune responses, delay macrophage-mediated viral clearance and impair normal T cell functions. Here we determined structural features of CCL5-CXCL4 heteromers and designed stable peptide inhibitors that specifically disrupt proinflammatory CCL5-CXCL4 interactions, thereby attenuating monocyte recruitment and reducing atherosclerosis without the aforementioned side effects. These results establish the in vivo relevance of chemokine heteromers and show the potential of targeting heteromer formation to achieve therapeutic effects.

  1. A Novel Role of Eruca sativa Mill. (Rocket) Extract: Antiplatelet (NF-κB Inhibition) and Antithrombotic Activities

    PubMed Central

    Fuentes, Eduardo; Alarcón, Marcelo; Fuentes, Manuel; Carrasco, Gilda; Palomo, Iván

    2014-01-01

    Background: Epidemiological studies have shown the prevention of cardiovascular diseases through the regular consumption of vegetables. Eruca sativa Mill., commonly known as rocket, is a leafy vegetable that has anti-inflammatory activity. However, its antiplatelet and antithrombotic activities have not been described. Methods: Eruca sativa Mill. aqueous extract (0.1 to 1 mg/mL), was evaluated on human platelets: (i) P-selectin expression by flow cytometry; (ii) platelet aggregation induced by ADP, collagen and arachidonic acid; (iii) IL-1β, TGF-β1, CCL5 and thromboxane B2 release; and (iv) activation of NF-κB and PKA by western blot. Furthermore, (v) antithrombotic activity (200 mg/kg) and (vi) bleeding time in murine models were evaluated. Results: Eruca sativa Mill. aqueous extract (0.1 to 1 mg/mL) inhibited P-selectin expression and platelet aggregation induced by ADP. The release of platelet inflammatory mediators (IL-1β, TGF-β1, CCL5 and thromboxane B2) induced by ADP was inhibited by Eruca sativa Mill. aqueous extract. Furthermore, Eruca sativa Mill. aqueous extract inhibited NF-κB activation. Finally, in murine models, Eruca sativa Mill. aqueous extract showed significant antithrombotic activity and a slight effect on bleeding time. Conclusion: Eruca sativa Mill. presents antiplatelet and antithrombotic activity. PMID:25514563

  2. Subcutaneous Administration of Low-Molecular-Weight Heparin to Horses Inhibits Ex Vivo Equine Herpesvirus Type 1-Induced Platelet Activation

    PubMed Central

    Stokol, Tracy; Serpa, Priscila B. S.; Brooks, Marjory B.; Divers, Thomas; Ness, Sally

    2018-01-01

    Equine herpesvirus type 1 (EHV-1) is a major cause of infectious respiratory disease, abortion and neurologic disease. Thrombosis in placental and spinal vessels and subsequent ischemic injury in EHV-1-infected horses manifests clinically as abortion and myeloencephalopathy. We have previously shown that addition of heparin anticoagulants to equine platelet-rich plasma (PRP) can abolish ex vivo EHV-1-induced platelet activation. The goal of this study was to test whether platelets isolated from horses treated with unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) were resistant to ex vivo EHV-1-induced activation. In a masked, block-randomized placebo-controlled cross-over trial, 9 healthy adult horses received 4 subcutaneous injections at q. 12 h intervals of one of the following treatments: UFH (100 U/kg loading dose, 3 maintenance doses of 80 U/kg), 2 doses of LMWH (enoxaparin) 80 U/kg 24 h apart with saline at the intervening 12 h intervals, or 4 doses of saline. Blood samples were collected before treatment and after 36 h, 40 h (4 h after the last injection) and 60 h (24 h after the last injection). Two strains of EHV-1, Ab4 and RacL11, were added to PRP ex vivo and platelet membrane expression of P selectin was measured as a marker of platelet activation. Drug concentrations were monitored in a Factor Xa inhibition (anti-Xa) bioassay. We found that LMWH, but not UFH, inhibited platelet activation induced by low concentrations (1 × 106 plaque forming units/mL) of both EHV-1 strains at 40 h. At this time point, all horses had anti-Xa activities above 0.1 U/ml (range 0.15–0.48 U/ml) with LMWH, but not UFH. By 60 h, a platelet inhibitory effect was no longer detected and anti-Xa activity had decreased (range 0.03 to 0.07 U/ml) in LMWH-treated horses. Neither heparin inhibited platelet activation induced by high concentrations (5 × 106 plaque forming units/mL) of the RacL11 strain. We found substantial between horse variability in EHV-1-induced platelet activation at baseline and after treatment. Minor injection site reactions developed in horses given either heparin. These results suggest that LMWH therapy may prevent thrombotic sequelae of EHV-1, however further evaluation of dosage regimens is required. PMID:29892605

  3. Pathophysiologic roles of the fibrinogen gamma chain.

    PubMed

    Farrell, David H

    2004-05-01

    Fibrinogen binds through its gamma chains to cell surface receptors, growth factors, and coagulation factors to perform its key roles in fibrin clot formation, platelet aggregation, and wound healing. However, these binding interactions can also contribute to pathophysiologic processes, including inflammation and thrombosis. This review summarizes the latest findings on the role of the fibrinogen gamma chain in these processes, and illustrates the potential for therapeutic intervention. Novel gamma chain epitopes that bind platelet integrin alpha IIbbeta3 and leukocyte integrin alphaMbeta2 have been characterized, leading to the revision of former dogma regarding the processes of platelet aggregation, clot retraction, inflammation, and thrombosis. A series of studies has shown that the gamma chain serves as a depot for fibroblast growth factor-2 (FGF-2), which is likely to play an important role in wound healing. Inhibition of gamma chain function with the monoclonal antibody 7E9 has been shown to interfere with multiple fibrinogen activities, including factor XIIIa crosslinking, platelet adhesion, and platelet-mediated clot retraction. The role of the enigmatic variant fibrinogen gamma chain has also become clearer. Studies have shown that gamma chain binding to thrombin and factor XIII results in clots that are mechanically stiffer and resistant to fibrinolysis, which may explain the association between gammaA/gamma' fibrinogen levels and cardiovascular disease. The identification of new interactions with gamma chains has revealed novel targets for the treatment of inflammation and thrombosis. In addition, several exciting studies have shown new functions for the variant gamma chain that may contribute to cardiovascular disease.

  4. Acetylsalicylic acid is compounding to antiplatelet effect of C-reactive protein.

    PubMed

    Boncler, Magdalena; Luzak, Boguslawa; Rozalski, Marcin; Golanski, Jacek; Rychlik, Blazej; Watala, Cezary

    2007-01-01

    The contribution of inflammatory process to the modulation of platelet response to acetylsalicylic acid (ASA) remains obscure. In our study, we examined the in vitro effect of C-reactive protein (CRP) on the ASA-mediated inhibition of collagen-stimulated platelet reactivity. Influence of CRP on platelet responsiveness to ASA was analysed using classical turbidimetric aggregation and flow cytometry. When acting alone, both C-reactive protein and ASA inhibited collagen-dependent platelet aggregation and reduced the expressions of two platelet surface membrane activation markers: P-selectin and activated GPIIbIIIa complex. Compared to the effects observed for ASA alone, the simultaneous action of both agents lead to further reductions in platelet aggregation (by 56.7+/-1.0% vs. 14.9+/-0.6%, p<0.0001) and lowered the expressions of platelet surface membrane P-selectin (by 72.1+/-5.3% vs. 65.0+/-6.0%, p<0.01) and activated GPIIbIIIa (by 67.0+/-5.6% vs. 47.7+/-8.3%, p<0.01). In general, our findings showed for the first time the augmenting effect of native C-reactive protein in the antiplatelet action of acetylsalicylic acid. Thus, we conclude that the effectiveness of aspirin therapy may strongly depend upon the presence of native CRP in circulation.

  5. Evaluating platelet aggregation dynamics from laser speckle fluctuations.

    PubMed

    Hajjarian, Zeinab; Tshikudi, Diane M; Nadkarni, Seemantini K

    2017-07-01

    Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g 2 (t) , from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies.

  6. The influence of Rubus idaeus and Rubus caesius leaf extracts on platelet aggregation in whole blood. Cross-talk of platelets and neutrophils.

    PubMed

    Dudzinska, Dominika; Bednarska, Katarzyna; Boncler, Magdalena; Luzak, Boguslawa; Watala, Cezary

    2016-07-01

    Recently, polyphenols have gained attention as potential natural cardioprotective therapeutics, due to their antiplatelet, anti-inflammatory and anticoagulant activity. Species belonging to the genus Rubus sp. have been reported to be a source of polyphenolic compounds with antioxidative proprieties and beneficial biological activities. This study investigates the effects of leaf extracts obtained from red raspberry (Rubus idaeus L.) and European dewberry (Rubus caesius L.) on the reactivity of blood platelets. In ADP-stimulated blood, raspberry and dewberry extracts (15 µg/ml) markedly decreased platelet surface membrane expression of activated GPIIbIIIa receptor by 16% and 21%, respectively (P < 0.01) and significantly inhibited platelet aggregation (by 31-41% for raspberry and by 38-55% for dewberry, P < 0.01). In platelet-rich plasma (PRP), the extracts had no effect on ADP-induced platelet aggregation. The effectiveness of the extracts in whole blood and the lack of their activity in PRP indicate that leukocytes are likely to participate in the platelet response to the extracts. Our experiments show that the extracts significantly reduced the amount of free radicals released by activated neutrophils in whole blood (P < 0.001), as well as in suspensions of isolated neutrophils (P < 0.05). Moreover, the reduced number of neutrophils leads to the decreased efficiency of the extracts in the inhibition of platelet aggregation. In summary, our findings show that the raspberry and dewberry leaf extracts considerably modulated blood platelet reactivity in whole blood: they influenced blood platelet aggregation, possibly via the modulation of the redox status dependent on the oxidative activity of neutrophils.

  7. Nicergoline inhibits human platelet Ca2+ signalling through triggering a microtubule‐dependent reorganization of the platelet ultrastructure

    PubMed Central

    Walford, T; Musa, F I

    2015-01-01

    Background and Purpose Recently, we demonstrated that a pericellular Ca2+ recycling system potentiates agonist‐evoked Ca2+ signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca2+ in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re‐organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline‐induced changes in platelet ultrastructure affects thrombin‐evoked Ca2+ fluxes and dense granule secretion. Experimental Approach Thrombin‐evoked Ca2+ fluxes were monitored in Fura‐2‐ or Fluo‐5N‐loaded human platelets, or using platelet suspensions containing Fluo‐4 or Rhod‐5N K+ salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca2+ store distribution in TubulinTracker‐ and Fluo‐5N‐loaded platelets respectively. Dense granule secretion was monitored using luciferin–luciferase. Key Results Nicergoline treatment inhibited thrombin‐evoked Ca2+ signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca2+ stores in platelets. Nicergoline altered the generation and spreading of thrombin‐induced pericellular Ca2+ signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca2+ signalling and partially reversed its effects on dense granule secretion. Conclusions and Implications Nicergoline‐induced alterations to platelet ultrastructure disrupt platelet Ca2+ signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC‐disrupting anti‐thrombotics. PMID:26450366

  8. Nicergoline inhibits human platelet Ca(2+) signalling through triggering a microtubule-dependent reorganization of the platelet ultrastructure.

    PubMed

    Walford, T; Musa, F I; Harper, A G S

    2016-01-01

    Recently, we demonstrated that a pericellular Ca(2+) recycling system potentiates agonist-evoked Ca(2+) signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca(2+) in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re-organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline-induced changes in platelet ultrastructure affects thrombin-evoked Ca(2+) fluxes and dense granule secretion. Thrombin-evoked Ca(2+) fluxes were monitored in Fura-2- or Fluo-5N-loaded human platelets, or using platelet suspensions containing Fluo-4 or Rhod-5N K(+) salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca(2+) store distribution in TubulinTracker- and Fluo-5N-loaded platelets respectively. Dense granule secretion was monitored using luciferin-luciferase. Nicergoline treatment inhibited thrombin-evoked Ca(2+) signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca(2+) stores in platelets. Nicergoline altered the generation and spreading of thrombin-induced pericellular Ca(2+) signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca(2+) signalling and partially reversed its effects on dense granule secretion. Nicergoline-induced alterations to platelet ultrastructure disrupt platelet Ca(2+) signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC-disrupting anti-thrombotics. © 2015 The British Pharmacological Society.

  9. The Impact of Generic Clopidogrel Bisulfate on Platelet Inhibition in Patients with Coronary Artery Stents: Results of the ACCEL-GENERIC Study

    PubMed Central

    Koh, Jin-Sin; Kang, Min-Kyung; Ahn, Yeon-Jeong; Kim, In-Suk; Park, Yongwhi; Hwang, Seok-Jae; Kwak, Choong Hwan; Hwang, Jin-Yong

    2010-01-01

    Background/Aims In patients with coronary artery stents, the cost of clopidogrel has been cited as a factor in the premature discontinuation of therapy. Thus, the introduction of lower-cost generic clopidogrel may increase patient compliance. However, platelet inhibition by generic clopidogrel has not been compared to the original clopidogrel formulation in patients with coronary artery stents. Methods We prospectively enrolled 20 patients receiving chronic therapy with the original clopidogrel bisulfate (Plavix®). After assessing patient compliance with Plavix®, maintenance therapy was switched to generic clopidogrel bisulfate (Plavitor®). Platelet reactivity was assessed at baseline and 30-day after the switch using conventional aggregometry and the VerifyNow P2Y12 assay. Results All patients completed maintenance therapy with Plavitor®. Before and after switching therapy maximal (36.5 ± 7.9% vs. 39.8 ± 16.2%, p = 0.280) and late platelet aggregation (23.5 ± 10.9% vs. 29.1 ± 18.3%, p = 0.156) with 5 µmol/L adenosine diphosphate (ADP) stimulus did not differ. Likewise, 20 µmol/L ADP-induced platelet aggregation and P2Y12 reaction unit in patients on Plavitor® therapy was comparable to that in patients on Plavix® therapy. However, Bland-Altman analysis showed wide limits of agreement between measured platelet reactivity on Plavix® vs. Plavitor® therapies. Conclusions Among patients on Plavix® maintenance therapy with coronary stents, replacement with Plavitor® shows a comparable inhibition of ADP-induced platelet aggregation. However, due to poor inter-therapy agreement, between two regimens, physicians may be cautious when introducing generic clopidogrel bisulfate. PMID:20526388

  10. Anti-platelet therapy: cyclo-oxygenase inhibition and the use of aspirin with particular regard to dual anti-platelet therapy

    PubMed Central

    Warner, Timothy D; Nylander, Sven; Whatling, Carl

    2011-01-01

    Aspirin and P2Y12 antagonists are commonly used anti-platelet agents. Aspirin produces its effects through inhibition of thromboxane A2 (TXA2) production, while P2Y12 antagonists attenuate the secondary responses to ADP released by activated platelets. The anti-platelet effects of aspirin and a P2Y12 antagonist are often considered to be separately additive. However, there is evidence of an overlap in effects, in that a high level of P2Y12 receptor inhibition can blunt TXA2 receptor signalling in platelets and reduce platelet production of TXA2. Against this background, the addition of aspirin, particularly at higher doses, could cause significant reductions in the production of prostanoids in other tissues, e.g. prostaglandin I2 from the blood vessel wall. This review summarizes the data from clinical studies in which dose-dependent effects of aspirin on prostanoid production have been evaluated by both plasma and urinary measures. It also addresses the biology underlying the cardiovascular effects of aspirin and its influences upon prostanoid production throughout the body. The review then considers whether, in the presence of newer, more refined P2Y12 receptor antagonists, aspirin may offer less benefit than might have been predicted from earlier clinical trials using more variable P2Y12 antagonists. The possibility is reflected upon, that when combined with a high level of P2Y12 blockade the net effect of higher doses of aspirin could be removal of anti-thrombotic and vasodilating prostanoids and so a lessening of the anti-thrombotic effectiveness of the treatment. PMID:21320154

  11. Effects of combination treatment with policosanol and omega-3 fatty acids on platelet aggregation: A randomized, double-blind clinical study

    PubMed Central

    Castaño, Gladys; Arruzazabala, Maria L.; Fernández, Lilia; Mas, Rosa; Carbajal, Daisy; Molina, Vivian; Illnait, José; Mendoza, Sarahí; Gámez, Rafael; Mesa, Melbis; Fernández, Julio

    2006-01-01

    Background: Policosanol is a mixture of long-chain primary aliphatic alcoholspurified from sugar cane wax that has cholesterol lowering and antiplatelet effects. Omega-3 fatty acids (FA) have triglyceride lowering and antiplatelet effects. Combination treatment with policosanol and omega-3 FA (Ω23FA) has been associated with significant inhibition of platelet aggregation in rabbits compared with either drug alone. Objective: The aim of this study was to investigate the effects of combination treatment with Ω3FA (1 g/d) and policosanol (Ω3FA+Poli) compared with Ω3FA (1 g/d) plus placebo (Ω3FA+Pla) on platelet aggregation in human patients with hypercholesterolemia. Methods: This randomized, double-blind, clinical study at the Surgical Medical Research Center (Havana City, Cuba) recruited outpatients from lipid clinics, with some atherosclerotic risk factors. Outpatients of both sexes aged 20 to 75 years with serum total cholesterol (TC) levels ≥5 and <6 mmol/L were eligible to enroll. They were included in the study at the end of a 4-week diet stabilization period if their platelet aggregation to arachidonic acid (AA) was ≥50% and serum TC level remained ≥5 mmol/L. Patients were then evenly randomized to receive Ω3FA (1 g/d) + placebo or Ω3FA (1 g/d) + policosanol (10 mg/d) to be taken PO with the evening meal for 21 days. Treatment was assigned according to a randomization code using balanced blocks and a 1:1 allocation ratio. Inhibition of platelet aggregation to AA was the primary efficacy variable, while effects on platelet aggregation to collagen and epinephrine and on lipid profile were secondary variables. Drug compliance and adverse events (AEs) were monitored. Tolerability was assessed using physical examinations and laboratory test results. Results: Sixty-four subjects were initially enrolled. Fifty-four patients (30 women, 24 men; mean [SD] age, 58.4 [12] years, [range, 40–70 years]) met the inclusion criteria and were randomized to treatment; 2 groups of 27. After 21 days, platelet aggregation to AA was significantly inhibited in the 2 groups. Ω3FA+Poli inhibited platelet aggregation to all agonists by ≥20%. Platelet aggregation to AA 1.0 and 1.5 mM was inhibited with combination treatment (39.6% and 33.9%, respectively; both P < 0.001 vs baseline; P < 0.001 and P < 0.01, respectively, vs Ω3FA+Pla) and with Ω3FA+Pla (11.0% and 13.3%; both, P < 0.001). Combination treatment was more effective in inhibiting platelet aggregation to AA 1.0 and 1.5 mM in 28.6% (P < 0.001) and 20.6% (P < 0.01), respectively. Platelet aggregation to collagen 1 μg/mL was significantly inhibited with combination treatment and with Ω3FA+Pla compared with baseline (43.2% and 15.1%, respectively; both, P < 0.001), but the effects of combination treatment were significantly greater (P < 0.01). Platelet aggregation to epinephrine 0.1 mM was inhibited with Ω3FA+Poli and Ω3FA+Pla (34.8% and 20.1%; both, P < 0.001), with similar results for both groups. Bleeding time did not change significantly for either group and Ω3FA+Pla did not significantly change the lipid profile. Combination treatment did significantly reduce levels of low-density lipoprotein cholesterol (LDL-C) (17.4%; P < 0.001 vs baseline, P < 0.05 vs Ω3FA+Pla) and TC (10.1%; P < 0.001 vs baseline, P < 0.05 vs Ω3FA+Pla), increase high-density lipoprotein cholesterol (HDL-C) levels (18.0%; P < 0.001 vs baseline), but did not significantly change triglyceride levels. Three patients (2 from the Ω3FA+Poli group and 1 from the Ω3FA+Pla group) withdrew from the trial, though none were due to AEs. Two patients receiving combination treatment reported mild AEs (headache). All treatments were well tolerated. Conclusions: In these patients, policosanol (10 mg/d) administered concomitantly with Ω3FA (1 g/d) enhanced the inhibition of platelet aggregation to AA and collagen, but not to epinephrine, compared with Ω3FA+Pla, without significantly affecting bleeding time. Concomitant treatment was also associated with reduced levels of LDL-C and TC and raised HDL-C levels. All treatments were well tolerated. PMID:24678094

  12. Platelet factor-4 (CXCL4/PF-4): an angiostatic chemokine for cancer therapy.

    PubMed

    Wang, Zhe; Huang, He

    2013-05-01

    Platelet factor-4 (CXCL4/PF-4) is the first chemokine identified to have several biological functions. Notably, CXCL4/PF-4 inhibits endothelial cell proliferation and migration, leading to suppression of angiogenesis. Since angiogenesis is essential for the growth of most primary tumors and their subsequent metastases, it is a target for cancer therapy; due to its multiple functions, CXCL4/PF-4 is a potential clinical anti-tumor agent. This report reviews the mechanisms of CXCL4/PF-4 angiostatic activity, including interference with angiogenic growth factors bFGF-2 and VEGF165, activation of CXCR3B, interactions with integrins, interference with cell cycle, interactions with factors such as VEGF121 and CXCL8/IL-8, and derived molecules of CXCL4/PF-4 with angiostatic and anti-tumoral activities in different models in vivo or in vitro. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Assessment of platelet function in healthy cats in response to commonly prescribed antiplatelet drugs using three point-of-care platelet function tests.

    PubMed

    Ho, Kimberly K; Abrams-Ogg, Anthony Cg; Wood, R Darren; O'Sullivan, M Lynne; Kirby, Gordon M; Blois, Shauna L

    2017-06-01

    Objectives The objective was to determine if decreased platelet function could be detected after treatment with aspirin and/or clopidogrel in healthy cats using three point-of-care platelet function tests that evaluate platelet function by different methods: Multiplate (by impedance), Platelet Function Analyzer 100 (by mechanical aperture closure) and Plateletworks (by platelet counting). Methods Thirty-six healthy cats were randomly assigned to receive one of three oral treatments over an 8 day period: (1) aspirin 5 mg q72h; (2) aspirin 20.25 mg q72h; or (3) clopidogrel 18.75 mg q24h. Cats treated with 5 and 20.25 mg aspirin also received clopidogrel on days 4-8. Platelet aggregation in response to adenosine diphosphate and collagen ± arachidonic acid was assessed on days 1 (baseline), 4 and 8. Aspirin and clopidogrel metabolites were measured by high-performance liquid chromatography. Platelet function in response to treatment was analyzed by ANCOVA, linear regression and Spearman correlation. Results The only solitary aspirin effect was detected using Plateletworks with collagen in cats treated with 20.25 mg. The only effect detected by Multiplate was using arachidonic acid in cats treated with both aspirin 20.25 mg and clopidogrel. All clopidogrel treatment effects were detected by Platelet Function Analyzer 100, Plateletworks (adenosine diphosphate) and Plateletworks (collagen). Drug metabolites were present in all cats, but concentrations were minimally correlated to platelet function test results. Conclusions and relevance Platelet Function Analyzer 100 and Plateletworks using adenosine diphosphate ± collagen agonists may be used to detect decreased platelet function in response to clopidogrel treatment. Either aspirin is not as effective an antiplatelet drug as clopidogrel, or the tests used were not optimal to measure aspirin effect. Cats with heart disease are commonly prescribed antiplatelet drugs to decrease the risk of aortic thromboembolism. Platelet Function Analyzer 100 and Plateletworks may be useful for confirming clopidogrel treatment in these cats.

  14. In vitro impairment of whole blood coagulation and platelet function by hypertonic saline hydroxyethyl starch.

    PubMed

    Hanke, Alexander A; Maschler, Stephanie; Schöchl, Herbert; Flöricke, Felix; Görlinger, Klaus; Zanger, Klaus; Kienbaum, Peter

    2011-02-10

    Hypertonic saline hydroxyethyl starch (HH) has been recommended for first line treatment of hemorrhagic shock. Its effects on coagulation are unclear. We studied in vitro effects of HH dilution on whole blood coagulation and platelet function. Furthermore 7.2% hypertonic saline, 6% hydroxyethylstarch (as ingredients of HH), and 0.9% saline solution (as control) were tested in comparable dilutions to estimate specific component effects of HH on coagulation. The study was designed as experimental non-randomized comparative in vitro study. Following institutional review board approval and informed consent blood samples were taken from 10 healthy volunteers and diluted in vitro with either HH (HyperHaes, Fresenius Kabi, Germany), hypertonic saline (HT, 7.2% NaCl), hydroxyethylstarch (HS, HAES6%, Fresenius Kabi, Germany) or NaCl 0.9% (ISO) in a proportion of 5%, 10%, 20% and 40%. Coagulation was studied in whole blood by rotation thrombelastometry (ROTEM) after thromboplastin activation without (ExTEM) and with inhibition of thrombocyte function by cytochalasin D (FibTEM), the latter was performed to determine fibrin polymerisation alone. Values are expressed as maximal clot firmness (MCF, [mm]) and clotting time (CT, [s]). Platelet aggregation was determined by impedance aggregrometry (Multiplate) after activation with thrombin receptor-activating peptide 6 (TRAP) and quantified by the area under the aggregation curve (AUC [aggregation units (AU)/min]). Scanning electron microscopy was performed to evaluate HyperHaes induced cell shape changes of thrombocytes. 2-way ANOVA for repeated measurements, Bonferroni post hoc test, p < 0.01. Dilution impaired whole blood coagulation and thrombocyte aggregation in all dilutions in a dose dependent fashion. In contrast to dilution with ISO and HS, respectively, dilution with HH as well as HT almost abolished coagulation (MCFExTEM from 57.3 ± 4.9 mm (native) to 1.7 ± 2.2 mm (HH 40% dilution; p < 0.0001) and to 6.6 ± 3.4 mm (HT 40% dilution; p < 0.0001) and thrombocyte aggregation (AUC from 1067 ± 234 AU/mm (native) to 14.5 ± 12.5 AU/mm (HH 40% dilution; p < 0.0001) and to 20.4 ± 10.4 AU/min (HT 40% dilution; p < 0.0001) without differences between HH and HT (MCF: p = 0.452; AUC: p = 0.449). HH impairs platelet function during in vitro dilution already at 5% dilution. Impairment of whole blood coagulation is significant after 10% dilution or more. This effect can be pinpointed to the platelet function impairing hypertonic saline component and to a lesser extend to fibrin polymerization inhibition by the colloid component or dilution effects.Accordingly, repeated administration and overdosage should be avoided.

  15. In Vitro impairment of whole blood coagulation and platelet function by hypertonic saline hydroxyethyl starch

    PubMed Central

    2011-01-01

    Background Hypertonic saline hydroxyethyl starch (HH) has been recommended for first line treatment of hemorrhagic shock. Its effects on coagulation are unclear. We studied in vitro effects of HH dilution on whole blood coagulation and platelet function. Furthermore 7.2% hypertonic saline, 6% hydroxyethylstarch (as ingredients of HH), and 0.9% saline solution (as control) were tested in comparable dilutions to estimate specific component effects of HH on coagulation. Methods The study was designed as experimental non-randomized comparative in vitro study. Following institutional review board approval and informed consent blood samples were taken from 10 healthy volunteers and diluted in vitro with either HH (HyperHaes®, Fresenius Kabi, Germany), hypertonic saline (HT, 7.2% NaCl), hydroxyethylstarch (HS, HAES6%, Fresenius Kabi, Germany) or NaCl 0.9% (ISO) in a proportion of 5%, 10%, 20% and 40%. Coagulation was studied in whole blood by rotation thrombelastometry (ROTEM) after thromboplastin activation without (ExTEM) and with inhibition of thrombocyte function by cytochalasin D (FibTEM), the latter was performed to determine fibrin polymerisation alone. Values are expressed as maximal clot firmness (MCF, [mm]) and clotting time (CT, [s]). Platelet aggregation was determined by impedance aggregrometry (Multiplate) after activation with thrombin receptor-activating peptide 6 (TRAP) and quantified by the area under the aggregation curve (AUC [aggregation units (AU)/min]). Scanning electron microscopy was performed to evaluate HyperHaes induced cell shape changes of thrombocytes. Statistics: 2-way ANOVA for repeated measurements, Bonferroni post hoc test, p < 0.01. Results Dilution impaired whole blood coagulation and thrombocyte aggregation in all dilutions in a dose dependent fashion. In contrast to dilution with ISO and HS, respectively, dilution with HH as well as HT almost abolished coagulation (MCFExTEM from 57.3 ± 4.9 mm (native) to 1.7 ± 2.2 mm (HH 40% dilution; p < 0.0001) and to 6.6 ± 3.4 mm (HT 40% dilution; p < 0.0001) and thrombocyte aggregation (AUC from 1067 ± 234 AU/mm (native) to 14.5 ± 12.5 AU/mm (HH 40% dilution; p < 0.0001) and to 20.4 ± 10.4 AU/min (HT 40% dilution; p < 0.0001) without differences between HH and HT (MCF: p = 0.452; AUC: p = 0.449). Conclusions HH impairs platelet function during in vitro dilution already at 5% dilution. Impairment of whole blood coagulation is significant after 10% dilution or more. This effect can be pinpointed to the platelet function impairing hypertonic saline component and to a lesser extend to fibrin polymerization inhibition by the colloid component or dilution effects. Accordingly, repeated administration and overdosage should be avoided. PMID:21310047

  16. Inhibition of Platelet Aggregation by the Leaf Extract of Carica papaya During Dengue Infection: An In Vitro Study.

    PubMed

    Chinnappan, Shobia; Ramachandrappa, Vijayakumar Shettikothanuru; Tamilarasu, Kadhiravan; Krishnan, Uma Maheswari; Pillai, Agiesh Kumar Balakrishna; Rajendiran, Soundravally

    2016-04-01

    Dengue cases were reported to undergo platelet activation and thrombocytopenia by a poorly understood mechanism. Recent studies suggested that Carica papaya leaf extract could recover the platelet count in dengue cases. However, no studies have attempted to unravel the mechanism of the plant extract in platelet recovery. Since there are no available drugs to treat dengue and considering the significance of C. papaya in dengue treatment, the current study aimed to evaluate two research questions: First one is to study if the C. papaya leaf extract exerts its action directly on platelets and second one is to understand if the extract can specifically inhibit the platelet aggregation during dengue viral infection. Sixty subjects with dengue positive and 60 healthy subjects were recruited in the study. Platelet-rich plasma (PRP) and platelet-poor plasma were prepared from both the dengue-infected and healthy control blood samples. Effect of the leaf extract obtained from C. papaya leaves was assessed on plasma obtained as well as platelets collected from both healthy and dengue-infected individuals. Platelet aggregation was significantly reduced when leaf extract preincubated with dengue plasma was added into control PRP, whereas no change in aggregation when leaf extract incubated-control plasma was added into control PRP. Upon direct addition of C. papaya leaf extract, both dengue PRP and control PRP showed a significant reduction in platelet aggregation. Within the dengue group, PRP from severe and nonsevere cases showed a significant decrease in aggregation without any difference between them. From the study, it is evident that C. papaya leaf extract can directly act on platelet. The present study, the first of its kind, found that the leaf extract possesses a dengue-specific neutralizing effect on dengue viral-infected plasma that may exert a protective role on platelets.

  17. Molecular and Cellular Mechanisms of Septic Shock

    DTIC Science & Technology

    1988-03-01

    with indomethacin or 1•W 755C did not prevent the ET-induced changes in carbohydrate metabolism, although it eliminated the early hypotensive response...suppression does not require vascular endothelium, and is not ameliorated by treatwmit by indomethacin , but can be completely prevented by inhibition...from aggregating platelets, and . changes in blood flow. Endothelium-derived relaxing factor(s) act as a functional antagonist to contractility agents

  18. Hydrolysis of an orally active platelet inhibitory prostanoid amide in the plasma of several species.

    PubMed

    Honohan, T; Fitzpatrick, F A; Booth, D G; McGrath, J P; Morton, D R; Nishizawa, E

    1980-01-01

    The prostanoid 3-oxa-4,5,6-trinor-3,7-inter-m-phenylene-PGE1-amide (OI-PGE1-amide) has a prolonged duration of oral platelet aggregation inhibitory activity when compared to the parent free acid (OI-PGE1) in the rat. When incubated in rat plasma at 1 microgram/ml for 30 seconds prior to addition of ADP, OI-PGE1-amide inhibits in vitro rat platelet aggregation approximately 50%. OI-PGE1 inhibits at 1 ng/ml. Inhibition of platelet aggregation by plasma incubated with OI-PGE1-amide (1 microgram/ml) increases with time and the rate of this increase differs with species. Incubation of OI-PGE1 in plasma does not result in an increase of platelet inhibitory activity with time. The increase of platelet inhibitory activity was assumed to indicate hydrolysis of OI-PGE1-amide to the more active OI-PGE1. A compound, different from OI-PGE1-amide, was isolated by an ion exchange/silica gel separation sequence from an incubation of OI-PGE1-amide in rat plasma. It had potent platelet aggregation inhibitory activity. This material was shown to be OI-PGE1 by thin-layer chromatography, gas chromatography and mass spectral analysis. Studies with [3H]-OI-PGE1-amide confirmed the formation of OI-PGE1 in plasma incubations. Amide hydrolytic activity was significantly different between species, the rank order being: rat greater than guine pig greater than monkey = human greater than dog. This relationship corresponded with that determined by measuring the increase in platelet inhibitory activity with time in plasma incubations of OI-PGE1-amide reported above. Present data indicate that (a) OI-PGE1-amide is hydrolyzed to the parent acid by plasma enzymes of several species and (b) hydrolytic activity of plasma varies widely between species.

  19. Mitochondrial Changes in Platelets Are Not Related to Those in Skeletal Muscle during Human Septic Shock

    PubMed Central

    Protti, Alessandro; Fortunato, Francesco; Caspani, Maria L.; Pluderi, Mauro; Lucchini, Valeria; Grimoldi, Nadia; Solimeno, Luigi P.; Fagiolari, Gigliola; Ciscato, Patrizia; Zella, Samis M. A.; Moggio, Maurizio; Comi, Giacomo P.; Gattinoni, Luciano

    2014-01-01

    Platelets can serve as general markers of mitochondrial (dys)function during several human diseases. Whether this holds true even during sepsis is unknown. Using spectrophotometry, we measured mitochondrial respiratory chain biochemistry in platelets and triceps brachii muscle of thirty patients with septic shock (within 24 hours from admission to Intensive Care) and ten surgical controls (during surgery). Results were expressed relative to citrate synthase (CS) activity, a marker of mitochondrial density. Patients with septic shock had lower nicotinamide adenine dinucleotide dehydrogenase (NADH)/CS (p = 0.015), complex I/CS (p = 0.018), complex I and III/CS (p<0.001) and complex IV/CS (p = 0.012) activities in platelets but higher complex I/CS activity (p = 0.021) in triceps brachii muscle than controls. Overall, NADH/CS (r2 = 0.00; p = 0.683) complex I/CS (r2 = 0.05; p = 0.173), complex I and III/CS (r2 = 0.01; p = 0.485), succinate dehydrogenase (SDH)/CS (r2 = 0.00; p = 0.884), complex II and III/CS (r2 = 0.00; p = 0.927) and complex IV/CS (r2 = 0.00; p = 0.906) activities in platelets were not associated with those in triceps brachii muscle. In conclusion, several respiratory chain enzymes were variably inhibited in platelets, but not in triceps brachii muscle, of patients with septic shock. Sepsis-induced mitochondrial changes in platelets do not reflect those in other organs. PMID:24787741

  20. The multifunctionality of berries toward blood platelets and the role of berry phenolics in cardiovascular disorders.

    PubMed

    Olas, Beata

    2017-09-01

    Diet and nutrition have an important influence on the prophylaxis and progression of cardiovascular disease; one example is the inhibition of blood platelet functions by specific components of fruits and vegetables. Garlic, onion, ginger, dark chocolate and polyunsaturated fatty acids all reduce blood platelet aggregation. A number of fruits contain a range of cardioprotective antioxidants and vitamins, together with a large number of non-nutrient phytochemicals such as phenolic compounds, which may possess both antioxidant properties and anti-platelet activity. Fresh berries and berry extracts possess high concentrations of phenolic compounds, i.e. phenolic acid, stilbenoids, flavonoids and lignans. The aim of this review article is to provide an overview of current knowledge of the anti-platelet activity of berries, which form an integral part of the human diet. It describes the effects of phenolic compounds present in a number of berries, i.e. black chokeberries - aronia berries (Aronia melanocarpa), blueberries (Vaccinium myrtillus), cranberries (Vaccinium sect. Oxycoccus), sea buckthorn berries (Hippophae rhamnoides) and grapes (Vitis), as well as various commercial products from berries (i.e. juices), on platelets and underlying mechanisms. Studies show that the effects of berries on platelet activity are dependent on not only the concentrations of the phenolic compounds in the berries or the class of phenolic compounds, but also the types of berry and the form (fresh berry, juice or medicinal product). Different results indicate that berries may play a role in the prevention of cardiovascular disorders, but the development of well-controlled clinical studies with berries is encouraged.

  1. Effect of Hawthorn (Crataegus aronia syn. Azarolus (L)) on platelet function in albino Wistar rats.

    PubMed

    Shatoor, Abdullah S; Soliman, Hesham; Al-Hashem, Fahaid; Gamal, Basiouny El-; Othman, Adel; El-Menshawy, Nadia

    2012-07-01

    This study was designed to investigate the possible antiplatelet effect of aqueous whole-plant C. aronia syn: Azarolus (L) extract using Wistar albino rats as a model. Forty-two male albino Wistar rats weighing 200 to 250 g were divided into seven groups with six rats in each group. Group 1 served as the control and received equal volumes of distilled water. Groups 2-6 served as the experimental groups and were given C. aronia extract at doses of 100, 200, 500, 1,000, and 2,000 mg/kg, while group 7 served as a positive control and was given aspirin (25mg/kg). All the doses were administered orally once a day and the treatment was continued for seven days. In all groups, at the end of the experimental procedure, blood samples were obtained for platelet function measurements, including PFA-100, thromboxane B2 levels, platelet count, and haematocrit. The bleeding time was determined using a modified tail cutting method described previously. The aqueous C. aronia syn. Azarolus (L) extract significantly altered the bleeding time and the closure time, as determined by the PFA-100 and thromboxane B2 levels, suggesting significant platelet function inhibition. These effects were observed with C. aronia doses between 100 - 500 mg/kg, which yielded thromboxane B2 levels of 1,000 mg/kg, whereas the higher dose (2,000 mg/kg) produced opposite effects on these parameters. C. aronia syn. Azarolus (L) aqueous extract has antiplatelet effects in Wistar albino rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel ITIM protein

    PubMed Central

    Senis, Yotis A.; Tomlinson, Michael G.; García, Ángel; Dumon, Stephanie; Heath, Victoria L.; Herbert, John; Cobbold, Stephen P.; Spalton, Jennifer C.; Ayman, Sinem; Antrobus, Robin; Zitzmann, Nicole; Bicknell, Roy; Frampton, Jon; Authi, Kalwant; Martin, Ashley; Wakelam, Michael J.O.; Watson, Stephen P.

    2007-01-01

    Summary The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we have identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomic and genomic approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography; biotin/NeutrAvidin affinity chromatography; and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68 and 22 surface membrane, intracellular membrane and membrane proteins of unknown sub-cellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomic studies, we analysed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multi-transmembrane proteins. Strikingly, 17 of the 25 most megakaryocyte-specific genes (relative to 30 other SAGE libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2-containing phosphatase, SHP-1, in stimulated platelets suggesting that it may play a novel role in limiting platelet activation. PMID:17186946

  3. Association of Cytochrome P450 2C19 Genotype With the Antiplatelet Effect and Clinical Efficacy of Clopidogrel Therapy

    PubMed Central

    Shuldiner, Alan R.; O'Connell, Jeffrey R.; Bliden, Kevin P.; Gandhi, Amish; Ryan, Kathleen; Horenstein, Richard B.; Damcott, Coleen M.; Pakyz, Ruth; Tantry, Udaya S.; Gibson, Quince; Pollin, Toni I.; Post, Wendy; Parsa, Afshin; Mitchell, Braxton D.; Faraday, Nauder; Herzog, William; Gurbel, Paul A.

    2013-01-01

    Context Clopidogrel therapy improves cardiovascular outcomes in patients with acute coronary syndromes and following percutaneous coronary intervention by inhibiting adenosine diphosphate (ADP)–dependent platelet activation. However, nonresponsiveness is widely recognized and is related to recurrent ischemic events. Objective To identify gene variants that influence clopidogrel response. Design, Setting, and Participants In the Pharmacogenomics of Antiplatelet Intervention (PAPI) Study (2006-2008), we administered clopidogrel for 7 days to 429 healthy Amish persons and measured response by ex vivo platelet aggregometry. A genome-wide association study was performed followed by genotyping the loss-of-function cytochrome P450 (CYP) 2C19*2 variant (rs4244285). Findings in the PAPI Study were extended by examining the relation of CYP2C19*2 genotype to platelet function and cardiovascular outcomes in an independent sample of 227 patients undergoing percutaneous coronary intervention. Main Outcome Measure ADP-stimulated platelet aggregation in response to clopidogrel treatment and cardiovascular events. Results Platelet response to clopidogrel was highly heritable (h2=0.73; P<.001). Thirteen single-nucleotide polymorphisms on chromosome 10q24 within the CYP2C18-CYP2C19-CYP2C9-CYP2C8 cluster were associated with diminished clopidogrel response, with a high degree of statistical significance (P=1.5 × 10−13 for rs12777823, additive model). The rs12777823 polymorphism was in strong linkage disequilibrium with the CYP2C19*2 variant, and was associated with diminished clopidogrel response, accounting for 12% of the variation in platelet aggregation to ADP (P=4.3 × 10−11). The relation between CYP2C19*2 genotype and platelet aggregation was replicated in clopidogrel-treated patients undergoing coronary intervention (P=.02). Furthermore, patients with the CYP2C19*2 variant were more likely (20.9% vs 10.0%) to have a cardiovascular ischemic event or death during 1 year of follow-up (hazard ratio, 2.42; 95% confidence interval, 1.18-4.99; P=.02). Conclusion CYP2C19*2 genotype was associated with diminished platelet response to clopidogrel treatment and poorer cardiovascular outcomes. PMID:19706858

  4. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice.

    PubMed

    Jansen, A J Gerard; Josefsson, Emma C; Rumjantseva, Viktoria; Liu, Qiyong Peter; Falet, Hervé; Bergmeier, Wolfgang; Cifuni, Stephen M; Sackstein, Robert; von Andrian, Ulrich H; Wagner, Denisa D; Hartwig, John H; Hoffmeister, Karin M

    2012-02-02

    When refrigerated platelets are rewarmed, they secrete active sialidases, including the lysosomal sialidase Neu1, and express surface Neu3 that remove sialic acid from platelet von Willebrand factor receptor (VWFR), specifically the GPIbα subunit. The recovery and circulation of refrigerated platelets is greatly improved by storage in the presence of inhibitors of sialidases. Desialylated VWFR is also a target for metalloproteinases (MPs), because GPIbα and GPV are cleaved from the surface of refrigerated platelets. Receptor shedding is inhibited by the MP inhibitor GM6001 and does not occur in Adam17(ΔZn/ΔZn) platelets expressing inactive ADAM17. Critically, desialylation in the absence of MP-mediated receptor shedding is sufficient to cause the rapid clearance of platelets from circulation. Desialylation of platelet VWFR therefore triggers platelet clearance and primes GPIbα and GPV for MP-dependent cleavage.

  5. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice

    PubMed Central

    Jansen, A. J. Gerard; Josefsson, Emma C.; Rumjantseva, Viktoria; Liu, Qiyong Peter; Falet, Hervé; Bergmeier, Wolfgang; Cifuni, Stephen M.; Sackstein, Robert; von Andrian, Ulrich H.; Wagner, Denisa D.; Hartwig, John H.

    2012-01-01

    When refrigerated platelets are rewarmed, they secrete active sialidases, including the lysosomal sialidase Neu1, and express surface Neu3 that remove sialic acid from platelet von Willebrand factor receptor (VWFR), specifically the GPIbα subunit. The recovery and circulation of refrigerated platelets is greatly improved by storage in the presence of inhibitors of sialidases. Desialylated VWFR is also a target for metalloproteinases (MPs), because GPIbα and GPV are cleaved from the surface of refrigerated platelets. Receptor shedding is inhibited by the MP inhibitor GM6001 and does not occur in Adam17ΔZn/ΔZn platelets expressing inactive ADAM17. Critically, desialylation in the absence of MP-mediated receptor shedding is sufficient to cause the rapid clearance of platelets from circulation. Desialylation of platelet VWFR therefore triggers platelet clearance and primes GPIbα and GPV for MP-dependent cleavage. PMID:22101895

  6. Platelet ERK5 is a Redox Switch and Triggers Maladaptive Platelet Responses and Myocardial Infarct Expansion

    PubMed Central

    Cameron, Scott J.; Ture, Sara K.; Mickelsen, Deanne; Chakrabarti, Enakshi; Modjeski, Kristina L.; McNitt, Scott; Seaberry, Micheal; Field, David J.; Le, Nhat-Tu; Abe, Jun-ichi; Morrell, Craig N.

    2015-01-01

    Background Platelets have a pathophysiologic role in the ischemic microvascular environment of acute coronary syndromes (ACS). Compared to platelet activation in normal healthy conditions, less attention is given to mechanisms of platelet activation in diseased states. Platelet function and mechanisms of activation in ischemic and reactive oxygen species (ROS) rich environments may not be the same as in normal healthy conditions. Extracellular Regulated Protein Kinase 5 (ERK5) is a Mitogen Activated Protein Kinase (MAPK) family member activated in hypoxic, ROS rich environments, and in response to receptor signaling mechanisms. Prior studies suggest a protective effect of ERK5 in endothelial and myocardial cells following ischemia. We present evidence that platelets express ERK5 and platelet ERK5 has an adverse effect on platelet activation via selective receptor-dependent and receptor-independent ROS mediated mechanisms in ischemic myocardium. Methods and Results Using isolated human platelets and a mouse model of myocardial infarction (MI), we found that platelet ERK5 is activated post-MI and platelet specific ERK5−/− mice have less platelet activation, reduced MI size, and improved post-MI heart function. Furthermore, the expression of downstream ERK5 regulated proteins is reduced in ERK5−/− platelets post-MI. Conclusions ERK5 functions as a platelet activator in ischemic conditions and platelet ERK5 maintains the expression of some platelet proteins following MI, leading to infarct expansion. This demonstrates that platelet function in normal healthy conditions is different from platelet function in chronic ischemic and inflammatory conditions. Platelet ERK5 may be a target for acute therapeutic intervention in the thrombotic and inflammatory post-MI environment. PMID:25934838

  7. Evaluating platelet aggregation dynamics from laser speckle fluctuations

    PubMed Central

    Hajjarian, Zeinab; Tshikudi, Diane M.; Nadkarni, Seemantini K.

    2017-01-01

    Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g2(t), from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies. PMID:28717586

  8. Differential effects of grape ( Vitis vinifera ) skin polyphenolics on human platelet aggregation and low-density lipoprotein oxidation.

    PubMed

    Shanmuganayagam, Dhanansayan; Beahm, Mark R; Kuhns, Melissa A; Krueger, Christian G; Reed, Jess D; Folts, John D

    2012-06-13

    Antioxidant and antiplatelet properties of grape products are thought to be responsible for observed antiatherosclerotic effects. Diverse classes of phenolics are derived from the seed and skin (GSK) of grapes. The relative contributions of the classes of phenolics to observed properties of grape products are unknown. In this paper, GSK fractions were used to examine effects on platelet aggregation, low-density lipoprotein (LDL) oxidation in vitro, and relative binding of phenolics to LDL. GSK was separated into six fractions (fractions 1-6), and primary phenolics were characterized using high-performance liquid chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Fractions 4, 5, and 6, enriched in polygalloyl polyflavan-3-ols (PGPFs) with 3-6, 4-8, and 6-15 degrees of polymerization, respectively, inhibited platelet aggregation. Fractions 1-3, containing various amounts of oligosaccharides, hydroxycinnamic acids, anthocyanins, flavanols, and low molecular weight PGPFs, significantly increased platelet aggregation. Fractions 4-6 were most effective in binding LDL and inhibiting LDL oxidation. Fractions 5 and 6 exhibited the greatest inhibition of platelet aggregation and LDL oxidation, suggesting that polymeric PGPFs are responsible for the beneficial effects of grape products. Conversely, phenolics in fractions 1-3 may reduce the net biological potency of the grape products and have undesirable effects on cardiovascular disease risk factors.

  9. Isolation and chemical identification of lipid derivatives from avocado (Persea americana) pulp with antiplatelet and antithrombotic activities.

    PubMed

    Rodriguez-Sanchez, Dariana Graciela; Flores-García, Mirthala; Silva-Platas, Christian; Rizzo, Sheryl; Torre-Amione, Guillermo; De la Peña-Diaz, Aurora; Hernández-Brenes, Carmen; García-Rivas, Gerardo

    2015-01-01

    Platelets play a pivotal role in physiological hemostasis. However, in coronary arteries damaged by atherosclerosis, enhanced platelet aggregation, with subsequent thrombus formation, is a precipitating factor in acute ischemic events. Avocado pulp (Persea americana) is a good source of bioactive compounds, and its inclusion in the diet as a source of fatty acid has been related to reduced platelet aggregability. Nevertheless, constituents of avocado pulp with antiplatelet activity remain unknown. The present study aims to characterize the chemical nature of avocado constituents with inhibitory effects on platelet aggregation. Centrifugal partition chromatography (CPC) was used as a fractionation and purification tool, guided by an in vitro adenosine diphosphate (ADP), arachidonic acid or collagen-platelet aggregation assay. Antiplatelet activity was initially linked to seven acetogenins that were further purified, and their dose-dependent effects in the presence of various agonists were contrasted. This process led to the identification of Persenone-C (3) as the most potent antiplatelet acetogenin (IC₅₀=3.4 mM) among the evaluated compounds. In vivo evaluations with Persenone A (4) demonstrated potential protective effects against arterial thrombosis (25 mg kg⁻¹ of body weight), as coagulation times increased (2-fold with respect to the vehicle) and thrombus formation was attenuated (71% versus vehicle). From these results, avocado may be referred to as a functional food containing acetogenin compounds that inhibit platelet aggregation with a potential preventive effect on thrombus formation, such as those that occur in ischaemic diseases.

  10. Moderate consumption of red wine and human platelet responsiveness.

    PubMed

    Tozzi Ciancarelli, Maria Giuliana; Di Massimo, Caterina; De Amicis, Daniela; Ciancarelli, Irene; Carolei, Antonio

    2011-08-01

    Available studies showed an inverse association between red wine consumption and prevalence of vascular risk factors in coronary hearth disease and stroke. Effects were mainly associated to wine antioxidant and antiaggregant properties. Actually, in vitro studies indicate a favourable effect of wine and/or of its non-alcoholic components in decreasing platelet sensitivity and aggregability. In a 4-week supplementation in 15 healthy male volunteers, we evaluated whether moderate red wine consumption might improve antioxidant defence mechanisms and promote positive modulation of inflammatory cytokines and cell adhesion molecules in relation to platelet responsiveness. We did not find any change of ADP- and collagen-induced platelet aggregation ex vivo, any change of biomarkers of oxidative stress, and any change of plasma lipid profile and haemostatic parameters, with the only exception of decreased fibrinogen levels (P<0.05). We also found an increase of mean platelet volume (P<0.05) without any significant modification of CD40 Ligand and P-selectin levels. Increased expressions of intercellular adhesion molecule-1, soluble E-selectin and interleukin-6 (P<0.05) were also observed. According to our findings increased circulating levels of inflammatory and endothelial cell activation markers may indicate a low-grade systemic inflammation and vascular activation that could be responsible for the lack of inhibition or of decreased platelet responsiveness, possibly because the plasmatic increase of wine antioxidant compounds is insufficient to improve endothelial function and to counteract the influence of ethanol on endothelial activation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Real-time dose adjustment using point-of-care platelet reactivity testing in a double-blind study of prasugrel in children with sickle cell anaemia.

    PubMed

    Jakubowski, Joseph A; Hoppe, Carolyn C; Zhou, Chunmei; Smith, Brendan E; Brown, Patricia B; Heath, Lori E; Inusa, Baba; Rees, David C; Small, David S; Gupta, Neehar; Yao, Suqin; Heeney, Matthew; Kanter, Julie

    2017-02-28

    Patients with sickle cell anaemia (SCA) have vaso-occlusive crises resulting from occlusive hypoxic-ischaemic injury. Prasugrel inhibits platelet activation and aggregation involved in SCA pathophysiology. Determining Effects of Platelet Inhibition on Vaso-Occlusive Events (DOVE) was a phase 3, double-blind, randomised, placebo-controlled trial assessing prasugrel efficacy. DOVE sought to bring patients' P2Y12 reaction unit (PRU) value within a targeted range via prasugrel dose adjustments using encrypted VerifyNow P2Y12 ® (VN-P2Y12) point-of-care testing and an interactive voice-response system (IVRS). After PRU determination, randomised patients received 0.08 mg/kg/day prasugrel or placebo. Encrypted PRUs and IVRS provided double-blind dose adjustments to achieve a defined PRU target range of 136-231; placebo patients had mock titrations. Of 341 randomised patients, 166 placebo and 160 prasugrel patients reached the fully titrated dose (FTD). Most prasugrel patients (n=104, 65 %) remained on the initial 0.08 mg/kg dose; doses escalations occurred in 23 % of patients (n=36). Mean PRUs for the pharmacodynamic population at baseline were similar in the prasugrel (273 ± 44.9) and placebo groups (273 ± 51.7), with significant reductions in PRU (p<0.001) for prasugrel patients at the FTD and at 9 months. Concomitant use of hydroxyurea did not affect platelet reactivity at any time. The majority of prasugrel patients (n=135, 84.4 %) at the FTD were within the target range of 136-231 PRUs. Mean VN-P2Y12 percentage inhibition at baseline was similar in the prasugrel (2.8  ± 5.4 %) and placebo groups (2.0 ± 4.7 %); prasugrel patients had significant increases in inhibition (p<0.001) at FTD and at 9 months. Patients with higher PRU values at baseline required higher prasugrel doses to bring PRU within the prespecified range. DOVE is the first study to successfully employ double-blind, real-time, encrypted, point-of-care platelet testing and IVRS to dose-adjust antiplatelet therapy to a targeted range of platelet inhibition.

  12. Thrombin-stimulated platelet aggregation is inhibited by kallikrein in a time- and concentration-dependent manner.

    PubMed

    Veloso, D

    2003-01-01

    Many in vitro studies have shown that activation of prekallikrein (PK) to kallikrein (KAL) in normal plasma triggers rapid activation of the coagulation cascade. In agreement, the coagulation activation is impaired in PK-deficient plasma. Paradoxically, PK-deficient patients show a tendency to thrombosis. To investigate the discrepancy between the in vitro and in vivo findings, we analyzed the effect of KAL on the rate of platelet aggregation. For this research, physiologic concentrations of washed human platelets were incubated for 5 and/or 10 min with approximately 2.2 to 88 nM human plasma KAL (< 1/100 to approximately 1/3 of PK concentrations in plasma) prior to the addition of high concentrations of alpha-thrombin (54 nM) or fibrinogen plus ADP. KAL concentrations were arbitrarily selected on the assumption that concentrations of free KAL (the enzymatically active species) were minute in normal plasma and higher when KAL production was enhanced, and/or inhibitors were depleted. Full platelet aggregation was that seen in the absence of KAL or PK. Inhibition of platelet aggregation stimulated by thrombin was markedly increased with increased KAL concentrations and incubation times. The degree of inhibition by KAL was smaller when ADP was the agonist. The data suggest that KAL may play a role in the modulation of platelet aggregation in vivo under normal conditions as well as when prolonged, high concentrations of KAL occur in blood. The data may also help to explain the intriguing observation that PK-deficient patients show a tendency to thrombotic episodes and myocardial infarction whereas in vitro assays predict bleeding.

  13. Platelets Induce Apoptosis during Sepsis in a Contact-Dependent Manner That Is Inhibited by GPIIb/IIIa Blockade

    PubMed Central

    Sharron, Matthew; Hoptay, Claire E.; Wiles, Andrew A.; Garvin, Lindsay M.; Geha, Mayya; Benton, Angela S.; Nagaraju, Kanneboyina; Freishtat, Robert J.

    2012-01-01

    Purpose End-organ apoptosis is well-described in progressive sepsis and Multiple Organ Dysfunction Syndrome (MODS), especially where platelets accumulate (e.g. spleen and lung). We previously reported an acute sepsis-induced cytotoxic platelet phenotype expressing serine protease granzyme B. We now aim to define the site(s) of and mechanism(s) by which platelet granzyme B induces end-organ apoptosis in sepsis. Methods End-organ apoptosis in murine sepsis (i.e. polymicrobial peritonitis) was analyzed by immunohistochemistry. Platelet cytotoxicity was measured by flow cytometry following 90 minute ex vivo co-incubation with healthy murine splenocytes. Sepsis progression was measured via validated preclinical murine sepsis score. Measurements and Main Results There was evident apoptosis in spleen, lung, and kidney sections from septic wild type mice. In contrast, there was a lack of TUNEL staining in spleens and lungs from septic granzyme B null mice and these mice survived longer following induction of sepsis than wild type mice. In co-incubation experiments, physical separation of septic platelets from splenocytes by a semi-permeable membrane reduced splenocyte apoptosis to a rate indistinguishable from negative controls. Chemical separation by the platelet GPIIb/IIIa receptor inhibitor eptifibatide decreased apoptosis by 66.6±10.6% (p = 0.008). Mice treated with eptifibatide in vivo survived longer following induction of sepsis than vehicle control mice. Conclusions In sepsis, platelet granzyme B-mediated apoptosis occurs in spleen and lung, and absence of granzyme B slows sepsis progression. This process proceeds in a contact-dependent manner that is inhibited ex vivo and in vivo by the platelet GPIIb/IIIa receptor inhibitor eptifibatide. The GPIIb/IIIa inhibitors and other classes of anti-platelet drugs may be protective in sepsis. PMID:22844498

  14. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He + ion implantation

    NASA Astrophysics Data System (ADS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-05-01

    He + ion implanted collagen-coated tubes with a fluence of 1 × 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2. Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was inhibited with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 × 10 13 ions/cm 2. On the 1 × 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface.

  15. Effects of clopidogrel and aspirin in combination versus aspirin alone on platelet activation and major receptor expression in diabetic patients: the PLavix Use for Treatment Of Diabetes (PLUTO-Diabetes) trial.

    PubMed

    Serebruany, Victor L; Malinin, Alex I; Pokov, Alex; Barsness, Gregory; Hanley, Dan F

    2008-01-01

    Clopidogrel is widely used in diabetic patients after vascular events; however, the ability of this thienopyridine to yield additional antiplatelet protection on top of aspirin has never been explored in a controlled study with comprehensive assessment of platelet activity. The objective of this study was to compare the antiplatelet profiles of clopidogrel + aspirin in combination (C + ASA) versus aspirin alone (ASA) in patients with type 2 diabetes mellitus. Seventy patients with documented diabetes already treated with antecedent aspirin were randomly assigned to receive C + ASA or ASA in the PLUTO-Diabetes trial. Platelet studies included adenosine diphosphate-, collagen-, and arachidonic acid-induced aggregometry; PFA-100 (Dade-Behring, Miami, FL) and Ultegra (Accumetrics, San Diego, CA) analyzers; and expression of 6 major receptors by flow cytometry at baseline and at day 30 after randomization. There were no differences in the baseline clinical and platelet characteristics between the C + ASA and ASA groups, or subsequent significant changes in platelet biomarkers in the ASA group, except for diminished collagen-induced aggregation (P = .02). In contrast, when compared with the ASA group, therapy with C + ASA resulted in significant inhibition of platelet activity assessed by adenosine diphosphate aggregation (P = .0001); closure time prolongation (P = .0003) and reduction of platelet activation units with Ultegra (P = .0001); and expression of platelet/endothelial cell adhesion molecule 1 (P = .002), glycoprotein IIb/IIIa antigen (P = .0002), and activity (P = .0001). Treatment with C + ASA for 1 month provides significantly greater inhibition of platelet activity than ASA alone in diabetic patients in this small randomized trial. However, despite dual antiplatelet regimen, diabetic patients exhibit high residual activity of some platelet biomarkers, including unaffected protease-activated receptor 1 receptor expression.

  16. Antiplatelet drug induced isolated profound thrombocytopenia in interventional cardiology: a review based on individual case reports.

    PubMed

    Höchtl, Thomas; Pachinger, Linda; Unger, Gerhard; Geppert, Alexander; Wojta, Johann; Harenberg, Job; Huber, Kurt

    2007-08-01

    A combination antithrombotic and antiplatelet therapy with clopidogrel, aspirin, glycoprotein IIb/IIIa receptor inhibitors and heparins is routinely used as adjunct therapy in patients undergoing percutaneous coronary intervention (PCI). As all substances inhibit platelet function, bleeding and thrombocytopenia may occur. We report on three patients who developed isolated profound thrombocytopenia (platelet count of < 20,000/mm(3)) within 24 h after initiation of combination antiplatelet and antithrombotic therapy during a 1 year observation period in 443 consecutive patients undergoing PCI and stent implantation. The data from our cardiology unit revealed an incidence of an isolated profound thrombocytopenia in 0.7% of all patients on combination antithrombotic therapy and in 1.5% of patients with GPIIb/IIIa-blockers. In all three cases with isolated profound thrombocytopenia GPIIb/IIIa-blockers were found to be the causative agents. Negative results of HIT-assays excluded heparin induced thrombocytopenia type II. Despite the extremely low platelet count no severe bleeding was observed and in all cases platelet counts normalized within 3-4 days without specific interventions except discontinuation of the responsible agent. These findings are discussed in conjunct with an overview of the recent literature.

  17. Primary porcine Kupffer cell phagocytosis of human platelets involves the CD18 receptor.

    PubMed

    Chihara, Ray K; Paris, Leela L; Reyes, Luz M; Sidner, Richard A; Estrada, Jose L; Downey, Susan M; Wang, Zheng-Yu; Tector, A Joseph; Burlak, Christopher

    2011-10-15

    Hepatic failure has been treated successfully with clinical extracorporeal perfusions of porcine livers. However, dog-to-pig and pig-to-baboon liver xenotransplant models have resulted in severe bleeding secondary to liver xenograft-induced thrombocytopenia. Kupffer cells (KC) are abundant phagocytic cells in the liver. KC express the CD11b/CD18 receptor, which has been implicated in chilled platelet binding and phagocytosis through interaction with platelet surface proteins and carbohydrates. We sought to identify the role of KC CD18 in liver xenograft-induced thrombocytopenia. Primary pig KC were characterized by flow cytometry, immunoblots, and quantitative polymerase chain reaction. Pig KC were used in inhibition assays with fluorescently labeled human platelets. The CD18 receptor was targeted for siRNA knockdown. Domestic and α1,3-galactosyltransferase double knockout porcine KC cultures were approximately 92% positive for CD18 as detected by quantitative polymerase chain reaction and flow cytometry. Use of CD18 blocking antibodies resulted in reduction of human platelet binding and phagocytosis. Additionally, asialofetuin, not fetuin, inhibited platelet phagocytosis suggesting the involvement of an oligosaccharide-binding site. Furthermore, reduced CD18 expression by siRNA resulted in decreased human platelet binding. Our data suggest that primary pig KC bind and phagocytose human platelets with involvement of CD18. Further understanding and modification of CD18 expression in pigs may result in a liver xenograft with reduced thrombocytopenic effects, which could be used as a bridge to allogeneic liver transplantation.

  18. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured inmore » the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.« less

  19. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation.

    PubMed

    Reinhardt, Christoph; von Brühl, Marie-Luise; Manukyan, Davit; Grahl, Lenka; Lorenz, Michael; Altmann, Berid; Dlugai, Silke; Hess, Sonja; Konrad, Ildiko; Orschiedt, Lena; Mackman, Nigel; Ruddock, Lloyd; Massberg, Steffen; Engelmann, Bernd

    2008-03-01

    The activation of initiator protein tissue factor (TF) is likely to be a crucial step in the blood coagulation process, which leads to fibrin formation. The stimuli responsible for inducing TF activation are largely undefined. Here we show that the oxidoreductase protein disulfide isomerase (PDI) directly promotes TF-dependent fibrin production during thrombus formation in vivo. After endothelial denudation of mouse carotid arteries, PDI was released at the injury site from adherent platelets and disrupted vessel wall cells. Inhibition of PDI decreased TF-triggered fibrin formation in different in vivo murine models of thrombus formation, as determined by intravital fluorescence microscopy. PDI infusion increased - and, under conditions of decreased platelet adhesion, PDI inhibition reduced - fibrin generation at the injury site, indicating that PDI can directly initiate blood coagulation. In vitro, human platelet-secreted PDI contributed to the activation of cryptic TF on microvesicles (microparticles). Mass spectrometry analyses indicated that part of the extracellular cysteine 209 of TF was constitutively glutathionylated. Mixed disulfide formation contributed to maintaining TF in a state of low functionality. We propose that reduced PDI activates TF by isomerization of a mixed disulfide and a free thiol to an intramolecular disulfide. Our findings suggest that disulfide isomerases can act as injury response signals that trigger the activation of fibrin formation following vessel injury.

  20. [Effect of endogenous H2S on platelet L-Arg transport].

    PubMed

    Duan, Wen-zhuo; Wang, Yi-peng; Gong, Hai-min

    2010-05-01

    To observe the effect of novel air neuromodulator H2S on platelet function of L-Arg transport for discussing H2S of effect on platelet function. Saturate H2S solution as donate made rat rich platelet plasma and pre-incubation rat platelet with different density of H2S. To measure the velocity of L-Arg transport in platelet by radioactivity technique. At different concentrations of H2S (6.25, 12.5, 25, 50, 100 micromol/L), the velocity of L-Arg transport was lower than that in control. H2S reduced rapidly the Vmax and velocity of L-Arg transport in platelet (P < 0.05) and this effect had no effect to Km. H2S can affect platelet function by changing rapidly platelet L-Arg transport system function.

  1. Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation.

    PubMed

    Fogelson, Aaron L; Tania, Nessy

    2005-01-01

    A mathematical model of intravascular coagulation is presented; it encompasses the biochemistry of the tissue factor pathway, platelet activation and deposition on the subendothelium, and flow- and diffusion-mediated transport of coagulation proteins and platelets. Simulation experiments carried out with the model indicate the predominant role played by the physical processes of platelet deposition and flow-mediated removal of enzymes in inhibiting coagulation in the vicinity of vascular injury. Sufficiently rapid production of factors IXa and Xa by the TF:VIIa complex can overcome this inhibition and lead to formation of significant amounts of the tenase complex on the surface of activated platelets and, as a consequence, to substantial thrombin production. Chemical inhibitors are seen to play almost no (TFPI) or little (AT-III and APC) role in determining whether substantial thrombin production will occur. The role of APC is limited by the necessity for diffusion of thrombin from the site of injury to nearby endothelial cells to form the thrombomodulin-thrombin complex and for diffusion in the reverse direction of the APC made by this complex. TFPI plays an insignificant part in inhibiting the TF:VIIa complex under the conditions studied whether its action involves sequential binding of TFPI to Xa and then TFPI:Xa to TF:VIIa, or direct binding of TFPI to Xa already bound to the TF:VIIa complex. Copyright 2005 S. Karger AG, Basel.

  2. Effects of dipyrone, meloxicam, or the combination on hemostasis in conscious dogs.

    PubMed

    Zanuzzo, Felipe S; Teixeira-Neto, Francisco J; Thomazini, Camila M; Takahira, Regina K; Conner, Bobbi; Diniz, Miriely S

    2015-01-01

    To compare the effects of dipyrone, meloxicam, and of the combination of these drugs on hemostasis in dogs. Prospective, blinded, randomized crossover study. Research laboratory at a veterinary teaching hospital. Six adult dogs. Animals received 4 intravenous treatments with 15-day washout intervals: control (physiological saline, 0.1 mL/kg), meloxicam (0.2 mg/kg), dipyrone (25 mg/kg), and dipyrone-meloxicam (25 and 0.2 mg/kg, respectively). A jugular catheter was placed for drug injection and for collecting samples for whole blood platelet aggregation (WBPA) and thromboelastometry assays at baseline, 1, 2, 3, 5, and 8 hours after treatment administration. The percent change from baseline of lag time and of the area under the curve (AUC) of impedance changes in response to collagen-induced platelet activation were recorded during WBPA. Thromboelastometry-derived parameters included clotting time, clot formation time, alpha-angle, and maximum clot firmness. The buccal mucosal bleeding time was evaluated by a blinded observer at baseline, 1, 3, and 5 hours after treatment injection. No significant changes in WBPA and thromboelastometry were recorded in the control treatment. Dipyrone significantly (P < 0.05) increased the lag time for 2 hours and decreased the AUC for 3 hours after injection. Meloxicam did not alter WBPA. Dipyrone-meloxicam significantly increased lag time for 2 hours and decreased the AUC for 5 hours after treatment injection. Experimental treatments did not differ from the control treatment for thromboelastometry and buccal mucosal bleeding time. While meloxicam does not alter hemostasis by the methods evaluated, dipyrone inhibits platelet aggregation for up to 3 hours. Meloxicam-dipyrone combination causes more prolonged inhibition of platelet function than dipyrone alone. Decreased platelet aggregation induced by dipyrone and dipyrone-meloxicam does not appear to impact the viscoelastic properties of the blood clot nor increase the risk of bleeding in dogs without preexisting hemostatic disorders. © Veterinary Emergency and Critical Care Society 2015.

  3. Orally given gastroprotective capsaicin does not modify aspirin-induced platelet aggregation in healthy male volunteers (human phase I examination).

    PubMed

    Sandor, B; Papp, J; Mozsik, Gy; Szolcsanyi, J; Keszthelyi, Zs; Juricskay, I; Toth, K; Habon, Tamas

    2014-12-01

    Capsaicin is a well-known component of red pepper. Recent studies have shown that capsaicin could prevent gastric ulcer provoked by various NSAID-s like acetylsalicylic acid (ASA). Primary objective of this human clinical phase I trial was to investigate whether two different doses of capsaicin co-administered with ASA could alter the inhibitory effect of ASA on platelet aggregation. 15 healthy male subjects were involved in the study and treated orally with 400 μg capsaicin, 800 μg capsaicin, 500 mg ASA, 400 μg capsaicin+500 mg ASA and 800 μg capsaicin+500 mg ASA. Blood was drawn before and 1, 2, 6 and 24 hours after the drug administration. After that epinephrine induced platelet aggregation was measured by optical aggregometry. Between treatments, volunteers had a 6-day wash-out period. Our results showed that capsaicin had no effect on platelet aggregation, while as expected, ASA monotherapy resulted in a significant and clinically effective platelet aggregation inhibition (p ≤ 0.001). The combined ASA-capsaicin therapies reached equivalent effectiveness in platelet aggregation inhibition as ASA monotherapy. Our investigation proved that capsaicin did not influence the inhibitory effect of ASA on platelet aggregation, thus the capsaicin-ASA treatment would combine the antiplatelet effect of ASA with the possible gastroprotection of capsaicin.

  4. Platelets, neutrophils, and vasoconstriction after arterial injury by angioplasty in pigs: effects of MK-886, a leukotriene biosynthesis inhibitor

    PubMed Central

    Provost, Patrick; Borgeat, Pierre; Merhi, Yahye

    1998-01-01

    Leukotrienes constitute a class of potent bioactive mediators known to play a pivotal role in inflammation. Since their biosynthesis has been shown to be enhanced by platelet-neutrophil interactions, leukotrienes may be involved in these interactions and the arterial response to injury. Therefore, we investigated the effects of the selective leukotriene biosynthesis inhibitor 3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2-dimethylpropanoic acid (MK-886) on the acute thrombotic and vasomotor responses after arterial injury by angioplasty.Carotid arterial injury was produced by balloon dilatation in control (molecusol vehicle; n=10) and treated (MK-886, 10 mg kg−1, i.v.; n=9) pigs. The acute thrombotic reaction following deep arterial wall injury was quantified with 51Cr labelled platelets and 111In labelled neutrophils, and the vasomotor response was determined angiographically.Platelet deposition at the site of deep arterial wall injury averaged 56.4±11.0×106 platelets cm−2 in the control group, and was significantly reduced to 18.2±3.8×106 platelets cm−2 (P<0.005) by treatment with MK-886. Neutrophil deposition was also decreased by MK-886, from 242.8±36.8 to 120.9±20.3×103 neutrophils cm−2 (P<0.01). MK-886-treated animals had a significant decrease in the postangioplasty vasoconstrictive response at the site of endothelial injury distally, from 37.5±3.1% in the control group to 13.5±2.5% (P<0.001).The effects of MK-886 were associated with a profound inhibition of ex vivo leukotriene B4 (LTB4) synthesis in blood stimulated by the calcium ionophore A23187 and a significant reduction of neutrophil aggregation in whole blood (P<0.01), whereas neutrophil superoxide anion production, serum thromboxane B2 and platelet aggregation in whole blood were not influenced.The relevant effects of MK-886 are primarily related to inhibition of neutrophil function and suggest an important modulatory role for leukotrienes in the pathophysiological response associated with platelet and neutrophil interactions following arterial injury in vivo. PMID:9489613

  5. Evaluation of a BED-SIDE platelet function assay: performance and clinical utility.

    PubMed

    Lau, Wei C; Walker, C Ty; Obilby, David; Wash, Mark M; Carville, David G M; Guyer, Kirk E; Bates, Eric R

    2002-01-01

    Platelets have a pivotal role in the initial defense against insult to the vasculature and are also recognized of critical importance in the acute care settings of percutaneous coronary intervention and cardiopulmonary bypass. In these environments both platelet count and function may be markedly compromised. Unfortunately, current assays to evaluate the parameters of platelet count and function are of limited utility for bed-side testing. Moreover, it is suggested that there may be significant inter patient variation in response to antiplatelet therapy that may be exacerbated by other agents (e.g. heparin) that are routinely administered during cardiac intervention. Here we describe a practical, rapid and user-friendly whole blood platelet function assay that has been developed for use in bed-side settings. Platelet agonists were formulated with an anticoagulant and lyophilized in blood collection tubes standardised to receive a l mL fresh whole blood sample. In the presence of an agonist, platelets are activated and interact (aggregate). Using traditional cell counting principles, non-aggregated platelets are counted whereas aggregated platelets are not. The percentage (%) of functional platelets in reference to a baseline tube may then be determined. Results are available within four minutes. Platelet aggregation in whole blood demonstrated good correlation with turbidometric aggregometry for both ADP (r=0.91) and collagen (r=0.88). Moreover, in clinical settings where antiplatelet agents were administered, this rapid, bed-side, platelet function assay demonstrated utility in monitoring patient response to these therapies. This novel bed-side assay of platelet function is extremely suitable for the clinical environment with a rapid turn-around time. In addition, it provides a full haematology profile, including platelet count, and should permit enhancement of transfusion and interventional decisions.

  6. Glycoprotein Ibα receptor instability is associated with loss of quality in platelets produced in culture.

    PubMed

    Robert, Amélie; Boyer, Lucie; Pineault, Nicolas

    2011-03-01

    The development of culture processes for hematopoietic progenitors could lead to the development of a complementary source of platelets for therapeutic purposes. However, functional characterization of culture-derived platelets remains limited, which raises some uncertainties about the quality of platelets produced in vitro. The aim of this study was to define the proportion of functional platelets produced in cord blood CD34+ cell cultures. Toward this, the morphological and functional properties of culture-derived platelet-like particles (PLPs) were critically compared to that of blood platelets. Flow cytometry combined with transmission electron microscopy analyses revealed that PLPs formed a more heterogeneous population of platelets at a different stage of maturation than blood platelets. The majority of PLPs harbored the fibrinogen receptor αIIbβ3, but a significant proportion failed to maintain glycoprotein (GP)Ibα surface expression, a component of the vWF receptor essential for platelet functions. Importantly, GPIbα extracellular expression correlated closely with platelet function, as the GPIIb+ GPIbα+ PLP subfraction responded normally to agonist stimulation as evidenced by α-granule release, adhesion, spreading, and aggregation. In contrast, the GPIIb+ GPIbα⁻ subfraction was unresponsive in most functional assays and appeared to be metabolically inactive. The present study confirms that functional platelets can be generated in cord blood CD34+ cell cultures, though these are highly susceptible to ectodomain shedding of receptors associated with loss of function. Optimization of culture conditions to prevent these deleterious effects and to homogenize PLPs is necessary to improve the quality and yields of culture-derived platelets before they can be recognized as a suitable complementary source for therapeutic purposes.

  7. Triflavin, an Arg‐Gly‐Asp‐containing Peptide, Inhibits Tumor Cell‐induced Platelet Aggregation

    PubMed Central

    Sheu, Joen R.; Lin, Chao H.; Peng, Hui C.; Teng, Che M.

    1993-01-01

    In this study, we examined the effect of triflavin, an Arg‐Gly‐Asp (RGD)‐containing snake venom peptide, on human cervical carcinoma (HeLa) cell‐ and B16‐F10 mouse melanoma cell‐induced platelet aggregation (TCIPA) in heparinized platelet‐rich plasma. TCIPA appears to play an important role in the development of certain experimental tumor metastases. Two ADP‐scavenging agents, apyrase (10 U/ml) and creatine phosphate (CP) (5 mM)/creatine phosphokinase (CPK) (5 U/ml) completely inhibited B16‐F10 TCIPA, but hirudin (5 U/ml) had no effect. In contrast, apyrase and CP/CPK did not inhibit HeLa TCIPA while hirudin completely inhibited it. Furthermore, HeLa cells initially induced platelet aggregation and then blood coagulation at a later stage. In addition, HeLa cells shortened, in a concentration‐dependent manner, the recalcification time of normal as well as factor VIII‐ and IX‐deficient human plasma, but did not affect the recalciflcation time of factor VII‐deficient plasma. This suggests that HeLa TCIPA occurs via activation of the extrinsic pathway, probably owing to tumor cell expression of tissue factor‐like activity. HeLa cell‐induced thrombin generation was confirmed by detection of amidolytic activity towards a chromogenic substrate, S‐2238 (H‐D‐Phe‐Pip‐Arg‐p‐NA). Triflavin and GRGDS inhibited, in a dose‐dependent manner, TCIPA caused by either cell line. On a molar basis, triflavin was 10,000–30,000 times more potent than GRGDS in this regard. Moreover, monoclonal antibodies raised against glycoprotein (GP) IIb/IIIa complex (i.e., 7E3 and AP2) and against GP Ib (i.e., AP1) completely inhibited HeLa TCIPA. 7E3 and AP2 inhibited B16‐F10 TCIPA by up to 80% whereas AP1 showed only 30% inhibition of B16‐F10 TCIPA. In conclusion, the inhibitory effect of triflavin on HeLa and B16‐F10 TCIPA may be mediated principally by the binding of triflavin to the fibrinogen receptor associated with GP IIb/IIIa complex on the platelet surface. However, GP Ib is also involved in HeLa TCIPA as thrombin formation is the key factor in triggering platelet aggregation caused by HeLa cells. PMID:8226281

  8. Peri-Procedural Platelet Reactivity in Percutaneous Coronary Intervention.

    PubMed

    Alexopoulos, Dimitrios; Xenogiannis, Iosif; Vlachakis, Panagiotis; Tantry, Udaya; Gurbel, Paul A

    2018-06-04

    Platelet activation and aggregation play a pivotal role in thrombotic complications occurring during percutaneous coronary intervention (PCI), and peri-PCI anti-platelet therapy represents a standard of care. High platelet reactivity prior to PCI has been correlated with an increased incidence of peri-procedural myonecrosis. Pre-PCI platelet reactivity predicts post-PCI platelet reactivity and has a prognostic impact on subsequent ischaemic and bleeding events, so as the platelet inhibition measured post-PCI. Many anti-platelet treatment strategies, including aspirin, glycoprotein IIb/IIIa inhibitors, P2Y 12 receptor blockers and vorapaxar, are being used in the routine clinical practice to modify platelet reactivity at each stage, e.g. pre-, during and post-PCI. Anti-platelet strategies with a 'stronger and faster' pharmacodynamic effect than clopidogrel have been mostly adopted in patients with acute coronary syndromes. However, several issues regarding the anti-platelet treatment such as benefits/risks of anti-platelet therapy pre-treatment and duration, and definite association between speed and potency of various anti-platelet agents and clinical outcomes remain controversial. We believe that a better understanding of peri-PCI platelet reactivity and its relations to outcomes may lead to the development of more effective and safe treatment strategies. Schattauer GmbH Stuttgart.

  9. Global analysis of the rat and human platelet proteome – the molecular blueprint for illustrating multi-functional platelets and cross-species function evolution

    PubMed Central

    Yu, Yanbao; Leng, Taohua; Yun, Dong; Liu, Na; Yao, Jun; Dai, Ying; Yang, Pengyuan; Chen, Xian

    2013-01-01

    Emerging evidences indicate that blood platelets function in multiple biological processes including immune response, bone metastasis and liver regeneration in addition to their known roles in hemostasis and thrombosis. Global elucidation of platelet proteome will provide the molecular base of these platelet functions. Here, we set up a high throughput platform for maximum exploration of the rat/human platelet proteome using integrated proteomics technologies, and then applied to identify the largest number of the proteins expressed in both rat and human platelets. After stringent statistical filtration, a total of 837 unique proteins matched with at least two unique peptides were precisely identified, making it the first comprehensive protein database so far for rat platelets. Meanwhile, quantitative analyses of the thrombin-stimulated platelets offered great insights into the biological functions of platelet proteins and therefore confirmed our global profiling data. A comparative proteomic analysis between rat and human platelets was also conducted, which revealed not only a significant similarity, but also an across-species evolutionary link that the orthologous proteins representing ‘core proteome’, and the ‘evolutionary proteome’ is actually a relatively static proteome. PMID:20443191

  10. The effects of vincristine on platelet aggregation studied by a filter loop technique in the rat.

    PubMed Central

    Bee, D.; Leach, E.; Martin, J. F.; Suggett, A. J.

    1980-01-01

    1 A method for measuring aggregation of platelets of adenosine diphosphate (ADP) is described using a filter inserted into the flowing aortic blood in the rat. 2 Repeated infusions of ADP resulted in a fall in the calculated aggregation index without significant changes in the platelet count. 3 Vincristine (0.05 mg/kg) intravenously caused significant inhibition of ADP-induced platelet aggregation. 4 Infusion of ADP caused some peripheral vasodilatation though it is unlikely that this contributed to the effects seen to any great extent. PMID:7437636

  11. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization

    PubMed Central

    Kopp, Hans-Georg; Hooper, Andrea T.; Broekman, M. Johan; Avecilla, Scott T.; Petit, Isabelle; Luo, Min; Milde, Till; Ramos, Carlos A.; Zhang, Fan; Kopp, Tabitha; Bornstein, Paul; Jin, David K.; Marcus, Aaron J.; Rafii, Shahin

    2006-01-01

    Thrombopoietic cells may differentially promote or inhibit tissue vascularization by releasing both pro- and antiangiogenic factors. However, the molecular determinants controlling the angiogenic phenotype of thrombopoietic cells remain unknown. Here, we show that expression and release of thrombospondins (TSPs) by megakaryocytes and platelets function as a major antiangiogenic switch. TSPs inhibited thrombopoiesis, diminished bone marrow microvascular reconstruction following myelosuppression, and limited the extent of revascularization in a model of hind limb ischemia. We demonstrate that thrombopoietic recovery following myelosuppression was significantly enhanced in mice deficient in both TSP1 and TSP2 (TSP-DKO mice) in comparison with WT mice. Megakaryocyte and platelet levels in TSP-DKO mice were rapidly restored, thereby accelerating revascularization of myelosuppressed bone marrow and ischemic hind limbs. In addition, thrombopoietic cells derived from TSP-DKO mice were more effective in supporting neoangiogenesis in Matrigel plugs. The proangiogenic activity of TSP-DKO thrombopoietic cells was mediated through activation of MMP-9 and enhanced release of stromal cell–derived factor 1. Thus, TSP-deficient thrombopoietic cells function as proangiogenic agents, accelerating hemangiogenesis within the marrow and revascularization of ischemic hind limbs. As such, interference with the release of cellular stores of TSPs may be clinically effective in augmenting neoangiogenesis. PMID:17143334

  12. SAR216471, an alternative to the use of currently available P2Y₁₂ receptor inhibitors?

    PubMed

    Delesque-Touchard, N; Pflieger, A M; Bonnet-Lignon, S; Millet, L; Salel, V; Boldron, C; Lassalle, G; Herbert, J M; Savi, P; Bono, F

    2014-09-01

    P2Y12 antagonism is a key therapeutic strategy in the management and prevention of arterial thrombosis. The objective of this study was to characterize the pharmacodynamic (PD) and pharmacokinetic (PK) properties of SAR216471, a novel P2Y12 receptor antagonist. SAR216471 blocks the binding of 2MeSADP to P2Y12 receptors in vitro (IC50=17 nM). This inhibition was shown to be reversible. It potently antagonized ADP-induced platelet aggregation in human and rat platelet-rich plasma (IC50=108 and 62 nM, respectively). It also inhibited platelet aggregation when blood was exposed to collagen or thromboxane A2. Its high selectivity was demonstrated against a large panel of receptors, enzymes, and ion channels. Despite its moderate bioavailability in rats, oral administration of SAR216471 resulted in a fast, potent, and sustained inhibition of platelet aggregation where the extent and duration of platelet inhibition were directly proportional to its circulating plasma levels. Pre-clinical study of SAR216471 in a rat shunt thrombosis model demonstrated a dose-dependent antithrombotic activity after oral administration (ED50=6.7 mg/kg). By comparison, ED50 values for clopidogrel, prasugrel and ticagrelor were 6.3, 0.35 and 2.6 mg/kg, respectively. Finally, the anti-hemostatic effect of SAR216471 and its competitors was investigated in a rat tail bleeding model, revealing a favorable safety profile of SAR216471. Together, these findings have established a reliable antiplatelet profile of SAR216471, and support its potential use in clinical practice as an alternative to currently available P2Y12 receptor antagonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Impact of novel P2Y12 receptor inhibitors on platelet reactivity in acute coronary syndrome patients undergoing percutaneous coronary intervention].

    PubMed

    Chong Tou, T J; Liu, P M; Wang, J F; Sio Cham, Z C; O U, Y F; Lei Sio, Z W; Lei Put, P Z; Lei Sok, S M; Zhou, S X; Wu, W

    2016-02-01

    To investigate the impact of novel P2Y(12) receptor inhibitors including prasugrel or ticagrelor on platelet reactivity in patients with acute coronary syndrome (ACS) receiving percutaneous coronary intervention (PCI), and provide clinical data for novel oral P2Y(12) receptor inhibitors use among Chinese patients. Between October 2011 to February 2014, 174 consecutive patients (135 males; (67.8±11.8) years old) with ACS undergoing PCI in Kiang Wu Hospital, Macau were prospectively enrolled in this study. Oral aspirin and one P2Y(12) receptor inhibitor were administered for 5 days or above after PCI, patients were divided into clopidogrel, prasugrel and ticagrelor groups in accordance with the agent administered. Platelet reactivity of the patients was detected by VerifyNow P2Y(12) reaction unit (PRU); and the high on-treatment platelet reactivity (HPR) and non-HPR were defined as PRU≥208 and PRU<208 respectively. Patients with HPR during clopidogrel therapy were switched either to prasugrel or ticagrelor, or continued the same treatment; and then the platelet reactivity was monitored again. There were 113 clopidogrel cases (64.9%), 20 prasugrel cases (11.5%) and 41 ticagrelor cases (23.6%). Fifty-seven cases (32.8%) were defined as HPR post P2Y(12) receptor inhibitor use, in which 55 cases (55/113, 48.7%) were treated with clopidogrel. The degree of inhibition of platelet reactivity was significantly different in patients on clopidogrel, prasugrel and ticagrelor therapy, percent inhibition assayed by the VerifyNow P2Y(12) system was 28.2%±23.5%, 61.4%±26.7% and 81.3%±19.8% respectively (P<0.05). Different degree of platelet reactivity was achieved by the 3 P2Y(12) receptor inhibitors at multiple time points. The among-group differences in platelet reactivity became apparent at the early treatment stage (P<0.05). Platelet aggregation decreased significantly in patients switched from clopidogrel to prasugrel or ticagrelor (P<0.05). Novel oral P2Y(12) receptor inhibitors are more effective in inhibiting platelet reactivity in ACS patients, and our results show that novel oral P2Y(12) receptor inhibitors provide a new option for ACS patients with HPR post clopidogrel or high-risk features of ischemic complications, including stent thrombosis and post-PCI ischemic events.

  14. Pathogen reduction by ultraviolet C light effectively inactivates human white blood cells in platelet products.

    PubMed

    Pohler, Petra; Müller, Meike; Winkler, Carla; Schaudien, Dirk; Sewald, Katherina; Müller, Thomas H; Seltsam, Axel

    2015-02-01

    Residual white blood cells (WBCs) in cellular blood components induce a variety of adverse immune events, including nonhemolytic febrile transfusion reactions, alloimmunization to HLA antigens, and transfusion-associated graft-versus-host disease (TA-GVHD). Pathogen reduction (PR) methods such as the ultraviolet C (UVC) light-based THERAFLEX UV-Platelets system were developed to reduce the risk of transfusion-transmitted infection. As UVC light targets nucleic acids, it interferes with the replication of both pathogens and WBCs. This preclinical study aimed to evaluate the ability of UVC light to inactivate contaminating WBCs in platelet concentrates (PCs). The in vitro and in vivo function of WBCs from UVC-treated PCs was compared to that of WBCs from gamma-irradiated and untreated PCs by measuring cell viability, proliferation, cytokine secretion, antigen presentation in vitro, and xenogeneic GVHD responses in a humanized mouse model. UVC light was at least as effective as gamma irradiation in preventing GVHD in the mouse model. It was more effective in suppressing T-cell proliferation (>5-log reduction in the limiting dilution assay), cytokine secretion, and antigen presentation than gamma irradiation. The THERAFLEX UV-Platelets (MacoPharma) PR system can substitute gamma irradiation for TA-GVHD prophylaxis in platelet (PLT) transfusion. Moreover, UVC treatment achieves suppression of antigen presentation and inhibition of cytokine accumulation during storage of PCs, which has potential benefits for transfusion recipients. © 2014 AABB.

  15. A double-blind, randomized, multicenter phase 2 study of prasugrel versus placebo in adult patients with sickle cell disease

    PubMed Central

    2013-01-01

    Background Platelet activation has been implicated in the pathogenesis of sickle cell disease (SCD) suggesting antiplatelet agents may be therapeutic. To evaluate the safety of prasugrel, a thienopyridine antiplatelet agent, in adult patients with SCD, we conducted a double-blind, randomized, placebo-controlled study. Methods The primary endpoint, safety, was measured by hemorrhagic events requiring medical intervention. Patients were randomized to prasugrel 5 mg daily (n = 41) or placebo (n = 21) for 30 days. Platelet function by VerifyNow® P2Y12 and vasodilator-stimulated phosphoprotein assays at days 10 and 30 were significantly inhibited in prasugrel- compared with placebo-treated SCD patients. Results There were no hemorrhagic events requiring medical intervention in either study arm. Mean pain rate (percentage of days with pain) and intensity in the prasugrel arm were decreased compared with placebo. However, these decreases did not reach statistical significance. Platelet surface P-selectin and plasma soluble P-selectin, biomarkers of in vivo platelet activation, were significantly reduced in SCD patients receiving prasugrel compared with placebo. In sum, prasugrel was well tolerated and not associated with serious hemorrhagic events. Conclusions Despite the small size and short duration of this study, there was a decrease in platelet activation biomarkers and a trend toward decreased pain. PMID:23414938

  16. Aspirin Hydrolysis in Plasma Is a Variable Function of Butyrylcholinesterase and Platelet-activating Factor Acetylhydrolase 1b2 (PAFAH1b2)*

    PubMed Central

    Zhou, Gang; Marathe, Gopal K.; Hartiala, Jaana; Hazen, Stanley L.; Allayee, Hooman; Tang, W. H. Wilson; McIntyre, Thomas M.

    2013-01-01

    Aspirin is rapidly hydrolyzed within erythrocytes by a heterodimer of PAFAH1b2/PAFAH1b3 but also in plasma by an unidentified activity. Hydrolysis in both compartments was variable, with a 12-fold variation in plasma among 2226 Cleveland Clinic GeneBank patients. Platelet inhibition by aspirin was suppressed in plasma that rapidly hydrolyzed aspirin. Plasma aspirin hydrolysis was significantly higher in patients with coronary artery disease compared with control subjects (16.5 ± 4.4 versus 15.1 ± 3.7 nmol/ml/min; p = 3.4 × 10−8). A genome-wide association study of 2054 GeneBank subjects identified a single locus immediately adjacent to the BCHE (butyrylcholinesterase) gene associated with plasma aspirin hydrolytic activity (lead SNP, rs6445035; p = 9.1 × 10−17). However, its penetrance was low, and plasma from an individual with an inactivating mutation in BCHE still effectively hydrolyzed aspirin. A second aspirin hydrolase was identified in plasma, the purification of which showed it to be homomeric PAFAH1b2. This is distinct from the erythrocyte PAFAH1b2/PAFAH1b3 heterodimer. Inhibitors showed that both butyrylcholinesterase (BChE) and PAFAH1b2 contribute to aspirin hydrolysis in plasma, with variation primarily reflecting non-genetic variation of BChE activity. Therefore, aspirin is hydrolyzed in plasma by two enzymes, BChE and a new extracellular form of platelet-activating factor acetylhydrolase, PAFAH1b2. Hydrolytic effectiveness varies widely primarily from non-genetic variation of BChE activity that affects aspirin bioavailability in blood and the ability of aspirin to inhibit platelet aggregation. PMID:23508960

  17. Functional role of endothelial CXCL16/CXCR6-platelet-leukocyte axis in angiotensin II-associated metabolic disorders.

    PubMed

    Collado, Aida; Marques, Patrice; Escudero, Paula; Rius, Cristina; Domingo, Elena; Martinez-Hervás, Sergio; Real, José T; Ascaso, Juan F; Piqueras, Laura; Sanz, Maria-Jesus

    2018-05-23

    Angiotensin-II (Ang-II) is the main effector peptide of the renin-angiotensin system (RAS) and promotes leukocyte adhesion to the stimulated endothelium. Because RAS activation and Ang-II signaling are implicated in metabolic syndrome (MS) and abdominal aortic aneurysm (AAA), we investigated the effect of Ang-II on CXCL16 arterial expression, the underlying mechanisms, and the functional role of the CXCL16/CXCR6 axis in these cardiometabolic disorders. Results from in vitro chamber assays revealed that CXCL16 neutralization significantly inhibited mononuclear leukocyte adhesion to arterial but not to venous endothelial cells. Flow cytometry and immunofluorescence studies confirmed that Ang-II induced enhanced endothelial CXCL16 expression, which was dependent on Nox5 up-regulation and subsequent RhoA/p38-MAPK/NFκB activation. Flow cytometry analysis further showed that MS patients had higher levels of platelet activation and a higher percentage of circulating CXCR6-expressing platelets, CXCR6-expressing-platelet-bound neutrophils, monocytes and CD8+ lymphocytes than age-matched controls, leading to enhanced CXCR6/CXCL16-dependent adhesion to the dysfunctional (Ang-II- and TNFα-stimulated) arterial endothelium. Ang-II-challenged apolipoprotein E-deficient (apoE-/-) mice had a higher incidence of AAA, macrophage, CD3+ and CXCR6+ cell infiltration and neovascularization than unchallenged animals, which was accompanied by greater CCL2, CXCL16 and VEGF mRNA expression within the lesion together with elevated levels of circulating soluble CXCL16. Significant reductions in these parameters were found in animals co-treated with the AT1 receptor antagonist losartan or in apoE-/- mice lacking functional CXCR6 receptor (CXCR6GFP/GFP). CXCR6 expression on platelet-bound monocytes and CD8+ lymphocytes may constitute a new membrane-associated biomarker for adverse cardiovascular events. Moreover, pharmacological modulation of this axis may positively affect cardiovascular outcome in metabolic disorders linked to Ang-II.

  18. [Dose-response of aspirin on platelet function in very elderly patients].

    PubMed

    Feng, X R; Liu, M L; Liu, F; Fan, Y; Tian, Q P

    2016-10-18

    To assess the consequences of switching aspirin dosage from 100 mg/d to 40 mg/d on cardiovascular benefit, bleeding risk and platelet aggregation in very elderly patients. Arachidonic acid induced platelet aggregation(AA-Ag) was measured in 537 patients aged 80 or older treated with aspirin (100 mg/d). In the study, 100 patients with low on-treatment platelet aggregation and at high risk of bleeding and low risk of cardiovascular events, were switched to aspirin (40 mg/d) and their platelet aggregation was measured again 7 days later.Their bleeding and upper gastrointestinal symptoms were also recorded in following 3 months. The study observed a heterogeneous distributed aspirin 100 mg/d AA-Ag (range: 0.42% to 28.78%)in the 537 very elderly patients.Aspirin 100 mg/d AA-Ag before the switch in aspirin 40 mg/d group was 5.00%±2.32% and the rate of the patients with low on-treatment platelet aggregation was 71.00%. The rates of melena or occult blood positive, other minimal bleeding,upper gastrointestinal symptoms and a history of gastrointestinal bleeding in 40 mg/d group were higher than those in 100 mg/d group. On a regimen of aspirin 40 mg/d, AA-Ag increased to 11.21%±4.95%(range: 2.12% to 28.84%) with 95.00%of the patients with AA-Ag<20% and the rate of the patients with low on-treatment platelet aggregation was 15.00%. Multiple variable analysis revealed that aspirin 40 mg/d AA-Ag was significantly influenced by aspirin 100 mg/d AA-Ag, BMI and platelet counts. The rate of gastrointestinal bleeding decreased from 12.00% to 5.00%,and upper gastrointestinal symptoms decreased from 59.00% to 21.00% after the switch in 40 mg/d group. Switching aspirin dosage from 100 mg/d to 40 mg/d reduces the bleeding events and improves upper gastrointestinal symptoms, thus inhibiting platelet aggregation effectively in very elderly patients.

  19. "Aspirin resistance" in ischemic stroke: insights using short thrombelastography.

    PubMed

    Sambu, Nalyaka; Radhakrishnan, Ashwin; Englyst, Nicola; Weir, Nicolas; Curzen, Nick

    2013-11-01

    Aspirin achieves its antithrombotic effect through inactivation of cyclo-oxygenase (COX)-1, thereby preventing generation of thromboxane (TX)A2 from arachidonic acid (AA). The reported prevalence of aspirin "resistance" varies significantly and is usually based on platelet function tests (PFTs) that use AA-induced platelet reactivity as a surrogate measure of the effect of aspirin, rather than specific assessment of its effect on its therapeutic target (ie, COX-1 inhibition). The reported rates are not only assay specific but also condition specific, with particularly high rates (up to 70%) previously reported in the stroke population. We investigated whether pharmacological responses to aspirin can be reliably determined from a functional test of AA-induced whole-blood clotting. A prospective study included 35 patients admitted with ischemic stroke and commenced on 300 mg aspirin. AA-induced whole-blood clotting was measured using short thrombelastography, a previously extensively validated near-patient PFT. Serum TXB2 and inflammatory biomarkers were also measured. The prevalence of apparent aspirin resistance measured using AA was high (range from 49% to 67%). However, serum [TXB2] was consistently low, thereby confirming adequate inhibition of COX-1 by aspirin. Mean inflammatory biomarker levels were elevated throughout. This study demonstrates that although COX-1 activity is adequately and consistently suppressed by aspirin in stroke patients, this effect is not reliably indicated by whole-blood clotting in response to AA. These data help to explain why the reported prevalence of aspirin resistance in stroke from studies employing AA-induced platelet reactivity is high and cast doubt on the veracity of such reports. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. O-Raffinose Crosslinking Substantially Ameliorates the Vasoconstrictive and Nitric-Oxide-Inactivating Effects of Unmodified Human Hemoglobin in the Rat

    DTIC Science & Technology

    1997-07-11

    severity of the increase in MAP and SVR is accounted for by the profound depressant effect of Ao SFH on cardie output (Table III). We have not examined...1985. N- acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. / Clin Invest 76:703-708. 34. Mendelsohn, M., S. O’Neill...D. George, and J. Loscalzo. 1990. Inhibition of fibrinogen binding to human platelets by S-nitroso-N- acetylcysteine . / Biol Chem 265:19028-19034. 27

  1. Amelioration of lesions associated with 24-hour suboptimal platelet storage at 16 °C by a p38MAPK inhibitor, VX-702.

    PubMed

    Wagner, S J; Skripchenko, A; Seetharaman, S; Kurtz, J

    2015-04-01

    Previous studies with p38MAPK inhibitors at room temperature demonstrated that they improve a large number of platelet storage parameters, but cannot substantially inhibit p38MAPK activation nor protect against widespread decrements in platelet quality parameters during 4 °C storage. In this study, platelet quality parameters and inhibition of p38MAPK by VX-702 were studied after incubation of platelets at 16 °C without agitation, suboptimal storage conditions which produce moderate platelet decrements. Trima apheresis units were collected and aliquoted into three 60-ml CLX storage bags: (i) a control aliquot which was held at 20-24 °C with constant agitation; (ii) a test aliquot which was held at 20-24 °C with agitation until Day 2, when it was reincubated at 16 ± 1 °C for 24 ± 0·5 h without agitation and then returned 20-24 °C with agitation; (iii) a test aliquot containing 1 μm VX-702 stored in an identical fashion as aliquot 2. Aliquots were tested for an array of platelet storage parameters and p38MAPK activation on Days 1, 4 and 7. Many platelet storage parameters and p38MAPK activation were adversely affected by 24-h incubation at 16 °C without agitation. With the exception of ESC, addition of VX-702 prevented p38MAPK activation and the decrements in most observed parameters. Unlike 4 °C storage, VX-702 prevents activation of p38MAPK and decrements in many platelet storage parameters after exposure to 16 °C without agitation for 24 h. © 2014 International Society of Blood Transfusion.

  2. Developing recombinant HPA-1a-specific antibodies with abrogated Fcgamma receptor binding for the treatment of fetomaternal alloimmune thrombocytopenia.

    PubMed

    Ghevaert, Cedric; Wilcox, David A; Fang, Juan; Armour, Kathryn L; Clark, Mike R; Ouwehand, Willem H; Williamson, Lorna M

    2008-08-01

    Fetomaternal alloimmune thrombocytopenia (FMAIT) is caused by maternal generation of antibodies specific for paternal platelet antigens and can lead to fetal intracranial hemorrhage. A SNP in the gene encoding integrin beta3 causes a clinically important maternal-paternal antigenic difference; Leu33 generates the human platelet antigen 1a (HPA-1a), whereas Pro33 generates HPA-1b. As a potential treatment to prevent fetal intracranial hemorrhage in HPA-1a alloimmunized pregnancies, we generated an antibody that blocks the binding of maternal HPA-1a-specific antibodies to fetal HPA-1a1b platelets by combining a high-affinity human HPA-1a-specific scFv (B2) with an IgG1 constant region modified to minimize Fcgamma receptor-dependent platelet destruction (G1Deltanab). B2G1Deltanab saturated HPA-1a+ platelets and substantially inhibited binding of clinical HPA-1a-specific sera to HPA-1a+ platelets. The response of monocytes to B2G1Deltanab-sensitized platelets was substantially less than their response to unmodified B2G1, as measured by chemiluminescence. In addition, B2G1Deltanab inhibited chemiluminescence induced by B2G1 and HPA-1a-specific sera. In a chimeric mouse model, B2G1 and polyclonal Ig preparations from clinical HPA-1a-specific sera reduced circulating HPA-1a+ platelets, concomitant with transient thrombocytopenia. As the Deltanab constant region is uninformative in mice, F(ab')2 B2G1 was used as a proof of principle blocking antibody and prevented the in vivo platelet destruction seen with B2G1 and polyclonal HPA-1a-specific antibodies. These results provide rationale for human clinical studies.

  3. Mechanism of free radical generation in platelets and primary hepatocytes: A novel electron spin resonance study.

    PubMed

    Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey

    2018-01-01

    Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.

  4. Platelet-derived growth factor-DD targeting arrests pathological angiogenesis by modulating glycogen synthase kinase-3beta phosphorylation.

    PubMed

    Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri

    2010-05-14

    Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.

  5. Postoperative Decrease in Platelet Counts Is Associated with Delayed Liver Function Recovery and Complications after Partial Hepatectomy.

    PubMed

    Takahashi, Kazuhiro; Kurokawa, Tomohiro; Oshiro, Yukio; Fukunaga, Kiyoshi; Sakashita, Shingo; Ohkohchi, Nobuhiro

    2016-05-01

    Peripheral platelet counts decrease after partial hepatectomy; however, the implications of this phenomenon are unclear. We assessed if the observed decrease in platelet counts was associated with postoperative liver function and morbidity (complications grade ≤ II according to the Clavien-Dindo classification). We enrolled 216 consecutive patients who underwent partial hepatectomy for primary liver cancers, metastatic liver cancers, benign tumors, and donor hepatectomy. We classified patients as either low or high platelet percentage (postoperative platelet count/preoperative platelet count) using the optimal cutoff value calculated by a receiver operating characteristic (ROC) curve analysis, and analyzed risk factors for delayed liver functional recovery and morbidity after hepatectomy. Delayed liver function recovery and morbidity were significantly correlated with the lowest value of platelet percentage based on ROC analysis. Using a cutoff value of 60% acquired by ROC analysis, univariate and multivariate analysis determined that postoperative lowest platelet percentage ≤ 60% was identified as an independent risk factor of delayed liver function recovery (odds ratio (OR) 6.85; P < 0.01) and morbidity (OR, 4.90; P < 0.01). Furthermore, patients with the lowest platelet percentage ≤ 60% had decreased postoperative prothrombin time ratio and serum albumin level and increased serum bilirubin level when compared with patients with platelet percentage ≥ 61%. A greater than 40% decrease in platelet count after partial hepatectomy was an independent risk factor for delayed liver function recovery and postoperative morbidity. In conclusion, the decrease in platelet counts is an early marker to predict the liver function recovery and complications after hepatectomy.

  6. Evaluating antithrombotic activity of HY023016 on rat hypercoagulable model.

    PubMed

    Chen, Qiu-Fang; Li, Yun-Zhan; Wang, Xin-Hui; Su, You-Rui; Cui, Shuang; Miao, Ming-Xing; Jiang, Zhen-Zhou; Jiang, Mei-Ling; Jiang, Ai-Dou; Chen, Xiang; Xu, Yun-Gen; Gong, Guo-Qing

    2016-06-15

    The generation of thrombus is not considered as an isolated progression without other pathologic processes, which may also enhance procoagulant state. The purpose of this study was to assess whether HY023016, a novel dabigatran prodrug and an oral direct thrombin inhibitor, or dabigatran etexilate, another thrombin inhibitor can improve the state of whole blood hypercoagulability in vitro/vivo. By using whole blood flow cytometry we explored the effects of HY023016 and dabigatran etexilate on thrombin and ADP-induced human platelet-leukocyte aggregation generated in vitro. With the method of continuous infusion of thrombin intravenous, we successfully established a rat hypercoagulable model and evaluated the effect of HY023016 or dabigatran etexilate in vivo. HY023016 was able to inhibit thrombin- or ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates in dose-dependent manner. Dabigatran etexilate was unable to affect ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates. Based on rat hypercoagulable model, dabigatran etexilate could reverse thrombin-induced circulatory system hypercoagulable state in a concentration-dependent manner. Dabigatran etexilate also inhibited electrical stimulation induced formation of arterial thrombus in rat under hypercoagulable state, and extracorporal circulation-induced formation of thrombus in dose-dependent manner. Compared with dabigatran etexilate, HY023016 showed nearly equal or even better antithrombotic activity, regardless of reversing the cycle of rat hypercoagulable state or inhibiting platelet-leukocyte aggregation. In surrmary, HY023016 could effectively improve hypercoagulable state of circulatory system. Copyright © 2016. Published by Elsevier B.V.

  7. Platelets and hemophilia: A review of the literature.

    PubMed

    Riedl, Julia; Ay, Cihan; Pabinger, Ingrid

    2017-07-01

    Hemophilia A and B are inherited bleeding disorders due to deficiencies of the clotting factors VIII and IX, respectively. The severity of the disease correlates with remaining factor levels, although individual differences in bleeding tendency are seen despite similar factor levels. While thrombin generation is severely impaired in persons with hemophilia, primary hemostasis, i.e. platelet function, has been generally considered to be normal. However, some studies reported prolonged bleeding times in hemophilia, suggesting that also primary hemostasis is affected. In several other studies different aspects of platelet function in hemophilia have been investigated in more detail and various alterations were discovered, such as increased platelet P-selectin expression, a lower number of procoagulant, so-called 'coated' platelets, lower aggregation upon co-incubation with tissue factor, or reduced platelet contractile forces during clot formation in comparison to healthy individuals. An influence of platelet function on clinical phenotype was suggested, which might contribute in part to variations in bleeding tendency in hemophilic patients with similar factor levels. However, the available evidence is currently limited and no clear correlations between platelet function parameters and clinical phenotypes have been demonstrated. The impact of alterations of platelet function in hemophilia remains to be better defined. Another interesting role of platelets in hemophilia has been reported recently by establishing a novel gene-therapeutic strategy using platelets as a delivery system for FVIII, showing promising results in animal models. This review gives an overview on the currently published literature on platelet function and the potential roles of platelets in hemophilia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mechanisms of Human Erythrocytic Bioactivation of Nitrite*

    PubMed Central

    Liu, Chen; Wajih, Nadeem; Liu, Xiaohua; Basu, Swati; Janes, John; Marvel, Madison; Keggi, Christian; Helms, Christine C.; Lee, Amber N.; Belanger, Andrea M.; Diz, Debra I.; Laurienti, Paul J.; Caudell, David L.; Wang, Jun; Gladwin, Mark T.; Kim-Shapiro, Daniel B.

    2015-01-01

    Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood. PMID:25471374

  9. Intraplatelet reactive oxygen species (ROS) correlate with the shedding of adhesive receptors, microvesiculation and platelet adhesion to collagen during storage: Does endogenous ROS generation downregulate platelet adhesive function?

    PubMed

    Ghasemzadeh, Mehran; Hosseini, Ehteramolsadat; Roudsari, Zahra Oushyani; Zadkhak, Parvin

    2018-03-01

    Platelets storage lesion is mainly orchestrated by platelet activating signals during storage. Reactive oxygen species (ROS) are being considered as important signaling molecules modulating platelet function while their production has also been shown to be augmented by platelet activation. This study investigated to what extent endogenous ROS generation during platelet storage could be correlated with platelet receptor shedding, microvesiculation and adhesive function. 10 PRP-platelet concentrates were subjected to flow cytometry analysis to examine the generation of intraplatelet ROS on days 1, 5 and 7 after storage. In 5 day-stored platelets considering 40% of ROS generation as a cutoff point, samples were divided into two groups of those with higher or lower levels of ROS. The expression of adhesion receptors (GPVI, GPIbα), the amount of microparticles and phosphatidylserine exposure in each group were then examined by flow cytometry. Platelet receptor shedding and adhesion to collagen matrix were respectively measured by western blotting and microscopic assays. Our data showed lowered expression of GPIbα (p < 0.05) and GPVI in samples with ROS > 40% than those with ROS ≤ 40%, whereas receptors shedding and microvesiculation were (p < 0.05) elevated in platelets with higher levels of ROS. Functionally, we observed significantly (p < 0.05) lower levels of platelet adhesion to collagen matrix in samples with ROS generation more than 40%. Taken together, we showed correlations between intraplatelet ROS generation and either platelet receptors or microparticle shedding as well as platelet adhesive capacity to collagen. These findings suggest that augmented ROS generation during storage might be relevant to down-regulation of platelet adhesive function. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    PubMed

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  11. Inhibition of rabbit platelet activation in vitro by antagonists of platelet-activating factor (PAF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, C.P.; Wood, K.L.

    1986-03-05

    The authors used washed, (/sup 3/H)serotonin-labeled rabbit platelets to study the in vitro aggregation and secretion responses induced by graded doses of PAF in the presence or absence of specific antagonists of PAF. These antagonists included CV-3988, L-652,731, triazolam and alprazolam. Platelets were pretreated with either an antagonist or the appropriate diluent for 60 sec prior to the addition of PAF (2 x 10/sup -10/ to 2 x 10/sup -7/ M). Aggregation was monitored continuously and recorded as the height of the aggregation tracing at 60 sec post-PAF. Secretion of (/sup 3/H)-serotonin was measured in a sample of the plateletsmore » removed at 60 sec post-PAF. When 2 x 10/sup -10/ M PAF was used as the stimulus, the concentration of antagonist needed for 50% inhibition (IC/sub 50/) of secretion was obtained at 0.05 ..mu..M, 0.15 ..mu..M, 0.6 ..mu..M and 2.5 ..mu..M, respectively, for L-652,731, CV-3988, triazolam and alprazolam. The corresponding IC/sub 50/ for aggregation was obtained at 0.2 ..mu..M, 0.1 ..mu..M, 1.5 ..mu..M and 6.5 ..mu..M, respectively. The inhibitory effects of these antagonists could be overcome by increasing the dose of PAF used. Although all of the antagonists were capable of completely inhibiting platelet aggregation and secretion, L-652,731 was the most potent PAF antagonist on a molar basis.« less

  12. Thiols in the alphaIIbbeta3 integrin are necessary for platelet aggregation.

    PubMed

    Manickam, Nagaraj; Sun, Xiuhua; Hakala, Kevin W; Weintraub, Susan T; Essex, David W

    2008-07-01

    Sulfhydryl groups of platelet surface proteins are important in platelet aggregation. While p-chloromercuribenzene sulphonate (pCMBS) has been used in most studies on platelet surface thiols, the specific thiol-proteins that pCMBS reacts with to inhibit aggregation have not been well defined. Since the thiol-containing P2Y(12) ADP receptor is involved in most types of platelet aggregation, we used the ADP scavenger apyrase and the P2Y(12) receptor antagonist 2-MeSAMP to examine thiol-dependent reactions in the absence of contributions from this receptor. We provide evidence for a non-P2Y(12) thiol-dependent reaction near the final alphaIIbbeta3-dependent events of aggregation. We then used 3-(N-maleimidylpropionyl)biocytin (MPB) and pCMBS to study thiols in alphaIIbbeta3. As previously reported, disruption of the receptor was required to obtain labelling of thiols with MPB. Specificity of labelling for thiols in the alphaIIb and beta3 subunits was confirmed by identification of the purified proteins by mass spectrometry and by inhibition of labelling with 5,5'-dithiobis-(2-nitrobenzoic acid). In contrast to MPB, pCMBS preferentially reacted with thiols in alphaIIbbeta3 and blocked aggregation under physiological conditions. Similarly, pCMBS preferentially inhibited signalling-independent activation of alphaIIbbeta3 by Mn(2+). Our results suggest that the thiols in alphaIIbbeta3 that are blocked by pCMBS are important in the activation of this integrin.

  13. Platelet impedance adhesiometry: A novel technique for the measurement of platelet adhesion and spreading.

    PubMed

    Polgár, L; Soós, P; Lajkó, E; Láng, O; Merkely, B; Kőhidai, L

    2018-06-01

    Thrombogenesis plays an important role in today's morbidity and mortality. Antithrombotics are among the most frequently prescribed drugs. Thorough knowledge of platelet function is needed for optimal clinical care. Platelet adhesion is a separate subprocess of platelet thrombus formation; still, no well-standardized technique for the isolated measurement of platelet adhesion exists. Impedimetry is one of the most reliable, state-of-art techniques to analyze cell adhesion, proliferation, viability, and cytotoxicity. We propose impedimetry as a feasible novel method for the isolated measurement of 2 significant platelet functions: adhesion and spreading. Laboratory reference platelet agonists (epinephrine, ADP, and collagen) were applied to characterize platelet functions by impedimetry using the xCELLigence SP system. Platelet samples were obtained from 20 healthy patients under no drug therapy. Standard laboratory parameters and clinical patient history were also analyzed. Epinephrine and ADP increased platelet adhesion in a concentration-dependent manner, while collagen tended to have a negative effect. Serum sodium and calcium levels and age had a negative correlation with platelet adhesion induced by epinephrine and ADP, while increased immunoreactivity connected with allergic diseases was associated with increased platelet adhesion induced by epinephrine and ADP. ADP increased platelet spreading in a concentration-dependent manner. Impedimetry proved to be a useful and sensitive method for the qualitative and quantitated measurement of platelet adhesion, even differentiating between subgroups of a healthy population. This novel technique is offered as an important method in the further investigation of platelet function. © 2018 John Wiley & Sons Ltd.

  14. In vitro analysis of platelet function in acute aneurysmal subarachnoid haemorrhage.

    PubMed

    von der Brelie, Christian; Subai, Alexander; Limperger, Verena; Rohde, Veit; Dempfle, Astrid; Boström, Azize

    2018-04-01

    Platelet function might play an essential role in the pathogenesis of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid haemorrhage (SAH). Thus, impaired platelet function and disturbed primary haemostasis induced by intake of acetylsalicylic acid (ASA) might influence the rate of DCI. Primary haemostasis and platelet function can be measured with in vitro diagnosis (platelet function analyser test, PFA 100). The aim of this study is to evaluate the rate of DCI, haemorrhagic complications and the neurological outcome. Two groups were compared (patients with regular platelet function versus patients with impaired platelet function). This is a retrospective observational study. An initial cohort of 787 patients with SAH has been treated from January 2005 to September 2012. Seventy-nine patients (10%) with aneurysmal SAH, a history of ASA medication and PFA testing within the first 24 h after aneurysm rupture have been included. The overall rate of DCI in the present study was 43%. In vitro platelet function testing showed pathological primary haemostasis in 69.6%. The DCI rate was higher in patients with regular tested primary haemostasis (p = 0.02, OR = 3.16, 95%CI = [1.19; 8.83]). However, outcome assessment by mGOS did not show a significant difference between the groups. Patients with impaired primary haemostasis did not display a higher rate of haemorrhagic complications. Impairment of primary haemostasis resulting from an impairment of platelet function at an early stage after SAH might lead to a lower rate of DCI. In vitro testing of platelet function might be useful to predict the occurrence of DCI in the course.

  15. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  16. Expression of plasma membrane receptor genes during megakaryocyte development

    PubMed Central

    Sun, Sijie; Wang, Wenjing; Latchman, Yvette; Gao, Dayong; Aronow, Bruce

    2013-01-01

    Megakaryocyte (MK) development is critically informed by plasma membrane-localized receptors that integrate a multiplicity of environmental cues. Given that the current understanding about receptors and ligands involved in megakaryocytopoiesis is based on single targets, we performed a genome-wide search to identify a plasma membrane receptome for developing MKs. We identified 40 transmembrane receptor genes as being upregulated during MK development. Seven of the 40 receptor-associated genes were selected to validate the dataset. These genes included: interleukin-9 receptor (IL9R), transforming growth factor, β receptor II (TGFBR2), interleukin-4 receptor (IL4R), colony stimulating factor-2 receptor-beta (CSFR2B), adiponectin receptor (ADIPOR2), thrombin receptor (F2R), and interleukin-21 receptor (IL21R). RNA and protein analyses confirmed their expression in primary human MKs. Matched ligands to IL9R, TGFBR2, IL4R, CSFR2B, and ADIPOR2 affected megakaryocytopoiesis. IL9 was unique in its ability to increase the number of MKs formed. In contrast, MK colony formation was inhibited by adiponectin, TGF-β, IL4, and GM-CSF. The thrombin-F2R axis affected platelet function, but not MK development, while IL21 had no apparent detectable effects. ADP-induced platelet aggregation was suppressed by IL9, TGF-β, IL4, and adiponectin. Overall, six of seven of the plasma membrane receptors were confirmed to have functional roles in MK and platelet biology. Also, results show for the first time that adiponectin plays a regulatory role in MK development. Together these data support a strong likelihood that the 40 transmembrane genes identified as being upregulated during MK development will be an important resource to the research community for deciphering the complex repertoire of environmental cues regulating megakaryocytopoiesis and/or platelet function. PMID:23321270

  17. A novel thromboxane receptor antagonist, nstpbp5185, inhibits platelet aggregation and thrombus formation in animal models.

    PubMed

    Huang, Shiu-Wen; Kuo, Heng-Lan; Hsu, Ming-Tsung; Tseng, Yufeng Jane; Lin, Shu-Wha; Kuo, Sheng-Chu; Peng, Hui-Chin; Lien, Jin-Cherng; Huang, Tur-Fu

    2016-08-01

    A novel benzimidazole derivative, nstpbp5185, was discovered through in vitro and in vivo evaluations for antiplatelet activity. Thromaboxane receptor (TP) is important in vascular physiology, haemostasis and pathophysiological thrombosis. Nstpbp5185 concentration-dependently inhibited human platelet aggregation caused by collagen, arachidonic acid and U46619. Nstpbp5185 caused a right-shift of the concentration-response curve of U46619 and competitively inhibited the binding of 3H-SQ-29548 to TP receptor expressed on HEK-293 cells, with an IC50 of 0.1 µM, indicating that nstpbp5185 is a TP antagonist. In murine thrombosis models, nstpbp5185 significantly prolonged the latent period in triggering platelet plug formation in mesenteric and FeCl3-induced thrombi formation, and increased the survival rate in pulmonary embolism model with less bleeding than aspirin. This study suggests nstpbp5185, an orally selective anti-thrombotic agent, acting through blockade of TXA2 receptor, may be efficacious for prevention or treatment of pathologic thrombosis.

  18. Phosphodiesterase from Daboia russelli russelli venom: purification, partial characterization and inhibition of platelet aggregation.

    PubMed

    Mitra, Jyotirmoy; Bhattacharyya, Debasish

    2014-09-01

    Phosphodiesterases (PDEs) belong to a super-family of enzymes that have multiple roles in the metabolism of extracellular nucleotides and regulation of nucleotide-based intercellular signalling. A PDE from Russell's viper (Daboia russelli russelli) venom (DR-PDE) was purified by gel filtration, ion exchange and affinity chromatographies. Homogeneity of the preparation was verified by SDS-PAGE, SE-HPLC and mass spectrometry. It was free from 5'-nucleotidase, alkaline phosphatase and protease activities. Identity of the enzyme was ensured from partial sequence homology with other PDEs. DR-PDE was inactivated by polyvalent anti-venom serum and metal chelators. The enzyme was partially inhibited by the root extracts of four medicinal plants but remained unaffected by inhibitors of intracellular PDEs. DR-PDE hydrolyses ADP and thus, strongly inhibits ADP-induced platelet aggregation in human platelet rich plasma. This study leads to better understanding of a component of Russell's viper venom that affects homoeostatic system of the victim. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effects of alcohol on platelet functions.

    PubMed

    Renaud, S C; Ruf, J C

    1996-03-15

    Recent epidemiologic studies have consistently shown that moderate intake of alcoholic beverages protect against morbidity and mortality from coronary heart disease and ischemic stroke. By contrast, alcohol drinking may also predispose to cerebral hemorrhage. These observations suggest an effect of alcohol similar to that of aspirin. Several studies in humans and animals have shown that the immediate effect of alcohol, either added in vitro to platelets or 10 to 20 min after ingestion, is to decrease platelet aggregation in response to most agonists (thrombin, ADP, epinephrine, collagen). Several hours later, as, in free-living populations deprived of drinking since the previous day it is mostly secondary aggregation to ADP and epinephrine and aggregation to collagen that are still inhibited in alcohol drinkers. By contrast, in binge drinkers or in alcoholics after alcohol withdrawal, response to aggregation, especially that induced by thrombin, is markedly increased. This rebound phenomenon, easily reproduced in rats, may explain ischemic strokes or sudden death known to occur after episodes of drunkenness. The platelet rebound effect of alcohol drinking was not observed with moderate red wine consumption in man. The protection afforded by wine has been recently duplicated in rats by grape tannins added to alcohol. This protection was associated with a decrease in the level of conjugated dienes, the first step in lipid peroxidation. In other words, wine drinking does not seem to be associated with the increased peroxidation usually observed with spirit drinking. Although further studies are required, the platelet rebound effect of alcohol drinking could be associated with an excess of lipid peroxides known to increase platelet reactivity, especially to thrombin.

  20. Neuroprotection by the Traditional Chinese Medicine, Tao-Hong-Si-Wu-Tang, against Middle Cerebral Artery Occlusion-Induced Cerebral Ischemia in Rats

    PubMed Central

    Wu, Chih-Jen; Chen, Jui-Tai; Yen, Ting-Lin; Jayakumar, Thanasekaran; Chou, Duen-Suey; Hsiao, George; Sheu, Joen-Rong

    2011-01-01

    Tao-Hong-Si-Wu-Tang (THSWT) is a famous traditional Chinese medicine (TMC). In the present study, oral administration of THSWT (0.7 and 1.4 g kg−1day−1) for 14 days before MCAO dose-dependently attenuated focal cerebral ischemia in rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor (HIF)-1α, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and active caspase-3 expressions in ischemic regions. These expressions were obviously inhibited by 0.7 g kg−1day−1 THSWT treatment. In addition, THSWT inhibited platelet aggregation stimulated by collagen in washed platelets. In an in vivo study, THSWT (16 g kg−1) significantly prolonged platelet plug formation in mice. However, THSWT (20 and 40 μg mL−1) did not significantly reduce the electron spin resonance (ESR) signal intensity of hydroxyl radical (OH•) formation. In conclusion, the most important findings of this study demonstrate for the first time that THSWT possesses potent neuroprotective activity against MCAO-induced focal cerebral ischemia in vivo. This effect may be mediated, at least in part, by the inhibition of both HIF-1α and TNF-α activation, followed by the inhibition of inflammatory responses (i.e., iNOS expression), apoptosis formation (active caspase-3), and platelet activation, resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. PMID:21076527

Top