Science.gov

Sample records for inhibition differentially modulates

  1. Fucoidan, a Sulfated Polysaccharide, Inhibits Osteoclast Differentiation and Function by Modulating RANKL Signaling

    PubMed Central

    Kim, Young Woo; Baek, Seung-Hoon; Lee, Sang-Han; Kim, Tae-Ho; Kim, Shin-Yoon

    2014-01-01

    Multinucleated osteoclasts differentiate from hematopoietic progenitors of the monocyte/macrophage lineage. Because of its pivotal role in bone resorption, regulation of osteoclast differentiation is a potential therapeutic approach to the treatment of erosive bone disease. In this study, we have found that fucoidan, a sulfated polysaccharide extracted from brown seaweed, inhibited osteoclast differentiation. In particular, addition of fucoidan into the early stage osteoclast cultures significantly inhibited receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced osteoclast formation, thus suggesting that fucoidan affects osteoclast progenitors. Furthermore, fucoidan significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases (MAPKs) such as JNK, ERK, and p38, and also c-Fos and NFATc1, which are crucial transcription factors for osteoclastogenesis. In addition, the activation of NF-κB, which is an upstream transcription factor modulating NFATc1 expression, was alleviated in the fucoidan-treated cells. These results collectively suggest that fucoidan inhibits osteoclastogenesis from bone marrow macrophages by inhibiting RANKL-induced p38, JNK, ERK and NF-κB activation, and by downregulating the expression of genes that partake in both osteoclast differentiation and resorption. PMID:25334060

  2. Pentosan polysulfate inhibits atherosclerosis in Watanabe heritable hyperlipidemic rabbits: differential modulation of metalloproteinase-2 and -9.

    PubMed

    Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E

    2012-02-01

    Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis.

  3. There is a time and a place for everything: bidirectional modulations of latent inhibition by time-induced context differentiation.

    PubMed

    Lubow, R E; De la Casa, L G

    2005-10-01

    Latent inhibition (LI) is defined as poorer evidence of learning with a stimulus that previously was presented without consequence, as compared with a novel or previously attended stimulus. The present article reviews the evidence, mostly from three-stage conditioned taste aversion studies (preexposure, conditioning, and test), that LI can be either attenuated or enhanced depending on the length of the retention interval between conditioning and test and where that interval was spent. Time-induced reduction in LI is observed when the interval context is the same as that of the preexposure, conditioning, and test stages. Super-LI is obtained when a long retention interval is spent in a context that is different from that of the other stages. The differential modulations of LI appear to be the result of the strengthening of primacy effects (i.e., first training disproportionately stronger than subsequent training) by long-interval different contexts, thereby producing super-LI, and the reversal of this effect by long-interval same contexts, thereby producing attenuated LI. The bidirectional effects of time/ context modulations on LI, unaccounted for by current learning theories, are explained, in part, by a time-induced context differentiation process. Implications for theories of LI, learning, and, memory are discussed.

  4. Macrophages and lymphocytes differentially modulate the ability of RANTES to inhibit HIV-1 infection.

    PubMed

    Gross, Eleanore; Amella, Carol A; Pompucci, Lorena; Franchin, Giovanni; Sherry, Barbara; Schmidtmayerova, Helena

    2003-11-01

    The beta-chemokines MIP-1alpha, MIP-1beta, and RANTES inhibit HIV-1 infection of CD4+ T cells by inhibiting interactions between the virus and CCR5 receptors. However, while beta-chemokine-mediated inhibition of HIV-1 infection of primary lymphocytes is well documented, conflicting results have been obtained using primary macrophages as the virus target. Here, we show that the beta-chemokine RANTES inhibits virus entry into both cellular targets of the virus, lymphocytes and macrophages. However, while virus entry is inhibited at the moment of infection in both cell types, the amount of virus progeny is lowered only in lymphocytes. In macrophages, early-entry restriction is lost during long-term cultivation, and the amount of virus produced by RANTES-treated macrophages is similar to the untreated cultures, suggesting an enhanced virus replication. We further show that at least two distinct cellular responses to RANTES treatment in primary lymphocytes and macrophages contribute to this phenomenon. In lymphocytes, exposure to RANTES significantly increases the pool of inhibitory beta-chemokines through intracellular signals that result in increased production of MIP-1alpha and MIP-1beta, thereby amplifying the antiviral effects of RANTES. In macrophages this amplification step does not occur. In fact, RANTES added to the macrophages is efficiently cleared from the culture, without inducing synthesis of beta-chemokines. Our results demonstrate dichotomous effects of RANTES on HIV-1 entry at the moment of infection, and on production and spread of virus progeny in primary macrophages. Since macrophages serve as a reservoir of HIV-1, this may contribute to the failure of endogenous chemokines to successfully eradicate the virus.

  5. HIV-1 Tat Inhibits Autotaxin Lysophospholipase D Activity and Modulates Oligodendrocyte Differentiation

    PubMed Central

    Wheeler, Natalie A.; Fuss, Babette; Knapp, Pamela E.

    2016-01-01

    White matter injury has been frequently reported in HIV+ patients. Previous studies showed that HIV-1 Tat (transactivator of transcription), a viral protein that is produced and secreted by HIV-infected cells, is toxic to young, immature oligodendrocytes (OLGs). Adding Tat to the culture medium reduced the viability of immature OLGs, and the surviving OLGs exhibited reduced process networks. OLGs produce and secrete autotaxin (ATX), an ecto-enzyme containing a lysophospholipase D (lysoPLD) activity that converts lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a lipid signaling molecule that stimulates OLG differentiation. We hypothesized that Tat affects OLG development by interfering with the ATX-LPA signaling pathway. Our data show that Tat treatment leads to changes in the expression of OLG differentiation genes and the area of OLG process networks, both of which can be rescued by LPA. Tat-treated OLGs showed no change in LPA receptor expression but significantly decreased extracellular ATX levels and lysoPLD activity. In Tat transgenic mice, expression of Tat in vivo leads to decreased OLG ATX secretion. Furthermore, co-immunoprecipitation experiments revealed a potential physical interaction between Tat and ATX. Together, these data strongly suggest two functional implications of Tat blocking ATX’s lysoPLD activity. On one hand, it attenuates OLG differentiation, and on the other hand it interferes with the protective effects of LPA on OLG process morphology. PMID:27659560

  6. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling

    PubMed Central

    Baer, Alexandra S.; Syed, Yasir A.; Kang, Sung Ung; Mitteregger, Dieter; Vig, Raluca; ffrench-Constant, Charles; Franklin, Robin J. M.; Altmann, Friedrich; Lubec, Gert

    2009-01-01

    Failure of oligodendrocyte precursor cell (OPC) differentiation contributes significantly to failed myelin sheath regeneration (remyelination) in chronic demyelinating diseases. Although the reasons for this failure are not completely understood, several lines of evidence point to factors present following demyelination that specifically inhibit differentiation of cells capable of generating remyelinating oligodendrocytes. We have previously demonstrated that myelin debris generated by demyelination inhibits remyelination by inhibiting OPC differentiation and that the inhibitory effects are associated with myelin proteins. In the present study, we narrow down the spectrum of potential protein candidates by proteomic analysis of inhibitory protein fractions prepared by CM and HighQ column chromatography followed by BN/SDS/SDS–PAGE gel separation using Nano-HPLC-ESI-Q-TOF mass spectrometry. We show that the inhibitory effects on OPC differentiation mediated by myelin are regulated by Fyn-RhoA-ROCK signalling as well as by modulation of protein kinase C (PKC) signalling. We demonstrate that pharmacological or siRNA-mediated inhibition of RhoA-ROCK-II and/or PKC signalling can induce OPC differentiation in the presence of myelin. Our results, which provide a mechanistic link between myelin, a mediator of OPC differentiation inhibition associated with demyelinating pathologies and specific signalling pathways amenable to pharmacological manipulation, are therefore of significant potential value for future strategies aimed at enhancing CNS remyelination. PMID:19208690

  7. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells.

    PubMed

    Patnala, Radhika; Lee, Sung-Hun; Dahlstrom, Jane E; Ohms, Stephen; Chen, Long; Dheen, S Thameem; Rangasamy, Danny

    2014-01-01

    Long Interspersed Elements (L1 elements) are biologically active retrotransposons that are capable of autonomous replication using their own reverse transcriptase (RT) enzyme. Expression of the normally repressed RT has been implicated in cancer cell growth. However, at present, little is known about the expression of L1-encoded RT activity or the molecular changes that are associated with RT activity in the development of breast cancer. Here, we report that RT activity is widespread in breast cancer cells. The expression of RT protein decreased markedly in breast cancer cells after treatment with the antiretroviral drug, efavirenz. While the majority of cells showed a significant reduction in proliferation, inhibition of RT was also accompanied by cell-specific differences in morphology. MCF7 cells displayed elongated microtubule extensions that adhered tightly to their substrate, while a large fraction of the T47D cells that we studied formed long filopodia projections. These morphological changes were reversible upon cessation of RT inhibition, confirming their dependence on RT activity. We also carried out gene expression profiling with microarrays and determined the genes that were differentially expressed during the process of cellular differentiation. Genes involved in proliferation, cell migration, and invasive activity were repressed in RT-inhibited cells. Concomitantly, genes involved in cell projection, formation of vacuolar membranes, and cell-to-cell junctions were significantly upregulated in RT-inhibited cells. qRT-PCR examination of the mRNA expression of these genes in additional cell lines yielded close correlation between their differential expression and the degree of cellular differentiation. Our study demonstrates that the inhibition of L1-encoded RT can reduce the rate of proliferation and promote differentiation of breast cancer cells. Together, these results provide a direct functional link between the expression of L1 retrotransposons and

  8. GABAA receptor-mediated feedforward and feedback inhibition differentially modulate the gain and the neural code transformation in hippocampal CA1 pyramidal cells.

    PubMed

    Jang, Hyun Jae; Park, Kyerl; Lee, Jaedong; Kim, Hyuncheol; Han, Kyu Hun; Kwag, Jeehyun

    2015-12-01

    Diverse variety of hippocampal interneurons exists in the CA1 area, which provides either feedforward (FF) or feedback (FB) inhibition to CA1 pyramidal cell (PC). However, how the two different inhibitory network architectures modulate the computational mode of CA1 PC is unknown. By investigating the CA3 PC rate-driven input-output function of CA1 PC using in vitro electrophysiology, in vitro-simulation of inhibitory network, and in silico computational modeling, we demonstrated for the first time that GABAA receptor-mediated FF and FB inhibition differentially modulate the gain, the spike precision, the neural code transformation and the information capacity of CA1 PC. Recruitment of FF inhibition buffered the CA1 PC spikes to theta-frequency regardless of the input frequency, abolishing the gain and making CA1 PC insensitive to its inputs. Instead, temporal variability of the CA1 PC spikes was increased, promoting the rate-to-temporal code transformation to enhance the information capacity of CA1 PC. In contrast, the recruitment of FB inhibition sub-linearly transformed the input rate to spike output rate with high gain and low spike temporal variability, promoting the rate-to-rate code transformation. These results suggest that GABAA receptor-mediated FF and FB inhibitory circuits could serve as network mechanisms for differentially modulating the gain of CA1 PC, allowing CA1 PC to switch between different computational modes using rate and temporal codes ad hoc. Such switch will allow CA1 PC to efficiently respond to spatio-temporally dynamic inputs and expand its computational capacity during different behavioral and neuromodulatory states in vivo.

  9. Can Arousal Modulate Response Inhibition?

    ERIC Educational Resources Information Center

    Weinbach, Noam; Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai

    2015-01-01

    The goal of the present study was to examine if and how arousal can modulate response inhibition. Two competing hypotheses can be drawn from previous literature. One holds that alerting cues that elevate arousal should result in an impulsive response and therefore impair response inhibition. The other suggests that alerting enhances processing of…

  10. D1 and D2 Inhibitions of the Soleus H-Reflex Are Differentially Modulated during Plantarflexion Force and Position Tasks

    PubMed Central

    Magalhães, Fernando Henrique; Elias, Leonardo Abdala; da Silva, Cristiano Rocha; de Lima, Felipe Fava; de Toledo, Diana Rezende; Kohn, André Fabio

    2015-01-01

    Presynaptic inhibition (PSI) has been shown to modulate several neuronal pathways of functional relevance by selectively gating the connections between sensory inputs and spinal motoneurons, thereby regulating the contribution of the stretch reflex circuitry to the ongoing motor activity. In this study, we investigated whether a differential regulation of Ia afferent inflow by PSI may be associated with the performance of two types of plantarflexion sensoriomotor tasks. The subjects (in a seated position) controlled either: 1) the force level exerted by the foot against a rigid restraint (force task, FT); or 2) the angular position of the ankle when sustaining inertial loads (position task, PT) that required the same level of muscle activation observed in FT. Subjects were instructed to maintain their force/position at target levels set at ~10% of maximum isometric voluntary contraction for FT and 90° for PT, while visual feedback of the corresponding force/position signals were provided. Unconditioned H-reflexes (i.e. control reflexes) and H-reflexes conditioned by electrical pulses applied to the common peroneal nerve with conditioning-to-test intervals of 21 ms and 100 ms (corresponding to D1 and D2 inhibitions, respectively) were evoked in a random fashion. A significant main effect for the type of the motor task (FT vs PT) (p = 0.005, η2p = 0.603) indicated that PTs were undertaken with lower levels of Ia PSI converging onto the soleus motoneuron pool. Additionally, a significant interaction between the type of inhibition (D1 vs D2) and the type of motor task (FT vs PT) (p = 0.038, η2p = 0.395) indicated that D1 inhibition was associated with a significant reduction in PSI levels from TF to TP (p = 0.001, η2p = 0.731), whereas no significant difference between the tasks was observed for D2 inhibition (p = 0.078, η2p = 0.305). These results suggest that D1 and D2 inhibitions of the soleus H-reflex are differentially modulated during the performance of

  11. HDAC I inhibition in the dorsal and ventral hippocampus differentially modulates predator-odor fear learning and generalization

    PubMed Central

    Yuan, Robin K.; Hebert, Jenna C.; Thomas, Arthur S.; Wann, Ellen G.; Muzzio, Isabel A.

    2015-01-01

    Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved in predator odor conditioning remain elusive. Inhibition of histone deacetylases (HDACs) in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections), when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections), when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between the MS-275 and vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by a mild stressor such as restraint leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization. PMID:26441495

  12. HDAC I inhibition in the dorsal and ventral hippocampus differentially modulates predator-odor fear learning and generalization.

    PubMed

    Yuan, Robin K; Hebert, Jenna C; Thomas, Arthur S; Wann, Ellen G; Muzzio, Isabel A

    2015-01-01

    Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved in predator odor conditioning remain elusive. Inhibition of histone deacetylases (HDACs) in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections), when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections), when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between the MS-275 and vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by a mild stressor such as restraint leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization. PMID:26441495

  13. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum.

    PubMed

    Kim, Kyung-Tae; Rioux, Laurie-Eve; Turgeon, Sylvie L

    2014-02-01

    Fucoidan is a water-soluble, negatively charged, biologically active polysaccharide found in great abundance in brown marine algae. However, the inhibition of α-amylase and α-glucosidase by fucoidan derived from two algal species (Ascophyllum nodosum and Fucus vesiculosus) harvested at different periods (accounting for seasonal and yearly variations) has never been investigated. It was found that fucoidans inhibited α-glucosidase differently, depending on the algal species from which it was extracted and the algae's season of harvest. Fucoidan extracted from A. nodosum was a more potent inhibitor of α-glucosidase, with an IC50 ranging from 0.013 to 0.047 mg/mL, than the inhibition by fucoidan extracted from F. vesiculosus (IC50=0.049 mg/mL). In contrast, fucoidan extracted from F. vesiculosus did not inhibit α-amylase activity, while fucoidan from A. nodosum decreased α-amylase activity by 7-100% at 5 mg/mL depending upon the algae harvest period. An IC50 of 0.12-4.64 mg/mL for fucoidan from A. nodosum was found for the α-amylase inhibition. The ability of fucoidan to inhibit α-amylase and α-glucosidase thus varies according to the algae species and harvest period. A. nodosum is more suitable than F. vesiculosus as a source of fucoidan to inhibit α-amylase and α-glucosidase activities. Their potential benefits towards Type 2 diabetes management should be further investigated. PMID:24388677

  14. Saw palmetto ethanol extract inhibits adipocyte differentiation.

    PubMed

    Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro

    2013-07-01

    The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.

  15. Low-voltage differentially-signaled modulators

    SciTech Connect

    Zortman, William A.; Lentine, Anthony L.; Hsia, Alexander H.; Watts, Michael R.

    2015-09-08

    Photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes at least one modulator section and differential drive circuitry. The at least one modulator section includes a P-type layer and an N-type layer forming a PN junction in the modulator section. The differential drive circuitry is electrically coupled to the P-type layer and the N-type layer of the at least one modulator section.

  16. Basic models for differential inhibition of enzymes.

    PubMed

    Cappiello, Mario; Moschini, Roberta; Balestri, Francesco; Mura, Umberto; Del-Corso, Antonella

    2014-03-14

    The possible preferential action exerted by an inhibitor on the transformation of one of two agonist substrates catalyzed by the same enzyme has recently been reported in studies on aldose reductase inhibition. This event was defined as "intra-site differential inhibition" and the molecules able to exert this action as "differential inhibitors". This work presents some basic kinetic models describing differential inhibition. Using a simple analytic approach, the results show that differential inhibition can occur through either competitive or mixed type inhibition in which the inhibitor prevalently targets the free enzyme. The results may help in selecting molecules whose differential inhibitory action could be advantageous in controlling the activity of enzymes acting on more than one substrate.

  17. Long Non-coding RNA H19 Inhibits Adipocyte Differentiation of Bone Marrow Mesenchymal Stem Cells through Epigenetic Modulation of Histone Deacetylases

    PubMed Central

    Huang, Yiping; Zheng, Yunfei; Jin, Chanyuan; Li, Xiaobei; Jia, Lingfei; Li, Weiran

    2016-01-01

    Bone marrow mesenchymal stem cells (BMSCs) exhibit an increased propensity toward adipocyte differentiation accompanied by a reduction in osteogenesis in osteoporotic bone marrow. However, limited knowledge is available concerning the role of long non-coding RNAs (lncRNAs) in the differentiation of BMSCs into adipocytes. In this study, we demonstrated that lncRNA H19 and microRNA-675 (miR-675) derived from H19 were significantly downregulated in BMSCs that were differentiating into adipocytes. Overexpression of H19 and miR-675 inhibited adipogenesis, while knockdown of their endogenous expression accelerated adipogenic differentiation. Mechanistically, we found that miR-675 targeted the 3′ untranslated regions of the histone deacetylase (HDAC) 4–6 transcripts and resulted in deregulation of HDACs 4–6, essential molecules in adipogenesis. In turn, trichostatin A, an HDAC inhibitor, significantly reduced CCCTC-binding factor (CTCF) occupancy in the imprinting control region upstream of the H19 gene locus and subsequently downregulated the expression of H19. These results show that the CTCF/H19/miR-675/HDAC regulatory pathway plays an important role in the commitment of BMSCs into adipocytes. PMID:27349231

  18. Piceatannol, Natural Polyphenolic Stilbene, Inhibits Adipogenesis via Modulation of Mitotic Clonal Expansion and Insulin Receptor-dependent Insulin Signaling in Early Phase of Differentiation*

    PubMed Central

    Kwon, Jung Yeon; Seo, Sang Gwon; Heo, Yong-Seok; Yue, Shuhua; Cheng, Ji-Xin; Lee, Ki Won; Kim, Kee-Hong

    2012-01-01

    Piceatannol, a natural stilbene, is an analog and a metabolite of resveratrol. Despite a well documented health benefit of resveratrol in intervention of the development of obesity, the role of piceatannol in the development of adipose tissue and related diseases is unknown. Here, we sought to determine the function of piceatannol in adipogenesis and elucidate the underlying mechanism. We show that piceatannol inhibits adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner at noncytotoxic concentrations. This anti-adipogenic property of piceatannol was largely limited to the early event of adipogenesis. In the early phase of adipogenesis, piceatannol-treated preadipocytes displayed a delayed cell cycle entry into G2/M phase at 24 h after initiation of adipogenesis. Furthermore, the piceatannol-suppressed mitotic clonal expansion was accompanied by reduced activation of the insulin-signaling pathway. Piceatannol dose-dependently inhibited differentiation mixture-induced phosphorylation of insulin receptor (IR)/insulin receptor substrate-1 (IRS-1)/Akt pathway in the early phase of adipogenesis. Moreover, we showed that piceatannol is an inhibitor of IR kinase activity and phosphatidylinositol 3-kinase (PI3K). Our kinetics study of IR further identified a Km value for ATP of 57.8 μm and a Ki value for piceatannol of 28.9 μm. We also showed that piceatannol directly binds to IR and inhibits IR kinase activity in a mixed noncompetitive manner to ATP, through which piceatannol appears to inhibit adipogenesis. Taken together, our study reveals an anti-adipogenic function of piceatannol and highlights IR and its downstream insulin signaling as novel targets for piceatannol in the early phase of adipogenesis. PMID:22298784

  19. Using structural-based protein engineering to modulate the differential inhibition effects of SAUGI on human and HSV uracil DNA glycosylase.

    PubMed

    Wang, Hao-Ching; Ho, Chun-Han; Chou, Chia-Cheng; Ko, Tzu-Ping; Huang, Ming-Fen; Hsu, Kai-Cheng; Wang, Andrew H-J

    2016-05-19

    Uracil-DNA glycosylases (UDGs) are highly conserved proteins that can be found in a wide range of organisms, and are involved in the DNA repair and host defense systems. UDG activity is controlled by various cellular factors, including the uracil-DNA glycosylase inhibitors, which are DNA mimic proteins that prevent the DNA binding sites of UDGs from interacting with their DNA substrate. To date, only three uracil-DNA glycosylase inhibitors, phage UGI, p56, and Staphylococcus aureus SAUGI, have been determined. We show here that SAUGI has differential inhibitory effects on UDGs from human, bacteria, Herpes simplex virus (HSV; human herpesvirus 1) and Epstein-Barr virus (EBV; human herpesvirus 4). Newly determined crystal structures of SAUGI/human UDG and a SAUGI/HSVUDG complex were used to explain the differential binding activities of SAUGI on these two UDGs. Structural-based protein engineering was further used to modulate the inhibitory ability of SAUGI on human UDG and HSVUDG. The results of this work extend our understanding of DNA mimics as well as potentially opening the way for novel therapeutic applications for this kind of protein.

  20. Differential Muscarinic Modulation in the Olfactory Bulb

    PubMed Central

    Smith, Richard S.; Hu, Ruilong; DeSouza, Andre; Eberly, Christian L.; Krahe, Krista; Chan, Wilson

    2015-01-01

    Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive extensive cholinergic input from the basal forebrain. Here, we explore the regulation of AOB and MOB circuits by ACh, and how cholinergic modulation influences olfactory-mediated behaviors in mice. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action in the form of a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh influenced the input–output relationship of mitral cells in the AOB and MOB differently showing a net effect on gain in mitral cells of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of cholinergic neurons produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger. SIGNIFICANCE STATEMENT State-dependent cholinergic modulation of brain circuits is critical for several high-level cognitive functions, including attention and memory. Here, we provide new evidence that cholinergic

  1. BROMODICHLOROMETHANE INHIBITS HUMAN PLACENTAL TROPHOBLAST DIFFERENTIATION

    EPA Science Inventory

    BROMODICHLOROMETHANE INHIBITS HUMAN PLACENTAL
    TROPHOBLAST DIFFERENTIATION
    Jiangang Chen, Twanda L. Thirkill, Peter N. Lohstroh, Susan R. Bielmeier, Michael
    G. Narotsky, Deborah S. Best, Randy A. Harrison, Kala Natarajan, Rex A. Pegram,
    Bill L. Lasley, and Gordon C. Do...

  2. MiR218 Modulates Wnt Signaling in Mouse Cardiac Stem Cells by Promoting Proliferation and Inhibiting Differentiation through a Positive Feedback Loop.

    PubMed

    Wang, Yongshun; Liu, Jingjin; Cui, Jinjin; Sun, Meng; Du, Wenjuan; Chen, Tao; Ming, Xing; Zhang, Lulu; Tian, Jiangtian; Li, Ji; Yin, Li; Liu, Fang; Pu, Zhongyue; Lv, Bo; Hou, Jingbo; Yu, Bo

    2016-01-01

    MiRNA expression was determined in both proliferating and differentiated cardiac stem cells (CSCs) through a comprehensive miRNA microarray analysis. We selected miR218 for functional follow-up studies to examine its significance in CSCs. First, we observed that the expression of miR218 was altered in CSCs during differentiation into cardiomyocytes, and transfection of an miR218 mimic or miR218 inhibitor affected the myocardial differentiation of CSCs. Furthermore, we observed that a negative regulator of Wnt signaling, sFRP2, was a direct target of miR218, and the protein levels of sFRP2 were increased in cells transfected with the synthetic miR218 inhibitor. In contrast, transfection with the miR218 mimic decreased the expression of sFRP2 and potentiated Wnt signaling. The subsequent down-regulation of sFRP2 by shRNA potentiated Wnt signaling, contributing to a gene expression program that is important for CSC proliferation and cardiac differentiation. Specifically, canonical Wnt signaling induced miR218 transcription. Thus, miR218 and Wnt signaling were coupled through a feed-forward positive feedback loop, forming a biological regulatory circuit. Together, these results provide the first evidence that miR218 plays an important role in CSC proliferation and differentiation through the canonical Wnt signaling pathway.

  3. Low-voltage differentially-signaled modulators.

    PubMed

    Zortman, William A; Lentine, Anthony L; Trotter, Douglas C; Watts, Michael R

    2011-12-19

    For exascale computing applications, viable optical solutions will need to operate using low voltage signaling and with low power consumption. In this work, the first differentially signaled silicon resonator is demonstrated which can provide a 5dB extinction ratio using 3fJ/bit and 500mV signal amplitude at 10Gbps. Modulation with asymmetric voltage amplitudes as low as 150mV with 3dB extinction are demonstrated at 10Gbps as well. Differentially signaled resonators simplify and expand the design space for modulator implementation and require no special drivers.

  4. Inhibition of cyclooxygenase-1 and cyclooxygenase-2 impairs Trypanosoma cruzi entry into cardiac cells and promotes differential modulation of the inflammatory response.

    PubMed

    Malvezi, Aparecida D; Panis, Carolina; da Silva, Rosiane V; de Freitas, Rafael Carvalho; Lovo-Martins, Maria I; Tatakihara, Vera L H; Zanluqui, Nágela G; Neto, Edecio Cunha; Goldenberg, Samuel; Bordignon, Juliano; Yamada-Ogatta, Sueli F; Martins-Pinge, Marli C; Cecchini, Rubens; Pinge-Filho, Phileno

    2014-10-01

    The intracellular protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a serious disorder that affects millions of people in Latin America. Cell invasion by T. cruzi and its intracellular replication are essential to the parasite's life cycle and for the development of Chagas disease. Here, we present evidence suggesting the involvement of the host's cyclooxygenase (COX) enzymes during T. cruzi invasion. Pharmacological antagonists for COX-1 (aspirin) and COX-2 (celecoxib) caused marked inhibition of T. cruzi infection when rat cardiac cells were pretreated with these nonsteroidal anti-inflammatory drugs (NSAIDs) for 60 min at 37°C before inoculation. This inhibition was associated with an increase in the production of NO and interleukin-1β and decreased production of transforming growth factor β (TGF-β) by cells. Taken together, these results indicate that COX-1 more than COX-2 is involved in the regulation of anti-T. cruzi activity in cardiac cells, and they provide a better understanding of the influence of TGF-β-interfering therapies on the innate inflammatory response to T. cruzi infection and may represent a very pertinent target for new therapeutic treatments of Chagas disease. PMID:25092706

  5. Inhibition of Cyclooxygenase-1 and Cyclooxygenase-2 Impairs Trypanosoma cruzi Entry into Cardiac Cells and Promotes Differential Modulation of the Inflammatory Response

    PubMed Central

    Malvezi, Aparecida D.; Panis, Carolina; da Silva, Rosiane V.; de Freitas, Rafael Carvalho; Lovo-Martins, Maria I.; Tatakihara, Vera L. H.; Zanluqui, Nágela G.; Neto, Edecio Cunha; Goldenberg, Samuel; Bordignon, Juliano; Yamada-Ogatta, Sueli F.; Martins-Pinge, Marli C.; Cecchini, Rubens

    2014-01-01

    The intracellular protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a serious disorder that affects millions of people in Latin America. Cell invasion by T. cruzi and its intracellular replication are essential to the parasite's life cycle and for the development of Chagas disease. Here, we present evidence suggesting the involvement of the host's cyclooxygenase (COX) enzymes during T. cruzi invasion. Pharmacological antagonists for COX-1 (aspirin) and COX-2 (celecoxib) caused marked inhibition of T. cruzi infection when rat cardiac cells were pretreated with these nonsteroidal anti-inflammatory drugs (NSAIDs) for 60 min at 37°C before inoculation. This inhibition was associated with an increase in the production of NO and interleukin-1β and decreased production of transforming growth factor β (TGF-β) by cells. Taken together, these results indicate that COX-1 more than COX-2 is involved in the regulation of anti-T. cruzi activity in cardiac cells, and they provide a better understanding of the influence of TGF-β-interfering therapies on the innate inflammatory response to T. cruzi infection and may represent a very pertinent target for new therapeutic treatments of Chagas disease. PMID:25092706

  6. Polyamines and their derivatives as modulators in growth and differentiation.

    PubMed Central

    Canellakis, Z. N.; Marsh, L. L.; Bondy, P. K.

    1989-01-01

    The polyamines and their derivatives are essential for life in eukaryotic and most prokaryotic cells, but their exact role in preserving cell function is not clear. These polyamines provide endogenous cations and thus participate in regulation of the intracellular pH; in addition, polyamine derivatives modulate cell growth and differentiation. The naturally occurring monoacetyl derivatives can induce increased activity of ornithine decarboxylase, the first enzyme in polyamine synthesis, and thus produce positive feedback to their production. The diacetyl derivatives of putrescine and of the synthetic analogue, 1,6-diaminohexane, induce differentiation and inhibit growth in many types of cells in vitro. In addition, they inhibit the proliferative and secretory response of normal B lymphocytes to B-cell mitogens and reduce production of antibodies in vitro. They also inhibit the proliferation of chronic lymphocytic leukemia cells (a B-lymphocyte leukemia). The parent polyamines are post-translational modifiers of proteins, and hypusine, a derivative of spermidine, is a covalently bound constituent of the eukaryotic protein synthetic initiation factor, eIF-4D. Although these various actions do not at present fall into a coherent pattern, they clearly indicate that polyamines and their derivatives play an important part in modulating cell proliferation and differentiation. PMID:2697982

  7. Fibroblasts secrete Slit2 to inhibit fibrocyte differentiation and fibrosis.

    PubMed

    Pilling, Darrell; Zheng, Zhichao; Vakil, Varsha; Gomer, Richard H

    2014-12-23

    Monocytes leave the blood and enter tissues. In healing wounds and fibrotic lesions, some of the monocytes differentiate into fibroblast-like cells called fibrocytes. In healthy tissues, even though monocytes enter the tissue, for unknown reasons, very few monocytes differentiate into fibrocytes. In this report, we show that fibroblasts from healthy human tissues secrete the neuronal guidance protein Slit2 and that Slit2 inhibits human fibrocyte differentiation. In mice, injections of Slit2 inhibit bleomycin-induced lung fibrosis. In lung tissue from pulmonary fibrosis patients with relatively normal lung function, Slit2 has a widespread distribution whereas, in patients with advanced disease, there is less Slit2 in the fibrotic lesions. These data may explain why fibrocytes are rarely observed in healthy tissues, may suggest that the relative levels of Slit2 present in healthy tissue and at sites of fibrosis may have a significant effect on the decision of monocytes to differentiate into fibrocytes, and may indicate that modulating Slit2 signaling may be useful as a therapeutic for fibrosis.

  8. Recursively indexed differential pulse code modulation

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Na, Sangsin

    1992-01-01

    The performance of a differential pulse code modulation (DPCM) system with a recursively indexed quantizer (RIQ) under various conditions, with first order Gauss-Markov and Laplace-Markov sources as inputs, is studied. When the predictor is matched to the input, the proposed system performs at or close to the optimum entropy constrained DPCM system. If one is willing to accept a 5 percent increase in the rate, the system is very forgiving of predictor mismatch.

  9. Prostaglandin E2 inhibits α-smooth muscle actin transcription during myofibroblast differentiation via distinct mechanisms of modulation of serum response factor and myocardin-related transcription factor-A.

    PubMed

    Penke, Loka R K; Huang, Steven K; White, Eric S; Peters-Golden, Marc

    2014-06-13

    Differentiation of lung fibroblasts into contractile protein-expressing myofibroblasts by transforming growth factor-β1 (TGF-β1) is a critical event in the pathogenesis of pulmonary fibrosis. Transcription of the contractile protein α-smooth muscle actin (α-SMA) is mediated by the transcription factor serum-response factor (SRF) along with its co-activator, myocardin-related transcription factor-A (MRTF-A). The endogenous lipid mediator prostaglandin E2 (PGE2) exerts anti-fibrotic effects, including the inhibition of myofibroblast differentiation. However, the mechanism by which PGE2 inhibits α-SMA expression is incompletely understood. Here, we show in normal lung fibroblasts that PGE2 reduced the nuclear accumulation of MRTF-A·SRF complexes and consequently inhibited α-SMA promoter activation. It did so both by independently inhibiting SRF gene expression and nuclear import of MRTF-A. We identified that p38 MAPK is critical for TGF-β1-induced SRF gene expression and that PGE2 inhibition of SRF expression is associated with its ability to inhibit p38 activation. Its inhibition of MRTF-A import occurs via activation of cofilin 1 and inactivation of vasodilator-stimulated phosphoprotein. Similar effects of PGE2 on SRF gene expression were observed in fibroblasts from the lungs of patients with idiopathic pulmonary fibrosis. Thus, PGE2 is the first substance described to prevent myofibroblast differentiation by disrupting, via distinct mechanisms, the actions of both SRF and MRTF-A.

  10. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  11. Modulation of foot-and-mouth disease virus pH threshold for uncoating correlates with differential sensitivity to inhibition of cellular Rab GTPases and decreases infectivity in vivo.

    PubMed

    Vázquez-Calvo, Angela; Caridi, Flavia; Rodriguez-Pulido, Miguel; Borrego, Belén; Sáiz, Margarita; Sobrino, Francisco; Martín-Acebes, Miguel A

    2012-11-01

    The role of cellular Rab GTPases that govern traffic between different endosome populations was analysed on foot-and-mouth disease virus (FMDV) infection. Changes of viral receptor specificity did not alter Rab5 requirement for infection. However, a correlation between uncoating pH and requirement of Rab5 for infection was observed. A mutant FMDV with less acidic uncoating pH threshold was less sensitive to inhibition of Rab5, whereas another mutant with more acidic requirements was more sensitive to inhibition of Rab5. On the contrary, opposed correlations between uncoating pH and dependence of Rab function were observed upon expression of dominant-negative forms of Rab7 or 11. Modulation of uncoating pH also reduced FMDV virulence in suckling mice. These results are consistent with FMDV uncoating inside early endosomes and indicate that displacements from optimum pH for uncoating reduce viral fitness in vivo.

  12. Inhibition of GSK3 differentially modulates NF-{kappa}B, CREB, AP-1 and {beta}-catenin signaling in hepatocytes, but fails to promote TNF-{alpha}-induced apoptosis

    SciTech Connect

    Goetschel, Frank; Kern, Claudia; Lang, Simona; Sparna, Titus; Markmann, Cordula; Schwager, Joseph; McNelly, Sabine; Weizsaecker, Fritz von; Laufer, Stefan; Hecht, Andreas Merfort, Irmgard

    2008-04-01

    Glycogen synthase kinase-3 (GSK-3) is known to modulate cell survival and apoptosis through multiple intracellular signaling pathways. However, its hepatoprotective function and its role in activation of NF-{kappa}B and anti-apoptotic factors are poorly understood and remain controversial. Here we investigated whether inhibition of GSK-3 could induce apoptosis in the presence of TNF-{alpha} in primary mouse hepatocytes. We show that pharmacological inhibition of GSK-3 in primary mouse hepatocytes does not lead to TNF-{alpha}-induced apoptosis despite reduced NF-{kappa}B activity. Enhanced stability of I{kappa}B-{alpha} appears to be responsible for lower levels of nuclear NF-{kappa}B and hence reduced transactivation. Additionally, inhibition of GSK-3 was accompanied by marked upregulation of {beta}-catenin, AP-1, and CREB transcription factors. Stimulation of canonical Wnt signaling and CREB activity led to elevated levels of anti-apoptotic factors. Hence, survival of primary mouse hepatocytes may be caused by the activation and/or upregulation of other key regulators of liver homeostasis and regeneration. These signaling molecules may compensate for the compromised anti-apoptotic function of NF-{kappa}B and allow survival of hepatocytes in the presence of TNF-{alpha} and GSK-3 inhibition.

  13. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.

    PubMed

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2015-12-01

    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis.

  14. Dasatinib inhibits TGFβ-induced myofibroblast differentiation through Src-SRF Pathway.

    PubMed

    Abdalla, Maha; Thompson, LeeAnn; Gurley, Erin; Burke, Samantha; Ujjin, Jessica; Newsome, Robert; Somanath, Payaningal R

    2015-12-15

    Persistent myofibroblast differentiation is a hallmark of fibrotic diseases. Myofibroblasts are characterized by de novo expression of alpha smooth muscle actin (αSMA) and excess fibronectin assembly. Recent studies provide conflicting reports on the effects of tyrosine kinase inhibitor dasatinib on myofibroblast differentiation and fibrosis. Also, it is not fully understood whether dasatinib modulates myofibroblast differentiation by targeting Src kinase. Herein, we investigated the effect of dasatinib on cSrc and transforming growth factor-β (TGFβ)-induced myofibroblast differentiation in vitro. Our results indicated that selective Src kinase inhibition using PP2 mimicked the effect of dasatinib in attenuating myofibroblast differentiation as evident by blunted αSMA expression and modest, but significant inhibition of fibronectin assembly in both NIH 3T3 and fibrotic human lung fibroblasts. Mechanistically, our data showed that dasatinib modulates αSMA synthesis through Src kinase-mediated modulation of serum response factor expression. Collectively, our results demonstrate that dasatinib modulates myofibroblast differentiation through Src-SRF pathway. Thus, dasatinib could potentially be a therapeutic option in fibrotic diseases. PMID:26548624

  15. Speech-induced modulation of interhemispheric inhibition.

    PubMed

    Kano, Tadashige; Kobayashi, Masahito; Ohira, Takayuki; Yoshida, Kazunari

    2012-12-01

    This study aimed to determine the effects of speech and mastication on interhemispheric inhibition between the right and left primary motor areas (M1s) by using transcranial magnetic stimulation (TMS). Motor-evoked potentials (MEPs) were recorded from the first dorsal interossei (FDIs) of each hand of 10 healthy right-handed subjects under 3 conditions: at rest (control), during mastication (non-verbal oral movement), and during speech (reading aloud). Test TMS was delivered following conditioning TMS of the contralateral M1 at various interstimulus intervals. Under all conditions, the MEPs in the left FDIs were significantly inhibited after conditioning of the left M1 (i.e. inhibition of the right M1 by TMS of the left hemisphere). In contrast, the left M1 was significantly inhibited by the right hemisphere only during the control and mastication tasks, but not speech task. These results suggest that speech may facilitate the activity of the dominant M1 via functional connectivity between the speech area and the left M1, or may modify the balance of interhemispheric interactions, by suppressing inhibition of the dominant hemisphere by the non-dominant hemisphere. Our findings show a novel aspect of interhemispheric dominance and may improve therapeutic strategies for recovery from stroke. PMID:23123786

  16. Inhibition of the Differentiation of Monocyte-Derived Dendritic Cells by Human Gingival Fibroblasts

    PubMed Central

    Séguier, Sylvie; Tartour, Eric; Guérin, Coralie; Couty, Ludovic; Lemitre, Mathilde; Lallement, Laetitia; Folliguet, Marysette; Naderi, Samah El; Terme, Magali; Badoual, Cécile; Lafont, Antoine; Coulomb, Bernard

    2013-01-01

    We investigated whether gingival fibroblasts (GFs) can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs) and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM) from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05) inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism. PMID:23936476

  17. Induced differentiation inhibits sphere formation in neuroblastoma.

    PubMed

    Craig, Brian T; Rellinger, Eric J; Alvarez, Alexandra L; Dusek, Haley L; Qiao, Jingbo; Chung, Dai H

    2016-08-19

    Neuroblastoma arises from the neural crest, the precursor cells of the sympathoadrenal axis, and differentiation status is a key prognostic factor used for clinical risk group stratification and treatment strategies. Neuroblastoma tumor-initiating cells have been successfully isolated from patient tumor samples and bone marrow using sphere culture, which is well established to promote growth of neural crest stem cells. However, accurate quantification of sphere-forming frequency of commonly used neuroblastoma cell lines has not been reported. Here, we show that MYCN-amplified neuroblastoma cell lines form spheres more frequently than non-MYCN-amplified cell lines. We also show that sphere formation is directly sensitive to cellular differentiation status. 13-cis-retinoic acid is a clinically used differentiating agent that induces a neuronal phenotype in neuroblastoma cells. Induced differentiation nearly completely blocked sphere formation. Furthermore, sphere formation was specifically FGF-responsive and did not respond to increasing doses of EGF. Taken together, these data suggest that sphere formation is an accurate method of quantifying the stemness phenotype in neuroblastoma. PMID:27297102

  18. Catecholamine differential modulation of PMA and superantigen stimulated lymphocytes

    SciTech Connect

    Downs, M.O.; Johnson, H.M. )

    1991-03-15

    Neurotransmitters have been demonstrated to be important modulators of immune regulation. The authors have previously demonstrated that the catecholamine agonists isoproterenol (Iso), epinephrine (Epi), and norepinephrine (Nor) are potent inhibitors of IFN{gamma} production by phorbol myristate acetate (PMA) stimulated T-cell lymphoma cell line (L12-R4) with the order of potency being Iso > Epi > Nor. Herein, they describe a differential effect of catecholamine influence on staphylococcal enterotoxin A (SEA) stimulated murine splenic cell cultures. Norepinephrine and to a lesser extent Epi can cause a biphasic modulation of IFN{gamma} production. Inhibition of INF{gamma}was seen in the micromolar range while augmentation occurred at the nanomolar range. In light of previous work, these data suggest that {beta}-adrenergic agonist stimulation of antigen presenting cells (APC) may be immunosuppressive while {alpha}-agonist stimulation immunopotentiating. Further, APC may play a central role in determining the net outcome of catecholamine stimulation by being able to mediate signals from both pathways. This response may represent a peripheral neurotransmitter mediated mechanism for fine tuning' immunoreactivity.

  19. Modulation of Potassium Channels Inhibits Bunyavirus Infection*

    PubMed Central

    Hover, Samantha; King, Barnabas; Hall, Bradley; Loundras, Eleni-Anna; Taqi, Hussah; Daly, Janet; Dallas, Mark; Peers, Chris; Schnettler, Esther; McKimmie, Clive; Kohl, Alain; Barr, John N.; Mankouri, Jamel

    2016-01-01

    Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K+) channels to infect cells. Time of addition assays using K+ channel modulating agents demonstrated that K+ channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K+ channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K+ channels (K2P) were identified as the K+ channel family mediating BUNV K+ channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease. PMID:26677217

  20. Modulation of Potassium Channels Inhibits Bunyavirus Infection.

    PubMed

    Hover, Samantha; King, Barnabas; Hall, Bradley; Loundras, Eleni-Anna; Taqi, Hussah; Daly, Janet; Dallas, Mark; Peers, Chris; Schnettler, Esther; McKimmie, Clive; Kohl, Alain; Barr, John N; Mankouri, Jamel

    2016-02-12

    Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease.

  1. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    SciTech Connect

    Kim, Hyun-Ju; Yoon, Hye-Jin; Yoon, Kyung-Ae; Gwon, Mi-Ri; Jin Seong, Sook; Suk, Kyoungho; Kim, Shin-Yoon; Yoon, Young-Ran

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.

  2. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    SciTech Connect

    Chen, Zirong; Jin, Guorong; Lin, Shuibin; Lin, Xiumei; Gu, Yumei; Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong; Wu, Lizi; Shen, Huangxuan

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer CDA-II inhibits myogenic differentiation in a dose-dependent manner. Black-Right-Pointing-Pointer CDA-II repressed expression of muscle transcription factors and structural proteins. Black-Right-Pointing-Pointer CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  3. Serum amyloid A inhibits osteoclast differentiation to maintain macrophage function.

    PubMed

    Kim, Jiseon; Yang, Jihyun; Park, Ok-Jin; Kang, Seok-Seong; Yun, Cheol-Heui; Han, Seung Hyun

    2016-04-01

    Serum amyloid A is an acute phase protein that is elevated under inflammatory conditions. Additionally, the serum levels of serum amyloid A are associated with the progression of inflammatory arthritis; thus, serum amyloid A might be involved in the regulation of osteoclast differentiation. In the present study, we examined the effects of serum amyloid A on osteoclast differentiation and function. When bone marrow-derived macrophages, as osteoclast precursors, were stimulated with serum amyloid A in the presence of M-CSF and receptor activator of nuclear factor-κB ligand, osteoclast differentiation and its bone-resorption activity were substantially inhibited. TLR2 was important in the inhibitory effect of serum amyloid A on osteoclast differentiation, because serum amyloid A stimulated TLR2. The inhibitory effect was absent in bone marrow-derived macrophages obtained from TLR2-deficient mice. Furthermore, serum amyloid A inhibited the expression of c-Fos and nuclear factor of activated T cells c1, which are crucial transcription factors for osteoclast differentiation, but prevented downregulation of IFN regulatory factor-8, a negative regulator of osteoclast differentiation. In contrast, serum amyloid A sustained the endocytic capacity of bone marrow-derived macrophages and their ability to induce the proinflammatory cytokines, IL-6, IL-1β, and TNF-α. Taken together, these results suggest that serum amyloid A, when increased by inflammatory conditions, inhibits differentiation of macrophages to osteoclasts, likely to maintain macrophage function for host defense.

  4. Differentiation of Keratinocytes Modulates Skin HPA Analog.

    PubMed

    Wierzbicka, Justyna M; Żmijewski, Michał A; Antoniewicz, Jakub; Sobjanek, Michal; Slominski, Andrzej T

    2017-01-01

    It is well established, that epidermal keratinocytes express functional equivalent of hypothalamus-pituitary-adrenal axis (HPA) in order to respond to changing environment and maintain internal homeostasis. We are presenting data indicating that differentiation of primary neonatal human keratinocytes (HPEKp), induced by prolonged incubation or calcium is accompanied by significant changes in the expression of the elements of skin analog of HPA (sHPA). Expression of CRF, UCN1-3, POMC, ACTH, CRFR1, CRFR2, MC1R, MC2R, and GR (coded by NR3C1 gene) were observed on gene/protein levels along differentiation of keratinocytes in culture with similar pattern seen by immunohistochemistry on full thickness skin biopsies. Expression of CRF was more pronounced in less differentiated keratinocytes, which corresponded to the detection of CRF immunoreactivity preferentially in the stratum basale. POMC expression was enhanced in more differentiated keratinocytes, which corresponded to detection of ACTH immunoreactivity, predominantly in the stratum spinosum and stratum granulosum. Expression of urocortins was also affected by induction of HPEKp differentiation. Immunohistochemical studies showed high prevalence of CRFR1 in well differentiated keratinocytes, while smaller keratinocytes showed predominantly CRFR2 immunoreactivity. MC2R mRNA levels were elevated from days 4 to 8 of in vitro incubation, while MC2R immunoreactivity was the highest in the upper layers of epidermis. Similar changes in mRNA/protein levels of sHPA elements were observed in HPEKp keratinocytes treated with calcium. Summarizing, preferential expression of CRF and POMC (ACTH) by populations of keratinocytes on different stage of differentiation resembles organization of central HPA axis suggesting their distinct role in physiology and pathology of the epidermis. J. Cell. Physiol. 232: 154-166, 2017. © 2016 Wiley Periodicals, Inc.

  5. Bropirimine inhibits osteoclast differentiation through production of interferon-β.

    PubMed

    Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro; Miyamoto, Yoichi; Kaneko, Kotaro; Inoue, Tomio; Chikazu, Daichi; Takami, Masamichi; Kamijo, Ryutaro

    2015-11-01

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presence of activated vitamin D3. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D3. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.

  6. Differential Modulation of Excitatory and Inhibitory Neurons during Periodic Stimulation

    PubMed Central

    Mahmud, Mufti; Vassanelli, Stefano

    2016-01-01

    Non-invasive transcranial neuronal stimulation, in addition to deep brain stimulation, is seen as a promising therapeutic and diagnostic approach for an increasing number of neurological diseases such as epilepsy, cluster headaches, depression, specific type of blindness, and other central nervous system disfunctions. Improving its effectiveness and widening its range of use may strongly rely on development of proper stimulation protocols that are tailored to specific brain circuits and that are based on a deep knowledge of different neuron types response to stimulation. To this aim, we have performed a simulation study on the behavior of excitatory and inhibitory neurons subject to sinusoidal stimulation. Due to the intrinsic difference in membrane conductance properties of excitatory and inhibitory neurons, we show that their firing is differentially modulated by the wave parameters. We analyzed the behavior of the two neuronal types for a broad range of stimulus frequency and amplitude and demonstrated that, within a small-world network prototype, parameters tuning allow for a selective enhancement or suppression of the excitation/inhibition ratio. PMID:26941602

  7. Single pulse TMS differentially modulates reward behavior.

    PubMed

    Stanford, Arielle D; Luber, Bruce; Unger, Layla; Cycowicz, Yael M; Malaspina, Dolores; Lisanby, Sarah H

    2013-12-01

    Greater knowledge of cortical brain regions in reward processing may set the stage for using transcranial magnetic stimulation (TMS) as a treatment in patients with avolition, apathy or other drive-related symptoms. This study examined the effects of single pulse (sp) TMS to two reward circuit targets on drive in healthy subjects. Fifteen healthy subjects performed the monetary incentive delay task (MID) while receiving fMRI-guided spTMS to either inferior parietal lobe (IPL) or supplemental motor area (SMA). The study demonstrated decreasing reaction times (RT) for increasing reward. It also showed significant differences in RT modulation for TMS pulses to the IPL versus the SMA. TMS pulses during the delay period produced significantly more RT slowing when targeting the IPL than those to the SMA. This RT slowing carried over into subsequent trials without TMS stimulation, with significantly slower RTs in sessions that had targeted the IPL compared to those targeting SMA. The results of this study suggest that both SMA and IPL are involved in reward processing, with opposite effects on RT in response to TMS stimulation. TMS to these target cortical regions may be useful in modulating reward circuit deficits in psychiatric populations.

  8. Differential modulation of apoptosis and necrosis by antioxidants in immunosuppressed human lymphocytes.

    PubMed

    Rojas, Mauricio; Rugeles, María Teresa; Gil, Diana Patricia; Patiño, Pablo

    2002-04-15

    In the present study, we explored whether mitogenic stimulation of dexamethasone (DXM)- and cyclosporine A (CsA)-immunosuppressed peripheral blood lymphocytes (PBML) induced apoptosis or necrosis and their relation with the production of reactive oxygen intermediates. Our results indicate that both phenomena can occur in these cells and that antioxidants such as N-acetyl cysteine (NAC) and ascorbic acid (AA) can modulate them. However, DXM-induced apoptosis was only partially inhibited by NAC and AA, suggesting that DXM-treated PBMC had an additional apoptotic pathway independent of ROIs. Furthermore, we observed that the inhibition of apoptosis by antioxidants correlated with an increased cell proliferation, suggesting that the immunomodulation of both DXM and CsA may be related to induction of apoptosis. The ability to differentially modulate apoptosis and necrosis by antioxidants opens new possibilities in the management of immunosuppressive therapy, since the inhibition of necrosis may avoid inflammation and the tissue damage associated with immunosuppressors.

  9. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells.

    PubMed

    Kim, Hyun-Ju; Yoon, Hye-Jin; Yoon, Kyung-Ae; Gwon, Mi-Ri; Jin Seong, Sook; Suk, Kyoungho; Kim, Shin-Yoon; Yoon, Young-Ran

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells.

  10. Polarization decoherence differential frequency-modulated continuous-wave gyroscope.

    PubMed

    Zheng, Chao; Zheng, Gang; Han, Liwei; Luo, Jianhua; Teng, Fei; Wang, Bing; Song, Ping; Gao, Kun; Hou, Zhiqing

    2014-12-01

    A polarization decoherence differential frequency-modulated continuous-wave (FMCW) gyroscope is presented. The impact of coherent polarization crosstalk noise on the differential FMCW gyro is analyzed. In order to suppress coherent polarization crosstalk noise, a novel method was proposed to produce two incoherent orthogonal polarization narrow band beams from laser diode. In this way, the random drift has been reduced about one order.

  11. Polarization decoherence differential frequency-modulated continuous-wave gyroscope.

    PubMed

    Zheng, Chao; Zheng, Gang; Han, Liwei; Luo, Jianhua; Teng, Fei; Wang, Bing; Song, Ping; Gao, Kun; Hou, Zhiqing

    2014-12-01

    A polarization decoherence differential frequency-modulated continuous-wave (FMCW) gyroscope is presented. The impact of coherent polarization crosstalk noise on the differential FMCW gyro is analyzed. In order to suppress coherent polarization crosstalk noise, a novel method was proposed to produce two incoherent orthogonal polarization narrow band beams from laser diode. In this way, the random drift has been reduced about one order. PMID:25490630

  12. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  13. Thermal Conductivity of Tetryl by Modulated Differential Scanning Calorimetry

    SciTech Connect

    Weese, R K

    2003-07-28

    We investigated the use of the Modulated Differential Scanning Calorimeter to measure thermal conductivity (K) of the explosive, Tetryl, using two different methods, isothermal and nonthermal. A discussion of our methods and a comparison of our measured values to literature values of K for Tetryl, which deviated by as much as 50%, will be presented.

  14. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice.

    PubMed

    Huszar, Jessica M; Payne, Christopher J

    2013-01-01

    Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3' untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation.

  15. MicroRNA 146 (Mir146) Modulates Spermatogonial Differentiation by Retinoic Acid in Mice1

    PubMed Central

    Huszar, Jessica M.; Payne, Christopher J.

    2012-01-01

    ABSTRACT Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3′ untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation. PMID:23221399

  16. Divisive gain modulation of motoneurons by inhibition optimizes muscular control.

    PubMed

    Vestergaard, Mikkel; Berg, Rune W

    2015-02-25

    When using muscles, the precision with which force is delivered is as important as the delivery of force itself. Force is regulated by both the number of recruited motoneurons and their spike frequency. While it is known that the recruitment is ordered to reduce variability in force, it remains unclear whether the motoneuron gain, i.e., the slope of the transformation between synaptic input and spiking output, is also modulated to reduce variability in force. To address this issue, we use turtle hindlimb scratching as a model for fine motor control, since this behavior involves precise limb movement to rub the location of somatic nuisance touch. We recorded intracellularly from motoneurons in a reduced preparation where the limbs were removed to increase mechanical stability and the motor nerve activity served as a surrogate for muscle force. We found that not only is the gain of motoneurons regulated on a subsecond timescale, it is also adjusted to minimize variability. The modulation is likely achieved via an expansive nonlinearity between spike rate and membrane potential with inhibition having a divisive influence. These findings reveal a versatile mechanism of modulating neuronal sensitivity and suggest that such modulation is fundamentally linked to optimization.

  17. Tea polyphenols inhibit rat osteoclast formation and differentiation.

    PubMed

    Oka, Yoshiomi; Iwai, Shinichi; Amano, Hitoshi; Irie, Yuko; Yatomi, Kentaro; Ryu, Kakei; Yamada, Shoji; Inagaki, Katsunori; Oguchi, Katsuji

    2012-01-01

    Matrix metalloproteinases (MMPs) play an important role in degeneration of the matrix associated with bone and cartilage. Regulation of osteoclast activity is essential in the treatment of bone disease, including osteoporosis and rheumatoid arthritis. Polyphenols in green tea, particularly epigallocatechin-3-gallate (EGCG), inhibit MMPs expression and activity. However, the effects of the black tea polyphenol, theaflavin-3,3'-digallate (TFDG), on osteoclast and MMP activity are unknown. Therefore, we examined whether TFDG and EGCG affect MMP activity and osteoclast formation and differentiation in vitro. TFDG or EGCG (10 and 100 µM) was added to cultures of rat osteoclast precursors cells and mature osteoclasts. Numbers of multinucleated osteoclasts and actin rings decreased in polyphenol-treated cultures relative to control cultures. MMP-2 and MMP-9 activities were lower in TFDG- and EGCG-treated rat osteoclast precursor cells than in control cultures. MMP-9 mRNA levels declined significantly in TFDG-treated osteoclasts in comparison to control osteoclasts. TFDG and EGCG inhibited the formation and differentiation of osteoclasts via inhibition of MMPs. TFDG may suppress actin ring formation more effectively than EGCG. Thus, TFDG and EGCG may be suitable agents or lead compounds for the treatment of bone resorption diseases.

  18. Ethyl-2, 5-dihydroxybenzoate displays dual activity by promoting osteoblast differentiation and inhibiting osteoclast differentiation.

    PubMed

    Kwon, Byeong-Ju; Lee, Mi Hee; Koo, Min-Ah; Kim, Min Sung; Seon, Gyeung Mi; Han, Jae-Jin; Park, Jong-Chul

    2016-03-11

    The interplay between bone-forming osteoblasts and bone-resorbing osteoclasts is essential for balanced bone remodeling. In this study, we evaluate the ability of ethyl-2, 5-dihyrdoxybenzoate (E-2, 5-DHB) to affect both osteoblast and osteoclast differentiation for bone regeneration. Osteogenic differentiation of human mesenchymal stem cells (hMSCs) was quantified by measuring alkaline phosphatase (ALP) activity and calcium deposition. To evaluate osteoclast differentiation, we investigated the effect of E-2, 5-DHB on RANKL-activated osteoclastogenesis in RAW 264.7 cells. E-2, 5-DHB enhanced ALP activity and inhibited RAW 264.7 cell osteoclastogenesis in vitro. To assess the in vivo activity of E-2, 5-DHB, hMSCs were delivered subcutaneosuly alone or in combination with E-2, 5-DHB in an alginate gel into the backs of nude-mice. Histological and immunohistochemical evaluation showed significantly higher calcium deposition in the E-2, 5-DHB group. Osteocalcin (OCN) was highly expressed in cells implanted in the gels containing E-2, 5-DHB. Our results suggest that E-2, 5-DHB can effectively enhance osteoblast differentiation and inhibit osteoclast differentiation both in vitro and in vivo. Understanding the dual function of E-2, 5-DHB on osteoblast and osteoclast differentiation will aid in future development of E-2, 5-DHB as a material for bone tissue engineering.

  19. Strontium Promotes Cementoblasts Differentiation through Inhibiting Sclerostin Expression In Vitro

    PubMed Central

    Bao, Xingfu; Liu, Xianjun; Zhang, Yi; Cui, Yue; Yao, Jindan

    2014-01-01

    Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose. PMID:25003114

  20. Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro.

    PubMed

    Bao, Xingfu; Liu, Xianjun; Zhang, Yi; Cui, Yue; Yao, Jindan; Hu, Min

    2014-01-01

    Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose.

  1. Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro.

    PubMed

    Bao, Xingfu; Liu, Xianjun; Zhang, Yi; Cui, Yue; Yao, Jindan; Hu, Min

    2014-01-01

    Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose. PMID:25003114

  2. Adaptive differential pulse-code modulation with adaptive bit allocation

    NASA Astrophysics Data System (ADS)

    Frangoulis, E. D.; Yoshida, K.; Turner, L. F.

    1984-08-01

    Studies have been conducted regarding the possibility to obtain good quality speech at data rates in the range from 16 kbit/s to 32 kbit/s. The techniques considered are related to adaptive predictive coding (APC) and adaptive differential pulse-code modulation (ADPCM). At 16 kbit/s adaptive transform coding (ATC) has also been used. The present investigation is concerned with a new method of speech coding. The described method employs adaptive bit allocation, similar to that used in adaptive transform coding, together with adaptive differential pulse-code modulation, employing first-order prediction. The new method has the objective to improve the quality of the speech over that which can be obtained with conventional ADPCM employing a fourth-order predictor. Attention is given to the ADPCM-AB system, the design of a subjective test, and the application of switched preemphasis to ADPCM.

  3. The block of ryanodine receptors selectively inhibits fetal myoblast differentiation.

    PubMed

    Pisaniello, Alessandro; Serra, Carlo; Rossi, Daniela; Vivarelli, Elisabetta; Sorrentino, Vincenzo; Molinaro, Mario; Bouché, Marina

    2003-04-15

    Differentiation and morphogenesis of skeletal muscle are complex and asynchronous events that involve various myogenic cell populations and extracellular signals. Embryonic and fetal skeletal myoblasts are responsible for the formation of primary and secondary fibers, respectively, although the mechanism that diversifies their fate is not fully understood. Calcium transients appear to be a signaling mechanism that is widely utilized in differentiation and embryogenesis. In mature skeletal muscle, calcium transients are generated mainly by ryanodine receptors (type 1 and type 3), which are involved in excitation-contraction coupling. However, it is not clear whether the activity of these receptors is important for contractile activity alone or whether it may also play a role in regulating the differentiation/developmental processes. To clarify this point, we first examined the expression of the receptors during development. The results show that the expression of both receptors appears as early as E13 during limb muscle development and parallels the expression of skeletal myosin. The expression and the activity of both receptors is maintained in vitro by all myogenic cell populations isolated from different stages of development, including somitic, embryonic and fetal myoblasts and satellite cells. Blocking ryanodine receptor activity by using ryanodine inhibits in vitro differentiation of fetal myoblasts (judged by the expression of sarcomeric myosin and formation of multinucleated myotubes) but not of somitic or embryonic and satellite muscle cells. This block is caused by the transcriptional inhibition of markers characteristic of terminal differentiation, rather than commitment, as the expression of muscle regulatory factors is not impaired by ryanodine treatment. Taken together, the data reported in this paper demonstrate that, although calcium transients represent a general mechanism for the control of differentiation and development, multiple calcium

  4. Modulation of the Isoprenoid/Cholesterol Biosynthetic Pathway During Neuronal Differentiation In Vitro.

    PubMed

    Cartocci, Veronica; Segatto, Marco; Di Tunno, Ilenia; Leone, Stefano; Pfrieger, Frank W; Pallottini, Valentina

    2016-09-01

    During differentiation, neurons acquire their typical shape and functional properties. At present, it is unclear, whether this important developmental step involves metabolic changes. Here, we studied the contribution of the mevalonate (MVA) pathway to neuronal differentiation using the mouse neuroblastoma cell line N1E-115 as experimental model. Our results show that during differentiation, the activity of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR), a key enzyme of MVA pathway, and the level of Low Density Lipoprotein receptor (LDLr) decrease, whereas the level of LDLr-related protein-1 (LRP1) and the dimerization of Scavanger Receptor B1 (SRB-1) rise. Pharmacologic inhibition of HMGR by simvastatin accelerated neuronal differentiation by modulating geranylated proteins. Collectively, our data suggest that during neuronal differentiation, the activity of the MVA pathway decreases and we postulate that any interference with this process impacts neuronal morphology and function. Therefore, the MVA pathway appears as an attractive pharmacological target to modulate neurological and metabolic symptoms of developmental neuropathologies. J. Cell. Biochem. 117: 2036-2044, 2016. © 2016 Wiley Periodicals, Inc. PMID:27392312

  5. Modulation of the Isoprenoid/Cholesterol Biosynthetic Pathway During Neuronal Differentiation In Vitro.

    PubMed

    Cartocci, Veronica; Segatto, Marco; Di Tunno, Ilenia; Leone, Stefano; Pfrieger, Frank W; Pallottini, Valentina

    2016-09-01

    During differentiation, neurons acquire their typical shape and functional properties. At present, it is unclear, whether this important developmental step involves metabolic changes. Here, we studied the contribution of the mevalonate (MVA) pathway to neuronal differentiation using the mouse neuroblastoma cell line N1E-115 as experimental model. Our results show that during differentiation, the activity of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR), a key enzyme of MVA pathway, and the level of Low Density Lipoprotein receptor (LDLr) decrease, whereas the level of LDLr-related protein-1 (LRP1) and the dimerization of Scavanger Receptor B1 (SRB-1) rise. Pharmacologic inhibition of HMGR by simvastatin accelerated neuronal differentiation by modulating geranylated proteins. Collectively, our data suggest that during neuronal differentiation, the activity of the MVA pathway decreases and we postulate that any interference with this process impacts neuronal morphology and function. Therefore, the MVA pathway appears as an attractive pharmacological target to modulate neurological and metabolic symptoms of developmental neuropathologies. J. Cell. Biochem. 117: 2036-2044, 2016. © 2016 Wiley Periodicals, Inc.

  6. Mechanistic Basis for Differential Inhibition of the F1Fo-ATPase by Aurovertin

    PubMed Central

    Johnson, Kathryn M.; Swenson, Lara; Opipari, Anthony W.; Reuter, Rolf; Zarrabi, Nawid; Fierke, Carol A.; Börsch, Michael; Glick, Gary D.

    2009-01-01

    The mitochondrial F1Fo-ATPase performs the terminal step of oxidative phosphorylation. Small molecules that modulate this enzyme have been invaluable in helping decipher F1Fo-ATPase structure, function, and mechanism. Aurovertin is an antibiotic that binds to the β subunits in the F1 domain and inhibits F1Fo-ATPase-catalyzed ATP synthesis in preference to ATP hydrolysis. Despite extensive study and the existence of crystallographic data, the molecular basis of the differential inhibition and kinetic mechanism of inhibition of ATP synthesis by aurovertin has not been resolved. To address these questions, we conducted a series of experiments in both bovine heart mitochondria and E. coli membrane F1Fo-ATPase. Aurovertin is a mixed, noncompetitive inhibitor of both ATP hydrolysis and synthesis with lower Ki values for synthesis. At low substrate concentrations, inhibition is cooperative suggesting a stoichiometry of two aurovertin per F1F0-ATPase. Furthermore, aurovertin does not completely inhibit the ATP hydrolytic activity at saturating concentrations. Single-molecule experiments provide evidence that the residual rate of ATP hydrolysis seen in the presence of saturating concentrations of aurovertin results from a decrease in the binding change mechanism by hindering catalytic site interactions. The results from these studies should further the understanding of how the F1Fo-ATPase catalyzes ATP synthesis and hydrolysis. PMID:19462418

  7. Galectin-3 Inhibits Osteoblast Differentiation through Notch Signaling12

    PubMed Central

    Nakajima, Kosei; Kho, Dhong Hyo; Yanagawa, Takashi; Harazono, Yosuke; Gao, Xiaoge; Hogan, Victor; Raz, Avraham

    2014-01-01

    Patients with bone cancer metastasis suffer from unbearable pain and bone fractures due to bone remodeling. This is caused by tumor cells that disturb the bone microenvironment. Here, we have investigated the role of tumor-secreted sugar-binding protein, i.e., galectin-3, on osteoblast differentiation and report that it downregulates the expression of osteoblast differentiation markers, e.g., RUNX2, SP7, ALPL, COL1A1, IBSP, and BGLAP, of treated human fetal osteoblast (hFOB) cells. Co-culturing of hFOB cells with human breast cancer BT-549 and prostate cancer LNCaP cells harboring galectin-3 has resulted in inhibition of osteoblast differentiation by the secreted galectin-3 into culture medium. The inhibitory effect of galectin-3 was found to be through its binding to Notch1 in a sugar-dependent manner that has led to accelerated Notch1 cleavage and activation of Notch signaling. Taken together, our findings show that soluble galectin-3 in the bone microenvironment niche regulates bone remodeling through Notch signaling, suggesting a novel bone metastasis therapeutic target. PMID:25425968

  8. Modulation of neuronal differentiation by CD40 isoforms

    SciTech Connect

    Hou Huayu; Obregon, Demian; Lou, Deyan; Ehrhart, Jared; Fernandez, Frank; Silver, Archie; Tan Jun

    2008-05-02

    Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40{sup -/-} deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40{sup -/-} mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may

  9. Inhibition of methylation decreases osteoblast differentiation via a non-DNA-dependent methylation mechanism.

    PubMed

    Vaes, Bart L T; Lute, Carolien; van der Woning, Sebastian P; Piek, Ester; Vermeer, Jenny; Blom, Henk J; Mathers, John C; Müller, Michael; de Groot, Lisette C P G M; Steegenga, Wilma T

    2010-02-01

    S-adenosylmethionine (SAM)-dependent methylation of biological molecules including DNA and proteins is rapidly being uncovered as a critical mechanism for regulation of cellular processes. We investigated the effects of reduced SAM-dependent methylation on osteoblast differentiation by using periodate oxidized adenosine (ADOX), an inhibitor of SAM-dependent methyltransferases. The capacity of this agent to modulate osteoblast differentiation was analyzed under non-osteogenic control conditions and during growth factor-induced differentiation and compared with the effect of inhibition of DNA methylation by 5-Aza-2'-deoxycytidine (5-Aza-CdR). Without applying specific osteogenic triggers, both ADOX and 5-Aza-CdR induced mRNA expression of the osteoblast markers Alp, Osx, and Ocn in murine C2C12 cells. Under osteogenic conditions, ADOX inhibited differentiation of both human mesenchymal stem cells and C2C12 cells. Gene expression analysis of early (Msx2, Dlx5, Runx2) and late (Alp, Osx, Ocn) osteoblast markers during bone morphogenetic protein 2-induced C2C12 osteoblast differentiation revealed that ADOX only reduced expression of the late phase Runx2 target genes. By using a Runx2-responsive luciferase reporter (6xOSE), we showed that ADOX reduced the activity of Runx2, while 5-Aza-CdR had no effect. Taken together, our data suggest that decreased SAM-dependent methyltransferase activity leads to impaired osteoblast differentiation via non-DNA-dependent methylation mechanisms and that methylation is a regulator of Runx2-controlled gene expression.

  10. Temporal expectancy modulates inhibition of return in a discrimination task.

    PubMed

    Gabay, Shai; Henik, Avishai

    2010-02-01

    This research examined the influence of cue temporal predictability on inhibition of return (IOR) in a discrimination task. In exogenous attention experiments, the cue that summons attention is noninformative as to where the target will appear. However, it is predictive as to when it will appear. In previous work, it was demonstrated that temporal predictability does not influence IOR in detection tasks. In this work, it is shown that IOR is influenced by temporal predictability in discrimination tasks. Predictability was manipulated by using three stimulus onset asynchrony distributions: nonaging, aging, and accelerated aging. IOR was found when the cue predicted target appearance and was modulated by temporal information. In the nonaging distribution (in which the cue did not predict target appearance), there was no IOR.

  11. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    PubMed

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. PMID:27371895

  12. Prepulse inhibition modulation by contextual conditioning of dopaminergic activity.

    PubMed

    Mena, Auxiliadora; De la Casa, Luis G

    2013-09-01

    When a neutral stimulus is repeatedly paired with a drug, an association is established between them that can induce two different responses: either an opponent response that counteracts the effect of the drug, or a response that is similar to that induced by the drug. In this paper, we focus on the analysis of the associations that can be established between the contextual cues and the administration of dopamine agonists or antagonists. Our hypothesis suggests that repeated administration of drugs that modulate dopaminergic activity in the presence of a specific context leads to the establishment of an association that subsequently results in a conditioned response to the context that is similar to that induced by the drug. To test this hypothesis, we conducted two experiments that revealed that contextual cues acquired the property to modulate pre-pulse inhibition by prior pairings of such context with the dopamine antagonist haloperidol (Experiment 1), and with the dopamine agonist d-amphetamine (Experiment 2). The implications of these results are discussed both at a theoretical level, and attending to the possibilities that could involve the use of context cues for the therapeutic administration of dopaminergic drugs.

  13. Lithium chloride modulates chondrocyte primary cilia and inhibits Hedgehog signaling.

    PubMed

    Thompson, Clare L; Wiles, Anna; Poole, C Anthony; Knight, Martin M

    2016-02-01

    Lithium chloride (LiCl) exhibits significant therapeutic potential as a treatment for osteoarthritis. Hedgehog signaling is activated in osteoarthritis, where it promotes chondrocyte hypertrophy and cartilage matrix catabolism. Hedgehog signaling requires the primary cilium such that maintenance of this compartment is essential for pathway activity. Here we report that LiCl (50 mM) inhibits Hedgehog signaling in bovine articular chondrocytes such that the induction of GLI1 and PTCH1 expression is reduced ​ by 71 and 55%, respectively. Pathway inhibition is associated with a 97% increase in primary cilia length from 2.09 ± 0.7 μm in untreated cells to 4.06 ± 0.9 μm in LiCl-treated cells. We show that cilia elongation disrupts trafficking within the axoneme with a 38% reduction in Arl13b ciliary localization at the distal region of the cilium, consistent with the role of Arl13b in modulating Hedgehog signaling. In addition, we demonstrate similar increases in cilia length in human chondrocytes in vitro and after administration of dietary lithium to Wistar rats in vivo. Our data provide new insights into the effects of LiCl on chondrocyte primary cilia and Hedgehog signaling and shows for the first time that pharmaceutical targeting of the primary cilium may have therapeutic benefits in the treatment of osteoarthritis. PMID:26499268

  14. Histamine inhibits differentiation of skin fibroblasts into myofibroblasts.

    PubMed

    Lin, Lin; Yamagata, Kaoru; Nakayamada, Shingo; Sawamukai, Norifumi; Yamaoka, Kunihiro; Sakata, Kei; Nakano, Kazuhisa; Tanaka, Yoshiya

    2015-07-31

    Histamine and TGF-β, major mediators secreted by mast cells, are involved in skin inflammation and play critical roles in the pathogenesis of systemic sclerosis. However, the roles of signaling mechanisms in the development of skin fibrosis remain largely unclear. Here we show that histamine suppressed the expression of α smooth muscle actin (αSMA), a marker of myofibroblasts, induced by TGF-β1 in skin fibroblasts. Histamine H1-receptor (H1R), but not H2-receptor (H2R) or H4-receptor (H4R), was expressed on skin fibroblasts at both mRNA and protein levels. Interestingly, an H1R antagonist, but not H2R or H4R antagonists, antagonized the histamine-mediated suppression of αSMA expression by TGF-β1. Correspondingly, phosphorylated Smad2 was detected after treatment with TGF-β1, whereas the addition of histamine inhibited this phosphorylation. Taken together, histamine-H1R decreased TGF-β1-mediated Smad2 phosphorylation and inhibited differentiation of skin fibroblasts into myofibroblasts.

  15. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells.

    PubMed

    Chen, Jong-Hang; Chou, Chin-Cheng

    2015-08-01

    This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling.

  16. Higher-order differential phase shift keyed modulation

    NASA Astrophysics Data System (ADS)

    Vanalphen, Deborah K.; Lindsey, William C.

    1994-02-01

    Advanced modulation/demodulation techniques which are robust in the presence of phase and frequency uncertainties continue to be of interest to communication engineers. We are particularly interested in techniques which accommodate slow channel phase and frequency variations with minimal performance degradation and which alleviate the need for phase and frequency tracking loops in the receiver. We investigate the performance sensitivity to frequency offsets of a modulation technique known as binary Double Differential Phase Shift Keying (DDPSK) and compare it to that of classical binary Differential Phase Shift Keying (DPSK). We also generalize our analytical results to include n(sup -th) order, M-ary DPSK. The DDPSK (n = 2) technique was first introduced in the Russian literature circa 1972 and was studied more thoroughly in the late 1970's by Pent and Okunev. Here, we present an expression for the symbol error probability that is easy to derive and to evaluate numerically. We also present graphical results that establish when, as a function of signal energy-to-noise ratio and normalized frequency offset, binary DDPSK is preferable to binary DPSK with respect to performance in additive white Gaussian noise. Finally, we provide insight into the optimum receiver from a detection theory viewpoint.

  17. Polyamine depletion inhibits the autophagic response modulating Trypanosoma cruzi infectivity

    PubMed Central

    Vanrell, María C.; Cueto, Juan A.; Barclay, Jeremías J.; Carrillo, Carolina; Colombo, María I.; Gottlieb, Roberta A.; Romano, Patricia S.

    2013-01-01

    Autophagy is a cell process that in normal conditions serves to recycle cytoplasmic components and aged or damaged organelles. The autophagic pathway has been implicated in many physiological and pathological situations, even during the course of infection by intracellular pathogens. Many compounds are currently used to positively or negatively modulate the autophagic response. Recently it was demonstrated that the polyamine spermidine is a physiological inducer of autophagy in eukaryotic cells. We have previously shown that the etiological agent of Chagas disease, the protozoan parasite Trypanosoma cruzi, interacts with autophagic compartments during host cell invasion and that preactivation of autophagy significantly increases host cell colonization by this parasite. In the present report we have analyzed the effect of polyamine depletion on the autophagic response of the host cell and on T. cruzi infectivity. Our data showed that depleting intracellular polyamines by inhibiting the biosynthetic enzyme ornithine decarboxylase with difluoromethylornithine (DFMO) suppressed the induction of autophagy in response to starvation or rapamycin treatment in two cell lines. This effect was associated with a decrease in the levels of LC3 and ATG5, two proteins required for autophagosome formation. As a consequence of inhibiting host cell autophagy, DFMO impaired T. cruzi colonization, indicating that polyamines and autophagy facilitate parasite infection. Thus, our results point to DFMO as a novel autophagy inhibitor. While other autophagy inhibitors such as wortmannin and 3-methyladenine are nonspecific and potentially toxic, DFMO is an FDA-approved drug that may have value in limiting autophagy and the spread of the infection in Chagas disease and possibly other pathological settings. PMID:23697944

  18. Learning to integrate versus inhibiting information is modulated by age.

    PubMed

    Cappelletti, Marinella; Pikkat, Helen; Upstill, Emily; Speekenbrink, Maarten; Walsh, Vincent

    2015-02-01

    Cognitive training aiming at improving learning is often successful, but what exactly underlies the observed improvements and how these differ across the age spectrum are currently unknown. Here we asked whether learning in young and older people may reflect enhanced ability to integrate information required to perform a cognitive task or whether it may instead reflect the ability to inhibit task-irrelevant information for successful task performance. We trained 30 young and 30 aging human participants on a numerosity discrimination task known to engage the parietal cortex and in which cue-integration and inhibitory abilities can be distinguished. We coupled training with parietal, motor, or sham transcranial random noise stimulation, known for modulating neural activity. Numerosity discrimination improved after training and was maintained long term, especially in the training + parietal stimulation group, regardless of age. Despite the quantitatively similar improvement in the two age groups, the content of learning differed remarkably: aging participants improved more in inhibitory abilities, whereas younger subjects improved in cue-integration abilities. Moreover, differences in the content of learning were reflected in different transfer effects to untrained but related abilities: in the younger group, improvements in cue integration paralleled improvements in continuous quantity (time and space), whereas in the elderly group, improvements in numerosity-based inhibitory abilities generalized to other measures of inhibition and corresponded to a decline in space discrimination, possibly because conflicting learning resources are used in numerosity and continuous quantity processing. These results indicate that training can enhance different, age-dependent cognitive processes and highlight the importance of identifying the exact processes underlying learning for effective training programs.

  19. Sirt5 Deacylation Activities Show Differential Sensitivities to Nicotinamide Inhibition

    PubMed Central

    Suenkel, Benjamin; Lakshminarasimhan, Mahadevan; Schutkowski, Mike; Steegborn, Clemens

    2012-01-01

    Sirtuins are protein deacylases regulating metabolism and aging processes, and the seven human isoforms are considered attractive therapeutic targets. Sirtuins transfer acyl groups from lysine sidechains to ADP-ribose, formed from the cosubstrate NAD+ by release of nicotinamide, which in turn is assumed to be a general Sirtuin inhibitor. Studies on Sirtuin regulation have been hampered, however, by shortcomings of available assays. Here, we describe a mass spectrometry–based, quantitative deacylation assay not requiring any substrate labeling. Using this assay, we show that the deacetylation activity of human Sirt5 features an unusual insensitivity to nicotinamide inhibition. In contrast, we find similar values for Sirt5 and Sirt3 for the intrinsic NAD+ affinity as well as the apparent NAD+ affinity in presence of peptide. Structure comparison and mutagenesis identify an Arg neighboring to the Sirt5 nicotinamide binding pocket as a mediator of nicotinamide resistance, and statistical sequence analyses along with testing further Sirtuins reveal a network of coevolved residues likely defining a nicotinamide-insensitive Sirtuin deacetylase family. The same Arg was recently reported to render Sirt5 a preferential desuccinylase, and we find that this Sirt5 activity is highly sensitive to nicotinamide inhibition. Analysis of Sirt5 structures and activity data suggest that an Arg/succinate interaction is the molecular basis of the differential nicotinamide sensitivities of the two Sirt5 activities. Our results thus indicate a Sirtuin subfamily with nicotinamide-insensitive deacetylase activity and suggest that the molecular features determining nicotinamide sensitivity overlap with those dominating deacylation specificity, possibly suggesting that other subfamily members might also prefer other acylations than acetylations. PMID:23028781

  20. Iron inhibits activation-induced cytidine deaminase enzymatic activity and modulates immunoglobulin class switch DNA recombination.

    PubMed

    Li, Guideng; Pone, Egest J; Tran, Daniel C; Patel, Pina J; Dao, Lisa; Xu, Zhenming; Casali, Paolo

    2012-06-15

    Immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM) are critical for the maturation of the antibody response. Activation-induced cytidine deaminase (AID) initiates CSR and SHM by deaminating deoxycytidines (dCs) in switch (S) and V(D)J region DNA, respectively, to generate deoxyuracils (dUs). Processing of dUs by uracil DNA glycosylase (UNG) yields abasic sites, which are excised by apurinic/apyrimidinic endonucleases, eventually generating double strand DNA breaks, the obligatory intermediates of CSR. Here, we found that the bivalent iron ion (Fe(2+), ferrous) suppressed CSR, leading to decreased number of switched B cells, decreased postrecombination Iμ-C(H) transcripts, and reduced titers of secreted class-switched IgG1, IgG3, and IgA antibodies, without alterations in critical CSR factors, such as AID, 14-3-3γ, or PTIP, or in general germline I(H)-S-C(H) transcription. Fe(2+) did not affect B cell proliferation or plasmacytoid differentiation. Rather, it inhibited AID-mediated dC deamination in a dose-dependent fashion. The inhibition of intrinsic AID enzymatic activity by Fe(2+) was specific, as shown by lack of inhibition of AID-mediated dC deamination by other bivalent metal ions, such as Zn(2+), Mn(2+), Mg(2+), or Ni(2+), and the inability of Fe(2+) to inhibit UNG-mediated dU excision. Overall, our findings have outlined a novel role of iron in modulating a B cell differentiation process that is critical to the generation of effective antibody responses to microbial pathogens and tumoral cells. They also suggest a possible role of iron in dampening AID-dependent autoimmunity and neoplastic transformation.

  1. mTOR Signaling Feedback Modulates Mammary Epithelial Differentiation and Restrains Invasion Downstream of PTEN Loss

    PubMed Central

    Ghosh, Susmita; Varela, Lidenys; Sood, Akshay; Park, Ben Ho; Lotan, Tamara L.

    2013-01-01

    Oncogenic signaling pathways are tightly regulated by negative feedback circuits and relief of these circuits represents a common mechanism of tumor drug resistance. Although the significance of these feedback pathways for signal transduction is evident, their relevance for cellular differentiation and morphogenesis in a genetically-defined context is unclear. In this study, we used isogenic benign mammary organotypic cultures to interrogate the role of mTOR-mediated negative feedback in the specific setting of PTEN inactivation. We found that mTOR signaling promoted basal-like differentiation and repressed nuclear hormone receptor expression after short-term PTEN loss in murine cell cultures analyzed ex vivo. Unexpectedly, we found that PTEN inactivation inhibited growth factor-induced epithelial invasion, and that downstream mTOR-mediated signaling feedback was both necessary and sufficient for this effect. Mechanistically, using isogenic MCF10A cells with and without somaticPTEN deletion, we showed that mTOR inhibition promoted EGF-mediated epithelial invasion by de-repressing upstream EGFR, SRC and PI3K signaling. In addition to offering new signal transduction insights, these results bring to light a number of important and potentially clinically relevant cellular consequences of mTOR inhibition in the specific context of PTEN loss, including modulation of hormone and growth factor responsiveness and promotion of epithelial invasion. Our findings prompt future investigations of the possibility that mTOR inhibitor therapy may not only be ineffective but even deleterious in tumors with PTEN loss. PMID:23774212

  2. Hedgehog associated to microparticles inhibits adipocyte differentiation via a non-canonical pathway

    PubMed Central

    Fleury, Audrey; Hoch, Lucile; Martinez, M. Carmen; Faure, Hélène; Taddei, Maurizio; Petricci, Elena; Manetti, Fabrizio; Girard, Nicolas; Mann, André; Jacques, Caroline; Larghero, Jérôme; Ruat, Martial; Andriantsitohaina, Ramaroson; Le Lay, Soazig

    2016-01-01

    Hedgehog (Hh) is a critical regulator of adipogenesis. Extracellular vesicles are natural Hh carriers, as illustrated by activated/apoptotic lymphocytes specifically shedding microparticles (MP) bearing the morphogen (MPHh+). We show that MPHh+ inhibit adipocyte differentiation and orientate mesenchymal stem cells towards a pro-osteogenic program. Despite a Smoothened (Smo)-dependency, MPHh+ anti-adipogenic effects do not activate a canonical Hh signalling pathway in contrast to those elicited either by the Smo agonist SAG or recombinant Sonic Hedgehog. The Smo agonist GSA-10 recapitulates many of the hallmarks of MPHh+ anti-adipogenic effects. The adipogenesis blockade induced by MPHh+ and GSA-10 was abolished by the Smo antagonist LDE225. We further elucidate a Smo/Lkb1/Ampk axis as the non-canonical Hh pathway used by MPHh+ and GSA-10 to inhibit adipocyte differentiation. Our results highlight for the first time the ability of Hh-enriched MP to signal via a non-canonical pathway opening new perspectives to modulate fat development. PMID:27010359

  3. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy.

    PubMed

    Lee, Ting-I; Kao, Yu-Hsun; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5' adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines. PMID:27446205

  4. Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation.

    PubMed

    Dhawan, Jyotsna; Helfman, David M

    2004-08-01

    Cell-substratum interactions trigger key signaling pathways that modulate growth control and tissue-specific gene expression. We have previously shown that abolishing adhesive interactions by suspension culture results in G(0) arrest of myoblasts. We report that blocking intracellular transmission of adhesion-dependent signals in adherent cells mimics the absence of adhesive contacts. We investigated the effects of pharmacological inhibitors of acto-myosin contractility on growth and differentiation of C2C12 myogenic cells. ML7 (5-iodonaphthalene-1-sulfonyl homopiperazine) and BDM (2,3, butanedione monoxime) are specific inhibitors of myosin light chain kinase, and myosin heavy chain ATPase, respectively. ML7 and BDM affected cell shape by reducing focal adhesions and stress fibers. Both inhibitors rapidly blocked DNA synthesis in a dose-dependent, reversible fashion. Furthermore, both ML7 and BDM suppressed expression of MyoD and myogenin, induced p27(kip1) but not p21(cip1), and inhibited differentiation. Thus, as with suspension-arrest, inhibition of acto-myosin contractility in adherent cells led to arrest uncoupled from differentiation. Over-expression of inhibitors of the small GTPase RhoA (dominant negative RhoA and C3 transferase) mimicked the effects of myosin inhibitors. By contrast, wild-type RhoA induced arrest, maintained MyoD and activated myogenin and p21 expression. The Rho effector kinase ROCK did not appear to mediate Rho's effects on MyoD. Thus, ROCK and MLCK play different roles in the myogenic program. Signals regulated by MLCK are critical, since inhibition of MLCK suppressed MyoD expression but inhibition of ROCK did not. Inhibition of contractility suppressed MyoD but did not reduce actin polymer levels. However, actin depolymerization with latrunculin B inhibited MyoD expression. Taken together, our observations indicate that actin polymer status and contractility regulate MyoD expression. We suggest that in myoblasts, the Rho pathway and

  5. MicroRNA-138 Inhibits Periodontal Progenitor Differentiation under Inflammatory Conditions.

    PubMed

    Zhou, X; Luan, X; Chen, Z; Francis, M; Gopinathan, G; Li, W; Lu, X; Li, S; Wu, C; Diekwisch, T G H

    2016-02-01

    Inflammatory conditions as they occur during periodontal disease often result in decreased alveolar bone levels and a loss of connective tissue homeostasis. Here we have focused on the effect of microRNA-138 (miR-138) as a potential regulator of periodontal stem cells as they affect homeostasis during inflammatory conditions. Our data indicate that miR-138 was significantly upregulated in our periodontal disease animal model. Interaction of miR-138 with a predicted targeting site on the osteocalcin (OC) promoter resulted in a 3.7-fold reduction of luciferase activity in promoter assays compared with controls; and miR-138 overexpression in periodontal progenitors significantly inhibited OC (3.4-fold), Runx2 (2.8-fold), and collagen I (2.6-fold). Moreover, treatment with inflammatory modulators such as interleukin (IL)-6 and lipopolysaccharide (LPS) resulted in a significant 2.2-fold (IL-6) or 1.9-fold (LPS) increase in miR-138 expression, while OC and Runx2 expression was significantly decreased as a result of treatment with each inflammatory mediator. Further defining the role of miR-138 in the OC-mediated control of mineralization, we demonstrated that the LPS-induced downregulation of OC expression was partially reversed after miR-138 knockdown. LPS, miR-138 mimic, and OC small interfering RNA inhibited osteoblast differentiation marker alkaline phosphatase activity, while miR-138 inhibitor and OC protein addition enhanced alkaline phosphatase activity. Supporting the role of OC as an essential modulator of osteoblast differentiation, knockdown of miR-138 or addition of OC protein partially rescued alkaline phosphatase activity in periodontal ligament (PDL) cells subjected to LPS treatment. Our data establish miR-138 inhibitor as a potential therapeutic agent for the prevention of the bone loss associated with advanced periodontal disease. PMID:26518300

  6. Rubi Fructus (Rubus coreanus) Inhibits Differentiation to Adipocytes in 3T3-L1 Cells.

    PubMed

    Jeong, Mi-Young; Kim, Hye-Lin; Park, Jinbong; An, Hyo-Jin; Kim, Sung-Hoon; Kim, Su-Jin; So, Hong-Seob; Park, Raekil; Um, Jae-Young; Hong, Seung-Heon

    2013-01-01

    Rubi Fructus (RF) is known to exert several pharmacological effects including antitumor, antioxidant, and anti-inflammatory activities. However, its antiobesity effect has not been reported yet. This study was focused on the antidifferentiation effect of RF extract on 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were differentiating into adipocytes, 10-100  μ g/mL of RF was added. Next, the lipid contents were quantified by Oil Red O staining. RF significantly reduced lipid accumulation and downregulated the expression of peroxisome proliferator-activated receptor γ (PPAR γ ), CCAAT0-enhancer-binding proteins α (C/EBP α ), adipocyte fatty acid-binding protein 2 (aP2), resistin, and adiponectin in ways that were concentration dependent. Moreover, RF markedly upregulated liver kinase B1 and AMP-activated protein kinase (AMPK). Interestingly, pretreatment with AMPK α siRNA and RF downregulated the expression of PPAR γ and C/EBP α protein as well as the adipocyte differentiation. Our study shows that RF is capable of inhibiting the differentiation of 3T3-L1 adipocytes through the modulation of PPAR γ , C/EBP α , and AMPK, suggesting that it has a potential for therapeutic application in the treatment or prevention of obesity.

  7. Progress Report on Frequency - Modulated Differential Absorption Lidar

    SciTech Connect

    Cannon, Bret D.; Harper, Warren W.; Myers, Tanya L.; Taubman, Matthew S.; Williams, Richard M.; Schultz, John F.

    2001-12-15

    Modeling done at Pacific Northwest National Laboratory (PNNL) in FY2000 predicted improved sensitivity for remote chemical detection by differential absorption lidar (DIAL) if frequency-modulated (FM) lasers were used. This improved sensitivity results from faster averaging away of speckle noise and the recently developed quantum cascade (QC) lasers offer the first practical method for implementing this approach in the molecular fingerprint region of the infrared. To validate this model prediction, a simple laboratory bench FM-DIAL system was designed, assembled, tested, and laboratory-scale experiments were carried out during FY2001. Preliminary results of the FM DIAL experiments confirm the speckle averaging advantages predicted by the models. In addition, experiments were performed to explore the use of hybrid QC - CO2 lasers for achieving sufficient frequency-modulated laser power to enable field experiments at longer ranges (up to one kilometer or so). This approach will allow model validation at realistic ranges much sooner than would be possible if one had to first develop master oscillator - power amplifier systems utilizing only QC devices. Amplification of a QC laser with a CO2 laser was observed in the first hybrid laser experiments, but the low gain and narrow linewidth of the CO2 laser available for these experiments prevented production of a high-power FM laser beam.

  8. Monocyte cell surface glycosaminoglycans positively modulate IL-4-induced differentiation toward dendritic cells.

    PubMed

    den Dekker, Els; Grefte, Sander; Huijs, Tonnie; ten Dam, Gerdy B; Versteeg, Elly M M; van den Berk, Lieke C J; Bladergroen, Bellinda A; van Kuppevelt, Toin H; Figdor, Carl G; Torensma, Ruurd

    2008-03-15

    IL-4 induces the differentiation of monocytes toward dendritic cells (DCs). The activity of many cytokines is modulated by glycosaminoglycans (GAGs). In this study, we explored the effect of GAGs on the IL-4-induced differentiation of monocytes toward DCs. IL-4 dose-dependently up-regulated the expression of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), CD80, CD206, and CD1a. Monocytes stained positive with Abs against heparan sulfate (HS) and chondroitin sulfate (CS) B (CSB; dermatan sulfate), but not with Abs that recognize CSA, CSC, and CSE. Inhibition of sulfation of monocyte/DC cell surface GAGs by sodium chlorate reduced the reactivity of sulfate-recognizing single-chain Abs. This correlated with hampered IL-4-induced DC differentiation as evidenced by lower expression of DC-SIGN and CD1a and a decreased DC-induced PBL proliferation, suggesting that sulfated monocyte cell surface GAGs support IL-4 activity. Furthermore, removal of cell surface chondroitin sulfates by chondroitinase ABC strongly impaired IL-4-induced STAT6 phosphorylation, whereas removal of HS by heparinase III had only a weak inhibitory effect. IL-4 bound to heparin and CSB, but not to HS, CSA, CSC, CSD, and CSE. Binding of IL-4 required iduronic acid, an N-sulfate group (heparin) and specific O sulfates (CSB and heparin). Together, these data demonstrate that monocyte cell surface chondroitin sulfates play an important role in the IL-4-driven differentiation of monocytes into DCs.

  9. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism

    PubMed Central

    Bernal, Carmen E.; Zorro, Maria M.; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H.; Baena, Andres; Ramirez-Pineda, Jose R.

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation. PMID:26870700

  10. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism.

    PubMed

    Bernal, Carmen E; Zorro, Maria M; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H; Baena, Andres; Ramirez-Pineda, Jose R

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation.

  11. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism.

    PubMed

    Bernal, Carmen E; Zorro, Maria M; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H; Baena, Andres; Ramirez-Pineda, Jose R

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation. PMID:26870700

  12. All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells

    PubMed Central

    Zanetti, Adriana; Affatato, Roberta; Centritto, Floriana; Fratelli, Maddalena; Kurosaki, Mami; Barzago, Maria Monica; Bolis, Marco; Terao, Mineko; Garattini, Enrico; Paroni, Gabriela

    2015-01-01

    All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway. PMID:26018078

  13. PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes

    PubMed Central

    Kanakasabai, Saravanan; Pestereva, Ecaterina; Chearwae, Wanida; Gupta, Sushil K.; Ansari, Saif; Bright, John J.

    2012-01-01

    Neural stem cells (NSCs) are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA) and PPARγ agonist ciglitazone or 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3–7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3–7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases. PMID:23185633

  14. Placental Kisspeptins Differentially Modulate Vital Parameters of Estrogen Receptor-Positive and -Negative Breast Cancer Cells

    PubMed Central

    Rasoulzadeh, Zahra; Ghods, Roya; Kazemi, Tohid; Mirzadegan, Ebrahim; Ghaffari-Tabrizi-Wizsy, Nassim; Rezania, Simin; Kazemnejad, Somaieh; Arefi, Soheila; Ghasemi, Jamileh; Vafaei, Sedigheh; Mahmoudi, Ahmad-Reza; Zarnani, Amir-Hassan

    2016-01-01

    Kisspeptins (KPs) are major regulators of trophoblast and cancer invasion. Thus far, limited and conflicting data are available on KP-mediated modulation of breast cancer (BC) metastasis; mostly based on synthetic KP-10, the most active fragment of KP. Here, we report for the first time comprehensive functional effects of term placental KPs on proliferation, adhesion, Matrigel invasion, motility, MMP activity and pro-inflammatory cytokine production in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive). KPs were expressed at high level by term placental syncytiotrophoblasts and released in soluble form. Placental explant conditioned medium containing KPs (CM) significantly reduced proliferation of both cell types compared to CM without (w/o) KP (CM-w/o KP) in a dose- and time-dependent manner. In MDA-MB-231 cells, placental KPs significantly reduced adhesive properties, while increased MMP9 and MMP2 activity and stimulated invasion. Increased invasiveness of MDA-MB-231 cells after CM treatment was inhibited by KP receptor antagonist, P-234. CM significantly reduced motility of MCF-7 cells at all time points (2–30 hr), while it stimulated motility of MDA-MB-231 cells. These effects were reversed by P-234. Co-treatment with selective ER modulators, Tamoxifen and Raloxifene, inhibited the effect of CM on motility of MCF-7 cells. The level of IL-6 in supernatant of MCF-7 cells treated with CM was higher compared to those treated with CM-w/o KP. Both cell types produced more IL-8 after treatment with CM compared to those treated with CM-w/o KP. Taken together, our observations suggest that placental KPs differentially modulate vital parameters of estrogen receptor-positive and -negative BC cells possibly through modulation of pro-inflammatory cytokine production. PMID:27101408

  15. Modulation of growth and differentiation in normal human keratinocytes by transforming growth factor-beta

    SciTech Connect

    Matsumoto, K.; Hashimoto, K.; Hashiro, M.; Yoshimasa, H.; Yoshikawa, K. )

    1990-10-01

    The effect of transforming growth factor-type beta 1(TGF-beta) on the growth and differentiation of normal human skin keratinocytes cultured in serum-free medium was investigated. TGF-beta markedly inhibited the growth of keratinocytes at the concentrations greater than 2 ng/ml under low Ca2+ conditions (0.1 mM). Growth inhibition was accompanied by changes in cell functions related to proliferation. Remarkable inhibition of DNA synthesis was demonstrated by the decrease of (3H)thymidine incorporation. The decrease of (3H)thymidine incorporation was observed as early as 3 hr after addition of TGF-beta. TGF-beta also decreased c-myc messenger RNA (mRNA) expression 30 min after addition of TGF-beta. This rapid reduction of c-myc mRNA expression by TGF-beta treatment is possibly one of the main factors in the process of TGF-beta-induced growth inhibition of human keratinocytes. Since growth inhibition and induction of differentiation are closely related in human keratinocytes, the growth-inhibitory effect of TGF-beta under high Ca2+ conditions was examined. TGF-beta inhibited the growth of keratinocytes under high Ca2+ conditions in the same manner as under low Ca2+ conditions, suggesting that it is a strong growth inhibitor in both low and high Ca2+ environments. The induction of keratinocyte differentiation was evaluated by measuring involucrin expression and cornified envelope formation: TGF-beta at 20 ng/ml increased involucrin expression from 9.3% to 18.8% under high Ca2+ conditions, while it decreased involucrin expression from 7.0% to 3.3% under low Ca2+ conditions. Cornified envelope formation was modulated in a similar way by addition of TGF-beta: TGF-beta at 20 ng/ml decreased cornified envelope formation by 53% under low Ca2+ conditions, while it enhanced cornified envelope formation by 30.7% under high Ca2+ conditions.

  16. Dystroglycan depletion inhibits the functions of differentiated HL-60 cells.

    PubMed

    Martínez-Zárate, Alma Delia; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Cisneros, Bulmaro; Winder, Steve J; Cerecedo, Doris

    2014-06-01

    Dystroglycan has recently been characterized in blood tissue cells, as part of the dystrophin glycoprotein complex but to date nothing is known of its role in the differentiation process of neutrophils. We have investigated the role of dystroglycan in the human promyelocytic leukemic cell line HL-60 differentiated to neutrophils. Depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated HL-60 cells, including chemotaxis, respiratory burst, phagocytic activities and expression of markers of differentiation. These findings strongly implicate dystroglycan as a key membrane adhesion protein involved in the differentiation process in HL-60 cells.

  17. Extracorporeal shock waves modulate myofibroblast differentiation of adipose-derived stem cells.

    PubMed

    Rinella, Letizia; Marano, Francesca; Berta, Laura; Bosco, Ornella; Fraccalvieri, Marco; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-03-01

    Mesenchymal stem cells are precursors of myofibroblasts, cells deeply involved in promoting tissue repair and regeneration. However, since myofibroblast persistence is associated with the development of tissue fibrosis, the use of tools that can modulate stem cell differentiation toward myofibroblasts is central. Extracorporeal shock waves are transient short-term acoustic pulses first employed to treat urinary stones. They are a leading choice in the treatment of several orthopedic diseases and, notably, they have been reported as an effective treatment for patients with fibrotic sequels from burn scars. Based on these considerations, the aim of this study is to define the role of shock waves in modulating the differentiation of human adipose-derived stem cells toward myofibroblasts. Shock waves inhibit the development of a myofibroblast phenotype; they down-regulate the expression of the myofibroblast marker alpha smooth muscle actin and the extracellular matrix protein type I collagen. Functionally, stem cells acquire a more fibroblast-like profile characterized by a low contractility and a high migratory ability. Shock wave treatment reduces the expression of integrin alpha 11, a major collagen receptor in fibroblastic cells, involved in myofibroblast differentiation. Mechanistically, the resistance of integrin alpha 11-overexpressing cells to shock waves in terms of alpha smooth muscle actin expression and cell migration and contraction suggests also a role of this integrin in the translation of shock wave signal into stem cell responses. In conclusion, this in vitro study shows that stem cell differentiation toward myofibroblasts can be controlled by shock waves and, consequently, sustains their use as a therapeutic approach in reducing the risk of skin and tissue fibrosis. PMID:26808471

  18. Modulation of dendritic cell immunobiology via inhibition of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase.

    PubMed

    Leuenberger, Tina; Pfueller, Caspar F; Luessi, Felix; Bendix, Ivo; Paterka, Magdalena; Prozorovski, Timour; Treue, Denise; Luenstedt, Sarah; Herz, Josephine; Siffrin, Volker; Infante-Duarte, Carmen; Zipp, Frauke; Waiczies, Sonia

    2014-01-01

    The maturation status of dendritic cells determines whether interacting T cells are activated or if they become tolerant. Previously we could induce T cell tolerance by applying a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor (HMGCRI) atorvastatin, which also modulates MHC class II expression and has therapeutic potential in autoimmune disease. Here, we aimed at elucidating the impact of this therapeutic strategy on T cell differentiation as a consequence of alterations in dendritic cell function. We investigated the effect of HMGCRI during differentiation of peripheral human monocytes and murine bone marrow precursors to immature DC in vitro and assessed their phenotype. To examine the stimulatory and tolerogenic capacity of these modulated immature dendritic cells, we measured proliferation and suppressive function of CD4+ T cells after stimulation with the modulated immature dendritic cells. We found that an HMGCRI, atorvastatin, prevents dendrite formation during the generation of immature dendritic cells. The modulated immature dendritic cells had a diminished capacity to take up and present antigen as well as to induce an immune response. Of note, the consequence was an increased capacity to differentiate naïve T cells towards a suppressor phenotype that is less sensitive to proinflammatory stimuli and can effectively inhibit the proliferation of T effector cells in vitro. Thus, manipulation of antigen-presenting cells by HMGCRI contributes to an attenuated immune response as shown by promotion of T cells with suppressive capacities.

  19. The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates

    PubMed Central

    Pinto, Maria J.; Alves, Pedro L.; Martins, Luís; Pedro, Joana R.; Ryu, Hyun R.; Jeon, Noo Li; Taylor, Anne M.

    2016-01-01

    Differentiation of the presynaptic terminal is a complex and rapid event that normally occurs in spatially specific axonal regions distant from the soma; thus, it is believed to be dependent on intra-axonal mechanisms. However, the full nature of the local events governing presynaptic assembly remains unknown. Herein, we investigated the involvement of the ubiquitin–proteasome system (UPS), the major degradative pathway, in the local modulation of presynaptic differentiation. We found that proteasome inhibition has a synaptogenic effect on isolated axons. In addition, formation of a stable cluster of synaptic vesicles onto a postsynaptic partner occurs in parallel to an on-site decrease in proteasome degradation. Accumulation of ubiquitinated proteins at nascent sites is a local trigger for presynaptic clustering. Finally, proteasome-related ubiquitin chains (K11 and K48) function as signals for the assembly of presynaptic terminals. Collectively, we propose a new axon-intrinsic mechanism for presynaptic assembly through local UPS inhibition. Subsequent on-site accumulation of proteins in their polyubiquitinated state triggers formation of presynapses. PMID:27022091

  20. Context-dependent modulation of alphabetagamma and alphabetadelta GABA A receptors by penicillin: implications for phasic and tonic inhibition.

    PubMed

    Feng, Hua-Jun; Botzolakis, Emmanuel J; Macdonald, Robert L

    2009-01-01

    Penicillin, an open-channel blocker of GABA(A) receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABA(A) receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoform currents that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation.

  1. Effect of structural modulation of polyphenolic compounds on the inhibition of Escherichia coli ATP synthase

    PubMed Central

    Ahmad, Zulfiqar; Ahmad, Mubeen; Okafor, Florence; Jones, Jeanette; Abunameh, Abdel M; Cheniya, Rakesh K; Kady, Ismail O

    2012-01-01

    In this paper we present the inhibitory effect of a variety of structurally modulated/modified polyphenolic compounds on purified F1 or membrane bound F1Fo E. coli ATP synthase. Structural modulation of polyphenols with two phenolic rings inhibited ATP synthase essentially completely; one or three ringed polyphenols individually or fused together inhibited partially. We found that the position of hydroxyl and nitro groups play critical role in the degree of binding and inhibition of ATPase activity. The extended positioning of hydroxyl groups on imino diphenolic compounds diminished the inhibition and abridged position enhanced the inhibition potency. This was contrary to the effect by simple single ringed phenolic compounds where extended positioning of hydroxyl group was found to be effective for inhibition. Also, introduction of nitro group augmented the inhibition on molar scale in comparison to the inhibition by resveratrol but addition of phosphate group did not. Similarly, aromatic diol or triol with rigid or planar ring structure and no free rotation poorly inhibited the ATPase activity. The inhibition was identical in both F1Fo membrane preparations as well as in isolated purified F1 and was reversible in all cases. Growth assays suggested that modulated compounds used in this study inhibited F1-ATPase as well as ATP synthesis nearly equally. PMID:22285988

  2. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells

    PubMed Central

    Huszar, Jessica M.; Payne, Christopher J.

    2014-01-01

    Chromatin remodeling is important for cell differentiation. Histone methyltransferase EZH2 and histone demethylase JMJD3 (KDM6B) modulate levels of histone H3 lysine 27 trimethylation (H3K27me3). Interplay between the two modulators influence lineage specification in stem cells. Here, we identified microRNA MIR146A to be a negative regulator of JMJD3. In the osteogenic differentiation of human mesenchymal stem cells (hMSCs), we observed an upregulation of JMJD3 and a downregulation of MIR146A. Blocking JMJD3 activity in differentiating hMSCs reduced transcript levels of osteogenic gene RUNX2. H3K27me3 levels decreased at the RUNX2 promoter during cell differentiation. Modulation of MIR146A levels in hMSCs altered JMJD3 and RUNX2 expression and affected osteogenic differentiation. We conclude that JMJD3 promotes osteogenesis in differentiating hMSCs, with MIR146A regulating JMJD3. PMID:24726732

  3. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis

    PubMed Central

    Cheung, William K.C.; Zhao, Minghui; Liu, Zongzhi; Stevens, Laura E.; Cao, Paul D.; Fang, Justin E.; Westbrook, Thomas F.; Nguyen, Don X.

    2013-01-01

    Summary Molecular programs that mediate normal cell differentiation are required for oncogenesis and tumor cell survival in certain cancers. How cell lineage restricted genes specifically influence metastasis is poorly defined. In lung cancers, we uncovered a transcriptional program that is preferentially associated with distal airway epithelial differentiation and lung adenocarcinoma (ADC) progression. This program is regulated in part by the lineage transcription factors GATA6 and HOPX. These factors can cooperatively limit the metastatic competence of ADC cells, by modulating overlapping alveolar differentiation and invasogenic target genes. Thus, GATA6 and HOPX are critical nodes in a lineage-selective pathway that directly links effectors of airway epithelial specification to the inhibition of metastasis in the lung ADC subtype. PMID:23707782

  4. Phospholipid Scramblase 1 Modulates FcR-Mediated Phagocytosis in Differentiated Macrophages.

    PubMed

    Herate, Cecile; Ramdani, Ghania; Grant, Nancy J; Marion, Sabrina; Gasman, Stephane; Niedergang, Florence; Benichou, Serge; Bouchet, Jerome

    2016-01-01

    Phospholipid Scramblase 1 (PLSCR1) was initially characterized as a type II transmembrane protein involved in bilayer movements of phospholipids across the plasma membrane leading to the cell surface exposure of phosphatidylserine, but other cellular functions have been ascribed to this protein in signaling processes and in the nucleus. In the present study, expression and functions of PLSCR1 were explored in specialized phagocytic cells of the monocyte/macrophage lineage. The expression of PLSCR1 was found to be markedly increased in monocyte-derived macrophages compared to undifferentiated primary monocytes. Surprisingly, this 3-fold increase in PLSCR1 expression correlated with an apparent modification in the membrane topology of the protein at the cell surface of differentiated macrophages. While depletion of PLSCR1 in the monocytic THP-1 cell-line with specific shRNA did not inhibit the constitutive cell surface exposure of phosphatidylserine observed in differentiated macrophages, a net increase in the FcR-mediated phagocytic activity was measured in PLSCR1-depleted THP-1 cells and in bone marrow-derived macrophages from PLSCR1 knock-out mice. Reciprocally, phagocytosis was down-regulated in cells overexpressing PLSCR1. Since endogenous PLSCR1 was recruited both in phagocytic cups and in phagosomes, our results reveal a specific role for induced PLSCR1 expression in the modulation of the phagocytic process in differentiated macrophages.

  5. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells.

    PubMed

    Shen, Xiaohua; Kim, Woojin; Fujiwara, Yuko; Simon, Matthew D; Liu, Yingchun; Mysliwiec, Matthew R; Yuan, Guo-Cheng; Lee, Youngsook; Orkin, Stuart H

    2009-12-24

    Trimethylation on histone H3 lysine 27 (H3K27me3) by Polycomb repressive complex 2 (PRC2) regulates the balance between self-renewal and differentiation of embryonic stem cells (ESCs). The mechanisms controlling the activity and recruitment of PRC2 are largely unknown. Here we demonstrate that the founding member of the Jumonji family, JMJ (JUMONJI or JARID2), is associated with PRC2, colocalizes with PRC2 and H3K27me3 on chromatin, and modulates PRC2 function. In vitro JMJ inhibits PRC2 methyltransferase activity, consistent with increased H3K27me3 marks at PRC2 targets in Jmj(-/-) ESCs. Paradoxically, JMJ is required for efficient binding of PRC2, indicating that the interplay of PRC2 and JMJ fine-tunes deposition of the H3K27me3 mark. During differentiation, activation of genes marked by H3K27me3 and lineage commitments are delayed in Jmj(-/-) ESCs. Our results demonstrate that dynamic regulation of Polycomb complex activity orchestrated by JMJ balances self-renewal and differentiation, highlighting the involvement of chromatin dynamics in cell-fate transitions.

  6. Glycosaminoglycans differentially bind HARP and modulate its biological activity.

    PubMed

    Vacherot, F; Delbé, J; Heroult, M; Barritault, D; Fernig, D G; Courty, J

    1999-03-19

    Heparin affin regulatory peptide (HARP) is a polypeptide belonging to a family of heparin binding growth/differentiation factors. The high affinity of HARP for heparin suggests that this secreted polypeptide should also bind to heparan sulfate proteoglycans derived from cell surface and extracellular matrix defined as extracellular compartments. Using Western blot analysis, we detected HARP bound to heparan sulfate proteoglycans in the extracellular compartments of MDA-MB 231 and MC 3T3-E1 as well as NIH3T3 cells overexpressing HARP protein. Heparitinase treatment of BEL cells inhibited HARP-induced cell proliferation, and the biological activity of HARP in this system was restored by the addition of heparin. We report that heparan sulfate, dermatan sulfate, and to a lesser extent, chondroitin sulfate A, displaced HARP bound to the extracellular compartment. Binding analyses with a biosensor showed that HARP bound heparin with fast association and dissociation kinetics (kass = 1.6 x 10(6) M-1 s-1; kdiss = 0.02 s-1), yielding a Kd value of 13 nM; the interaction between HARP and dermatan sulfate was characterized by slower association kinetics (kass = 0.68 x 10(6) M-1 s-1) and a lower affinity (Kd = 51 nM). Exogenous heparin, heparan sulfate, and dermatan sulfate potentiated the growth-stimulatory activity of HARP, suggesting that corresponding proteoglycans could be involved in the regulation of the mitogenic activity of HARP.

  7. Müllerian inhibiting substance production and cleavage is modulated by gonadotropins and steroids.

    PubMed

    Kuroda, T; Lee, M M; Ragin, R C; Hirobe, S; Donahoe, P K

    1991-12-01

    Analysis of the ontogeny and localization of the amino (N)-terminal and carboxy (C)-terminal cleavage products of Müllerian Inhibiting Substance (MIS) and their modulation by hormones of the hypothalamic-pituitary gonadal axis by immunohistochemistry and Northern analysis led to the discovery of a novel mode of posttranslational regulation of this differentiating agent. Antibody to both holo- and C-terminal MIS identically stained the cytosol of testicular Sertoli cells from 21-day fetal rats, whereas staining of antibody to N-terminal MIS localized to the basement membrane of seminiferous tubules. In addition, when studied longitudinally, basement membrane staining for N-terminal MIS persisted; cytosolic staining for C-terminal MIS was no longer detectable in post-natal testes, but marked basement membrane staining for the N-terminal fragment could still be observed in the testes of untreated 7-day postnatal animals. When 19-day fetuses were injected with FSH, testes collected 2 days later showed less immunohistochemical staining for holo-, N-, and C-terminal MIS, and less MIS messenger RNA. This suggested that FSH downregulates MIS transcription, as had been shown previously in neonatal testes treated with FSH. Testes collected at 21 days from fetuses treated at day 19 in utero with human CG or testosterone, also showed less staining for holo-MIS, but, surprisingly, increased staining for the N- and C-terminal fragments. These changes in MIS protein were accompanied by no or minimal changes in MIS messenger RNA levels, indicating that human CG and testosterone do not affect transcription, but may regulate the cleavage and/or dissociation of MIS. This study describes a form of post-translational regulation of MIS and shows that both transcription and processing of MIS may be differentially modulated by gonadotropins and sex steroids.

  8. Microbioreactor Array Screening of Wnt Modulators and Microenvironmental Factors in Osteogenic Differentiation of Mesenchymal Progenitor Cells

    PubMed Central

    Padmanabhan, Harish; Cooper-White, Justin J.

    2013-01-01

    Cellular microenvironmental conditions coordinate to regulate stem cell populations and their differentiation. Mesenchymal precursor cells (MPCs), which have significant potential for a wide range of therapeutic applications, can be expanded or differentiated into osteo- chondro- and adipogenic lineages. The ability to establish, screen, and control aspects of the microenvironment is paramount if we are to elucidate the complex interplay of signaling events that direct cell fate. Whilst modulation of Wnt signaling may be useful to direct osteogenesis in MPCs, there is still significant controversy over how the Wnt signaling pathway influences osteogenesis. In this study, we utilised a full-factorial microbioreactor array (MBA) to rapidly, combinatorially screen several Wnt modulatory compounds (CHIR99021, IWP-4 and IWR-1) and characterise their effects upon osteogenesis. The MBA screening system showed excellent consistency between donors and experimental runs. CHIR99021 (a Wnt agonist) had a profoundly inhibitory effect upon osteogenesis, contrary to expectations, whilst the effects of the IWP-4 and IWR-1 (Wnt antagonists) were confirmed to be inhibitory to osteogenesis, but to a lesser extent than observed for CHIR99021. Importantly, we demonstrated that these results were translatable to standard culture conditions. Using RT-qPCR of osteogenic and Wnt pathway markers, we showed that CHIR exerted its effects via inhibition of ALP and SPP1 expression, even though other osteogenic markers (RUNX2, MSX2, DLX, COL1A1) were upregulated. Lastly, this MBA platform, due to the continuous provision of medium from the first to the last of ten serially connected culture chambers, permitted new insight into the impacts of paracrine signaling on osteogenic differentiation in MPCs, with factors secreted by the MPCs in upstream chambers enhancing the differentiation of cells in downstream chambers. Insights provided by this cell-based assay system will be key to better

  9. BET bromodomain inhibition rescues erythropoietin differentiation of human erythroleukemia cell line UT7

    SciTech Connect

    Goupille, Olivier; Penglong, Tipparat; Lefevre, Carine; Granger, Marine; Kadri, Zahra; Fucharoen, Suthat; Maouche-Chretien, Leila; Leboulch, Philippe; Chretien, Stany

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer UT7 erythroleukemia cells are known to be refractory to differentiate. Black-Right-Pointing-Pointer Brief JQ1 treatment initiates the first steps of erythroid differentiation program. Black-Right-Pointing-Pointer Engaged UT7 cells then maturate in the presence of erythropoietin. Black-Right-Pointing-Pointer Sustained JQ1 treatment inhibits both proliferation and erythroid differentiation. -- Abstract: Malignant transformation is a multistep process requiring oncogenic activation, promoting cellular proliferation, frequently coupled to inhibition of terminal differentiation. Consequently, forcing the reengagement of terminal differentiation of transformed cells coupled or not with an inhibition of their proliferation is a putative therapeutic approach to counteracting tumorigenicity. UT7 is a human leukemic cell line able to grow in the presence of IL3, GM-CSF and Epo. This cell line has been widely used to study Epo-R/Epo signaling pathways but is a poor model for erythroid differentiation. We used the BET bromodomain inhibition drug JQ1 to target gene expression, including that of c-Myc. We have shown that only 2 days of JQ1 treatment was required to transitory inhibit Epo-induced UT7 proliferation and to restore terminal erythroid differentiation. This study highlights the importance of a cellular erythroid cycle break mediated by c-Myc inhibition before initiation of the erythropoiesis program and describes a new model for BET bromodomain inhibitor drug application.

  10. Differential heating in the Indian Ocean differentially modulates precipitation in the Ganges and Brahmaputra basins

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2016-01-01

    Indo-Pacific sea surface temperature dynamics play a prominent role in Asian summer monsoon variability. Two interactive climate modes of the Indo-Pacific—the El Niño/Southern Oscillation (ENSO) and the Indian Ocean dipole mode—modulate the amount of precipitation over India, in addition to precipitation over Africa, Indonesia, and Australia. However, this modulation is not spatially uniform. The precipitation in southern India is strongly forced by the Indian Ocean dipole mode and ENSO. In contrast, across northern India, encompassing the Ganges and Brahmaputra basins, the climate mode influence on precipitation is much less. Understanding the forcing of precipitation in these river basins is vital for food security and ecosystem services for over half a billion people. Using 28 years of remote sensing observations, we demonstrate that (i) the tropical west-east differential heating in the Indian Ocean influences the Ganges precipitation and (ii) the north-south differential heating in the Indian Ocean influences the Brahmaputra precipitation. The El Niño phase induces warming in the warm pool of the Indian Ocean and exerts more influence on Ganges precipitation than Brahmaputra precipitation. The analyses indicate that both the magnitude and position of the sea surface temperature anomalies in the Indian Ocean are important drivers for precipitation dynamics that can be effectively summarized using two new indices, one tuned for each basin. These new indices have the potential to aid forecasting of drought and flooding, to contextualize land cover and land use change, and to assess the regional impacts of climate change.

  11. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    PubMed Central

    Lee, Ting-I; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines. PMID:27446205

  12. Glycogen synthase kinase 3β inhibition promotes human iTreg differentiation and suppressive function.

    PubMed

    Xia, Yongxiang; Zhuo, Han; Lu, Yunjie; Deng, Lei; Jiang, Runqiu; Zhang, Long; Zhu, Qin; Pu, Liyong; Wang, Xuehao; Lu, Ling

    2015-05-01

    Induced regulatory T cells (iTregs) are essential to maintain immunological tolerance, immune homeostasis and prevention of autoimmunity. Some studies suggest that glycogen synthase kinase 3β (GSK3β) is involved in the mouse iTreg differentiation; however, whether GSK3β inhibits or enhances iTreg differentiation is still a matter of controversy. To address this issue, we have utilized human naïve CD4(+) T cells and investigated whether GSK3 activity changes during iTreg differentiation and whether altering GSK3 activity influences the development of iTregs and its suppressive function. As a constitutively activated kinase, during iTreg differentiation GSK3β became quickly deactivated (phosphorylated at serine 9), which is dependent on MAPK pathway rather than PI3-kinase/Akt pathway. Our results indicated that inhibition of GSK3β by specific inhibitors, SB216763 or TDZD-8, promoted the differentiation of iTreg and increased their suppressive activity. In contrast, overexpression of GSK3β significantly inhibited iTreg differentiation. Furthermore, GSK3β inhibition enhanced iTreg differentiation through the TGF-β/Smad3 pathway. Taken together, this study demonstrates that inhibition of GSK3β enhances human iTreg differentiation and its suppressive activity, and provides a rationale to target GSK3β as a novel immunotherapeutic strategy.

  13. Differential immune modulation by deoxynivalenol (vomitoxin) in mice.

    PubMed

    Islam, Mohammad Rafiqul; Roh, Yoon Seok; Kim, Jinho; Lim, Chae Woong; Kim, Bumseok

    2013-08-14

    differentially modulated IL-1β, IL-10, and TNF-α production. These results indicate that DON can cause various immunomodulatory effects in mice, creating a milieu that might allow invasion by other microorganisms. PMID:23791694

  14. Water extract of Acer tegmentosum reduces bone destruction by inhibiting osteoclast differentiation and function.

    PubMed

    Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; An, Hyosun; Lee, Chung-Jo; Lee, Kwang Jin; Ma, Jin Yeul

    2014-04-01

    The stem of Acer tegmentosum has been widely used in Korea for the treatment of hepatic disorders. In this study, we investigated the bone protective effect of water extract of the stem of Acer tegmentosum (WEAT). We found that WEAT inhibits osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand (RANKL), an essential cytokine for osteoclast differentiation. In osteoclast precursor cells, WEAT inhibited RANKL-induced activation of JNK, NF-κB, and cAMP response element-binding protein, leading to suppression of the induction of c-Fos and nuclear factor of activated T cells cytoplasmic 1, key transcription factors for osteoclast differentiation. In addition, WEAT inhibited bone resorbing activity of mature osteoclasts. Furthermore, the oral administration of WEAT reduced RANKL-induced bone resorption and trabecular bone loss in mice. Taken together, our study demonstrates that WEAT possesses a protective effect on bone destruction by inhibiting osteoclast differentiation and function.

  15. GPU-based parallel clustered differential pulse code modulation

    NASA Astrophysics Data System (ADS)

    Wu, Jiaji; Li, Wenze; Kong, Wanqiu

    2015-10-01

    Hyperspectral remote sensing technology is widely used in marine remote sensing, geological exploration, atmospheric and environmental remote sensing. Owing to the rapid development of hyperspectral remote sensing technology, resolution of hyperspectral image has got a huge boost. Thus data size of hyperspectral image is becoming larger. In order to reduce their saving and transmission cost, lossless compression for hyperspectral image has become an important research topic. In recent years, large numbers of algorithms have been proposed to reduce the redundancy between different spectra. Among of them, the most classical and expansible algorithm is the Clustered Differential Pulse Code Modulation (CDPCM) algorithm. This algorithm contains three parts: first clusters all spectral lines, then trains linear predictors for each band. Secondly, use these predictors to predict pixels, and get the residual image by subtraction between original image and predicted image. Finally, encode the residual image. However, the process of calculating predictors is timecosting. In order to improve the processing speed, we propose a parallel C-DPCM based on CUDA (Compute Unified Device Architecture) with GPU. Recently, general-purpose computing based on GPUs has been greatly developed. The capacity of GPU improves rapidly by increasing the number of processing units and storage control units. CUDA is a parallel computing platform and programming model created by NVIDIA. It gives developers direct access to the virtual instruction set and memory of the parallel computational elements in GPUs. Our core idea is to achieve the calculation of predictors in parallel. By respectively adopting global memory, shared memory and register memory, we finally get a decent speedup.

  16. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS

    SciTech Connect

    Del Bufalo, Aurelia; Bernad, Jose; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Francoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1{beta} and TNF-{alpha}) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE{sub 2,} TxB{sub 2} and PGD{sub 2}), eugenol and cinnamaldehyde inhibiting also the production of IL-1{beta} and TNF-{alpha}. We further demonstrated that there is no unique PGE{sub 2} inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. - Highlights: > We investigated how contact sensitizers modulate an inflammatory response. > We used macrophage-differentiated cell line, U-937 treated with PMA/LPS. > Sensitizers specifically inhibit the production of COX metabolites (PGE2, TxB2). > Several mechanisms of inhibition: COX-2 expression/enzymatic activity, isomerases. > New insight in the biochemical properties of sensitizers.

  17. Inhibition of Rac and ROCK signalling influence osteoblast adhesion, differentiation and mineralization on titanium topographies.

    PubMed

    Prowse, Paul D H; Elliott, Christopher G; Hutter, Jeff; Hamilton, Douglas W

    2013-01-01

    Reducing the time required for initial integration of bone-contacting implants with host tissues would be of great clinical significance. Changes in osteoblast adhesion formation and reorganization of the F-actin cytoskeleton in response to altered topography are known to be upstream of osteoblast differentiation, and these processes are regulated by the Rho GTPases. Rac and RhoA (through Rho Kinase (ROCK)). Using pharmacological inhibitors, we tested how inhibition of Rac and ROCK influenced osteoblast adhesion, differentiation and mineralization on PT (Pre-treated) and SLA (sandblasted large grit, acid etched) topographies. Inhibition of ROCK, but not Rac, significantly reduced adhesion number and size on PT, with adhesion size consistent with focal complexes. After 1 day, ROCK, but not Rac inhibition increased osteocalcin mRNA levels on SLA and PT, with levels further increasing at 7 days post seeding. ROCK inhibition also significantly increased bone sialoprotein expression at 7 days, but not BMP-2 levels. Rac inhibition significantly reduced BMP-2 mRNA levels. ROCK inhibition increased nuclear translocation of Runx2 independent of surface roughness. Mineralization of osteoblast cultures was greater on SLA than on PT, but was increased by ROCK inhibition and attenuated by Rac inhibition on both topographies. In conclusion, inhibition of ROCK signalling significantly increases osteoblast differentiation and biomineralization in a topographic dependent manner, and its pharmacological inhibition could represent a new therapeutic to speed bone formation around implanted metals and in regenerative medicine applications.

  18. Inhibition of Rac and ROCK Signalling Influence Osteoblast Adhesion, Differentiation and Mineralization on Titanium Topographies

    PubMed Central

    Prowse, Paul D. H.; Elliott, Christopher G.; Hutter, Jeff; Hamilton, Douglas W.

    2013-01-01

    Reducing the time required for initial integration of bone-contacting implants with host tissues would be of great clinical significance. Changes in osteoblast adhesion formation and reorganization of the F-actin cytoskeleton in response to altered topography are known to be upstream of osteoblast differentiation, and these processes are regulated by the Rho GTPases. Rac and RhoA (through Rho Kinase (ROCK)). Using pharmacological inhibitors, we tested how inhibition of Rac and ROCK influenced osteoblast adhesion, differentiation and mineralization on PT (Pre-treated) and SLA (sandblasted large grit, acid etched) topographies. Inhibition of ROCK, but not Rac, significantly reduced adhesion number and size on PT, with adhesion size consistent with focal complexes. After 1 day, ROCK, but not Rac inhibition increased osteocalcin mRNA levels on SLA and PT, with levels further increasing at 7 days post seeding. ROCK inhibition also significantly increased bone sialoprotein expression at 7 days, but not BMP-2 levels. Rac inhibition significantly reduced BMP-2 mRNA levels. ROCK inhibition increased nuclear translocation of Runx2 independent of surface roughness. Mineralization of osteoblast cultures was greater on SLA than on PT, but was increased by ROCK inhibition and attenuated by Rac inhibition on both topographies. In conclusion, inhibition of ROCK signalling significantly increases osteoblast differentiation and biomineralization in a topographic dependent manner, and its pharmacological inhibition could represent a new therapeutic to speed bone formation around implanted metals and in regenerative medicine applications. PMID:23505566

  19. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model.

    PubMed

    Zagha, Edward; Murray, John D; McCormick, David A

    2016-01-01

    Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input-output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation. PMID:27595137

  20. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model

    PubMed Central

    Murray, John D.; McCormick, David A.

    2016-01-01

    Abstract Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input–output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation.

  1. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model.

    PubMed

    Zagha, Edward; Murray, John D; McCormick, David A

    2016-01-01

    Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input-output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation.

  2. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model

    PubMed Central

    Murray, John D.; McCormick, David A.

    2016-01-01

    Abstract Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input–output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation. PMID:27595137

  3. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    SciTech Connect

    Liu, Jui Tung; Bain, Lisa J.

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  4. Central Inhibition Ability Modulates Attention-Induced Motion Blindness

    ERIC Educational Resources Information Center

    Milders, Maarten; Hay, Julia; Sahraie, Arash; Niedeggen, Michael

    2004-01-01

    Impaired motion perception can be induced in normal observers in a rapid serial visual presentation task. Essential for this effect is the presence of motion distractors prior to the motion target, and we proposed that this attention-induced motion blindness results from high-level inhibition produced by the distractors. To investigate this, we…

  5. Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia.

    PubMed

    Sykes, David B; Kfoury, Youmna S; Mercier, François E; Wawer, Mathias J; Law, Jason M; Haynes, Mark K; Lewis, Timothy A; Schajnovitz, Amir; Jain, Esha; Lee, Dongjun; Meyer, Hanna; Pierce, Kerry A; Tolliday, Nicola J; Waller, Anna; Ferrara, Steven J; Eheim, Ashley L; Stoeckigt, Detlef; Maxcy, Katrina L; Cobert, Julien M; Bachand, Jacqueline; Szekely, Brian A; Mukherjee, Siddhartha; Sklar, Larry A; Kotz, Joanne D; Clish, Clary B; Sadreyev, Ruslan I; Clemons, Paul A; Janzer, Andreas; Schreiber, Stuart L; Scadden, David T

    2016-09-22

    While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.

  6. One-Pot Evolution of Ageladine A through a Bio-Inspired Cascade towards Selective Modulators of Neuronal Differentiation.

    PubMed

    Iwata, Takayuki; Otsuka, Satoshi; Tsubokura, Kazuki; Kurbangalieva, Almira; Arai, Daisuke; Fukase, Koichi; Nakao, Yoichi; Tanaka, Katsunori

    2016-10-01

    A bio-inspired cascade reaction has been developed for the construction of the marine natural product ageladine A and a de novo array of its N1-substituted derivatives. This cascade features a 2-aminoimidazole formation that is modeled after an arginine post-translational modification and an aza-electrocyclization. It can be effectively carried out in a one-pot procedure from simple anilines or guanidines, leading to structural analogues of ageladine A that had been otherwise synthetically inaccessible. We found that some compounds out of this structurally novel library show a significant activity in modulating the neural differentiation. Namely, these compounds selectively activate or inhibit the differentiation of neural stem cells to neurons, while being negligible in the differentiation to astrocytes. This study represents a successful case in which the native biofunction of a natural product could be altered by structural modifications.

  7. Anaesthetics differentially modulate the trigeminocardiac reflex excitatory synaptic pathway in the brainstem

    PubMed Central

    Wang, Xin; Gorini, Christopher; Sharp, Douglas; Bateman, Ryan; Mendelowitz, David

    2011-01-01

    Abstract The trigeminocardiac reflex (TCR) occurs upon excitation of the trigeminal nerve with a resulting bradycardia and hypotension. While several anaesthetics and analgesics have been reported to alter the incidence and strength of the TCR the mechanisms for this modulation are unclear. This study examines the mechanisms of action of ketamine, isoflurane and fentanyl on the synaptic TCR responses in both neurones in the spinal trigeminal interpolaris (Sp5I) nucleus and cardiac vagal neurones (CVNs) in the Nucleus Ambiguus (NA). Stimulation of trigeminal afferent fibres evoked an excitatory postsynaptic current (EPSC) in trigeminal neurones with a latency of 1.8 ± 0.1 ms, jitter of 625 μs, and peak amplitude of 239 ± 45 pA. Synaptic responses further downstream in the reflex pathway in the CVNs occurred with a latency of 12.1 ± 1.1 ms, jitter of 0.8–2 ms and amplitude of 57.8 ± 7.5 pA. The average conduction velocity to the Sp5I neurones was 0.94 ± 0.18 mm ms−1 indicating a mixture of A-δ and C fibres. Stimulation-evoked EPSCs in both Sp5I and CVNs were completely blocked by AMPA/kainate and NMDA glutamatergic receptor antagonists. Ketamine (10 μm) inhibited the peak amplitude and duration in Sp5I as well as more distal synapses in the CVNs. Isoflurane (300 μm) significantly inhibited, while fentanyl (1 μm) significantly enhanced, EPSC amplitude and area in CVNs but had no effect on the responses in Sp5l neurones. These findings indicate glutamatergic excitatory synaptic pathways are critical in the TCR, and ketamine, isoflurane and fentanyl differentially alter the synaptic pathways via modulation of both AMPA/kainate and NMDA receptors at different synapses in the TCR. PMID:21930602

  8. Extracting the differential phase in dual atom interferometers by modulating magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ping; Zhong, Jia-Qi; Chen, Xi; Li, Run-Bing; Li, Da-Wei; Zhu, Lei; Song, Hong-Wei; Wang, Jin; Zhan, Ming-Sheng

    2016-09-01

    We present a new scheme for measuring the differential phase in dual atom interferometers. The magnetic field is modulated in one interferometer, and the differential phase can be extracted without measuring the amplitude of the magnetic field by combining the ellipse and linear fitting methods. The gravity gradient measurements are discussed based on dual atom interferometers. Numerical simulation shows that the systematic error of the differential phase measurement is largely decreased when the duration of the magnetic field is symmetrically modulated. This combined fitting scheme has a high accuracy for measuring an arbitrary differential phase in dual atom interferometers.

  9. Identifying module biomarkers from gastric cancer by differential correlation network

    PubMed Central

    Liu, Xiaoping; Chang, Xiao

    2016-01-01

    Gastric cancer (stomach cancer) is a severe disease caused by dysregulation of many functionally correlated genes or pathways instead of the mutation of individual genes. Systematic identification of gastric cancer biomarkers can provide insights into the mechanisms underlying this deadly disease and help in the development of new drugs. In this paper, we present a novel network-based approach to predict module biomarkers of gastric cancer that can effectively distinguish the disease from normal samples. Specifically, by assuming that gastric cancer has mainly resulted from dysfunction of biomolecular networks rather than individual genes in an organism, the genes in the module biomarkers are potentially related to gastric cancer. Finally, we identified a module biomarker with 27 genes, and by comparing the module biomarker with known gastric cancer biomarkers, we found that our module biomarker exhibited a greater ability to diagnose the samples with gastric cancer. PMID:27703371

  10. Differential effects of gram-positive and gram-negative bacterial products on morphine induced inhibition of phagocytosis

    PubMed Central

    Jana, Ninkovic; Vidhu, Anand; Raini, Dutta; Zhang, Li; Saluja, Anuj; Meng, Jingjing; Lisa, Koodie; Santanu, Banerjee; Sabita, Roy

    2016-01-01

    Opioid drug abusers have a greater susceptibility to gram positive (Gram (+)) bacterial infections. However, the mechanism underlying opioid modulation of Gram (+) versus Gram (−) bacterial clearance has not been investigated. In this study, we show that opioid treatment resulted in reduced phagocytosis of Gram (+), when compared to Gram (−) bacteria. We further established that LPS priming of chronic morphine treated macrophages leads to potentiated phagocytosis and killing of both Gram (+) and Gram (−) bacteria in a P-38 MAP kinase dependent signaling pathway. In contrast, LTA priming lead to inhibition of both phagocytosis and bacterial killing. This study demonstrates for the first time the differential effects of TLR4 and TLR2 agonists on morphine induced inhibition of phagocytosis. Our results suggest that the incidence and severity of secondary infections with Gram (+) bacteria would be higher in opioid abusers. PMID:26891899

  11. Differential effects of gram-positive and gram-negative bacterial products on morphine induced inhibition of phagocytosis.

    PubMed

    Ninkovic, Jana; Jana, Ninkovic; Anand, Vidhu; Vidhu, Anand; Dutta, Raini; Raini, Dutta; Zhang, Li; Saluja, Anuj; Meng, Jingjing; Koodie, Lisa; Lisa, Koodie; Banerjee, Santanu; Santanu, Banerjee; Roy, Sabita; Sabita, Roy

    2016-02-19

    Opioid drug abusers have a greater susceptibility to gram positive (Gram (+)) bacterial infections. However, the mechanism underlying opioid modulation of Gram (+) versus Gram (-) bacterial clearance has not been investigated. In this study, we show that opioid treatment resulted in reduced phagocytosis of Gram (+), when compared to Gram (-) bacteria. We further established that LPS priming of chronic morphine treated macrophages leads to potentiated phagocytosis and killing of both Gram (+) and Gram (-) bacteria in a P-38 MAP kinase dependent signaling pathway. In contrast, LTA priming lead to inhibition of both phagocytosis and bacterial killing. This study demonstrates for the first time the differential effects of TLR4 and TLR2 agonists on morphine induced inhibition of phagocytosis. Our results suggest that the incidence and severity of secondary infections with Gram (+) bacteria would be higher in opioid abusers.

  12. Strategic modulation of response inhibition in task-switching

    PubMed Central

    Grzyb, Kai Robin; Hübner, Ronald

    2013-01-01

    Residual activations from previous task performance usually prime the system toward response repetition. However, when the task switches, the repetition of a response (RR) produces longer reaction times and higher error rates. Some researchers assumed that these RR costs reflect strategic inhibition of just executed responses and that this serves for preventing perseveration errors. We investigated whether the basic level of response inhibition is adapted to the overall risk of response perseveration. In a series of 3 experiments, we presented different proportions of stimuli that carry either a high or a low risk of perseveration. Additionally, the discriminability of high- and low-risk stimuli was varied. The results indicate that individuals apply several processing and control strategies, depending on the mixture of stimulus types. When discriminability was high, control was adapted on a trial-by trial basis, which presumably reduces mental effort (Experiment 1). When trial-based strategies were prevented, RR costs for low-risk stimuli varied with the overall proportion of high-risk stimuli (Experiments 2 and 3), indicating an adaptation of the basic level of response inhibition. PMID:23986730

  13. Cancer Differentiating Agent Hexamethylene Bisacetamide Inhibits BET Bromodomain Proteins.

    PubMed

    Nilsson, Lisa M; Green, Lydia C; Muralidharan, Somsundar Veppil; Demir, Dağsu; Welin, Martin; Bhadury, Joydeep; Logan, Derek T; Walse, Björn; Nilsson, Jonas A

    2016-04-15

    Agents that trigger cell differentiation are highly efficacious in treating certain cancers, but such approaches are not generally effective in most malignancies. Compounds such as DMSO and hexamethylene bisacetamide (HMBA) have been used to induce differentiation in experimental systems, but their mechanisms of action and potential range of uses on that basis have not been developed. Here, we show that HMBA, a compound first tested in the oncology clinic over 25 years ago, acts as a selective bromodomain inhibitor. Biochemical and structural studies revealed an affinity of HMBA for the second bromodomain of BET proteins. Accordingly, both HMBA and the prototype BET inhibitor JQ1 induced differentiation of mouse erythroleukemia cells. As expected of a BET inhibitor, HMBA displaced BET proteins from chromatin, caused massive transcriptional changes, and triggered cell-cycle arrest and apoptosis in Myc-induced B-cell lymphoma cells. Furthermore, HMBA exerted anticancer effects in vivo in mouse models of Myc-driven B-cell lymphoma. This study illuminates the function of an early anticancer agent and suggests an intersection with ongoing clinical trials of BET inhibitor, with several implications for predicting patient selection and response rates to this therapy and starting points for generating BD2-selective BET inhibitors. Cancer Res; 76(8); 2376-83. ©2016 AACR. PMID:26941288

  14. Inhibition of miR-29c promotes proliferation, and inhibits apoptosis and differentiation in P19 embryonic carcinoma cells

    PubMed Central

    CHEN, BIN; SONG, GUIXIAN; LIU, MING; QIAN, LINGMEI; WANG, LIHUA; GU, HAITAO; SHEN, YAHUI

    2016-01-01

    In our previous study, the upregulation of microRNA (miR)-29c was identified in the mother of a fetus with a congenital heart defect. However, the functional and regulatory mechanisms of miR-29c in the development of the heart remain to be elucidated. In the present study, the role and mechanism of miR-29c inhibition in heart development were investigated in an embryonic carcinoma cell model. Inhibition of miR-29c promoted proliferation, and suppressed the apoptosis and differentiation of P19 cells. It was also demonstrated that Wingless-related MMTV integration site 4 (Wnt4) was a target of miR-29c, determined using bioinformatic analysis combined with luciferase assays. The inhibition of miR-29c stimulated the WNT4/β-catenin pathway, promoting proliferation of the P19 cells, but suppressing their differentiation into cardiomyocytes. Furthermore, the inhibition of miR-29c promoted the expression of B cell lymphoma-2 and inhibited cell apoptosis. These results demonstrate the significance of miR-29c in the process of cardiac development and suggest that miR-29c dysregulation may be associated with the occurrence of CHD. Thus, miR-29c may have therapeutic potential in the future. PMID:26848028

  15. Atmospheric-pressure plasma-irradiation inhibits mouse embryonic stem cell differentiation to mesoderm and endoderm but promotes ectoderm differentiation

    NASA Astrophysics Data System (ADS)

    Miura, Taichi; Hamaguchi, Satoshi; Nishihara, Shoko

    2016-04-01

    Recently, various effects of low-temperature atmospheric-pressure plasma irradiation on living cells have been demonstrated, such as tissue sterilization, blood coagulation, angiogenesis, wound healing, and tumor elimination. However, the effect of plasma-irradiation on the differentiation of mouse embryonic stem cells (mESCs) has not yet been clarified. A large number of reactive species are generated by plasma-irradiation in medium, of which hydrogen peroxide (H2O2) is one of the main species generated. Here, we investigated the effect of plasma-irradiation on the differentiation of mESCs using an embryoid body (EB) formation assay with plasma-irradiated medium or H2O2-supplemented non-irradiated medium. Our findings demonstrated that plasma-irradiated medium potently inhibits the differentiation from mESCs to mesoderm and endoderm by inhibiting Wnt signaling as determined by quantitative polymerase chain reaction and immunoblotting analyses. In contrast, both the plasma-irradiated medium and H2O2-supplemented non-irradiated medium enhanced the differentiation to epiblastoid, ectodermal, and neuronal lineages by activation of fibroblast growth factor 4 (FGF4) signaling, suggesting that these effects are caused by the H2O2 generated by plasma-irradiation in medium. However, in each case, the differentiation to glial cells remained unaffected. This study is the first demonstration that plasma-irradiation affects the differentiation of mESCs by the regulation of Wnt and FGF4 signaling pathways.

  16. Apolipoprotein E inhibits osteoclast differentiation via regulation of c-Fos, NFATc1 and NF-κB

    SciTech Connect

    Kim, Woo-Shin; Kim, Hyung Joon; Lee, Zang Hee; Lee, Youngkyun; Kim, Hong-Hee

    2013-02-15

    Apolipoprotein E (ApoE) plays a major role in the transport and metabolism of lipid. Other functions of ApoE include modulation of innate and adaptive immune responses. The expression of ApoE in osteoblasts and its relevance with bone formation have also been reported. However, the effect of ApoE on osteoclasts has not yet been examined. Here, we investigated the role of ApoE in osteoclast differentiation using bone marrow-derived macrophages (BMMs) and RAW264.7 cells. We found a down-regulation of ApoE gene expression during osteoclastic differentiation of those cells. Overexpression of ApoE in BMMs and RAW264.7 cells significantly blocked the induction of c-Fos and nuclear factor of activated T cell c1 (NFATc1), transcription factors critical for expression of osteoclast marker genes, by receptor activator of nuclear factor κB ligand (RANKL), the osteoclast differentiation factor. ApoE inhibited osteoclast differentiation, as measured by decreased number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs). In addition, ApoE reduced the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and ATPase, H{sup +} transporting, lysosomal 38 kDa, V0 subunit d2 (ATP6v0d2), genes involved in cell–cell fusion during osteoclastogenesis. Knock-down of ApoE using a specific siRNA promoted the RANKL-mediated induction of osteoclast differentiation. While ApoE did not affect the activation of ERK, JNK, and p38 MAPK signaling pathways by RANKL, the phosphorylation of p65 trans-activation domain on serine 536 and transcription activity of NF-κB were reduced by ApoE overexpression. These findings suggest that ApoE plays an inhibitory role in osteoclast differentiation via the suppression of RANKL-dependent activation of NF-κB and induction of c-Fos and NFATc1. - Highlights: ► Apolipoprotein E (ApoE) significantly inhibited osteoclast differentiation and activation of NF-κB. ► ApoE decreased the induction of osteoclast marker

  17. TAK-1/p38/nNFκB signaling inhibits myoblast differentiation by increasing levels of Activin A

    PubMed Central

    2012-01-01

    Background Skeletal-muscle differentiation is required for the regeneration of myofibers after injury. The differentiation capacity of satellite cells is impaired in settings of old age, which is at least one factor in the onset of sarcopenia, the age-related loss of skeletal-muscle mass and major cause of frailty. One important cause of impaired regeneration is increased levels of transforming growth factor (TGF)-β accompanied by reduced Notch signaling. Pro-inflammatory cytokines are also upregulated in aging, which led us hypothesize that they might potentially contribute to impaired regeneration in sarcopenia. Thus, in this study, we further analyzed the muscle differentiation-inhibition pathway mediated by pro-inflammatory cytokines in human skeletal muscle cells (HuSKMCs). Methods We studied the modulation of HuSKMC differentiation by the pro-inflammatory cytokines interleukin (IL)-1α and tumor necrosis factor (TNF)-α The grade of differentiation was determined by either imaging (fusion index) or creatine kinase (CK) activity, a marker of muscle differentiation. Secretion of TGF-β proteins during differentiation was assessed by using a TGF-β-responsive reporter-gene assay and further identified by means of pharmacological and genetic inhibitors. In addition, signaling events were monitored by western blotting and reverse transcription PCR, both in HuSKMC cultures and in samples from a rat sarcopenia study. Results The pro-inflammatory cytokines IL-1α and TNF-α block differentiation of human myoblasts into myotubes. This anti-differentiation effect requires activation of TGF-β-activated kinase (TAK)-1. Using pharmacological and genetic inhibitors, the TAK-1 pathway could be traced to p38 and NFκB. Surprisingly, the anti-differentiation effect of the cytokines required the transcriptional upregulation of Activin A, which in turn acted through its established signaling pathway: ActRII/ALK/SMAD. Inhibition of Activin A signaling was able to rescue human

  18. The effects and inhibition of frequency offset on differential phase-shift keying detection

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Zhou, Jing; Su, Shaojing; Pan, Zhongming

    2015-10-01

    Differential phase-shift keying (DPSK) has been widely implemented and developed in high-speed optical communication systems. The low error rate detection at high access rate is one of the considerable issues in practical engineering application. Balanced detection based on fiber Mach-Zehnder delay interferometer (MZDI) is the typical optical DPSK signal detecting method. It requires that the free spectrum range (FSR) of the MZDI equals the reciprocal of symbol period of the DPSK signal. For the reasons of ambient temperature variation and nonlinear phase noise, a dynamic frequency offset always exists between the FSR and the reciprocal of symbol period. That may introduce some optical signal-to-noise ratio (OSNR) costs and fault detections. Therefore, it is significant to inhibit the frequency offset on DPSK detection. In this paper, firstly, we discuss the effects of frequency offset on DPSK detection, and realize the conclusion that frequency offset is virtually equivalent to an additional phase difference between adjacent symbols. Secondly, through simulation, we analyze the feasibility of DPSK detection in the presence of a definite range of frequency offset, and present the quantitative computation of effective coverage, duty cycle, and optimal sampling time of symbol interference. Some issues which should be considered in practical implementation are also discussed. Finally, according to the relationship among phase difference, temperature and voltage, we propose a phase difference compensation scheme which can automatically adjust the voltage for optimal detections, and dynamically track the changing of ambient temperature and nonlinear phase noise. Furthermore, we ascertain the performance of the voltage requested for implementing the scheme. The scheme can be also developed to quadrature phase-shift keying (QPSK) and differential QPSK (DQPSK) modulation situations.

  19. miR-150 inhibits terminal erythroid proliferation and differentiation

    PubMed Central

    Sun, Zhiwei; Wang, Ye; Han, Xu; Zhao, Xielan; Peng, Yuanliang; Li, Yusheng; Peng, Minyuan; Song, Jianhui; Wu, Kunlu; Sun, Shumin; Zhou, Weihua; Qi, Biwei; Zhou, Chufan; Chen, Huiyong; An, Xiuli; Liu, Jing

    2015-01-01

    MicroRNAs (miRNAs), a class of small non-coding linear RNAs, have been shown to play a crucial role in erythropoiesis. To evaluate the indispensable role of constant suppression of miR-150 during terminal erythropoiesis, we performed miR-150 gain- and loss-of-function experiments on hemin-induced K562 cells and EPO-induced human CD34+ cells. We found that forced expression of miR-150 suppresses commitment of hemoglobinization and CD235a labeling in both cell types. Erythroid proliferation is also inhibited via inducing apoptosis and blocking the cell cycle when miR-150 is overexpressed. In contrast, miR-150 inhibition promotes terminal erythropoiesis. 4.1 R gene is a new target of miR-150 during terminal erythropoiesis, and its abundance ensures the mechanical stability and deformability of the membrane. However, knockdown of 4.1 R did not affect terminal erythropoiesis. Transcriptional profiling identified more molecules involved in terminal erythroid dysregulation derived from miR-150 overexpression. These results shed light on the role of miR-150 during human terminal erythropoiesis. This is the first report highlighting the relationship between miRNA and membrane protein and enhancing our understanding of how miRNA works in the hematopoietic system. PMID:26543232

  20. TM-25659 enhances osteogenic differentiation and suppresses adipogenic differentiation by modulating the transcriptional co-activator TAZ

    PubMed Central

    Jang, EJ; Jeong, H; Kang, JO; Kim, NJ; Kim, MS; Choi, SH; Yoo, SE; Hong, JH; Bae, MA; Hwang, ES

    2012-01-01

    BACKGROUND AND PURPOSE The transcriptional co-activator with PDZ-binding motif (TAZ) is characterized as a transcriptional modulator of mesenchymal stem cell differentiation into osteoblasts and adipocytes. Moreover, increased TAZ activity in the nucleus enhances osteoblast differentiation and suppresses adipocyte development by interacting with runt-related transcription factor 2 (RUNX2) and PPARγ, respectively. Therefore, it would be of interest to identify low MW compounds that modulate nuclear TAZ activity. EXPERIMENTAL APPROACH High-throughput screening was performed using a library of low MW compounds in order to identify TAZ modulators that enhance nuclear TAZ localization. The effects and molecular mechanisms of a TAZ modulator have been characterized in osteoblast and adipocyte differentiation. KEY RESULTS We identified 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2′-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) as a TAZ modulator. TM-25659 enhanced nuclear TAZ localization in a dose-dependent manner and attenuated PPARγ-mediated adipocyte differentiation by facilitating PPARγ suppression activity of TAZ. In addition, TAZ-induced RUNX2 activity activation was further increased in osteoblasts, causing increased osteoblast differentiation. Accordingly, TM-25659 suppressed bone loss in vivo and decreased weight gain in an obesity model. After oral administration, TM-25659 had a favourable pharmacokinetic profile. CONCLUSION AND IMPLICATIONS TM-25659 stimulated nuclear TAZ localization and thus caused TAZ to suppress PPARγ-dependent adipogenesis and enhance RUNX2-induced osteoblast differentiation in vitro and in vivo. Our data suggest that TM-25659 could be beneficial in the control of obesity and bone loss. PMID:21913895

  1. The 1,2,3-triazole derivative KP-A021 suppresses osteoclast differentiation and function by inhibiting RANKL-mediated MEK-ERK signaling pathway.

    PubMed

    Ihn, Hye Jung; Lee, Doohyun; Lee, Taeho; Shin, Hong-In; Bae, Yong Chul; Kim, Sang-Hyun; Park, Eui Kyun

    2015-12-01

    The triazole family of compounds has been implicated in modulating various biological processes such as inflammation, tumorigenesis, and infection. To our knowledge, this is the first study to demonstrate the effects of 1,2,3-triazole substituted biarylacrylonitrile compounds, including KP-A021, on the differentiation and function of osteoclasts. KP-A021 and its triazole derivatives, at a concentration that does not cause a cytotoxic response in bone marrow macrophages (BMMs), significantly inhibited osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) as assessed by tartrate-resistant acid phosphatase (TRAP) staining. KP-A021 also dramatically inhibited the expression of marker genes associated with osteoclast differentiation, such as TRAP, cathepsin K (Cat K), dendritic cell-specific transmembrane protein (DC-STAMP), and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). Furthermore, KP-A021 inhibited actin ring formation in osteoclasts as well as resorption pit formation induced by osteoclasts. Analysis of the signaling pathway for KP-A021 indicated that this triazole compound inhibited the RANKL-induced activation of extracellular signal-regulated kinase (ERK) and its upstream signaling molecule, mitogen-activated protein kinase kinase1/2 (MEK1/2). Taken together, these results demonstrate that KP-A021 has an inhibitory effect on the differentiation and function of osteoclasts via modulation of the RANKL-induced activation of the MEK-ERK pathway.

  2. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound. PMID:27012396

  3. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound.

  4. The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation.

    PubMed

    Lehmann, Geniece M; Xi, Xia; Kulkarni, Ajit A; Olsen, Keith C; Pollock, Stephen J; Baglole, Carolyn J; Gupta, Shikha; Casey, Ann E; Huxlin, Krystel R; Sime, Patricia J; Feldon, Steven E; Phipps, Richard P

    2011-04-01

    Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR(-/-) fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent.

  5. Manganese inhibits the ability of astrocytes to promote neuronal differentiation

    SciTech Connect

    Giordano, Gennaro; Pizzurro, Daniella; VanDeMark, Kathryn; Guizzetti, Marina; Costa, Lucio G.

    2009-10-15

    Manganese (Mn) is a known neurotoxicant and developmental neurotoxicant. As Mn has been shown to accumulate in astrocytes, we sought to investigate whether Mn would alter astrocyte-neuronal interactions, specifically the ability of astrocytes to promote differentiation of neurons. We found that exposure of rat cortical astrocytes to Mn (50-500 {mu}M) impaired their ability to promote axonal and neurite outgrowth in hippocampal neurons. This effect of Mn appeared to be mediated by oxidative stress, as it was reversed by antioxidants (melatonin and PBN) and by increasing glutathione levels, while it was potentiated by glutathione depletion in astrocytes. As the extracellular matrix protein fibronectin plays an important role in astrocyte-mediated neuronal neurite outgrowth, we also investigated the effect of Mn on fibronectin. Mn caused a concentration-dependent decrease of fibronectin protein and mRNA in astrocytes lysate and of fibronectin protein in astrocyte medium; these effects were also antagonized by antioxidants. Exposure of astrocytes to two oxidants, H{sub 2}O{sub 2} and DMNQ, similarly impaired their neuritogenic action, and led to a decreased expression of fibronectin. Mn had no inhibitory effect on neurite outgrowth when applied directly onto hippocampal neurons, where it actually caused a small increase in neuritogenesis. These results indicate that Mn, by targeting astrocytes, affects their ability to promote neuronal differentiation by a mechanism which is likely to involve oxidative stress.

  6. Inhibition of Rac1 promotes BMP-2-induced osteoblastic differentiation.

    PubMed

    Onishi, M; Fujita, Y; Yoshikawa, H; Yamashita, T

    2013-01-01

    Small G proteins of the Rho family are pivotal regulators of several signaling networks. The Ras homolog family (Rho) and one of its targets, Rho-associated protein kinase (ROCK), participate in a wide variety of biological processes, including bone formation. A previous study has demonstrated that the ROCK inhibitor Y-27632 enhanced bone formation induced by recombinant human bone morphogenetic protein-2 (BMP-2) in vivo and in vitro. However, the effect of other Rho family members, such as Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42), on bone formation remains unknown. In this study, we investigated whether Rac1 also participates in BMP-2-induced osteogenesis. Expression of a dominant-negative mutant of Rac1 enhanced BMP-2-induced osteoblastic differentiation in C2C12 cells, whereas a constitutively active mutant of Rac1 attenuated that effect. Knockdown of T-lymphoma invasion and metastasis 1 (Tiam1), a Rac-specific guanine nucleotide exchange factor, enhanced BMP-2-induced alkaline phosphatase activity. Further, we demonstrated that BMP-2 stimulated Rac1 activity. These results indicate that the activation of Rac1 attenuates osteoblastic differentiation in C2C12 cells.

  7. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria.

    PubMed

    Sauder, Laura A; Ross, Ashley A; Neufeld, Josh D

    2016-04-01

    Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway.

  8. Synthesis and SAR study of modulators inhibiting tRXRα-dependent AKT activation

    PubMed Central

    Wang, Zhi-Gang; Chen, Liqun; Chen, Jiebo; Zheng, Jian-Feng; Gao, Weiwei; Zeng, Zhiping; Zhou, Hu; Zhang, Xiao-kun; Huang, Pei-Qiang; Su, Ying

    2013-01-01

    RXRα represents an intriguing and unique target for pharmacologic interventions. We recently showed that Sulindac and a designed analog could bind to RXRα and modulate its biological activity, including inhibition of the interaction of an N-terminally truncated RXRα (tRXRα) with the p85α regulatory subunit of phosphatidylinositol-3-OH kinase (PI3K). Here we report the synthesis, testing and SAR of a series of novel analogs of Sulindac as potential modulators for inhibiting tRXRα-dependent AKT activation. A new compound 30 was identified to have improved biological activity. PMID:23434637

  9. Inhibition of chaotic escape from a potential well using small parametric modulations

    SciTech Connect

    Chacon, R.; Balibrea, F.; Lopez, M.A.

    1996-11-01

    It is shown theoretically for the first time that, depending on its period, amplitude, and initial phase, a periodic parametric modulation can suppress a chaotic escape from a potential well. The instance of the Helmholtz oscillator is used to demonstrate, by means of Melnikov{close_quote}s method, that parametric modulations of the linear or quadratic potential terms inhibit chaotic escape when certain resonance conditions are met. {copyright} {ital 1996 American Institute of Physics.}

  10. Lung cancer-derived Dickkopf1 is associated with bone metastasis and the mechanism involves the inhibition of osteoblast differentiation

    SciTech Connect

    Chu, Tianqing; Teng, Jiajun; Jiang, Liyan; Zhong, Hua; Han, Baohui

    2014-01-17

    Highlights: •DKK1 level was associated with NSCLC bone metastases. •Lung tumor cells derived DKK1 inhibited osteoblast differentiation. •Lung tumor cells derived DKK1 modulates β-catenin and RUNX2. -- Abstract: Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferably metastasizes to skeleton. But the role of them in bone dissemination is poorly understood. This study aims to define the role of DKK1 in lung cancer bone metastases and investigate the underlying mechanism. Our results demonstrated that DKK1 over-expression was a frequent event in non-small-cell lung cancer (NSCLC) blood samples, and serous DKK1 level was much higher in bone metastatic NSCLC compared to non-bone metastatic NSCLC. We also found that conditioned medium from DKK1 over-expressing lung cancer cells inhibited the differentiation of osteoblast, determined by alkaline phosphatase activity and osteocalcin secretion, whereas the conditioned medium from DKK1 silencing lung cancer cells exhibited the opposite effects. Mechanistically, DKK1 reduced the level of β-catenin and RUNX2, as well as inhibiting the nuclear translocation of β-catenin. Taken together, these results suggested that lung cancer-produced DKK1 may be an important mechanistic link between NSCLC and bone metastases, and targeting DKK1 may be an effective method to treat bone metastase of NSCLC.

  11. Inhibition of notch signaling pathway prevents cholestatic liver fibrosis by decreasing the differentiation of hepatic progenitor cells into cholangiocytes.

    PubMed

    Zhang, Xiao; Du, Guangli; Xu, Ying; Li, Xuewei; Fan, Weiwei; Chen, Jiamei; Liu, Cheng; Chen, Gaofeng; Liu, Chenghai; Zern, Mark A; Mu, Yongping; Liu, Ping

    2016-03-01

    Although hepatic progenitor cells (HPCs) are known to contribute to cholestatic liver fibrosis (CLF), how Notch signaling modulates the differentiation of HPCs to cholangiocytes in CLF is unknown. Thus, using a rat model of CLF that is induced by bile duct ligation, we inhibited Notch signaling with DAPT. In vivo, CK19, OV6, Sox9, and EpCAM expression was increased significantly. Notch signaling increased after bile duct ligation, and DAPT treatment reduced the expression of CK19, OV6, Sox9, and EpCAM and blocked cholangiocyte proliferation and CLF. In vitro, treatment of a WB-F344 cell line with sodium butyrate resulted in increased mRNA and protein expression of CK19, Sox9, and EpCAM, but Notch signaling was activated. Both of these processes were inhibited by DAPT. This study reveals that Notch signaling activation is required for HPC differentiation into cholangiocytes in CLF, and inhibition of the Notch signaling pathway may offer a therapeutic approach for treating CLF.

  12. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles

    SciTech Connect

    Park, Margriet V.D.Z. Annema, Wijtske; Salvati, Anna; Lesniak, Anna; Elsaesser, Andreas; Barnes, Clifford; McKerr, George; Howard, C. Vyvyan; Lynch, Iseult; Dawson, Kenneth A.; Piersma, Aldert H.; Jong, Wim H. de

    2009-10-01

    While research into the potential toxic properties of nanomaterials is now increasing, the area of developmental toxicity has remained relatively uninvestigated. The embryonic stem cell test is an in vitro screening assay used to investigate the embryotoxic potential of chemicals by determining their ability to inhibit differentiation of embryonic stem cells into spontaneously contracting cardiomyocytes. Four well characterized silica nanoparticles of various sizes were used to investigate whether nanomaterials are capable of inhibition of differentiation in the embryonic stem cell test. Nanoparticle size distributions and dispersion characteristics were determined before and during incubation in the stem cell culture medium by means of transmission electron microscopy (TEM) and dynamic light scattering. Mouse embryonic stem cells were exposed to silica nanoparticles at concentrations ranging from 1 to 100 {mu}g/ml. The embryonic stem cell test detected a concentration dependent inhibition of differentiation of stem cells into contracting cardiomyocytes by two silica nanoparticles of primary size 10 (TEM 11) and 30 (TEM 34) nm while two other particles of primary size 80 (TEM 34) and 400 (TEM 248) nm had no effect up to the highest concentration tested. Inhibition of differentiation of stem cells occurred below cytotoxic concentrations, indicating a specific effect of the particles on the differentiation of the embryonic stem cells. The impaired differentiation of stem cells by such widely used particles warrants further investigation into the potential of these nanoparticles to migrate into the uterus, placenta and embryo and their possible effects on embryogenesis.

  13. Dynamic Network-Based Relevance Score Reveals Essential Proteins and Functional Modules in Directed Differentiation

    PubMed Central

    Wu, Chia-Chou; Lin, Che

    2015-01-01

    The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies. Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed. The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies. PMID:25977693

  14. Tonic Inhibition of Accumbal Spiny Neurons by Extrasynaptic α4βδ GABAA Receptors Modulates the Actions of Psychostimulants

    PubMed Central

    Maguire, Edward P.; Macpherson, Tom; Swinny, Jerome D.; Dixon, Claire I.; Herd, Murray B.; Belelli, Delia; Stephens, David N.

    2014-01-01

    Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, β, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ−/− or α4−/− mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4−/− mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4D1−/−) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4−/− or α4D1−/− mice, blocked cocaine enhancement of CPP. In comparison, α4D2−/− mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4βδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors. PMID:24431441

  15. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition.

    PubMed

    Wang, Yanping; Sparwasser, Tim; Figlin, Robert; Kim, Hyung L

    2014-04-15

    Inhibition of mTOR signaling enhances antitumor memory lymphocytes. However, pharmacologic mTOR inhibition also enhances regulatory T-cell (Treg) activity. To counter this effect, Treg control was added to mTOR inhibition in preclinical models. Tregs were controlled with CD4-depleting antibodies because CD4 depletion has high translational potential and already has a well-established safety profile in patients. The antitumor activity of the combination therapy was CD8 dependent and controlled growth of syngeneic tumors even when an adoptive immunotherapy was not used. Lymphocytes resulting from the combination therapy could be transferred into naïve mice to inhibit aggressive growth of lung metastases. The combination therapy enhanced CD8 memory formation as determined by memory markers and functional studies of immune recall. Removal of FoxP3-expressing T lymphocytes was the mechanism underlying immunologic memory formation following CD4 depletion. This was confirmed using transgenic DEREG (depletion of regulatory T cells) mice to specifically remove Foxp3(+) T cells. It was further confirmed with reciprocal studies where stimulation of immunologic memory because of CD4 depletion was completely neutralized by adoptively transferring tumor-specific Foxp3(+) T cells. Also contributing to tumor control, Tregs that eventually recovered following CD4 depletion were less immunosuppressive. These results provide a rationale for further study of mTOR inhibition and CD4 depletion in patients.

  16. Gliotoxin potentiates osteoblast differentiation by inhibiting nuclear factor-κB signaling

    PubMed Central

    WANG, GUANGYE; ZHANG, XIAOHAI; YU, BAOQING; REN, KE

    2015-01-01

    The differentiation of pluripotent mesenchymal stem cells to mature osteoblasts is crucial for the maintenance of the adult skeleton. In rheumatic arthritis, osteoblast differentiation is impaired by the overproduction of cytokine tumor necrosis factor (TNF)-α. It has been demonstrated that TNF-α is able to inhibit osteoblast differentiation through the activation of nuclear factor (NF)-κB signaling. As a result of the critical role of TNF-α and NF-κB in the pathogenesis of bone-loss associated diseases, these factors are regarded as key targets for the development of therapeutic agents. In the current study, the role of the NF-κB inhibitor gliotoxin (GTX) in the regulation of osteoblast differentiation was evaluated. The non-toxic GTX doses were determined to be ≤3 μg/ml. It was revealed that GTX was able to block TNF-α-induced inhibition of osteoblast differentiation, as indicated by alkaline phosphatase (ALP) activity and ALP staining assays, as well as the expression levels of osteoblast-associated genes Col I, Ocn, Bsp, Runx2, Osx and ATF4. Additionally, it was identified that gliotoxin directly promoted bone morphoge-netic protein-2-induced osteoblast differentiation. GTX was found to inhibit the accumulation of NF-κB protein p65 in the nucleus and reduce NF-κB transcriptional activity, suggesting that GTX potentiated osteoblast differentiation via the suppression of NF-κB signaling. PMID:25816130

  17. Multiple Differential Networks Strategy Reveals Carboplatin and Melphalan-Induced Dynamic Module Changes in Retinoblastoma.

    PubMed

    Chen, Cui; Ma, Feng-Wei; Du, Cui-Yun; Wang, Ping

    2016-01-01

    BACKGROUND Retinoblastoma (RB) is the most common malignant tumor of the eye in childhood. The objective of this paper was to investigate carboplatin (CAR)- and melphalan (MEL)-induced dynamic module changes in RB based on multiple (M) differential networks, and to generate systems-level insights into RB progression. MATERIAL AND METHODS To achieve this goal, we constructed M-differential co-expression networks (DCNs), assigned a weight to each edge, and identified seed genes in M DCNs by ranking genes based on their topological features. Starting with seed genes, a module search was performed to explore candidate modules in CAR and MEL condition. M-DMs were detected according to significance evaluations of M-modules, which originated from refinement of candidate modules. Further, we revealed dynamic changes in M-DM activity and connectivity on the basis of significance of Module Connectivity Dynamic Score (MCDS). RESULTS In the present study, M=2, a total of 21 seed genes were obtained. By assessing module search, refinement, and evaluation, we gained 18 2-DMs. Moreover, 3 significant 2-DMs (Module 1, Module 2, and Module 3) with dynamic changes across CAR and MEL condition were determined, and we denoted them as dynamic modules. Module 1 had 27 nodes of which 6 were seed genes and 56 edges. Module 2 was composed of 28 nodes and 54 edges. A total of 28 nodes interacted with 45 edges presented in Module 3. CONCLUSIONS We have identified 3 dynamic modules with changes induced by CAR and MEL in RB, which might give insights in revealing molecular mechanism for RB therapy. PMID:27144687

  18. A novel EID family member, EID-3, inhibits differentiation and forms a homodimer or heterodimer with EID-2

    SciTech Connect

    Sasajima, Yuka; Tanaka, Hiroyuki; Miyake, Satoshi; Yuasa, Yasuhito . E-mail: yuasa.monc@tmd.ac.jp

    2005-08-05

    The EID family members, i.e., E1A-like inhibitor of differentiation-1 (EID-1) and EID-1-like inhibitor of differentiation-2 (EID-2), were identified as negative regulators of cellular differentiation. EID-1 seems to inhibit differentiation by blocking histone acetyltransferase activity and EID-2 possibly inhibits differentiation through binding to class I histone deacetylases (HDACs). Here, we report a novel inhibitor of differentiation exhibiting homology with EID-2 termed EID-3 (EID-2-like inhibitor of differentiation-3). Like EID-2, EID-3 inhibited MyoD- and GR{alpha}-dependent transcription and blocked muscle differentiation in cultured cells by binding to class I HDACs. Unlike that of EID-2, the C-terminus, but not the N-terminus, of EID-3 was required for nuclear localization. EID-3 formed a homodimer or heterodimer with EID-2. These results suggest that EID-3 inhibits differentiation by blocking transcription as a complex in cells.

  19. Diminished appetitive startle modulation following targeted inhibition of prefrontal cortex.

    PubMed

    Hurlemann, René; Arndt, Stephan; Schlaepfer, Thomas E; Reul, Juergen; Maier, Wolfgang; Scheele, Dirk

    2015-01-01

    From an evolutionary perspective the startle eye-blink response forms an integral part of the human avoidance behavioral repertoire and is typically diminished by pleasant emotional states. In major depressive disorder (MDD) appetitive motivation is impaired, evident in a reduced interference of positive emotion with the startle response. Given the pivotal role of frontostriatal neurocircuitry in orchestrating appetitive motivation, we hypothesized that inhibitory transcranial magnetic stimulation (TMS) would reduce appetitive neuromodulation in a manner similar to MDD. Based on a pre-TMS functional MRI (fMRI) experiment we selected the left dorsolateral and dorsomedial prefrontal cortices as target regions for subsequent sham-controlled inhibitory theta-burst TMS (TBS) in 40 healthy male volunteers. Consistent with our hypothesis, between-group comparisons revealed a TBS-induced inhibition of appetitive neuromodulation, manifest in a diminished startle response suppression by hedonic stimuli. Collectively, our results suggest that functional integrity of left dorsolateral and dorsomedial prefrontal cortex is critical for mediating a pleasure-induced down-regulation of avoidance responses which may protect the brain from a depressogenic preponderance of defensive stress. PMID:25752944

  20. Notch pathway activation contributes to inhibition of C2C12 myoblast differentiation by ethanol.

    PubMed

    Arya, Michelle A; Tai, Albert K; Wooten, Eric C; Parkin, Christopher D; Kudryavtseva, Elena; Huggins, Gordon S

    2013-01-01

    The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.

  1. Cue and Target Processing Modulate the Onset of Inhibition of Return

    ERIC Educational Resources Information Center

    Gabay, Shai; Chica, Ana B.; Charras, Pom; Funes, Maria J.; Henik, Avishai

    2012-01-01

    Inhibition of return (IOR) is modulated by task set and appears later in discrimination tasks than in detection tasks. Several hypotheses have been suggested to account for this difference. We tested three of these hypotheses in two experiments by examining the influence of cue and target level of processing on the onset of IOR. In the first…

  2. Hormonal induction and antihormonal inhibition of tracheary element differentiation in Zinnia cell cultures

    NASA Technical Reports Server (NTRS)

    Church, D. L.; Galston, A. W.

    1988-01-01

    Mechanically isolated mesophyll cells of Zinnia elegans L. cv Envy differentiate to tracheary elements when cultured in inductive medium containing sufficient auxin and cytokinin. Tracheary element differentiation was induced by the three auxins (alpha-naphthaleneacetic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid) and four cytokinins (6-benzyladenine, kinetin, 2-isopentenyladenine and zeatin) tested. Tracheary element formation is inhibited or delayed if the inductive medium is supplemented with an anticytokinin, antiauxin, or inhibitor of auxin transport.

  3. Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation

    PubMed Central

    2013-01-01

    Background We previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function. Methods The effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 105 B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured. Results The growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased. Conclusion LF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma. PMID:24314291

  4. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    PubMed

    Prinz, Robert D; Willis, Catherine M; van Kuppevelt, Toin H; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  5. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    SciTech Connect

    Walsh, Erica M.; Niu, MengMeng; Bergholz, Johann; Jim Xiao, Zhi-Xiong

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  6. Quantitative Identification of Compound‐Dependent On‐Modules and Differential Allosteric Modules From Homologous Ischemic Networks

    PubMed Central

    Li, B; Liu, J; Zhang, YY; Wang, PQ; Yu, YN; Kang, RX; Wu, HL; Zhang, XX; Wang, YY

    2016-01-01

    Module‐based methods have made much progress in deconstructing biological networks. However, it is a great challenge to quantitatively compare the topological structural variations of modules (allosteric modules [AMs]) under different situations. A total of 23, 42, and 15 coexpression modules were identified in baicalin (BA), jasminoidin (JA), and ursodeoxycholic acid (UA) in a global anti‐ischemic mice network, respectively. Then, we integrated the methods of module‐based consensus ratio (MCR) and modified Zsummary module statistic to validate 12 BA, 22 JA, and 8 UA on‐modules based on comparing with vehicle. The MCRs for pairwise comparisons were 1.55% (BA vs. JA), 1.45% (BA vs. UA), and 1.27% (JA vs. UA), respectively. Five conserved allosteric modules (CAMs) and 17 unique allosteric modules (UAMs) were identified among these groups. In conclusion, module‐centric analysis may provide us a unique approach to understand multiple pharmacological mechanisms associated with differential phenotypes in the era of modular pharmacology. PMID:27758049

  7. Carcinoembryonic Antigen Cell Adhesion Molecule 1 long isoform modulates malignancy of poorly differentiated colon cancer cells

    PubMed Central

    Arabzadeh, Azadeh; Dupaul-Chicoine, Jeremy; Breton, Valérie; Haftchenary, Sina; Yumeen, Sara; Turbide, Claire; Saleh, Maya; McGregor, Kevin; Greenwood, Celia M T; Akavia, Uri David; Blumberg, Richard S; Gunning, Patrick T; Beauchemin, Nicole

    2015-01-01

    Objective Nearly 20%–29% of patients with colorectal cancer (CRC) succumb to liver or lung metastasis and there is a dire need for novel targets to improve the survival of patients with metastasis. The long isoform of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1-L or CC1-L) is a key regulator of immune surveillance in primary CRC, but its role in metastasis remains largely unexplored. We have examined how CC1-L expression impacts on colon cancer liver metastasis. Design Murine MC38 transfected with CC1-L were evaluated in vitro for proliferation, migration and invasion, and for in vivo experimental liver metastasis. Using shRNA silencing or pharmacological inhibition, we delineated the role in liver metastasis of Chemokine (C-C motif) Ligand 2 (CCL2) and Signal Transducer and Activator of Transcription 3 (STAT3) downstream of CC1-L. We further assessed the clinical relevance of these findings in a cohort of patients with CRC. Results MC38-CC1-L-expressing cells exhibited significantly reduced in vivo liver metastasis and displayed decreased CCL2 chemokine secretion and reduced STAT3 activity. Down-modulation of CCL2 expression and pharmacological inhibition of STAT3 activity in MC38 cells led to reduced cell invasion capacity and decreased liver metastasis. The clinical relevance of our findings is illustrated by the fact that high CC1 expression in patients with CRC combined with some inflammation-regulated and STAT3-regulated genes correlate with improved 10-year survival. Conclusions CC1-L regulates inflammation and STAT3 signalling and contributes to the maintenance of a less-invasive CRC metastatic phenotype of poorly differentiated carcinomas. PMID:25666195

  8. Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease

    PubMed Central

    Ye, Zheng; Altena, Ellemarije; Nombela, Cristina; Housden, Charlotte R.; Maxwell, Helen; Rittman, Timothy; Huddleston, Chelan; Rae, Charlotte L.; Regenthal, Ralf; Sahakian, Barbara J.; Barker, Roger A.; Robbins, Trevor W.

    2014-01-01

    Impulsivity is common in Parkinson’s disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic ‘overdose’ and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson’s disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson’s disease (46–76 years old, 11 male, Hoehn and Yahr stage 1.5–3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54–74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson’s disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson’s Disease Rating Scale

  9. Leydig cells contribute to the inhibition of spermatogonial differentiation after irradiation of the rat.

    PubMed

    Shetty, G; Zhou, W; Weng, C C Y; Shao, S H; Meistrich, M L

    2016-05-01

    Irradiation with 6 Gy produces a complete block of spermatogonial differentiation in LBNF1 rats that would be permanent without treatment. Subsequent suppression of gonadotropins and testosterone (T) restores differentiation to the spermatocyte stage; however, this process requires 6 weeks. We evaluated the role of Leydig cells (LCs) in maintenance of the block in spermatogonial differentiation after exposure to radiation by specifically eliminating functional LCs with ethane dimethane sulfonate (EDS). EDS (but not another alkylating agent), given at 10 weeks after irradiation, induced spermatogonial differentiation in 24% of seminiferous tubules 2 weeks later. However, differentiation became blocked again at 4 weeks as LCs recovered. When EDS was followed by treatment with GnRH antagonist and flutamide, sustained spermatogonial differentiation was induced in >70% of tubules within 2 weeks. When EDS was followed by GnRH antagonist plus exogenous T, which also inhibits LC recovery but restores follicle stimulating hormone (FSH) levels, the spermatogonial differentiation was again rapid but transient. These results confirm that the factors that block spermatogonial differentiation are indirectly regulated by T, and probably FSH, and that adult and possibly immature LCs contribute to the production of such inhibitory factors. We tested whether insulin-like 3 (INSL3), a LC-produced protein whose expression correlated with the block in spermatogonial differentiation, was indeed responsible for the block by injecting synthetic INSL3 into the testes and knocking down its expression in vivo with siRNA. Neither treatment had any effect on spermatogonial differentiation. The Leydig cell products that contribute to the inhibition of spermatogonial differentiation in irradiated rats remain to be elucidated. PMID:26991593

  10. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages.

    PubMed

    Zhang, Haijun; Lamon, Brian D; Moran, George; Sun, Tao; Gotto, Antonio M; Hajjar, David P

    2016-01-01

    There is emerging evidence identifying microRNAs (miRNAs) as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1) in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30%) by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122) and down-regulated (107) in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin). Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs. PMID:27415822

  11. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages

    PubMed Central

    Moran, George; Sun, Tao; Gotto, Antonio M.; Hajjar, David P.

    2016-01-01

    There is emerging evidence identifying microRNAs (miRNAs) as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1) in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30%) by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122) and down-regulated (107) in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin). Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs. PMID:27415822

  12. Effect of mitochondrial fission inhibition on C2C12 differentiation.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The differentiation of skeletal muscle is commonly examined in cell culture using the C2C12 line of mouse skeletal myoblasts. This process shares many similarities with that which occurs during embryonic development, such as the transient activation of caspases. Here, we examined the effect of inhibiting mitochondrial fission, using mdivi-1, on the ability of C2C12 cells to terminally differentiate. This was performed using immunofluorescent identification of cell morphology and myosin expression, as well as immunoblotting for markers of muscle differentiation. Furthermore, the effect of mdivi-1 administration on activation of caspase-2 and -3 was assessed using spectrofluorometric measurement of specific enzyme activity. PMID:27054170

  13. Inhibition of the differentiation of human myeloid cell lines by redox changes induced through glutathione depletion.

    PubMed Central

    Esposito, F; Agosti, V; Morrone, G; Morra, F; Cuomo, C; Russo, T; Venuta, S; Cimino, F

    1994-01-01

    We have investigated the effect of redox changes in vivo on the differentiation of two human myeloid cell lines, HL-60 and KG-1. The glutathione-depleting agent diethyl maleate (DEM) prevented the development of differentiated features in response to phorbol esters, including adherence of the cells to plastic surfaces and repression of the myeloperoxidase and CD34 genes. Moreover, DEM abolished phorbol 12-myristate 13-acetate-induced activation of the transcription factors AP-1 and Egr-1, suggesting that inhibition of differentiation may be due, at least in part, to redox modifications of these proteins. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7519845

  14. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    SciTech Connect

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V. . E-mail: reddysv@musc.edu

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-{kappa}B ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity

  15. Fibronectin Expression Modulates Mammary Epithelial Cell Proliferation during Acinar Differentiation

    PubMed Central

    Williams, Courtney M.; Engler, Adam J.; Slone, R. Daniel; Galante, Leontine L.; Schwarzbauer, Jean E.

    2009-01-01

    The mammary gland consists of a polarized epithelium surrounded by a basement membrane matrix that forms a series of branching ducts ending in hollow, sphere-like acini. Essential roles for the epithelial basement membrane during acinar differentiation, in particular laminin and its integrin receptors, have been identified using mammary epithelial cells cultured on a reconstituted basement membrane. Contributions from fibronectin, which is abundant in the mammary gland during development and tumorigenesis, have not been fully examined. Here, we show that fibronectin expression by mammary epithelial cells is dynamically regulated during the morphogenic process. Experiments with synthetic polyacrylamide gel substrates implicate both specific extracellular matrix components, including fibronectin itself, and matrix rigidity in this regulation. Alterations in fibronectin levels perturbed acinar organization. During acinar development, increased fibronectin levels resulted in overproliferation of mammary epithelial cells and increased acinar size. Addition of fibronectin to differentiated acini stimulated proliferation and reversed growth arrest of mammary epithelial cells negatively affecting maintenance of proper acinar morphology. These results show that expression of fibronectin creates a permissive environment for cell growth that antagonizes the differentiation signals from the basement membrane. These effects suggest a link between fibronectin expression and epithelial cell growth during development and oncogenesis in the mammary gland. PMID:18451144

  16. The Impact of Mitochondrial Complex Inhibition on mESC Differentiation

    EPA Science Inventory

    The Impact of Mitochondrial Complex Inhibition on mESC Differentiation JE Royland, SH Warren, S Jeffay, MR Hoopes, HP Nichols, ES Hunter U.S. Environmental Protection Agency, Integrated Systems Toxicology Division, Research Triangle Park, NC The importance of mitochondrial funct...

  17. Differential Effects of Social and Non-Social Reward on Response Inhibition in Children and Adolescents

    ERIC Educational Resources Information Center

    Kohls, Gregor; Peltzer, Judith; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2009-01-01

    An important issue in the field of clinical and developmental psychopathology is whether cognitive control processes, such as response inhibition, can be specifically enhanced by motivation. To determine whether non-social (i.e. monetary) and social (i.e. positive facial expressions) rewards are able to differentially improve response inhibition…

  18. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    SciTech Connect

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-07-18

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPAR{gamma} expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest.

  19. VANADL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS. Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and ORD, US EPA, Chapel Hill, North Carolina
    V...

  20. VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS.

    Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and NHEERL, US EPA, Chapel Hill, North Ca...

  1. Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling.

    PubMed

    Saxena, Monika; Prashar, Paritosh; Yadav, Prem Swaroop; Sen, Jonaki

    2016-01-01

    Bone marrow stromal cells (BMSCs) are a source of autologous stem cells that have the potential for undergoing differentiation into multiple cell types including neurons. Although the neuronal differentiation of mesenchymal stem cells has been studied for a long time, the molecular players involved are still not defined. Here we report that the genetic deletion of two members of the bone morphogenetic protein (Bmp) family, Bmp2 and Bmp4 in mouse BMSCs causes their differentiation into cells with neuron-like morphology. Surprisingly these cells expressed certain markers characteristic of both neuronal and glial cells. Based on this observation, we inhibited BMP signaling in mouse BMSCs through a brief exposure to Noggin protein which also led to their differentiation into cells expressing both neuronal and glial markers. Such cells seem to have the potential for further differentiation into subtypes of neuronal and glial cells and thus could be utilized for cell-based therapeutic applications.

  2. Glyphosate Inhibits PPAR Gamma Induction and Differentiation of Preadipocytes and is able to Induce Oxidative Stress.

    PubMed

    Martini, Claudia N; Gabrielli, Matías; Brandani, Javier N; Vila, María Del C

    2016-08-01

    Glyphosate-based herbicides (GF) are extensively used for weed control. Thus, it is important to investigate their putative toxic effects. We have reported that GF at subagriculture concentrations inhibits proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts. In this investigation, we evaluated the effect of GF on genes upregulated during adipogenesis. GF was able to inhibit the induction of PPAR gamma, the master gene in adipogenesis but not C/EBP beta, which precedes PPAR gamma activation. GF also inhibited differentiation and proliferation of another model of preadipocyte: mouse embryonic fibroblasts. In exponentially growing 3T3-L1 cells, GF increased lipid peroxidation and the activity of the antioxidant enzyme, superoxide dismutase. We also found that proliferation was inhibited with lower concentrations of GF when time of exposure was extended. Thus, GF was able to inhibit proliferation and differentiation of preadipocytes and to induce oxidative stress, which is indicative of its ability to alter cellular physiology. PMID:27044015

  3. Cadmium inhibits neurite outgrowth in differentiating human SH-SY5Y neuroblastoma cells.

    PubMed

    Pak, Eun Joo; Son, Gi Dong; Yoo, Byung Sun

    2014-01-01

    Cadmium, a highly ubiquitous heavy metal, is well known to induce neurotoxicity. However, the underlying mechanism of cadmium-mediated neurotoxicity remains unclear. We have studied cadmium inhibition of neurite outgrowth using human SH-SY5Y neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Cadmium, at a concentration of 3 μmol/L, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells 48 hours after cadmium treatment (1-3 μmol/L cadmium) was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 1 to 3 μmol/L cadmium resulted in decreased level of cross-reactivities with 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The reactive oxygen species (ROS) scavenger, NAC (N-acetyl-l-cysteine), recovered the expression of GAP-43 in cadmium-treated cells. The results indicate that cadmium is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells and that this effect might result from ROS generation by cadmium.

  4. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  5. Demethoxycurcumin modulates human P-glycoprotein function via uncompetitive inhibition of ATPase hydrolysis activity.

    PubMed

    Teng, Yu-Ning; Hsieh, Yow-Wen; Hung, Chin-Chuan; Lin, Hui-Yi

    2015-01-28

    Curcuminoids are major components of Curcuma longa L., which is widely used as spice in food. This study aimed at identifying whether curcumin, demethoxycurcumin, and bisdemethoxycurcumin could modulate efflux function of human P-glycoprotein and be used as chemosensitizers in cancer treatments. Without altering P-glycoprotein expression levels and conformation, the purified curcuminoids significantly inhibited P-glycoprotein efflux function. In rhodamine 123 efflux and calcein-AM accumulation assays, demethoxycurcumin demonstrated the highest inhibition potency (inhibitory IC50 = 1.56 ± 0.13 μM) among the purified curcuminoids, as well as in the fold of reversal assays. Demethoxycurcumin inhibited P-glycoprotein-mediated ATP hydrolysis under concentrations of <1 μM and efficiently inhibited 200 μM verapamil-stimulated ATPase activity, indicating a high affinity of demethoxycurcumin for P-glycoprotein. These results suggested that demethoxycurcumin may be a potential additive natural product in combination with chemotherapeutic agents in drug-resistant cancers.

  6. Dual Effects of Liquiritigenin on the Proliferation of Bone Cells: Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Differentiation.

    PubMed

    Uchino, Kaho; Okamoto, Kuniaki; Sakai, Eiko; Yoneshima, Erika; Iwatake, Mayumi; Fukuma, Yutaka; Nishishita, Kazuhisa; Tsukuba, Takayuki

    2015-11-01

    Bone is constantly controlled by a balance between osteoblastic bone formation and osteoclastic bone resorption. Liquiritigenin is a plant-derived flavonoid and has various pharmacological effects, such as antioxidative, antitumor, and antiinflammatory effects. Here, we show that liquiritigenin has dual effects on the proliferation of bone cells, regarding the promotion of osteoblast differentiation and the inhibition of osteoclast differentiation. Liquiritigenin-treated murine osteoblastic MC3T3-E1 cells showed an increased alkaline phosphatase activity and enhanced phosphorylation of Smad1/5 compared with untreated cells. Moreover, liquiritigenin inhibited osteoclast differentiation, its bone-resorption activity through slightly decreased the phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and inhibitor of nuclear factor kappa Bα; however, the phosphorylation of Akt and p38 slightly increased in bone marrow-derived osteoclasts. The expression levels of the osteoclast marker proteins nuclear factor of activated T-cell cytoplasmic-1, Src, and cathepsin K diminished. These results suggest that liquiritigenin may be useful as a therapeutic and/or preventive agent for osteoporosis or inflammatory bone diseases.

  7. Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation.

    PubMed

    Liu, Y H; Huang, D; Li, Z J; Li, X H; Wang, X; Yang, H P; Tian, S P; Mao, Y; Liu, M F; Wang, Y F; Wu6, Y; Han7, X F

    2016-01-01

    Bone fractures or bones subjected to open conduction and internal fixation are easily infected by bacteria; bacterial lipopolysaccharide (LPS) has been recognized as an important pathogenic factor affecting bone fracture healing. Therefore, the effect of LPS on bone metabolism is relevant for bone healing. In this study, we investigated the effect of LPS on the expression of Toll-like receptor (TLR)-4 (an LPS receptor) by using real-time quantitative PCR and western blotting. We also examined the regulatory role of LPS in osteoblast differentiation by measuring the ALP activity, matrix mineralization, and ALP, OCN, and Runx2 mRNA (essential factors affecting osteoblast differentiation) expression in LPS-treated mouse osteoblast MC3T3-E1 cells. We also evaluated the effect of TLR-4 on LPS-mediated inhibition of osteoblast differentiation using RNA interference. LPS promotes TLR-4 mRNA and protein expression in MC3T3-E1 cells (P < 0.05, P < 0.01 or P < 0.001), and inhibits osteoblast differentiation by downregulating matrix mineralization and ALP activity (P < 0.05, P < 0.01 or P < 0.001), and suppressing the expression ALP, OCN, and Runx2 mRNA in MC3T3-E1 cells (P < 0.05 or P < 0.01). Conversely, RNAi-mediated TLR-4 knockdown abrogates the LPS-mediated inhibition of osteoblast differentiation (P < 0.05 or P < 0.01). In summary, LPS was shown to inhibit osteoblast differentiation by suppressing the expression of ALP, OCN, and Runx2 in a TLR-4-dependent manner. The results of this study may provide insights into the signal pathway of LPS-induced bone loss or delayed bone fracture healing. PMID:27173231

  8. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation

    SciTech Connect

    Lee, Hye-Lim; Park, Hyun-Jung; Kwon, Arang; Baek, Kyunghwa; Woo, Kyung Mi; Ryoo, Hyun-Mo; Kim, Gwan-Shik; Baek, Jeong-Hwa

    2014-05-01

    It has been demonstrated that epidermal growth factor (EGF) plays a role in supporting the proliferation of bone marrow stromal cells in bone but inhibits their osteogenic differentiation. However, the mechanism underlying EGF inhibition of osteoblast differentiation remains unclear. Smurf1 is an E3 ubiquitin ligase that targets Smad1/5 and Runx2, which are critical transcription factors for bone morphogenetic protein 2 (BMP2)-induced osteoblast differentiation. In this study, we investigated the effect of EGF on the expression of Smurf1, and the role of Smurf1 in EGF inhibition of osteogenic differentiation using C2C12 cells, a murine myoblast cell line. EGF increased Smurf1 expression, which was blocked by inhibiting the activity of either JNK or ERK. Chromatin immunoprecipitation and Smurf1 promoter assays demonstrated that c-Jun and Runx2 play roles in the EGF induction of Smurf1 transcription. EGF suppressed BMP2-induced expression of osteogenic marker genes, which were rescued by Smurf1 knockdown. EGF downregulated the protein levels of Runx2 and Smad1 in a proteasome-dependent manner. EGF decreased the transcriptional activity of Runx2 and Smurf1, which was partially rescued by Smurf1 silencing. Taken together, these results suggest that EGF increases Smurf1 expression via the activation of JNK and ERK and the subsequent binding of c-Jun and Runx2 to the Smurf1 promoter and that Smurf1 mediates the inhibitory effect of EGF on BMP2-induced osteoblast differentiation. - Highlights: • EGF increases the expression level of Smurf1 in mesenchymal precursor cells. • EGF reduces the protein levels and transcriptional activity of Runx2 and Smad1. • EGF suppresses BMP2-induced osteogenic differentiation, which is rescued by Smurf1 knockdown.

  9. Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism.

    PubMed

    Gambari, Laura; Lisignoli, Gina; Cattini, Luca; Manferdini, Cristina; Facchini, Andrea; Grassi, Francesco

    2014-09-01

    Hydrogen sulfide (H2S), which recently emerged as a potent regulator of tissues and organs, is broadly produced in mammalian cells but whether it can regulate bone cell function is still elusive. The main objective of this study was to establish the role of H2S in the regulation of human osteoclast differentiation and function. Sodium hydrosulfide (NaHS), a common H2S-donor, was administered in vitro to CD11b+ human monocytes, the pool of circulating osteoclasts precursors which are critically involved in osteoclast development and function in bone. NaHS dose-dependently decreased human osteoclast differentiation at concentrations which did not induce toxicity. The inhibition of human osteoclast differentiation was associated with a down-regulation in RANKL-dependent intracellular ROS levels in human pre-osteoclasts cells. Furthermore, NaHS up-regulated NRF2 protein expression, its nuclear translocation, and the transcription of the two key downstream antioxidant genes Peroxiredoxin-1 and NAD(P)H dehydrogenase quinone 1, suggesting that NRF2 activation may inhibit human osteoclast differentiation by activating a sustained antioxidant response in osteoclast progenitors; furthermore, NRF2 activators Sulforaphane and Tert-butylhydroquinone inhibited in vitro human osteoclast differentiation. Moreover, silencing NRF2 in human pre-osteoclasts totally abolished NaHS-mediated inhibition of osteoclastogenesis, suggesting that NRF2 is essential to the inhibitory function of NaHS in osteoclast development. Finally, we found that NaHS also downregulated the RANKL/OPG mRNA ratio in human mesenchymal stem cells, the key osteoclast-supporting cells. Our results suggest that NaHS shows a potential therapeutical role in erosive diseases of bone by regulating both direct and indirect mechanisms controlling the differentiation of circulating osteoclasts precursors.

  10. Neural Differentiation Modulates the Vertebrate Brain Specific Splicing Program

    PubMed Central

    Madgwick, Alicia; Fort, Philippe; Hanson, Peter S.; Thibault, Philippe; Gaudreau, Marie-Claude; Lutfalla, Georges; Möröy, Tarik; Abou Elela, Sherif; Chaudhry, Bill; Elliott, David J.; Morris, Christopher M.; Venables, Julian P.

    2015-01-01

    Alternative splicing patterns are known to vary between tissues but these patterns have been found to be predominantly peculiar to one species or another, implying only a limited function in fundamental neural biology. Here we used high-throughput RT-PCR to monitor the expression pattern of all the annotated simple alternative splicing events (ASEs) in the Reference Sequence Database, in different mouse tissues and identified 93 brain-specific events that shift from one isoform to another (switch-like) between brain and other tissues. Consistent with an important function, regulation of a core set of 9 conserved switch-like ASEs is highly conserved, as they have the same pattern of tissue-specific splicing in all vertebrates tested: human, mouse and zebrafish. Several of these ASEs are embedded within genes that encode proteins associated with the neuronal microtubule network, and show a dramatic and concerted shift within a short time window of human neural stem cell differentiation. Similarly these exons are dynamically regulated in zebrafish development. These data demonstrate that although alternative splicing patterns often vary between species, there is nonetheless a core set of vertebrate brain-specific ASEs that are conserved between species and associated with neural differentiation. PMID:25993117

  11. HIV-1 differentially modulates autophagy in neurons and astrocytes.

    PubMed

    Mehla, Rajeev; Chauhan, Ashok

    2015-08-15

    Autophagy, a lysosomal degradative pathway that maintains cellular homeostasis, has emerged as an innate immune defense against pathogens. The role of autophagy in the deregulated HIV-infected central nervous system (CNS) is unclear. We have found that HIV-1-induced neuro-glial (neurons and astrocytes) damage involves modulation of the autophagy pathway. Neuro-glial stress induced by HIV-1 led to biochemical and morphological dysfunctions. X4 HIV-1 produced neuro-glial toxicity coupled with suppression of autophagy, while R5 HIV-1-induced toxicity was restricted to neurons. Rapamycin, a specific mTOR inhibitor (autophagy inducer) relieved the blockage of the autophagy pathway caused by HIV-1 and resulted in neuro-glial protection. Further understanding of the regulation of autophagy by cytokines and chemokines or other signaling events may lead to recognition of therapeutic targets for neurodegenerative diseases.

  12. Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation.

    PubMed

    Wu, Zhuang; Li, Linlang; Zheng, Long-Tai; Xu, Zhihong; Guo, Lin; Zhen, Xuechu

    2015-09-01

    Recent studies have shown that sigma-1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine), an atypical dopamine receptor-1 agonist, has been recently identified as a potent allosteric modulator of sigma-1 receptor. Here, we investigated the anti-inflammatory effects of SKF83959 in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results indicated that SKF83959 significantly suppressed the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and inhibited the generation of reactive oxygen species. All of these responses were blocked by selective sigma-1 receptor antagonists (BD1047 or BD1063) and by ketoconazole (an inhibitor of enzyme cytochrome c17 to inhibit the synthesis of endogenous dehydroepiandrosterone, DHEA). Additionally, we found that SKF83959 promoted the binding activity of DHEA with sigma-1 receptors, and enhanced the inhibitory effects of DHEA on LPS-induced microglia activation in a synergic manner. Furthermore, in a microglia-conditioned media system, SKF83959 inhibited the cytotoxicity of conditioned medium generated by LPS-activated microglia toward HT-22 neuroblastoma cells. Taken together, our study provides the first evidence that allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. SKF83959 is a potent allosteric modulator of sigma-1 receptor. Our results indicated that SKF83959 enhanced the activity of endogenous dehydroepiandrosterone (DHEA) in a synergic manner, and inhibited the activation of BV2 microglia and the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS).

  13. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation

    SciTech Connect

    Mizuno, Yosuke; Yagi, Ken; Tokuzawa, Yoshimi; Kanesaki-Yatsuka, Yukiko; Suda, Tatsuo; Katagiri, Takenobu; Fukuda, Toru; Maruyama, Masayoshi; Okuda, Akihiko; Amemiya, Tomoyuki; Kondoh, Yasumitsu; Tashiro, Hideo; Okazaki, Yasushi

    2008-04-04

    Although various microRNAs regulate cell differentiation and proliferation, no miRNA has been reported so far to play an important role in the regulation of osteoblast differentiation. Here we describe the role of miR-125b in osteoblastic differentiation in mouse mesenchymal stem cells, ST2, by regulating cell proliferation. The expression of miR-125b was time-dependently increased in ST2 cells, and the increase in miR-125b expression was attenuated in osteoblastic-differentiated ST2 cells induced by BMP-4. The transfection of exogenous miR-125b inhibited proliferation of ST2 cells and caused inhibition of osteoblastic differentiation. In contrast, when the endogenous miR-125b was blocked by transfection of its antisense RNA molecule, alkaline phosphatase activity after BMP-4 treatment was elevated. These results strongly suggest that miR-125b is involved in osteoblastic differentiation through the regulation of cell proliferation.

  14. Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia.

    PubMed

    Sykes, David B; Kfoury, Youmna S; Mercier, François E; Wawer, Mathias J; Law, Jason M; Haynes, Mark K; Lewis, Timothy A; Schajnovitz, Amir; Jain, Esha; Lee, Dongjun; Meyer, Hanna; Pierce, Kerry A; Tolliday, Nicola J; Waller, Anna; Ferrara, Steven J; Eheim, Ashley L; Stoeckigt, Detlef; Maxcy, Katrina L; Cobert, Julien M; Bachand, Jacqueline; Szekely, Brian A; Mukherjee, Siddhartha; Sklar, Larry A; Kotz, Joanne D; Clish, Clary B; Sadreyev, Ruslan I; Clemons, Paul A; Janzer, Andreas; Schreiber, Stuart L; Scadden, David T

    2016-09-22

    While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML. PMID:27641501

  15. Differential effects of GABA in modulating nociceptive vs. non-nociceptive synapses.

    PubMed

    Wang, Y; Summers, T; Peterson, W; Miiller, E; Burrell, B D

    2015-07-01

    to nociceptive stimulation. These findings demonstrate that distinct synaptic inputs within a shared neural circuit can be differentially modulated by GABA in a functionally relevant manner. PMID:25931332

  16. NPM-RAR, not the RAR-NPM reciprocal t(5;17)(q35;q21) acute promyelocytic leukemia fusion protein, inhibits myeloid differentiation.

    PubMed

    Pollock, Sheri L; Rush, Elizabeth A; Redner, Robert L

    2014-06-01

    The t(5;17) variant of acute promyelocytic leukemia (APL) fuses the nucleophosmin (NPM) gene at 5q35 with the retinoic acid receptor alpha (RARA) at 17q12-22. We have previously shown that leukemic cells express both NPM-RAR and RAR- NPM reciprocal translocation products. In this study we investigated the potential role of both proteins in modulating myeloid differentiation. Expression of NPM-RAR inhibited vitamin D3/transforming growth factor β (TGFβ)-mediated differentiation of U937 cells by more than 50%. In contrast, RAR-NPM expression did not alter vitamin D3/TGFβ-induced differentiation of U937 clones. These results indicate that NPM-RAR, not RAR-NPM, is the prime mediator of myeloid differentiation arrest in t(5;17) APL.

  17. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    SciTech Connect

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.; Zhang, J.; Oreffo, R.O.C. . E-mail: roco@soton.ac.uk

    2006-06-10

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negative siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.

  18. Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage.

    PubMed

    Hofstetter, Christine; Kampka, Justyna M; Huppertz, Sascha; Weber, Heike; Schlosser, Andreas; Müller, Albrecht M; Becker, Matthias

    2016-02-15

    Pluripotent embryonic stem cells (ESCs) are characterised by their capacity to self-renew indefinitely while maintaining the potential to differentiate into all cell types of an adult organism. Both the undifferentiated and differentiated states are defined by specific gene expression programs that are regulated at the chromatin level. Here, we have analysed the contribution of the H3K27me2- and H3K27me23-specific demethylases KDM6A and KDM6B to murine ESC differentiation by employing the GSK-J4 inhibitor, which is specific for KDM6 proteins, and by targeted gene knockout (KO) and knockdown. We observe that inhibition of the H3K27 demethylase activity induces DNA damage along with activation of the DNA damage response (DDR) and cell death in differentiating but not in undifferentiated ESCs. Laser microirradiation experiments revealed that the H3K27me3 mark, but not the KDM6B protein, colocalise with γH2AX-positive sites of DNA damage in differentiating ESCs. Lack of H3K27me3 attenuates the GSK-J4-induced DDR in differentiating Eed-KO ESCs. Collectively, our findings indicate that differentiating ESCs depend on KDM6 and that the H3K27me3 demethylase activity is crucially involved in DDR and survival of differentiating ESCs. PMID:26759175

  19. Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage.

    PubMed

    Hofstetter, Christine; Kampka, Justyna M; Huppertz, Sascha; Weber, Heike; Schlosser, Andreas; Müller, Albrecht M; Becker, Matthias

    2016-02-15

    Pluripotent embryonic stem cells (ESCs) are characterised by their capacity to self-renew indefinitely while maintaining the potential to differentiate into all cell types of an adult organism. Both the undifferentiated and differentiated states are defined by specific gene expression programs that are regulated at the chromatin level. Here, we have analysed the contribution of the H3K27me2- and H3K27me23-specific demethylases KDM6A and KDM6B to murine ESC differentiation by employing the GSK-J4 inhibitor, which is specific for KDM6 proteins, and by targeted gene knockout (KO) and knockdown. We observe that inhibition of the H3K27 demethylase activity induces DNA damage along with activation of the DNA damage response (DDR) and cell death in differentiating but not in undifferentiated ESCs. Laser microirradiation experiments revealed that the H3K27me3 mark, but not the KDM6B protein, colocalise with γH2AX-positive sites of DNA damage in differentiating ESCs. Lack of H3K27me3 attenuates the GSK-J4-induced DDR in differentiating Eed-KO ESCs. Collectively, our findings indicate that differentiating ESCs depend on KDM6 and that the H3K27me3 demethylase activity is crucially involved in DDR and survival of differentiating ESCs.

  20. In vitro modulation of oncogenesis and differentiation by retinoids and tumor promoters

    SciTech Connect

    Borek, C.; Miller, R.C.; Geard, C.R.; Guernsey, D.L.; Smith, J.E.

    1982-01-01

    In recent years it has become increasingly evident that there exists an antagonism between retinoids and tumor promoters in their effect on differentiation and in their influence on normal and neoplastic cells. In this chapter, this antagonism is shown in two systems: (a) The ability of retinoids to inhibit, in rodent fibroblasts, radiation-induced transformation and its promotion by TPA; and (b) The effectiveness of retinoids in antagonizing the inhibitory effect of TPA on differentiation in rat liver epithelial cells. TPA inhibits the production of Vitamin A (retinol) binding proteins (RBP) and Vitamin A can overcome this inhibitory effect. 12 references, 2 figures, 2 tables.

  1. Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes

    PubMed Central

    Ziabreva, Iryna; Campbell, Graham; Rist, Julia; Zambonin, Jessica; Rorbach, Joanna; Wydro, Mateusz M; Lassmann, Hans; Franklin, Robin J M; Mahad, Don

    2010-01-01

    Oligodendrocyte lineage cells are susceptible to a variety of insults including hypoxia, excitotoxicity, and reactive oxygen species. Demyelination is a well-recognized feature of several CNS disorders including multiple sclerosis, white matter strokes, progressive multifocal leukoencephalopathy, and disorders due to mitochondrial DNA mutations. Although mitochondria have been implicated in the demise of oligodendrocyte lineage cells, the consequences of mitochondrial respiratory chain defects have not been examined. We determine the in vitro impact of established inhibitors of mitochondrial respiratory chain complex IV or cytochrome c oxidase on oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes as well as on differentiation capacity of OPCs from P0 rat. Injury to mature oligodendrocytes following complex IV inhibition was significantly greater than to OPCs, judged by cell detachment and mitochondrial membrane potential (MMP) changes, although viability of cells that remained attached was not compromised. Active mitochondria were abundant in processes of differentiated oligodendrocytes and MMP was significantly greater in differentiated oligodendrocytes than OPCs. MMP dissipated following complex IV inhibition in oligodendrocytes. Furthermore, complex IV inhibition impaired process formation within oligodendrocyte lineage cells. Injury to and impaired process formation of oligodendrocytes following complex IV inhibition has potentially important implications for the pathogenesis and repair of CNS myelin disorders. © 2010 Wiley-Liss, Inc. PMID:20665559

  2. NEU3 Sialidase Strictly Modulates GM3 Levels in Skeletal Myoblasts C2C12 Thus Favoring Their Differentiation and Protecting Them from Apoptosis*S⃞

    PubMed Central

    Anastasia, Luigi; Papini, Nadia; Colazzo, Francesca; Palazzolo, Giacomo; Tringali, Cristina; Dileo, Loredana; Piccoli, Marco; Conforti, Erika; Sitzia, Clementina; Monti, Eugenio; Sampaolesi, Maurilio; Tettamanti, Guido; Venerando, Bruno

    2008-01-01

    Membrane-bound sialidase NEU3, often referred to as the “ganglioside sialidase,” has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli. PMID:18945680

  3. Epigallocatechin Gallate Inhibits Mouse Mesenchymal Stem Cell Differentiation to Adipogenic Lineage

    PubMed Central

    Chani, Baldeep; Puri, Veena; Chander Sobti, Ranbir; Puri, Sanjeev

    2016-01-01

    Epigallocatechin gallate (EGCG) is a major component of green tea polyphenols having a potent anti-oxidant potential. Besides inhibiting the growth of many cancer cell types and inducing proliferation and differentiation in keratinocytes, it has been shown to promote reduction of body fat. The fact that mesenchymal stem cells (MSCs) have ability to self-renew and differentiate into the cells of mesodermal lineages, such as fat and bone, it is, thus, possible that EGCG may directly be involved in affecting fat metabolism through its effect on mesenchymal stem cells. Hence, with this aim, the present study was designed to determine the effect of EGCG on mouse mesenchymal stem cells, C3H10T1/2 cells differentiation into adipocytes. To understand this process, the cells were incubated with varying concentrations of EGCG (1 μM, 5 μM, 10 μM, 50 μM) in the presence and /or absence of adipogenic medium for 9 days. The results demonstrated that, EGCG inhibited the cells proliferation, migration and also prevented their differentiation to adipogenic lineage. These effects were analyzed through the inhibition of wound healing activity, reduction in Oil red O stained cells, together with decrease in the expression of Adipisin gene following EGCG treatment. These observations thus demonstrated anti-adipogenic effect of EGCG with a possibility of its role in the therapeutic intervention of obesity. PMID:27397998

  4. Metabolic Inflammation-Differential Modulation by Dietary Constituents

    PubMed Central

    Lyons, Claire L.; Kennedy, Elaine B.; Roche, Helen M.

    2016-01-01

    Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells undergo both a pro-inflammatory and metabolic switch in their function. Inflammatory mediators, such as TNF-α and IL-1β, are induced by saturated fatty acids and disrupt insulin signaling. Conversely, monounsaturated and polyunsaturated fatty acids do not interrupt metabolism and inflammation to the same extent. AMPK links inflammation, metabolism and T2D, with roles to play in all and is influenced negatively by obesity. Lipid spillover results in hepatic lipotoxicity and steatosis. Also in skeletal muscle, excessive FFA can impede insulin’s action and promote inflammation. Ectopic fat can also affect pancreatic β-cell function, thereby contributing to insulin resistance. Therapeutics, lifestyle changes, supplements and dietary manipulation are all possible avenues to combat metabolic inflammation and the subsequent insulin resistant state which will be explored in the current review. PMID:27128935

  5. Metabolic Inflammation-Differential Modulation by Dietary Constituents.

    PubMed

    Lyons, Claire L; Kennedy, Elaine B; Roche, Helen M

    2016-01-01

    Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells undergo both a pro-inflammatory and metabolic switch in their function. Inflammatory mediators, such as TNF-α and IL-1β, are induced by saturated fatty acids and disrupt insulin signaling. Conversely, monounsaturated and polyunsaturated fatty acids do not interrupt metabolism and inflammation to the same extent. AMPK links inflammation, metabolism and T2D, with roles to play in all and is influenced negatively by obesity. Lipid spillover results in hepatic lipotoxicity and steatosis. Also in skeletal muscle, excessive FFA can impede insulin's action and promote inflammation. Ectopic fat can also affect pancreatic β-cell function, thereby contributing to insulin resistance. Therapeutics, lifestyle changes, supplements and dietary manipulation are all possible avenues to combat metabolic inflammation and the subsequent insulin resistant state which will be explored in the current review. PMID:27128935

  6. Metabolic Inflammation-Differential Modulation by Dietary Constituents.

    PubMed

    Lyons, Claire L; Kennedy, Elaine B; Roche, Helen M

    2016-04-27

    Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells undergo both a pro-inflammatory and metabolic switch in their function. Inflammatory mediators, such as TNF-α and IL-1β, are induced by saturated fatty acids and disrupt insulin signaling. Conversely, monounsaturated and polyunsaturated fatty acids do not interrupt metabolism and inflammation to the same extent. AMPK links inflammation, metabolism and T2D, with roles to play in all and is influenced negatively by obesity. Lipid spillover results in hepatic lipotoxicity and steatosis. Also in skeletal muscle, excessive FFA can impede insulin's action and promote inflammation. Ectopic fat can also affect pancreatic β-cell function, thereby contributing to insulin resistance. Therapeutics, lifestyle changes, supplements and dietary manipulation are all possible avenues to combat metabolic inflammation and the subsequent insulin resistant state which will be explored in the current review.

  7. Suppression of RANKL-induced osteoclast differentiation by cilostazol via SIRT1-induced RANK inhibition.

    PubMed

    Park, So Youn; Lee, Sung Won; Kim, Hye Young; Lee, Sang Yeob; Lee, Won Suk; Hong, Ki Whan; Kim, Chi Dae

    2015-10-01

    Osteoclasts are bone-specific multinucleated cells generated by differentiation of monocyte/macrophage hematopoietic lineages and degrade bone matrix by secretion of lytic enzymes. The regulation of osteoclast differentiation provides a potential strategy for treatment of bone-lytic damage. In this study, cilostazol, an inhibitor of type III phosphodiesterase, inhibited RANKL [receptor activator of nuclear factor kappa B (RANK) ligand]-induced RANK expression in bone marrow-derived monocyte/macrophage precursors (BMMs) and Raw 264.7 cells by inhibiting PU.1 via SIRT1 activation. RANKL-induced RANK expression was attenuated by cilostazol and rSIRT1 in Raw 264.7 cells, and these were blocked by sirtinol. In line with these, cilostazol elevated SIRT1 mRNA and protein levels in 12-24h and increased SIRT1 activity, and these effects were inhibited by sirtinol. Furthermore, the RANKL-induced nuclear expression of PU.1, a transcription factor required for macrophage differentiation, was suppressed by cilostazol. Additionally, marked RANKL-induced RANK immunofluorescence staining in Raw 264.7 cells was attenuated by cilostazol and rSIRT1, and both attenuations were prevented by sirtinol. Extensive RANK staining of knee synovial tissues in a mouse model of collagen-induced arthritis (CIA) was markedly reduced by cilostazol (30mg/kg/day). In line with these results, both RANKL- and M-CSF-induced differentiation of BMMs to multinucleated TRAP(+) giant cells and resorption pit formation were inhibited by cilostazol associated with a decrease in TRAP (a marker enzyme of osteoclasts) activity. In conclusion, cilostazol activates SIRT1, which suppresses the nuclear translocation of PU.1, and thus, inhibits RANKL-stimulated RANK expression and causes anti-osteoclast formation in BMMs in vitro and in their murine model of CIA.

  8. Differential modulation by extracellular ATP of carotid chemosensory responses.

    PubMed

    Spergel, D; Lahiri, S

    1993-06-01

    The possibility that the carotid body has ATP surface receptors that mediate O2 chemoreception was tested. To distinguish between the event(s) initiating chemoreception and those at the neurotransmitter level, we also tested the chemosensory response to nicotine before and after ATP administration. Carotid bodies from cats anesthetized with pentobarbital sodium were perfused and superfused in vitro with modified Tyrode solution (PCO2 < 1 Torr, pH 7.4, 36 degrees C) equilibrated at PO2 > 400 or approximately 150 Torr while chemosensory discharge was recorded extracellularly. ATP and adenosine 5'-[gamma-thio]triphosphate stimulated discharge with similar dose dependence, whereas adenosine had little effect. ATP infusion for > or = 2 min evoked an initial stimulation of discharge followed by a decline to baseline (desensitization). Desensitization did not affect the response to hypoxia (perfusate flow interruption) but inhibited the response to nicotine (4-nmol pulse). Therefore, 1) the carotid body has surface ATP receptors that may mediate the chemosensory response to nicotine but not to hypoxia and 2) nicotinic receptors are not required for carotid body O2 chemoreception. PMID:8366007

  9. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells

    SciTech Connect

    Jang, Min Kyung; Kim, Cho Hee; Seong, Je Kyung; Jung, Myeong Ho

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Overexpression of ATF3 inhibits adipocyte differentiation in 3T3-L1 cells. Black-Right-Pointing-Pointer Overexpression of ATF3 represses C/EBP{alpha} expression. Black-Right-Pointing-Pointer ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Black-Right-Pointing-Pointer ATF3 may play a role in hypoxia-mediated inhibition of adipocyte differentiation. -- Abstract: ATF3 is a stress-adaptive gene that regulates proliferation or apoptosis under stress conditions. However, the role of ATF3 is unknown in adipocyte cells. Therefore, in this study, we investigated the functional role of ATF3 in adipocytes. Both lentivirus-mediated overexpression of ATF3 and stably-overexpressed ATF3 inhibited adipocyte differentiation in 3T3-L1 cells, as revealed by decreased lipid staining with oil red staining and reduction in adipogenic genes. Thapsigargin treatment and overexpression of ATF3 decreased C/EBP{alpha} transcript and repressed the activity of the 3.6-kb mouse C/EBP{alpha} promoter, demonstrating that ATF3 downregulates C/EBP{alpha} expression. Transfection studies using mutant constructs containing 5 Prime -deletions in the C/EBP{alpha} promoter revealed that a putative ATF/CRE element, GGATGTCA, is located between -1921 and -1914. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Both chemical hypoxia-mimetics or physical hypoxia led to reduce the C/EBP{alpha} mRNA and repress the promoter activity of the C/EBP{alpha} gene, whereas increase ATF3 mRNA, suggesting that ATF3 may contribute to the inhibition of adipocyte differentiation in hypoxia through downregulation of C/EBP{alpha} expression. Collectively, these results demonstrate that ATF3 represses the C/EBP{alpha} gene, resulting in inhibition of adipocyte differentiation, and thus plays a role in hypoxia-mediated inhibition

  10. Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans.

    PubMed

    Stawicki, Tamara M; Takayanagi-Kiya, Seika; Zhou, Keming; Jin, Yishi

    2013-05-01

    Neuropeptides play crucial roles in modulating neuronal networks, including changing intrinsic properties of neurons and synaptic efficacy. We previously reported a Caenorhabditis elegans mutant, acr-2(gf), that displays spontaneous convulsions as the result of a gain-of-function mutation in a neuronal nicotinic acetylcholine receptor subunit. The ACR-2 channel is expressed in the cholinergic motor neurons, and acr-2(gf) causes cholinergic overexcitation accompanied by reduced GABAergic inhibition in the locomotor circuit. Here we show that neuropeptides play a homeostatic role that compensates for this excitation-inhibition imbalance in the locomotor circuit. Loss of function in genes required for neuropeptide processing or release of dense core vesicles specifically modulate the convulsion frequency of acr-2(gf). The proprotein convertase EGL-3 is required in the cholinergic motor neurons to restrain convulsions. Electrophysiological recordings of neuromuscular junctions show that loss of egl-3 in acr-2(gf) causes a further reduction of GABAergic inhibition. We identify two neuropeptide encoding genes, flp-1 and flp-18, that together counteract the excitation-inhibition imbalance in acr-2(gf) mutants. We further find that acr-2(gf) causes an increased expression of flp-18 in the ventral cord cholinergic motor neurons and that overexpression of flp-18 reduces the convulsion of acr-2(gf) mutants. The effects of these peptides are in part mediated by two G-protein coupled receptors, NPR-1 and NPR-5. Our data suggest that the chronic overexcitation of the cholinergic motor neurons imposed by acr-2(gf) leads to an increased production of FMRFamide neuropeptides, which act to decrease the activity level of the locomotor circuit, thereby homeostatically modulating the excitation and inhibition imbalance.

  11. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells.

    PubMed

    Kim, Han Bit; Yoo, Byung Sun

    2016-07-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  12. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells.

    PubMed

    Kim, Han Bit; Yoo, Byung Sun

    2016-07-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells.

  13. Cilengitide inhibits proliferation and differentiation of human endothelial progenitor cells in vitro

    SciTech Connect

    Loges, Sonja; Butzal, Martin; Otten, Jasmin; Schweizer, Michaela; Fischer, Uta; Bokemeyer, Carsten; Hossfeld, Dieter K.; Schuch, Gunter; Fiedler, Walter . E-mail: fiedler@uke.uni-hamburg.de

    2007-06-15

    Bone marrow derived hematopoietic stem cells can function as endothelial progenitor cells. They are recruited to malignant tumors and differentiate into endothelial cells. This mechanism of neovascularization termed vasculogenesis is distinct from proliferation of pre-existing vessels. To better understand vasculogenesis we developed a cell culture model with expansion and subsequent endothelial differentiation of human CD133{sup +} progenitor cells in vitro. {alpha}{sub v}{beta}{sub 3}-integrins are expressed by endothelial cells and play a role in the attachment of endothelial cells to the extracellular matrix. We investigated the effect of Cilengitide, a peptide-like, high affinity inhibitor of {alpha}{sub v}{beta}{sub 3}- and {alpha}{sub v}{beta}{sub 5}-integrins in our in vitro system. We could show expression of {alpha}{sub v}{beta}{sub 3}-integrin on 60 {+-} 9% of non-adherent endothelial progenitors and on 91 {+-} 7% of differentiated endothelial cells. {alpha}{sub v}{beta}{sub 3}-integrin was absent on CD133{sup +} hematopoietic stem cells. Cilengitide inhibited proliferation of CD133{sup +} cells in a dose-dependent manner. The development of adherent endothelial cells from expanded CD133{sup +} cells was reduced even stronger by Cilengitide underlining its effect on integrin mediated cell adhesion. Expression of endothelial antigens CD144 and von Willebrand factor on differentiating endothelial precursors was decreased by Cilengitide. In summary, Cilengitide inhibits proliferation and differentiation of human endothelial precursor cells underlining its anti-angiogenic effects.

  14. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Kim, Han Bit; Yoo, Byung Sun

    2016-01-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  15. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function.

    PubMed

    Irwin, R W; Yao, J; To, J; Hamilton, R T; Cadenas, E; Brinton, R D

    2012-01-01

    The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. Both ER selective agonists significantly increased the mitochondrial respiratory control ratio and cytochrome oxidase (COX) activity relative to vehicle. Western blots of purified whole brain mitochondria detected ERα and, to a greater extent, ERβ localisation. Pre-treatment with DPN, an ERβ agonist, significantly increased ERβ association with mitochondria. In the hippocampus, DPN activated mitochondrial DNA-encoded COX I expression, whereas PPT was ineffective, indicating that mechanistically ERβ, and not ERα, activated mitochondrial transcriptional machinery. Both selective ER agonists increased protein expression of nuclear DNA-encoded COX IV, suggesting that activation of ERβ or ERα is sufficient. Selective ER agonists up-regulated a panel of bioenergetic enzymes and antioxidant defence proteins. Up-regulated proteins included pyruvate dehydrogenase, ATP synthase, manganese superoxide dismutase and peroxiredoxin V. In vitro, whole cell metabolism was assessed in live primary cultured hippocampal neurones and mixed glia. The results of analyses conducted in vitro were consistent with data obtained in vivo. Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails

  16. Cutaneous afferent input does not modulate motor intracortical inhibition in ageing men.

    PubMed

    Smith, Ashleigh E; Ridding, Michael C; Higgins, Ryan D; Wittert, Gary A; Pitcher, Julia B

    2011-11-01

    Afferent input has been shown to be a powerful modulator of cortical inhibition. Such modulation is likely to be important for the control of ongoing movement, but may also play a role in facilitating neuroplastic reorganisation. Human motor control and neuroplasticity both decline with ageing, whereas the efficacy of short-interval intracortical inhibition (SICI) appears not to. We examined if ageing alters the efficacy of afferent modulation of SICI. Previously, electrical cutaneous stimulation of a finger has been shown to reduce SICI in the motor cortices of young adults. Paired-pulse transcranial magnetic stimulation was used to assess SICI in the cortical representation of the first dorsal interosseous muscle. SICI was assessed separately under two conditions: with and without prior afferent input from electrical cutaneous stimulation of the index finger. Fifteen 'young' (20.1 ± 2.1 years) and 15 'old' male humans (65.5 ± 3.9 years) were studied. SICI did not differ when young and old males were compared. However, when preceded by electrical cutaneous finger stimulation, SICI was reduced in young men but not old men. Reflex testing indicated preservation of the afferent volley to the cortex. These findings suggest that a contributing factor in the decline of motor function, and possibly neuroplasticity, with ageing is loss of SICI modulation, probably due to altered cortical sensorimotor integration of afferent input.

  17. DIFFERENTIAL MODULATION OF CATECHOLAMINES BY CHLOROTRIAZINE HERBICIDES IN PHEOCHROMOCYTOMA (PC12) CELLS IN VITRO

    EPA Science Inventory

    Differential modulation of catecholamines by chlorotriazine herbicides in pheochromocytoma (PC12) cells in vitro.

    Das PC, McElroy WK, Cooper RL.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill 27599, USA.

    Epidemiological, wildlife, and lab...

  18. GABAergic and glycinergic inhibition modulate monaural auditory response properties in the avian superior olivary nucleus.

    PubMed

    Coleman, W L; Fischl, M J; Weimann, S R; Burger, R M

    2011-05-01

    The superior olivary nucleus (SON) is the primary source of inhibition in the avian auditory brainstem. While much is known about the role of inhibition at the SON's target nuclei, little is known about how the SON itself processes auditory information or how inhibition modulates these properties. Additionally, the synaptic physiology of inhibitory inputs within the SON has not been described. We investigated these questions using in vivo and in vitro electrophysiological techniques in combination with immunohistochemistry in the chicken, an organism for which the auditory brainstem has otherwise been well characterized. We provide a thorough characterization of monaural response properties in the SON and the influence of inhibitory input in shaping these features. We found that the SON contains a heterogeneous mixture of response patterns to acoustic stimulation and that in most neurons these responses are modulated by both GABAergic and glycinergic inhibitory inputs. Interestingly, many SON neurons tuned to low frequencies have robust phase-locking capability and the precision of this phase locking is enhanced by inhibitory inputs. On the synaptic level, we found that evoked and spontaneous inhibitory postsynaptic currents (IPSCs) within the SON are also mediated by both GABAergic and glycinergic inhibition in all neurons tested. Analysis of spontaneous IPSCs suggests that most SON cells receive a mixture of both purely GABAergic terminals, as well as terminals from which GABA and glycine are coreleased. Evidence for glycinergic signaling within the SON is a novel result that has important implications for understanding inhibitory function in the auditory brainstem.

  19. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    PubMed

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  20. Cartilage Oligomeric Matrix Protein Gene Multilayers Inhibit Osteogenic Differentiation and Promote Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Guo, Peng; Shi, Zhong-Li; Liu, An; Lin, Tiao; Bi, Fang-Gang; Shi, Ming-Min; Yan, Shi-Gui

    2014-01-01

    There are still many challenges to acquire the optimal integration of biomedical materials with the surrounding tissues. Gene coatings on the surface of biomaterials may offer an effective approach to solve the problem. In order to investigate the gene multilayers mediated differentiation of mesenchymal stem cells (MSCs), gene functionalized films of hyaluronic acid (HA) and lipid-DNA complex (LDc) encoding cartilage oligomeric matrix protein (COMP) were constructed in this study via the layer-by-layer self-assembly technique. Characterizations of the HA/DNA multilayered films indicated the successful build-up process. Cells could be directly transfected by gene films and a higher expression could be obtained with the increasing bilayer number. The multilayered films were stable for a long period and DNA could be easily released in an enzymatic condition. Real-time polymerase chain reaction (RT-PCR) assay presented significantly higher (p < 0.01) COMP expression of MSCs cultured with HA/COMP multilayered films. Compared with control groups, the osteogenic gene expression levels of MSCs with HA/COMP multilayered films were down-regulated while the chondrogenic gene expression levels were up-regulated. Similarly, the alkaline phosphatase (ALP) staining and Alizarin red S staining of MSCs with HA/COMP films were weakened while the alcian blue staining was enhanced. These results demonstrated that HA/COMP multilayered films could inhibit osteogenic differentiation and promote chondrogenic differentiation of MSCs, which might provide new insight for physiological ligament-bone healing. PMID:25380520

  1. CaMKK2 Suppresses Muscle Regeneration through the Inhibition of Myoblast Proliferation and Differentiation

    PubMed Central

    Ye, Cheng; Zhang, Duo; Zhao, Lei; Li, Yan; Yao, Xiaohan; Wang, Hui; Zhang, Shengjie; Liu, Wei; Cao, Hongchao; Yu, Shuxian; Wang, Yucheng; Jiang, Jingjing; Wang, Hui; Li, Xihua; Ying, Hao

    2016-01-01

    Skeletal muscle has a major role in locomotion and muscle disorders are associated with poor regenerative efficiency. Therefore, a deeper understanding of muscle regeneration is needed to provide a new insight for new therapies. CaMKK2 plays a role in the calcium/calmodulin-dependent kinase cascade; however, its role in skeletal muscle remains unknown. Here, we found that CaMKK2 expression levels were altered under physiological and pathological conditions including postnatal myogensis, freeze or cardiotoxin-induced muscle regeneration, and Duchenne muscular dystrophy. Overexpression of CaMKK2 suppressed C2C12 myoblast proliferation and differentiation, while inhibition of CaMKK2 had opposite effect. We also found that CaMKK2 is able to activate AMPK in C2C12 myocytes. Inhibition of AMPK could attenuate the effect of CaMKK2 overexpression, while AMPK agonist could abrogate the effect of CaMKK2 knockdown on C2C12 cell differentiation and proliferation. These results suggest that CaMKK2 functions as an AMPK kinase in muscle cells and AMPK mediates the effect of CaMKK2 on myoblast proliferation and differentiation. Our data also indicate that CaMKK2 might inhibit myoblast proliferation through AMPK-mediated cell cycle arrest by inducing cdc2-Tyr15 phosphorylation and repress differentiation through affecting PGC1α transcription. Lastly, we show that overexpressing CaMKK2 in the muscle of mice via electroporation impaired the muscle regeneration during freeze-induced injury, indicating that CaMKK2 could serve as a potential target to treat patients with muscle injury or myopathies. Together, our study reveals a new role for CaMKK2 as a negative regulator of myoblast differentiation and proliferation and sheds new light on the molecular regulation of muscle regeneration. PMID:27783047

  2. The 1,2,3-triazole derivative KP-A021 suppresses osteoclast differentiation and function by inhibiting RANKL-mediated MEK-ERK signaling pathway

    PubMed Central

    Ihn, Hye Jung; Lee, Doohyun; Lee, Taeho; Shin, Hong-In; Bae, Yong Chul; Kim, Sang-Hyun

    2015-01-01

    The triazole family of compounds has been implicated in modulating various biological processes such as inflammation, tumorigenesis, and infection. To our knowledge, this is the first study to demonstrate the effects of 1,2,3-triazole substituted biarylacrylonitrile compounds, including KP-A021, on the differentiation and function of osteoclasts. KP-A021 and its triazole derivatives, at a concentration that does not cause a cytotoxic response in bone marrow macrophages (BMMs), significantly inhibited osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) as assessed by tartrate-resistant acid phosphatase (TRAP) staining. KP-A021 also dramatically inhibited the expression of marker genes associated with osteoclast differentiation, such as TRAP, cathepsin K (Cat K), dendritic cell-specific transmembrane protein (DC-STAMP), and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). Furthermore, KP-A021 inhibited actin ring formation in osteoclasts as well as resorption pit formation induced by osteoclasts. Analysis of the signaling pathway for KP-A021 indicated that this triazole compound inhibited the RANKL-induced activation of extracellular signal-regulated kinase (ERK) and its upstream signaling molecule, mitogen-activated protein kinase kinase1/2 (MEK1/2). Taken together, these results demonstrate that KP-A021 has an inhibitory effect on the differentiation and function of osteoclasts via modulation of the RANKL-induced activation of the MEK-ERK pathway. PMID:25769316

  3. An eigenvalue analysis of coupled differential equations in regard to corrosion inhibition

    SciTech Connect

    McCafferty, E.

    2000-01-01

    Corrosion or its inhibition is examined in terms of competitive reactions at the metal/solution interface. These surface reactions involve hydroxyl-assisted metal dissolution and adsorption of an inhibitive ion or molecule, with the system being described by a pair of autonomous nonlinear differential equations. Both Langmuir and Temkin adsorption isotherms are considered. For Temkin adsorption there may exist as many as four critical points. The behavior of the system near the critical points has been studied using eigenvalue analysis and the phase-plane method. As the system drifts in time toward any given stable critical point, there is a corresponding anodic current flow. For some stable critical points, the current vanishes and inhibition occurs, while for others it does not and corrosion occurs.

  4. Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death

    PubMed Central

    Daniele, Simona; Giacomelli, Chiara; Zappelli, Elisa; Granchi, Carlotta; Trincavelli, Maria Letizia; Minutolo, Filippo; Martini, Claudia

    2015-01-01

    Therapies that target the signal transduction and metabolic pathways of cancer stem cells (CSCs) are innovative strategies to effectively reduce the recurrence and significantly improve the outcome of glioblastoma multiforme (GBM). CSCs exhibit an increased rate of glycolysis, thus rendering them intrinsically more sensitive to prospective therapeutic strategies based on the inhibition of the glycolytic pathway. The enzyme lactate dehydrogenase-A (LDH-A), which catalyses the interconversion of pyruvate and lactate, is up-regulated in human cancers, including GBM. Although several papers have explored the benefits of targeting cancer metabolism in GBM, the effects of direct LDH-A inhibition in glial tumours have not yet been investigated, particularly in the stem cell subpopulation. Here, two representative LDH-A inhibitors (NHI-1 and NHI-2) were studied in GBM-derived CSCs and compared to differentiated tumour cells. LDH-A inhibition was particularly effective in CSCs isolated from different GBM cell lines, where the two compounds blocked CSC formation and elicited long-lasting effects by triggering both apoptosis and cellular differentiation. These data demonstrate that GBM, particularly the stem cell subpopulation, is sensitive to glycolytic inhibition and shed light on the therapeutic potential of LDH-A inhibitors in this tumour type. PMID:26494310

  5. Individual strains of Lactobacillus paracasei differentially inhibit human basophil and mouse mast cell activation

    PubMed Central

    Cassard, Lydie; Lalanne, Ana Inés; Garault, Peggy; Cotillard, Aurélie; Chervaux, Christian; Wels, Michiel; Smokvina, Tamara

    2016-01-01

    Abstract Introduction The microbiota controls a variety of biological functions, including immunity, and alterations of the microbiota in early life are associated with a higher risk of developing allergies later in life. Several probiotic bacteria, and particularly lactic acid bacteria, were described to reduce both the induction of allergic responses and allergic manifestations. Although specific probiotic strains were used in these studies, their protective effects on allergic responses also might be common for all lactobacilli. Methods To determine whether allergic effector cells inhibition is a common feature of lactobacilli or whether it varies among lactobacilli strains, we compared the ability of 40 strains of the same Lactobacillus paracasei species to inhibit IgE‐dependent mouse mast cell and human basophil activation. Results We uncovered a marked heterogeneity in the inhibitory properties of the 40 Lactobacillus strains tested. These segregated into three to four clusters depending on the intensity of inhibition. Some strains inhibited both mouse mast cell and human basophil activation, others strains inhibited only one cell type and another group induced no inhibition of activation for either cell type. Conclusions Individual Lactobacillus strains of the same species differentially inhibit IgE‐dependent activation of mouse mast cells and human basophils, two cell types that are critical in the onset of allergic manifestations. Although we failed to identify specific bacterial genes associated with inhibition by gene‐trait matching analysis, our findings demonstrate the complexity of the interactions between the microbiota and the host. These results suggest that some L. paracasei strains might be more beneficial in allergies than others strains and provide the bases for a rational screening of lactic acid bacteria strains as next‐generation probiotics in the field of allergy.

  6. Individual strains of Lactobacillus paracasei differentially inhibit human basophil and mouse mast cell activation

    PubMed Central

    Cassard, Lydie; Lalanne, Ana Inés; Garault, Peggy; Cotillard, Aurélie; Chervaux, Christian; Wels, Michiel; Smokvina, Tamara

    2016-01-01

    Abstract Introduction The microbiota controls a variety of biological functions, including immunity, and alterations of the microbiota in early life are associated with a higher risk of developing allergies later in life. Several probiotic bacteria, and particularly lactic acid bacteria, were described to reduce both the induction of allergic responses and allergic manifestations. Although specific probiotic strains were used in these studies, their protective effects on allergic responses also might be common for all lactobacilli. Methods To determine whether allergic effector cells inhibition is a common feature of lactobacilli or whether it varies among lactobacilli strains, we compared the ability of 40 strains of the same Lactobacillus paracasei species to inhibit IgE‐dependent mouse mast cell and human basophil activation. Results We uncovered a marked heterogeneity in the inhibitory properties of the 40 Lactobacillus strains tested. These segregated into three to four clusters depending on the intensity of inhibition. Some strains inhibited both mouse mast cell and human basophil activation, others strains inhibited only one cell type and another group induced no inhibition of activation for either cell type. Conclusions Individual Lactobacillus strains of the same species differentially inhibit IgE‐dependent activation of mouse mast cells and human basophils, two cell types that are critical in the onset of allergic manifestations. Although we failed to identify specific bacterial genes associated with inhibition by gene‐trait matching analysis, our findings demonstrate the complexity of the interactions between the microbiota and the host. These results suggest that some L. paracasei strains might be more beneficial in allergies than others strains and provide the bases for a rational screening of lactic acid bacteria strains as next‐generation probiotics in the field of allergy. PMID:27621812

  7. SMYD1 and G6PD modulation are critical events for miR-206-mediated differentiation of rhabdomyosarcoma.

    PubMed

    Coda, Davide Martino; Lingua, Marcello Francesco; Morena, Deborah; Foglizzo, Valentina; Bersani, Francesca; Ala, Ugo; Ponzetto, Carola; Taulli, Riccardo

    2015-01-01

    Rhadomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. RMS cells resemble fetal myoblasts but are unable to complete myogenic differentiation. In previous work we showed that miR-206, which is low in RMS, when induced in RMS cells promotes the resumption of differentiation by modulating more than 700 genes. To better define the pathways involved in the conversion of RMS cells into their differentiated counterpart, we focused on 2 miR-206 effectors emerged from the microarray analysis, SMYD1 and G6PD. SMYD1, one of the most highly upregulated genes, is a H3K4 histone methyltransferase. Here we show that SMYD1 silencing does not interfere with the proliferative block or with the loss anchorage independence imposed by miR-206, but severely impairs differentiation of ERMS, ARMS, and myogenic cells. Thus SMYD1 is essential for the activation of muscle genes. Conversely, among the downregulated genes, we found G6PD, the enzyme catalyzing the rate-limiting step of the pentose phosphate shunt. In this work, we confirmed that G6PD is a direct target of miR-206. Moreover, we showed that G6PD silencing in ERMS cells impairs proliferation and soft agar growth. However, G6PD overexpression does not interfere with the pro-differentiating effect of miR-206, suggesting that G6PD downmodulation contributes to - but is not an absolute requirement for - the tumor suppressive potential of miR-206. Targeting cancer metabolism may enhance differentiation. However, therapeutic inhibition of G6PD is encumbered by side effects. As an alternative, we used DCA in combination with miR-206 to increase the flux of pyruvate into the mitochondrion by reactivating PDH. DCA enhanced the inhibition of RMS cell growth induced by miR-206, and sustained it upon miR-206 de-induction. Altogether these results link miR-206 to epigenetic and metabolic reprogramming, and suggest that it may be worth combining differentiation-inducing with metabolism-directed approaches.

  8. PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation.

    PubMed

    Wu, Yaxu; Ferguson, James E; Wang, Hong; Kelley, Rusty; Ren, Rongqin; McDonough, Holly; Meeker, James; Charles, Peter C; Wang, Hengbin; Patterson, Cam

    2008-01-01

    The mechanisms that regulate the differentiation program of multipotential stem cells remain poorly understood. In order to define the cues that delineate endothelial commitment from precursors, we screened for candidate regulatory genes in differentiating mouse embryoid bodies. We found that the PR/SET domain protein, PRDM6, is enriched in flk1(+) hematovascular precursor cells using a microarray-based approach. As determined by 5' RACE, full-length PRDM6 protein contains a PR domain and four Krüppel-like zinc fingers. In situ hybridization in mouse embryos demonstrates staining of the primitive streak, allantois, heart, outflow tract, paraaortic splanchnopleura (P-Sp)/aorto-gonadal-mesonephric (AGM) region and yolk sac, all sites known to be enriched in vascular precursor cells. PRDM6 is also detected in embryonic and adult-derived endothelial cell lines. PRDM6 is co-localized with histone H4 and methylates H4-K20 (but not H3) in vitro and in vivo, which is consistent with the known participation of PR domains in histone methyltransferase activity. Overexpression of PRDM6 in mouse embryonic endothelial cells induces apoptosis by activating caspase-3 and inducing G1 arrest. PRDM6 inhibits cell proliferation as determined by BrdU incorporation in endothelial cells, but not in rat aortic smooth muscle cells. Overexpression of PRDM6 also results in reduced tube formation in cultured endothelial cells grown in Matrigel. Taken together, our data indicate that PRDM6 is expressed by vascular precursors, has differential effects in endothelial cells and smooth muscle cells, and may play a role in vascular precursor differentiation and survival by modulating local chromatin-remodeling activity within hematovascular subpopulations during development.

  9. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Halloran, B. P.; Morey-Holton, E. R.; Bikle, D. D.

    1997-01-01

    Loss of weight bearing in the growing rat decreases bone formation, osteoblast numbers, and bone maturation in unloaded bones. These responses suggest an impairment of osteoblast proliferation and differentiation. To test this assumption, we assessed the effects of skeletal unloading using an in vitro model of osteoprogenitor cell differentiation. Rats were hindlimb elevated for 0 (control), 2, or 5 days, after which their tibial bone marrow stromal cells (BMSCs) were harvested and cultured. Five days of hindlimb elevation led to significant decreases in proliferation, alkaline phosphatase (AP) enzyme activity, and mineralization of BMSC cultures. Differentiation of BMSCs was analyzed by quantitative competitive polymerase chain reaction of cDNA after 10, 15, 20, and 28 days of culture. cDNA pools were analyzed for the expression of c-fos (an index of proliferation), AP (an index of early osteoblast differentiation), and osteocalcin (a marker of late differentiation). BMSCs from 5-day unloaded rats expressed 50% less c-fos, 61% more AP, and 35% less osteocalcin mRNA compared with controls. These data demonstrate that cultured osteoprogenitor cells retain a memory of their in vivo loading history and indicate that skeletal unloading inhibits proliferation and differentiation of osteoprogenitor cells in vitro.

  10. Schisandrae fructus enhances myogenic differentiation and inhibits atrophy through protein synthesis in human myotubes

    PubMed Central

    Kim, Cy Hyun; Shin, Jin-Hong; Hwang, Sung Jun; Choi, Yung Hyun; Kim, Dae-Seong; Kim, Cheol Min

    2016-01-01

    Schisandrae fructus (SF) has recently been reported to increase skeletal muscle mass and inhibit atrophy in mice. We investigated the effect of SF extract on human myotube differentiation and its acting pathway. Various concentrations (0.1–10 μg/mL) of SF extract were applied on human skeletal muscle cells in vitro. Myotube area and fusion index were measured to quantify myotube differentiation. The maximum effect was observed at 0.5 μg/mL of SF extract, enhancing differentiation up to 1.4-fold in fusion index and 1.6-fold in myotube area at 8 days after induction of differentiation compared to control. Phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 and 70 kDa ribosomal protein S6 kinase, which initiate translation as downstream of mammalian target of rapamycin pathway, was upregulated in early phases of differentiation after SF treatment. SF also attenuated dexamethasone-induced atrophy. In conclusion, we show that SF augments myogenic differentiation and attenuates atrophy by increasing protein synthesis through mammalian target of rapamycin/70 kDa ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1 signaling pathway in human myotubes. SF can be a useful natural dietary supplement in increasing skeletal muscle mass, especially in the aged with sarcopenia and the patients with disuse atrophy. PMID:27330287

  11. TIP30 inhibits oligodendrocyte precursor cell differentiation via cytoplasmic sequestration of Olig1.

    PubMed

    Yang, Wenjing; Xiao, Lin; Li, Cui; Liu, Xiuyun; Liu, Mingdong; Shao, Qi; Wang, Dan; Huang, Aijun; He, Cheng

    2015-04-01

    Differentiation of oligodendrocyte precursor cells (OPCs) is a prerequisite for both developmental myelination and adult remyelination in the central nervous system. The molecular mechanisms underlying OPC differentiation remain largely unknown. Here, we show that the thirty-kDa HIV-1 Tat interacting protein (TIP30) is a negative regulator in oligodendrocyte development. The TIP30(-/-) mice displayed an increased myelin protein level at postnatal day 14 and 21. By using a primary OPC culture system, we demonstrated that overexpression of TIP30 dramatically inhibited the stage progression of differentiating OPCs, while knockdown of TIP30 enhanced the differentiation of oligodendroglial cells remarkably. Moreover, overexpression of TIP30 was found to sequester the transcription factor Olig1 in the cytoplasm and weaken its nuclear translocation due to the interaction between TIP30 and Olig1, whereas knockdown of TIP30 led to more Olig1 localized in the nucleus in the initiation stage during OPC differentiation. In the cuprizone-induced demyelination model, there was a dramatic increase in NG2-expressing cells with nuclear location of Olig1 in the corpus callosum during remyelination. In contrast, within chronic demyelinated lesions in multiple sclerosis, TIP30 was abnormally expressed in NG2-expressing cells, and few nuclear Olig1 was observed in these cells. Taken together, our findings suggest that TIP30 plays a negative regulatory role in oligodendroglial differentiation.

  12. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation

    PubMed Central

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-01-01

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag-/- γc-/- mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions. PMID:26915707

  13. Inhibition of β-catenin–TCF1 interaction delays differentiation of mouse embryonic stem cells

    PubMed Central

    Chatterjee, Sujash S.; Saj, Abil; Gocha, Tenzin; Murphy, Matthew; Gonsalves, Foster C.; Zhang, Xiaoqian; Hayward, Penelope; Akgöl Oksuz, Betül; Shen, Steven S.; Madar, Aviv; Martinez Arias, Alfonso

    2015-01-01

    The ability of mouse embryonic stem cells (mESCs) to self-renew or differentiate into various cell lineages is regulated by signaling pathways and a core pluripotency transcriptional network (PTN) comprising Nanog, Oct4, and Sox2. The Wnt/β-catenin pathway promotes pluripotency by alleviating T cell factor TCF3-mediated repression of the PTN. However, it has remained unclear how β-catenin’s function as a transcriptional activator with TCF1 influences mESC fate. Here, we show that TCF1-mediated transcription is up-regulated in differentiating mESCs and that chemical inhibition of β-catenin/TCF1 interaction improves long-term self-renewal and enhances functional pluripotency. Genetic loss of TCF1 inhibited differentiation by delaying exit from pluripotency and conferred a transcriptional profile strikingly reminiscent of self-renewing mESCs with high Nanog expression. Together, our data suggest that β-catenin’s function in regulating mESCs is highly context specific and that its interaction with TCF1 promotes differentiation, further highlighting the need for understanding how its individual protein–protein interactions drive stem cell fate. PMID:26459597

  14. Modulation of contact system proteases by glycosaminoglycans. Selective enhancement of the inhibition of factor XIa.

    PubMed

    Wuillemin, W A; Eldering, E; Citarella, F; de Ruig, C P; ten Cate, H; Hack, C E

    1996-05-31

    We investigated the influence of dextran sulfate, heparin, heparan sulfate, and dermatan sulfate on the inhibition of FXIa (where FXIa is activated factor XI, for example), FXIIa, and kallikrein by C1 inhibitor, alpha1-antitrypsin, alpha2-antiplasmin, and antithrombin III. The second-order rate constants for the inhibition of FXIa by C1 inhibitor, alpha1-antitrypsin, alpha2-antiplasmin, and antithrombin III, in the absence of glycosaminoglycans, were 1.8, 0.1, 0.43, and 0.32 x 10(3) M-1 s-1, respectively. The rate constants of the inactivation of FXIa by C1 inhibitor and by antithrombin III increased up to 117-fold in the presence of glycosaminoglycans. These data predicted that considering the plasma concentration of the inhibitors, C1 inhibitor would be the main inhibitor of FXIa in plasma in the presence of glycosaminoglycans. Results of experiments in which the formation of complexes between serine protease inhibitors and FXIa was studied in plasma agreed with this prediction. Glycosaminoglycans did not enhance the inhibition of alpha-FXIIa, beta-FXIIa, or kallikrein by C1 inhibitor. Thus, physiological glycosaminoglycans selectively enhance inhibition of FXIa without affecting the activity of FXIIa and kallikrein, suggesting that glycosaminoglycans may modulate the biological effects of contact activation, by inhibiting intrinsic coagulation without affecting the fibrinolytic potential of FXIIa/kallikrein.

  15. HDAC Inhibition Elicits Myocardial Protective Effect through Modulation of MKK3/Akt-1

    PubMed Central

    Zhao, Ting C.; Du, Jianfeng; Zhuang, Shugang; Liu, Paul; Zhang, Ling X.

    2013-01-01

    We and others have demonstrated that HDAC inhibition protects the heart against myocardial injury. It is known that Akt-1 and MAP kinase play an essential role in modulation of myocardial protection and cardiac preconditioning. Our recent observations have shown that Akt-1 was activated in post-myocardial infarction following HDAC inhibition. However, it remains unknown whether MKK3 and Akt-1 are involved in HDAC inhibition-induced myocardial protection in acute myocardial ischemia and reperfusion injury. We sought to investigate whether the genetic disruption of Akt-1 and MKK3 eliminate cardioprotection elicited by HDAC inhibition and whether Akt-1 is associated with MKK3 to ultimately achieve protective effects. Adult wild type and MKK3−/−, Akt-1−/− mice received intraperitoneal injections of trichostatin A (0.1mg/kg), a potent inhibitor of HDACs. The hearts were subjected to 30 min myocardial ischemia/30 min reperfusion in the Langendorff perfused heart after twenty four hours to elicit pharmacologic preconditioning. Left ventricular function was measured, and infarct size was determined. Acetylation and phosphorylation of MKK3 were detected and disruption of Akt-1 abolished both acetylation and phosphorylation of MKK3. HDAC inhibition produces an improvement in left ventricular functional recovery, but these effects were abrogated by disruption of either Akt-1 or MKK3. Disruption of Akt-1 or MKK3 abolished the effects of HDAC inhibition-induced reduction of infarct size. Trichostatin A treatment resulted in an increase in MKK3 phosphorylation or acetylation in myocardium. Taken together, these results indicate that stimulation of the MKK3 and Akt-1 pathway is a novel approach to HDAC inhibition -induced cardioprotection. PMID:23762381

  16. Inhibition of inducible nitric oxide synthase and osteoclastic differentiation by Atractylodis Rhizoma Alba extract

    PubMed Central

    Choi, Sung-Ho; Kim, Sung-Jin

    2014-01-01

    Background: Atractylodis Rhizoma Alba (ARA) has been used in Korean folk medicine for constipation, dizziness, and anticancer agent. In the present study, we performed to test whether the methanolic extract of ARA has antioxidant and antiosteoclastogenesis activity in RAW 264.7 macrophage cells. Materials and Methods: Antioxidant capacities were tested by measuring free radical scavenging activity, nitric oxide (NO) levels, reducing power, and inducible nitric oxide synthase (iNOS) expression in response to lipopolysaccharides (LPS). Antiosteoclastogenesis activity was evaluated by performing tartrate-resistant acid phosphatase assay in RAW 264.7 macrophage cells. Results: The extract exerted significant 1,1-diphenyl-2-picrylhydrazyl and NO radical scavenging activity, and it exerted dramatic reducing power. Induction of iNOS and NO by LPS in RAW 264.7 cells was significantly inhibited by the extract, suggesting that the ARA extract inhibits NO production by suppressing iNOS expression. Strikingly, the ARA extracts substantially inhibited the receptor activator of NF-κB ligand-induced osteclastic differentiation of LPS-activated RAW 264.7 cells. The ARA extract contains a significant amount of antioxidant components, including phenolics, flavonoids and anthocyanins. Conclusion: These results suggest that the methanolic extract of ARA exerts significant antioxidant activities potentially via inhibiting free radicals and iNOS induction, thereby leading to the inhibition of osteoclastogenesis. PMID:25298665

  17. Inhibition of differentiation and function of osteoclasts by dimethyl sulfoxide (DMSO).

    PubMed

    Yang, Chunxi; Madhu, Vedavathi; Thomas, Candace; Yang, Xinlin; Du, Xeujun; Dighe, Abhijit S; Cui, Quanjun

    2015-12-01

    Dimethyl sulfoxide (DMSO) is an FDA-approved organosulfur solvent that is reported to have therapeutic value in osteoarthritis and osteopenia. DMSO is used as a cryoprotectant for the cryopreservation of bone grafts and mesenchymal stem cells which are later used for bone repair. It is also used as a solvent in the preparation of various scaffolds used for bone tissue engineering purposes. DMSO has been reported to inhibit osteoclast formation in vitro but the mechanism involved has remained elusive. We investigated the effect of DMSO on osteoclast differentiation and function using a conventional model system of RAW 264.7 cells. The differentiation of RAW 264.7 cells was induced by adding 50 ng/ml RANKL and the effect of DMSO (0.01 and 1% v/v) on RANKL-induced osteoclastogenesis was investigated. Addition of 1% DMSO significantly inhibited RANKL-induced formation of TRAP+, multinucleated, mature osteoclasts and osteoclast late-stage precursors (c-Kit(-) c-Fms(+) Mac-1(+) RANK(+)). While DMSO did not inhibit proliferation per se, it did inhibit the effect of RANKL on proliferation of RAW 264.7 cells. Key genes related to osteoclast function (TRAP, Integrin αVβ3, Cathepsin K and MMP9) were significantly down-regulated by DMSO. RANKL-induced expression of RANK gene was significantly reduced in the presence of DMSO. Our data, and reports from other investigators, that DMSO enhances osteoblastic differentiation of mesenchymal stem cells and also prevents bone loss in ovarietcomized rats, suggest that DMSO has tremendous potential in the treatment of osteoporosis and bone diseases arising from uncontrolled activities of the osteoclasts.

  18. Unfavorable neuroblastoma prognostic factor NLRR2 inhibits cell differentiation by transcriptional induction through JNK pathway.

    PubMed

    Sheikh, Afzal; Takatori, Atsushi; Hossain, Md Shamim; Hasan, Md Kamrul; Tagawa, Masatoshi; Nagase, Hiroki; Nakagawara, Akira

    2016-09-01

    The novel human gene family encoding neuronal leucine rich repeat (NLRR) proteins were identified as prognostic markers from our previous screening of primary neuroblastoma (NB) cDNA libraries. Of the NLRR gene family members, NLRR1 and NLRR3 are associated with the regulation of cellular proliferation and differentiation, respectively. However, the functional regulation and clinical significance of NLRR2 in NB remain unclear. Here, we evaluated the differential expression of NLRR2, where high expressions of NLRR2 were significantly associated with a poor prognosis of NB (P = 0.0009), in 78 NBs. Enforced expression of NLRR2 in NB cells enhanced cellular proliferation and induced resistance to retinoic acid (RA)-mediated cell growth inhibition. In contrast, knockdown of NLRR2 exhibited growth inhibition effects and enhanced RA-induced cell differentiation in NB cells. After RA treatment, NLRR2 expression was increased and correlated with the upregulation of c-Jun, a member of the activator protein-1 (AP-1) family in NB cells. Moreover, the expressions of NLRR2 and c-Jun were suppressed by treatment with a JNK inhibitor, which ameliorated the promoter activity of the NLRR2 gene while knockdown of c-Jun reduced NLRR2 expression. We then searched AP-1 binding consensus in the NLRR2 promoter region and confirmed c-Jun recruitment at a consensus. Conclusively, NLRR2 must be an inducible gene regulated by the JNK pathway to enhance cell survival and inhibit NB cell differentiation. Therefore, NLRR2 should have an important role in NB aggressiveness and be a potential therapeutic target for the treatment of RA resistant and aggressive NB. PMID:27357360

  19. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    SciTech Connect

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  20. Spi-B inhibits human plasma cell differentiation by repressing BLIMP1 and XBP-1 expression.

    PubMed

    Schmidlin, Heike; Diehl, Sean A; Nagasawa, Maho; Scheeren, Ferenc A; Schotte, Remko; Uittenbogaart, Christel H; Spits, Hergen; Blom, Bianca

    2008-09-01

    The terminal differentiation of B cells into antibody-secreting plasma cells is tightly regulated by a complex network of transcription factors. Here we evaluated the role of the Ets factor Spi-B during terminal differentiation of human B cells. All mature tonsil and peripheral blood B-cell subsets expressed Spi-B, with the exception of plasma cells. Overexpression of Spi-B in CD19(+) B cells inhibited, similar to the known inhibitor BCL-6, the expression of plasma cell-associated surface markers and transcription factors as well as immunoglobulin production, ie, in vitro plasma cell differentiation. The arrest in B-cell differentiation enforced by Spi-B was independent of the transactivation domain, but dependent on the Ets-domain. By chromatin immunoprecipitation and assays using an inducible Spi-B construct BLIMP1 and XBP-1 were identified as direct target genes of Spi-B mediated repression. We propose a novel role for Spi-B in maintenance of germinal center and memory B cells by direct repression of major plasma cell factors and thereby plasma cell differentiation.

  1. Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle

    PubMed Central

    2014-01-01

    Background Despite growing interest in the relationship between exercise and short-term neural plasticity, the effects of exercise on motor cortical (M1) excitability are not well studied. Acute, lower-limb aerobic exercise may potentially modulate M1 excitability in working muscles, but the effects on muscles not involved in the exercise are unknown. Here we examined the excitability changes in an upper limb muscle representation following a single session of lower body aerobic exercise. Investigating the response to exercise in a non-exercised muscle may help to determine the clinical usefulness of lower-body exercise interventions for upper limb neurorehabilitation. Methods In this study, transcranial magnetic stimulation was used to assess input–output curves, short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI) and intracortical facilitation (ICF) in the extensor carpi radialis muscle in twelve healthy individuals following a single session of moderate stationary biking. Additionally, we examined whether the presence of a common polymorphism of the brain-derived neurotrophic factor (BDNF) gene would affect the response of these measures to exercise. Results We observed significant increases in ICF and decreases in SICI following exercise. No changes in LICI were detected, and no differences were observed in input–output curves following exercise, or between BDNF groups. Conclusions The current results demonstrate that the modulation of intracortical excitability following aerobic exercise is not limited to those muscles involved in the exercise, and that while exercise does not directly modulate the excitability of motor neurons, it may facilitate the induction of experience-dependent plasticity via a decrease in intracortical inhibition and increase in intracortical facilitation. These findings indicate that exercise may create favourable conditions for adaptive plasticity in M1 and may be an effective adjunct to

  2. Startle response and prepulse inhibition modulation by positive- and negative-induced affect.

    PubMed

    De la Casa, Luis Gonzalo; Mena, Auxiliadora; Puentes, Andrea

    2014-02-01

    The startle response, a set of reflex behaviours intended to prepare the organism to face a potentially threatening stimulus, can be modulated by several factors as, for example, changes in affective state, or previous presentation of a weak stimulus (a phenomenon termed Pre-Pulse Inhibition [PPI]). In this paper we analyse whether the induction of positive or negative affective states in the participants modulates the startle response and the PPI phenomenon. The results revealed a decrease of the startle response and an increase of the PPI effect when registered while the participants were exposed to pleasant images (Experiment 1), and an increase of the startle response and of the PPI effect when they were exposed to a video-clip of unpleasant content (Experiment 2). These data are interpreted considering that changes in affective states correlate with changes in the startle reflex intensity, but changes in PPI might be the result of an attentional process.

  3. Startle response and prepulse inhibition modulation by positive- and negative-induced affect.

    PubMed

    De la Casa, Luis Gonzalo; Mena, Auxiliadora; Puentes, Andrea

    2014-02-01

    The startle response, a set of reflex behaviours intended to prepare the organism to face a potentially threatening stimulus, can be modulated by several factors as, for example, changes in affective state, or previous presentation of a weak stimulus (a phenomenon termed Pre-Pulse Inhibition [PPI]). In this paper we analyse whether the induction of positive or negative affective states in the participants modulates the startle response and the PPI phenomenon. The results revealed a decrease of the startle response and an increase of the PPI effect when registered while the participants were exposed to pleasant images (Experiment 1), and an increase of the startle response and of the PPI effect when they were exposed to a video-clip of unpleasant content (Experiment 2). These data are interpreted considering that changes in affective states correlate with changes in the startle reflex intensity, but changes in PPI might be the result of an attentional process. PMID:24188916

  4. Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation

    PubMed Central

    Jagtap, S; Meganathan, K; Gaspar, J; Wagh, V; Winkler, J; Hescheler, J; Sachinidis, A

    2011-01-01

    BACKGROUND AND PURPOSE Teratogenic substances induce adverse effects during the development of the embryo. Multilineage differentiation of human embryonic stem cells (hESCs) mimics the development of the embryo in vitro. Here, we propose a transcriptomic approach in hESCs for monitoring specific toxic effects of compounds as an alternative to traditional time-consuming and cost-intensive in vivo tests requiring large numbers of animals. This study was undertaken to explore the adverse effects of cytosine arabinoside (Ara-C) on randomly differentiated hESCs. EXPERIMENTAL APPROACH Human embryonic stem cells were used to investigate the effects of a developmental toxicant Ara-C. Sublethal concentrations of Ara-C were given for two time points, day 7 and day 14 during the differentiation. Gene expression was assessed with microarrays to determine the dysregulated transcripts in presence of Ara-C. KEY RESULTS Randomly differentiated hESCs were able to generate the multilineage markers. The low concentration of Ara-C (1 nM) induced the ectoderm and inhibited the mesoderm at day 14. The induction of ectodermal markers such as MAP2, TUBB III, PAX6, TH and NESTIN was observed with an inhibition of mesodermal markers such as HAND2, PITX2, GATA5, MYL4, TNNT2, COL1A1 and COL1A2. In addition, no induction of apoptosis was observed. Gene ontology revealed unique dysregulated biological process related to neuronal differentiation and mesoderm development. Pathway analysis showed the axon guidance pathway to be dysregulated. CONCLUSIONS AND IMPLICATIONS Our results suggest that hESCs in combination with toxicogenomics offer a sensitive in vitro developmental toxicity model as an alternative to traditional animal experiments. PMID:21198554

  5. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration.

    PubMed

    Häusser, M; Clark, B A

    1997-09-01

    Irregular firing patterns are observed in most central neurons in vivo, but their origin is controversial. Here, we show that two types of inhibitory neurons in the cerebellar cortex fire spontaneously and regularly in the absence of synaptic input but generate an irregular firing pattern in the presence of tonic synaptic inhibition. Paired recordings between synaptically connected neurons revealed that single action potentials in inhibitory interneurons cause highly variable delays in action potential firing in their postsynaptic cells. Activity in single and multiple inhibitory interneurons also significantly reduces postsynaptic membrane time constant and input resistance. These findings suggest that the time window for synaptic integration is a dynamic variable modulated by the level of tonic inhibition, and that rate coding and temporal coding strategies may be used in parallel in the same cell type. PMID:9331356

  6. Osthole inhibits histamine-dependent itch via modulating TRPV1 activity

    PubMed Central

    Yang, Niu-Niu; Shi, Hao; Yu, Guang; Wang, Chang-Ming; Zhu, Chan; Yang, Yan; Yuan, Xiao-Lin; Tang, Min; Wang, Zhong-li; Gegen, Tana; He, Qian; Tang, Kehua; Lan, Lei; Wu, Guan-Yi; Tang, Zong-Xiang

    2016-01-01

    Osthole, an active coumarin isolated from Cnidium monnieri (L.) Cusson, has long been used in China as an antipruritic herbal medicine; however, the antipruitic mechanism of osthole is unknown. We studied the molecular mechanism of osthole in histamine-dependent itch by behavioral test, Ca2+ imaging, and electrophysiological experiments. First, osthole clearly remitted the scratching behaviors of mice induced with histamine, HTMT, and VUF8430. Second, in cultured dorsal root ganglion (DRG) neurons, osthole showed a dose-dependent inhibitory effect to histamine. On the same neurons, osthole also decreased the response to capsaicin and histamine. In further tests, the capsaicin-induced inward currents were inhibited by osthole. These results revealed that osthole inhibited histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how osthole exerts anti-pruritus effects and suggests that osthole may be a useful treatment medicine for histamine-dependent itch. PMID:27160770

  7. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth

    PubMed Central

    Wang, Lei; Chang, Jianjun; Varghese, Diana; Dellinger, Michael; Kumar, Subodh; Best, Anne M.; Ruiz, Julio; Bruick, Richard; Peña-Llopis, Samuel; Xu, Junjie; Babinski, David J.; Frantz, Doug E.; Brekken, Rolf A.; Quinn, Amy M.; Simeonov, Anton; Easmon, Johnny; Martinez, Elisabeth D.

    2013-01-01

    The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signaling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) which specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumors in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumor burden and prolongs survival. Importantly, we find that patients with breast tumors that overexpress Jumonji demethylases have significantly lower survival. Thus JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance. PMID:23792809

  8. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway

    SciTech Connect

    Yonezawa, Takayuki; Hasegawa, Shin-ichi; Ahn, Jae-Yong; Cha, Byung-Yoon; Teruya, Toshiaki; Hagiwara, Hiromi; Nagai, Kazuo; Woo, Je-Tae; E-mail: jwoo@isc.chubu.ac.jp

    2007-03-30

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-{kappa}B ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.

  9. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    SciTech Connect

    Lai, Jing; Liu, Gexiu; Yan, Guoyao; He, Dongmei; Zhou, Ying; Chen, Shengting

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  10. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia.

    PubMed

    Stefanić, Sasa; Spycher, Cornelia; Morf, Laura; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Wild, Peter; Hehl, Adrian B; Sonda, Sabrina

    2010-09-01

    Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes. PMID:20335568

  11. Plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment.

    PubMed

    Li, Z; Xiao, J; Wu, X; Li, W; Yang, Z; Xie, J; Xu, L; Cai, X; Lin, Z; Guo, W; Luo, J; Liu, M

    2012-09-01

    Bone metastasis is a common and serious consequence of breast cancer. Bidirectional interaction between tumor cells and the bone marrow microenvironment drives a so-called 'vicious cycle' that promotes tumor cell malignancy and stimulates osteolysis. Targeting these interactions and pathways in the tumor-bone microenvironment has been an encouraging strategy for bone metastasis therapy. In the present study, we examined the effects of plumbagin on breast cancer bone metastasis. Our data indicated that plumbagin inhibited cancer cell migration and invasion, suppressed the expression of osteoclast-activating factors, altered the cancer cell induced RANKL/OPG ratio in osteoblasts, and blocked both cancer cell- and RANKL-stimulated osteoclastogenesis. In mouse model of bone metastasis, we further demonstrated that plumbagin significantly repressed breast cancer cell metastasis and osteolysis, inhibited cancer cell induced-osteoclastogenesis and the secretion of osteoclast-activating factors in vivo. At the molecular level, we found that plumbagin abrogated RANKL-induced NF-κB and MAPK pathways by blocking RANK association with TRAF6 in osteoclastogenesis, and by inhibiting the expression of osteoclast-activating factors through the suppression of NF-κB activity in breast cancer cells. Taken together, our data demonstrate that plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment and that plumbagin may serve as a novel agent in the treatment of tumor bone metastasis.

  12. A novel gene, msa1, inhibits sexual differentiation in Schizosaccharomyces pombe.

    PubMed Central

    Jeong, Hee Tae; Ozoe, Fumiyo; Tanaka, Katsunori; Nakagawa, Tsuyoshi; Matsuda, Hideyuki; Kawamukai, Makoto

    2004-01-01

    Sexual differentiation in the fission yeast Schizosaccharomyces pombe is triggered by nutrient starvation or by the presence of mating pheromones. We identified a novel gene, msa1, which encodes a 533-aa putative RNA-binding protein that inhibits sexual differentiation. Disruption of the msa1 gene caused cells to hypersporulate. Intracellular levels of msa1 RNA and Msa1 protein diminished after several hours of nitrogen starvation. Genetic analysis suggested that the function of msa1 is independent of the cAMP pathway and stress-responsive pathway. Deletion of the ras1 gene in diploid cells inhibited sporulation and in haploid cells decreased expression of mating-pheromone-induced genes such as mei2, mam2, ste11, and rep1; simultaneous deletion of msa1 reversed both phenotypes. Overexpression of msa1 decreased activated Ras1(Val17)-induced expression of mam2. Phenotypic hypersporulation was similar between cells with deletion of only rad24 and both msa1 and rad24, but simultaneous deletion of msa1 and msa2/nrd1 additively increased hypersporulation. Therefore, we suggest that the primary function of Msa1 is to negatively regulate sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. PMID:15166138

  13. Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains

    PubMed Central

    Nakagawa, Akifumi; Adams, Curtis E.; Huang, Yinshi; Hamarneh, Sulaiman R.; Liu, Wei; Von Alt, Kate N.; Mino-Kenudson, Mari; Hodin, Richard A.; Lillemoe, Keith D.; Fernández-del Castillo, Carlos; Warshaw, Andrew L.; Liss, Andrew S.

    2016-01-01

    Absorptive and secretory cells of the small intestine are derived from a single population of Lgr5-expressing stem cells. While key genetic pathways required for differentiation into specific lineages have been defined, epigenetic programs contributing to this process remain poorly characterized. Members of the BET family of chromatin adaptors contain tandem bromodomains that mediate binding to acetylated lysines on target proteins to regulate gene expression. In this study, we demonstrate that mice treated with a small molecule inhibitor of BET bromodomains, CPI203, exhibit greater than 90% decrease in tuft and enteroendocrine cells in both crypts and villi of the small intestine, with no changes observed in goblet or Paneth cells. BET bromodomain inhibition did not alter the abundance of Lgr5-expressing stem cells in crypts, but rather exerted its effects on intermediate progenitors, in part through regulation of Ngn3 expression. When BET bromodomain inhibition was combined with the chemotherapeutic gemcitabine, pervasive apoptosis was observed in intestinal crypts, revealing an important role for BET bromodomain activity in intestinal homeostasis. Pharmacological targeting of BET bromodomains defines a novel pathway required for tuft and enteroendocrine differentiation and provides an important tool to further dissect the progression from stem cell to terminally differentiated secretory cell. PMID:26856877

  14. Serum of patients with active rheumatoid arthritis inhibits differentiation of osteochondrogenic precursor cells.

    PubMed

    Pathak, Janak L; Verschueren, Patrick; Lems, Willem F; Bravenboer, Nathalie; Klein-Nulend, Jenneke; Bakker, Astrid D; Luyten, Frank P

    2016-05-01

    Delayed fracture healing is frequently experienced in patients with systemic inflammation such as during rheumatoid arthritis (RA). The reasons for this are diverse, but could also be caused by inflammatory cytokines and/or growth factors in serum from patients with active disease. We hypothesized that serum from patients with active RA contains circulating inflammatory factors that inhibit differentiation of osteochondrogenic precursors. Serum was obtained from 15 patients with active RA (active RA-sera) and from the same patients in clinical remission 1 year later (remission RA-sera; controls). The effect of active RA-sera on osteochondrogenic differentiation of chondrogenic ATDC5 cells and primary human periosteum-derived progenitor cells (HPDC) was determined in micromass culture. In ATDC5 cells, active RA-sera reduced Ki67 transcription levels by 40% and cartilage matrix accumulation by 14% at day 14, and Alp transcription levels by 16%, and matrix mineralization by 17% at day 21 compared with remission RA-sera. In HPDCs, active RA-sera inhibited metabolic activity by 8%, SOX9 transcription levels by 14%, and cartilage matrix accumulation by 7% at day 7 compared with remission RA-sera. In conclusion, sera from patients with active RA negatively affect differentiation of osteochondrogenic precursors, and as a consequence may contribute to delayed fracture healing in these patients.

  15. N16, a Nacreous Protein, Inhibits Osteoclast Differentiation and Enhances Osteogenesis.

    PubMed

    Ma, Jie-Yi; Wong, Ka-Lok; Xu, Zhen-Yan; Au, Ka-Yee; Lee, Nga-Lam; Su, Chang; Su, Wei-Wei; Li, Pei-Bo; Shaw, Pang-Chui

    2016-01-22

    N16 is a protein from the nacreous layer of Pinctada fucata, a pearl oyster. It has been found to promote biomineralization, and we hypothesized that it also plays a role in bone metabolism. The cDNA of N16 was cloned and expressed in Escherichia coli to produce N16 protein, which was purified to high homogeneity by ion-exchange and gel filtration columns. The effects of N16 on osteoclast differentiation and osteogenesis were clarified using the murine preosteoclast cell line RAW 264.7 and the preosteoblast cell line MC3T3-E1. Results on preosteoclasts showed that N16 only slightly inhibited cell survival but significantly inhibited differentiation induced by receptor activator of nuclear factor kappa-B ligand (RANKL). Apart from reduced formation of multinucleated osteoclasts, N16-treated cells exhibited lower gene expression and enzymatic activity typical of mature osteoclasts. Actin ring formation and intracellular acidification essential for osteoclastic function were also impaired upon N16 treatment. At concentrations nontoxic to preosteoblasts, N16 strongly up-regulated alkaline phosphatase activity and increased mineralized nodule formation, which are indicative of differentiation into osteoblasts. These effects coincided with an increase in mRNA expression of osteoblast markers osteopotin and osteocalcin. The present study demonstrated that N16 has both anabolic and antiresorptive effects on bone, which makes it potentially useful for treating osteoporosis. PMID:26741297

  16. How Does Emotional Context Modulate Response Inhibition in Alexithymia: Electrophysiological Evidence from an ERP Study

    PubMed Central

    Yu, Fengqiong; Cao, Zhaolun; Zhu, Chunyan; Cai, Zhu; Hu, Panpan; Pu, Hui; Wang, Kai

    2012-01-01

    Background Alexithymia, characterized by difficulties in identifying and describing feelings, is highly indicative of a broad range of psychiatric disorders. Several studies have also discovered the response inhibition ability impairment in alexithymia. However, few studies on alexithymic individuals have specifically examined how emotional context modulates response inhibition procedure. In order to investigate emotion cognition interaction in alexithymia, we analyzed the spatiao-temporal features of such emotional response inhibition by the approaches of event-related potentials and neural source-localization. Method The study participants included 15 subjects with high alexithymia scores on the 20-item Toronto Alexithymia Scale (alexithymic group) and 15 matched subjects with low alexithymia scores (control group). Subjects were instructed to perform a modified emotional Go/Nogo task while their continuous electroencephalography activities were synchronously recorded. The task includes 3 categories of emotional contexts (positive, negative and neutral) and 2 letters (“M” and “W”) centered in the screen. Participants were told to complete go and nogo actions based on the letters. We tested the influence of alexithymia in this emotional Go/Nogo task both in behavioral level and related neural activities of N2 and P3 ERP components. Results We found that negatively valenced context elicited larger central P3 amplitudes of the Nogo–Go difference wave in the alexithymic group than in the control group. Furthermore, source-localization analyses implicated the anterior cingulate cortex (ACC) as the neural generator of the Nogo-P3. Conclusion These findings suggest that difficulties in identifying feelings, particularly in negative emotions, is a major feature of alexithymia, and the ACC plays a critical role in emotion-modulated response inhibition related to alexithymia. PMID:23227242

  17. Modulation of spike and burst rate in a minimal neuronal circuit with feed-forward inhibition.

    PubMed

    Zeldenrust, Fleur; Wadman, Wytse J

    2013-04-01

    effective and introduces spike-spike interactions at a 40-140 ms time scale. Feed-forward inhibition always decreases the burst firing rate, but the effects on the single spike rate depended on the spatiotemporal organization of inhibition. Therefore, using different connection strategies, the spike and burst rate of such a minimal circuit can be modulated independently.

  18. Wavelength-modulated differential photothermal radiometry: Theory and experimental applications to glucose detection in water

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas; Guo, Xinxin

    2011-10-01

    A differential photothermal radiometry method, wavelength-modulated differential photothermal radiometry (WM-DPTR), has been developed theoretically and experimentally for noninvasive, noncontact biological analyte detection, such as blood glucose monitoring. WM-DPTR features analyte specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the base line of a prominent and isolated mid-IR analyte absorption band (here the carbon-oxygen-carbon bond in the pyran ring of the glucose molecule). A theoretical photothermal model of WM-DPTR signal generation and detection has been developed. Simulation results on water-glucose phantoms with the human blood range (0-300 mg/dl) glucose concentration demonstrated high sensitivity and resolution to meet wide clinical detection requirements. The model has also been validated by experimental data of the glucose-water system obtained using WM-DPTR.

  19. wALADin Benzimidazoles Differentially Modulate the Function of Porphobilinogen Synthase Orthologs

    PubMed Central

    2015-01-01

    The heme biosynthesis enzyme porphobilinogen synthase (PBGS) is a potential drug target in several human pathogens. wALADin1 benzimidazoles have emerged as species-selective PBGS inhibitors against Wolbachia endobacteria of filarial worms. In the present study, we have systematically tested wALADins against PBGS orthologs from bacteria, protozoa, metazoa, and plants to elucidate the inhibitory spectrum. However, the effect of wALADin1 on different PBGS orthologs was not limited to inhibition: several orthologs were stimulated by wALADin1; others remained unaffected. We demonstrate that wALADins allosterically modulate the PBGS homooligomeric equilibrium with inhibition mediated by favoring low-activity oligomers, while 5-aminolevulinic acid, Mg2+, or K+ stabilized high-activity oligomers. Pseudomonas aeruginosa PBGS could be inhibited or stimulated by wALADin1 depending on these factors and pH. We have defined the wALADin chemotypes responsible for either inhibition or stimulation, facilitating the design of tailored PBGS modulators for potential application as antimicrobial agents, herbicides, or drugs for porphyric disorders. PMID:24568185

  20. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes.

    PubMed

    Xie, Xin; Dai, Hui; Zhuang, Binyu; Chai, Li; Xie, Yanguang; Li, Yuzhen

    2016-04-01

    The effects and the underlying mechanisms of hydrogen sulfide (H2S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H2S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H2S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H2S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation.

  1. Algorithms and design for a second-order automatic differentiation module

    SciTech Connect

    Abate, J.; Bischof, C.; Roh, L.; Carle, A.

    1997-07-01

    This article describes approaches to computing second-order derivatives with automatic differentiation (AD) based on the forward mode and the propagation of univariate Taylor series. Performance results are given that show the speedup possible with these techniques relative to existing approaches. The authors also describe a new source transformation AD module for computing second-order derivatives of C and Fortran codes and the underlying infrastructure used to create a language-independent translation tool.

  2. cGMP modulates stem cells differentiation to neurons in brain in vivo.

    PubMed

    Gómez-Pinedo, U; Rodrigo, R; Cauli, O; Herraiz, S; Garcia-Verdugo, J-M; Pellicer, B; Pellicer, A; Felipo, V

    2010-02-17

    During brain development neural stem cells may differentiate to neurons or to other cell types. The aim of this work was to assess the role of cGMP (cyclic GMP) in the modulation of differentiation of neural stem cells to neurons or non-neuronal cells. cGMP in brain of fetuses was reduced to 46% of controls by treating pregnant rats with nitroarginine-methylester (L-NAME) and was restored by co-treatment with sildenafil.Reducing cGMP during brain development leads to reduced differentiation of stem cells to neurons and increased differentiation to non-neuronal cells. The number of neurons in the prefrontal cortex originated from stem cells proliferating on gestational day 14 was 715+/-14/mm(2) in control rats and was reduced to 440+/-29/mm(2) (61% of control) in rats treated with L-NAME. In rats exposed to L-NAME plus sildenafil, differentiation to neurons was completely normalized, reaching 683+/-11 neurons/mm(2). In rats exposed to sildenafil alone the number of cells labelled with bromodeoxyuridine (BrdU) and NeuN was 841+/-16/mm(2). In prefrontal cortex of control rats 48% of the neural stem cells proliferating in gestational day 14 differentiate to neurons, but only 24% in rats exposed to L-NAME. This was corrected by sildenafil, 40% of cells differentiate to neurons. Similar results were obtained for neurons proliferating during all developmental period. Treatment with L-NAME did not reduce the total number of cells labelled with BrdU, further supporting that L-NAME reduces selectively the differentiation of stem cells to neurons. Similar results were obtained in hippocampus. Treatment with L-NAME reduced the differentiation of neural stem cells to neurons, although the effect was milder than in prefrontal cortex. These results support that cGMP modulates the fate of neural stem cells in brain in vivo and suggest that high cGMP levels promote its differentiation to neurons while reduced cGMP levels promote differentiation to non-neuronal cells.

  3. The effect of polyamine biosynthesis inhibition on growth and differentiation of the phytopathogenic fungus Sclerotinia sclerotiorum.

    PubMed

    Pieckenstain, F L; Gárriz, A; Chornomaz, E M; Sánchez, D H; Ruiz, O A

    2001-12-01

    We studied the effects of several polyamine biosynthesis inhibitors on growth, differentiation, free polyamine levels and in vivo and in vitro activity of polyamine biosynthesis enzymes in Sclerotinia sclerotiorum. Alpha-Difluoromethylornithine (DFMO) and alpha-difluoromethylarginine (DFMA) were potent inhibitors of mycelial growth. The effect of DFMO was due to inhibition of ornithine decarboxylase (ODC). No evidence for the existence of an arginine decarboxylase (ADC) pathway was found. The effect of DFMA was partly due to inhibition of ODC, presumably after its conversion into DFMO by mycelial arginase, as suggested by the high activity of this enzyme detected both in intact mycelium and mycelial extracts. In addition, toxic effects of DFMA on cellular processes other than polyamine metabolism might have occurred. Cyclohexylamine (CHA) slightly inhibited mycelial growth and caused an important decrease of free spermidine associated with a drastic increase of free putrescine concentration. Methylglyoxal bis-[guanyl hydrazone] (MGBG) had no effect on mycelial growth. Excepting MGBG, all the inhibitors strongly decreased sclerotial formation. Results demonstrate that sclerotial development is much more sensitive to polyamine biosynthesis inhibition than mycelial growth. Our results suggest that mycelial growth can be supported either by spermidine or putrescine, while spermidine (or the putrescine/spermidine ratio) is important for sclerotial formation to occur. Ascospore germination was completely insensitive to the inhibitors.

  4. Azelnidipine inhibits Msx2-dependent osteogenic differentiation and matrix mineralization of vascular smooth muscle cells.

    PubMed

    Shimizu, Takehisa; Tanaka, Toru; Iso, Tatsuya; Kawai-Kowase, Keiko; Kurabayashi, Masahiko

    2012-01-01

    Vascular calcification is an active and regulated process that is similar to bone formation. While calcium channel blockers (CCBs) have been shown to improve outcomes in atherosclerotic vascular disease, it remains unknown whether CCBs have an effect on the process of vascular calcification. Here we investigated whether CCBs inhibit osteogenic differentiation and matrix mineralization of vascular smooth muscle cells induced by Msx2, a key factor of vascular calcification. Human aortic smooth muscle cells (HASMCs) were transduced with adenovirus expressing MSX2 and were treated with 3 distinct CCBs. Azelnidipine, a dihydropyridine subclass of CCBs, significantly decreased alkaline phosphatase (ALP) activity of Msx2-overexpressed HASMCs, whereas verapamil and diltiazem had no effect. Furthermore, azelnidipine, but not verapamil and diltiazem, significantly decreased matrix mineralization of Msx2-overexpressing HASMCs. Azelnidipine significantly attenuated the induction of ALP gene expression by Msx2, a key transcription factor in osteogenesis, while it did not reduce enzymatic activity of ALP. Furthermore, azelnidipine inhibited the ability of Msx2 to activate the ALP gene, but had no effect on Notch-induced Msx2 expression. Given that L-type calcium channels are equally blocked by these CCBs, our results suggest that azelnidipine inhibits the Msx2-dependent process of vascular calcification by mechanisms other than inhibition of calcium channel activity.

  5. Modulation of Prepulse Inhibition and Startle Reflex by Emotions: A Comparison between Young and Older Adults.

    PubMed

    Le Duc, Jolyanne; Fournier, Philippe; Hébert, Sylvie

    2016-01-01

    This study examined whether or not the acoustic startle response and sensorimotor gating may be modulated by emotions differentially between young and older adults. Two groups of participants (mean age Young: 24 years old; Elderly: 63.6 years old) were presented with three types of auditory stimuli (Startle alone, High or Low frequency Prepulse) while viewing pleasant, neutral, or unpleasant images. Electromyographic activity of the eyeblink response was measured. Results show that older adults displayed diminished eyeblink responses whereas younger adults displayed enhanced eyeblink responses when viewing negative images. Sensorimotor gating also differed between young and older adults, with enhanced sensorimotor gating abilities while viewing positive pictures in older adults and diminished abilities while viewing negative pictures among younger adults. These results argue in favor of a differential emotional influence on the sensorimotor abilities of young and older adults, with a positivity bias among the latter.

  6. Modulation of Prepulse Inhibition and Startle Reflex by Emotions: A Comparison between Young and Older Adults

    PubMed Central

    Le Duc, Jolyanne; Fournier, Philippe; Hébert, Sylvie

    2016-01-01

    This study examined whether or not the acoustic startle response and sensorimotor gating may be modulated by emotions differentially between young and older adults. Two groups of participants (mean age Young: 24 years old; Elderly: 63.6 years old) were presented with three types of auditory stimuli (Startle alone, High or Low frequency Prepulse) while viewing pleasant, neutral, or unpleasant images. Electromyographic activity of the eyeblink response was measured. Results show that older adults displayed diminished eyeblink responses whereas younger adults displayed enhanced eyeblink responses when viewing negative images. Sensorimotor gating also differed between young and older adults, with enhanced sensorimotor gating abilities while viewing positive pictures in older adults and diminished abilities while viewing negative pictures among younger adults. These results argue in favor of a differential emotional influence on the sensorimotor abilities of young and older adults, with a positivity bias among the latter. PMID:26941643

  7. Modulation of Prepulse Inhibition and Startle Reflex by Emotions: A Comparison between Young and Older Adults.

    PubMed

    Le Duc, Jolyanne; Fournier, Philippe; Hébert, Sylvie

    2016-01-01

    This study examined whether or not the acoustic startle response and sensorimotor gating may be modulated by emotions differentially between young and older adults. Two groups of participants (mean age Young: 24 years old; Elderly: 63.6 years old) were presented with three types of auditory stimuli (Startle alone, High or Low frequency Prepulse) while viewing pleasant, neutral, or unpleasant images. Electromyographic activity of the eyeblink response was measured. Results show that older adults displayed diminished eyeblink responses whereas younger adults displayed enhanced eyeblink responses when viewing negative images. Sensorimotor gating also differed between young and older adults, with enhanced sensorimotor gating abilities while viewing positive pictures in older adults and diminished abilities while viewing negative pictures among younger adults. These results argue in favor of a differential emotional influence on the sensorimotor abilities of young and older adults, with a positivity bias among the latter. PMID:26941643

  8. Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NF{kappa}B

    SciTech Connect

    Eliseev, Roman A. . E-mail: Roman_Eliseev@urmc.rochester.edu; Schwarz, Edward M.; Zuscik, Michael J.; O'Keefe, Regis J.; Drissi, Hicham; Rosier, Randy N.

    2006-01-01

    The transcription factor NF{kappa}B is constitutively activated in various tumor cells where it promotes proliferation and represses apoptosis. The bone morphogenetic proteins (BMPs) delay cell proliferation and promote differentiation and apoptosis of bone cells through activation of Smad downstream effectors and via Smad-independent mechanisms. Thus, NF{kappa}B and BMP pathways play opposing roles in regulating osteoblastic cell fate. Here, we show that in osteosarcoma Saos2 osteoblasts, NF{kappa}B regulates the activity of the BMP/Smad signaling. Inhibition of NF{kappa}B by overexpression of mI{kappa}B leads to the induction of osteoblast differentiation. Saos2 cells overexpressing mI{kappa}B (Saos2-mI{kappa}B) exhibit higher expression of osteoblast phenotypic genes such as alkaline phosphatase, Runx2 and osteocalcin and are more responsive to BMP2 in comparison to wild-type cells (Saos2-wt) or empty vector infected controls (Saos2-EV). Furthermore, BMP-2 signaling and Smad phosphorylation are significantly increased in Saos2-mI{kappa}B cells in comparison to Saos2-EV cells. Inhibition of NF{kappa}B signaling in Saos2-mI{kappa}B cells is associated with decreased expression of the BMP signaling inhibitor Smad7. While gain of Smad7 function in Saos2-mI{kappa}B cells results in inhibition of BMP signaling, anti-sense knockdown of Smad7 in Saos2-EV cells leads to upregulation of BMP signaling. We therefore conclude that in osteosarcoma Saos2 cells, NF{kappa}B represses BMP/Smad signaling and BMP2-induced differentiation through Smad7.

  9. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation

    PubMed Central

    Liu, Weiqing; Zhou, Liyan; Zhou, Chenchen; Zhang, Shiwen; Jing, Junjun; Xie, Liang; Sun, Ningyuan; Duan, Xiaobo; Jing, Wei; Liang, Xing; Zhao, Hu; Ye, Ling; Chen, Qianming; Yuan, Quan

    2016-01-01

    Osteoporosis is an age-related disease that affects millions of people. Growth differentiation factor 11 (GDF11) is a secreted member of the transforming growth factor beta (TGF-β) superfamily. Deletion of Gdf11 has been shown to result in a skeletal anterior–posterior patterning disorder. Here we show a role for GDF11 in bone remodelling. GDF11 treatment leads to bone loss in both young and aged mice. GDF11 inhibits osteoblast differentiation and also stimulates RANKL-induced osteoclastogenesis through Smad2/3 and c-Fos-dependent induction of Nfatc1. Injection of GDF11 impairs bone regeneration in mice and blocking GDF11 function prevents oestrogen-deficiency-induced bone loss and ameliorates age-related osteoporosis. Our data demonstrate that GDF11 is a previously unrecognized regulator of bone remodelling and suggest that GDF11 is a potential target for treatment of osteoporosis. PMID:27653144

  10. Electrophilic PPARγ ligands inhibit corneal fibroblast to myofibroblast differentiation in vitro: a potentially novel therapy for corneal scarring.

    PubMed

    Kuriyan, A E; Lehmann, G M; Kulkarni, A A; Woeller, C F; Feldon, S E; Hindman, H B; Sime, P J; Huxlin, K R; Phipps, R P

    2012-01-01

    A critical component of corneal scarring is the TGFβ-induced differentiation of corneal keratocytes into myofibroblasts. Inhibitors of this differentiation are potentially therapeutic for corneal scarring. In this study, we tested the relative effectiveness and mechanisms of action of two electrophilic peroxisome proliferator-activated receptor gamma (PPARγ) ligands: cyano-3,12-dioxolean-1,9-dien-28-oic acid-methyl ester (CDDO-Me) and 15-deoxy-Δ(-12,14)-prostaglandin J(2) (15d-PGJ(2)) for inhibiting TGFβ-induced myofibroblast differentiation in vitro. TGFβ was used to induce myofibroblast differentiation in cultured, primary human corneal fibroblasts. CDDO-Me and 15d-PGJ(2) were added to cultures to test their ability to inhibit this process. Myofibroblast differentiation was assessed by measuring the expression of myofibroblast-specific proteins (αSMA, collagen I, and fibronectin) and mRNA (αSMA and collagen III). The role of PPARγ in the inhibition of myofibroblast differentiation by these agents was tested in genetically and pharmacologically manipulated cells. Finally, we assayed the importance of electrophilicity in the actions of these agents on TGFβ-induced αSMA expression via Western blotting and immunofluorescence. Both electrophilic PPARγ ligands (CDDO-Me and 15d-PGJ(2)) potently inhibited TGFβ-induced myofibroblast differentiation, but PPARγ was only partially required for inhibition of myofibroblast differentiation by either agent. Electrophilic PPARγ ligands were able to inhibit myofibroblast differentiation more potently than non-electrophilic PPARγ ligands, suggesting an important role of electrophilicity in this process. CDDO-Me and 15d-PGJ(2) are strong inhibitors of TGFβ-induced corneal fibroblast to myofibroblast differentiation in vitro, suggesting this class of agents as potential novel therapies for corneal scarring warranting further study in pre-clinical animal models.

  11. Milk-derived GM(3) and GD(3) differentially inhibit dendritic cell maturation and effector functionalities.

    PubMed

    Brønnum, H; Seested, T; Hellgren, L I; Brix, S; Frøkiaer, H

    2005-06-01

    Gangliosides are complex glycosphingolipids, which exert immune-modulating effects on various cell types. Ganglioside GD(3) and GM(3) are the predominant gangliosides of human breast milk but during the early phase of lactation, the content of GD(3) decreases while GM(3) increases. The biological value of gangliosides in breast milk has yet to be elucidated but when milk is ingested, dietary gangliosides might conceptually affect immune cells, such as dendritic cells (DCs). In this study, we address the in vitro effect of GD(3) and GM(3) on DC effector functionalities. Treatment of bone marrow-derived DCs with GD(3) before lipopolysaccharide-induced maturation decreased the production of interleukin-6 (IL-6), IL-10, IL-12 and tumor necrosis factor-alpha as well as reduced the alloreactivity in mixed leucocyte reaction (MLR). In contrast, only IL-10 and IL-12 productions were significantly inhibited by GM(3,) and the potency of DCs to activate CD4(+) cells in MLR was unaffected by GM(3). However, both gangliosides suppressed expression of CD40, CD80, CD86 and major histocompatibility complex class II on DCs. Because GD(3) overall inhibits DC functionalities more than GM(3), the immune modulating effect of the ganglioside fraction of breast milk might be more prominent in the commencement of lactation during which the milk contains the most GD(3). PMID:15963050

  12. Inhibition of hyaluronan synthesis alters sulfated glycosaminoglycans deposition during chondrogenic differentiation in ATDC5 cells.

    PubMed

    Yoshioka, Yutaka; Kozawa, Eiji; Urakawa, Hiroshi; Arai, Eisuke; Futamura, Naohisa; Zhuo, Lisheng; Kimata, Koji; Ishiguro, Naoki; Nishida, Yoshihiro

    2015-08-01

    In chondrogenic differentiation, expression and collaboration of specific molecules, such as aggrecan and type II collagen, in extracellular matrix (ECM) are crucial. However, few studies have clarified the roles of hyaluronan (HA) in proteoglycan aggregation during chondrogenic differentiation. We assessed the roles of HA in sulfated glycosaminoglycans deposition during chondrogenic differentiation by means of 4-methylumbelliferone (4-MU), an HA synthase inhibitor, using ATDC5 cells. ATDC5 cells were treated with 0.5 mM 4-MU for 7 or 21 days after induction of chondrogenic differentiation with insulin. Depositions of sulfated glycosaminoglycans were evaluated with Alcian blue staining. mRNA expression of ECM molecules was determined using real-time RT-PCR. The deposition of aggrecan and versican was investigated with immunohistochemical staining using specific antibodies. Effects of 4-MU on HA concentrations were analyzed by HA binding assay. 4-MU suppressed the positivity of Alcian blue staining, although this delay was reversible. Interestingly, stronger positivity of Alcian blue staining was observed at day 21 in cultures with 4-MU discontinuation than in the control. 4-MU significantly increased the mRNA expression of aggrecan, versican, and type II collagen, which was consistent with increased deposition of aggrecan and versican. The HA concentration in ECM and cell-associated region was significantly suppressed with 4-MU treatment. We conclude that the inhibition of HA synthesis slows sulfated glycosaminoglycans deposition during chondrogenic differentiation despite the increased deposition of other ECM molecules. Transient starvation of HA with 4-MU accelerates chondrogenic ECM formation, suggesting its potential to stimulate chondrogenic differentiation with adequate use.

  13. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells

    SciTech Connect

    Zhang, Yun; Wang, Jing; Chen, Guian; Fan, Dongsheng; Deng, Min

    2011-01-14

    Research highlights: {yields} Nicotinamide inhibit Sirt1. {yields} MASH1 and Ngn2 activation. {yields} Increase the expression of HB9. {yields} Motoneurons formation increases significantly. -- Abstract: Several protocols direct human embryonic stem cells (hESCs) toward differentiation into functional motoneurons, but the efficiency of motoneuron generation varies based on the human ESC line used. We aimed to develop a novel protocol to increase the formation of motoneurons from human ESCs. In this study, we tested a nuclear histone deacetylase protein, Sirt1, to promote neural precursor cell (NPC) development during differentiation of human ESCs into motoneurons. A specific inhibitor of Sirt1, nicotinamide, dramatically increased motoneuron formation. We found that about 60% of the cells from the total NPCs expressed HB9 and {beta}III-tubulin, commonly used motoneuronal markers found in neurons derived from ESCs following nicotinamide treatment. Motoneurons derived from ESC expressed choline acetyltransferase (ChAT), a positive marker of mature motoneuron. Moreover, we also examined the transcript levels of Mash1, Ngn2, and HB9 mRNA in the differentiated NPCs treated with the Sirt1 activator resveratrol (50 {mu}M) or inhibitor nicotinamide (100 {mu}M). The levels of Mash1, Ngn2, and HB9 mRNA were significantly increased after nicotinamide treatment compared with control groups, which used the traditional protocol. These results suggested that increasing Mash1 and Ngn2 levels by inhibiting Sirt1 could elevate HB9 expression, which promotes motoneuron differentiation. This study provides an alternative method for the production of transplantable motoneurons, a key requirement in the development of hESC-based cell therapy in motoneuron disease.

  14. The Oncogene LRF Stimulates Proliferation of Mesenchymal Stem Cells and Inhibits Their Chondrogenic Differentiation

    PubMed Central

    Li, Huan; Acharya, Chitrangada; Kumari, Ratna; Fierro, Fernando; Haudenschild, Dominik R.; Nolta, Jan; Di Cesare, Paul E.

    2013-01-01

    Objective. The oncogene leukemia/lymphoma-related factor (LRF) enhances chondrosarcoma proliferation and malignancy. This study aimed to investigate the roles of LRF in chondrogenic differentiation of primary human bone marrow–derived mesenchymal stem cells (BMSCs). Design. LRF was overexpressed in BMSC by lentiviral transduction. Chondrogenic differentiation of BMSC was induced by high-density pellet culture. Western blotting and real-time polymerase chain reaction were used to investigate changes in protein and mRNA levels, respectively, during chondrogenesis. Safranin-O staining, immunohistochemistry, and glycoaminoglycan contents were used to assess cartilage matrix deposition. BMSC proliferation was determined by mitochondrial dehydrogenase activity and cell counting. Cell cycle profiling was performed by flow cytometry. Results. LRF overexpression effectively inhibited protein and mRNA expression of chondrocyte markers and cartilage matrix deposition during chondrogenesis of BMSC. Endogenous LRF expression was constitutively high in undifferentiated BMSC but remained low in primary articular chondrocytes. Endogenous LRF protein was downregulated in a time-dependent manner during chondrogenesis. BMSCs overexpressing LRF had higher proliferation rates and cell population in the S phase. LRF suppressed p53 expression during chondrogenesis and this might prevent differentiating chondrocytes from entering a quiescent state. Conclusion. Our data showed that LRF is important for stimulating stem cell proliferation and cell cycle progression. It is known that LRF is highly expressed in the mouse limb buds prior to overt chondrogenesis; thus, LRF might function to prevent premature chondrogenic differentiation of stem cells. PMID:26069677

  15. Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells.

    PubMed

    Chen, Tian; Liu, Zhi; Sun, Wenhua; Li, Jingyu; Liang, Yan; Yang, Xianrui; Xu, Yang; Yu, Mei; Tian, Weidong; Chen, Guoqing; Bai, Ding

    2015-12-07

    Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Dental papilla cells (DPCs), as the progenitor cells of odontoblasts, undergo the odontogenic differentiation regulated by multiple cytokines and paracrine signal molecules. Ape1 is a perfect paradigm of the function complexity of a biological macromolecule with two major functional regions for DNA repair and redox regulation, respectively. To date, it remains unclear whether Ape1 can regulate the dentinogenesis in DPCs. In the present study, we firstly examed the spatio-temporal expression of Ape1 during tooth germ developmental process, and found the Ape1 expression was initially high and then gradually reduced along with the tooth development. Secondly, the osteo/odontogenic differentiation capacity of DPCs was up-regulated when treated with either Ape1-shRNA or E3330 (a specific inhibitor of the Ape1 redox function), respectively. Moreover, we found that the canonical Wnt signaling pathway was activated in this process, and E3330 reinforced-osteo/odontogenic differentiation capacity was suppressed by Dickkopf1 (DKK1), a potent antagonist of canonical Wnt signaling pathway. Taken together, we for the first time showed that inhibition of Ape1 redox regulation could promote the osteo/odontogenic differentiation capacity of DPCs via canonical Wnt signaling pathway.

  16. Depletion of MEIS2 inhibits osteogenic differentiation potential of human dental stem cells

    PubMed Central

    Wu, Zhifang; Wang, Jinsong; Dong, Rui; Wang, Liping; Fan, Zhipeng; Liu, Dayong; Wang, Songlin

    2015-01-01

    Dental mesenchymal stem cells (MSCs) are a reliable and promising cell source for the regeneration of tooth,bone and other tissues . However, the molecular mechanisms underlying their differentiation are still largely unknown, which restricts their further wide application. Here, we investigate regulatory function of homeobox gene MEIS2 in the osteogenic differentiation potential of MSCs using stem cells from apical papilla (SCAPs) and dental pulp stem cells (DPSCs) by loss-of-function experiments. Our findings demonstrated that knockdown of MEIS2 in SCAPs and DPSCs decreased alkaline phosphatase (ALP) activity and mineralization, and inhibited the mRNA expression of ALP, bone sialoprotein (BSP), and osteocalcin (OCN). Besides, depletion of MEIS2 resulted in reduced expression of the key osteogenesis-related transcription factor, osterix (OSX) but not in the expression of runt-related transcription factor 2 (RUNX2). Furthermore, MEIS2 expression significantly increased during osteogenic induction and was strongly upregulated by BMP4 stimulation. Taken together, these results indicated that MEIS2 played an essential role in maintaining osteogenic differentiation potential of dental tissue- derived MSCs. These findings will provide new insights into the mechanisms underlying directed differentiation of MSCs, and identify a potential target gene in dental tissues derived MSCs for promoting the tissue regeneration. PMID:26221261

  17. Bushen-Qiangdu-Zhilv decoction inhibits osteogenic differentiation of rat fibroblasts by regulating connexin 43

    PubMed Central

    ZHOU, YING-YAN; HUANG, RUN-YUE; LIN, JIE-HUA; XU, YONG-YUE; HE, XIAO-HONG; HE, YI-TING

    2016-01-01

    Bushen-Qiangdu-Zhilv (BQZ) decoction is a traditional Chinese medicinal compound widely used for treating ankylosing spondylitis (AS). However, the mechanisms underlying effects of BQZ remain largely unknown. Osteoblast differentiation of fibroblasts plays an important role in heterotopic ossification (HO) of AS, and connexin 43 (Cx43) is crucially involved in the osteoblast differentiation of fibroblasts. The aim of the present study was to evaluate the effects of BQZ on the osteogenic differentiation of fibroblasts by regulating Cx43. Rat fibroblasts were treated with freeze-dried powder of BQZ, in the presence or absence of recombinant human bone morphogenetic protein-2 (rhBMP-2). MTS assays were performed to examine the inhibitory effects of BQZ on fibroblast proliferation. Western blot assays were conducted to detect the protein expression of core-binding factor alpha 1 (Cbfα1), Cx43 and phosphorylated Cx43 (pCx43). BQZ appeared to inhibit fibroblast proliferation in a dose-dependent manner. Furthermore, the expression of Cbfα1 and Cx43/pCx43 was significantly suppressed by BQZ, with or without rhBMP-2 stimulation. Therefore, the present results indicate that BQZ may exert an anti-AS effect by suppressing the osteogenic differentiation of fibroblasts via Cx43 regulation. PMID:27347061

  18. Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway.

    PubMed

    Wang, Lei; Kamath, Anant; Frye, Janie; Iwamoto, Gary A; Chun, Ju Lan; Berry, Suzanne E

    2012-05-01

    Mesoangioblasts are vessel-derived stem cells that differentiate into mesodermal derivatives. We have isolated postnatal aorta-derived mesoangioblasts (ADMs) that differentiate into smooth, skeletal, and cardiac muscle, and adipocytes, and regenerate damaged skeletal muscle in a murine model for Duchenne muscular dystrophy. We report that the marker profile of ADM is similar to that of mesoangioblasts isolated from embryonic dorsal aorta, postnatal bone marrow, and heart, but distinct from mesoangioblasts derived from skeletal muscle. We also demonstrate that ADM differentiate into myelinating glial cells. ADM localize to peripheral nerve bundles in regenerating muscles and exhibit morphology and marker expression of mature Schwann cells, and myelinate axons. In vitro, ADM spontaneously express markers of oligodendrocyte progenitors, including the chondroitin sulphate proteoglycan NG2, nestin, platelet-derived growth factor (PDGF) receptor α, the A2B5 antigen, thyroid hormone nuclear receptor α, and O4. Pharmacological inhibition of Rho kinase (ROCK) initiated process extension by ADM, and when combined with insulin-like growth factor 1, PDGF, and thyroid hormone, enhanced ADM expression of oligodendrocyte precursor markers and maturation into the oligodendrocyte lineage. ADM injected into the right lateral ventricle of the brain migrate to the corpus callosum, and cerebellar white matter, where they express components of myelin. Because ADM differentiate or mature into cell types of both mesodermal and ectodermal origin, they may be useful for treatment of a variety of degenerative diseases, or repair and regeneration of multiple cell types in severely damaged tissue. PMID:21793703

  19. Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells

    PubMed Central

    Chen, Tian; Liu, Zhi; Sun, Wenhua; Li, Jingyu; Liang, Yan; Yang, Xianrui; Xu, Yang; Yu, Mei; Tian, Weidong; Chen, Guoqing; Bai, Ding

    2015-01-01

    Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Dental papilla cells (DPCs), as the progenitor cells of odontoblasts, undergo the odontogenic differentiation regulated by multiple cytokines and paracrine signal molecules. Ape1 is a perfect paradigm of the function complexity of a biological macromolecule with two major functional regions for DNA repair and redox regulation, respectively. To date, it remains unclear whether Ape1 can regulate the dentinogenesis in DPCs. In the present study, we firstly examed the spatio-temporal expression of Ape1 during tooth germ developmental process, and found the Ape1 expression was initially high and then gradually reduced along with the tooth development. Secondly, the osteo/odontogenic differentiation capacity of DPCs was up-regulated when treated with either Ape1-shRNA or E3330 (a specific inhibitor of the Ape1 redox function), respectively. Moreover, we found that the canonical Wnt signaling pathway was activated in this process, and E3330 reinforced-osteo/odontogenic differentiation capacity was suppressed by Dickkopf1 (DKK1), a potent antagonist of canonical Wnt signaling pathway. Taken together, we for the first time showed that inhibition of Ape1 redox regulation could promote the osteo/odontogenic differentiation capacity of DPCs via canonical Wnt signaling pathway. PMID:26639148

  20. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    SciTech Connect

    Biver, Emmanuel; Soubrier, Anne-Sophie; Thouverey, Cyril; Cortet, Bernard; Broux, Odile; Caverzasio, Joseph; Hardouin, Pierre

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  1. Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate.

    PubMed

    Cavaliere, F; Urra, O; Alberdi, E; Matute, C

    2012-02-02

    We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl-D-aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination.

  2. Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate

    PubMed Central

    Cavaliere, F; Urra, O; Alberdi, E; Matute, C

    2012-01-01

    We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl--aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination. PMID:22297298

  3. Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation.

    PubMed

    Bratt-Leal, Andrés M; Carpenedo, Richard L; Ungrin, Mark D; Zandstra, Peter W; McDevitt, Todd C

    2011-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  4. Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix

    SciTech Connect

    Rodriguez-Munoz, Rafael; Villarreal-Silva, Marcela; Gonzalez-Ramirez, Ricardo; Garcia-Sierra, Francisco; Mondragon, Monica; Mondragon, Ricardo; Cerna, Joel; Cisneros, Bulmaro

    2008-10-24

    The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrix observed in the undifferentiated cells is replaced by intense fluorescent foci localized in Center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation.

  5. Induction of erythroid differentiation and modulation of gene expression by tiazofurin in K-562 leukemia cells.

    PubMed Central

    Olah, E; Natsumeda, Y; Ikegami, T; Kote, Z; Horanyi, M; Szelenyi, J; Paulik, E; Kremmer, T; Hollan, S R; Sugar, J

    1988-01-01

    Tiazofurin (2-beta-D-ribofuranosyl-4-thiazole-carboxamide; NSC 286193), an antitumor carbon-linked nucleoside that inhibits IMP dehydrogenase (IMP:NAD+ oxidoreductase; EC 1.1.1.205) and depletes guanylate levels, can activate the erythroid differentiation program of K-562 human leukemia cells. Tiazofurin-mediated cell differentiation is a multistep process. The inducer initiates early (less than 6 hr) metabolic changes that precede commitment to differentiation; among these early changes are decreases in IMP dehydrogenase activity and in GTP concentration, as well as alterations in the expression of certain protooncogenes (c-Ki-ras). K-562 cells do express commitment-i.e., cells exhibit differentiation without tiazofurin. Guanosine was effective in preventing the action of tiazofurin, thus providing evidence that the guanine nucleotides are critically involved in tiazofurin-initiated differentiation. Activation of transcription of the erythroid-specific gene that encodes A gamma-globin is a late (48 hr) but striking effect of tiazofurin. Down-regulation of the c-ras gene appears to be part of the complex process associated with tiazofurin-induced erythroid differentiation and relates to the perturbations of GTP metabolism. Images PMID:2901100

  6. Lysyl oxidase modulates the osteoblast differentiation of primary mouse calvaria cells.

    PubMed

    Sharma-Bhandari, Anjali; Park, Sun-Hyang; Kim, Ju-Young; Oh, Jaemin; Kim, Youngho

    2015-12-01

    Lysyl oxidase (LOX) is an extracellular amine oxidase that mediates the formation of collagen fibers. Thus far, five LOX family genes [LOX, lysyl oxidase-like (LOXL)1, LOXL2, LOXL3 and LOXL4] have been identified in humans, each encoding the characteristic C-terminal domains that are required for amine oxidase activity. During osteoblastogenesis, collagen fibers function as a three-dimensional scaffold for organizing mineral deposition. In this study, to assess the functional roles of the LOX family members in osteoblastogenesis, we investigated the temporal expression of these genes as a function of phenotypic development during the osteoblast differentiation of primary cultured mouse calvaria cells. Of the LOX family members, only LOX was prominently expressed during osteoblast differentiation. LOX expression was highest on day 9 of differentiation, as shown by RT-PCR and western blot analysis. The expression pattern of collagen, type I, alpha 2 (COL1A2), which encodes the α2-chain of mouse collagen type I, was similar to that of LOX. The total amine oxidase activity of the differentiating calvaria cells exhibited a temporal pattern that paralleled LOX expression, reaching the highest level on day 9 of differentiation. We also noted that the inhibition of the amine oxidase activity of LOX significantly suppressed both mineral nodule formation and the expression of osteoblast marker genes during the differentiation of primary calvaria cells. Taken together, these findings suggest that the LOX-mediated organization of collagen fibers in the extracellular matrix is an important regulator of osteoblastogenesis.

  7. High-content screening for chemical modulators of embryonal carcinoma cell differentiation and survival.

    PubMed

    Barbaric, Ivana; Jones, Mark; Harley, David J; Gokhale, Paul J; Andrews, Peter W

    2011-07-01

    Disentangling the complex interactions that govern stem cell fate choices of self-renewal, differentiation, or death presents a formidable challenge. Image-based phenotype-driven screening meets this challenge by providing means for rapid testing of many small molecules simultaneously. Pluripotent embryonal carcinoma (EC) cells offer a convenient substitute for embryonic stem (ES) cells in such screens because they are simpler to maintain and control. The authors developed an image-based screening assay to identify compounds that affect survival or differentiation of the human EC stem cell line NTERA2 by measuring the effect on cell number and the proportion of cells expressing a pluripotency-associated marker SSEA3. A pilot screen of 80 kinase inhibitors identified several compounds that improved cell survival or induced differentiation. The survival compounds Y-27632, HA-1077, and H-8 all strongly inhibit the kinases ROCK and PRK2, highlighting the important role of these kinases in EC cell survival. Two molecules, GF109203x and rottlerin, induced EC differentiation. The effects of rottlerin were also investigated in human ES cells. Rottlerin inhibited the self-renewal ability of ES cells, caused the cell cycle arrest, and repressed the expression of pluripotency-associated genes.

  8. Chondroitin Sulfate-E Binds to Both Osteoactivin and Integrin αVβ3 and Inhibits Osteoclast Differentiation.

    PubMed

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Anada, Takahisa; Tawada, Akira; Suzuki, Osamu

    2015-10-01

    Integrins and their ligands have been suggested to be associated with osteoclast-mediated bone resorption. The present study was designed to investigate whether chondroitin sulfate E (CS-E), which is one of the sulfated glycosaminoglycans (GAGs), is involved in osteoactivin (OA) activity, and osteoclast differentiation. The binding affinity of sulfated GAGs to integrin and its ligand was measured using biotin-labeled CS-E, and the osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining and a pit formation assay. CS-E as well as CS-B, synthetic chondroitin polysulfate, and heparin inhibited osteoclast differentiation of bone marrow-derived macrophages. Pre-coating of OA to synthetic calcium phosphate-coated plates enhanced the osteoclastic differentiation of RAW264 cells, and addition of a neutralizing antibody to OA inhibited its differentiation. CS-E bound not only to OA, fibronectin, and vitronectin, but also to its receptor integrin αVβ3, and inhibited the direct binding of OA to integrin αVβ3. Furthermore, CS-E blocked the binding of OA to cells and inhibited OA-induced osteoclastic differentiation. On the other hand, heparinase treatment of RAW264 cells inhibited osteoclastic differentiation. Since binding of OA to the cells was inhibited by the presence of heparan sulfate or heparinase treatment of cells, heparan sulfate proteoglycan (HSPG) was also considered to be an OA receptor. Taken together, the present results suggest that CS-E is capable of inhibiting OA-induced osteoclast differentiation by blocking the interaction of OA to integrin αVβ3 and HSPG.

  9. Chondroitin Sulfate-E Binds to Both Osteoactivin and Integrin αVβ3 and Inhibits Osteoclast Differentiation.

    PubMed

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Anada, Takahisa; Tawada, Akira; Suzuki, Osamu

    2015-10-01

    Integrins and their ligands have been suggested to be associated with osteoclast-mediated bone resorption. The present study was designed to investigate whether chondroitin sulfate E (CS-E), which is one of the sulfated glycosaminoglycans (GAGs), is involved in osteoactivin (OA) activity, and osteoclast differentiation. The binding affinity of sulfated GAGs to integrin and its ligand was measured using biotin-labeled CS-E, and the osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining and a pit formation assay. CS-E as well as CS-B, synthetic chondroitin polysulfate, and heparin inhibited osteoclast differentiation of bone marrow-derived macrophages. Pre-coating of OA to synthetic calcium phosphate-coated plates enhanced the osteoclastic differentiation of RAW264 cells, and addition of a neutralizing antibody to OA inhibited its differentiation. CS-E bound not only to OA, fibronectin, and vitronectin, but also to its receptor integrin αVβ3, and inhibited the direct binding of OA to integrin αVβ3. Furthermore, CS-E blocked the binding of OA to cells and inhibited OA-induced osteoclastic differentiation. On the other hand, heparinase treatment of RAW264 cells inhibited osteoclastic differentiation. Since binding of OA to the cells was inhibited by the presence of heparan sulfate or heparinase treatment of cells, heparan sulfate proteoglycan (HSPG) was also considered to be an OA receptor. Taken together, the present results suggest that CS-E is capable of inhibiting OA-induced osteoclast differentiation by blocking the interaction of OA to integrin αVβ3 and HSPG. PMID:25820496

  10. Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice.

    PubMed

    Wu, V; Smith, A A; You, H; Nguyen, T A; Ferguson, R; Taylor, M; Park, J E; Llontop, P; Youngman, K R; Abramson, T

    2016-05-01

    Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis (B. pertussis). T helper 17 (Th17) cells have a central role in the resolution of the infection. Emerging studies document that type I interferons (IFNs) suppress Th17 differentiation and interleukin (IL)-17 responses in models of infection and chronic inflammation. As plasmacytoid dendritic cells (pDCs) are a major source of type I IFNs, we hypothesize that during B. pertussis infection in mice, pDC-derived IFNα inhibits a rapid increase in Th17 cells. We found that IFNα-secreting pDCs appear in the lungs during the early stages of infection, while a robust rise of Th17 cells in the lungs is detected at 15 days post-infection or later. The presence of IFNα led to reduced Th17 differentiation and proliferation in vitro. Furthermore, in vivo blocking of IFNα produced by pDCs during infection with B. pertussis infection resulted in early increase of Th17 frequency, inflammation, and reduced bacterial loads in the airways of infected mice. Taken together, the experiments reported here describe an inhibitory role for pDCs and pDC-derived IFNα in modulating Th17 responses during the early stages of B. pertussis infection, which may explain the prolonged nature of whooping cough.

  11. Adherent Lipopolysaccharide Inhibits the Osseointegration of Orthopaedic Implants by Impairing Osteoblast Differentiation

    PubMed Central

    Bonsignore, Lindsay A.; Anderson, J. Robert; Lee, Zhenghong; Goldberg, Victor M.; Greenfield, Edward M.

    2012-01-01

    Osseointegration is the process by which an orthopaedic implant makes direct bone-to-implant contact and is crucial for the long-term function of the implant. Surface contaminants, such as bacterial debris and manufacturing residues, may remain on orthopaedic implants after sterilization and impair osseointegration. For example, specific lots of implants that were associated with impaired osseointegration and high failure rates were discovered to have contaminants including bacterial debris. Therefore, the goals of this study were to determine if bacterial debris exists on sterile orthopaedic implants and if adherent bacterial debris inhibits the osseointegration of orthopaedic implants. We found that debris containing lipopolysaccharide (LPS) from Gram-negative bacteria exists on both sterile craniofacial implants and wrist implants. Levels of bacterial debris vary not only between different lots of implants but within an individual lot. Using our murine model of osseointegration, we found that ultrapure LPS adherent to the implants inhibited bone-to-implant contact and biomechanical pullout measures. Analysis of osseointegration in knock-out mice demonstrated that adherent LPS inhibited osseointegration by signaling through its primary receptor, Toll-like receptor 4, and not by signaling through Toll-like receptor 2. Ultrapure LPS adherent to titanium alloy discs had no detectable effect on early stages of MC3T3-E1 osteogenesis in vitro such as attachment, spreading or growth. However, later stages of osteogenic differentiation and mineralization were inhibited by adherent LPS. Thus, LPS may inhibit osseointegration in part through cell autonomous effects on osteoblasts. These results highlight bacterial debris as a type of surface contaminant that can impair the osseointegration of orthopaedic implants. PMID:22995462

  12. Differential modulation of IL-1-induced endothelial adhesion molecules and transendothelial migration of granulocytes by G-CSF.

    PubMed

    Eissner, G; Lindner, H; Reisbach, G; Klauke, I; Holler, E

    1997-06-01

    Granulocyte colony stimulating factor (G-CSF) is widely used for mobilization of haemopoietic stem cells into the peripheral blood. However, little is known about the mechanisms involved in mobilization and the immune modulatory effects of this growth factor. In this report we show that G-CSF down-regulated intercellular adhesion molecule 1 (ICAM-1) induced by Interleukin-1 (IL-1) on human endothelial cells. Interestingly, the G-CSF-mediated down-modulation of IL-1-induced ICAM-1 appeared to be biphasic. In pharmacological concentrations (> 300 ng/ml), and in dose ranges of plasma G-CSF levels above that of nonfebrile healthy individuals (30 pg/ml), a significant decrease in surface ICAM-1 could be observed. This could be explained, at least in part, by an increased autocrine G-CSF production by endothelial cells in response to IL-1 and exogenous G-CSF. In contrast to ICAM-1, IL-1-triggered VCAM-1 expression was superinduced by G-CSF with the optimal concentration of 30 pg/ml. To evaluate the functional significance of these findings, 51Cr adhesion assays with peripheral blood mononuclear cells (PBMC) or granulocytes known to lack the VCAM-1 counter-receptor very late antigen 4 (VLA-4) and IL-1-stimulated endothelial cells, in the presence or absence of G-CSF, were performed. G-CSF could not inhibit the IL-1-induced adhesion of PBMC to endothelial cells, which may be due to the differential adhesion molecule modulation. In contrast, granulocyte adhesion induced by IL-1 could effectively be blocked by co-incubation with G-CSF. Finally, G-CSF also inhibited transendothelial migration of granulocytes through IL-1-activated endothelial cells in a concentration-dependent manner.

  13. Pharmacological activation of estrogen receptors-α and -β differentially modulates keratinocyte differentiation with functional impact on wound healing

    PubMed Central

    PERŽEĽOVÁ, VLASTA; SABOL, FRANTIŠEK; VASILENKO, TOMÁŠ; NOVOTNÝ, MARTIN; KOVÁČ, IVAN; SLEZÁK, MARTIN; ĎURKÁČ, JÁN; HOLLÝ, MARTIN; PILÁTOVÁ, MARTINA; SZABO, PAVOL; VARINSKÁ, LENKA; ČRIEPOKOVÁ, ZUZANA; KUČERA, TOMÁŠ; KALTNER, HERBERT; ANDRÉ, SABINE; GABIUS, HANS-JOACHIM; MUČAJI, PAVEL; SMETANA, KAREL; GÁL, PETER

    2016-01-01

    Estrogen deprivation is considered responsible for many age-related processes, including poor wound healing. Guided by previous observations that estradiol accelerates re-epithelialization through estrogen receptor (ER)-β, in the present study, we examined whether selective ER agonists [4,4′,4″-(4-propyl [1H] pyrazole-1,3,5-triyl)-trisphenol (PPT), ER-α agonist; 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), ER-β agonist] affect the expression of basic proliferation and differentiation markers (Ki-67, keratin-10, -14 and -19, galectin-1 and Sox-2) of keratinocytes using HaCaT cells. In parallel, ovariectomized rats were treated daily with an ER modulator, and wound tissue was removed 21 days after wounding and routinely processed for basic histological analysis. Our results revealed that the HaCaT keratinocytes expressed both ER-α and -β, and thus are well-suited for studying the effects of ER agonists on epidermal regeneration. The activation of ER-α produced a protein expression pattern similar to that observed in the control culture, with a moderate expression of Ki-67 being observed. However, the activation of ER-β led to an increase in cell proliferation and keratin-19 expression, as well as a decrease in galectin-1 expression. Fittingly, in rat wounds treated with the ER-β agonist (DPN), epidermal regeneration was accelerated. In the present study, we provide information on the mechanisms through which estrogens affect the expression patterns of selected markers, thus modulating keratinocyte proliferation and differentiation; in addition, we demonstrate that the pharmacological activation of ER-α and -β has a direct impact on wound healing. PMID:26397183

  14. Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses

    PubMed Central

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-01-01

    Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour

  15. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    NASA Astrophysics Data System (ADS)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  16. (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-{kappa}B

    SciTech Connect

    Lin, R.-W.; Chen, C.-H.; Wang, Y.-H.; Ho, M.-L.; Hung, S.-H.; Chen, I.-S. Wang, G.-J.

    2009-02-20

    People who regularly drink tea have been found to have a higher bone mineral density (BMD) and to be at less risk of hip fractures than those who do not drink it. Green tea catechins such as (-)-epigallocatechin gallate (EGCG) have been reported to increase osteogenic functioning in mesenchymal stem cells. However, its effect on osteoclastogenesis remains unclear. In this study, we investigated the effect of EGCG on RANKL-activation osteoclastogenesis and NF-{kappa}B in RAW 264.7, a murine preosteoclast cell line. EGCG (10-100 {mu}M) significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in murine RAW 264.7 cells and bone marrow macrophages (BMMs). EGCG appeared to target osteoclastic differentiation at an early stage but had no cytotoxic effect on osteoclast precursors. In addition, it significantly inhibited RANKL-induced NF-{kappa}B transcriptional activity and nuclear translocation. We conclude that EGCG inhibits osteoclastogenesis through its activation of NF-{kappa}B.

  17. Meteorin-Like Shows Unique Expression Pattern in Bone and Its Overexpression Inhibits Osteoblast Differentiation

    PubMed Central

    Gong, Weiyan; Liu, Yong; Wu, Zhihong; Wang, Shaohai; Qiu, Guixing; Lin, Shouqing

    2016-01-01

    The present study was performed to identify and characterize genes involved in osteoblasts function. Firstly, we constructed and sequenced a human osteoblast full-length cDNA library to screen for genes whose functions have not been reported and further identify these candidate genes through detecting the relationship with the activator protein-1 (AP-1) transcription factor complex using a dual luciferase reporter system. Only one gene, namely METRNL (Meteorin, glial cell differentiation regulator-like) has been screened out. We performed immunohistochemistry to analyze expression patterns in bone and established a stable transfection MG63 cell line of METRNL-EGFP fusion protein overexpression to analyze the function of METRNL in mineralized nodule formation. Immunohistochemistry showed METRNL expression in hypertrophic chondrocytes and osteoblasts lining trabecular bone surfaces. Overexpression of METRNL inhibited mineralized nodule formation by the MG63 osteosarcoma cell line. Thus, the identified gene, METRNL, which is associated with AP-1 transcription factor complex activity, has a unique expression pattern in bone. In addition, the anomalous expression of METRNL may inhibit bone cell differentiation. PMID:27716826

  18. Amorphigenin inhibits Osteoclast differentiation by suppressing c-Fos and nuclear factor of activated T cells

    PubMed Central

    Kim, Bong Gyu; Kwak, Han Bok; Choi, Eun-Yong; Kim, Hun Soo; Kim, Myung Hee; Kim, Seong Hwan; Choi, Min-Kyu; Chun, Churl Hong; Oh, Jaemin

    2010-01-01

    Among the several rotenoids, amorphigenin is isolated from the leaves of Amopha Fruticosa and it is known that has anti-proliferative effects and anti-cnacer effects in many cell types. The main aim of this study was to investigate the effects of amorphigenin on osteoclast differentiation in vitro and on LPS treated inflammatory bone loss model in vivo. We show here that amorphigenin inhibited RANKL-induced osteoclast differentiation from bone marrow macrophages in a dose dependent manner without cellular toxicity. Anti-osteoclastogenic properties of amorphigenin were based on a down-regulation of c-fos and NFATc1. Amorphigenin markedly inhibited RANKL-induced p38 and NF-κB pathways, but other pathways were not affected. Micro-CT analysis of the femurs showed that amorphigenin protected the LPS-induced bone loss. We concluded that amorphigenin can prevent inflammation-induced bone loss. Thus we expect that amorphigenin could be a treatment option for bone erosion caused by inflammation. PMID:21267405

  19. Pinoresinol inhibits proliferation and induces differentiation on human HL60 leukemia cells.

    PubMed

    Sepporta, Maria Vittoria; Mazza, Teresa; Morozzi, Guido; Fabiani, Roberto

    2013-01-01

    Pinoresinol (PIN), one of the simplest lignans, is the precursor of other dietary lignans that are present in whole-grain cereals, legumes, fruits, and other vegetables. Several experimental and epidemiological evidences suggest that lignans may prevent human cancer in different organs. In this study we investigated the chemopreventive properties of PIN on cell lines derived from different sites either expressing or not the functional tumor suppressor protein p53. It was found that PIN inhibited the proliferation of p53 wild type colon and prostate tumor cells (HCT116 and LNCaP) while in breast cells the inhibition of growth was observed only in p53 mutant cells (MDA-MB-231). A potent antiproliferative activity of PIN was also observed on p53 null cells HL60 (IC50% 8 μM), their multidrug resistant variant HL60R (IC50% 32 μM) and K562. On HL60 cells, PIN caused a block of cell cycle in the G0/G1 phase, induced a weak proapoptotic effect but it was a good trigger of differentiation (NBT reduction and CD11b expression). PIN caused an upregulation of the CDK inhibitor p21(WAF1/Cip1) both at mRNA and protein levels so suggesting that this could be a mechanism by which PIN reduced proliferation and induced differentiation on HL60 cells.

  20. The Autotaxin–Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression during Oligodendrocyte Differentiation

    PubMed Central

    Wheeler, Natalie A.; Lister, James A.

    2015-01-01

    During development, oligodendrocytes (OLGs), the myelinating cells of the CNS, undergo a stepwise progression during which OLG progenitors, specified from neural stem/progenitor cells, differentiate into fully mature myelinating OLGs. This progression along the OLG lineage is characterized by well synchronized changes in morphology and gene expression patterns. The latter have been found to be particularly critical during the early stages of the lineage, and they have been well described to be regulated by epigenetic mechanisms, especially by the activity of the histone deacetylases HDAC1 and HDAC2. The data presented here identify the extracellular factor autotaxin (ATX) as a novel upstream signal modulating HDAC1/2 activity and gene expression in cells of the OLG lineage. Using the zebrafish as an in vivo model system as well as rodent primary OLG cultures, this functional property of ATX was found to be mediated by its lysophospholipase D (lysoPLD) activity, which has been well characterized to generate the lipid signaling molecule lysophosphatidic acid (LPA). More specifically, the lysoPLD activity of ATX was found to modulate HDAC1/2 regulated gene expression during a time window coinciding with the transition from OLG progenitor to early differentiating OLG. In contrast, HDAC1/2 regulated gene expression during the transition from neural stem/progenitor to OLG progenitor appeared unaffected by ATX and its lysoPLD activity. Thus, together, our data suggest that an ATX–LPA–HDAC1/2 axis regulates OLG differentiation specifically during the transition from OLG progenitor to early differentiating OLG and via a molecular mechanism that is evolutionarily conserved from at least zebrafish to rodent. SIGNIFICANCE STATEMENT The formation of the axon insulating and supporting myelin sheath by differentiating oligodendrocytes (OLGs) in the CNS is considered an essential step during vertebrate development. In addition, loss and/or dysfunction of the myelin sheath has

  1. Aristolochia Manshuriensis Kom Inhibits Adipocyte Differentiation by Regulation of ERK1/2 and Akt Pathway

    PubMed Central

    Kwak, Dong Hoon; Lee, Ji-Hye; Kim, Taesoo; Ahn, Hyo Sun; Cho, Won-Kyung; Ha, Hyunil; Hwang, Youn-Hwan; Ma, Jin Yeul

    2012-01-01

    Aristolochia manshuriensis Kom (AMK) is a traditional medicinal herb used for the treatment of arthritis, rheumatism, hepatitis, and anti-obesity. Because of nephrotoxicity and carcinogenicity of AMK, there are no pharmacological reports on anti-obesity potential of AMK. Here, we showed AMK has an inhibitory effect on adipocyte differentiation of 3T3-L1 cells along with significantly decrease in the lipid accumulation by downregulating several adipocyte-specific transcription factors including peroxisome proliferation-activity receptor γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBP-α) and C/EBP-β, which are critical for adipogenesis in vitro. AMK also markedly activated the extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathway including Ras, Raf1, and mitogen-activated protein kinase kinase 1 (MEK1), and significantly suppressed Akt pathway by inhibition of phosphoinositide-dependent kinase 1 (PDK1). Aristolochic acid (AA) and ethyl acetate (EtOAc) fraction of AMK with AA were significantly inhibited TG accumulation, and regulated two pathway (ERK1/2 and Akt) during adipocyte differentiation, and was not due to its cytotoxicity. These two pathways were upstream of PPAR-γ and C/EBPα in the adipogenesis. In addition, gene expressions of secreting factors such as fatty acid synthase (FAS), adiponectin, lipopreotein lipase (LPL), and aP2 were significantly inhibited by treatment of AMK during adipogenesis. We used the high-fat diet (HFD)-induced obesity mouse model to determine the inhibitory effects of AMK on obesity. Oral administration of AMK (62.5 mg/kg/day) significantly decreased the fat tissue weight, total cholesterol (TC), and low density lipoprotein-cholesterol (LDL-C) concentration in the blood. The results of this study suggested that AMK inhibited lipid accumulation by the down-regulation of the major transcription factors of the adipogensis pathway including PPAR-γ and C/EBP-α through regulation of Akt pathway and ERK 1

  2. Growth factor modulation of fibroblast proliferation, differentiation, and invasion: implications for tissue valve engineering.

    PubMed

    Narine, Kishan; De Wever, Olivier; Van Valckenborgh, Dillis; Francois, Katrien; Bracke, Marc; DeSmet, Stefaan; Mareel, Marc; Van Nooten, Guido

    2006-10-01

    We have previously shown that transforming growth factor-beta1 (TGF-beta1) stimulates transdifferentiation of fibroblasts into smooth muscle alpha-actin (alpha-SMA) positive myofibroblasts. However, TGF-beta, as such, is unsuitable for effective population of a heart valve matrix, because it dose-dependently inhibits growth of fibroblasts. The aim of this study was to investigate combinations of other growth factors with TGF-beta to stimulate the proliferation of suitably differentiated cells and to enhance their invasion into aortic valve matrices. Human dermal mesenchymal cells (hDMC1.1) were treated with combinations of growth factors to stimulate these cells to trans-differentiate into myofibroblasts, to proliferate, and to invade. Growth factors were chosen after expression of their respective receptors was confirmed in hDMC1.1 using reverse transcriptase polymerase chain reaction. We combined TGF-beta with several growth factors such as insulin-like growth factor (IGF-1, IGF-2), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and platelet-derived growth factor (PDGF-AA, PDGF-BB, and PDGFAB). Nuclear Ki67 staining, MTT assay, and cell counting revealed that only EGF and bFGF were capable of overcoming TGF-beta-induced growth inhibition. However, bFGF but not EGF inhibited TGF-beta-induced alpha-SMA expression, as evidenced by immuno-cytochemistry and Western blotting. A growth factor cocktail (TGF-beta, EGF, bFGF) has been established that maintains TGF-beta-induced trans-differentiation but overcomes TGF-beta-induced growth inhibition while stimulating fibroblast proliferation and invasion. PMID:17518640

  3. Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation.

    PubMed

    Englaro, W; Bertolotto, C; Buscà, R; Brunet, A; Pagès, G; Ortonne, J P; Ballotti, R

    1998-04-17

    In B16 melanoma cells, mitogen-activated protein (MAP) kinases are activated during cAMP-induced melanogenesis (Englaro, W., Rezzonico, R., Durand-Clément, M., Lallemand, D., Ortonne, J. P., and Ballotti, R. (1995) J. Biol. Chem. 270, 24315-24320). To establish the role of the MAP kinases in melanogenesis, we studied the effects of a specific MAP kinase kinase (MEK) inhibitor PD 98059 on different melanogenic parameters. We showed that PD 98059 inhibits the activation of MAP kinase extracellular signal-regulated kinase 1 by cAMP, but does not impair the effects of cAMP either on the morphological differentiation, characterized by an increase in dendrite outgrowth, or on the up-regulation of tyrosinase that is the key enzyme in melanogenesis. On the contrary, PD 98059 promotes by itself cell dendricity and increases the tyrosinase amount and activity. Moreover, down-regulation of the MAP kinase pathway by PD 98059, or with dominant negative mutants of p21(ras) and MEK, triggers a stimulation of the tyrosinase promoter activity and enhances the effect of cAMP on this parameter. Conversely, activation of the MAP kinase pathway, using constitutive active mutants of p21(ras) and MEK, leads to an inhibition of basal and cAMP-induced tyrosinase gene transcription. These results demonstrate that the MAP kinase pathway activation is not required for cAMP-induced melanogenesis. Furthermore, the inhibition of this pathway induces B16 melanoma cell differentiation, while a sustained activation impairs the melanogenic effect of cAMP-elevating agents. PMID:9545341

  4. Modulating behavioral inhibition by tDCS combined with cognitive training.

    PubMed

    Ditye, Thomas; Jacobson, Liron; Walsh, Vincent; Lavidor, Michal

    2012-06-01

    Cognitive training is an effective tool to improve a variety of cognitive functions, and a small number of studies have now shown that brain stimulation accompanying these training protocols can enhance their effects. In the domain of behavioral inhibition, little is known about how training can affect this skill. As for transcranial direct current stimulation (tDCS), it was previously found that stimulation over the right inferior frontal gyrus (rIFG) facilitates behavioral inhibition performance and modulates its electrophysiological correlates. This study aimed to investigate this behavioral facilitation in the context of a learning paradigm by giving tDCS over rIFG repetitively over four consecutive days of training on a behavioral inhibition task (stop signal task (SST)). Twenty-two participants took part; ten participants were assigned to receive anodal tDCS (1.5 mA, 15 min), 12 were assigned to receive training but not active stimulation. There was a significant effect of training on learning and performance in the SST, and the integration of the training and rIFG-tDCS produced a more linear learning slope. Better performance was also found in the active stimulation group. Our findings show that tDCS-combined cognitive training is an effective tool for improving the ability to inhibit responses. The current study could constitute a step toward the use of tDCS and cognitive training as a therapeutic tool for cognitive control impairments in conditions such as attention-deficit hyperactivity disorder (ADHD) or schizophrenia. PMID:22532165

  5. Pedilanthus tithymaloides Inhibits HSV Infection by Modulating NF-κB Signaling

    PubMed Central

    Ojha, Durbadal; Das, Rashmi; Sobia, Parveen; Dwivedi, Vedprakash; Ghosh, Soma; Samanta, Amalesh; Chattopadhyay, Debprasad

    2015-01-01

    Pedilanthus tithymaloides (PT), a widely used ethnomedicinal plant, has been employed to treat a number of skin conditions. To extend its utility and to fully exploit its medicinal potential, we have evaluated the in vitro antiviral activity of a methanolic extract of PT leaves and its isolated compounds against Herpes Simplex Virus type 2 (HSV-2). Bioactivity-guided studies revealed that the extract and one of its constituents, luteolin, had potent antiviral activity against wild-type and clinical isolates of HSV-2 (EC50 48.5–52.6 and 22.4–27.5 μg/ml, respectively), with nearly complete inhibition at 86.5–101.8 and 40.2–49.6 μg/ml, respectively. The inhibitory effect was significant (p<0.001) when the drug was added 2 h prior to infection, and was effective up to 4 h post-infection. As viral replication requires NF-κB activation, we examined whether the observed extract-induced inhibition of HSV-2 was related to NF-κB inhibition. Interestingly, we observed that treatment of HSV-2-infected cells with extract or luteolin suppressed NF-κB activation. Although NF-κB, JNK and MAPK activation was compromised during HSV replication, neither the extract nor luteolin affected HSV-2-induced JNK1/2 and MAPK activation. Moreover, the PT leaf extract and luteolin potently down-regulated the expression of tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, IL-6, NO and iNOS and the production of gamma interferon (IFN-γ), which are directly involved in controlling the NF-κB signaling pathway. Thus, our results indicate that both PT leaf extract and luteolin modulate the NF-κB signaling pathway, resulting in the inhibition of HSV-2 replication. PMID:26405764

  6. Neutrophilic differentiation modulates the apoptotic response of HL-60 cells to sodium butyrate and sodium valproate.

    PubMed

    Vrba, J; Dolezel, P; Ulrichova, J

    2010-01-01

    Differentiation of myeloid leukemic cells may result in less sensitivity to various apoptotic stimuli. We examined whether human leukemia HL-60 cells differentiating by all-trans retinoic acid (ATRA) acquired resistance to the apoptogenic activity of two histone deacetylase (HDAC) inhibitors, butyrate and valproate. In undifferentiated cells, the cytotoxicity of both butyrate and valproate was associated with activation of the intrinsic apoptotic pathway since we observed dissipation of mitochondrial membrane potential, induction of caspase-9 and caspase-3 activities, appearance of sub-G1 DNA and loss of plasma membrane asymmetry and/or integrity. Both HDAC inhibitors were also able to induce accumulation of undifferentiated cells in the G0/G1 phase of the cell cycle. ATRA was found to enhance the apoptotic effect of both butyrate and valproate in undifferentiated cells. This aside, ATRA appeared to synergize with butyrate in the induction of the G0/G1 cell cycle arrest. In cells pretreated for 72 h with ATRA, butyrate and valproate in combination with ATRA induced lower dissipation of mitochondrial membrane potential and weaker apoptotic and/or necrotic changes in plasma membrane, whereas DNA fragmentation was not diminished compared to undifferentiated cells. Similar results were also obtained when butyrate or valproate were combined with another neutrophilic differentiation inducer, dimethyl sulfoxide. We conclude that neutrophilic differentiation modulates but does not abrogate the apoptotic response of HL-60 cells to butyrate and valproate, and nuclei are preferentially affected during apoptosis in differentiated cells.

  7. Gonadal steroids differentially modulate the actions of orphanin FQ/nociceptin at a physiologically relevant circuit controlling female sexual receptivity

    PubMed Central

    Borgquist, Amanda; Rivas, Virginia Mela; Kachani, Malika; Sinchak, Kevin; Wagner, Edward J.

    2014-01-01

    Orphanin FQ/nociceptin (OFQ/N) inhibits the activity of proopiomelanocortin (POMC) neurones located in the hypothalamic arcuate nucleus (ARH) that regulate female sexual behaviour and energy balance. We tested the hypothesis that gonadal steroids differentially modulate the ability of OFQ/N to inhibit these cells via presynaptic inhibition of transmitter release and postsynaptic activation of G protein-gated, inwardly-rectifying K+ (GIRK)-1 channels. Whole-cell patch clamp recordings were performed in hypothalamic slices prepared from ovariectomised rats. OFQ/N (1 μM) decreased the frequency of miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs), and also caused a robust outward current in the presence of tetrodotoxin, in ARH neurones from vehicle- treated animals. A priming dose of oestradiol benzoate (EB; 2 μg) increased basal mEPSC frequency, markedly diminished both the OFQ/N-induced decrease in mEPSC frequency and the activation of GIRK-1 currents, and potentiated the OFQ/N-induced decrease in mIPSC frequency. Steroid treatment regimens that facilitate sexual receptivity reinstate the basal mEPSC frequency, the OFQ/N-induced decrease in mEPSC frequency and the activation of GIRK-1 currents to levels observed in vehicle-treated controls, and largely abolish the ability of OFQ/N to decrease mIPSC frequency. These effects were observed in an appreciable population of identified POMC neurones, nearly one-half of which projected to the medial preoptic nucleus. Taken together, these data reveal that gonadal steroids influence the pleiotropic actions of OFQ/N on ARH neurones, including POMC neurones, in a disparate manner. These temporal changes in OFQ/N responsiveness further implicate this neuropeptide system as a critical mediator of the gonadal steroid regulation of reproductive behaviour. PMID:24617903

  8. Differential pain modulation properties in central neuropathic pain after spinal cord injury.

    PubMed

    Gruener, Hila; Zeilig, Gabi; Laufer, Yocheved; Blumen, Nava; Defrin, Ruth

    2016-07-01

    It seems that central neuropathic pain (CNP) is associated with altered abilities to modulate pain; whereas dysfunction in descending pain inhibition is associated with the extent of chronic pain distribution, enhanced pain excitation is associated with the intensity of chronic pain. We investigated the hypothesis that CNP is associated with decreased descending pain inhibition along with increased neuronal excitability and that both traits are associated with spinothalamic tract (STT) damage. Chronic spinal cord injury subjects with CNP (n = 27) and without CNP (n = 23) and healthy controls (n = 20) underwent the measurement of pain adaptation, conditioned pain modulation (CPM), tonic suprathreshold pain (TSP), and spatial summation of pain above injury level. Central neuropathic pain subjects also underwent at and below-lesion STT evaluation and completed the questionnaires. Central neuropathic pain subjects showed decreased CPM and increased enhancement of TSP compared with controls. Among CNP subjects, the dysfunction of CPM and pain adaptation correlated positively with the number of painful body regions. The magnitude of TSP and spatial summation of pain correlated positively with CNP intensity. STT scores correlated with CNP intensity and with TSP, so that the more affected the STT below injury level, the greater the CNP and TSP magnitude. It seems that CNP is associated with altered abilities to modulate pain, whereas dysfunction in descending pain inhibition is associated with the extent of chronic pain distribution and enhanced pain excitation is associated with the intensity of chronic pain. Thus, top-down processes may determine the spread of CNP, whereas bottom-up processes may determine CNP intensity. It also seems that the mechanisms of CNP may involve STT-induced hyperexcitability. Future, longitudinal studies may investigate the timeline of this scenario. PMID:26894913

  9. Signals from the surface modulate differentiation of human pluripotent stem cells through glycosaminoglycans and integrins.

    PubMed

    Wrighton, Paul J; Klim, Joseph R; Hernandez, Brandon A; Koonce, Chad H; Kamp, Timothy J; Kiessling, Laura L

    2014-12-23

    The fate decisions of human pluripotent stem (hPS) cells are governed by soluble and insoluble signals from the microenvironment. Many hPS cell differentiation protocols use Matrigel, a complex and undefined substrate that engages multiple adhesion and signaling receptors. Using defined surfaces programmed to engage specific cell-surface ligands (i.e., glycosaminoglycans and integrins), the contribution of specific matrix signals can be dissected. For ectoderm and motor neuron differentiation, peptide-modified surfaces that can engage both glycosaminoglycans and integrins are effective. In contrast, surfaces that interact selectively with glycosaminoglycans are superior to Matrigel in promoting hPS cell differentiation to definitive endoderm and mesoderm. The modular surfaces were used to elucidate the signaling pathways underlying these differences. Matrigel promotes integrin signaling, which in turn inhibits mesendoderm differentiation. The data indicate that integrin-activating surfaces stimulate Akt signaling via integrin-linked kinase (ILK), which is antagonistic to endoderm differentiation. The ability to attribute cellular responses to specific interactions between the cell and the substrate offers new opportunities for revealing and controlling the pathways governing cell fate.

  10. Inhibition of GSK-3β enhances neural differentiation in unrestricted somatic stem cells.

    PubMed

    Dastjerdi, Fatemeh Vahid; Zeynali, Bahman; Tafreshi, Azita Parvaneh; Shahraz, Anahita; Chavoshi, Mahin Sadat; Najafabadi, Irandokht Khaki; Vardanjani, Marzieh Mowlavi; Atashi, Amir; Soleimani, Masoud

    2012-11-01

    GSK-3β is a key molecule in several signalling pathways, including the Wnt/β-catenin signalling pathway. There is increasing evidence suggesting Wnt/β-catenin signalling is involved in the neural differentiation of embryonic, somatic and neural stem cells. However, a large body of evidence indicates that this pathway maintains stem cells in a proliferative state. To address this controversy, we have investigated whether the Wnt/β-catenin pathway is present and involved in the neural differentiation of newly introduced USSCs (unrestricted somatic stem cells). Our results indicate that the components of Wnt/β-catenin signalling are present in undifferentiated USSCs. We also show that the treatment of neurally induced USSCs with BIO (6-bromoindirubin-3'-oxime), a specific GSK-3β inhibitor and Wnt activator, for 5 and 10 days results in increased expression of a general neuronal marker (β-tubulin III). Moreover, the expression of pGSK-3β and stabilized β-catenin increased by BIO in neurally induced USSCs, indicates that the Wnt pathway is activated and functional in these cells. Thus, inhibition of GSK-3β in USSCs enhances their neural differentiation, which suggests a positive role of the Wnt/β-catenin signalling pathway towards neural fate.

  11. Constitutive E2F1 Overexpression Delays Endochondral Bone Formation by Inhibiting Chondrocyte Differentiation

    PubMed Central

    Scheijen, Blanca; Bronk, Marieke; van der Meer, Tiffany; Bernards, René

    2003-01-01

    Longitudinal bone growth results from endochondral ossification, a process that requires proliferation and differentiation of chondrocytes. It has been shown that proper endochondral bone formation is critically dependent on the retinoblastoma family members p107 and p130. However, the precise functional roles played by individual E2F proteins remain poorly understood. Using both constitutive and conditional E2F1 transgenic mice, we show that ubiquitous transgene-driven expression of E2F1 during embryonic development results in a dwarf phenotype and significantly reduced postnatal viability. Overexpression of E2F1 disturbs chondrocyte maturation, resulting in delayed endochondral ossification, which is characterized by reduced hypertrophic zones and disorganized growth plates. Employing the chondrogenic cell line ATDC5, we investigated the effects of enforced E2F expression on the different phases of chondrocyte maturation that are normally required for endochondral ossification. Ectopic E2F1 expression strongly inhibits early- and late-phase differentiation of ATDC5 cells, accompanied by diminished cartilage nodule formation as well as decreased type II collagen, type X collagen, and aggrecan gene expression. In contrast, overexpression of E2F2 or E2F3a results in only a marginal delay of chondrocyte maturation, and increased E2F4 levels have no effect. These data are consistent with the notion that E2F1 is a regulator of chondrocyte differentiation. PMID:12724423

  12. Achaete scute-like 2 suppresses CDX2 expression and inhibits intestinal neoplastic epithelial cell differentiation.

    PubMed

    Shang, Yangyang; Pan, Qiong; Chen, Lei; Ye, Jun; Zhong, Xiaoli; Li, Xiaohuan; Meng, Linkuan; Guo, Jin; Tian, Yin; He, Yonghong; Chen, Wensheng; Peng, Zhihong; Wang, Rongquan

    2015-10-13

    The role of Achaete scute-like 2 (Ascl2) in colorectal cancer (CRC) cell differentiation is unknown. LS174T, HT-29 and Caco-2 cells have high Ascl2 expression, while Lovo and SW480 cells have low Ascl2 expression. LS174T and HT-29 cells with Ascl2 knockdown were transfected with caudal type homeobox 2 (CDX2) promoter constructs and used for luciferase assays and chromatin immunoprecipitation (ChIP) assays. Ascl2 knockdown promoted differentiation of CRC cells into a goblet cell phenotype, as determined by increased expression of MUC2, TFF3, and CDX2. Ascl2 knockdown activated CDX2 expression through a transcriptional mechanism via direct binding of Ascl2 to the proximal E-box of the CDX2 promoter. Ascl2 over-expression in Lovo and SW480 cells inhibited a goblet cell phenotype, as determined by reduced CDX2 and MUC2 expression. Inverse correlations between Ascl2 and CDX2, and Ascl2 and MUC2 mRNA levels, as well as Ascl2 and CDX2 protein levels were observed in CRC cancerous samples. This study demonstrates CDX2 repression by Ascl2 and highlights a role for Ascl2 in CRC cell differentiation. These findings suggest that the Ascl2/CDX2 axis may serve as a potential therapeutic target in colorectal cancer.

  13. Achaete scute-like 2 suppresses CDX2 expression and inhibits intestinal neoplastic epithelial cell differentiation

    PubMed Central

    Ye, Jun; Zhong, Xiaoli; Li, Xiaohuan; Meng, Linkuan; Guo, Jin; Tian, Yin; He, Yonghong; Chen, Wensheng; Peng, Zhihong; Wang, Rongquan

    2015-01-01

    The role of Achaete scute-like 2 (Ascl2) in colorectal cancer (CRC) cell differentiation is unknown. LS174T, HT-29 and Caco-2 cells have high Ascl2 expression, while Lovo and SW480 cells have low Ascl2 expression. LS174T and HT-29 cells with Ascl2 knockdown were transfected with caudal type homeobox 2 (CDX2) promoter constructs and used for luciferase assays and chromatin immunoprecipitation (ChIP) assays. Ascl2 knockdown promoted differentiation of CRC cells into a goblet cell phenotype, as determined by increased expression of MUC2, TFF3, and CDX2. Ascl2 knockdown activated CDX2 expression through a transcriptional mechanism via direct binding of Ascl2 to the proximal E-box of the CDX2 promoter. Ascl2 over-expression in Lovo and SW480 cells inhibited a goblet cell phenotype, as determined by reduced CDX2 and MUC2 expression. Inverse correlations between Ascl2 and CDX2, and Ascl2 and MUC2 mRNA levels, as well as Ascl2 and CDX2 protein levels were observed in CRC cancerous samples. This study demonstrates CDX2 repression by Ascl2 and highlights a role for Ascl2 in CRC cell differentiation. These findings suggest that the Ascl2/CDX2 axis may serve as a potential therapeutic target in colorectal cancer. PMID:26307678

  14. Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification.

    PubMed

    Welting, T J M; Caron, M M J; Emans, P J; Janssen, M P F; Sanen, K; Coolsen, M M E; Voss, L; Surtel, D A M; Cremers, A; Voncken, J W; van Rhijn, L W

    2011-01-01

    Skeletogenesis and bone fracture healing involve endochondral ossification, a process during which cartilaginous primordia are gradually replaced by bone tissue. In line with a role for cyclooxygenase-2 (COX-2) in the endochondral ossification process, non-steroidal anti-inflammatory drugs (NSAIDs) were reported to negatively affect bone fracture healing due to impaired osteogenesis. However, a role for COX-2 activity in the chondrogenic phase of endochondral ossification has not been addressed before. We show that COX-2 activity fulfils an important regulatory function in chondrocyte hypertrophic differentiation. Our data reveal essential cross-talk between COX-2 and bone morphogenic protein-2 (BMP-2) during chondrocyte hypertrophic differentiation. BMP-2 mediated chondrocyte hypertrophy is associated with increased COX-2 expression and pharmacological inhibition of COX-2 activity by NSAIDs (e.g., Celecoxib) decreases hypertrophic differentiation in various chondrogenic models in vitro and in vivo, while leaving early chondrogenic development unaltered. Our findings demonstrate that COX-2 activity is a novel factor partaking in chondrocyte hypertrophy in the context of endochondral ossification and these observations provide a novel etiological perspective on the adverse effects of NSAIDs on bone fracture healing and have important implications for the use of NSAIDs during endochondral skeletal development. PMID:22183916

  15. Computational identification of miRNAs that modulate the differentiation of mesenchymal stem cells to osteoblasts

    PubMed Central

    Seenprachawong, Kanokwan; Nuchnoi, Pornlada; Nantasenamat, Chanin; Prachayasittikul, Virapong

    2016-01-01

    MicroRNAs (miRNAs) are small endogenous noncoding RNAs that play an instrumental role in post-transcriptional modulation of gene expression. Genes related to osteogenesis (i.e., RUNX2, COL1A1 and OSX) is important in controlling the differentiation of mesenchymal stem cells (MSCs) to bone tissues. The regulated expression level of miRNAs is critically important for the differentiation of MSCs to preosteoblasts. The understanding of miRNA regulation in osteogenesis could be applied for future applications in bone defects. Therefore, this study aims to shed light on the mechanistic pathway underlying osteogenesis by predicting miRNAs that may modulate this pathway. This study investigates RUNX2, which is a major transcription factor for osteogenesis that drives MSCs into preosteoblasts. Three different prediction tools were employed for identifying miRNAs related to osteogenesis using the 3’UTR of RUNX2 as the target gene. Of the 1,023 miRNAs, 70 miRNAs were found by at least two of the tools. Candidate miRNAs were then selected based on their free energy values, followed by assessing the probability of target accessibility. The results showed that miRNAs 23b, 23a, 30b, 143, 203, 217, and 221 could regulate the RUNX2 gene during the differentiation of MSCs to preosteoblasts. PMID:27168985

  16. Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity

    PubMed Central

    Kidgell, Dawson J.; Daly, Robin M.; Young, Kayleigh; Lum, Jarrod; Tooley, Gregory; Jaberzadeh, Shapour; Zoghi, Maryam; Pearce, Alan J.

    2013-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities. PMID:23577272

  17. Central gray modulation of affective defense is differentially sensitive to naloxone.

    PubMed

    Pott, C B; Kramer, S Z; Siegel, A

    1987-01-01

    Specific areas of feline central gray (CG) modulate affective aggression elicited by hypothalamic stimulation and produce analgesia, possibly mediated by enkephalins. Despite correlations between opiates and aggressive behavior suggested previously, their relationship has not been clearly demonstrated. The goal of this study was to examine the possible role of endogenous opiate mechanisms in CG modulation of affective aggression. Electrodes were placed in the ventromedial hypothalamus (VM) which, when stimulated, elicited affective attack. Control latency to VM-elicited hiss was established. CG cannula-electrodes were then implanted. Response modulation was determined by dual stimulation of CG and VM electrodes, alternated with VM stimulation alone. Naloxone was introduced through the CG electrodes and VM-elicited hiss latency was again determined, followed by paired trials of dual and single stimulation. Six ventral facilitatory and eight dorsal inhibitory sites were identified. Naloxone had no effect on CG facilitation but completely blocked CG inhibition of VM-elicited hissing. In support of these findings, it was observed that D-A1A2-MET5-enkephalin injected directly into CG-inhibitory sites suppressed VM-elicited hissing. These results demonstrate that opiate mechanisms are operative in the inhibitory modulation of intra-specific aggression. PMID:3628530

  18. Siderophore Biosynthesis Governs the Virulence of Uropathogenic Escherichia coli by Coordinately Modulating the Differential Metabolism.

    PubMed

    Su, Qiao; Guan, Tianbing; He, Yan; Lv, Haitao

    2016-04-01

    Urinary tract infections impose substantial health burdens on women worldwide. Urinary tract infections often incur a high risk of recurrence and antibiotic resistance, and uropathogenic E. coli accounts for approximately 80% of clinically acquired cases. The diagnosis of, treatment of, and drug development for urinary tract infections remain substantial challenges due to the complex pathogenesis of this condition. The clinically isolated UPEC 83972 strain was found to produce four siderophores: yersiniabactin, aerobactin, salmochelin, and enterobactin. The biosyntheses of some of these siderophores implies that the virulence of UPEC is mediated via the targeting of primary metabolism. However, the differential modulatory roles of siderophore biosyntheses on the differential metabolomes of UPEC and non-UPEC strains remain incompletely understood. In the present study, we sought to investigate how the differential metabolomes can be used to distinguish UPEC from non-UPEC strains and to determine the associated regulatory roles of siderophore biosynthesis. Our results are the first to demonstrate that the identified differential metabolomes strongly differentiated UPEC from non-UPEC strains. Furthermore, we performed metabolome assays of mutants with different patterns of siderophore deletions; the data revealed that the mutations of all four siderophores exerted a stronger modulatory role on the differential metabolomes of the UPEC and non-UPEC strains relative to the mutation of any single siderophore and that this modulatory role primarily involved amino acid metabolism, oxidative phosphorylation in the carbon fixation pathway, and purine and pyrimidine metabolism. Surprisingly, the modulatory roles were strongly dependent on the type and number of mutated siderophores. Taken together, these results demonstrated that siderophore biosynthesis coordinately modulated the differential metabolomes and thus may indicate novel targets for virulence-based diagnosis

  19. Modulation of human neural stem cell differentiation in Alzheimer (APP23) transgenic mice by phenserine.

    PubMed

    Marutle, Amelia; Ohmitsu, Masao; Nilbratt, Mats; Greig, Nigel H; Nordberg, Agneta; Sugaya, Kiminobu

    2007-07-24

    In a previous study, we found that human neural stem cells (HNSCs) exposed to high concentrations of secreted amyloid-precursor protein (sAPP) in vitro differentiated into mainly astrocytes, suggesting that pathological alterations in APP processing during neurodegenerative conditions such as Alzheimer's disease (AD) may prevent neuronal differentiation of HNSCs. Thus, successful neuroplacement therapy for AD may require regulating APP expression to favorable levels to enhance neuronal differentiation of HNSCs. Phenserine, a recently developed cholinesterase inhibitor (ChEI), has been reported to reduce APP levels in vitro and in vivo. In this study, we found reductions of APP and glial fibrillary acidic protein (GFAP) levels in the hippocampus of APP23 mice after 14 days treatment with (+)-phenserine (25 mg/kg) lacking ChEI activity. No significant change in APP gene expression was detected, suggesting that (+)-phenserine decreases APP levels and reactive astrocytes by posttranscription regulation. HNSCs transplanted into (+)-phenserine-treated APP23 mice followed by an additional 7 days of treatment with (+)-phenserine migrated and differentiated into neurons in the hippocampus and cortex after 6 weeks. Moreover, (+)-phenserine significantly increased neuronal differentiation of implanted HNSCs in hippocampal and cortical regions of APP23 mice and in the CA1 region of control mice. These results indicate that (+)-phenserine reduces APP protein in vivo and increases neuronal differentiation of HNSCs. Combination use of HNSC transplantation and treatment with drugs such as (+)-phenserine that modulate APP levels in the brain may be a useful tool for understanding mechanisms regulating stem cell migration and differentiation during neurodegenerative conditions in AD.

  20. Effect of RGD-functionalization and stiffness modulation of polyelectrolyte multilayer films on muscle cell differentiation

    PubMed Central

    Gribova, Varvara; Gauthier-Rouvière, Cécile; Albigès-Rizo, Corinne; Auzely-Velty, Rachel; Picart, Catherine

    2014-01-01

    Skeletal muscle tissue engineering holds promise for the replacement of muscle due to an injury and for the treatment of muscle diseases. Although RGD substrates have been widely explored in tissue engineering, there is no study aimed at investigating the combined effects of RGD nanoscale presentation and matrix stiffness on myogenesis. In the present work, we use polyelectrolyte multilayer films made of poly(L-lysine) (PLL) and poly(L-glutamic) acid (PGA) as substrates of tunable stiffness that can be functionalized by a RGD adhesive peptide to investigate important events in myogenesis, including adhesion, migration, proliferation and differentiation. C2C12 myoblasts were used as cellular models. RGD presentation on soft films and increased film stiffness could both induce cell adhesion, but integrins involved in adhesion were different in case of soft and stiff films. Moreover, soft films with RGD peptide appeared to be the most appropriate substrate for myogenic differentiation while the stiff PLL/PGA films significantly induced cell migration, proliferation and inhibited myogenic differentiation. The ROCK kinase was found to be involved in myoblast response to the different films. Indeed, its inhibition was sufficient to rescue the differentiation on stiff films, but no significant changes were observed on stiff films with the RGD peptide. These results suggest that different signaling pathways may be activated depending on mechanical and biochemical properties of the multilayer films. This study emphasizes the superior advantage of the soft PLL/PGA films presenting the RGD peptide in terms of myogenic differentiation. This soft RGD-presenting film may be further used as coating of various polymeric scaffolds for muscle tissue engineering. PMID:23261924

  1. Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study.

    PubMed

    Giovannelli, Fabio; Borgheresi, Alessandra; Balestrieri, Fabrizio; Zaccara, Gaetano; Viggiano, Maria Pia; Cincotta, Massimo; Ziemann, Ulf

    2009-11-15

    Brief interruption of voluntary EMG in a hand muscle by focal transcranial magnetic stimulation (TMS) of the ipsilateral primary motor cortex (M1), the so-called ipsilateral silent period (ISP), is a measure of interhemispheric motor inhibition. However, little is known about how volitional motor activity would modulate the ISP. Here we tested in 30 healthy adults to what extent and under what conditions voluntary activation of the stimulated right M1 by moving the left hand strengthens interhemispheric inhibition as indexed by an enhancement of the ISP area in the maximally contracting right first dorsal interosseous (FDI). Left index finger abduction, already at low levels of contraction, significantly enhanced the ISP compared to left hand at rest. Even imagination of left index finger movement enhanced the ISP compared to rest or mental calculation. This enhancement occurred in the absence of motor-evoked potential amplitude modulation in the left FDI, thus excluding a non-specific contribution from an increase in right M1 corticospinal excitability. Contraction of the left extensor indicis, but not contraction of more proximal left upper limb or left or right lower limb muscles also enhanced the ISP. A reaction time experiment showed that the ISP enhancement developed at a late stage of movement preparation just before or at movement onset. Interhemispheric inhibition of the motor-evoked potential as tested by a bifocal paired-pulse TMS protocol and thought to be mediated via a neuronal circuit different to the ISP was not enhanced when tested under identical motor task conditions. Finally, ISP enhancement by contraction of the left FDI correlated inversely with EMG mirror activity in the right FDI during phasic abductions of the left index finger. Our findings strongly suggest that voluntary M1 activation by real or imagined movement of the contralateral hand increases interhemispheric motor inhibition of the opposite M1. This phenomenon shows substantial

  2. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  3. Differential effects of social and non-social reward on response inhibition in children and adolescents.

    PubMed

    Kohls, Gregor; Peltzer, Judith; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2009-07-01

    An important issue in the field of clinical and developmental psychopathology is whether cognitive control processes, such as response inhibition, can be specifically enhanced by motivation. To determine whether non-social (i.e. monetary) and social (i.e. positive facial expressions) rewards are able to differentially improve response inhibition accuracy in typically developing children and adolescents, an 'incentive' go/no-go task was applied with reward contingencies for successful inhibition. In addition, the impact of children's personality traits (such as reward seeking and empathy) on monetary and social reward responsiveness was assessed in 65 boys, ages 8 to 12 years. All subjects were tested twice: At baseline, inhibitory control was assessed without reward, and then subjects were pseudorandomly assigned to one of four experimental conditions, including (1) social reward only, (2) monetary reward only, (3) mixed social and monetary reward, or (4) a retest condition without reward. Both social and non-social reward significantly improved task performance, although larger effects were observed for monetary reward. The higher the children scored on reward seeking scales, the larger was their improvement in response inhibition, but only if monetary reward was used. In addition, there was a tendency for an association between empathic skills and benefits from social reward. These data suggest that social incentives do not have an equally strong reinforcing value as compared to financial incentives. However, different personality traits seem to determine to what extent a child profits from different types of reward. Clinical implications regarding probable hyposensitivity to social reward in subjects with autism and dysregulated reward-seeking behaviour in children with attention-deficit/hyperactivity disorder (ADHD) are discussed. PMID:19635087

  4. Inhibition of growth of established human glioma cell lines by modulators of the protein kinase-C system

    SciTech Connect

    Couldwell, W.T.; Antel, J.P.; Apuzzo, M.L.; Yong, V.W. )

    1990-10-01

    The protein kinase-C (PKC) second messenger system contributes to regulation of cell growth and differentiation. This study was undertaken to examine the effects of modulators of the PKC enzyme system on the state of differentiation and proliferation rates of human gliomas in vitro. The administration of the PKC-activating phorbol esters 4-beta-phorbol-12,13-dibutyrate (PDB) and phorbol-12-myristate-13-acetate (PMA) resulted in a dose-related inhibition of growth of human glioma cell lines in vitro as measured by 3H-thymidine uptake. The synthetic nonphorbol PKC activator (SC-9) produced an even more pronounced decrease of 3H-thymidine uptake. Diacylglycerol, an endogenous activator of the system, applied externally, transiently decreased the proliferation, in concordance with its short-lived existence in vivo. Conversely, the administration of 4-alpha-phorbol-12,13-didecanoate (alpha-PDD), a phorbol ester that binds but does not activate the enzyme, had no effect on the proliferation rate. At the dosages that maximally decreased proliferation, there was no evidence of direct glioma cell lysis induced by these agents as measured by a chromium-release assay. Immunocytochemical analysis and cytofluorometric measurement of glial fibrillary acidic protein (GFAP) staining in the treated cultures revealed an increase in GFAP staining over control cultures. In contrast to the response of glioma cells, nonmalignant human adult astrocytes treated with the PKC activators responded by increasing their proliferation rate. The authors postulate that the diametrically opposed effects of PKC activators on nonmalignant astrocytes versus glioma growth may be due to a high intrinsic PKC activity in glioma cells, with resultant down-regulation of enzyme activity following the administration of the pharmacological activators.

  5. Interleukin-24 induces neuroblastoma SH-SY5Y cell differentiation, growth inhibition, and apoptosis by promoting ROS production.

    PubMed

    Li, Yuan; Zhang, Hongwei; Zhu, Xiaoyu; Feng, Dongchuan; Gong, Jinchao; Han, Tao

    2013-11-01

    Neuroblastoma is among the most aggressive tumors that occur in childhood and infancy. The clinical prognosis of children with advanced-stage neuroblastoma is still poor. Interleukin-24 (IL-24) is emerging as a new cytokine involved in tumor cellular proliferation, differentiation, and apoptosis and has been widely studied as a tumor inhibitor. However, little is known about this cytokine's role in neuroblastoma. In this study, we investigated the possible effects of IL-24 on inducing neuroblastoma cell differentiation, growth inhibition, and apoptosis in vitro. Our data show that IL-24 promotes neuroblastoma SH-SY5Y cell differentiation, growth inhibition, and apoptosis. Furthermore, we found that the differentiation- and apoptosis-inducing action of IL-24 depends on the accumulation of reactive oxygen species (ROS). These results suggest that IL-24 can induce neuroblastoma cell differentiation and apoptosis and may be a potential therapeutic agent for neuroblastoma.

  6. Short-interval intracortical inhibition is modulated by high-frequency peripheral mixed nerve stimulation.

    PubMed

    Murakami, Takenobu; Sakuma, Kenji; Nomura, Takashi; Nakashima, Kenji

    2007-06-01

    Cortical excitability can be modulated by manipulation of afferent input. We investigated the influence of peripheral mixed nerve stimulation on the excitability of the motor cortex. Motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the right abductor pollicis brevis (APB), extensor carpi radialis (ECR) and first dorsal interosseous (FDI) muscles were evaluated using paired-pulse transcranial magnetic stimulation (TMS) before and after high-frequency peripheral mixed nerve stimulation (150 Hz, 30 min) over the right median nerve at the wrist. The MEP amplitude and SICI of the APB muscle decreased transiently 0-10 min after the intervention, whereas the ICF did not change. High-frequency peripheral mixed nerve stimulation reduced the excitability of the motor cortex. The decrement in the SICI, which reflects the function of GABA(A)ergic inhibitory interneurons, might compensate for the reduced motor cortical excitability after high-frequency peripheral mixed nerve stimulation.

  7. Nouns referring to tools and natural objects differentially modulate the motor system.

    PubMed

    Gough, Patricia M; Riggio, Lucia; Chersi, Fabian; Sato, Marc; Fogassi, Leonardo; Buccino, Giovanni

    2012-01-01

    While increasing evidence points to a critical role for the motor system in language processing, the focus of previous work has been on the linguistic category of verbs. Here we tested whether nouns are effective in modulating the motor system and further whether different kinds of nouns - those referring to artifacts or natural items, and items that are graspable or ungraspable - would differentially modulate the system. A Transcranial Magnetic Stimulation (TMS) study was carried out to compare modulation of the motor system when subjects read nouns referring to objects which are Artificial or Natural and which are Graspable or Ungraspable. TMS was applied to the primary motor cortex representation of the first dorsal interosseous (FDI) muscle of the right hand at 150 ms after noun presentation. Analyses of Motor Evoked Potentials (MEPs) revealed that across the duration of the task, nouns referring to graspable artifacts (tools) were associated with significantly greater MEP areas. Analyses of the initial presentation of items revealed a main effect of graspability. The findings are in line with an embodied view of nouns, with MEP measures modulated according to whether nouns referred to natural objects or artifacts (tools), confirming tools as a special class of items in motor terms. Additionally our data support a difference for graspable versus non graspable objects, an effect which for natural objects is restricted to initial presentation of items.

  8. Adrenal-Derived Hormones Differentially Modulate Intestinal Immunity in Experimental Colitis.

    PubMed

    de Souza, Patrícia Reis; Sales-Campos, Helioswilton; Basso, Paulo José; Nardini, Viviani; Silva, Angelica; Banquieri, Fernanda; Alves, Vanessa Beatriz Freitas; Chica, Javier Emílio Lazo; Nomizo, Auro; Cardoso, Cristina Ribeiro de Barros

    2016-01-01

    The adrenal glands are able to modulate immune responses through neuroimmunoendocrine interactions and cortisol secretion that could suppress exacerbated inflammation such as in inflammatory bowel disease (IBD). Therefore, here we evaluated the role of these glands in experimental colitis induced by 3% dextran sulfate sodium (DSS) in C57BL/6 mice subjected to adrenalectomy, with or without glucocorticoid (GC) replacement. Mice succumbed to colitis without adrenals with a higher clinical score and augmented systemic levels of IL-6 and lower LPS. Furthermore, adrenalectomy negatively modulated systemic regulatory markers. The absence of adrenals resulted in augmented tolerogenic lamina propria dendritic cells but no compensatory local production of corticosterone and decreased mucosal inflammation associated with increased IFN-γ and FasL in the intestine. To clarify the importance of GC in this scenario, GC replacement in adrenalectomized mice restored different markers to the same degree of that observed in DSS group. Finally, this is the first time that adrenal-derived hormones, especially GC, were associated with the differential local modulation of the gut infiltrate, also pointing to a relationship between adrenalectomy and the modulation of systemic regulatory markers. These findings may elucidate some neuroimmunoendocrine mechanisms that dictate colitis outcome. PMID:27403034

  9. Differential neurophysiological correlates of bottom-up and top-down modulations of pain.

    PubMed

    Tiemann, Laura; May, Elisabeth S; Postorino, Martina; Schulz, Enrico; Nickel, Moritz M; Bingel, Ulrike; Ploner, Markus

    2015-02-01

    The perception of pain is highly variable. It depends on bottom-up-mediated factors like stimulus intensity and top-down-mediated factors like expectations. In the brain, pain is associated with a complex pattern of neuronal responses including evoked potentials and induced responses at alpha and gamma frequencies. Although they all covary with stimulus intensity and pain perception, responses at gamma frequencies can be particularly closely related to the perception of pain. It is, however, unclear whether this association holds true across all types of pain modulation. Here, we used electroencephalography to directly compare bottom-up- and top-down-mediated modulations of pain, which were implemented by changes in stimulus intensity and placebo analgesia, respectively. The results show that stimulus intensity modulated pain-evoked potentials and pain-induced alpha and gamma responses. In contrast, placebo analgesia was associated with changes of evoked potentials, but not of alpha and gamma responses. These findings reveal that pain-related neuronal responses are differentially sensitive to bottom-up and top-down modulations of pain, indicating that they provide complementary information about pain perception. The results further show that pain-induced gamma oscillations do not invariably encode pain perception but may rather represent a marker of sensory processing whose influence on pain perception varies with behavioral context.

  10. Adrenal-Derived Hormones Differentially Modulate Intestinal Immunity in Experimental Colitis

    PubMed Central

    de Souza, Patrícia Reis; Basso, Paulo José; Nardini, Viviani; Silva, Angelica; Banquieri, Fernanda

    2016-01-01

    The adrenal glands are able to modulate immune responses through neuroimmunoendocrine interactions and cortisol secretion that could suppress exacerbated inflammation such as in inflammatory bowel disease (IBD). Therefore, here we evaluated the role of these glands in experimental colitis induced by 3% dextran sulfate sodium (DSS) in C57BL/6 mice subjected to adrenalectomy, with or without glucocorticoid (GC) replacement. Mice succumbed to colitis without adrenals with a higher clinical score and augmented systemic levels of IL-6 and lower LPS. Furthermore, adrenalectomy negatively modulated systemic regulatory markers. The absence of adrenals resulted in augmented tolerogenic lamina propria dendritic cells but no compensatory local production of corticosterone and decreased mucosal inflammation associated with increased IFN-γ and FasL in the intestine. To clarify the importance of GC in this scenario, GC replacement in adrenalectomized mice restored different markers to the same degree of that observed in DSS group. Finally, this is the first time that adrenal-derived hormones, especially GC, were associated with the differential local modulation of the gut infiltrate, also pointing to a relationship between adrenalectomy and the modulation of systemic regulatory markers. These findings may elucidate some neuroimmunoendocrine mechanisms that dictate colitis outcome. PMID:27403034

  11. The role of adenosine A2A and A3 receptors on the differential modulation of norepinephrine and neuropeptide Y release from peripheral sympathetic nerve terminals.

    PubMed

    Donoso, M Verónica; Aedo, Felipe; Huidobro-Toro, J Pablo

    2006-03-01

    The pre-synaptic sympathetic modulator role of adenosine was assessed by studying transmitter release following electrical depolarization of nerve endings from the rat mesenteric artery. Mesentery perfusion with exogenous adenosine exclusively inhibited the release of norepinephrine (NA) but did not affect the overflow of neuropeptide Y (NPY), establishing the basis for a differential pre-synaptic modulator mechanism. Several adenosine structural analogs mimicked adenosine's effect on NA release and their relative order of potency was: 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride = 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-d-ribofuranuronamide = 5'-(N-ethylcarboxamido)adenosine > adenosine > N(6)-cyclopentyladenosine. The use of selective receptor subtype antagonists confirmed the involvement of A(2A) and A(3) adenosine receptors. The modulator role of adenosine is probably due to the activation of both receptors; co-application of 1 nM 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride plus 1 nM 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide caused additive reductions in NA released. Furthermore, while 1 nM of an A(2A) or A(3) receptor antagonist only partially reduced the inhibitory action of adenosine, the combined co-application of the two antagonists fully blocked the adenosine-induced inhibition. Only the simultaneous blockade of the adenosine A(2A) plus A(3) receptors with selective antagonists elicited a significant increase in NA overflow. H 89 reduced the release of both NA and NPY. We conclude that pre-synaptic A(2A) and A(3) adenosine receptor activation modulates sympathetic co-transmission by exclusively inhibiting the release of NA without affecting immunoreactive (ir)-NPY and we suggest separate mechanisms for vesicular release modulation.

  12. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    NASA Astrophysics Data System (ADS)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  13. Gigahertz analog modulation and differential delay of GaAlAs lasers - Temperature and current behavior

    NASA Technical Reports Server (NTRS)

    Eng, S. T.; Bergman, L. A.

    1980-01-01

    Gigahertz analog modulation characteristics of broad-area commercially available GaAlAs lasers have been investigated as a function of temperature and current in the vicinity of the upper frequency limit, where the resonance phenomena occur. The optimum temperature for small-signal amplitude modulation was found to be around -15 C for our particular broad-stripe geometry double-heterostructure laser. The Q was found to increase by a factor of 2 and the bandwidth by about 2%; the external quantum efficiency was maximized in this range. The optimum dc current bias was about 2% above the threshold current. Differential delays have also been measured down to a few picosecond accuracy by a unique phase-angle measurement method using a vector voltmeter. Some of the temperature effects observed may be related to mode changes and multimode and superradiance behavior.

  14. Transmission errors and forward error correction in embedded differential pulse code modulation

    NASA Astrophysics Data System (ADS)

    Goodman, D. J.; Sundberg, C.-E.

    1983-11-01

    Formulas are derived for the combined effects of quantization and transmission errors on embedded Differential Pulse Code Modulation (DPCM) performance. The present analysis, which is both more general and precise than previous work on transmission errors in digital communication of analog signals, includes as its special cases the conventional DPCM and Pulse code Modulation. An SNR formula is obtained in which the effects of source characteristics and the effects of transmission characteristics are clearly distinguishable. Also given in computationally convenient form are specialized formulas applying to uncoded transmission through a random-error channel, transmission through a slowly fading channel, and transmission with all or part of the DCPM signal being protected by an error-correcting code.

  15. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Weilner, Sylvia; Schraml, Elisabeth; Wieser, Matthias; Messner, Paul; Schneider, Karl; Wassermann, Klemens; Micutkova, Lucia; Fortschegger, Klaus; Maier, Andrea B; Westendorp, Rudi; Resch, Heinrich; Wolbank, Susanne; Redl, Heinz; Jansen-Dürr, Pidder; Pietschmann, Peter; Grillari-Voglauer, Regina; Grillari, Johannes

    2016-08-01

    Damage to cells and tissues is one of the driving forces of aging and age-related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self-renew and differentiate is essential for tissue homeostasis and regeneration. However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells in a donor-age-dependent way. While searching for factors mediating the inhibitory effect of elderly derived microvesicles on osteogenesis, we identified miR-31 as a crucial component. We demonstrated that miR-31 is present at elevated levels in the plasma of elderly and of osteoporosis patients. As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR-31 is secreted within senescent cell-derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation by knocking down its target Frizzled-3. Therefore, we suggest that microvesicular miR-31 in the plasma of elderly might play a role in the pathogenesis of age-related impaired bone formation and that miR-31 might be a valuable plasma-based biomarker for aging and for a systemic environment that does not favor cell-based therapies whenever osteogenesis is a limiting factor. PMID:27146333

  16. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation

    SciTech Connect

    Kauss, M. Ariel; Reiterer, Gudrun; Bunaciu, Rodica P.; Yen, Andrew

    2008-10-01

    Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G{sub 1} to S to G{sub 2}/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G{sub 0} cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.

  17. TiO2 nanotube stimulate chondrogenic differentiation of limb mesenchymal cells by modulating focal activity

    PubMed Central

    Kim, Dongkyun; Choi, Bohm; Song, Jinsoo; Kim, Sunhyo; Oh, Seunghan; Jin, Eun-Heui; Kang, Shin-Sung

    2011-01-01

    Vertically aligned, laterally spaced nanoscale titanium nanotubes were grown on a titanium surface by anodization, and the growth of chondroprogenitors on the resulting surfaces was investigated. Surfaces bearing nanotubes of 70 to 100 nm in diameter were found to trigger the morphological transition to a cortical actin pattern and rounded cell shape (both indicative of chondrocytic differentiation), as well as the up-regulation of type II collagen and integrin β4 protein expression through the down-regulation of Erk activity. Inhibition of Erk signaling reduced stress fiber formation and induced the transition to the cortical actin pattern in cells cultured on 30-nm-diameter nanotubes, which maintained their fibroblastoid morphologies in the absence of Erk inhibition. Collectively, these results indicate that a titanium-based nanotube surface can support chondrocytic functions among chondroprogenitors, and may therefore be useful for future cartilaginous applications. PMID:21677506

  18. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    SciTech Connect

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Ahn, Dong-Choon; Kim, In-Shik; Park, Sang-Youel

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18{beta

  19. Leishmania major lipophosphoglycan modulates the phenotype and inhibits migration of murine Langerhans cells

    PubMed Central

    Ponte-Sucre, Alicia; Heise, Dirk; Moll, Heidrun

    2001-01-01

    Langerhans cells (LC), members of the dendritic cell family, play a central role in the initiation and regulation of the immune response against the protozoan parasite Leishmania major. LC take up antigens in the skin and transport them to the regional lymph nodes for presentation to T cells. However, it is not known whether LC functions are modulated by parasite antigens. In the present study, we examined the effect of a major parasite surface molecule, L. major lipophosphoglycan (LPG), on the maturation of LC and their migratory properties. The results show that exposure to LPG did not affect the expression of major histocompatibility complex (MHC) class II and B7, but induced an up-regulation of CD25, CD31 and vascular endothelial (VE)-cadherin expression and a down-regulation of Mac-1 expression, by LC. Importantly, LPG treatment inhibited the migratory activity of LC, as it reduced their efflux from skin explants and their migration in transwell cultures. These results suggest that Leishmania LPG impairs LC migration out of the skin and thus may modulate their immunostimulatory functions, which require LC translocation from skin to lymph nodes. PMID:11899433

  20. miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression

    SciTech Connect

    He, Zhiwei Liu, Yi Xiao, Bing Qian, Xiaosen

    2015-02-13

    A large proportion of the NSCLC patients were insensitive to radiotherapy, but the exact mechanism is still unclear. This study explored the role of miR-25 in regulating sensitivity of NSCLC cells to ionizing radiation (IR) and its downstream targets. Based on measurement in tumor samples from NSCLC patients, this study found that miR-25 expression is upregulated in both NSCLC and radio-resistant NSCLC patients compared the healthy and radio-sensitive controls. In addition, BTG expression was found negatively correlated with miR-25a expression in the both tissues and cells. By applying luciferase reporter assay, we verified two putative binding sites between miR-25 and BTG2. Therefore, BTG2 is a directly target of miR-25 in NSCLC cancer. By applying loss-and-gain function analysis in NSCLC cell lines, we demonstrated that miR-25-BTG2 axis could directly regulated BTG2 expression and affect radiotherapy sensitivity of NSCLC cells. - Highlights: • miR-25 is upregulated, while BTG2 is downregulated in radioresistant NSCLC patients. • miR-25 modulates sensitivity to radiation induced apoptosis. • miR-25 directly targets BTG2 and suppresses its expression. • miR-25 modulates sensitivity to radiotherapy through inhibiting BTG2 expression.

  1. Neuropeptide FF inhibits LPS-mediated osteoclast differentiation of RAW264.7 cells.

    PubMed

    Sun, Yu-Long; Chen, Zhi-Hao; Li, Di-Jie; Zhao, Fan; Ma, Xiao-Li; Shang, Peng; Yang, Tuanming; Qian, Airong

    2014-01-01

    Neuropeptide FF (NPFF) has been implicated in many physiological processes. Previously, we have reported that NPFF modulates the viability and nitric oxide (NO) production of RAW264.7 macrophages. In this study, we investigated the influence of NPFF on lipopolysaccharide (LPS)-mediated osteoclast formation of RAW264.7 cells. Our results suggest that, NPFF dose-dependently (1 nM, 10 nM and 100 nM) inhibited osteoclast formation, TRAP enzyme activity and bone resorption in osteoclasts induced by LPS respectively. Moreover, LPS-provoked NO release was also inhibited by NPFF treatment, indicating a NO-dependent pathway is mainly involved. Furthermore, the alterations of osteoclast marker genes were also assessed including TRAP, Cathepsin K, MMP-9, NFATc1 and Runx2. NPFF downregulated LPS-caused gene augmentations of TRAP, Cathepsin K and MMP-9, whereas showed no influences on NFATc1 and Runx2. In addition, NPFF receptor 2 (NPFFR2) mRNA expression was also augmented in response to NPFF treatment, hinting the involvement of NPFFR2 pathway. It should be mentioned that RF9 (1 µ M), a reported pharmacological inhibitor for NPFF receptors, exerted NPFF-like agonist properties as to attenuate osteoclastogenesis. Collectively, our findings provide new evidence for the in vitro activity of NPFF on osteoclasts, which may be helpful to extend the scope of NPFF functions.

  2. Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication.

    PubMed

    Lee, Jong Seok; Lee, Yu-Na; Lee, Young-Tae; Hwang, Hye Suk; Kim, Ki-Hye; Ko, Eun-Ju; Kim, Min-Chul; Kang, Sang-Moo

    2015-01-01

    Ginseng has been used in humans for thousands of years but its effects on viral infection have not been well understood. We investigated the effects of red ginseng extract (RGE) on respiratory syncytial virus (RSV) infection using in vitro cell culture and in vivo mouse models. RGE partially protected human epithelial (HEp2) cells from RSV-induced cell death and viral replication. In addition, RGE significantly inhibited the production of RSV-induced pro-inflammatory cytokine (TNF-α) in murine dendritic and macrophage-like cells. More importantly, RGE intranasal pre-treatment prevented loss of mouse body weight after RSV infection. RGE treatment improved lung viral clearance and enhanced the production of interferon (IFN-γ) in bronchoalveolar lavage cells upon RSV infection of mice. Analysis of cellular phenotypes in bronchoalveolar lavage fluids showed that RGE treatment increased the populations of CD8+ T cells and CD11c+ dendritic cells upon RSV infection of mice. Taken together, these results provide evidence that ginseng has protective effects against RSV infection through multiple mechanisms, which include improving cell survival, partial inhibition of viral replication and modulation of cytokine production and types of immune cells migrating into the lung. PMID:25658239

  3. Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3β signaling pathway.

    PubMed

    Deng, Juan; Habib, Ahsan; Obregon, Demian F; Barger, Steven W; Giunta, Brian; Wang, Yan-Jiang; Hou, Huayan; Sawmiller, Darrell; Tan, Jun

    2015-11-01

    We recently found that sAPPα decreases amyloid-beta generation by directly associating with β-site amyloid precursor protein (APP)-converting enzyme 1 (BACE1), thereby modulating APP processing. Because inhibition of BACE1 decreases glycogen synthase kinase 3 beta (GSK3β)-mediated Alzheimer's disease (AD)-like tau phosphorylation in AD patient-derived neurons, we determined whether sAPPα also reduces GSK3β-mediated tau phosphorylation. We initially found increased levels of inhibitory phosphorylation of GSK3β (Ser9) in primary neurons from sAPPα over-expressing mice. Further, recombinant human sAPPα evoked the same phenomenon in SH-SY5Y cells. Further, in SH-SY5Y cells over-expressing BACE1, and HeLa cells over-expressing human tau, sAPPα reduced GSK3β activity and tau phosphorylation. Importantly, the reductions in GSK3β activity and tau phosphorylation elicited by sAPPα were prevented by BACE1 but not γ-secretase inhibition. In accord, AD mice over-expressing human sAPPα had less GSK3β activity and tau phosphorylation compared with controls. These results implicate a direct relationship between APP β-processing and GSK3β-mediated tau phosphorylation and further define the central role of sAPPα in APP autoregulation and AD pathogenesis. PMID:26342176

  4. Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth.

    PubMed

    Li, Li; Wei, Lihui; Shen, Aling; Chu, Jianfeng; Lin, Jiumao; Peng, Jun

    2015-12-01

    Due to drug resistance and unacceptable cytotoxicity of most currently-used cancer chemotherapies, naturally occurring products have gained attention in the field of anticancer treatment. Oleanolic acid (OA) is a natural pentacyclic triterpenoic acid and a principal active compound in many medicinal herbs that have long been used to clinically treat various types of human malignancies. Using a colorectal cancer (CRC) mouse xenograft model and the cell line HT-29, we evaluated the effect of OA on tumor growth in vivo and in vitro, and investigated the underlying molecular mechanisms in the present study. We found that OA significantly inhibited tumor growth in volume and weight in CRC xenograft mice. In addition, OA treatment led to the induction of apoptosis and inhibition of cell proliferation. OA significantly reduced the expression of Bcl-2, Cyclin D1 and CKD4, whereas Bax and p21 expression was profoundly increased after OA treatment. Furthermore, OA significantly suppressed the activation of Akt, p70S6K and MAPK signalings, but promoted p53 pathway activation. Collectively, findings from this study suggest that OA possesses a broad range of anticancer effects via modulation of multiple intracellular targets. PMID:26459864

  5. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  6. Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes.

    PubMed

    Kim, Ah-Reum; Yoon, Bo Kyung; Park, Hyounkyoung; Seok, Jo Woon; Choi, Hyeonjin; Yu, Jung Hwan; Choi, Yoonjeong; Song, Su Jin; Kim, Ara; Kim, Jae-Woo

    2016-02-01

    Caffeine has been proposed to have several beneficial effects on obesity and its related metabolic diseases; however, how caffeine affects adipocyte differentiation has not been elucidated. In this study, we demonstrated that caffeine suppressed 3T3-L1 adipocyte differentiation and inhibited the expression of CCAAT/enhancer binding protein (C/EBP)α and peroxisome proliferator-activated receptor (PPAR)γ, two main adipogenic transcription factors. Anti-adipogenic markers, such as preadipocyte secreted factor (Pref)-1 and Krüppel-like factor 2, remained to be expressed in the presence of caffeine. Furthermore, 3T3-L1 cells failed to undergo typical mitotic clonal expansion in the presence of caffeine. Investigation of hormonal signaling revealed that caffeine inhibited the activation of AKT and glycogen synthase kinase (GSK) 3 in a dose-dependent manner, but not extracellular signal-regulated kinase (ERK). Our data show that caffeine is an anti-adipogenic bioactive compound involved in the modulation of mitotic clonal expansion during adipocyte differentiation through the AKT/GSK3 pathway. [BMB Reports 2016; 49(2): 111-115].

  7. Epigenetic Modulation of Human Induced Pluripotent Stem Cell Differentiation to Oligodendrocytes

    PubMed Central

    Douvaras, Panagiotis; Rusielewicz, Tomasz; Kim, Kwi Hye; Haines, Jeffery D.; Casaccia, Patrizia; Fossati, Valentina

    2016-01-01

    Pluripotent stem cells provide an invaluable tool for generating human, disease-relevant cells. Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system, characterized by myelin damage. Oligodendrocytes are the myelinating cells of the central nervous system (CNS); they differentiate from progenitor cells, and their membranes ensheath axons, providing trophic support and allowing fast conduction velocity. The current understanding of oligodendrocyte biology was founded by rodent studies, where the establishment of repressive epigenetic marks on histone proteins, followed by activation of myelin genes, leads to lineage progression. To assess whether this epigenetic regulation is conserved across species, we differentiated human embryonic and induced pluripotent stem cells to oligodendrocytes and asked whether similar histone marks and relative enzymatic activities could be detected. The transcriptional levels of enzymes responsible for methylation and acetylation of histone marks were analyzed during oligodendrocyte differentiation, and the post-translational modifications on histones were detected using immunofluorescence. These studies showed that also in human cells, differentiation along the oligodendrocyte lineage is characterized by the acquisition of multiple repressive histone marks, including deacetylation of lysine residues on histone H3 and trimethylation of residues K9 and K27. These data suggest that the epigenetic modulation of oligodendrocyte identity is highly conserved across species. PMID:27110779

  8. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    SciTech Connect

    Verma, Vikas; Sharma, Vikas; Singh, Vishal; Sharma, Siddharth; Bishnoi, Ajay Kumar; Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila; Kumar, Atul; Gupta, Gopal

    2014-10-15

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.

  9. Galectin-8 promotes regulatory T cell differentiation by modulating IL-2 and TGFβ signaling

    PubMed Central

    Sampson, James F.; Suryawanshi, Amol; Chen, Wei-Sheng; Rabinovich, Gabriel A.; Panjwani, Noorjahan

    2015-01-01

    Galectins have emerged as potent immunoregulatory molecules that control chronic inflammation through distinct mechanisms. Galectin-8 (Gal-8), a tandem-repeat type galectin with unique preference for α2,3-sialylated glycans, is ubiquitously expressed, but little is known about its role in T cell differentiation. Here, we report that Gal-8 promotes the polyclonal differentiation of primary mouse Treg cells in vitro. We further show that Gal-8 also facilitates antigen-specific differentiation of regulatory T (Treg) cells, and that Treg cells polarized in the presence of Gal-8 express cytotoxic T lymphocyte antigen-4 (CTLA-4) and IL-10 at a higher frequency than control Treg cells, and efficiently inhibit proliferation of activated T cells in vitro. Investigation of the mechanism by which Gal-8 promotes Treg conversion revealed that Gal-8 activates TGFβ signaling and promotes sustained IL-2R signaling. Taken together, these data suggest that Gal-8 promotes the differentiation of highly suppressive Treg cells, which has implications for the treatment of inflammatory and autoimmune diseases. PMID:26282995

  10. Circadian Clock Genes Modulate Human Bone Marrow Mesenchymal Stem Cell Differentiation, Migration and Cell Cycle

    PubMed Central

    Boucher, Helene; Vanneaux, Valerie; Domet, Thomas; Parouchev, Alexandre; Larghero, Jerome

    2016-01-01

    Many of the components that regulate the circadian clock have been identified in organisms and humans. The influence of circadian rhythm (CR) on the regulation of stem cells biology began to be evaluated. However, little is known on the role of CR on human mesenchymal stem cell (hMSCs) properties. The objective of this study was to investigate the influence of CR on the differentiation capacities of bone marrow hMSCs, as well as the regulation of cell cycle and migration capabilities. To that, we used both a chemical approach with a GSK-3β specific inhibitor (2’E,3’Z-6-bromoindirubin-3’-oxime, BIO) and a knockdown of CLOCK and PER2, two of the main genes involved in CR regulation. In these experimental conditions, a dramatic inhibition of adipocyte differentiation was observed, while osteoblastic differentiation capacities were not modified. In addition, cell migration was decreased in PER2-/- cells. Lastly, downregulation of circadian clock genes induced a modification of the hMSCs cell cycle phase distribution, which was shown to be related to a change of the cyclin expression profile. Taken together, these data showed that CR plays a role in the regulation of hMSCs differentiation and division, and likely represent key factor in maintaining hMSCs properties. PMID:26741371

  11. K+ Channel Inhibition Differentially Regulates Migration of Intestinal Epithelial Cells in Inflamed vs. Non-Inflamed Conditions in a PI3K/Akt-Mediated Manner

    PubMed Central

    Zundler, Sebastian; Caioni, Massimiliano; Müller, Martina; Strauch, Ulrike; Kunst, Claudia; Woelfel, Gisela

    2016-01-01

    Background Potassium channels have been shown to determine wound healing in different tissues, but their role in intestinal epithelial restitution–the rapid closure of superficial wounds by intestinal epithelial cells (IEC)–remains unclear. Methods In this study, the regulation of IEC migration by potassium channel modulation was explored with and without additional epidermal growth factor (EGF) under baseline and interferon-γ (IFN-γ)-pretreated conditions in scratch assays and Boyden chamber assays using the intestinal epithelial cell lines IEC-18 and HT-29. To identify possibly involved subcellular pathways, Western Blot (WB)-analysis of ERK and Akt phosphorylation was conducted and PI3K and ERK inhibitors were used in scratch assays. Furthermore, mRNA-levels of the potassium channel KCNN4 were determined in IEC from patients suffering from inflammatory bowel diseases (IBD). Results Inhibition of Ca2+-dependent potassium channels significantly increased intestinal epithelial restitution, which could not be further promoted by additional EGF. In contrast, inhibition of KCNN4 after pretreatment with IFN-γ led to decreased or unaffected migration. This effect was abolished by EGF. Changes in Akt, but not in ERK phosphorylation strongly correlated with these findings and PI3K but not ERK inhibition abrogated the effect of KCNN4 inhibition. Levels of KCNN4 mRNA were higher in samples from IBD patients compared with controls. Conclusions Taken together, we demonstrate that inhibition of KCNN4 differentially regulates IEC migration in IFN-γ-pretreated vs. non pretreated conditions. Moreover, our data propose that the PI3K signaling cascade is responsible for this differential regulation. Therefore, we present a cellular model that contributes new aspects to epithelial barrier dysfunction in chronic intestinal inflammation, resulting in propagation of inflammation and symptoms like ulcers or diarrhea. PMID:26824610

  12. Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Lee, Youngyi; Bae, Eun Ju

    2013-11-01

    Adipocytes are the key player in adipose tissue inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and differentiation of preadipocytes. Fistein, a polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-diabetic effects. In this study, we aimed to investigate the effect of fisetin on adipocyte proliferation and differentiation in 3T3-L1 preadipocyte cell line and its mechanism of action. We found that fisetin inhibits adipocyte differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ. Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the differentiation medium. We also found that fisetin inhibition of adipocyte differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of preadipocyte proliferation at early stage of differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the inhibition of adipocyte differentiation by fisetin may be at least in part mediated by cell cycle arrest during adipogenesis.

  13. The general anaesthetic etomidate inhibits the excitability of mouse thalamocortical relay neurons by modulating multiple modes of GABAA receptor-mediated inhibition

    PubMed Central

    Herd, Murray B; Lambert, Jeremy J; Belelli, Delia

    2014-01-01

    Modulation of thalamocortical (TC) relay neuron function has been implicated in the sedative and hypnotic effects of general anaesthetics. Inhibition of TC neurons is mediated predominantly by a combination of phasic and tonic inhibition, together with a recently described ‘spillover’ mode of inhibition, generated by the dynamic recruitment of extrasynaptic γ-aminobutyric acid (GABA)A receptors (GABAARs). Previous studies demonstrated that the intravenous anaesthetic etomidate enhances tonic and phasic inhibition in TC relay neurons, but it is not known how etomidate may influence spillover inhibition. Moreover, it is unclear how etomidate influences the excitability of TC neurons. Thus, to investigate the relative contribution of synaptic (α1β2γ2) and extrasynaptic (α4β2δ) GABAARs to the thalamic effects of etomidate, we performed whole-cell recordings from mouse TC neurons lacking synaptic (α10/0) or extrasynaptic (δ0/0) GABAARs. Etomidate (3 μm) significantly inhibited action-potential discharge in a manner that was dependent on facilitation of both synaptic and extrasynaptic GABAARs, although enhanced tonic inhibition was dominant in this respect. Additionally, phasic inhibition evoked by stimulation of the nucleus reticularis exhibited a spillover component mediated by δ-GABAARs, which was significantly prolonged in the presence of etomidate. Thus, etomidate greatly enhanced the transient suppression of TC spike trains by evoked inhibitory postsynaptic potentials. Collectively, these results suggest that the deactivation of thalamus observed during etomidate-induced anaesthesia involves potentiation of tonic and phasic inhibition, and implicate amplification of spillover inhibition as a novel mechanism to regulate the gating of sensory information through the thalamus during anaesthetic states. PMID:24773078

  14. Clostridium perfringens α-Toxin Impairs Innate Immunity via Inhibition of Neutrophil Differentiation

    PubMed Central

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Ohtani, Kaori; Kobayashi, Keiko; Miyamoto, Kazuaki; Shimizu, Tohru; Nagahama, Masahiro

    2016-01-01

    Although granulopoiesis is accelerated to suppress bacteria during infection, some bacteria can still cause life-threatening infections, but the mechanism behind this remains unclear. In this study, we found that mature neutrophils in bone marrow cells (BMCs) were decreased in C. perfringens-infected mice and also after injection of virulence factor α-toxin. C. perfringens infection interfered with the replenishment of mature neutrophils in the peripheral circulation and the accumulation of neutrophils at C. perfringens-infected sites in an α-toxin-dependent manner. Measurements of bacterial colony-forming units in C. perfringens-infected muscle revealed that α-toxin inhibited a reduction in the load of C. perfringens. In vitro treatment of isolated BMCs with α-toxin (phospholipase C) revealed that α-toxin directly decreased mature neutrophils. α-Toxin did not influence the viability of isolated mature neutrophils, while simultaneous treatment of BMCs with granulocyte colony-stimulating factor attenuated the reduction of mature neutrophils by α-toxin. Together, our results illustrate that impairment of the innate immune system by the inhibition of neutrophil differentiation is crucial for the pathogenesis of C. perfringens to promote disease to a life-threatening infection, which provides new insight to understand how pathogenic bacteria evade the host immune system. PMID:27306065

  15. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    SciTech Connect

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  16. Roflumilast Inhibits Respiratory Syncytial Virus Infection in Human Differentiated Bronchial Epithelial Cells

    PubMed Central

    Mata, Manuel; Martinez, Isidoro; Melero, Jose A.; Tenor, Herman; Cortijo, Julio

    2013-01-01

    Respiratory syncytial virus (RSV) causes acute exacerbations in COPD and asthma. RSV infects bronchial epithelial cells (HBE) that trigger RSV associated lung pathology. This study explores whether the phosphodiesterase 4 (PDE4) inhibitor Roflumilast N-oxide (RNO), alters RSV infection of well-differentiated HBE (WD-HBE) in vitro. WD-HBE were RSV infected in the presence or absence of RNO (0.1-100 nM). Viral infection (staining of F and G proteins, nucleoprotein RNA level), mRNA of ICAM-1, ciliated cell markers (digital high speed videomicroscopy, β-tubulin immunofluorescence, Foxj1 and Dnai2 mRNA), Goblet cells (PAS), mRNA of MUC5AC and CLCA1, mRNA and protein level of IL-13, IL-6, IL-8, TNFα, formation of H2O2 and the anti-oxidative armamentarium (mRNA of Nrf2, HO-1, GPx; total antioxidant capacity (TAC) were measured at day 10 or 15 post infection. RNO inhibited RSV infection of WD-HBE, prevented the loss of ciliated cells and markers, reduced the increase of MUC5AC and CLCA1 and inhibited the increase of IL-13, IL-6, IL-8, TNFα and ICAM-1. Additionally RNO reversed the reduction of Nrf2, HO-1 and GPx mRNA levels and consequently restored the TAC and reduced the H2O2 formation. RNO inhibits RSV infection of WD-HBE cultures and mitigates the cytopathological changes associated to this virus. PMID:23936072

  17. The Ubiquitin Ligase Praja1 Reduces NRAGE Expression and Inhibits Neuronal Differentiation of PC12 Cells

    PubMed Central

    Teuber, Jan; Mueller, Bettina; Fukabori, Ryoji; Lang, Daniel; Albrecht, Anne; Stork, Oliver

    2013-01-01

    Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect. PMID:23717400

  18. Eriodicyol inhibits osteoclast differentiation and ovariectomy-induced bone loss in vivo.

    PubMed

    Lee, Juhyun; Noh, A Long Sae Mi; Zheng, Ting; Kang, Ju-hee; Yim, Mijung

    2015-12-10

    Osteoclasts are responsible for bone erosion in diseases such as osteoporosis and rheumatoid arthritis. In the present study, we investigate the effects of eriodictyol, a flavonoid found naturally in citrus fruits, on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation using mouse bone marrow macrophages (BMMs). Eriodictyol inhibited RANKL-induced osteoclast formation in a dose-dependent manner without cytotoxicity. In addition, eriodictyol suppressed bone resorption activity of differentiated osteoclasts. The inhibitory effect of eriodictyol was associated with impaired activation of multiple signaling events downstream of RANK, including extracellular signal-regulated kinase, p38, and c-Jun terminal kinase phosphorylation, followed by decreased nuclear factor of activated T cells (NFAT)c1 expression. Ectopic overexpression of a constitutively active form of NFATc1 completely rescued the anti-osteoclastogenic effect of eriodictyol, suggesting that the anti-osteoclastogenic effect was mainly attributed to the reduction in NFATc1 expression. Consistent with the in vitro anti-osteoclastogenic effect, eriodictyol suppressed lipopolysaccharide-induced osteoclast formation in the calvarial model and ovariectomy-induced bone loss in vivo. Taken together, our data demonstrate that eriodictyol is a new therapeutic agent with the potential to prevent bone destructive diseases by reducing both osteoclast differentiation and function.

  19. Nitric Oxide Donor Molsidomine Positively Modulates Myogenic Differentiation of Embryonic Endothelial Progenitors

    PubMed Central

    Tirone, Mario; Conti, Valentina; Manenti, Fabio; Nicolosi, Pier Andrea; D’Orlando, Cristina; Azzoni, Emanuele

    2016-01-01

    Embryonic VE-Cadherin-expressing progenitors (eVE-Cad+), including hemogenic endothelium, have been shown to generate hematopoietic stem cells and a variety of other progenitors, including mesoangioblasts, or MABs. MABs are vessel-associated progenitors with multilineage mesodermal differentiation potential that can physiologically contribute to skeletal muscle development and regeneration, and have been used in an ex vivo cell therapy setting for the treatment of muscular dystrophy. There is currently a therapeutic need for molecules that could improve the efficacy of cell therapy protocols; one such good candidate is nitric oxide. Several studies in animal models of muscle dystrophy have demonstrated that nitric oxide donors provide several beneficial effects, including modulation of the activity of endogenous cell populations involved in muscle repair and the delay of muscle degeneration. Here we used a genetic lineage tracing approach to investigate whether the therapeutic effect of nitric oxide in muscle repair could derive from an improvement in the myogenic differentiation of eVE-Cad+ progenitors during embryogenesis. We show that early in vivo treatment with the nitric oxide donor molsidomine enhances eVE-Cad+ contribution to embryonic and fetal myogenesis, and that this effect could originate from a modulation of the properties of yolk sac hemogenic endothelium. PMID:27760216

  20. Down-modulation of erbB2 activity is necessary but not enough in the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Pagano, Eleonora; Coso, Omar; Calvo, Juan Carlos

    2008-05-01

    The high incidence of obesity-related pathologies, led to the study of the mechanisms involved in preadipose cell proliferation and differentiation. Here, we demonstrate that modulation of erbB2, plays a fundamental role during proliferation and adipogenic induction of preadipocytes. Using 3T3-L1 cells as model, we demonstrate that EGF (10 nM, 5 min) in addition to stimulate receptor tyrosine phosphorylation of both erbB2 and EGFR, is able to induce the heterodimer erbB2-EGFR. We treated proliferating 3T3-L1 cells with two inhibitors, AG 825 (IC(50) 0.35 microM, 54 times more selective for erbB2 than for EGFR, IC(50) 19 microM), and AG 879 (IC(50) of 1 microM for erbB2 versus 500 microM for EGFR). We found that both inhibited the proliferation on a dose-dependent basis, reaching a 30% maximal inhibition at 100 microM (P < 0.001) for AG825, and a 20% maximal inhibition at 10 microM (P < 0.001) for AG 879. These results involve erbB2 in 3T3-L1 proliferation. When studying the differentiation process, we found that the action of MIX-Dexa immediately activates MEK, JNK and p38 kinases. We observed that PD98059 and SP600125 (MEK-ERK and JNK inhibitors, respectively) added 1 h prior to the MIX-Dexa induction produced a decrease in erbB2 expression after 6 h, which is even greater than the one produced by the inducers, MIX-Dexa. This work supports erbB2 as a key factor in 3T3-L1 adipogenesis, acting mostly and not only during the proliferative phase but also during the differentiation through modulation of both its expression and activity. PMID:17990290

  1. Dense collagen matrix accelerates osteogenic differentiation and rescues the apoptotic response to MMP inhibition.

    PubMed

    Buxton, P G; Bitar, M; Gellynck, K; Parkar, M; Brown, R A; Young, A M; Knowles, J C; Nazhat, S N

    2008-08-01

    Bone is distinguished from other tissues by its mechanical properties, in particular stiffness. However, we know little of how osteoblasts react to the stiffness of their microenvironment; in this study we describe their response to a dense (>10 wt.%) collagenous 3D environment. Primary pre-osteoblasts were seeded within a novel form of native collagen, dense collagen, and cultured for up to 14 days in the presence and absence of osteogenic supplements: analysis was via Q-PCR, histology, fluorescent in situ zymography, MMP loss-of-function and tensile testing. Differentiation as measured through the up-regulation of Bsp (247-fold), Alp (14.2-fold), Col1A1 (4.5-fold), Mmp-13 (8.0-fold) and Runx2 (1.2-fold) transcripts was greatly accelerated compared to 2D plastic at 7 and 14 days in the same medium. The scale of this enhancement was confirmed through the use of growth factor stimulation on 2D via the addition of BMP-6 and the Hedgehog agonist purmorphamine. In concert, these molecules were capable of the same level of osteo-induction (measured by Bsp and Alp expression) as the dense collagen alone. Mineralisation was initially localised to remodelled pericellular regions, but by 14 days embedded cells were discernible within regions of apatite (confirmed by MicroRaman). Tensile testing of the matrices showed that this had resulted in a significant increase in Young's modulus at low strain values, consistent with a stiffening of the matrix. To determine the need for matrix remodelling in the mineralisation event the broad spectrum MMP Inhibitor Ilomastat was used. It was found that in its presence mineralisation could still occur (though serum-specific) and the apoptosis associated with MMP inhibition in hydrated collagen gels was abrogated. Analysis of gene expression indicated that this was due to the up-regulation of Mmp-13 in the presence of Ilomastat in dense collagen (400-fold), demonstrating a powerful feedback loop and a potential mechanism for the rescue

  2. Dense collagen matrix accelerates osteogenic differentiation and rescues the apoptotic response to MMP inhibition.

    PubMed

    Buxton, P G; Bitar, M; Gellynck, K; Parkar, M; Brown, R A; Young, A M; Knowles, J C; Nazhat, S N

    2008-08-01

    Bone is distinguished from other tissues by its mechanical properties, in particular stiffness. However, we know little of how osteoblasts react to the stiffness of their microenvironment; in this study we describe their response to a dense (>10 wt.%) collagenous 3D environment. Primary pre-osteoblasts were seeded within a novel form of native collagen, dense collagen, and cultured for up to 14 days in the presence and absence of osteogenic supplements: analysis was via Q-PCR, histology, fluorescent in situ zymography, MMP loss-of-function and tensile testing. Differentiation as measured through the up-regulation of Bsp (247-fold), Alp (14.2-fold), Col1A1 (4.5-fold), Mmp-13 (8.0-fold) and Runx2 (1.2-fold) transcripts was greatly accelerated compared to 2D plastic at 7 and 14 days in the same medium. The scale of this enhancement was confirmed through the use of growth factor stimulation on 2D via the addition of BMP-6 and the Hedgehog agonist purmorphamine. In concert, these molecules were capable of the same level of osteo-induction (measured by Bsp and Alp expression) as the dense collagen alone. Mineralisation was initially localised to remodelled pericellular regions, but by 14 days embedded cells were discernible within regions of apatite (confirmed by MicroRaman). Tensile testing of the matrices showed that this had resulted in a significant increase in Young's modulus at low strain values, consistent with a stiffening of the matrix. To determine the need for matrix remodelling in the mineralisation event the broad spectrum MMP Inhibitor Ilomastat was used. It was found that in its presence mineralisation could still occur (though serum-specific) and the apoptosis associated with MMP inhibition in hydrated collagen gels was abrogated. Analysis of gene expression indicated that this was due to the up-regulation of Mmp-13 in the presence of Ilomastat in dense collagen (400-fold), demonstrating a powerful feedback loop and a potential mechanism for the rescue

  3. Capsaicin inhibits the adipogenic differentiation of bone marrow mesenchymal stem cells by regulating cell proliferation, apoptosis, oxidative and nitrosative stress.

    PubMed

    Ibrahim, Muhammed; Jang, Mi; Park, Mina; Gobianand, Kuppannan; You, Seungkwon; Yeon, Sung-Heom; Park, Sungkwon; Kim, Min Ji; Lee, Hyun-Jeong

    2015-07-01

    Obesity is a global health problem that requires the utmost attention. Apart from other factors the trans-differentiation of mesenchymal stem cells (MSCs) into adipocytes is an added detrimental factor causing the intensification of obesity. The main objective of this present study is to analyse whether capsaicin is capable of inhibiting the differentiation of BMSCs to adipocytes. Bone marrow mesenchymal stem cells (BMSCs) were obtained and exposed to different concentrations of capsaicin for a period of 6 days following 2 days of adipogenic induction. The capsaicin exposed cells were collected at three different time points (2, 4 and 6 days) and subjected to various analyses. BMSCs after exposure to capsaicin showed dose and time dependent reduction in cell viability and proliferation. Interestingly, capsaicin induced cell cycle arrest at G0-G1 and increased apoptosis by increasing reactive oxygen species (ROS) and reactive nitrogen species (RNS) production. Capsaicin significantly inhibited the early adipogenic differentiation, lipogenesis and maturation of adipocytes with concomitant repression of PPARγ, C/EBPα, FABP4 and SCD-1. Taken together, the results of the present study have clearly emphasized that capsaicin potentially inhibits the adipogenic differentiation of mesenchymal stem cells via many different pathways (anti-proliferative, apoptotic and cell cycle arrest) through the stimulation of ROS and RNS production. Thus, capsaicin not only suppresses the maturation of pre-adipocytes into adipocytes but also inhibits the differentiation of mesenchymal stem cells into adipocytes.

  4. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    SciTech Connect

    He, Yonghan; Li, Ying; Zhang, Shuocheng; Perry, Ben; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  5. miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity

    PubMed Central

    Hu, Zebing; Wang, Yixuan; Sun, Zhongyang; Wang, Han; Zhou, Hua; Zhang, Lianchang; Zhang, Shu; Cao, Xinsheng

    2015-01-01

    Recent studies have demonstrated that miRNAs can play important roles in osteoblast differentiation and bone formation. However, the function of miRNAs in bone loss induced by microgravity remains unclear. In this study, we investigated the differentially expressed miRNAs in both the femur tissues of hindlimb unloading rats and primary rat osteoblasts (prOB) exposed to simulated microgravity. Specifically, miR-132-3p was found up-regulated and negatively correlated with osteoblast differentiation. Overexpression of miR-132-3p significantly inhibited prOB differentiation, whereas inhibition of miR-132-3p function yielded an opposite effect. Furthermore, silencing of miR-132-3p expression effectively attenuated the negative effects of simulated microgravity on prOB differentiation. Further experiments confirmed that E1A binding protein p300 (Ep300), a type of histone acetyltransferase important for Runx2 activity and stability, was a direct target of miR-132-3p. Up-regulation of miR-132-3p by simulated microgravity could inhibit osteoblast differentiation in part by decreasing Ep300 protein expression, which, in turn, resulted in suppression of the activity and acetylation of Runx2, a key regulatory factor of osteoblast differentiation. Taken together, our findings are the first to demonstrate that miR-132-3p can inhibit osteoblast differentiation and participate in the regulation of bone loss induced by simulated microgravity, suggesting a potential target for counteracting decreases in bone formation. PMID:26686902

  6. Interferon-γ differentially modulates the impact of tumor necrosis factor-α on human endometrial stromal cells.

    PubMed

    Spratte, Julia; Oemus, Anne; Zygmunt, Marek; Fluhr, Herbert

    2015-09-01

    The pro-inflammatory T helper (Th)-1 cytokines, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), are immunological factors relevant at the feto-maternal interface and involved in the pathophysiology of implantation disorders. The synergistic action of the two cytokines has been described with regard to apoptotic cell death and inflammatory responses in different cell types, but little is known regarding the human endometrium. Therefore, we examined the interaction of TNF-α and IFN-γ in human endometrial stromal cells (ESCs). ESCs were isolated from specimens obtained during hysterectomy and decidualized in vitro. Cells were incubated with TNF-α, IFN-γ or signaling-inhibitor. Insulin-like growth factor binding protein (IGFBP)-1, prolactin (PRL), leukemia inhibitory factor (LIF), interleukin (IL)-6, IL-8, regulated on activation normal T-cell expressed and secreted protein (RANTES) and monocyte chemotactic protein (MCP)-1 were measured using ELISA and real-time RT-PCR. Nuclear factor of transcription (NF)-κB and its inhibitor (IκBα) were analyzed by in-cell western assay and transcription factor assay. TNF-α inhibited and IFN-γ did not affect the decidualization of ESCs. In contrast, IFN-gamma differentially modulated the stimulating effect of TNF-alpha on cytokines by enhancing IL-6, RANTES and MCP-1 and attenuating LIF mRNA expression. These effects were time- and dose-dependent. IFN-γ had no impact on the initial activation of NF-κB signaling. Histone-deacetylase activity was involved in the modulating effect of IFN-γ on RANTES secretion. These observations showed a distinct pattern of interaction of the Th-1 cytokines, TNF-α and IFN-γ in the human endometrium, which could play an important role in the pathophysiology of implantation disorders.

  7. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ.

    PubMed

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Song, Guanbin

    Microgravity induces observed bone loss in space flight or simulated experiments, while the mechanism underlying it is still obscure. Here, we utilized a clinostat to model simulated microgravity (SMG) and found that SMG obviously inhibited osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs). We detected that SMG dramatically inhibited the expression of the transcriptional coactivator with PDZ-binding motif (TAZ), which acts as a vital regulator of osteogenesis. Interestingly, we found that lysophosphatidic acid (LPA) could activate TAZ and retain osteogenic differentiation of BMSCs under SMG. Our data further demonstrated that depletion of TAZ by siRNA blocked the LPA-induced increase in osteogenic differentiation of BMSCs under SMG. Moreover, Y27632 (the Rock inhibitor) abrogated the activation of TAZ and the increased osteogenic differentiation induced by LPA. Taken together, we propose that microgravity inhibits osteogenic differentiation of BMSCs due to decreased TAZ expression and that LPA can efficiently reverse the reduced osteogenic differentiation via the Rock-TAZ pathway. PMID:26549225

  8. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ.

    PubMed

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Song, Guanbin

    Microgravity induces observed bone loss in space flight or simulated experiments, while the mechanism underlying it is still obscure. Here, we utilized a clinostat to model simulated microgravity (SMG) and found that SMG obviously inhibited osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs). We detected that SMG dramatically inhibited the expression of the transcriptional coactivator with PDZ-binding motif (TAZ), which acts as a vital regulator of osteogenesis. Interestingly, we found that lysophosphatidic acid (LPA) could activate TAZ and retain osteogenic differentiation of BMSCs under SMG. Our data further demonstrated that depletion of TAZ by siRNA blocked the LPA-induced increase in osteogenic differentiation of BMSCs under SMG. Moreover, Y27632 (the Rock inhibitor) abrogated the activation of TAZ and the increased osteogenic differentiation induced by LPA. Taken together, we propose that microgravity inhibits osteogenic differentiation of BMSCs due to decreased TAZ expression and that LPA can efficiently reverse the reduced osteogenic differentiation via the Rock-TAZ pathway.

  9. NLS-RARα promotes proliferation and inhibits differentiation in HL-60 cells.

    PubMed

    Hu, Xiu-Xiu; Zhong, Liang; Zhang, Xi; Gao, Yuan-Mei; Liu, Bei-Zhong

    2014-01-01

    A unique mRNA produced in leukemic cells from a t(15;17) acute promyelocytic leukemia (APL) patient encodes a fusion protein between the retinoic acid receptor α (RARα) and a myeloid gene product called PML. Studies have reported that neutrophil elastase (NE) cleaves bcr-1-derived PML-RARα in early myeloid cells, leaving only the nuclear localization signal (NLS) of PML attached to RARα. The resultant NLS-RARα fusion protein mainly localizes to, and functions within, the cell nucleus. It is speculated that NLS-RARα may act in different ways from the wild-type RARα, but its biological characteristics have not been reported. This study takes two approaches. Firstly, the NLS-RARα was silenced with pNLS-RARα-shRNA. The mRNA and protein expression of NLS-RARα were detected by RT-PCR and Western blot respectively. Cell proliferation in vitro was assessed by MTT assay. Flow cytometry (FCM) was used to detect the differentiation of cells. Secondly, the NLS-RARα was over-expressed by preparation of recombinant adenovirus HL-60/pAd-NLS-RARα. The assays of mRNA and protein expression of NLS-RARα, and cell proliferation, were as above. By contrast, cell differentiation was stimulated by all trans retinoic acid (ATRA) (2.5µmol/L) at 24h after virus infection of pAd-NLS-RARα, and then detected by CD11b labeling two days later. The transcription and translation of C-MYC was detected in HL-60/pAd-NLS-RARα cells which treated by ATRA. Our results showed that compared to the control groups, the expression of NLS-RARα was significantly reduced in the HL-60/pNLS-RARα-shRNA cells, and increased dramatically in the HL-60/pAd-NLS-RARα cells. The proliferation was remarkably inhibited in the HL-60/pNLS-RARα-shRNA cells in a time-dependent manner, but markedly promoted in the HL-60/pAd-NLS-RARα cells. FCM outcome revealed the differentiation increased in HL-60/pNLS-RARα-shRNA cells, and decreased in the HL-60/pAd-NLS-RARα cells treated with 2.5µmol/L ATRA. The

  10. 14-3-3σ regulates keratinocyte proliferation and differentiation by modulating Yap1 cellular localization

    PubMed Central

    Sambandam, Sumitha A.T.; Kasetti, Ramesh Babu; Xue, Lei; Dean, Douglas C.; Lu, Qingxian; Li, Qiutang

    2015-01-01

    The homozygous repeated epilation (Er/Er) mouse mutant of the gene encoding 14-3-3σ displays an epidermal phenotype characterized by hyperproliferative keratinocytes and undifferentiated epidermis. Heterozygous Er/+ mice develop spontaneous skin tumors and are highly sensitive to tumor-promoting DMBA/TPA induction. The molecular mechanisms underlying 14-3-3σ regulation of epidermal proliferation, differentiation, and tumor formation have not been well elucidated. In the present study, we found that Er/Er keratinocytes failed to sequester Yap1 in the cytoplasm, leading to its nuclear localization during epidermal development in vivo and under differentiation-inducing culture conditions in vitro. In addition, enhanced Yap1 nuclear localization was also evident in DMBA/TPA-induced tumors from Er/+ skin. Furthermore, shRNA knockdown of Yap1 expression in Er/Er keratinocytes inhibited their proliferation, suggesting that YAP1 functions as a downstream effector of 14-3-3σ controlling epidermal proliferation. We then demonstrated that keratinocytes express all seven 14-3-3 protein isoforms, some of which form heterodimers with 14-3-3σ, either full-length WT or the mutant form found in Er/Er mice. However Er 14-3-3σ does not interact with Yap1, as demonstrated by co-immunoprecipitation. We conclude that Er 14-3-3σ disrupts the interaction between 14-3-3 and Yap1, thus fails to block Yap1 nuclear transcriptional function, causing continued progenitor expansion and inhibition of differentiation in Er/Er epidermis. PMID:25668240

  11. A specific E3 ligase/deubiquitinase pair modulates TBP protein levels during muscle differentiation.

    PubMed

    Li, Li; Martinez, Silvia Sanchez; Hu, Wenxin; Liu, Zhe; Tjian, Robert

    2015-01-01

    TFIID-a complex of TATA-binding protein (TBP) and TBP-associated factors (TAFs)-is a central component of the Pol II promoter recognition apparatus. Recent studies have revealed significant downregulation of TFIID subunits in terminally differentiated myocytes, hepatocytes and adipocytes. Here, we report that TBP protein levels are tightly regulated by the ubiquitin-proteasome system. Using an in vitro ubiquitination assay coupled with biochemical fractionation, we identified Huwe1 as an E3 ligase targeting TBP for K48-linked ubiquitination and proteasome-mediated degradation. Upregulation of Huwe1 expression during myogenesis induces TBP degradation and myotube differentiation. We found that Huwe1 activity on TBP is antagonized by the deubiquitinase USP10, which protects TBP from degradation. Thus, modulating the levels of both Huwe1 and USP10 appears to fine-tune the requisite degradation of TBP during myogenesis. Together, our study unmasks a previously unknown interplay between an E3 ligase and a deubiquitinating enzyme regulating TBP levels during cellular differentiation.

  12. A specific E3 ligase/deubiquitinase pair modulates TBP protein levels during muscle differentiation

    PubMed Central

    Li, Li; Martinez, Silvia Sanchez; Hu, Wenxin; Liu, Zhe; Tjian, Robert

    2015-01-01

    TFIID—a complex of TATA-binding protein (TBP) and TBP-associated factors (TAFs)—is a central component of the Pol II promoter recognition apparatus. Recent studies have revealed significant downregulation of TFIID subunits in terminally differentiated myocytes, hepatocytes and adipocytes. Here, we report that TBP protein levels are tightly regulated by the ubiquitin-proteasome system. Using an in vitro ubiquitination assay coupled with biochemical fractionation, we identified Huwe1 as an E3 ligase targeting TBP for K48-linked ubiquitination and proteasome-mediated degradation. Upregulation of Huwe1 expression during myogenesis induces TBP degradation and myotube differentiation. We found that Huwe1 activity on TBP is antagonized by the deubiquitinase USP10, which protects TBP from degradation. Thus, modulating the levels of both Huwe1 and USP10 appears to fine-tune the requisite degradation of TBP during myogenesis. Together, our study unmasks a previously unknown interplay between an E3 ligase and a deubiquitinating enzyme regulating TBP levels during cellular differentiation. DOI: http://dx.doi.org/10.7554/eLife.08536.001 PMID:26393420

  13. Copper Inhibits NMDA Receptor-Independent LTP and Modulates the Paired-Pulse Ratio after LTP in Mouse Hippocampal Slices.

    PubMed

    Salazar-Weber, Nina L; Smith, Jeffrey P

    2011-01-01

    Copper misregulation has been implicated in the pathological processes underlying deterioration of learning and memory in Alzheimer's disease and other neurodegenerative disorders. Supporting this, inhibition of long-term potentiation (LTP) by copper (II) has been well established, but the exact mechanism is poorly characterized. It is thought that an interaction between copper and postsynaptic NMDA receptors is a major part of the mechanism; however, in this study, we found that copper (II) inhibited NMDA receptor-independent LTP in the CA3 region of hippocampal slices. In addition, in the CA3 and CA1 regions, copper modulated the paired-pulse ratio (PPR) in an LTP-dependent manner. Combined, this suggests the involvement of a presynaptic mechanism in the modulation of synaptic plasticity by copper. Inhibition of the copper-dependent changes in the PPR with cyclothiazide suggested that this may involve an interaction with the presynaptic AMPA receptors that regulate neurotransmitter release.

  14. Modulation of cytokine production by interferential current in differentiated HL-60 cells.

    PubMed

    Sontag, W

    2000-04-01

    The influence of interferential current (IFC) on the release of four cytokines was investigated. IFC is an amplitude-modulated 4 kHz current used in therapeutic applications. Human promyelocytes (HL-60) were differentiated to monocytes/macrophages by treatment with calcitriol. Release of tumor necrosis factor alpha (TNFalpha) and interleukines 1beta, 6, and 8 (IL-1beta, IL-6, and IL-8) into the supernatant was measured after exposure to IFC at different modulation frequencies. TNFalpha release was stimulated about twofold by 4 kHz sine waves alone. The influences of exposure time (5-30 min) and current density (2.5-2500 microA/c m(2)) were tested. A maximum field effect was found at an exposure time of 15 min and a current density of 250 microA/cm(2). With these exposure conditions (15 min and 250 microA/cm(2) ), cells were treated at different modulation frequencies and reacted for TNFalpha, IL-1beta, and IL-8 release in a complex manner. Within the frequencies studied (0-125 Hz), we found stimulation as well as depression of the release. In a second run the cells were activated by pretreatment with 10 microg/ml lipopolysaccharide (LPS) and exposed in the same way as the nonactivated cells. Again the modulation frequency influenced, in a complex way, the induction of TNFalpha, IL-1beta, and IL-8, resulting in a pattern of stimulation and depression of release different from that found in nonactivated cells. For IL-6 production no significant changes were detected in activated or non-activated cells.

  15. Cell-Specific Fine-Tuning of Neuronal Excitability by Differential Expression of Modulator Protein Isoforms

    PubMed Central

    Jepson, James; Sheldon, Amanda; Shahidullah, Mohammad; Fei, Hong; Koh, Kyunghee

    2013-01-01

    SLOB (SLOWPOKE-binding protein) modulates the Drosophila SLOWPOKE calcium-activated potassium channel. We have shown previously that SLOB deletion or RNAi knockdown decreases excitability of neurosecretory pars intercerebralis (PI) neurons in the adult Drosophila brain. In contrast, we found that SLOB deletion/knockdown enhances neurotransmitter release from motor neurons at the fly larval neuromuscular junction, suggesting an increase in excitability. Because two prominent SLOB isoforms, SLOB57 and SLOB71, modulate SLOWPOKE channels in opposite directions in vitro, we investigated whether divergent expression patterns of these two isoforms might underlie the differential modulation of excitability in PI and motor neurons. By performing detailed in vitro and in vivo analysis, we found strikingly different modes of regulatory control by the slob57 and slob71 promoters. The slob71, but not slob57, promoter contains binding sites for the Hunchback and Mirror transcriptional repressors. Furthermore, several core promoter elements that are absent in the slob57 promoter coordinately drive robust expression of a luciferase vector by the slob71 promoter in vitro. In addition, we visualized the expression patterns of the slob57 and slob71 promoters in vivo and found clear spatiotemporal differences in promoter activity. SLOB57 is expressed prominently in adult PI neurons, whereas larval motor neurons exclusively express SLOB71. In contrast, at the larval neuromuscular junction, SLOB57 expression appears to be restricted mainly to a subset of glial cells. Our results illustrate how the use of alternative transcriptional start sites within an ion channel modulator locus coupled with functionally relevant alternative splicing can be used to fine-tune neuronal excitability in a cell-specific manner. PMID:24133277

  16. Arsenic and Its Methylated Metabolites Inhibit the Differentiation of Neural Plate Border Specifier Cells.

    PubMed

    McCoy, Christopher R; Stadelman, Bradley S; Brumaghim, Julia L; Liu, Jui-Tung; Bain, Lisa J

    2015-07-20

    Exposure to arsenic in food and drinking water has been correlated with adverse developmental outcomes, such as reductions in birth weight and neurological deficits. Additionally, studies have shown that arsenic suppresses sensory neuron formation and skeletal muscle myogenesis, although the reason why arsenic targets both of these cell types in unclear. Thus, P19 mouse embryonic stem cells were used to investigate the mechanisms by which arsenic could inhibit cellular differentiation. P19 cells were exposed to 0, 0.1, or 0.5 μM sodium arsenite and induced to form embryoid bodies over a period of 5 days. The expression of transcription factors necessary to form neural plate border specifier (NPBS) cells, neural crest cells and their progenitors, and myocytes and their progenitors were examined. Early during differentiation, arsenic significantly reduced the transcript and protein expression of Msx1 and Pax3, both needed for NPBS cell formation. Arsenic also significantly reduced the protein expression of Sox 10, needed for neural crest progenitor cell production, by 31-50%, and downregulated the protein and mRNA levels of NeuroD1, needed for neural crest cell differentiation, in a time- and dose-dependent manner. While the overall protein expression of transcription factors in the skeletal muscle lineage was not changed, arsenic did alter their nuclear localization. MyoD nuclear translocation was significantly reduced on days 2-5 between 15 and 70%. At a 10-fold lower concentration, monomethylarsonous acid (MMA III) appeared to be just as potent as inorganic arsenic at reducing the mRNA levels Pax3 (79% vs84%), Sox10 (49% vs 65%), and Msx1 (56% vs 56%). Dimethylarsinous acid (DMA III) also reduced protein and transcript expression, but the changes were less dramatic than those with MMA or arsenite. All three arsenic species reduced the nuclear localization of MyoD and NeuroD1 in a similar manner. The early changes in the differentiation of neural plate border

  17. Pain facilitation and pain inhibition during conditioned pain modulation in fibromyalgia and in healthy controls.

    PubMed

    Potvin, Stéphane; Marchand, Serge

    2016-08-01

    Although fibromyalgia (FM) is associated with a deficit in inhibitory conditioned pain modulation (CPM), the discriminative power of CPM procedures is unknown. Moreover, the high intersubject heterogeneity in CPM responses in FM raises the possibility that a sizeable subgroup of these patients may experience pain facilitation during CPM, but the phenomenon has not been explicitly studied. To address these issues, 96 patients with FM and 71 healthy controls were recruited. Thermal stimuli were used to measure pain thresholds. Pain inhibition was elicited using a tonic thermal test (Peltier thermode) administered before and after activation of CPM mechanisms using a cold pressor test. Thermal pain thresholds were lower in patients with FM than in healthy controls. Pain ratings during the cold pressor test were higher in patients with FM, relative to controls. The CPM inhibitory efficacy was lower in patients with FM than in controls. The CPM procedure had good specificity (78.9%) but low sensitivity (45.7%), whereas a composite pain index had good sensitivity (75.0%) and specificity (78.9%). Finally, the rate of patients with FM who reported pain facilitation during the CPM procedure was found to be significantly increased compared with that of controls (41.7% vs 21.2%). The good discriminative power of the composite pain index highlights the need for further validation studies using mechanistically relevant psychophysical procedures in FM. The low sensitivity of the CPM procedure, combined with the large proportion of patients with FM experiencing pain facilitation during CPM, strongly suggests that endogenous pain inhibition mechanisms are deeply impaired in patients with FM, but only in a subgroup of them. PMID:27045524

  18. Pain facilitation and pain inhibition during conditioned pain modulation in fibromyalgia and in healthy controls.

    PubMed

    Potvin, Stéphane; Marchand, Serge

    2016-08-01

    Although fibromyalgia (FM) is associated with a deficit in inhibitory conditioned pain modulation (CPM), the discriminative power of CPM procedures is unknown. Moreover, the high intersubject heterogeneity in CPM responses in FM raises the possibility that a sizeable subgroup of these patients may experience pain facilitation during CPM, but the phenomenon has not been explicitly studied. To address these issues, 96 patients with FM and 71 healthy controls were recruited. Thermal stimuli were used to measure pain thresholds. Pain inhibition was elicited using a tonic thermal test (Peltier thermode) administered before and after activation of CPM mechanisms using a cold pressor test. Thermal pain thresholds were lower in patients with FM than in healthy controls. Pain ratings during the cold pressor test were higher in patients with FM, relative to controls. The CPM inhibitory efficacy was lower in patients with FM than in controls. The CPM procedure had good specificity (78.9%) but low sensitivity (45.7%), whereas a composite pain index had good sensitivity (75.0%) and specificity (78.9%). Finally, the rate of patients with FM who reported pain facilitation during the CPM procedure was found to be significantly increased compared with that of controls (41.7% vs 21.2%). The good discriminative power of the composite pain index highlights the need for further validation studies using mechanistically relevant psychophysical procedures in FM. The low sensitivity of the CPM procedure, combined with the large proportion of patients with FM experiencing pain facilitation during CPM, strongly suggests that endogenous pain inhibition mechanisms are deeply impaired in patients with FM, but only in a subgroup of them.

  19. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells.

    PubMed

    Piccolella, Margherita; Crippa, Valeria; Messi, Elio; Tetel, Marc J; Poletti, Angelo

    2014-01-01

    In the initial stages, human prostate cancer (PC) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. This therapy often induces selection of androgen-independent PC cells with increased invasiveness. We recently demonstrated, both in cells and mice, that a testosterone metabolite locally synthetized in prostate, the 5α-androstane-3β, 17β-diol (3β-Adiol), inhibits PC cell proliferation, migration and invasion, acting as an anti-proliferative/anti-metastatic agent. 3β-Adiol is unable to bind androgen receptor (AR), but exerts its protection against PC by specifically interacting with estrogen receptor beta (ERβ). Because of its potential retro-conversion to androgenic steroids, 3β-Adiol cannot be used "in vivo", thus, the aims of this study were to investigate the capability of four ligands of ERβ (raloxifen, tamoxifen, genistein and curcumin) to counteract PC progression by mimicking the 3β-Adiol activity. Our results demonstrated that raloxifen, tamoxifen, genistein and curcumin decreased DU145 and PC3 cell proliferation in a dose-dependent manner; in addition, all four compounds significantly decreased the detachment of cells seeded on laminin or fibronectin. Moreover, raloxifen, tamoxifen, genistein and curcumin-treated DU145 and PC3 cells showed a significant decrease in cell migration. Notably, all these effects were reversed by the anti-estrogen, ICI 182,780, suggesting that their actions are mediated by the estrogenic pathway, via the ERβ, the only isoform present in these PCs. In conclusion, these data demonstrate that by selectively activating the ERβ, raloxifen, tamoxifen, genistein and curcumin inhibit human PC cells proliferation and migration favoring cell adesion. These synthetic and natural modulators of ER action may exert a potent protective activity against the progression of PC even in its androgen-independent status. PMID:24184124

  20. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway

    SciTech Connect

    Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira; Lord-Dufour, Simon; Beliveau, Richard

    2012-08-01

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6R{alpha}) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention.

  1. Transforming growth factor beta differentially modulates the inducible nitric oxide synthase gene in distinct cell types.

    PubMed

    Gilbert, R S; Herschman, H R

    1993-08-31

    Nitric oxide is a mediator of paracrine cell signalling. An inducible form of nitric oxide synthase (iNOS) is expressed in macrophages and in Swiss 3T3 cells. Transforming growth factor beta (TGF-beta) is a cytokine that modulates many cellular functions. We find that TGF-beta cannot induce iNOS mRNA expression, either in macrophage cell lines or in Swiss 3T3 cells. However, TGF-beta attenuates lipopolysaccharide induction of iNOS mRNA in macrophages. In contrast, TGF-beta enhances iNOS induction by phorbol ester, serum or lipopolysaccharide in 3T3 cells. Thus TGF-beta can inhibit or augment iNOS mRNA induction in response to primary inducers, depending on the cell type in question.

  2. Arogenate Dehydratase Isoenzymes Profoundly and Differentially Modulate Carbon Flux into Lignins*

    PubMed Central

    Corea, Oliver R. A.; Ki, Chanyoung; Cardenas, Claudia L.; Kim, Sung-Jin; Brewer, Sarah E.; Patten, Ann M.; Davin, Laurence B.; Lewis, Norman G.

    2012-01-01

    How carbon flux differentially occurs in vascular plants following photosynthesis for protein formation, phenylpropanoid metabolism (i.e. lignins), and other metabolic processes is not well understood. Our previous discovery/deduction that a six-membered arogenate dehydratase (ADT1–6) gene family encodes the final step in Phe biosynthesis in Arabidopsis thaliana raised the fascinating question whether individual ADT isoenzymes (or combinations thereof) differentially modulated carbon flux to lignins, proteins, etc. If so, unlike all other lignin pathway manipulations that target cell wall/cytosolic processes, this would be the first example of a plastid (chloroplast)-associated metabolic process influencing cell wall formation. Homozygous T-DNA insertion lines were thus obtained for five of the six ADTs and used to generate double, triple, and quadruple knockouts (KOs) in different combinations. The various mutants so obtained gave phenotypes with profound but distinct reductions in lignin amounts, encompassing a range spanning from near wild type levels to reductions of up to ∼68%. In the various KOs, there were also marked changes in guaiacyl:syringyl ratios ranging from ∼3:1 to 1:1, respectively; these changes were attributed to differential carbon flux into vascular bundles versus that into fiber cells. Laser microscope dissection/pyrolysis GC/MS, histochemical staining/lignin analyses, and pADT::GUS localization indicated that ADT5 preferentially affects carbon flux into the vascular bundles, whereas the adt3456 knock-out additionally greatly reduced carbon flux into fiber cells. This plastid-localized metabolic step can thus profoundly differentially affect carbon flux into lignins in distinct anatomical regions and provides incisive new insight into different factors affecting guaiacyl:syringyl ratios and lignin primary structure. PMID:22311980

  3. miR-18b inhibits TGF-β1-induced differentiation of hair follicle stem cells into smooth muscle cells by targeting SMAD2.

    PubMed

    Liu, Xuejuan; Song, Lei; Liu, Jinyu; Wang, Shichao; Tan, Xiaohua; Bai, Xiaoguang; Bai, Tingting; Wang, Yimei; Li, Meiying; Song, Yaolin; Li, Yulin

    2013-08-30

    Human hair follicle mesenchymal stem cells (hHF-MSCs) are capable of differentiating into smooth muscle cells (SMCs) in response to transforming growth factor-β (TGF-β), and thus can be used for cardiovascular tissue engineering and regenerative medicine. However, the precise molecular mechanisms underlying SMC conversion of hHF-MSCs are still undefined. MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression post-transcriptionally by binding to the complementary sequences of targeted mRNAs. Accumulating evidence indicates that miRNAs are associated with SMC differentiation in vitro andin vivo. In this study, we revealed that miR-18b was significantly downregulated during TGF-β1-induced hHF-MSCs differentiation into SMC using miRNA array profiling and quantitative RT- PCR (qRT-PCR). Over-expression of miR-18b in hHF-MSCs led to remarkable downregulation of SMC-specific markers such as SMA and calponin proteins. On the contrary, inhibition of endogenous miR-18b by its antisense oligonucleotide antagomir-18b reversed the changes of SMA and calponin proteins. We also showed that SMAD2, a key transcription regulator in TGF-β signaling which was involved in SMC differentiation, is regulated by miR-18b. miR-18b could suppress the expression of SMAD2 protein by targeting the 3'UTR of SMAD2 gene without affecting its mRNA level in hHF-MSCs. Moreover, knockdown of SMAD2 by RNA interference could block the effect of inhibition of miR-18b on SMC differentiation, indicating that SMAD2 contributed to miR-18b mediated regulation of TGF-β-induced SMC differentiation. In conclusion, this study demonstrated that miR-18b regulated the TGF-β1-induced differentiation of hHF-MSCs into SMCs by targeting SMAD2 gene, and provided novel insights into the regulatory mechanisms of TGF-β-induced SMC differentiation. PMID:23916701

  4. miR-18b inhibits TGF-β1-induced differentiation of hair follicle stem cells into smooth muscle cells by targeting SMAD2.

    PubMed

    Liu, Xuejuan; Song, Lei; Liu, Jinyu; Wang, Shichao; Tan, Xiaohua; Bai, Xiaoguang; Bai, Tingting; Wang, Yimei; Li, Meiying; Song, Yaolin; Li, Yulin

    2013-08-30

    Human hair follicle mesenchymal stem cells (hHF-MSCs) are capable of differentiating into smooth muscle cells (SMCs) in response to transforming growth factor-β (TGF-β), and thus can be used for cardiovascular tissue engineering and regenerative medicine. However, the precise molecular mechanisms underlying SMC conversion of hHF-MSCs are still undefined. MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression post-transcriptionally by binding to the complementary sequences of targeted mRNAs. Accumulating evidence indicates that miRNAs are associated with SMC differentiation in vitro andin vivo. In this study, we revealed that miR-18b was significantly downregulated during TGF-β1-induced hHF-MSCs differentiation into SMC using miRNA array profiling and quantitative RT- PCR (qRT-PCR). Over-expression of miR-18b in hHF-MSCs led to remarkable downregulation of SMC-specific markers such as SMA and calponin proteins. On the contrary, inhibition of endogenous miR-18b by its antisense oligonucleotide antagomir-18b reversed the changes of SMA and calponin proteins. We also showed that SMAD2, a key transcription regulator in TGF-β signaling which was involved in SMC differentiation, is regulated by miR-18b. miR-18b could suppress the expression of SMAD2 protein by targeting the 3'UTR of SMAD2 gene without affecting its mRNA level in hHF-MSCs. Moreover, knockdown of SMAD2 by RNA interference could block the effect of inhibition of miR-18b on SMC differentiation, indicating that SMAD2 contributed to miR-18b mediated regulation of TGF-β-induced SMC differentiation. In conclusion, this study demonstrated that miR-18b regulated the TGF-β1-induced differentiation of hHF-MSCs into SMCs by targeting SMAD2 gene, and provided novel insights into the regulatory mechanisms of TGF-β-induced SMC differentiation.

  5. Bifunctional bioceramics stimulating osteogenic differentiation of a gingival fibroblast and inhibiting plaque biofilm formation.

    PubMed

    Shen, Ya; Wang, Zhejun; Wang, Jiao; Zhou, Yinghong; Chen, Hui; Wu, Chengtie; Haapasalo, Markus

    2016-04-01

    Gingival recession is a common clinical problem that results in esthetic deficiencies and poor plaque control and predominantly occurs in aged patients. In order to restore the cervical region, ideal biomaterials should possess the ability to stimulate proliferation and osteogenesis/cementogenesis of human gingival fibroblasts (HGF) and have a strong antibiofilm effect. The aim of the present study was to investigate the interactions of HGF and oral multispecies biofilms with Ca, Mg and Si-containing bredigite (BRT, Ca7MgSi4O16) bioceramics. BRT extract induced osteogenic/cementogenic differentiation of HGF and its inhibition of plaque biofilm formation were systematically studied. BRT extract in concentrations lower than <200 mg mL(-1) presented high biocompatibility to HGF cells in 3 days. Ion extracts from BRT also stimulated a series of bone-related gene and protein expressions in HGF cells. Furthermore, BRT extract significantly inhibited oral multispecies plaque biofilm growth on its surface and contributed to over 30% bacterial cell death without additional antibacterial agents in two weeks. A planktonic killing test showed that BRT suppressed 98% plaque bacterial growth compared to blank control in 3 days. The results also revealed that BRT extract has an osteostimulation effect on HGF. The suppression effect on plaque biofilms suggested that BRT might be used as a bioactive material for cervical restoration and that the synergistic effect of bioactive ions, such as Ca, Mg and Si ions, played an important role in the design and construction of bifunctional biomaterials in combination with tissue regeneration and antibiofilm activity. PMID:26806408

  6. Response control networks are selectively modulated by attention to rare events and memory load regardless of the need for inhibition.

    PubMed

    Wijeakumar, Sobanawartiny; Magnotta, Vincent A; Buss, Aaron T; Ambrose, Joseph P; Wifall, Timothy A; Hazeltine, Eliot; Spencer, John P

    2015-10-15

    Recent evidence has sparked debate about the neural bases of response selection and inhibition. In the current study, we employed two reactive inhibition tasks, the Go/Nogo (GnG) and Simon tasks, to examine questions central to these debates. First, we investigated whether a fronto-cortical-striatal system was sensitive to the need for inhibition per se or the presentation of infrequent stimuli, by manipulating the proportion of trials that do not require inhibition (Go/Compatible trials) relative to trials that require inhibition (Nogo/Incompatible trials). A cortico-subcortical network composed of insula, putamen, and thalamus showed greater activation on salient and infrequent events, regardless of the need for inhibition. Thus, consistent with recent findings, key parts of the fronto-cortical-striatal system are engaged by salient events and do not appear to play a selective role in response inhibition. Second, we examined how the fronto-cortical-striatal system is modulated by working memory demands by varying the number of stimulus-response (SR) mappings. Right inferior parietal lobule showed decreasing activation as the number of SR mappings increased, suggesting that a form of associative memory - rather than working memory - might underlie performance in these tasks. A broad motor planning and control network showed similar trends that were also modulated by the number of motor responses required in each task. Finally, bilateral lingual gyri were more robustly engaged in the Simon task, consistent with the role of this area in shifts of visuo-spatial attention. The current study sheds light on how the fronto-cortical-striatal network is selectively engaged in reactive control tasks and how control is modulated by manipulations of attention and memory load. PMID:26190403

  7. Response control networks are selectively modulated by attention to rare events and memory load regardless of the need for inhibition.

    PubMed

    Wijeakumar, Sobanawartiny; Magnotta, Vincent A; Buss, Aaron T; Ambrose, Joseph P; Wifall, Timothy A; Hazeltine, Eliot; Spencer, John P

    2015-10-15

    Recent evidence has sparked debate about the neural bases of response selection and inhibition. In the current study, we employed two reactive inhibition tasks, the Go/Nogo (GnG) and Simon tasks, to examine questions central to these debates. First, we investigated whether a fronto-cortical-striatal system was sensitive to the need for inhibition per se or the presentation of infrequent stimuli, by manipulating the proportion of trials that do not require inhibition (Go/Compatible trials) relative to trials that require inhibition (Nogo/Incompatible trials). A cortico-subcortical network composed of insula, putamen, and thalamus showed greater activation on salient and infrequent events, regardless of the need for inhibition. Thus, consistent with recent findings, key parts of the fronto-cortical-striatal system are engaged by salient events and do not appear to play a selective role in response inhibition. Second, we examined how the fronto-cortical-striatal system is modulated by working memory demands by varying the number of stimulus-response (SR) mappings. Right inferior parietal lobule showed decreasing activation as the number of SR mappings increased, suggesting that a form of associative memory - rather than working memory - might underlie performance in these tasks. A broad motor planning and control network showed similar trends that were also modulated by the number of motor responses required in each task. Finally, bilateral lingual gyri were more robustly engaged in the Simon task, consistent with the role of this area in shifts of visuo-spatial attention. The current study sheds light on how the fronto-cortical-striatal network is selectively engaged in reactive control tasks and how control is modulated by manipulations of attention and memory load.

  8. Ascorbic acid inhibits TPA-induced HL-60 cell differentiation by decreasing cellular H₂O₂ and ERK phosphorylation.

    PubMed

    Yiang, Giou-Teng; Chen, Jen-Ni; Wu, Tsai-Kun; Wang, Hsueh-Fang; Hung, Yu-Ting; Chang, Wei-Jung; Chen, Chinshuh; Wei, Chyou-Wei; Yu, Yung-Luen

    2015-10-01

    Retinoic acid (RA), vitamin D and 12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High‑dose ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and induces a small fraction of HL‑60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti‑oxidative stress function. Oxidative stress is required for HL‑60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL‑60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low‑dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL‑60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low‑dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL‑60 cell differentiation following treatment with TPA.

  9. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    PubMed Central

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-01-01

    Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSC) and subsequently to SMC as well. PMID:24878532

  10. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels

    PubMed Central

    Iannotti, Fabio A.; Silvestri, Cristoforo; Mazzarella, Enrico; Martella, Andrea; Calvigioni, Daniela; Piscitelli, Fabiana; Ambrosino, Paolo; Petrosino, Stefania; Czifra, Gabriella; Bíró, Tamás; Harkany, Tibor; Taglialatela, Maurizio; Di Marzo, Vincenzo

    2014-01-01

    Little is known of the involvement of endocannabinoids and cannabinoid receptors in skeletal muscle cell differentiation. We report that, due to changes in the expression of genes involved in its metabolism, the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are decreased both during myotube formation in vitro from murine C2C12 myoblasts and during mouse muscle growth in vivo. The endocannabinoid, as well as the CB1 agonist arachidonoyl-2-chloroethylamide, prevent myotube formation in a manner antagonized by CB1 knockdown and by CB1 antagonists, which, per se, instead stimulate differentiation. Importantly, 2-AG also inhibits differentiation of primary human satellite cells. Muscle fascicles from CB1 knockout embryos contain more muscle fibers, and postnatal mice show muscle fibers of an increased diameter relative to wild-type littermates. Inhibition of Kv7.4 channel activity, which plays a permissive role in myogenesis and depends on phosphatidylinositol 4,5-bisphosphate (PIP2), underlies the effects of 2-AG. We find that CB1 stimulation reduces both total and Kv7.4-bound PIP2 levels in C2C12 cells and inhibits Kv7.4 currents in transfected CHO cells. We suggest that 2-AG is an endogenous repressor of myoblast differentiation via CB1-mediated inhibition of Kv7.4 channels. PMID:24927567

  11. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb

    SciTech Connect

    Kuang Wei; Tan Jiali; Duan Yinzhong; Duan Jianmin; Wang Weijian; Jin Fang; Jin Zuolin; Yuan Xiao Liu Yanpu

    2009-01-09

    Proliferation and differentiation of muscle stem cells must be tightly regulated by intrinsic and extrinsic signals for effective regeneration and adaptive response. MicroRNAs have been implicated as potent regulators in diverse biological processes at the level of posttranscriptional repression. In this study, we found that miR-146a was significantly upregulated upon a 48-h cyclic stretch of 5% elongation/10cycles/min. Importantly, miR-146 was predicted to base-pair with sequences in the 3' UTR of Numb, which promotes satellite cell differentiation towards muscle cells by inhibiting Notch signaling. Through reporter assay and exogenous expression experiment, we confirmed Numb was inhibited by miR-146a. Inhibition of miR-146a by antago-miR-146a rescued the expression of Numb and facilitated the differentiation of C2C12 at a cost of compromised proliferation. Thus, for the first time, we propose a role of miR-146a in skewing the balance of muscle differentiation and proliferation through inhibiting the expression of Numb.

  12. Inhibition by pectic oligosaccharides of the invasion of undifferentiated and differentiated Caco-2 cells by Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of pectic oligosaccharides (POS) to inhibit adherence to and invasion of undifferentiated (UC) and differentiated (DC) Caco-2 cells by Campylobacter jejuni (C. jejuni) was investigated. It was observed that both adherence and invasion were significantly higher in UC than in DC. POS (2.5 ...

  13. Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical Inhibition Phases1[OPEN

    PubMed Central

    Ivanova, Aneta; Millar, A. Harvey; Whelan, James

    2016-01-01

    Previous studies have identified a range of transcription factors that modulate retrograde regulation of mitochondrial and chloroplast functions in Arabidopsis (Arabidopsis thaliana). However, the relative importance of these regulators and whether they act downstream of separate or overlapping signaling cascades is still unclear. Here, we demonstrate that multiple stress-related signaling pathways, with distinct kinetic signatures, converge on overlapping gene sets involved in energy organelle function. The transcription factor ANAC017 is almost solely responsible for transcript induction of marker genes around 3 to 6 h after chemical inhibition of organelle function and is a key regulator of mitochondrial and specific types of chloroplast retrograde signaling. However, an independent and highly transient gene expression phase, initiated within 10 to 30 min after treatment, also targets energy organelle functions, and is related to touch and wounding responses. Metabolite analysis demonstrates that this early response is concurrent with rapid changes in tricarboxylic acid cycle intermediates and large changes in transcript abundance of genes encoding mitochondrial dicarboxylate carrier proteins. It was further demonstrated that transcription factors AtWRKY15 and AtWRKY40 have repressive regulatory roles in this touch-responsive gene expression. Together, our results show that several regulatory systems can independently affect energy organelle function in response to stress, providing different means to exert operational control. PMID:27208304

  14. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection.

    PubMed

    Johansen, Lisa M; Brannan, Jennifer M; Delos, Sue E; Shoemaker, Charles J; Stossel, Andrea; Lear, Calli; Hoffstrom, Benjamin G; Dewald, Lisa Evans; Schornberg, Kathryn L; Scully, Corinne; Lehár, Joseph; Hensley, Lisa E; White, Judith M; Olinger, Gene G

    2013-06-19

    Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)- and ex-US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections.

  15. A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization

    PubMed Central

    Guo, Zhenhua; Stephenson, Robert; Qiu, Jiazhang; Zheng, Shijun; Luo, Zhao-Qing

    2014-01-01

    Successful infection by the opportunistic pathogen Legionella pneumophila requires the collective activity of hundreds of virulence proteins delivered into the host cell by the Dot/Icm type IV secretion system. These virulence proteins, also called effectors modulate distinct host cellular processes to create a membrane-bound niche called the Legionella containing vacuole (LCV) supportive of bacterial growth. We found that Ceg14(Lpg0437), a Dot/Icm substrate is toxic to yeast and such toxicity can be alleviated by overexpression of profilin, a protein involved in cytoskeletal structure in eukaryotes. We further showed that mutations in profilin affect actin binding but not other functions such as interactions with poly-L-proline or phosphatidylinositol, abolish its suppressor activity. Consistent with the fact the profilin suppresses its toxicity, expression of Ceg14 but not its non-toxic mutants in yeast affects actin distribution and budding of daughter cells. Although Ceg14 does not detectably interact with profilin, it co-sediments with filamentous actin and inhibits actin polymerization, causing the accumulation of short actin filaments. These results reveal that multiple L. pneumophila effectors target components of the host cytoskeleton. PMID:24286927

  16. Fibroblastic Transformation of Corneal Keratocytes by Rac Inhibition is Modulated by Extracellular Matrix Structure and Stiffness

    PubMed Central

    Petroll, W. Matthew; Lakshman, Neema

    2015-01-01

    The goal of this study was to investigate how alterations in extracellular matrix (ECM) biophysical properties modulate corneal keratocyte phenotypes in response to specific wound healing cytokines and Rho GTPases. Rabbit corneal keratocytes were plated within standard collagen matrices (2.5 mg/mL) or compressed collagen matrices (~100 mg/mL) and cultured in serum-free media, PDGF BB, IGF, FGF2 or TGFβ1, with or without the Rac1 inhibitor NSC23766 and/or the Rho kinase inhibitor Y-27632. After 1 to 4 days, cells were labeled for F-actin and imaged using confocal microscopy. Keratocytes within standard collagen matrices (which are highly compliant) maintained a dendritic phenotype following culture in serum-free media, PDGF, IGF and FGF, but developed stress fibers in TGFβ1. Keratocytes within compressed collagen (which has high stiffness and low porosity) maintained a dendritic phenotype following culture in serum-free media, PDGF and IGF, but developed stress fibers in both FGF and TGFβ1. The Rac inhibitor had no significant impact on growth factor responses in compliant matrices. Within compressed collagen matrices however, the Rac inhibitor induced fibroblastic transformation in serum-free media, PDGF and IGF. Fibroblast and myofibroblast transformation was blocked by Rho kinase inhibition. Overall, keratocyte growth factor responses appear to be regulated by both the interplay between Rho and Rac signaling, and the structural and mechanical properties of the ECM. PMID:25874856

  17. Fibroblastic Transformation of Corneal Keratocytes by Rac Inhibition is Modulated by Extracellular Matrix Structure and Stiffness.

    PubMed

    Petroll, W Matthew; Lakshman, Neema

    2015-04-14

    The goal of this study was to investigate how alterations in extracellular matrix (ECM) biophysical properties modulate corneal keratocyte phenotypes in response to specific wound healing cytokines and Rho GTPases. Rabbit corneal keratocytes were plated within standard collagen matrices (2.5 mg/mL) or compressed collagen matrices (~100 mg/mL) and cultured in serum-free media, PDGF BB, IGF, FGF2 or TGFβ1, with or without the Rac1 inhibitor NSC23766 and/or the Rho kinase inhibitor Y-27632. After 1 to 4 days, cells were labeled for F-actin and imaged using confocal microscopy. Keratocytes within standard collagen matrices (which are highly compliant) maintained a dendritic phenotype following culture in serum-free media, PDGF, IGF and FGF, but developed stress fibers in TGFβ1. Keratocytes within compressed collagen (which has high stiffness and low porosity) maintained a dendritic phenotype following culture in serum-free media, PDGF and IGF, but developed stress fibers in both FGF and TGFβ1. The Rac inhibitor had no significant impact on growth factor responses in compliant matrices. Within compressed collagen matrices however, the Rac inhibitor induced fibroblastic transformation in serum-free media, PDGF and IGF. Fibroblast and myofibroblast transformation was blocked by Rho kinase inhibition. Overall, keratocyte growth factor responses appear to be regulated by both the interplay between Rho and Rac signaling, and the structural and mechanical properties of the ECM.

  18. Rootin, a compound that inhibits root development through modulating PIN-mediated auxin distribution.

    PubMed

    Jeong, Suyeong; Kim, Jun-Young; Choi, Hyunmo; Kim, Hyunmin; Lee, Ilhwan; Soh, Moon-Soo; Nam, Hong Gil; Chang, Young-Tae; Lim, Pyung Ok; Woo, Hye Ryun

    2015-04-01

    Plant roots anchor the plant to the soil and absorb water and nutrients for growth. Understanding the molecular mechanisms regulating root development is essential for improving plant survival and agricultural productivity. Extensive molecular genetic studies have provided important information on crucial components for the root development control over the last few decades. However, it is becoming difficult to identify new regulatory components in root development due to the functional redundancy and lethality of genes involved in root development. In this study, we performed a chemical genetic screen to identify novel synthetic compounds that regulate root development in Arabidopsis seedlings. The screen yielded a root growth inhibitor designated as 'rootin', which inhibited Arabidopsis root development by modulating cell division and elongation, but did not significantly affect shoot development. Transcript analysis of phytohormone marker genes revealed that rootin preferentially altered the expression of auxin-regulated genes. Furthermore, rootin reduced the accumulation of PIN1, PIN3, and PIN7 proteins, and affected the auxin distribution in roots, which consequently may lead to the observed defects in root development. Our results suggest that rootin could be utilized to unravel the mechanisms underlying root development and to investigate dynamic changes in PIN-mediated auxin distribution. PMID:25711819

  19. Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress.

    PubMed

    Lin, Wensheng; Kemper, April; Dupree, Jeffrey L; Harding, Heather P; Ron, David; Popko, Brian

    2006-05-01

    Interferon-gamma (IFN-gamma) is believed to play a deleterious role in the immune-mediated demyelinating disorder multiple sclerosis. Here we have exploited transgenic mice that ectopically express IFN-gamma in a temporally controlled manner in the CNS to specifically study its effects on remyelination in the cuprizone-induced demyelination model and in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. CNS delivery of IFN-gamma severely suppressed remyelination in both models and impaired the clinical recovery of the mice experiencing EAE. These observations correlated with a dramatic reduction of oligodendroglial repopulation in the demyelinated lesions. Moreover, we found that in cuprizone-treated mice the detrimental actions of IFN-gamma were associated with endoplasmic reticulum (ER) stress in remyelinating oligodendrocytes. Compared with a wild-type genetic background, the presence of IFN-gamma in mice heterozygous for a loss of function mutation in the pancreatic ER kinase (PERK), a kinase that responds specifically to ER stress, further reduced the percentage of remyelinated axons and oligodendrocyte numbers in cuprizone-induced demyelinated lesions. Thus, these data suggest that IFN-gamma is capable of inhibiting remyelination in demyelinated lesions and that ER stress modulates the response of remyelinating oligodendrocytes to this cytokine. PMID:16504972

  20. Dopamine D₂ receptor modulation of human response inhibition and error awareness.

    PubMed

    Nandam, L Sanjay; Hester, Robert; Wagner, Joe; Dean, Angela J; Messer, Cassandra; Honeysett, Asha; Nathan, Pradeep J; Bellgrove, Mark A

    2013-04-01

    Response inhibition, comprising action cancellation and action restraint, and error awareness are executive functions of considerable clinical relevance to neuropsychiatric disorders. Nevertheless, our understanding of their underlying catecholamine mechanisms, particularly regarding dopamine, is limited. Here, we used the dopamine D2 agonist cabergoline to study its ability to improve inhibitory control and modulate awareness of performance errors. A randomized, double-blind, placebo-controlled, crossover design with a single dose of cabergoline (1.25 mg) and placebo (dextrose) was employed in 25 healthy participants. They each performed the stop-signal task, a well-validated measure of action cancellation, and the Error Awareness Task, a go/no-go measure of action restraint and error awareness, under each drug condition. Cabergoline was able to selectively reduce stop-signal RT, compared with placebo, indicative of enhanced action cancellation (p < .05). This enhancement occurred without concomitant changes in overall response speed or RT variability and was not seen for errors of commission on the Error Awareness Task. Awareness of performance errors on the go/no-go task was, however, significantly improved by cabergoline compared with placebo (p < .05). Our results contribute to growing evidence for the dopaminergic control of distinct aspects of human executive ability, namely, action cancellation and error awareness. The findings may aid the development of new, or the repurposing of existing, pharmacotherapy that targets the cognitive dysfunction of psychiatric and neurological disorders. They also provide further evidence that specific cognitive paradigms have correspondingly specific neurochemical bases. PMID:23163418

  1. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages.

    PubMed

    Sekhon-Loodu, Satvir; Ziaullah; Rupasinghe, H P Vasantha

    2015-03-01

    Phloridzin or phlorizin (PZ) is a predominant phenolic compound found in apple and also used in various natural health products. Phloridzin shows poor absorption and cellular uptake due to its hydrophilic nature. The aim was to investigate and compare the effect of docosahexaenoic acid (DHA) ester of PZ (PZ-DHA) and its parent compounds (phloridzin and DHA), phloretin (the aglycone of PZ) and cyclooxygenase inhibitory drugs (diclofenac and nimesulide) on production of pro-inflammatory biomarkers in inflammation-induced macrophages by lipopolysaccharide (LPS)-stimulation. Human THP-1 monocytes were seeded in 24-well plates (5×10(5)/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1μg/mL) for 48h to induce macrophage differentiation. After 48h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4h, followed by the LPS-stimulation (18h). Pre-exposure of PZ-DHA ester was more effective in reducing tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) protein levels compared to DHA and nimesulide. However, diclofenac was the most effective in reducing prostaglandin (PGE2) level by depicting a dose-dependent response. However, PZ-DHA ester and DHA were the most effective in inhibiting the activation of nuclear factor-kappa B (NF-κB) among other test compounds. Our results suggest that PZ-DHA ester might possess potential therapeutic activity to treat inflammation related disorders such as type 2 diabetes, asthma, atherosclerosis and inflammatory bowel disease. PMID:25637769

  2. Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity

    PubMed Central

    Ullah, Zakir; Kohn, Matthew J.; Yagi, Rieko; Vassilev, Lyubomir T.; DePamphilis, Melvin L.

    2008-01-01

    Genome endoreduplication during mammalian development is a rare event for which the mechanism is unknown. It first appears when fibroblast growth factor 4 (FGF4) deprivation induces differentiation of trophoblast stem (TS) cells into the nonproliferating trophoblast giant (TG) cells required for embryo implantation. Here we show that RO3306 inhibition of cyclin-dependent protein kinase 1 (CDK1), the enzyme required to enter mitosis, induced differentiation of TS cells into TG cells. In contrast, RO3306 induced abortive endoreduplication and apoptosis in embryonic stem cells, revealing that inactivation of CDK1 triggers endoreduplication only in cells programmed to differentiate into polyploid cells. Similarly, FGF4 deprivation resulted in CDK1 inhibition by overexpressing two CDK-specific inhibitors, p57/KIP2 and p21/CIP1. TS cell mutants revealed that p57 was required to trigger endoreduplication by inhibiting CDK1, while p21 suppressed expression of the checkpoint protein kinase CHK1, thereby preventing induction of apoptosis. Furthermore, Cdk2−/− TS cells revealed that CDK2 is required for endoreduplication when CDK1 is inhibited. Expression of p57 in TG cells was restricted to G-phase nuclei to allow CDK activation of S phase. Thus, endoreduplication in TS cells is triggered by p57 inhibition of CDK1 with concomitant suppression of the DNA damage response by p21. PMID:18981479

  3. A systematic method to identify modulation of transcriptional regulation via chromatin activity reveals regulatory network during mESC differentiation.

    PubMed

    Duren, Zhana; Wang, Yong

    2016-01-01

    Chromatin regulators (CRs) are crucial for connecting the chromatin level and transcriptome level by modulating chromatin structures, establishing, and maintaining epigenetic modifications. We present a systematic method to identify MOdulation of transcriptional regulation via CHromatin Activity (MOCHA) from gene expression data and demonstrate its advantage in associating CRs to their chromatin localization and understand CRs' function. We first re-construct the CRs modulation network by integrating the correlation and conditional correlation concepts. Then we quantify the chromatin activity as hidden variable in network by integrating the upstream and downstream information. We applied MOCHA to systematically explore the interplay of CRs, TFs, and target genes in mouse embryonic stem cells (ESC). As a result, MOCHA identified 420 chromatin regulators with modulation preference, including Pou5f1 and Eed. We found that BAF complex, NuRD complex, and polycomb-group proteins, regulate the delicate balance between pluripotency and differentiation by modulating key TFs including Klf4, Tcf3, and Max; NuRD complex members Mbd3 and Hdac1 may modulate Klf4 to achieve its dual functional roles in pluripotent and differentiation stages;Imprinted gene H19 and Igf2 are modulated by DNA methylation, histone acetylation, and insulator CTCF. Finally, we analyzed CR's combinational modulation pattern by constructing a CR-CR interaction network. PMID:26949222

  4. A systematic method to identify modulation of transcriptional regulation via chromatin activity reveals regulatory network during mESC differentiation

    PubMed Central

    Duren, Zhana; Wang, Yong

    2016-01-01

    Chromatin regulators (CRs) are crucial for connecting the chromatin level and transcriptome level by modulating chromatin structures, establishing, and maintaining epigenetic modifications. We present a systematic method to identify MOdulation of transcriptional regulation via CHromatin Activity (MOCHA) from gene expression data and demonstrate its advantage in associating CRs to their chromatin localization and understand CRs’ function. We first re-construct the CRs modulation network by integrating the correlation and conditional correlation concepts. Then we quantify the chromatin activity as hidden variable in network by integrating the upstream and downstream information. We applied MOCHA to systematically explore the interplay of CRs, TFs, and target genes in mouse embryonic stem cells (ESC). As a result, MOCHA identified 420 chromatin regulators with modulation preference, including Pou5f1 and Eed. We found that BAF complex, NuRD complex, and polycomb-group proteins, regulate the delicate balance between pluripotency and differentiation by modulating key TFs including Klf4, Tcf3, and Max; NuRD complex members Mbd3 and Hdac1 may modulate Klf4 to achieve its dual functional roles in pluripotent and differentiation stages;Imprinted gene H19 and Igf2 are modulated by DNA methylation, histone acetylation, and insulator CTCF. Finally, we analyzed CR’s combinational modulation pattern by constructing a CR-CR interaction network. PMID:26949222

  5. DIFFERENTIAL PROFILES OF CHOLINESTERASE INHIBITION AND NEUROBEHAVIORAL EFFECTS IN RATS EXPOSED TO FENAMIPHOS AND PROFENOPHOS.

    EPA Science Inventory

    The relationship between cholinesterase (ChE) inhibition and neurobehavioral changes was examined using two ChE-inhibiting organophosphorus pesticides, fenamiphos and profenophos. Both pesticides inhibit blood ChE, yet brain ChE is relatively spared (little to no inhibition up t...

  6. The LIM-only coactivator FHL2 modulates WT1 transcriptional activity during gonadal differentiation.

    PubMed

    Du, Xiaojuan; Hublitz, Philip; Günther, Thomas; Wilhelm, Dagmar; Englert, Christoph; Schüle, Roland

    2002-08-19

    An essential step during sex determination is the maintenance of the Müllerian duct in females and its regression in males caused by the expression of Müllerian inhibiting substance (MIS). In testes, the Wilms' tumor suppressor and the orphan nuclear receptor SF1 cooperatively bind to the promoter and activate transcription of MIS. In the ovaries, on the other hand, the orphan nuclear receptor DAX1 binds to SF1, inhibits transactivation by WT1/SF1 and thereby suppresses the induction of MIS expression. In addition, WT1 itself is responsible for the upregulation of DAX1 transcription. So far, little is known on which protein-protein interactions or cofactors elicit the spatiotemporal control of WT1-mediated transcription. Here we demonstrate coexpression of the LIM-only coactivator FHL2 and WT1. FHL2 and WT1 functionally interact both in vitro and in vivo. The importance of this interaction is revealed by the ability of FHL2 to potentiate the synergistic induction of MIS gene expression by WT1/SF1. Moreover, FHL2 coactivates transactivation of the DAX1 promoter by WT1. Hence, we present FHL2 as a novel transcriptional coactivator of WT1. The ability to modulate both DAX1 and MIS expression might allow FHL2 to act in the molecular fine tuning of WT1-dependent control mechanisms in the reproductive organs.

  7. Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Noncanonical cAMP/PKA Pathways

    PubMed Central

    Weivoda, Megan M; Ruan, Ming; Hachfeld, Christine M; Pederson, Larry; Howe, Alan; Davey, Rachel A; Zajac, Jeffrey D; Kobayashi, Yasuhiro; Williams, Bart O; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Although there has been extensive characterization of the Wnt signaling pathway in the osteoblast lineage, the effects of Wnt proteins on the osteoclast lineage are less well studied. We found that osteoclast lineage cells express canonical Wnt receptors. Wnt3a reduced osteoclast formation when applied to early bone-marrow macrophage (BMM) osteoclast differentiation cultures, whereas late addition did not suppress osteoclast formation. Early Wnt3a treatment inactivated the crucial transcription factor NFATc1 in osteoclast progenitors. Wnt3a led to the accumulation of nuclear β-catenin, confirming activation of canonical Wnt signaling. Reducing low-density lipoprotein receptor-related proteins (Lrp) 5 and Lrp6 protein expression prevented Wnt3a-induced inactivation of NFATc1; however, deletion of β-catenin did not block Wnt3a inactivation of NFATc1, suggesting that this effect was mediated by a noncanonical pathway. Wnt3a rapidly activated the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and pharmacological stimulation of cAMP/PKA signaling suppressed osteoclast differentiation; Wnt3a-induced NFATc1 phosphorylation was blocked by inhibiting interactions between PKA and A-kinase anchoring proteins (AKAPs). These data indicate that Wnt3a directly suppresses osteoclast differentiation through both canonical (β-catenin) and noncanonical (cAMP/PKA) pathways in osteoclast precursors. In vivo reduction of Lrp5 and Lrp6 expressions in the early osteoclast lineage via Rank promoter Cre recombination reduced trabecular bone mass, whereas disruption of Lrp5/6 expression in late osteoclast precursors via cathepsin K (Ctsk) promoter Cre recombination did not alter the skeletal phenotype. Surprisingly, reduction of Lrp5/6 in the early osteoclast lineage decreased osteoclast numbers, as well as osteoblast numbers. Published studies have previously noted that β-catenin signaling is required for osteoclast progenitor proliferation. Our in vivo data

  8. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    PubMed

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering. PMID:26760956

  9. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres

    PubMed Central

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering. PMID:26760956

  10. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    PubMed

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  11. Histones Differentially Modulate the Anticoagulant and Profibrinolytic Activities of Heparin, Heparin Derivatives, and Dabigatran.

    PubMed

    Ammollo, Concetta Tiziana; Semeraro, Nicola; Carratù, Maria Rosaria; Colucci, Mario; Semeraro, Fabrizio

    2016-02-01

    The antithrombin activity of unfractionated heparin (UFH) is offset by extracellular histones, which, along with DNA, represent a novel mediator of thrombosis and a structural component of thrombi. Here, we systematically evaluated the effect of histones, DNA, and histone-DNA complexes on the anticoagulant and profibrinolytic activities of UFH, its derivatives enoxaparin and fondaparinux, and the direct thrombin inhibitor dabigatran. Thrombin generation was assessed by calibrated automated thrombinography, inhibition of factor Xa and thrombin by synthetic substrates, tissue plasminogen activator-mediated clot lysis by turbidimetry, and thrombin-activatable fibrinolysis inhibitor (TAFI) activation by a functional assay. Histones alone delayed coagulation and slightly stimulated fibrinolysis. The anticoagulant activity of UFH and enoxaparin was markedly inhibited by histones, whereas that of fondaparinux was enhanced. Histones neutralized both the anti-Xa and anti-IIa activities of UFH and preferentially blocked the anti-IIa activity of enoxaparin. The anti-Xa activity of fondaparinux was not influenced by histones when analyzed by chromogenic substrates, but was potentiated in a plasma prothrombinase assay. Histones inhibited the profibrinolytic activity of UFH and enoxaparin and enhanced that of fondaparinux by acting on the modulation of TAFI activation by anticoagulants. Histone H1 was mainly responsible for these effects. Histone-DNA complexes, as well as intact neutrophil extracellular traps, impaired the activities of UFH, enoxaparin, and fondaparinux. Dabigatran was not noticeably affected by histones and/or DNA, whatever the assay performed. In conclusion, histones and DNA present in the forming clot may variably influence the antithrombotic activities of anticoagulants, suggesting a potential therapeutic advantage of dabigatran and fondaparinux over heparins.

  12. Upregulation of miR-22 Promotes Osteogenic Differentiation and Inhibits Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells by Repressing HDAC6 Protein Expression

    PubMed Central

    Huang, Shan; Wang, Shihua; Bian, Chunjing; Yang, Zhuo; Zhou, Hong; Zeng, Yang; Li, Hongling; Han, Qin

    2012-01-01

    Mesenchmal stem cells (MSCs) can be differentiated into either adipocytes or osteoblasts, and a reciprocal relationship exists between adipogenesis and osteogenesis. Multiple transcription factors and signaling pathways have been reported to regulate adipogenic or osteogenic differentiation, respectively, yet the molecular mechanism underlying the cell fate alteration between adipogenesis and osteogenesis still remains to be illustrated. MicroRNAs are important regulators in diverse biological processes by repressing protein expression of their targets. Here, miR-22 was found to regulate adipogenic and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hADMSCs) in opposite directions. Our data showed that miR-22 decreased during the process of adipogenic differentiation but increased during osteogenic differentiation. On one hand, overexpression of miR-22 in hADMSCs could inhibit lipid droplets accumulation and repress the expression of adipogenic transcription factors and adipogenic-specific genes. On the other hand, enhanced alkaline phosphatase activity and matrix mineralization, as well as increased expression of osteo-specific genes, indicated a positive role of miR-22 in regulating osteogenic differentiation. Target databases prediction and validation by Dual Luciferase Reporter Assay, western blot, and real-time polymerase chain reaction identified histone deacetylase 6 (HDAC6) as a direct downstream target of miR-22 in hADMSCs. Inhibition of endogenous HDAC6 by small-interfering RNAs suppressed adipogenesis and stimulated osteogenesis, consistent with the effect of miR-22 overexpression in hADMSCs. Together, our results suggested that miR-22 acted as a critical regulator of balance between adipogenic and osteogenic differentiation of hADMSCs by repressing its target HDAC6. PMID:22375943

  13. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts

    SciTech Connect

    Utting, J.C.; Robins, S.P.; Brandao-Burch, A.; Orriss, I.R.; Behar, J.; Arnett, T.R. . E-mail: t.arnett@ucl.ac.uk

    2006-06-10

    We investigated the effect of hypoxia on rat osteoblast function in long-term primary cultures. Reduction of pO{sub 2} from 20% to 5% and 2% decreased formation of mineralized bone nodules 1.7-fold and 11-fold, respectively. When pO{sub 2} was reduced further to 0.2%, bone nodule formation was almost abolished. The inhibitory effect of hypoxia on bone formation was partly due to decreased osteoblast proliferation, as measured by {sup 3}H-thymidine incorporation. Hypoxia also sharply reduced osteoblast alkaline phosphatase (ALP) activity and expression of mRNAs for ALP and osteocalcin, suggesting inhibition of differentiation to the osteogenic phenotype. Hypoxia did not increase the apoptosis of osteoblasts but induced a reversible state of quiescence. Transmission electron microscopy revealed that collagen fibrils deposited by osteoblasts cultured in 2% O{sub 2} were less organized and much less abundant than in 20% O{sub 2} cultures. Furthermore, collagen produced by hypoxic osteoblasts contained a lower percentage of hydroxylysine residues and exhibited an increased sensitivity to pepsin degradation. These data demonstrate the absolute oxygen requirement of osteoblasts for successful bone formation and emphasize the importance of the vasculature in maintaining bone health. We recently showed that hypoxia also acts in a reciprocal manner as a powerful stimulator of osteoclast formation. Considered together, our results help to explain the bone loss that occurs at the sites of fracture, tumors, inflammation and infection, and in individuals with vascular disease or anemia.

  14. Sub-MIC Tylosin Inhibits Streptococcus suis Biofilm Formation and Results in Differential Protein Expression.

    PubMed

    Wang, Shuai; Yang, Yanbei; Zhao, Yulin; Zhao, Honghai; Bai, Jingwen; Chen, Jianqing; Zhou, Yonghui; Wang, Chang; Li, Yanhua

    2016-01-01

    Streptococcus suis (S.suis) is an important zoonotic pathogen that causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections that are difficult to treat. In this study, the effect of tylosin on biofilm formation of S. suis was investigated. 1/2 minimal inhibitory concentration (MIC) and 1/4 MIC of tylosin were shown to inhibit S. suis biofilm formation in vitro. By using the iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment and with no treatment. A total of 1501 proteins were identified by iTRAQ. Ninety-six differentially expressed proteins were identified (Ratio > ±1.5, p < 0.05). Several metabolism proteins (such as phosphoglycerate kinase) and surface proteins (such as ABC transporter proteins) were found to be involved in biofilm formation. Our results indicated that S. suis metabolic regulation, cell surface proteins, and virulence proteins appear to be of importance in biofilm growth with sub-MIC tylosin treatment. Thus, our data revealed the rough regulation of biofilm formation that may provide a foundation for future research into mechanisms and targets. PMID:27065957

  15. Fluoxetine Induces Proliferation and Inhibits Differentiation of Hypothalamic Neuroprogenitor Cells In Vitro

    PubMed Central

    Sousa-Ferreira, Lígia; Aveleira, Célia; Botelho, Mariana; Álvaro, Ana Rita; Pereira de Almeida, Luís; Cavadas, Cláudia

    2014-01-01

    A significant number of children undergo maternal exposure to antidepressants and they often present low birth weight. Therefore, it is important to understand how selective serotonin reuptake inhibitors (SSRIs) affect the development of the hypothalamus, the key center for metabolism regulation. In this study we investigated the proliferative actions of fluoxetine in fetal hypothalamic neuroprogenitor cells and demonstrate that fluoxetine induces the proliferation of these cells, as shown by increased neurospheres size and number of proliferative cells (Ki-67+ cells). Moreover, fluoxetine inhibits the differentiation of hypothalamic neuroprogenitor cells, as demonstrated by decreased number of mature neurons (Neu-N+ cells) and increased number of undifferentiated cells (SOX-2+ cells). Additionally, fluoxetine-induced proliferation and maintenance of hypothalamic neuroprogenitor cells leads to changes in the mRNA levels of appetite regulator neuropeptides, including Neuropeptide Y (NPY) and Cocaine-and-Amphetamine-Regulated-Transcript (CART). This study provides the first evidence that SSRIs affect the development of hypothalamic neuroprogenitor cells in vitro with consequent alterations on appetite neuropeptides. PMID:24598761

  16. Sub-MIC Tylosin Inhibits Streptococcus suis Biofilm Formation and Results in Differential Protein Expression

    PubMed Central

    Wang, Shuai; Yang, Yanbei; Zhao, Yulin; Zhao, Honghai; Bai, Jingwen; Chen, Jianqing; Zhou, Yonghui; Wang, Chang; Li, Yanhua

    2016-01-01

    Streptococcus suis (S.suis) is an important zoonotic pathogen that causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections that are difficult to treat. In this study, the effect of tylosin on biofilm formation of S. suis was investigated. 1/2 minimal inhibitory concentration (MIC) and 1/4 MIC of tylosin were shown to inhibit S. suis biofilm formation in vitro. By using the iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment and with no treatment. A total of 1501 proteins were identified by iTRAQ. Ninety-six differentially expressed proteins were identified (Ratio > ±1.5, p < 0.05). Several metabolism proteins (such as phosphoglycerate kinase) and surface proteins (such as ABC transporter proteins) were found to be involved in biofilm formation. Our results indicated that S. suis metabolic regulation, cell surface proteins, and virulence proteins appear to be of importance in biofilm growth with sub-MIC tylosin treatment. Thus, our data revealed the rough regulation of biofilm formation that may provide a foundation for future research into mechanisms and targets. PMID:27065957

  17. Differential modulation of auditory responses to attended and unattended speech in different listening conditions

    PubMed Central

    Kong, Ying-Yee; Mullangi, Ala; Ding, Nai

    2014-01-01

    This study investigates how top-down attention modulates neural tracking of the speech envelope in different listening conditions. In the quiet conditions, a single speech stream was presented and the subjects paid attention to the speech stream (active listening) or watched a silent movie instead (passive listening). In the competing speaker (CS) conditions, two speakers of opposite genders were presented diotically. Ongoing electroencephalographic (EEG) responses were measured in each condition and cross-correlated with the speech envelope of each speaker at different time lags. In quiet, active and passive listening resulted in similar neural responses to the speech envelope. In the CS conditions, however, the shape of the cross-correlation function was remarkably different between the attended and unattended speech. The cross-correlation with the attended speech showed stronger N1 and P2 responses but a weaker P1 response compared with the cross-correlation with the unattended speech. Furthermore, the N1 response to the attended speech in the CS condition was enhanced and delayed compared with the active listening condition in quiet, while the P2 response to the unattended speaker in the CS condition was attenuated compared with the passive listening in quiet. Taken together, these results demonstrate that top-down attention differentially modulates envelope-tracking neural activity at different time lags and suggest that top-down attention can both enhance the neural responses to the attended sound stream and suppress the responses to the unattended sound stream. PMID:25124153

  18. Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes.

    PubMed

    Derry, W B; Wilson, L; Khan, I A; Luduena, R F; Jordan, M A

    1997-03-25

    Substoichiometric binding of taxol to tubulin in microtubules potently suppresses microtubule dynamics, which appears to be the most sensitive antiproliferative mechanism of taxol. To determine whether the beta-tubulin isotype composition of a microtubule can modulate sensitivity to taxol, we measured the effects of substoichiometric ratios of taxol bound to tubulin in microtubules on the dynamics of microtubules composed of purified alphabeta(II)-, alphabeta(III)-, or alphabeta(IV)-tubulin isotypes and compared the results with the effects of taxol on microtubules assembled from unfractionated tubulin. Substoichiometric ratios of bound taxol in microtubules assembled from purified beta-tubulin isotypes or unfractionated tubulin potently suppressed the shortening rates and the lengths shortened per shortening event. Correlation of the suppression of the shortening rate with the stoichiometry of bound taxol revealed that microtubules composed of purified alphabeta(II)-, alphabeta(III)-, and alphabeta(IV)-tubulin were, respectively, 1.6-, 7.4-, and 7.2-fold less sensitive to the effects of bound taxol than microtubules assembled from unfractionated tubulin. These results indicate that taxol differentially modulates microtubule dynamics depending upon the beta-tubulin isotype composition. The results are consistent with recent studies correlating taxol resistance in tumor cells with increased levels of beta(III0- and beta(IV)-tubulin expression and suggest that altered cellular expression of beta-tubulin isotypes can be an important mechanism by which tumor cells develop resistance to taxol.

  19. Differential growth factor induction and modulation of human gastric epithelial regeneration

    SciTech Connect

    Tetreault, Marie-Pier; Chailler, Pierre; Rivard, Nathalie; Menard, Daniel . E-mail: Daniel.Menard@USherbrooke.ca

    2005-05-15

    While several autocrine/paracrine growth factors (GFs) can all stimulate epithelial regeneration in experimentally wounded primary gastric cultures, clinical relevance for their non-redundant cooperative actions in human gastric ulcer healing is suggested by the sequential pattern of GF gene induction in vivo. Using new HGE cell lines able to form a coherent monolayer with tight junctions as well as using primary human gastric epithelial cultures, we show that EGF, TGF{alpha}, HGF and IGFs accelerate epithelial restitution upon wounding, independently of the TGF{beta} pathway (as opposed to intestinal cells). However, they differently modulate cell behavior: TGF{alpha} exerts strong effects (even more than EGF) on cytoplasmic spreading and non-oriented protruding activity of bordering cells whereas HGF preferentially coordinates single lamella formation, cell elongation and migration into the wound. IGF-I and IGF-II rather induce the alignment of bordering cells and maintain a compact monolayer front. The number of mitotic cells maximally increases with EGF, followed by TGF{alpha} and IGF-I,-II. The current study demonstrates that GFs differentially regulate the regeneration of human gastric epithelial cells through specific modulation of cell shape adaptation, migration and proliferation, further stressing that a coordination of GF activities would be necessary for the normal progression of post-wounding epithelial repair.

  20. Lithium chloride attenuates BMP-2 signaling and inhibits osteogenic differentiation through a novel WNT/GSK3- independent mechanism.

    PubMed

    Li, Jingjing; Khavandgar, Zohreh; Lin, Sue-Hwa; Murshed, Monzur

    2011-02-01

    Lithium inhibition of glycogen synthase kinase3 (GSK3) activity has been shown to mimic the canonical WNT signaling. Analogous to WNT, lithium prevents GSK3-mediated phosphorylation of cytosolic transcription factor β-catenin and its subsequent degradation by the proteasome complex. Although stabilization of β-catenin in osteoblasts has been shown to promote bone mass accrual in a mouse model, several studies reported inhibitory effects of lithium supplements on the osteogenic differentiation of cultured mesenchymal stem cells. One possible explanation for these apparent contradictory findings might be that lithium affects the differentiation of osteoblast progenitors through additional signaling events, which independently or in concert with WNT signaling, affect the bone resorption activities in vivo. In the current study, we used murine MC3T3-E1 pre-osteoblasts and a pluripotent mesenchymal cell line C2C12 to investigate lithium effects during the early stages of osteoblast differentiation. We demonstrate here that lithium inhibits BMP-2 signaling to affect osteogenic differentiation in both cell lines. Lithium treatment reduces BMP-2-induced SMAD 1,5,8 phosphorylation in both MC3T3-E1 and C2C12 cells without affecting their dephosphorylation. Additionally, in MC3T3-E1 cells, lithium attenuates BMP-2-induced osteogenic differentiation through GSK3 inhibition; while in C2C12 cells, these negative effects of lithium ions on BMP-2 signaling do not rely on GSK3 inhibition or activation of canonical WNT signaling. Our work suggests the presence of a novel GSK3/WNT-independent mechanism of lithium action during the early stages of osteogenic differentiation. PMID:20932949

  1. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation.

    PubMed

    Luo, W; Wu, H; Ye, Y; Li, Z; Hao, S; Kong, L; Zheng, X; Lin, S; Nie, Q; Zhang, X

    2014-07-17

    Previous studies have shown that miR-203 is a skin-specific microRNA (miRNA) with a profound role in skin cell differentiation. However, emerging microarray and deep sequencing data revealed that miR-203 is also expressed in embryonic skeletal muscle and myoblasts. In this study, we found that miR-203 was transiently upregulated in chicken embryos on days 10 to 16 (E10-E16) and was sharply downregulated and even not expressed after E16 in chicken embryonic skeletal muscle. Histological profiles and weight variations of embryo skeletal muscle revealed that miR-203 expression is correlated with muscle development. In vitro experiments showed that miR-203 exhibited downregulated expression during myoblast differentiation into myotubes. miR-203 overexpression inhibited myoblast proliferation and differentiation, whereas its loss-of-function increased myoblast proliferation and differentiation. During myogenesis, miR-203 can target and inhibit the expression of c-JUN and MEF2C, which were important for cell proliferation and muscle development, respectively. The overexpression of c-JUN significantly promoted myoblast proliferation. Conversely, knockdown of c-JUN by siRNA suppressed myoblast proliferation. In addition, the knockdown of MEF2C by siRNA significantly inhibited myoblast differentiation. Altogether, these data not only suggested that the expression of miR-203 is transitory during chicken skeletal muscle development but also showed a novel role of miR-203 in inhibiting skeletal muscle cell proliferation and differentiation by repressing c-JUN and MEF2C, respectively.

  2. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules

    NASA Astrophysics Data System (ADS)

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process.

  3. Progesterone receptors in normal mammary gland: receptor modulations in relation to differentiation

    PubMed Central

    1980-01-01

    The biological basis for the observed modulation in cytoplasmic progesterone receptors (PgR) of normal mammary gland occurring during mammary development was investigated. Specifically, the relative roles of hormones vs. differentiation on (a) the decrease in PgR concentration during pregnancy and lactation and (b) the loss of mammary responsiveness to estrogen during lactation were examined. PgR were measured using the synthetic progestin, R5020, as the ligand. The hormones estrogen and progesterone were tested in vivo for their effect of PgR concentration. Mammary gland differentiation was assessed morphologically and by measuring enzymatically active alpha- lactalbumin. These studies show that there is a stepwise decrease in PgR that occurs in two stages. The first decrease is completed by day 12 of pregnancy and the second decrease occurs only after parturition. There appears to be a hormonal basis for the first decrease and it appears to be caused by the negative effect of progesterone on estrogen- mediated increase in PgR. In direct contrast, the absence of PgR during lactation and the mammary tissue insensitivity to estrogenic stimulation of PgR were not related to the hormonal milieu of lactation but were directly related to the secretory state of the mammary gland and lactation per se. PMID:7410476

  4. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules.

    PubMed

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process.

  5. c-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation.

    PubMed

    Vaqué, José P; Fernández-García, Belén; García-Sanz, Pablo; Ferrandiz, Nuria; Bretones, Gabriel; Calvo, Fernando; Crespo, Piero; Marín, María C; León, Javier

    2008-02-01

    Although mutant Ras proteins were originally described as transforming oncoproteins, they induce growth arrest, senescence, and/or differentiation in many cell types. c-Myc is an oncogenic transcription factor that cooperates with Ras in cellular transformation and oncogenesis. However, the Myc-Ras relationship in cellular differentiation is largely unknown. Here, we have analyzed the effects of c-Myc on PC12-derived cells (UR61 cell line), harboring an inducible N-Ras oncogene. In these cells, Ras activation induces neuronal-like differentiation by a process involving c-Jun activation. We found that c-Myc inhibited Ras-mediated differentiation by a mechanism that involves the blockade of c-Jun induction in response to Ras signal. Accordingly, ectopically expressed c-Jun could bypass c-Myc impediment of Ras-induced differentiation and activator protein 1 activation. Interestingly, it did not rescue the proliferative arrest elicited by Ras and did not enhance the differentiation-associated apoptosis. The blockade of Ras-mediated induction of c-Jun takes place at the level of c-Jun proximal promoter. Mutational analysis revealed that c-Myc regions involved in DNA binding and transactivation are required to block differentiation and c-Jun induction. c-Myc does not seem to require Miz-1 to inhibit differentiation and block c-Jun induction. Furthermore, Max is not required for c-Myc activity, as UR61 cells lack a functional Max gene. c-Myc-inhibitory effect on the Ras/c-Jun connection is not restricted to UR61 cells as it can occur in other cell types as K562 or HEK293. In conclusion, we describe a novel interplay between c-Myc and c-Jun that controls the ability of Ras to trigger the differentiation program of pheochromocytoma cells.

  6. Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments

    SciTech Connect

    Raza, Haider . E-mail: h.raza@uaeu.ac.ae; John, Annie

    2005-09-15

    Tea polyphenols have been reported to be potent antioxidants and beneficial in oxidative stress related diseases. Prooxidant effects of tea polyphenols have also been reported in cell culture systems. In the present study, we have studied oxidative stress in the subcellular compartments of PC12 cells after treatment with different concentrations of the green tea polyphenol, epigallocatechin-3-gallate (EGCG). We have demonstrated that EGCG has differentially affected the production of reactive oxygen species (ROS), glutathione (GSH) metabolism and cytochrome P450 2E1 activity in the different subcellular compartments in PC12 cells. Our results have shown that although the cell survival was not inhibited by EGCG, there was, however, an increased DNA breakdown and activation of apoptotic markers, caspase 3 and poly- (ADP-ribose) polymerase (PARP) at higher concentrations of EGCG treatment. Our results suggest that the differential effects of EGCG might be related to the alterations in oxidative stress, GSH pools and CYP2E1 activity in different cellular compartments. These results may have implications in determining the chemopreventive therapeutic use of tea polyphenols in vivo.

  7. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum

    PubMed Central

    2010-01-01

    Background The extracellular promastigote and the intracellular amastigote stages alternate in the digenetic life cycle of the trypanosomatid parasite Leishmania. Amastigotes develop inside parasitophorous vacuoles of mammalian phagocytes, where they tolerate extreme environmental conditions. Temperature increase and pH decrease are crucial factors in the multifactorial differentiation process of promastigotes to amastigotes. Although expression profiling approaches for axenic, cell culture- and lesion-derived amastigotes have already been reported, the specific influence of temperature increase and acidification of the environment on developmental regulation of genes has not been previously studied. For the first time, we have used custom L. infantum genomic DNA microarrays to compare the isolated and the combined effects of both factors on the transcriptome. Results Immunofluorescence analysis of promastigote-specific glycoprotein gp46 and expression modulation analysis of the amastigote-specific A2 gene have revealed that concomitant exposure to temperature increase and acidification leads to amastigote-like forms. The temperature-induced gene expression profile in the absence of pH variation resembles the profile obtained under combined exposure to both factors unlike that obtained for exposure to acidification alone. In fact, the subsequent fold change-based global iterative hierarchical clustering analysis supports these findings. Conclusions The specific influence of temperature and pH on the differential regulation of genes described in this study and the evidence provided by clustering analysis is consistent with the predominant role of temperature increase over extracellular pH decrease in the amastigote differentiation process, which provides new insights into Leishmania physiology. PMID:20074347

  8. Honeybees (Apis mellifera) Learn Color Discriminations via Differential Conditioning Independent of Long Wavelength (Green) Photoreceptor Modulation

    PubMed Central

    Wijesekara Witharanage, Randika; Rosa, Marcello G. P.

    2012-01-01

    Background Recent studies on colour discrimination suggest that experience is an important factor in how a visual system processes spectral signals. In insects it has been shown that differential conditioning is important for processing fine colour discriminations. However, the visual system of many insects, including the honeybee, has a complex set of neural pathways, in which input from the long wavelength sensitive (‘green’) photoreceptor may be processed either as an independent achromatic signal or as part of a trichromatic opponent-colour system. Thus, a potential confound of colour learning in insects is the possibility that modulation of the ‘green’ photoreceptor could underlie observations. Methodology/Principal Findings We tested honeybee vision using light emitting diodes centered on 414 and 424 nm wavelengths, which limit activation to the short-wavelength-sensitive (‘UV’) and medium-wavelength-sensitive (‘blue’) photoreceptors. The absolute irradiance spectra of stimuli was measured and modelled at both receptor and colour processing levels, and stimuli were then presented to the bees in a Y-maze at a large visual angle (26°), to ensure chromatic processing. Sixteen bees were trained over 50 trials, using either appetitive differential conditioning (N = 8), or aversive-appetitive differential conditioning (N = 8). In both cases the bees slowly learned to discriminate between the target and distractor with significantly better accuracy than would be expected by chance. Control experiments confirmed that changing stimulus intensity in transfers tests does not significantly affect bee performance, and it was possible to replicate previous findings that bees do not learn similar colour stimuli with absolute conditioning. Conclusion Our data indicate that honeybee colour vision can be tuned to relatively small spectral differences, independent of ‘green’ photoreceptor contrast and brightness cues. We thus show that colour vision

  9. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.

    PubMed

    Shim, Joong Sup; Li, Ruo-Jing; Lv, Junfang; Head, Sarah A; Yang, Eun Ju; Liu, Jun O

    2015-06-28

    Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes. Inhibition of cholesterol trafficking by tamoxifen was accompanied by abnormal subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR2) and inhibition of the terminal glycosylation of the receptor. Tamoxifen also caused perinuclear positioning of lysosomes, which in turn trapped the mammalian target of rapamycin (mTOR) in the perinuclear region of endothelial cells. Abnormal distribution of VEGFR2 and mTOR and inhibition of VEGFR2 and mTOR activities by tamoxifen were significantly reversed by addition of cholesterol-cyclodextrin complex to the culture media of endothelial cells. Moreover, high concentrations of tamoxifen inhibited endothelial and breast cancer cell proliferation in a cholesterol-dependent, but ER-independent, manner. Together, these results unraveled a previously unrecognized mechanism of angiogenesis inhibition by tamoxifen and other SERM, implicating cholesterol trafficking as an attractive therapeutic target for cancer treatment.

  10. Advanced Properties of Urine Derived Stem Cells Compared to Adipose Tissue Derived Stem Cells in Terms of Cell Proliferation, Immune Modulation and Multi Differentiation.

    PubMed

    Kang, Hye Suk; Choi, Seock Hwan; Kim, Bum Soo; Choi, Jae Young; Park, Gang-Baek; Kwon, Tae Gyun; Chun, So Young

    2015-12-01

    Adipose tissue stem cells (ADSCs) would be an attractive autologous cell source. However, ADSCs require invasive procedures, and has potential complications. Recently, urine stem cells (USCs) have been proposed as an alternative stem cell source. In this study, we compared USCs and ADSCs collected from the same patients on stem cell characteristics and capacity to differentiate into various cell lineages to provide a useful guideline for selecting the appropriate type of cell source for use in clinical application. The urine samples were collected via urethral catheterization, and adipose tissue was obtained from subcutaneous fat tissue during elective laparoscopic kidney surgery from the same patient (n = 10). Both cells were plated for primary culture. Cell proliferation, colony formation, cell surface markers, immune modulation, chromosome stability and multi-lineage differentiation were analyzed for each USCs and ADSCs at cell passage 3, 5, and 7. USCs showed high cell proliferation rate, enhanced colony forming ability, strong positive for stem cell markers expression, high efficiency for inhibition of immune cell activation compared to ADSCs at cell passage 3, 5, and 7. In chromosome stability analysis, both cells showed normal karyotype through all passages. In analysis of multi-lineage capability, USCs showed higher myogenic, neurogenic, and endogenic differentiation rate, and lower osteogenic, adipogenic, and chondrogenic differentiation rate compared to ADSCs. Therefore, we expect that USC can be an alternative autologous stem cell source for muscle, neuron and endothelial tissue reconstruction instead of ADSCs.

  11. An H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation.

    PubMed

    Sabbattini, Pierangela; Sjoberg, Marcela; Nikic, Svetlana; Frangini, Alberto; Holmqvist, Per-Henrik; Kunowska, Natalia; Carroll, Tom; Brookes, Emily; Arthur, Simon J; Pombo, Ana; Dillon, Niall

    2014-03-01

    Methylated histones H3K9 and H3K27 are canonical epigenetic silencing modifications in metazoan organisms, but the relationship between the two modifications has not been well characterized. H3K9me3 coexists with H3K27me3 in pluripotent and differentiated cells. However, we find that the functioning of H3K9me3 is altered by H3S10 phosphorylation in differentiated postmitotic osteoblasts and cycling B cells. Deposition of H3K9me3/S10ph at silent genes is partially mediated by the mitogen- and stress-activated kinases (MSK1/2) and the Aurora B kinase. Acquisition of H3K9me3/S10ph during differentiation correlates with loss of paused S5 phosphorylated RNA polymerase II, which is present on Polycomb-regulated genes in embryonic stem cells. Reduction of the levels of H3K9me3/S10ph by kinase inhibition results in increased binding of RNAPIIS5ph and the H3K27 methyltransferase Ezh1 at silent promoters. Our results provide evidence of a novel developmentally regulated methyl-phospho switch that modulates Polycomb regulation in differentiated cells and stabilizes repressed states.

  12. SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development.

    PubMed

    Lei, Ienglam; Gao, Xiaolin; Sham, Mai Har; Wang, Zhong

    2012-07-13

    ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation.

  13. Advanced Properties of Urine Derived Stem Cells Compared to Adipose Tissue Derived Stem Cells in Terms of Cell Proliferation, Immune Modulation and Multi Differentiation

    PubMed Central

    2015-01-01

    Adipose tissue stem cells (ADSCs) would be an attractive autologous cell source. However, ADSCs require invasive procedures, and has potential complications. Recently, urine stem cells (USCs) have been proposed as an alternative stem cell source. In this study, we compared USCs and ADSCs collected from the same patients on stem cell characteristics and capacity to differentiate into various cell lineages to provide a useful guideline for selecting the appropriate type of cell source for use in clinical application. The urine samples were collected via urethral catheterization, and adipose tissue was obtained from subcutaneous fat tissue during elective laparoscopic kidney surgery from the same patient (n = 10). Both cells were plated for primary culture. Cell proliferation, colony formation, cell surface markers, immune modulation, chromosome stability and multi-lineage differentiation were analyzed for each USCs and ADSCs at cell passage 3, 5, and 7. USCs showed high cell proliferation rate, enhanced colony forming ability, strong positive for stem cell markers expression, high efficiency for inhibition of immune cell activation compared to ADSCs at cell passage 3, 5, and 7. In chromosome stability analysis, both cells showed normal karyotype through all passages. In analysis of multi-lineage capability, USCs showed higher myogenic, neurogenic, and endogenic differentiation rate, and lower osteogenic, adipogenic, and chondrogenic differentiation rate compared to ADSCs. Therefore, we expect that USC can be an alternative autologous stem cell source for muscle, neuron and endothelial tissue reconstruction instead of ADSCs. PMID:26713051

  14. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

    PubMed

    Liu, Tingjiao; Lin, Jinghan; Ju, Ting; Chu, Lei; Zhang, Liming

    2015-08-01

    Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification. PMID:25987498

  15. Resveratrol attenuates monocyte-to-macrophage differentiation and associated inflammation via modulation of intracellular GSH homeostasis: Relevance in atherosclerosis.

    PubMed

    Vasamsetti, Sathish Babu; Karnewar, Santosh; Gopoju, Raja; Gollavilli, Paradesi Naidu; Narra, Sai Ram; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-07-01

    Monocyte-to-macrophage differentiation promotes an inflammatory environment within the arterial vessel wall that causes a mal-adaptive immune response, which contributes to the progression of atheromatous plaque formation. In the current study, we show that resveratrol, a well-known antioxidant, dose-dependently attenuated phorbol myristate acetate (PMA)-induced monocyte-to-macrophage differentiation, as measured by cell adhesion, increase in cell size, and scavenger receptor expression in THP-1 monocytes. Also, resveratrol significantly inhibited PMA-induced pro-inflammatory cytokine/chemokine and matrix metalloprotease (MMP-9) production. This inhibitory effect of resveratrol on monocyte differentiation results from its ability to restore intracellular glutathione (GSH) status, as resveratrol in the presence of buthionine sulfoximine (BSO) failed to affect monocyte differentiation. Furthermore, PMA-induced monocyte differentiation and inflammation was greatly inhibited when cells were co-treated with N-Acetyl-l-cysteine (NAC), a GSH precursor, while the presence of BSO aggravated these processes. These results also show that resveratrol mediated up-regulation of GSH is due to AMP-activated protein kinase (AMPK)-α activation, as compound C (AMPK inhibitor) treatment drastically depleted intracellular GSH and exacerbated PMA-induced monocyte differentiation and pro-inflammatory cytokine production. More importantly, chronic administration of resveratrol efficiently prevented monocyte infiltration and markedly diminished angiotensin (Ang)-II-induced atheromatous plaque formation in apolipoprotein-E knockout (ApoE(-/-)) mice. We conclude that, intracellular GSH status plays a critical role in regulating monocyte-to-macrophage differentiation and inflammation and resveratrol, by restoring GSH levels, inhibits these processes. Taken together, these results suggest that resveratrol can attenuate atherosclerosis, at least, in part, by inhibiting monocyte differentiation

  16. IL-1β Irreversibly Inhibits Tenogenic Differentiation and Alters Metabolism In Injured Tendon-Derived Progenitor Cells In Vitro

    PubMed Central

    Zhang, Kairui; Asai, Shuji; Yu, Bin; Enomoto-Iwamoto, Motomi

    2015-01-01

    Tendon injuries are common, and the damaged tendon often turns into scar tissue and never completely regains the original biomechanical properties. Previous studies have reported that the mRNA levels of inflammatory cytokines such as IL-1β are remarkably up-regulated in injured tendons. To examine how IL-1β impacts tendon repair process, we isolated the injured tendon-derived progenitor cells (inTPCs) from mouse injured Achilles tendons and studied the effects of IL-1β on the inTPCs in vitro. IL-1β treatment strongly reduced expression of tendon cell markers such as scleraxis and tenomodulin, and also down-regulated gene expression of collagen 1, collagen 3, biglycan and fibromodulin in inTPCs. Interestingly, IL-1β stimulated lactate production with increases in hexokinase II and lactate dehydrogenase expression and a decrease in pyruvate dehydrogenase. Inhibition of lactate production restored IL-1β-induced down-regulation of collagen1 and scleraxis expression. Furthermore, IL-1β significantly inhibited adipogenic, chondrogenic and osteogenic differentiation of inTPCs. Interestingly, inhibition of tenogenic and adipogenic differentiation was not recovered after removal of IL-1β while chondrogenic and osteogenic differentiation abilities were not affected. These findings indicate that IL-1β strongly and irreversibly impairs tenogenic potential and alters glucose metabolism in tendon progenitors appearing in injured tendons. Inhibition of IL-1β may be beneficial for maintaining function of tendon progenitor cells during the tendon repair process. PMID:26051275

  17. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    PubMed Central

    Kim, Tae-Ho; Park, Eui Kyun; Huh, Man-Il; Kim, Hong Kyun; Kim, Shin-Yoon; Lee, Sang-Han

    2016-01-01

    Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica) extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr) cocoons spun by Rhus javanica (Bell.) Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr) or 100% ethanolic extract (eeGr) on ovariectomy- (OVX-) induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT) was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks) augmented the inhibition of femoral bone mineral density (BMD), bone mineral content (BMC), and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss. PMID:27313644

  18. Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells.

    PubMed

    Pacary, Emilie; Legros, Hélène; Valable, Samuel; Duchatelle, Pascal; Lecocq, Myriam; Petit, Edwige; Nicole, Olivier; Bernaudin, Myriam

    2006-07-01

    Bone-marrow-derived mesenchymal stem cells (MSCs) constitute an interesting cellular source to promote brain regeneration after neurodegenerative diseases. Recently, several studies suggested that oxygen-dependent gene expression is of crucial importance in governing the essential steps of neurogenesis such as cell proliferation, survival and differentiation. In this context, we analysed the effect of the HIF-1 (hypoxia inducible factor-1) activation-mimicking agent CoCl(2) on MSCs. CoCl(2) treatment increased the expression of the anti-proliferative gene BTG2/PC3 and decreased cyclin D1 expression. Expression of HIF-1alpha and its target genes EPO, VEGF and p21 was also upregulated. These changes were followed by inhibition of cell proliferation and morphological changes resulting in neuron-like cells, which had increased neuronal marker expression and responded to neurotransmitters. Echinomycin, a molecule inhibiting HIF-1 DNA-binding activity, blocked the CoCl(2) effect on MSCs. Additionally, by using Y-27632, we demonstrated that Rho kinase (ROCK) inhibition potentiated CoCl(2)-induced MSC differentiation in particular into dopaminergic neuron-like cells as attested by its effect on tyrosine hydroxylase expression. Altogether, these results support the ability of MSCs to differentiate into neuron-like cells in response to CoCl(2), an effect that might act, in part, through HIF-1 activation and cell-cycle arrest, and which is potentiated by inhibition of ROCK.

  19. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss.

    PubMed

    Kim, Tae-Ho; Park, Eui Kyun; Huh, Man-Il; Kim, Hong Kyun; Kim, Shin-Yoon; Lee, Sang-Han

    2016-01-01

    Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica) extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr) cocoons spun by Rhus javanica (Bell.) Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr) or 100% ethanolic extract (eeGr) on ovariectomy- (OVX-) induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT) was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks) augmented the inhibition of femoral bone mineral density (BMD), bone mineral content (BMC), and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss. PMID:27313644

  20. Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart.

    PubMed

    Stepanova, Anna; Shurubor, Yevgeniya; Valsecchi, Federica; Manfredi, Giovanni; Galkin, Alexander

    2016-09-01

    Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd~10(-8)M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2±6.0% and 56.4±5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme.

  1. Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart.

    PubMed

    Stepanova, Anna; Shurubor, Yevgeniya; Valsecchi, Federica; Manfredi, Giovanni; Galkin, Alexander

    2016-09-01

    Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd~10(-8)M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2±6.0% and 56.4±5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme. PMID:27287543

  2. Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells.

    PubMed

    Aleman, Mireille J; DeYoung, Maurice Phil; Tress, Matthew; Keating, Patricia; Perry, Gary W; Narayanan, Ramaswamy

    2005-09-01

    A Down's syndrome associated gene, Single Minded 2 gene short form (SIM2-s), is specifically expressed in colon tumors but not in the normal colon. Antisense inhibition of SIM2-s in a RKO-derived colon carcinoma cell line causes growth inhibition, apoptosis, and inhibition of tumor growth in a nude mouse tumoriginicity model. The mechanism of cell death in tumor cells is unclear. In the present study, we investigated the pathways underlying apoptosis. Apoptosis was seen in a tumor cell-specific manner in RKO cells but not in normal renal epithelial cells, despite inhibition of SIM2-s expression in both of these cells by the antisense. Apoptosis was depended on WT p53 status and was caspase-dependent; it was inhibited by a pharmacological inhibitor of mitogen-activated protein kinase activity. Expression of a key stress response gene, growth arrest and DNA damage gene (GADD)45alpha, was up-regulated in antisense-treated tumor cells but not in normal cells. In an isogenic RKO cell line expressing stable antisense RNA to GADD45alpha, a significant protection of the antisense-induced apoptosis was seen. Whereas antisense-treated RKO cells did not undergo cell cycle arrest, several markers of differentiation were deregulated, including alkaline phosphatase activity, a marker of terminal differentiation. Protection of apoptosis and block of differentiation showed a correlation in the RKO model. Our results support the tumor cell-selective nature of SIM2-s gene function, provide a direct link between SIM2-s and differentiation, and may provide a model to identify SIM2-s targets.

  3. Inhibition of growth by p205: a nuclear protein and putative tumor suppressor expressed during myeloid cell differentiation.

    PubMed

    Dermott, Jonathan M; Gooya, John M; Asefa, Benyam; Weiler, Sarah R; Smith, Mark; Keller, Jonathan R

    2004-01-01

    p205 belongs to a family of interferon-inducible proteins called the IFI-200 family, which have been implicated in the regulation of cell growth and differentiation. While p205 is induced in hematopoietic stem cells during myeloid cell differentiation, its function is not known. Therefore, the aim of this study was to determine the role of p205 in regulating proliferation in hematopoietic progenitor cells and in nonhematopoietic cell lines. We found that p205 localizes to the nucleus in hematopoietic and nonhematopoietic cell lines. Transient expression of p205 in murine IL-3-dependent BaF3 and 32D-C123 progenitor cell lines inhibited IL-3-induced growth and proliferation. The closely related IFI-200 family members, p204 and p202, similarly inhibited IL-3-dependent progenitor cell proliferation. p205 also inhibited the proliferation and growth of normal hematopoietic progenitor cells. In nonhematopoietic cell lines, p205 and p204 expression inhibited NIH3T3 cell colony formation in vitro, and microinjection of p205 expression vectors into NIH3T3 fibroblasts inhibited serum-induced proliferation. We have determined the functional domains of p205 necessary for activity, which were identified as the N-terminal domain in apoptosis and interferon response (DAPIN)/PYRIN domain, and the C-terminal retinoblastoma protein (Rb)-binding motif. In addition, we have demonstrated that a putative ataxia telangiectasia, mutated (ATM) kinase phosphorylation site specifically regulates the activity of p205. Taken together, these data suggest that p205 is a potent cell growth regulator whose activity is mediated by its protein-binding domains. We propose that during myelomonocytic cell differentiation, induction of p205 expression contributes to cell growth arrest, thus allowing progenitor cells to differentiate. PMID:15342947

  4. [Glucocorticoid and Bone. The inhibition of osteoblast differentiation and induction of osteocyte apoptosis through the regulation of Bcl-2 by glucocorticoids].

    PubMed

    Moriishi, Takeshi; Komori, Toshihisa

    2014-09-01

    Glucocorticoid-induced osteoporosis is caused by the inhibition of osteoblast differentiation and induction of osteoblast and osteocyte apoptosis. Glucocorticoids inhibit osteoblast differentiation by reducing the expression of Wnt signaling proteins, osteocalcin, and AP-1. Further, glucocorticoids induce osteoblast and osteocyte apoptosis by regulating the expression of Bcl-2 family proteins. Apoptotic signaling enhances osteoblast differentiation, at least in part, through FoxO. However, FoxO is also likely to be involved in the inhibition of osteoblast differentiation by glucocorticoids. PMID:25177005

  5. Toxoplasma gondii inhibits differentiation of C17.2 neural stem cells through Wnt/β-catenin signaling pathway.

    PubMed

    Gan, Xiaofeng; Zhang, Xian; Cheng, Zhengyang; Chen, Lingzhi; Ding, Xiaojuan; Du, Jian; Cai, Yihong; Luo, Qingli; Shen, Jilong; Wang, Yongzhong; Yu, Li

    2016-04-22

    Toxoplasma gondii is a major cause of congenital brain disease. T. gondii infection in the developing fetus frequently results in major neural developmental damage; however, the effects of the parasite infection on the neural stem cells, the key players in fetal brain development, still remain elusive. This study is aiming to explore the role of T. gondii infection on differentiation of neural stem cells (NSCs) and elucidate the underlying molecular mechanisms that regulate the inhibited differentiation of NSCs induced by the infection. Using a differentiation medium, i.e. , DMEM: F12 (1:1 mixture) supplemented with 2% N2, C17.2 neural stem cells (NSCs) were able to differentiate to neurons and astrocytes, respectively evidenced by immunofluorescence staining of differentiation markers including βIII-tubulin and glial fibrillary acidic protein (GFAP). After 5-day culture in the differentiation medium, the excreted-secreted antigens of T. gondii (Tg-ESAs) significantly down-regulated the protein levels of βIII-tubulin and GFAP in C17.2 NSCs in a dose-dependent manner. The protein level of β-catenin in the nucleus of C17.2 cells treated with both wnt3a (a key activator for Wnt/β-catenin signaling pathway) and Tg-ESAs was significantly lower than that in the cells treated with only wnt3a, but significantly higher than that in the cells treated with only Tg-ESAs. In conclusion, the ESAs of T. gondii RH blocked the differentiation of C17.2 NCSs and downregulated the expression of β-catenin, an essential component