Rho kinase inhibitors: a patent review (2012 - 2013).
Feng, Yangbo; LoGrasso, Philip V
2014-03-01
The Rho kinase/ROCK is critical in vital signal transduction pathways central to many essential cellular activities. Since ROCK possess multiple substrates, modulation of ROCK activity is useful for treatment of many diseases. Significant progress has been made in the development of ROCK inhibitors over the past two years (Jan 2012 to Aug 2013). Patent search in this review was based on FPO IP Research and Communities and Espacenet Patent Search. In this review, patent applications will be classified into four groups for discussions. The grouping is mainly based on structures or scaffolds (groups 1 and 2) and biological functions of ROCK inhibitors (groups 3 and 4). These four groups are i) ROCK inhibitors based on classical structural elements for ROCK inhibition; ii) ROCK inhibitors based on new scaffolds; iii) bis-functional ROCK inhibitors; and iv) novel applications of ROCK inhibitors. Although currently only one ROCK inhibitor (fasudil) is used as a drug, more drugs based on ROCK inhibition are expected to be advanced into market in the near future. Several directions should be considered for future development of ROCK inhibitors, such as soft ROCK inhibitors, bis-functional ROCK inhibitors, ROCK2 isoform-selective inhibitors, and ROCK inhibitors as antiproliferation agents.
[Advances on enzymes and enzyme inhibitors research based on microfluidic devices].
Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi
2010-06-01
With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.
Recent development of small molecule glutaminase inhibitors.
Song, Minsoo; Kim, Soong-Hyun; Im, Chun Young; Hwang, Hee-Jong
2018-05-24
Glutaminase (GLS) which is responsible for the conversion of glutamine to glutamate plays vital role in up-regulating cell metabolism for tumor cell growth, and is considered as a valuable therapeutic target for cancer treatment. Based on this important function of glutaminase in cancer, several GLS inhibitors have been developed from both academia and industries. Most importantly, Calithera Biosciences Inc. is actively developing glutaminase inhibitor CB-839 for the treatment of various cancers in phase 1 and 2 clinical trials at present. In this review, it is discussed about recent efforts to develop small molecule glutaminase inhibitors targeting glutamine metabolism both in the preclinical and clinical studies. In particular, more emphasis is placed on CB-839 since it is the only small molecule GLS inhibitor being studied in clinical setting. Inhibition mechanism is discussed based on x-ray structure study of thiadiazole derivatives as well. Finally, recent medicinal chemistry efforts to develop a new class of GLS inhibitors are given herein in the hope of providing useful information for GLS inhibitors of the next generation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics.
Law, Mary E; Corsino, Patrick E; Narayan, Satya; Law, Brian K
2015-11-01
Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics
Corsino, Patrick E.; Narayan, Satya
2015-01-01
Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non–ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non–ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer. PMID:26018905
West Nile Virus Drug Discovery
Lim, Siew Pheng; Shi, Pei-Yong
2013-01-01
The outbreak of West Nile virus (WNV) in 1999 in the USA, and its continued spread throughout the Americas, parts of Europe, the Middle East and Africa, underscored the need for WNV antiviral development. Here, we review the current status of WNV drug discovery. A number of approaches have been used to search for inhibitors of WNV, including viral infection-based screening, enzyme-based screening, structure-based virtual screening, structure-based rationale design, and antibody-based therapy. These efforts have yielded inhibitors of viral or cellular factors that are critical for viral replication. For small molecule inhibitors, no promising preclinical candidate has been developed; most of the inhibitors could not even be advanced to the stage of hit-to-lead optimization due to their poor drug-like properties. However, several inhibitors developed for related members of the family Flaviviridae, such as dengue virus and hepatitis C virus, exhibited cross-inhibition of WNV, suggesting the possibility to re-purpose these antivirals for WNV treatment. Most promisingly, therapeutic antibodies have shown excellent efficacy in mouse model; one of such antibodies has been advanced into clinical trial. The knowledge accumulated during the past fifteen years has provided better rationale for the ongoing WNV and other flavivirus antiviral development. PMID:24300672
West Nile virus drug discovery.
Lim, Siew Pheng; Shi, Pei-Yong
2013-12-03
The outbreak of West Nile virus (WNV) in 1999 in the USA, and its continued spread throughout the Americas, parts of Europe, the Middle East and Africa, underscored the need for WNV antiviral development. Here, we review the current status of WNV drug discovery. A number of approaches have been used to search for inhibitors of WNV, including viral infection-based screening, enzyme-based screening, structure-based virtual screening, structure-based rationale design, and antibody-based therapy. These efforts have yielded inhibitors of viral or cellular factors that are critical for viral replication. For small molecule inhibitors, no promising preclinical candidate has been developed; most of the inhibitors could not even be advanced to the stage of hit-to-lead optimization due to their poor drug-like properties. However, several inhibitors developed for related members of the family Flaviviridae, such as dengue virus and hepatitis C virus, exhibited cross-inhibition of WNV, suggesting the possibility to re-purpose these antivirals for WNV treatment. Most promisingly, therapeutic antibodies have shown excellent efficacy in mouse model; one of such antibodies has been advanced into clinical trial. The knowledge accumulated during the past fifteen years has provided better rationale for the ongoing WNV and other flavivirus antiviral development.
Fragment-based design of kinase inhibitors: a practical guide.
Erickson, Jon A
2015-01-01
Fragment-based drug design has become an important strategy for drug design and development over the last decade. It has been used with particular success in the development of kinase inhibitors, which are one of the most widely explored classes of drug targets today. The application of fragment-based methods to discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in kinase inhibitor design and development is laid out with specific examples. A guide to the overall process from initial discovery through fragment screening, including the difficulties in detection, to the computational methods available for use in optimization of the discovered fragments is reported.
Hot spot-based design of small-molecule inhibitors for protein-protein interactions.
Guo, Wenxing; Wisniewski, John A; Ji, Haitao
2014-06-01
Protein-protein interactions (PPIs) are important targets for the development of chemical probes and therapeutic agents. From the initial discovery of the existence of hot spots at PPI interfaces, it has been proposed that hot spots might provide the key for developing small-molecule PPI inhibitors. However, there has been no review on the ways in which the knowledge of hot spots can be used to achieve inhibitor design, nor critical examination of successful examples. This Digest discusses the characteristics of hot spots and the identification of druggable hot spot pockets. An analysis of four examples of hot spot-based design reveals the importance of this strategy in discovering potent and selective PPI inhibitors. A general procedure for hot spot-based design of PPI inhibitors is outlined. Copyright © 2014 Elsevier Ltd. All rights reserved.
Buonerba, Federica; Lepri, Susan; Goracci, Laura; Schindler, Bryan D; Seo, Susan M; Kaatz, Glenn W; Cruciani, Gabriele
2017-01-12
The NorA efflux pump is a potential drug target for reversal of resistance to selected antibacterial agents, and recently we described indole-based inhibitor candidates. Herein we report a second class of inhibitors derived from them but with significant differences in shape and size. In particular, compounds 13 and 14 are very potent inhibitors in that they demonstrated the lowest IC 50 values (2 μM) ever observed among all indole-based compounds we have evaluated.
Microarray-based screening of heat shock protein inhibitors.
Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten
2014-06-20
Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.
Chauhan, Jagat Singh; Dhanda, Sandeep Kumar; Singla, Deepak; Agarwal, Subhash M.; Raghava, Gajendra P. S.
2014-01-01
Overexpression of EGFR is responsible for causing a number of cancers, including lung cancer as it activates various downstream signaling pathways. Thus, it is important to control EGFR function in order to treat the cancer patients. It is well established that inhibiting ATP binding within the EGFR kinase domain regulates its function. The existing quinazoline derivative based drugs used for treating lung cancer that inhibits the wild type of EGFR. In this study, we have made a systematic attempt to develop QSAR models for designing quinazoline derivatives that could inhibit wild EGFR and imidazothiazoles/pyrazolopyrimidines derivatives against mutant EGFR. In this study, three types of prediction methods have been developed to design inhibitors against EGFR (wild, mutant and both). First, we developed models for predicting inhibitors against wild type EGFR by training and testing on dataset containing 128 quinazoline based inhibitors. This dataset was divided into two subsets called wild_train and wild_valid containing 103 and 25 inhibitors respectively. The models were trained and tested on wild_train dataset while performance was evaluated on the wild_valid called validation dataset. We achieved a maximum correlation between predicted and experimentally determined inhibition (IC50) of 0.90 on validation dataset. Secondly, we developed models for predicting inhibitors against mutant EGFR (L858R) on mutant_train, and mutant_valid dataset and achieved a maximum correlation between 0.834 to 0.850 on these datasets. Finally, an integrated hybrid model has been developed on a dataset containing wild and mutant inhibitors and got maximum correlation between 0.761 to 0.850 on different datasets. In order to promote open source drug discovery, we developed a webserver for designing inhibitors against wild and mutant EGFR along with providing standalone (http://osddlinux.osdd.net/) and Galaxy (http://osddlinux.osdd.net:8001) version of software. We hope our webserver (http://crdd.osdd.net/oscadd/ntegfr/) will play a vital role in designing new anticancer drugs. PMID:24992720
Yi, Chunling; Maksimoska, Jasna; Marmorstein, Ronen; Kissil, Joseph L
2010-09-01
The p21-activated kinases (PAKs), immediate downstream effectors of the small G-proteins of the Rac/cdc42 family, are critical mediators of signaling pathways regulating cellular behaviors and as such, have been implicated in pathological conditions including cancer. Recent studies have validated the requirement for PAKs in promoting tumorigenesis in breast carcinoma and neurofibromatosis. Thus, there has been considerable interest in the development of inhibitors to the PAKs, as biological markers and leads for the development of therapeutics. While initial approaches were based on screening for competitive organic inhibitors, more recent efforts have focused on the identification of allosteric inhibitors, organometallic ATP-competitive inhibitors and the use of PAK1/inhibitor crystal structures for inhibitor optimization. This has led to the identification of highly selective and potent inhibitors, which will serve as a basis for further development of inhibitors for therapeutic applications. Copyright 2010 Elsevier Inc. All rights reserved.
Structure and Ligand Based Drug Design Strategies in the Development of Novel 5-LOX Inhibitors
Aparoy, Polamarasetty; Kumar Reddy, Kakularam; Reddanna, Pallu
2012-01-01
Lipoxygenases (LOXs) are non-heme iron containing dioxygenases involved in the oxygenation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA). Depending on the position of insertion of oxygen, LOXs are classified into 5-, 8-, 9-, 12- and 15-LOX. Among these, 5-LOX is the most predominant isoform associated with the formation of 5-hydroperoxyeicosatetraenoic acid (5-HpETE), the precursor of non-peptido (LTB4) and peptido (LTC4, LTD4, and LTE4) leukotrienes. LTs are involved in inflammatory and allergic diseases like asthma, ulcerative colitis, rhinitis and also in cancer. Consequently 5-LOX has become target for the development of therapeutic molecules for treatment of various inflammatory disorders. Zileuton is one such inhibitor of 5-LOX approved for the treatment of asthma. In the recent times, computer aided drug design (CADD) strategies have been applied successfully in drug development processes. A comprehensive review on structure based drug design strategies in the development of novel 5-LOX inhibitors is presented in this article. Since the crystal structure of 5-LOX has been recently solved, efforts to develop 5-LOX inhibitors have mostly relied on ligand based rational approaches. The present review provides a comprehensive survey on these strategies in the development of 5-LOX inhibitors. PMID:22680930
Histone Deacetylase Inhibitors in Clinical Studies as Templates for New Anticancer Agents
Mottamal, Madhusoodanan; Zheng, Shilong; Huang, Tien L.; Wang, Guangdi
2015-01-01
Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility. PMID:25738536
Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subedi, Amit; Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570; Shimizu, Takeshi
2016-06-03
Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors basedmore » on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.« less
Natural product-based amyloid inhibitors.
Velander, Paul; Wu, Ling; Henderson, Frances; Zhang, Shijun; Bevan, David R; Xu, Bin
2017-09-01
Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned. Copyright © 2017 Elsevier Inc. All rights reserved.
Natural product-based amyloid inhibitors
Velander, Paul; Wu, Ling; Henderson, Frances; Zhang, Shijun; Bevan, David R.; Xu, Bin
2018-01-01
Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned. PMID:28390938
Bahta, Medhanit; Lountos, George T.; Dyas, Beverly; Kim, Sung-Eun; Ulrich, Robert G.; Waugh, David S.; Burke, Terrence R.
2011-01-01
Our current study reports the first KM optimization of a library of nitrophenylphosphate-containing substrates for generating an inhibitor lead against the Yersinia pestis outer protein phosphatase (YopH). A high activity substrate identified by this method (KM = 80 μM was converted from a substrate into an inhibitor by replacement of its phosphate group with difluoromethylphosphonic acid and by attachment of an aminooxy handle for further structural optimization by oxime-ligation. A co-crystal structure of this aminooxy-containing platform in complex with YopH allowed the identification of a conserved water molecule proximal to the aminooxy group that was subsequently employed for the design of furanyl-based oxime derivatives. By this process, a potent (IC50 = 190 nM) and non-promiscuous inhibitor was developed with good YopH selectivity relative to a panel of phosphatases. The inhibitor showed significant inhibition of intracellular Y. pestis replication at a non-cytotoxic concentration. The current work presents general approaches to PTP inhibitor development that may be useful beyond YopH. PMID:21443195
Carr, R D
2016-06-01
The dipeptidyl peptidase-4 (DPP-4) inhibitor concept is an example of prospective drug design and development based upon a distinct endocrine hypothesis. The design of enzyme inhibitors is a pragmatic approach to drug design; being compatible with the identification and optimization of small molecules that have properties commensurate with oral administration, as well as acceptable drug metabolism, distribution and elimination characteristics. Glucagon-like peptide 1 (GLP-1), a hormone with a spectrum of favourable metabolic actions, including glucose-dependent stimulation of insulin and inhibition of glucagon secretion, provided the endocrine basis from which the idea of using DPP-4 inhibitors as anti-diabetic agents was developed. The origin of the DPP-4 inhibitor concept was inspired by the angiotensin-converting enzyme inhibitor approach, which succeeded in establishing a class of extensively used therapeutic agents for the treatment of cardiovascular disorders. © 2016 Diabetes UK.
Mallat, Samir G; Tanios, Bassem Y; Itani, Houssam S; Lotfi, Tamara; McMullan, Ciaran; Gabardi, Steven; Akl, Elie A; Azzi, Jamil R
2017-08-07
The objective of this meta-analysis is to compare the incidences of cytomegalovirus and BK polyoma virus infections in renal transplant recipients receiving a mammalian target of rapamycin inhibitor (mTOR)-based regimen compared with a calcineurin inhibitor-based regimen. We conducted a comprehensive search for randomized, controlled trials up to January of 2016 addressing our objective. Other outcomes included acute rejection, graft loss, serious adverse events, proteinuria, wound-healing complications, and eGFR. Two review authors selected eligible studies, abstracted data, and assessed risk of bias. We assessed quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation methodology. We included 28 randomized, controlled trials with 6211 participants classified into comparison 1: mTOR inhibitor versus calcineurin inhibitor and comparison 2: mTOR inhibitor plus reduced dose of calcineurin inhibitor versus regular dose of calcineurin inhibitor. Results showed decreased incidence of cytomegalovirus infection in mTOR inhibitor-based group in both comparison 1 (risk ratio, 0.54; 95% confidence interval, 0.41 to 0.72), with high quality of evidence, and comparison 2 (risk ratio, 0.43; 95% confidence interval, 0.24 to 0.80), with moderate quality of evidence. The available evidence neither confirmed nor ruled out a reduction of BK polyoma virus infection in mTOR inhibitor-based group in both comparisons. Secondary outcomes revealed more serious adverse events and acute rejections in mTOR inhibitor-based group in comparison 1 and no difference in comparison 2. There was no difference in graft loss in both comparisons. eGFR was higher in the mTOR inhibitor-based group in comparison 1 (mean difference =4.07 ml/min per 1.73 m 2 ; 95% confidence interval, 1.34 to 6.80) and similar to the calcineurin inhibitor-based group in comparison 2. More proteinuria and wound-healing complications occurred in the mTOR inhibitor-based groups. We found moderate- to high-quality evidence of reduced risk of cytomegalovirus infection in renal transplant recipients in the mTOR inhibitor-based compared with the calcineurin inhibitor-based regimen. Our review also suggested that a combination of a mTOR inhibitor and a reduced dose of calcineurin inhibitor may be associated with similar eGFR and rates of acute rejections and serious adverse events compared with a standard calcineurin inhibitor-based regimen at the expense of higher incidence of proteinuria and wound-healing complications. Copyright © 2017 by the American Society of Nephrology.
Thangapandian, Sundarapandian; John, Shalini; Lee, Yuno; Kim, Songmi; Lee, Keun Woo
2011-01-01
Histone deacetylase 8 (HDAC8) is an enzyme involved in deacetylating the amino groups of terminal lysine residues, thereby repressing the transcription of various genes including tumor suppressor gene. The over expression of HDAC8 was observed in many cancers and thus inhibition of this enzyme has emerged as an efficient cancer therapeutic strategy. In an effort to facilitate the future discovery of HDAC8 inhibitors, we developed two pharmacophore models containing six and five pharmacophoric features, respectively, using the representative structures from two molecular dynamic (MD) simulations performed in Gromacs 4.0.5 package. Various analyses of trajectories obtained from MD simulations have displayed the changes upon inhibitor binding. Thus utilization of the dynamically-responded protein structures in pharmacophore development has the added advantage of considering the conformational flexibility of protein. The MD trajectories were clustered based on single-linkage method and representative structures were taken to be used in the pharmacophore model development. Active site complimenting structure-based pharmacophore models were developed using Discovery Studio 2.5 program and validated using a dataset of known HDAC8 inhibitors. Virtual screening of chemical database coupled with drug-like filter has identified drug-like hit compounds that match the pharmacophore models. Molecular docking of these hits reduced the false positives and identified two potential compounds to be used in future HDAC8 inhibitor design. PMID:22272142
Pharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors
Gaurav, Anand; Gautam, Vertika
2017-01-01
Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma and chronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known to reduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. To achieve this goal, ligand based pharmacophore modeling approach is employed. Separate pharmacophore hypotheses for PDE4B and PDE4D inhibitors were generated using HypoGen algorithm and 106 PDE4 inhibitors from literature having thiopyrano [3,2-d] Pyrimidines, 2-arylpyrimidines, and triazines skeleton. Suitable training and test sets were created using the molecules as per the guidelines available for HypoGen program. Training set was used for hypothesis development while test set was used for validation purpose. Fisher validation was also used to test the significance of the developed hypothesis. The validated pharmacophore hypotheses for PDE4B and PDE4D inhibitors were used in sequential virtual screening of zinc database of drug like molecules to identify selective PDE4B inhibitors. The hits were screened for their estimated activity and fit value. The top hit was subjected to docking into the active sites of PDE4B and PDE4D to confirm its selectivity for PDE4B. The hits are proposed to be evaluated further using in-vitro assays. PMID:29201082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahta, Medhanit; Lountos, George T.; Dyas, Beverly
Our current study reports the first K{sub M} optimization of a library of nitrophenylphosphate-containing substrates for generating an inhibitor lead against the Yersinia pestis outer protein phosphatase (YopH). A high activity substrate identified by this method (K{sub M} = 80 {micro}M) was converted from a substrate into an inhibitor by replacement of its phosphate group with difluoromethylphosphonic acid and by attachment of an aminooxy handle for further structural optimization by oxime ligation. A cocrystal structure of this aminooxy-containing platform in complex with YopH allowed the identification of a conserved water molecule proximal to the aminooxy group that was subsequently employedmore » for the design of furanyl-based oxime derivatives. By this process, a potent (IC{sub 50} = 190 nM) and nonpromiscuous inhibitor was developed with good YopH selectivity relative to a panel of phosphatases. The inhibitor showed significant inhibition of intracellular Y. pestis replication at a noncytotoxic concentration. The current work presents general approaches to PTP inhibitor development that may be useful beyond YopH.« less
2012-01-01
Background There are limited population-based studies focusing on the chemopreventive effects of selective cyclooxygenase-2 (COX-2) inhibitors against colorectal cancer. The purpose of this study is to assess the trends and dose–response effects of various medication possession ratios (MPR) of selective COX-2 inhibitor used for chemoprevention of colorectal cancer. Methods A population-based case–control study was conducted using the Taiwan Health Insurance Research Database (NHIRD). The study comprised 21,460 colorectal cancer patients and 79,331 controls. The conditional logistic regression was applied to estimate the odds ratios (ORs) for COX-2 inhibitors used for several durations (5 years, 3 years, 1 year, 6 months and 3 months) prior to the index date. Results In patients receiving selective COX-2 inhibitors, the OR was 0.51 (95% CI=0.29~0.90, p=0.021) for an estimated 5-year period in developing colorectal cancer. ORs showing significant protection effects were found in 10% of MPRs for 5-year, 3-year, and 1-year usage. Risk reduction against colorectal cancer by selective COX-2 inhibitors was observed as early as 6 months after usage. Conclusion Our results indicate that selective COX-2 inhibitors may reduce the development of colorectal cancer by at least 10% based on the MPRs evaluated. Given the limited number of clinical reports from general populations, our results add to the knowledge of chemopreventive effects of selective COX-2 inhibitors against cancer in individuals at no increased risk of colorectal cancer. PMID:23217168
2010-08-01
Corrosion resistant coatings containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications...Transmission Electron Microscopy TRI – Toxic Release Inventory UV – Ultraviolet UVAs – Ultraviolet Absorbers VOCs – Volatile Organic Compounds XPS – X...containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications. The technical effort
Byrne, Dominic P; Li, Yong; Ngamlert, Pawin; Ramakrishnan, Krithika; Eyers, Claire E; Wells, Carrow; Drewry, David H; Zuercher, William J; Berry, Neil G; Fernig, David G; Eyers, Patrick A
2018-06-22
Protein tyrosine sulphation is a post-translational modification best known for regulating extracellular protein-protein interactions. Tyrosine sulphation is catalysed by two Golgi-resident enzymes termed Tyrosyl Protein Sulpho Transferases (TPSTs) 1 and 2, which transfer sulphate from the co-factor PAPS (3'-phosphoadenosine 5'-phosphosulphate) to a context-dependent tyrosine in a protein substrate. A lack of quantitative tyrosine sulphation assays has hampered the development of chemical biology approaches for the identification of small molecule inhibitors of tyrosine sulphation. In this paper, we describe the development of a non-radioactive mobility-based enzymatic assay for TPST1 and TPST2, through which the tyrosine sulphation of synthetic fluorescent peptides can be rapidly quantified. We exploit ligand binding and inhibitor screens to uncover a susceptibility of TPST1 and TPST2 to different classes of small molecules, including the anti-angiogenic compound suramin and the kinase inhibitor rottlerin. By screening the Published Kinase Inhibitor Set (PKIS), we identified oxindole-based inhibitors of the Ser/Thr kinase RAF as low micromolar inhibitors of TPST1 and TPST2. Interestingly, unrelated RAF inhibitors, exemplified by the dual BRAF/VEGFR2 inhibitor RAF265, were also TPST inhibitors in vitro We propose that target-validated protein kinase inhibitors could be repurposed, or redesigned, as more-specific TPST inhibitors to help evaluate the sulphotyrosyl proteome. Finally, we speculate that mechanistic inhibition of cellular tyrosine sulphation might be relevant to some of the phenotypes observed in cells exposed to anionic TPST ligands and RAF protein kinase inhibitors. ©2018 The Author(s).
Novel mutant-selective EGFR kinase inhibitors against EGFR T790M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wenjun; Ercan, Dalia; Chen, Liang
2010-01-12
The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potentmore » against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.« less
Bacterial fatty acid metabolism in modern antibiotic discovery.
Yao, Jiangwei; Rock, Charles O
2017-11-01
Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.
Lanning, Maryanna E.; Yu, Wenbo; Yap, Jeremy L.; Chauhan, Jay; Chen, Lijia; Whiting, Ellis; Pidugu, Lakshmi S.; Atkinson, Tyler; Bailey, Hala; Li, Willy; Roth, Braden M.; Hynicka, Lauren; Chesko, Kirsty; Toth, Eric A.; Shapiro, Paul; MacKerell, Alexander D.; Wilder, Paul T.; Fletcher, Steven
2016-01-01
Structure-based drug design was utilized to develop novel, 1-hydroxy-2-naphthoate-based small-molecule inhibitors of Mcl-1. Ligand design was driven by exploiting a salt bridge with R263 and interactions with the p2 and p3 pockets of the protein. Significantly, target molecules were accessed in just two synthetic steps, suggesting further optimization will require minimal synthetic effort. Molecular modeling using the Site-Identification by Ligand Competitive Saturation (SILCS) approach was used to qualitatively direct ligand design as well as develop quantitative models for inhibitor binding affinity to Mcl-1 and the Bcl-2 relative Bcl-xL as well as for the specificity of binding to the two proteins. Results indicated hydrophobic interactions with the p2 pockets dominate the affinity of the most favourable binding ligand (3bl: Ki = 31 nM). Compounds were up to 20-fold selective for Mcl-1 over Bcl-xL. Selectivity of the inhibitors was driven by interactions with the deeper p2 pocket in Mcl-1 versus Bcl-xL. The SILCS-based SAR of the present compounds represents the foundation for the development of Mcl-1 specific inhibitors with the potential to treat a wide range of solid tumours and hematological cancers, including acute myeloid leukaemia. PMID:26985630
Mladenović, Milan; Patsilinakos, Alexandros; Pirolli, Adele; Sabatino, Manuela; Ragno, Rino
2017-04-24
Monoamine oxidase B (MAO B) catalyzes the oxidative deamination of aryalkylamines neurotransmitters with concomitant reduction of oxygen to hydrogen peroxide. Consequently, the enzyme's malfunction can induce oxidative damage to mitochondrial DNA and mediates development of Parkinson's disease. Thus, MAO B emerges as a promising target for developing pharmaceuticals potentially useful to treat this vicious neurodegenerative condition. Aiming to contribute to the development of drugs with the reversible mechanism of MAO B inhibition only, herein, an extended in silico-in vitro procedure for the selection of novel MAO B inhibitors is demonstrated, including the following: (1) definition of optimized and validated structure-based three-dimensional (3-D) quantitative structure-activity relationships (QSAR) models derived from available cocrystallized inhibitor-MAO B complexes; (2) elaboration of SAR features for either irreversible or reversible MAO B inhibitors to characterize and improve coumarin-based inhibitor activity (Protein Data Bank ID: 2V61 ) as the most potent reversible lead compound; (3) definition of structure-based (SB) and ligand-based (LB) alignment rule assessments by which virtually any untested potential MAO B inhibitor might be evaluated; (4) predictive ability validation of the best 3-D QSAR model through SB/LB modeling of four coumarin-based external test sets (267 compounds); (5) design and SB/LB alignment of novel coumarin-based scaffolds experimentally validated through synthesis and biological evaluation in vitro. Due to the wide range of molecular diversity within the 3-D QSAR training set and derived features, the selected N probe-derived 3-D QSAR model proves to be a valuable tool for virtual screening (VS) of novel MAO B inhibitors and a platform for design, synthesis and evaluation of novel active structures. Accordingly, six highly active and selective MAO B inhibitors (picomolar to low nanomolar range of activity) were disclosed as a result of rational SB/LB 3D QSAR design; therefore, D123 (IC 50 = 0.83 nM, K i = 0.25 nM) and D124 (IC 50 = 0.97 nM, K i = 0.29 nM) are potential lead candidates as anti-Parkinson's drugs.
Glutamyl-gamma-boronate inhibitors of bacterial Glu-tRNA(Gln) amidotransferase.
Decicco, C P; Nelson, D J; Luo, Y; Shen, L; Horiuchi, K Y; Amsler, K M; Foster, L A; Spitz, S M; Merrill, J J; Sizemore, C F; Rogers, K C; Copeland, R A; Harpel, M R
2001-09-17
Analogues of glutamyl-gamma-boronate (1) were synthesized as mechanism-based inhibitors of bacterial Glu-tRNA(Gln) amidotransferase (Glu-AdT) and were designed to engage a putative catalytic serine nucleophile required for the glutaminase activity of the enzyme. Although 1 provides potent enzyme inhibition, structure-activity studies revealed a narrow range of tolerated chemical changes that maintained activity. Nonetheless, growth inhibition of organisms that require Glu-AdT by the most potent enzyme inhibitors appears to validate mechanism-based inhibitor design of Glu-AdT as an approach to antimicrobial development.
Dow, Robert L; Andrews, Melissa; Aspnes, Gary E; Balan, Gayatri; Michael Gibbs, E; Guzman-Perez, Angel; Karki, Kapil; Laperle, Jennifer L; Li, Jian-Cheng; Litchfield, John; Munchhof, Michael J; Perreault, Christian; Patel, Leena
2011-10-15
A novel series of potent DGAT-1 inhibitors was developed originating from the lactam-based clinical candidate PF-04620110. Incorporation of a dioxino[2,3-d]pyrimidine-based core afforded good alignment of pharmacophore features and resulted in improved passive permeability. Development of an efficient, homochiral synthesis of these targets facilitated confirmation of predictions regarding the stereochemical-dependence of DGAT-1 inhibition for this series. Compound 10 was shown to be a potent inhibitor of human DGAT-1 (10 nM) and to suppress triglyceride synthesis at oral doses of <3mg/kg. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design
Cozza, Giorgio
2017-01-01
Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by “trial and error testing”. In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising. PMID:28230762
Yang, Zhimin; Liu, Hui; Pan, Botao; He, Fengli; Pan, Zhengying
2018-05-21
As an important kinase in multiple signal transduction pathways, GSK-3β has been an attractive target for chemical probe discovery and drug development. Compared to numerous reversible inhibitors that have been developed, covalent inhibitors of GSK-3β are noticeably lacking. Here, we report the discovery of a series of covalent GSK-3β inhibitors by optimizing both non-covalent interactions and reactive groups. Among these covalent inhibitors, compound 38b with a mild α-fluoromethyl amide reactive group emerges as a selective and covalent inhibitor against GSK-3β, effectively inhibits the phosphorylation of glycogen synthase and tau protein, and increases β-catenin's levels in living cells. In addition, compound 38b is highly permeable and not a substrate of P-glycoprotein.
Uitdehaag, Joost C M; de Man, Jos; Willemsen-Seegers, Nicole; Prinsen, Martine B W; Libouban, Marion A A; Sterrenburg, Jan Gerard; de Wit, Joeri J P; de Vetter, Judith R F; de Roos, Jeroen A D M; Buijsman, Rogier C; Zaman, Guido J R
2017-07-07
The protein kinase threonine tyrosine kinase (TTK; also known as Mps1) is a critical component of the spindle assembly checkpoint and a promising drug target for the treatment of aggressive cancers, such as triple negative breast cancer. While the first TTK inhibitors have entered clinical trials, little is known about how the inhibition of TTK with small-molecule compounds affects cellular activity. We studied the selective TTK inhibitor NTRC 0066-0, which was developed in our own laboratory, together with 11 TTK inhibitors developed by other companies, including Mps-BAY2b, BAY 1161909, BAY 1217389 (Bayer), TC-Mps1-12 (Shionogi), and MPI-0479605 (Myrexis). Parallel testing shows that the cellular activity of these TTK inhibitors correlates with their binding affinity to TTK and, more strongly, with target residence time. TTK inhibitors are therefore an example where target residence time determines activity in in vitro cellular assays. X-ray structures and thermal stability experiments reveal that the most potent compounds induce a shift of the glycine-rich loop as a result of binding to the catalytic lysine at position 553. This "lysine trap" disrupts the catalytic machinery. Based on these insights, we developed TTK inhibitors, based on a (5,6-dihydro)pyrimido[4,5-e]indolizine scaffold, with longer target residence times, which further exploit an allosteric pocket surrounding Lys553. Their binding mode is new for kinase inhibitors and can be classified as hybrid Type I/Type III. These inhibitors have very potent anti-proliferative activity that rivals classic cytotoxic therapy. Our findings will open up new avenues for more applications for TTK inhibitors in cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pelay-Gimeno, Marta; Glas, Adrian; Koch, Oliver; Grossmann, Tom N
2015-01-01
Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices. PMID:26119925
NASA Astrophysics Data System (ADS)
Li, Peizhen; Tian, Yueli; Zhai, Honglin; Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun
2013-11-01
Non-purine derivatives have been shown to be promising novel drug candidates as xanthine oxidase inhibitors. Based on three-dimensional quantitative structure-activity relationship (3D-QSAR) methods including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), two 3D-QSAR models for a series of non-purine xanthine oxidase (XO) inhibitors were established, and their reliability was supported by statistical parameters. Combined 3D-QSAR modeling and the results of molecular docking between non-purine xanthine oxidase inhibitors and XO, the main factors that influenced activity of inhibitors were investigated, and the obtained results could explain known experimental facts. Furthermore, several new potential inhibitors with higher activity predicted were designed, which based on our analyses, and were supported by the simulation of molecular docking. This study provided some useful information for the development of non-purine xanthine oxidase inhibitors with novel structures.
Guo, Jiubiao; Wang, Jinglin; Gao, Shan; Ji, Bin; Waichi Chan, Edward; Chen, Sheng
2015-11-20
Potent inhibitors to reverse Botulinum neurotoxins (BoNTs) activity in neuronal cells are currently not available. A better understanding of the substrate recognition mechanism of BoNTs enabled us to design a novel class of peptide inhibitors which were derivatives of the BoNT/A substrate, SNAP25. Through a combination of in vitro, cellular based, and in vivo mouse assays, several potent inhibitors of approximately one nanomolar inhibitory strength both in vitro and in vivo have been identified. These compounds represent the first set of inhibitors that exhibited full protection against BoNT/A intoxication in mice model with undetectable toxicity. Our findings validated the hypothesis that a peptide inhibitor targeting the two BoNT structural regions which were responsible for substrate recognition and cleavage respectively could exhibit excellent inhibitory effect, thereby providing insight on future development of more potent inhibitors against BoNTs.
Belekar, Vilas; Lingineni, Karthik; Garg, Prabha
2015-01-01
The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.
Mondal Roy, Sutapa
2018-08-01
The quantum chemical descriptors based on density functional theory (DFT) are applied to predict the biological activity (log IC 50 ) of one class of acyl-CoA: cholesterol O-acyltransferase (ACAT) inhibitors, viz. aminosulfonyl ureas. ACAT are very effective agents for reduction of triglyceride and cholesterol levels in human body. Successful two parameter quantitative structure-activity relationship (QSAR) models are developed with a combination of relevant global and local DFT based descriptors for prediction of biological activity of aminosulfonyl ureas. The global descriptors, electron affinity of the ACAT inhibitors (EA) and/or charge transfer (ΔN) between inhibitors and model biosystems (NA bases and DNA base pairs) along with the local group atomic charge on sulfonyl moiety (∑Q Sul ) of the inhibitors reveals more than 90% efficacy of the selected descriptors for predicting the experimental log (IC 50 ) values. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hou, Xuben; Du, Jintong; Liu, Renshuai; Zhou, Yi; Li, Minyong; Xu, Wenfang; Fang, Hao
2015-04-27
As key regulators of epigenetic regulation, human histone deacetylases (HDACs) have been identified as drug targets for the treatment of several cancers. The proper recognition of zinc-binding groups (ZBGs) will help improve the accuracy of virtual screening for novel HDAC inhibitors. Here, we developed a high-specificity ZBG-based pharmacophore model for HDAC8 inhibitors by incorporating customized ZBG features. Subsequently, pharmacophore-based virtual screening led to the discovery of three novel HDAC8 inhibitors with low micromole IC50 values (1.8-1.9 μM). Further studies demonstrated that compound H8-A5 was selective for HDAC8 over HDAC 1/4 and showed antiproliferation activity in MDA-MB-231 cancer cells. Molecular docking and molecular dynamic studies suggested a possible binding mode for H8-A5, which provides a good starting point for the development of HDAC8 inhibitors in cancer treatment.
Tulloch, Lindsay B; Martini, Viviane P; Iulek, Jorge; Huggan, Judith K; Lee, Jeong Hwan; Gibson, Colin L; Smith, Terry K; Suckling, Colin J; Hunter, William N
2010-01-14
Pteridine reductase (PTR1) is a target for drug development against Trypanosoma and Leishmania species, parasites that cause serious tropical diseases and for which therapies are inadequate. We adopted a structure-based approach to the design of novel PTR1 inhibitors based on three molecular scaffolds. A series of compounds, most newly synthesized, were identified as inhibitors with PTR1-species specific properties explained by structural differences between the T. brucei and L. major enzymes. The most potent inhibitors target T. brucei PTR1, and two compounds displayed antiparasite activity against the bloodstream form of the parasite. PTR1 contributes to antifolate drug resistance by providing a molecular bypass of dihydrofolate reductase (DHFR) inhibition. Therefore, combining PTR1 and DHFR inhibitors might improve therapeutic efficacy. We tested two new compounds with known DHFR inhibitors. A synergistic effect was observed for one particular combination highlighting the potential of such an approach for treatment of African sleeping sickness.
Novel indole-based inhibitors of IMPDH: introduction of hydrogen bond acceptors at indole C-3.
Watterson, Scott H; Dhar, T G Murali; Ballentine, Shelley K; Shen, Zhongqi; Barrish, Joel C; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J
2003-04-07
The development of a series of novel indole-based inhibitors of 5'-inosine monophosphate dehydrogenase (IMPDH) is described. Various hydrogen bond acceptors at C-3 of the indole were explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are outlined.
Rahman, Md Atiqur; Salajegheh, Ali; Smith, Robert Anthony; Lam, Alfred King-yin
2014-01-01
BRAF is a major oncoprotein and oncogenic mutations in BRAF are found in a significant number of cancers, including melanoma, thyroid cancer, colorectal cancer and others. Consequently, BRAF inhibitors have been developed as treatment options for cancers with BRAF mutations which have shown some success in improving patient outcomes in clinical trials. Development of resistance to BRAF kinase inhibitors is common, however, overcoming this resistance is an area of significant concern for clinicians, patients and researchers alike. In this review, we identify the mechanisms of BRAF kinase inhibitor resistance and discuss the implications for strategies to overcome this resistance in the context of new approaches such as multi-kinase targeted therapies and emerging RNA interference based technologies.
Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M
1996-09-01
The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues.
Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D
2018-02-15
Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Teruya, Kenta; Hattori, Yasunao; Shimamoto, Yasuhiro; Kobayashi, Kazuya; Sanjoh, Akira; Nakagawa, Atsushi; Yamashita, Eiki; Akaji, Kenichi
2016-11-04
Design of inhibitors against severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro) ) is a potentially important approach to fight against SARS. We have developed several synthetic inhibitors by structure-based drug design. In this report, we reveal two crystal structures of SARS 3CL(pro) complexed with two new inhibitors based on our previous work. These structures combined with six crystal structures complexed with a series of related ligands reported by us are collectively analyzed. To these eight complexes, the structural basis for inhibitor binding was analyzed by the COMBINE method, which is a chemometrical analysis optimized for the protein-ligand complex. The analysis revealed that the first two latent variables gave a cumulative contribution ratio of r(2) = 0.971. Interestingly, scores using the second latent variables for each complex were strongly correlated with root mean square deviations (RMSDs) of side-chain heavy atoms of Met(49) from those of the intact crystal structure of SARS-3CL(pro) (r = 0.77) enlarging the S2 pocket. The substantial contribution of this side chain (∼10%) for the explanation of pIC50 s was dependent on stereochemistry and the chemical structure of the ligand adapted to the S2 pocket of the protease. Thus, starting from a substrate mimic inhibitor, a design for a central scaffold for a low molecular weight inhibitor was evaluated to develop a further potent inhibitor. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 391-403, 2016. © 2015 Wiley Periodicals, Inc.
Milik, Sandra N; Abdel-Aziz, Amal Kamal; Lasheen, Deena S; Serya, Rabah A T; Minucci, Saverio; Abouzid, Khaled A M
2018-06-06
In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC 50 values of 91.7 nM and 1.2 μM, respectively. Notably, 27b dramatically reduced the viability of various patient-derived cancer cells preferentially overexpressing EGFR/HER2 (A431, MDA-MBA-361 and SKBr3 with IC 50 values of 1.45, 3.5 and 4.83 μM, respectively). Additionally, 27b efficiently thwarted the proliferation of lapatinib-resistant human non-small lung carcinoma (NCI-H1975) cells, harboring T790 M mutation, with IC 50 of 4.2 μM. Consistently, 27b significantly blocked EGF-induced EGFR activation and inactivated its downstream AKT/mTOR/S6 signalling pathway triggering apoptotic cell death in NCI-H1975 cells. The present study presents a promising candidate for further design and development of novel EGFR/HER2 inhibitors capable of overcoming EGFR TKIs resistance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Notch Inhibitors for Cancer Treatment
Espinoza, Ingrid; Miele, Lucio
2013-01-01
Notch signaling is an evolutionarily conserved cell signaling pathway involved in cell fate during development, stem cell renewal and differentiation in postnatal tissues. Roles for Notch in carcinogenesis, in the biology of cancer stem cells and tumor angiogenesis have been reported. These features identify Notch as a potential therapeutic target in oncology. Based on the molecular structure of Notch receptor, Notch ligands and Notch activators, a set of Notch pathway inhibitors have been developed. Most of these inhibitors had shown anti-tumor effects in preclinical studies. At the same time, the combinatorial effect of these inhibitors with current chemotherapeutical drugs still under study in different clinical trials. In this review, we describe the basics of Notch signaling and the role of Notch in normal and cancer stem cells as a logic way to develop different Notch inhibitors and their current stage of progress for cancer patient’s treatment. PMID:23458608
Computational Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor
Abdullah Zawawi, Muhammad Redha; Ahmad, Muhamad Aizuddin; Jaganath, Indu Bala
2017-01-01
The inhibition of dipeptidyl peptidase-IV (DPPIV) is a popular route for the treatment of type-2 diabetes. Commercially available gliptin-based drugs such as sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin were specifically developed as DPPIV inhibitors for diabetic patients. The use of Gynura bicolor in treating diabetes had been reported in various in vitro experiments. However, an understanding of the inhibitory actions of G. bicolor bioactive compounds on DPPIV is still lacking and this may provide crucial information for the development of more potent and natural sources of DPPIV inhibitors. Evaluation of G. bicolor bioactive compounds for potent DPPIV inhibitors was computationally conducted using Lead IT and iGEMDOCK software, and the best free-binding energy scores for G. bicolor bioactive compounds were evaluated in comparison with the commercial DPPIV inhibitors, sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin. Drug-likeness and absorption, distribution, metabolism, and excretion (ADME) analysis were also performed. Based on molecular docking analysis, four of the identified bioactive compounds in G. bicolor, 3-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, and trans-5-p-coumaroylquinic acid, resulted in lower free-binding energy scores when compared with two of the commercially available gliptin inhibitors. The results revealed that bioactive compounds in G. bicolor are potential natural inhibitors of DPPIV. PMID:28932239
Jin, Wen-Yan; Ma, Ying; Li, Wei-Ya; Li, Hong-Lian; Wang, Run-Ling
2018-04-01
SHP2 is a potential target for the development of novel therapies for SHP2-dependent cancers. In our research, with the aid of the 'Receptor-Ligand Pharmacophore' technique, a 3D-QSAR method was carried out to explore structure activity relationship of SHP2 allosteric inhibitors. Structure-based drug design was employed to optimize SHP099, an efficacious, potent, and selective SHP2 allosteric inhibitor. A novel class of selective SHP2 allosteric inhibitors was discovered by using the powerful 'SBP', 'ADMET' and 'CDOCKER' techniques. By means of molecular dynamics simulations, it was observed that these novel inhibitors not only had the same function as SHP099 did in inhibiting SHP2, but also had more favorable conformation for binding to the receptor. Thus, this report may provide a new method in discovering novel and selective SHP2 allosteric inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Discovery of potent DOT1L inhibitors by AlphaLISA based High Throughput Screening assay.
Song, Yakai; Li, Linjuan; Chen, Yantao; Liu, Jingqiu; Xiao, Senhao; Lian, Fulin; Zhang, Naixia; Ding, Hong; Zhang, Yuanyuan; Chen, Kaixian; Jiang, Hualiang; Zhang, Chenhua; Liu, Yu-Chih; Chen, Shijie; Luo, Cheng
2018-05-01
DOT1L (the disruptor of telomeric silencing 1-like), through its methyltransferase activity of H3K79, plays essential roles in transcriptional regulation, cell cycle regulation, and DNA damage response. In addition, DOT1L is believed to be involved in the development of MLL-rearranged leukemia driven by the MLL (mixed-lineage leukemia) fusion proteins, which thus to be a crucial target for leukemia therapy. Hence, discovering of novel DOT1L inhibitors has been in a great demand. In this study, we initiated the discovering process from setting up the AlphaLISA based High Throughput Screening (HTS) assay of DOT1L. Combining with radioactive inhibition assay and Surface Plasmon Resonance (SPR) binding assay, we identified compound 3 and its active analogues as novel DOT1L inhibitors with IC 50 values range from 7 μM to 20 μM in vitro. Together with the analysis of structure activity relationships (SAR) and binding modes of these compounds, we provided clues to assist in the future development of more potent DOT1L inhibitors. Moreover, compounds 3 and 9 effectively inhibited the proliferation of MLL-rearranged leukemia cells MV4-11, which could induce cell cycle arrest and apoptosis. In conclusion, we developed a HTS platform based on AlphaLISA method for screening and discovery of DOT1L novel inhibitor, through which we discovered compound 3 and its analogues as potent DOT1L inhibitors with promising MLL-rearranged leukemia therapeutic application. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Tran, Le Huu Nghia
2017-01-01
This article reports a study that investigated student engagement and inhibitors of their engagement with developing employability skills via extra-curricular activities in Vietnamese universities. Content analysis of 18 interviews with students and statistical analysis of 423 students' responses to a paper-based survey showed that despite a…
Badrinarayan, Preethi; Sastry, G Narahari
2012-04-01
In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.
The 'retro-design' concept for novel kinase inhibitors.
Müller, Gerhard; Sennhenn, Peter C; Woodcock, Timothy; Neumann, Lars
2010-07-01
Protein kinases are among the most attractive therapeutic targets for a broad range of diseases. This feature review highlights and classifies the main design principles employed to generate active and selective kinase inhibitors. In particular, emphasis is focused on a fragment-based lead-generation approach, which constitutes a novel design method for developing type II kinase inhibitors with distinct binding kinetic attributes. This 'retro-design' strategy relies on a customized fragment library, and contrasts the traditional approach used in the design of type II inhibitors.
Fragment-Based Drug Discovery in the Bromodomain and Extra-Terminal Domain Family.
Radwan, Mostafa; Serya, Rabah
2017-08-01
Bromodomain and extra-terminal domain (BET) inhibition has emerged recently as a potential therapeutic target for the treatment of many human disorders such as atherosclerosis, inflammatory disorders, chronic obstructive pulmonary disease (COPD), some viral infections, and cancer. Since the discovery of the two potent inhibitors, I-BET762 and JQ1, different research groups have used different techniques to develop novel potent and selective inhibitors. In this review, we will be concerned with the trials that used fragment-based drug discovery (FBDD) approaches to discover or optimize BET inhibitors, also showing fragments that can be further optimized in future projects to reach novel potent BET inhibitors. © 2017 Deutsche Pharmazeutische Gesellschaft.
Microencapsulation Technology for Corrosion Mitigation by Smart Coatings
NASA Technical Reports Server (NTRS)
Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.
2011-01-01
A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain
Kiseleva, Irina; Larionova, Natalie; Fedorova, Ekaterina; Bazhenova, Ekaterina; Dubrovina, Irina; Isakova-Sivak, Irina; Rudenko, Larisa
2014-01-01
Live attenuated influenza vaccine (LAIV) represent reassortant viruses with hemagglutinin (HA) and neuraminidase (NA) gene segments inherited from circulating wild-type (WT) parental influenza viruses recommended for inclusion into seasonal vaccine formulation, and the 6 internal protein-encoding gene segments from cold-adapted attenuated master donor viruses (genome composition 6:2). In this study, we describe the obstacles in developing LAIV strains while taking into account the phenotypic peculiarities of WT viruses used for reassortment. Genomic composition analysis of 849 seasonal LAIV reassortants revealed that over 80% of reassortants based on inhibitor-resistant WT viruses inherited WT NA, compared to 26% of LAIV reassortants based on inhibitor-sensitive WT viruses. In addition, the highest percentage of LAIV genotype reassortants was achieved when WT parental viruses were resistant to non-specific serum inhibitors. We demonstrate that NA may play a role in influenza virus sensitivity to non-specific serum inhibitors. Replacing NA of inhibitor-sensitive WT virus with the NA of inhibitor-resistant master donor virus significantly decreased the sensitivity of the resulting reassortant virus to serum heat-stable inhibitors. PMID:25132869
Liu, Xin; Fatehi, Pedram; Ni, Yonghao
2012-07-01
A process for removing inhibitors from pre-hydrolysis liquor (PHL) of a kraft-based dissolving pulp production process by adsorption and flocculation, and the characteristics of this process were studied. In this process, industrially produced PHL was treated with unmodified and oxidized activated carbon as an absorbent and polydiallyldimethylammonium chloride (PDADMAC) as a flocculant. The overall removal of lignin and furfural in the developed process was 83.3% and 100%, respectively, while that of hemicelluloses was 32.7%. These results confirmed that the developed process can remove inhibitors from PHL prior to producing value-added products, e.g. ethanol and xylitol via fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.
Moitessier, Nicolas; Pottel, Joshua; Therrien, Eric; Englebienne, Pablo; Liu, Zhaomin; Tomberg, Anna; Corbeil, Christopher R
2016-09-20
Computational methods for docking small molecules to proteins are prominent in drug discovery. There are hundreds, if not thousands, of documented examples-and several pertinent cases within our research program. Fifteen years ago, our first docking-guided drug design project yielded nanomolar metalloproteinase inhibitors and illustrated the potential of structure-based drug design. Subsequent applications of docking programs to the design of integrin antagonists, BACE-1 inhibitors, and aminoglycosides binding to bacterial RNA demonstrated that available docking programs needed significant improvement. At that time, docking programs primarily considered flexible ligands and rigid proteins. We demonstrated that accounting for protein flexibility, employing displaceable water molecules, and using ligand-based pharmacophores improved the docking accuracy of existing methods-enabling the design of bioactive molecules. The success prompted the development of our own program, Fitted, implementing all of these aspects. The primary motivation has always been to respond to the needs of drug design studies; the majority of the concepts behind the evolution of Fitted are rooted in medicinal chemistry projects and collaborations. Several examples follow: (1) Searching for HDAC inhibitors led us to develop methods considering drug-zinc coordination and its effect on the pKa of surrounding residues. (2) Targeting covalent prolyl oligopeptidase (POP) inhibitors prompted an update to Fitted to identify reactive groups and form bonds with a given residue (e.g., a catalytic residue) when the geometry allows it. Fitted-the first fully automated covalent docking program-was successfully applied to the discovery of four new classes of covalent POP inhibitors. As a result, efficient stereoselective syntheses of a few screening hits were prioritized rather than synthesizing large chemical libraries-yielding nanomolar inhibitors. (3) In order to study the metabolism of POP inhibitors by cytochrome P450 enzymes (CYPs)-for toxicology studies-the program Impacts was derived from Fitted and helped us to reveal a complex metabolism with unforeseen stereocenter isomerizations. These efforts, combined with those of other docking software developers, have strengthened our understanding of the complex drug-protein binding process while providing the medicinal chemistry community with useful tools that have led to drug discoveries. In this Account, we describe our contributions over the past 15 years-within their historical context-to the design of drug candidates, including BACE-1 inhibitors, POP covalent inhibitors, G-quadruplex binders, and aminoglycosides binding to nucleic acids. We also remark the necessary developments of docking programs, specifically Fitted, that enabled structure-based design to flourish and yielded multiple fruitful, rational medicinal chemistry campaigns.
Hwang, Gyoyeon; Kim, Hyeonhye; Yoon, Hojong; Song, Chiman; Lim, Dong-Kwon; Sim, Taebo; Lee, Jiyeon
2017-01-01
Fibroblast growth factor receptors (FGFRs) play an important role in determining cell proliferation, differentiation, migration, and survival. Although a variety of small-molecule FGFR inhibitors have been developed for cancer therapeutics, the interaction between FGFRs and FGFR inhibitors has not been well characterized. The FGFR-inhibitor interaction can be characterized using a new imaging probe that has strong, stable signal properties for in situ cellular imaging of the interaction without quenching. We developed a kinase-inhibitor-modified quantum dot (QD) probe to investigate the interaction between FGFR and potential inhibitors. Especially, turbo-green fluorescent protein-FGFR3s were overexpressed in HeLa cells to investigate the colocalization of FGFR3 and AZD4547 using the QD-AZD4547 probe. The result indicates that this probe is useful for investigating the binding behaviors of FGFR3 with the FGFR inhibitor. Thus, this new inhibitor-modified QD probe is a promising tool for understanding the interaction between FGFR and inhibitors and for creating future high-content, cell-based drug screening strategies.
Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection
NASA Technical Reports Server (NTRS)
Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.
2015-01-01
This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.
Structure and ligand-based design of P-glycoprotein inhibitors: a historical perspective.
Palmeira, Andreia; Sousa, Emilia; Vasconcelos, M Helena; Pinto, Madalena; Fernandes, Miguel X
2012-01-01
Computer-assisted drug design (CADD) is a valuable approach for the discovery of new chemical entities in the field of cancer therapy. There is a pressing need to design and develop new, selective, and safe drugs for the treatment of multidrug resistance (MDR) cancer forms, specifically active against P-glycoprotein (P-gp). Recently, a crystallographic structure for mouse P-gp was obtained. However, for decades the design of new P-gp inhibitors employed mainly ligand-based approaches (SAR, QSAR, 3D-QSAR and pharmacophore studies), and structure-based studies used P-gp homology models. However, some of those results are still the pillars used as a starting point for the design of potential P-gp inhibitors. Here, pharmacophore mapping, (Q)SAR, 3D-QSAR and homology modeling, for the discovery of P-gp inhibitors are reviewed. The importance of these methods for understanding mechanisms of drug resistance at a molecular level, and design P-gp inhibitors drug candidates are discussed. The examples mentioned in the review could provide insights into the wide range of possibilities of using CADD methodologies for the discovery of efficient P-gp inhibitors.
Development of Antibacterials Targeting the MEP Pathway of Select Agents
2013-02-01
based assays for lead inhibitor discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of MEP pathway...inhibitors. • On-demand production and delivery of recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes...characterization and phosphoregulation. PLoS ONE 6: e20884. doi:10.1371/journal.pone.0020884. 3. Zhang JH, Chung TD, Oldenburg KR (1999) A Simple
Saraiva, Ádria P B; Miranda, Ricardo M; Valente, Renan P P; Araújo, Jéssica O; Souza, Rutelene N B; Costa, Clauber H S; Oliveira, Amanda R S; Almeida, Michell O; Figueiredo, Antonio F; Ferreira, João E V; Alves, Cláudio Nahum; Honorio, Kathia M
2018-04-22
In this work, a group of α-keto-based inhibitors of the cruzain enzyme with anti-chagas activity was selected for a three-dimensional quantitative structure-activity relationship study (3D-QSAR) combined with molecular dynamics (MD). Firstly, statistical models based on Partial Least Square (PLS) regression were developed employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) descriptors. Validation parameters (q 2 and r 2 )for the models were, respectively, 0.910 and 0.997 (CoMFA) and 0.913 and 0.992 (CoMSIA). In addition, external validation for the models using a test group revealed r 2 pred = 0.728 (CoMFA) and 0.971 (CoMSIA). The most relevant aspect in this study was the generation of molecular fields in both favorable and unfavorable regions based on the models developed. These fields are important to interpret modifications necessary to enhance the biological activities of the inhibitors. This analysis was restricted considering the inhibitors in a fixed conformation, not interacting with their target, the cruzain enzyme. Then, MD was employed taking into account important variables such as time and temperature. MD helped describe the behavior of the inhibitors and their properties showed similar results as those generated by QSAR-3D study. © 2018 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Marvin J.; Pelc, Matthew; Kamtekar, Satwik
2010-08-11
The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.
Model-Informed Drug Development for Ixazomib, an Oral Proteasome Inhibitor.
Gupta, Neeraj; Hanley, Michael J; Diderichsen, Paul M; Yang, Huyuan; Ke, Alice; Teng, Zhaoyang; Labotka, Richard; Berg, Deborah; Patel, Chirag; Liu, Guohui; van de Velde, Helgi; Venkatakrishnan, Karthik
2018-02-15
Model-informed drug development (MIDD) was central to the development of the oral proteasome inhibitor ixazomib, facilitating internal decisions (switch from body surface area (BSA)-based to fixed dosing, inclusive phase III trials, portfolio prioritization of ixazomib-based combinations, phase III dose for maintenance treatment), regulatory review (model-informed QT analysis, benefit-risk of 4 mg dose), and product labeling (absolute bioavailability and intrinsic/extrinsic factors). This review discusses the impact of MIDD in enabling patient-centric therapeutic optimization during the development of ixazomib. © 2017 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Lee, Hyun; Mittal, Anuradha; Patel, Kavankumar; Gatuz, Joseph L; Truong, Lena; Torres, Jaime; Mulhearn, Debbie C; Johnson, Michael E
2014-01-01
We have used a combination of virtual screening (VS) and high-throughput screening (HTS) techniques to identify novel, non-peptidic small molecule inhibitors against human SARS-CoV 3CLpro. A structure-based VS approach integrating docking and pharmacophore based methods was employed to computationally screen 621,000 compounds from the ZINC library. The screening protocol was validated using known 3CLpro inhibitors and was optimized for speed, improved selectivity, and for accommodating receptor flexibility. Subsequently, a fluorescence-based enzymatic HTS assay was developed and optimized to experimentally screen approximately 41,000 compounds from four structurally diverse libraries chosen mainly based on the VS results. False positives from initial HTS hits were eliminated by a secondary orthogonal binding analysis using surface plasmon resonance (SPR). The campaign identified a reversible small molecule inhibitor exhibiting mixed-type inhibition with a K(i) value of 11.1 μM. Together, these results validate our protocols as suitable approaches to screen virtual and chemical libraries, and the newly identified compound reported in our study represents a promising structural scaffold to pursue for further SARS-CoV 3CLpro inhibitor development. Copyright © 2013. Published by Elsevier Ltd.
de Zwart, L; Snoeys, J; De Jong, J; Sukbuntherng, J; Mannaert, E; Monshouwer, M
2016-11-01
Based on ibrutinib pharmacokinetics and potential sensitivity towards CYP3A4-mediated drug-drug interactions (DDIs), a physiologically based pharmacokinetic approach was developed to mechanistically describe DDI with various CYP3A4 perpetrators in healthy men under fasting conditions. These models were verified using clinical data for ketoconazole (strong CYP3A4 inhibitor) and used to prospectively predict and confirm the inducing effect of rifampin (strong CYP3A4 inducer); DDIs with mild (fluvoxamine, azithromycin) and moderate inhibitors (diltiazem, voriconazole, clarithromycin, itraconazole, erythromycin), and moderate (efavirenz) and strong CYP3A4 inducers (carbamazepine), were also predicted. Ketoconazole increased ibrutinib area under the curve (AUC) by 24-fold, while rifampin decreased ibrutinib AUC by 10-fold; coadministration of ibrutinib with strong inhibitors or inducers should be avoided. The ibrutinib dose should be reduced to 140 mg (quarter of maximal prescribed dose) when coadministered with moderate CYP3A4 inhibitors so that exposures remain within observed ranges at therapeutic doses. Thus, dose recommendations for CYP3A4 perpetrator use during ibrutinib treatment were developed and approved for labeling. © 2016 American Society for Clinical Pharmacology and Therapeutics.
Bolstad, David B.; Bolstad, Erin S. D.; Frey, Kathleen M.; Wright, Dennis L.; Anderson, Amy C.
2008-01-01
Cryptosporidiosis is an emerging infectious disease that can be life-threatening in an immune-compromised individual and causes gastrointestinal distress lasting up to 2 weeks in an immune-competent individual. There are few therapeutics available for effectively treating this disease. We have been exploring dihydrofolate reductase (DHFR) as a potential target in Cryptosporidium. On the basis of the structure of the DHFR enzyme from C. hominis, we have developed a novel scaffold that led to the discovery of potent (38 nM) and efficient inhibitors of this enzyme. Recently, we have advanced these inhibitors to the next stage of development. Using the structures of both the protozoal and human enzymes, we have developed inhibitors with nanomolar potency (1.1 nM) against the pathogenic enzyme and high levels (1273-fold) of selectivity over the human enzyme. PMID:18834108
Chen, Jianzhong; Zhang, Dinglin; Zhang, Yuxin; Li, Guohui
2012-01-01
Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD) simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π–π, CH–π and CH–CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors. PMID:22408446
NASA Astrophysics Data System (ADS)
Khanal, Manakamana; Barras, Alexandre; Vausselin, Thibaut; Fénéant, Lucie; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine
2015-01-01
The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2nd generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2nd generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03875d
Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2
Qiu, Wei; Lam, Robert; Voytyuk, Oleksandr; ...
2014-07-31
The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated β-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, themore » high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors.« less
Homology modeling, docking and structure-based pharmacophore of inhibitors of DNA methyltransferase
NASA Astrophysics Data System (ADS)
Yoo, Jakyung; Medina-Franco, José L.
2011-06-01
DNA methyltransferase 1 (DNMT1) is an emerging epigenetic target for the treatment of cancer and other diseases. To date, several inhibitors from different structural classes have been published. In this work, we report a comprehensive molecular modeling study of 14 established DNTM1 inhibitors with a herein developed homology model of the catalytic domain of human DNTM1. The geometry of the homology model was in agreement with the proposed mechanism of DNA methylation. Docking results revealed that all inhibitors studied in this work have hydrogen bond interactions with a glutamic acid and arginine residues that play a central role in the mechanism of cytosine DNA methylation. The binding models of compounds such as curcumin and parthenolide suggest that these natural products are covalent blockers of the catalytic site. A pharmacophore model was also developed for all DNMT1 inhibitors considered in this work using the most favorable binding conformations and energetic terms of the docked poses. To the best of our knowledge, this is the first pharmacophore model proposed for compounds with inhibitory activity of DNMT1. The results presented in this work represent a conceptual advance for understanding the protein-ligand interactions and mechanism of action of DNMT1 inhibitors. The insights obtained in this work can be used for the structure-based design and virtual screening for novel inhibitors targeting DNMT1.
Naß, Janine; Efferth, Thomas
2017-01-01
Background: Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. Methods: We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. Results: SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. Conclusion: The combination of genetic and pharmacological research may lead to novel target-based drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population. PMID:27834145
Sun, Yinghui; Zhao, Na; Wang, Huan; Wu, Qiong; Han, Yunqi; Liu, Qichao; Wu, Mangang; Liu, Yuliang; Kong, Fansheng; Wang, He; Sun, Ying; Sun, Deguang; Jing, Lutao; Tang, Guojing; Hu, Yuandong; Xiao, Dengming; Luo, Hong; Han, Yongxin; Peng, Yong
2017-01-01
Kinase inhibitors that target Bcr-Abl are highly effective in the treatment of chronic myeloid leukemia (CML). However, these inhibitors are often invalidated due to the drug resistance. Therefore, the discovery and development of novel Bcr-Abl inhibitors is required to overwhelm the drug resistance in the treatment of CML resistant to the currently used first-line Bcr-Abl inhibitors. Herein we have described a newly developed Bcr-Abl inhibitor CT-721, which displayed potent inhibitory effects on wild-type and T315I mutant Bcr-Abl. It functioned as a typically ATP-competitive inhibitor, superior to other existing Bcr-Abl inhibitors. CT-721 also demonstrated time-dependent inhibition of Bcr-Abl activation and the resultant downstream signaling transduction pathways in Bcr-Abl positive cells. Furthermore, CT-721 induced cell apoptosis and cell cycle arrest, and efficaciously inhibited tumor growth in Bcr-Abl-expressed K562 and KU812 xenograft models in a mechanism-based manner. Further PK/PD studies revealed a positive in vivo correlation between the compound concentration and inhibition of Bcr-Abl activity. Taken together, CT-721 is a potent and time-dependent Bcr-Abl kinase inhibitor, and has shown strong in vitro and in vivo anti-CML activities with a favorable pharmacokinetic profile, differentiating it from other Bcr-Abl kinase inhibitors already approved and current in development for the treatment of CML. PMID:28928866
Chen, Fu; Sun, Huiyong; Liu, Hui; Li, Dan; Li, Youyong; Hou, Tingjun
2017-04-12
High-throughput screening (HTS) is widely applied in many fields ranging from drug discovery to clinical diagnostics and toxicity assessment. Firefly luciferase is commonly used as a reporter to monitor the effect of chemical compounds on the activity of a specific target or pathway in HTS. However, the false positive rate of luciferase-based HTS is relatively high because many artifacts or promiscuous compounds that have direct interaction with the luciferase reporter enzyme are usually identified as active compounds (hits). Therefore, it is necessary to develop a rapid screening method to identify these compounds that can inhibit the luciferase activity directly. In this study, a virtual screening (VS) classification model called MIEC-GBDT (MIEC: Molecular Interaction Energy Components; GBDT: Gradient Boosting Decision Tree) was developed to distinguish luciferase inhibitors from non-inhibitors. The MIECs calculated by Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition were used to energetically characterize the binding pattern of each small molecule at the active site of luciferase, and then the GBDT algorithm was employed to construct the classifiers based on MIECs. The predictions to the test set show that the optimized MIEC-GBDT model outperformed molecular docking and MM/GBSA rescoring. The best MIEC-GBDT model based on the MIECs with the energy terms of ΔG ele , ΔG vdW , ΔG GB , and ΔG SA achieves the prediction accuracies of 87.2% and 90.3% for the inhibitors and non-inhibitors in the test sets, respectively. Moreover, the energetic analysis of the vital residues suggests that the energetic contributions of the vital residues to the binding of inhibitors are quite different from those to the binding of non-inhibitors. These results suggest that the MIEC-GBDT model is reliable and can be used as a powerful tool to identify potential interference compounds in luciferase-based HTS experiments.
Ahamad, Shahzaib; Hassan, Md Imtaiyaz; Dwivedi, Neeraja
2018-05-01
Tuberculosis (Tb) is an airborne infectious disease caused by Mycobacterium tuberculosis. Beta-carbonic anhydrase 1 ( β-CA1 ) has emerged as one of the potential targets for new antitubercular drug development. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking, and molecular dynamics (MD) simulation approaches were performed on a series of natural and synthetic phenol-based β-CA1 inhibitors. The developed 3D-QSAR model ( r 2 = 0.94, q 2 = 0.86, and pred_r 2 = 0.74) indicated that the steric and electrostatic factors are important parameters to modulate the bioactivity of phenolic compounds. Based on this indication, we designed 72 new phenolic inhibitors, out of which two compounds (D25 and D50) effectively stabilized β-CA1 receptor and, thus, are potential candidates for new generation antitubercular drug discovery program.
De Fusco, Claudia; Brear, Paul; Iegre, Jessica; Georgiou, Kathy Hadje; Sore, Hannah F; Hyvönen, Marko; Spring, David R
2017-07-01
Recently we reported the discovery of a potent and selective CK2α inhibitor CAM4066. This compound inhibits CK2 activity by exploiting a pocket located outside the ATP binding site (αD pocket). Here we describe in detail the journey that led to the discovery of CAM4066 using the challenging fragment linking strategy. Specifically, we aimed to develop inhibitors by linking a high-affinity fragment anchored in the αD site to a weakly binding warhead fragment occupying the ATP site. Moreover, we describe the remarkable impact that molecular modelling had on the development of this novel chemical tool. The work described herein shows potential for the development of a novel class of CK2 inhibitors. Copyright © 2017. Published by Elsevier Ltd.
Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors
NASA Astrophysics Data System (ADS)
Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten
2015-05-01
REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ.
Biosensors for the determination of environmental inhibitors of enzymes
NASA Astrophysics Data System (ADS)
Evtugyn, Gennadii A.; Budnikov, Herman C.; Nikolskaya, Elena B.
1999-12-01
Characteristic features of functioning and practical application of enzyme-based biosensors for the determination of environmental pollutants as enzyme inhibitors are considered with special emphasis on the influence of the methods used for the measurement of the rates of enzymic reactions, of enzyme immobilisation procedure and of the composition of the reaction medium on the analytical characteristics of inhibitor assays. The published data on the development of biosensors for detecting pesticides and heavy metals are surveyed. Special attention is given to the use of cholinesterase-based biosensors in environmental and analytical monitoring. The approaches to the estimation of kinetic parameters of inhibition are reviewed and the factors determining the selectivity and sensitivity of inhibitor assays in environmental objects are analysed. The bibliography includes 195 references.
Indole-3-Carbonitriles as DYRK1A Inhibitors by Fragment-Based Drug Design.
Meine, Rosanna; Becker, Walter; Falke, Hannes; Preu, Lutz; Loaëc, Nadège; Meijer, Laurent; Kunick, Conrad
2018-01-24
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a potential drug target because of its role in the development of Down syndrome and Alzheimer's disease. The selective DYRK1A inhibitor 10-iodo-11 H -indolo[3,2- c ]quinoline-6-carboxylic acid (KuFal194), a large, flat and lipophilic molecule, suffers from poor water solubility, limiting its use as chemical probe in cellular assays and animal models. Based on the structure of KuFal194, 7-chloro-1 H -indole-3-carbonitrile was selected as fragment template for the development of smaller and less lipophilic DYRK1A inhibitors. By modification of this fragment, a series of indole-3-carbonitriles was designed and evaluated as potential DYRK1A ligands by molecular docking studies. Synthesis and in vitro assays on DYRK1A and related protein kinases identified novel double-digit nanomolar inhibitors with submicromolar activity in cell culture assays.
NASA Astrophysics Data System (ADS)
Deka, Jashmini; Mojumdar, Aditya; Parisse, Pietro; Onesti, Silvia; Casalis, Loredana
2017-03-01
Helicase are essential enzymes which are widespread in all life-forms. Due to their central role in nucleic acid metabolism, they are emerging as important targets for anti-viral, antibacterial and anti-cancer drugs. The development of easy, cheap, fast and robust biochemical assays to measure helicase activity, overcoming the limitations of the current methods, is a pre-requisite for the discovery of helicase inhibitors through high-throughput screenings. We have developed a method which exploits the optical properties of DNA-conjugated gold nanoparticles (AuNP) and meets the required criteria. The method was tested with the catalytic domain of the human RecQ4 helicase and compared with a conventional FRET-based assay. The AuNP-based assay produced similar results but is simpler, more robust and cheaper than FRET. Therefore, our nanotechnology-based platform shows the potential to provide a useful alternative to the existing conventional methods for following helicase activity and to screen small-molecule libraries as potential helicase inhibitors.
Kennedy, Andrew J.; Mathews, Thomas P.; Kharel, Yugesh; Field, Saundra D.; Moyer, Morgan L.; East, James E.; Houck, Joseph D.; Lynch, Kevin R.; Macdonald, Timothy L.
2011-01-01
Sphingosine 1-phosphate (S1P) is a bioactive lipid that has been identified as an accelerant of cancer progression. The sphingosine kinases (SphKs) are the sole producers of S1P and thus SphK inhibitors may prove effective in cancer mitigation and chemosensitization. Of the two SphKs, SphK1 overexpression has been observed in a myriad of cancer cell lines and tissues, and has been recognized as the presumptive target over that of the poorly characterized SphK2. Herein, we present the design and synthesis of amidine-based nanomolar SphK1 subtype-selective inhibitors. A homology model of SphK1, trained with this library of amidine inhibitors, was then used to predict the activity of additional, more potent, inhibitors. Lastly, select amidine inhibitors were validated in human leukemia U937 cells, where they significantly reduced endogenous S1P levels at nanomolar concentrations. PMID:21495716
An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu
2015-02-01
Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Macedo, Maria Lígia Rodrigues; Freire, Maria das Graças Machado; Franco, Octávio Luiz; Migliolo, Ludovico; de Oliveira, Caio Fernando Ramalho
2011-02-01
Digestive endoprotease activities of the coconut palm weevil, Homalinotus coriaceus (Coleoptera: Curculionidae), were characterized based on the ability of gut extracts to hydrolyze specific synthetic substrates, optimal pH, and hydrolysis sensitivity to protease inhibitors. Trypsin-like proteinases were major enzymes for H. coriaceus, with minor activity by chymotrypsin proteinases. More importantly, gut proteinases of H. coriaceus were inhibited by trypsin inhibitor from Inga laurina seeds. In addition, a serine proteinase inhibitor from I. laurina seeds demonstrated significant reduction of growth of H. coriaceus larvae after feeding on inhibitor incorporated artificial diets. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. We have constructed a three-dimensional model of the trypsin inhibitor complexed with trypsin. The model was built based on its comparative homology with soybean trypsin inhibitor. Trypsin inhibitor of I. laurina shows structural features characteristic of the Kunitz type trypsin inhibitor. In summary, these findings contribute to the development of biotechnological tools such as transgenic plants with enhanced resistance to insect pests. Copyright © 2010 Elsevier Inc. All rights reserved.
Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1
Najjar, Malek; Suebsuwong, Chalada; Ray, Soumya S.; Thapa, Roshan J.; Maki, Jenny L.; Nogusa, Shoko; Shah, Saumil; Saleh, Danish; Gough, Peter J.; Bertin, John; Yuan, Junying; Balachandran, Siddharth; Cuny, Gregory D.; Degterev, Alexei
2015-01-01
Summary RIPK1 and RIPK3, two closely related RIPK family members, have emerged as important regulators of pathologic cell death and inflammation. In the current work, we report that the Bcr-Abl inhibitor and anti-leukemia agent ponatinib is also a first-in-class dual inhibitor of RIPK1 and RIPK3. Ponatinib potently inhibited multiple paradigms of RIPK1- and RIPK3-dependent cell death and inflammatory TNFα gene transcription. We further describe design strategies that utilize the ponatinib scaffold to develop two classes of inhibitors (CS and PN series), each with greatly improved selectivity for RIPK1. In particular, we detail the development of PN10, a highly potent and selective ‘hybrid’ RIPK1 inhibitor, capturing the best properties of two different allosteric RIPK1 inhibitors, ponatinib and necrostatin-1. Finally, we show that RIPK1 inhibitors from both classes are powerful blockers of TNF-induced injury in vivo. Altogether, these findings outline promising candidate molecules and design approaches for targeting RIPK1/3-driven inflammatory pathologies. PMID:25801024
Zhao, Yu; Luo, Zaigang
2015-01-01
Lens epithelium-derived growth factor (LEDGF/p75) plays an essential role in the HIV-1 replication. It acts by tethering integrase (IN) into the host cellular chromatin. Due to its significance of the IN-LEDGF/p75 interaction affords a novel therapeutic approach for the design of new classes of antiretroviral agents. To date, many small molecules have been found to be the inhibitors of INLEDGF/ p75 interaction. This review summarizes recent advances in the development of potential structure-based IN-LEDGF/p75 interaction inhibitors. The work will be helpful to shed light on the antiretroviral drug development pipeline in the next future.
Developing Hypothetical Inhibition Mechanism of Novel Urea Transporter B Inhibitor
NASA Astrophysics Data System (ADS)
Li, Min; Tou, Weng Ieong; Zhou, Hong; Li, Fei; Ren, Huiwen; Chen, Calvin Yu-Chian; Yang, Baoxue
2014-07-01
Urea transporter B (UT-B) is a membrane channel protein that specifically transports urea. UT-B null mouse exhibited urea selective urine concentrating ability deficiency, which suggests the potential clinical applications of the UT-B inhibitors as novel diuretics. Primary high-throughput virtual screening (HTVS) of 50000 small-molecular drug-like compounds identified 2319 hit compounds. These 2319 compounds were screened by high-throughput screening using an erythrocyte osmotic lysis assay. Based on the pharmacological data, putative UT-B binding sites were identified by structure-based drug design and validated by ligand-based and QSAR model. Additionally, UT-B structural and functional characteristics under inhibitors treated and untreated conditions were simulated by molecular dynamics (MD). As the result, we identified four classes of compounds with UT-B inhibitory activity and predicted a human UT-B model, based on which computative binding sites were identified and validated. A novel potential mechanism of UT-B inhibitory activity was discovered by comparing UT-B from different species. Results suggest residue PHE198 in rat and mouse UT-B might block the inhibitor migration pathway. Inhibitory mechanisms of UT-B inhibitors and the functions of key residues in UT-B were proposed. The binding site analysis provides a structural basis for lead identification and optimization of UT-B inhibitors.
Chao, Angel; Wang, Tzu-Hao
2016-02-01
The successful development of the proteasome inhibitor bortezomib as an anticancer drug has improved survival in patients with multiple myeloma. With the emergence of the newly US Food and Drug Administration-approved proteasome inhibitor carfilzomib, ongoing trials are investigating this compound and other proteasome inhibitors either alone or in combination with other chemotherapy drugs. However, in solid tumors, the efficacy of proteasome inhibitors has not lived up to expectations. Results regarding the potential clinical efficacy of bortezomib combined with other agents in the treatment of solid tumors are eagerly awaited. Recent identification of the molecular mechanisms (involving apoptosis and autophagy) by which bortezomib and cisplatin can overcome chemotherapy resistance and sensitize tumor cells to anticancer therapy can provide insights into the development of novel therapeutic strategies for patients with solid malignancies. Copyright © 2016. Published by Elsevier B.V.
Hey, Spencer Phillips; Franklin, Jessica M; Avorn, Jerry; Kesselheim, Aaron S
2017-06-01
Although biomarkers are used as surrogate measures for drug targeting and approval and are generally based on plausible biological hypotheses, some are found to not correlate well with clinical outcomes. Over-reliance on inadequately validated biomarkers in drug development can lead to harm to trial subjects and patients and to research waste. To shed greater light on the process and ethics of biomarker-based drug development, we conducted a systematic portfolio analysis of cholesterol ester transfer protein inhibitors, a drug class designed to improve lipid profiles and prevent cardiovascular events. Despite years of development, no cholesterol ester transfer protein inhibitor has yet been approved for clinical use. We searched PubMed and Clinicaltrials.gov for clinical studies of 5 known cholesterol ester transfer protein inhibitors: anacetrapib, dalcetrapib, evacetrapib, TA-8995, and torcetrapib. Published reports and registration records were extracted for patient demographic characteristics and study authors' recommendations of clinical usage or further testing. We used Accumulating Evidence and Research Organization graphing to depict the portfolio of research activities and a Poisson model to examine trends. We identified 100 studies for analysis that involved 96 944 human subjects. The data from only 41 201 (42%) of the human subjects had been presented in a published report. For the 3 discontinued cholesterol ester transfer protein inhibitors, we found a pattern of consistently positive results on lipid-modification end points followed by negative results using clinical end points. Inefficiencies and harms can arise if a biomarker hypothesis continues to drive trials despite successive failures. Regulators, research funding bodies, and public policy makers may need to play a greater role in evaluating and coordinating biomarker-driven research programs. © 2017 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Murumkar, Prashant Revan; Zambre, Vishal Prakash; Yadav, Mange Ram
2010-02-01
A chemical feature-based pharmacophore model was developed for Tumor Necrosis Factor-α converting enzyme (TACE) inhibitors. A five point pharmacophore model having two hydrogen bond acceptors (A), one hydrogen bond donor (D) and two aromatic rings (R) with discrete geometries as pharmacophoric features was developed. The pharmacophore model so generated was then utilized for in silico screening of a database. The pharmacophore model so developed was validated by using four compounds having proven TACE inhibitory activity which were grafted into the database. These compounds mapped well onto the five listed pharmacophoric features. This validated pharmacophore model was also used for alignment of molecules in CoMFA and CoMSIA analysis. The contour maps of the CoMFA/CoMSIA models were utilized to provide structural insight for activity improvement of potential novel TACE inhibitors. The pharmacophore model so developed could be used for in silico screening of any commercial/in house database for identification of TACE inhibiting lead compounds, and the leads so identified could be optimized using the developed CoMSIA model. The present work highlights the tremendous potential of the two mutually complementary ligand-based drug designing techniques (i.e. pharmacophore mapping and 3D-QSAR analysis) using TACE inhibitors as prototype biologically active molecules.
Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching
2016-01-01
Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951
Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching
2016-06-13
Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes.
MMpI: A WideRange of Available Compounds of Matrix Metalloproteinase Inhibitors
Muvva, Charuvaka; Patra, Sanjukta; Venkatesan, Subramanian
2016-01-01
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases involved in the regulation of the extracellular signaling and structural matrix environment of cells and tissues. MMPs are considered as promising targets for the treatment of many diseases. Therefore, creation of database on the inhibitors of MMP would definitely accelerate the research activities in this area due to its implication in above-mentioned diseases and associated limitations in the first and second generation inhibitors. In this communication, we report the development of a new MMpI database which provides resourceful information for all researchers working in this field. It is a web-accessible, unique resource that contains detailed information on the inhibitors of MMP including small molecules, peptides and MMP Drug Leads. The database contains entries of ~3000 inhibitors including ~72 MMP Drug Leads and ~73 peptide based inhibitors. This database provides the detailed molecular and structural details which are necessary for the drug discovery and development. The MMpI database contains physical properties, 2D and 3D structures (mol2 and pdb format files) of inhibitors of MMP. Other data fields are hyperlinked to PubChem, ChEMBL, BindingDB, DrugBank, PDB, MEROPS and PubMed. The database has extensive searching facility with MMpI ID, IUPAC name, chemical structure and with the title of research article. The MMP inhibitors provided in MMpI database are optimized using Python-based Hierarchical Environment for Integrated Xtallography (Phenix) software. MMpI Database is unique and it is the only public database that contains and provides the complete information on the inhibitors of MMP. Database URL: http://clri.res.in/subramanian/databases/mmpi/index.php. PMID:27509041
Manual therapy in the treatment of patients with hemophilia B and inhibitor.
Cuesta-Barriuso, Rubén; Trelles-Martínez, Roberto O
2018-01-22
The main clinical manifestations of hemophilia are muscle and joint bleeding. Recurrent bleeding leads to a degenerative process known as hemophilic arthropathy. The development of inhibitors (antibodies against FVIII/FIX concentrates) is the main complication in the treatment of hemophilia. The objective was to assess the safety and efficacy of manual therapy treatment in a patient with hemophilia and inhibitor. A 26-year-old patient with hemophilia B and inhibitor received physiotherapy treatment based on manual therapy for 3 months, with a frequency of 2 sessions per week. The joint status was evaluated using the Hemophilia Joint Health Score; pain was assessed with the Visual Analog Scale; and the range of movement was evaluated using a universal goniometer. The patient developed no joint bleeding in the knees or ankles as a result of the physiotherapy treatment. Following treatment, improvements were noted in the range of movement of knees and ankles, the perception of pain in both knees, and ankle functionality. Until now, manual therapy using joint traction was contraindicated in patients with hemophilia and inhibitor, as it was feared to cause possible joint bleeding. This is the first case study to address the safety and efficacy of manual therapy in a patient with hemophilia and an inhibitor. The results of this study may help to establish which manual therapy treatments are indicated in patients with hemophilic arthropathy and inhibitors. Thus, a physiotherapy program based on manual therapy may be safe in patients with hemophilia and inhibitor and such therapy may improve joint condition, pain, and joint range of motion in patients with hemophilia and inhibitor. Randomized clinical trials are needed to confirm the results of this case study.
Melagraki, Georgia; Ntougkos, Evangelos; Rinotas, Vagelis; Papaneophytou, Christos; Leonis, Georgios; Mavromoustakos, Thomas; Kontopidis, George; Douni, Eleni; Afantitis, Antreas; Kollias, George
2017-04-01
We present an in silico drug discovery pipeline developed and applied for the identification and virtual screening of small-molecule Protein-Protein Interaction (PPI) compounds that act as dual inhibitors of TNF and RANKL through the trimerization interface. The cheminformatics part of the pipeline was developed by combining structure-based with ligand-based modeling using the largest available set of known TNF inhibitors in the literature (2481 small molecules). To facilitate virtual screening, the consensus predictive model was made freely available at: http://enalos.insilicotox.com/TNFPubChem/. We thus generated a priority list of nine small molecules as candidates for direct TNF function inhibition. In vitro evaluation of these compounds led to the selection of two small molecules that act as potent direct inhibitors of TNF function, with IC50 values comparable to those of a previously-described direct inhibitor (SPD304), but with significantly reduced toxicity. These molecules were also identified as RANKL inhibitors and validated in vitro with respect to this second functionality. Direct binding of the two compounds was confirmed both for TNF and RANKL, as well as their ability to inhibit the biologically-active trimer forms. Molecular dynamics calculations were also carried out for the two small molecules in each protein to offer additional insight into the interactions that govern TNF and RANKL complex formation. To our knowledge, these compounds, namely T8 and T23, constitute the second and third published examples of dual small-molecule direct function inhibitors of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases.
Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs.
Zhang, Han-Ting
2009-01-01
Phosphodiesterase-4 (PDE4), one of eleven PDE enzyme families, specifically catalyzes hydrolysis of cyclic AMP (cAMP); it has four subtypes (PDE4A-D) with at least 25 splice variants. PDE4 plays a critical role in the control of intracellular cAMP concentrations. PDE4 inhibitors produce antidepressant actions in both animals and humans via enhancement of cAMP signaling in the brain. However, their clinical utility has been hampered by side effects, in particular nausea and emesis. While there is still a long way to go before PDE4 inhibitors with high therapeutic indices are available for treatment of depressive disorders, important advances have been made in the development of PDE4 inhibitors as antidepressants. First, limited, but significant studies point to PDE4D as the major PDE4 subtype responsible for antidepressant-like effects of PDE4 inhibitors, although the role of PDE4A cannot be excluded. Second, PDE4D may contribute to emesis, the major side effect of PDE4 inhibitors. For this reason, identification of roles of PDE4D splice variants in mediating antidepressant activity is particularly important. Recent studies using small interfering RNAs (siRNAs) have demonstrated the feasibility to identify cellular functions of individual PDE4 variants. Third, mixed inhibitors of PDE4 and PDE7 or PDE4 and serotonin reuptake have been developed and may be potential antidepressants with minimized side effects. Finally, relatively selective inhibitors of one or two PDE4 subtypes have been synthesized using structure- and scaffold-based design. This review also discusses the relationship between PDE4 and antidepressant activity based on structures, brain distributions, and pharmacological properties of PDE4 and its isoforms.
Identification of Inhibitors of ABCG2 by a Bioluminescence Imaging-based High-throughput Assay
Zhang, Yimao; Byun, Youngjoo; Ren, Yunzhao R.; Liu, Jun O.; Laterra, John; Pomper, Martin G.
2009-01-01
ABCG2 is a member of the ATP-binding cassette (ABC) family of transporters, the overexpression of which is associated with tumor resistance to a variety of chemotherapeutic agents. Accordingly, combining ABCG2 inhibitor(s) with chemotherapy has the potential to improve treatment outcome. To search for clinically useful ABCG2 inhibitors, a bioluminescence imaging (BLI)-based assay was developed to allow high-throughput compound screening. This assay exploits our finding that D-luciferin, the substrate of firefly luciferase (fLuc), is a specific substrate of ABCG2, and ABCG2 inhibitors block the export of D-luciferin and enhance bioluminescence signal by increasing intracellular D-luciferin concentrations. HEK293 cells, engineered to express ABCG2 and fLuc, were used to screen the Hopkins Drug Library that includes drugs approved by the US Food and Drug Administration (FDA) as well as drug candidates that have entered phase II clinical trials. Forty seven compounds demonstrated BLI enhancement, a measure of anti-ABCG2 activity, of five-fold or greater, the majority of which were not previously known as ABCG2 inhibitors. The assay was validated by its identification of known ABCG2 inhibitors and by confirming previously unknown ABCG2 inhibitors using established in vitro assays (e.g. mitoxantrone resensitization and BODIPY-prazosin assays). Glafenine, a potent new inhibitor, also inhibited ABCG2 activity in vivo. The BLI-based assay is an efficient method to identify new inhibitors of ABCG2. As they were derived from an FDA-approved compound library, many of the inhibitors uncovered in this study are ready for clinical testing. PMID:19567678
Tian, Sheng; Sun, Huiyong; Pan, Peichen; Li, Dan; Zhen, Xuechu; Li, Youyong; Hou, Tingjun
2014-10-27
In this study, to accommodate receptor flexibility, based on multiple receptor conformations, a novel ensemble docking protocol was developed by using the naïve Bayesian classification technique, and it was evaluated in terms of the prediction accuracy of docking-based virtual screening (VS) of three important targets in the kinase family: ALK, CDK2, and VEGFR2. First, for each target, the representative crystal structures were selected by structural clustering, and the capability of molecular docking based on each representative structure to discriminate inhibitors from non-inhibitors was examined. Then, for each target, 50 ns molecular dynamics (MD) simulations were carried out to generate an ensemble of the conformations, and multiple representative structures/snapshots were extracted from each MD trajectory by structural clustering. On average, the representative crystal structures outperform the representative structures extracted from MD simulations in terms of the capabilities to separate inhibitors from non-inhibitors. Finally, by using the naïve Bayesian classification technique, an integrated VS strategy was developed to combine the prediction results of molecular docking based on different representative conformations chosen from crystal structures and MD trajectories. It was encouraging to observe that the integrated VS strategy yields better performance than the docking-based VS based on any single rigid conformation. This novel protocol may provide an improvement over existing strategies to search for more diverse and promising active compounds for a target of interest.
Boylan, Brian; Rice, Anne S.; Dunn, Amy L.; Tarantino, Michael D.; Brettler, Doreen B.; Barrett, John C.; Miller, Connie H.
2015-01-01
Summary Background The development of neutralizing antibodies, referred to as inhibitors, against factor VIII (FVIII) is a major complication associated with FVIII infusion therapy for the treatment of hemophilia A (HA). Previous studies have shown that a subset of HA patients and a low percentage of healthy individuals harbor non-neutralizing anti-FVIII antibodies that do not elicit the clinical manifestations associated with inhibitor development. Objective Assess HA patients' anti-FVIII antibody profiles as potential predictors of clinical outcomes. Methods A fluorescence immunoassay (FLI) was used to detect anti-FVIII antibodies in 491 samples from 371 HA patients. Results Assessments of antibody profiles showed that the presence of anti-FVIII IgG1, IgG2, or IgG4 correlated qualitatively and quantitatively with the presence of a FVIII inhibitor as reported by the Nijmegen-Bethesda assay (NBA). Forty-eight patients with a negative inhibitor history contributed serial samples to the study, including seven patients who had negative NBA titers initially and later converted to NBA-positive. The FLI detected anti-FVIII IgG1 in five of those seven patients prior to their conversion to NBA-positive. Five of 15 serial-sample patients who had a negative inhibitor history and a positive anti-FVIII IgG1 later developed an inhibitor, compared to 2 of 33 patients with a negative inhibitor history without anti-FVIII IgG1. Conclusions These data provide a rationale for future studies designed both to monitor the dynamics of anti-FVIII antibody profiles in HA patients as a potential predictor of future inhibitor development and to assess the value of the anti-FVIII FLI as a supplement to traditional inhibitor testing. PMID:25354263
Theander, Lisa; Nyhäll-Wåhlin, Britt-Marie; Nilsson, Jan-Åke; Willim, Minna; Jacobsson, Lennart T H; Petersson, Ingemar F; Turesson, Carl
2017-07-01
The aims of this study were to evaluate whether treatment with tumor necrosis factor (TNF) inhibitors in patients with rheumatoid arthritis (RA) affects the risk of developing severe extraarticular rheumatoid arthritis (ExRA) manifestations and to investigate potential predictors for developing ExRA. A dynamic community-based cohort of patients with RA was studied (n = 1977). Clinical records were reviewed and cases of severe ExRA were identified. Information on exposure to TNF inhibitors was obtained from a regional register. Exposure to TNF inhibitors was analyzed in a time-dependent fashion and the incidence of severe ExRA in exposed patients was compared with the incidence in unexposed patients. Cox regression models were used to assess potential predictors of severe ExRA. During treatment with TNF inhibitors, there were 17 patients with new onset of severe ExRA in 2400 person-years at risk (PY; 0.71/100 PY, 95% CI 0.41-1.13) compared with 104 in 15,599 PY (0.67/100 PY, 95% CI 0.54-0.81) in patients without TNF inhibitors. This corresponded to an incidence rate ratio of 1.06 (95% CI 0.60-1.78). The age- and sex-adjusted HR for ExRA in anti-TNF-treated patients was 1.21 (95% CI 1.02-1.43), with similar findings in models adjusted for time-dependent Health Assessment Questionnaire and propensity for anti-TNF treatment. Male sex, positive rheumatoid factor (RF), long disease duration, and greater disability were predictors for ExRA. This study suggests that patients treated with TNF inhibitors are at a slightly increased risk of developing severe ExRA. RF-positive patients with disabling disease of long duration were more likely to develop severe ExRA.
Lakhlili, Wiame; Yasri, Abdelaziz; Ibrahimi, Azeddine
2016-01-01
The discovery of clinically relevant inhibitors of mammalian target of rapamycin (mTOR) for anticancer therapy has proved to be a challenging task. The quantitative structure–activity relationship (QSAR) approach is a very useful and widespread technique for ligand-based drug design, which can be used to identify novel and potent mTOR inhibitors. In this study, we performed two-dimensional QSAR tests, and molecular docking validation tests of a series of mTOR ATP-competitive inhibitors to elucidate their structural properties associated with their activity. The QSAR tests were performed using partial least square method with a correlation coefficient of r2=0.799 and a cross-validation of q2=0.714. The chemical library screening was done by associating ligand-based to structure-based approach using the three-dimensional structure of mTOR developed by homology modeling. We were able to select 22 compounds from two databases as inhibitors of the mTOR kinase active site. We believe that the method and applications highlighted in this study will help future efforts toward the design of selective ATP-competitive inhibitors. PMID:27980424
Structures of potent selective peptide mimetics bound to carboxypeptidase B.
Adler, Marc; Buckman, Brad; Bryant, Judi; Chang, Zheng; Chu, Kieu; Emayan, Kumar; Hrvatin, Paul; Islam, Imadul; Morser, John; Sukovich, Drew; West, Christopher; Yuan, Shendong; Whitlow, Marc
2008-02-01
This article reports the crystal structures of inhibitors of the functional form of thrombin-activatable fibrinolysis inhibitor (TAFIa). In vivo experiments indicate that selective inhibitors of TAFIa would be useful in the treatment of heart attacks. Since TAFIa rapidly degrades in solution, the homologous protein porcine pancreatic carboxypeptidase B (pp-CpB) was used in these crystallography studies. Both TAFIa and pp-CpB are zinc-based exopeptidases that are specific for basic residues. The final development candidate, BX 528, is a potent inhibitor of TAFIa (2 nM) and has almost no measurable effect on the major selectivity target, carboxypeptidase N. BX 528 was designed to mimic the tripeptide Phe-Val-Lys. A sulfonamide replaces the Phe-Val amide bond and a phosphinate connects the Val and Lys groups. The phosphinate also chelates the active-site zinc. The electrostatic interactions with the protein mimic those of the natural substrate. The primary amine in BX 528 forms a salt bridge to Asp255 at the base of the S1' pocket. The carboxylic acid interacts with Arg145 and the sulfonamide is hydrogen bonded to Arg71. Isopropyl and phenyl groups replace the side chains of Val and Phe, respectively. A series of structures are presented here that illustrate the evolution of BX 528 from thiol-based inhibitors that mimic a free C-terminal arginine. The first step in development was the replacement of the thiol with a phosphinate. This caused a precipitous drop in binding affinity. Potency was reclaimed by extending the inhibitors into the downstream binding sites for the natural substrate.
Freise, Kevin J; Shebley, Mohamad; Salem, Ahmed Hamed
2017-06-01
The objectives of the analysis were to develop and verify a venetoclax physiologically based pharmacokinetic (PBPK) model to predict the effects of cytochrome P450 3A (CYP3A) inhibitors and inducers on the PK of venetoclax and inform dosing recommendations. A minimal PBPK model was developed based on prior in vitro and in vivo clinical data using a "middle-out" approach. The PBPK model was independently verified against clinical studies of the strong CYP3A inhibitor ketoconazole, the strong CYP3A inducer, multiple-dose rifampin, and the steady-state venetoclax PK in chronic lymphocytic leukemia (CLL) subjects by comparing predicted to observed ratios of the venetoclax maximum concentration (C max R) and area under the curve from time 0 to infinity (AUC ∞ R) from these studies. The verified PBPK model was then used to simulate the effects of different CYP3A inhibitors and inducers on the venetoclax PK. Comparison of the PBPK model predicted to the observed PK parameters indicated good agreement. Verification of the PBPK model demonstrated that the ratios of the predicted:observed C max R and AUC ∞ R of venetoclax were within 0.8- to 1.25-fold range for strong CYP3A inhibitors and inducers. Model simulations indicated no effect of weak CYP3A inhibitors or inducers on C max or AUC ∞ , while both moderate and strong CYP3A inducers were estimated to decrease venetoclax exposure. Moderate and strong CYP3A inhibitors were estimated to increase venetoclax AUC ∞ , by 100% to 390% and 480% to 680%, respectively. The recommended venetoclax dose reductions of at least 50% and 75% when coadministered with moderate and strong CYP3A inhibitors, respectively, maintain venetoclax exposures between therapeutic and maximally administered safe doses. © 2017, The American College of Clinical Pharmacology.
Novel Small Molecule Entry Inhibitors of Ebola Virus
Basu, Arnab; Mills, Debra M.; Mitchell, Daniel; Ndungo, Esther; Williams, John D.; Herbert, Andrew S.; Dye, John M.; Moir, Donald T.; Chandran, Kartik; Patterson, Jean L.; Rong, Lijun; Bowlin, Terry L.
2015-01-01
Background. The current Ebola virus (EBOV) outbreak has highlighted the troubling absence of available antivirals or vaccines to treat infected patients and stop the spread of EBOV. The EBOV glycoprotein (GP) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-EBOV drugs. We report the identification of 2 novel EBOV inhibitors targeting viral entry. Methods. To identify small molecule inhibitors of EBOV entry, we carried out a cell-based high-throughput screening using human immunodeficiency virus–based pseudotyped viruses expressing EBOV-GP. Two compounds were identified, and mechanism-of-action studies were performed using immunoflourescence, AlphaLISA, and enzymatic assays for cathepsin B inhibition. Results. We report the identification of 2 novel entry inhibitors. These inhibitors (1) inhibit EBOV infection (50% inhibitory concentration, approximately 0.28 and approximately 10 µmol/L) at a late stage of entry, (2) induce Niemann-Pick C phenotype, and (3) inhibit GP–Niemann-Pick C1 (NPC1) protein interaction. Conclusions. We have identified 2 novel EBOV inhibitors, MBX2254 and MBX2270, that can serve as starting points for the development of an anti-EBOV therapeutic agent. Our findings also highlight the importance of NPC1-GP interaction in EBOV entry and the attractiveness of NPC1 as an antifiloviral therapeutic target. PMID:26206510
Han, Bucong; Ma, Xiaohua; Zhao, Ruiying; Zhang, Jingxian; Wei, Xiaona; Liu, Xianghui; Liu, Xin; Zhang, Cunlong; Tan, Chunyan; Jiang, Yuyang; Chen, Yuzong
2012-11-23
Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates.
[BACE1 inhibitors for the treatment of Alzheimer disease].
Tomita, Taisuke
2016-03-01
β-Site amyloid precursor protein cleaving enzyme 1 (BACEl) is the enzyme required for the production of the amyloid-β peptide(Aβ), which is associated with Alzheimer disease (AD). BACEl has emerged as a prime molecular target for reducing the brain Aβ levels. Recently, several BACEl inhibitors have been developed in clinical trials to test the efficacy in AD patients and individuals with prodromal AD. However, identification of BACE1 substrates and phenotypes of Bace1 knockout mice have raised concerns regarding potential mechanism-based adverse effects. This review summarizes the current status of the development of BACE1 inhibitors and the evaluation of their therapeutic potential against AD.
2012-01-01
Human Immunodeficiency Virus Type 1 (HIV-1) protease inhibitors (PIs) are the most potent class of drugs in antiretroviral therapies. However, viral drug resistance to PIs could emerge rapidly thus reducing the effectiveness of those drugs. Of note, all current FDA-approved PIs are competitive inhibitors, i.e., inhibitors that compete with substrates for the active enzymatic site. This common inhibitory approach increases the likelihood of developing drug resistant HIV-1 strains that are resistant to many or all current PIs. Hence, new PIs that move away from the current target of the active enzymatic site are needed. Specifically, allosteric inhibitors, inhibitors that prohibit PR enzymatic activities through non-competitive binding to PR, should be sought. Another common feature of current PIs is they were all developed based on the structure-based design. Drugs derived from a structure-based strategy may generate target specific and potent inhibitors. However, this type of drug design can only target one site at a time and drugs discovered by this method are often associated with strong side effects such as cellular toxicity, limiting its number of target choices, efficacy, and applicability. In contrast, a cell-based system may provide a useful alternative strategy that can overcome many of the inherited shortcomings associated with structure-based drug designs. For example, allosteric PIs can be sought using a cell-based system without considering the site or mechanism of inhibition. In addition, a cell-based system can eliminate those PIs that have strong cytotoxic effect. Most importantly, a simple, economical, and easy-to-maintained eukaryotic cellular system such as yeast will allow us to search for potential PIs in a large-scaled high throughput screening (HTS) system, thus increasing the chances of success. Based on our many years of experience in using fission yeast as a model system to study HIV-1 Vpr, we propose the use of fission yeast as a possible surrogate system to study the effects of HIV-1 protease on cellular functions and to explore its utility as a HTS system to search for new PIs to battle HIV-1 resistant strains. PMID:22971934
Two-colored fluorescence correlation spectroscopy screening for LC3-P62 interaction inhibitors.
Tsuganezawa, Keiko; Shinohara, Yoshiyasu; Ogawa, Naoko; Tsuboi, Shun; Okada, Norihisa; Mori, Masumi; Yokoyama, Shigeyuki; Noda, Nobuo N; Inagaki, Fuyuhiko; Ohsumi, Yoshinori; Tanaka, Akiko
2013-10-01
The fluorescence correlation spectroscopy (FCS)-based competitive binding assay to screen for protein-protein interaction inhibitors is a highly sensitive method as compared with the fluorescent polarization assay used conventionally. However, the FCS assay identifies many false-positive compounds, which requires specifically designed orthogonal screenings. A two-colored application of the FCS-based screening was newly developed, and inhibitors of a protein-protein interaction, involving selective autophagy, were selected. We focused on the interaction of LC3 with the adaptor protein p62, because the interaction is crucial to degrade the specific target proteins recruited by p62. First, about 10,000 compounds were subjected to the FCS-based competitive assay using a TAMRA-labeled p62-derived probe, and 29 hit compounds were selected. Next, the obtained hits were evaluated by the second FCS assay, using an Alexa647-labeled p62-derived probe to remove the false-positive compounds, and six hit compounds inhibited the interaction. Finally, we tested all 29 compounds by surface plasmon resonance-based competitive binding assay to evaluate their inhibition of the LC3-p62 interaction and selected two inhibitors with IC50 values less than 2 µM. The two-colored FCS-based screening was shown to be effective to screen for protein-protein interaction inhibitors.
Leverson, Joel D.; Sampath, Deepak; Souers, Andrew J.; Rosenberg, Saul H.; Fairbrother, Wayne J.; Amiot, Martine; Konopleva, Marina; Letai, Anthony
2017-01-01
Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high priority goal for cancer therapy. After decades of effort, drug discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL-2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL-2 biology, were essential to the development of BH3 mimetics such as the BCL-2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL-2 biology and facilitated the clinical development of venetoclax. PMID:29146569
Spilovska, Katarina; Korabecny, Jan; Kral, Jan; Horova, Anna; Musilek, Kamil; Soukup, Ondrej; Drtinova, Lucie; Gazova, Zuzana; Siposova, Katarina; Kuca, Kamil
2013-02-20
A structural series of 7-MEOTA-adamantylamine thioureas was designed, synthesized and evaluated as inhibitors of human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE). The compounds were prepared based on the multi-target-directed ligand strategy with different linker lengths (n = 2-8) joining the well-known NMDA antagonist adamantine and the hAChE inhibitor 7-methoxytacrine (7-MEOTA). Based on in silico studies, these inhibitors proved dual binding site character capable of simultaneous interaction with the peripheral anionic site (PAS) of hAChE and the catalytic active site (CAS). Clearly, these structural derivatives exhibited very good inhibitory activity towards hBChE resulting in more selective inhibitors of this enzyme. The most potent cholinesterase inhibitor was found to be thiourea analogue 14 (with an IC₅₀ value of 0.47 µM for hAChE and an IC₅₀ value of 0.11 µM for hBChE, respectively). Molecule 14 is a suitable novel lead compound for further evaluation proving that the strategy of dual binding site inhibitors might be a promising direction for development of novel AD drugs.
Okutan, Leyla; Kongstad, Kenneth T; Jäger, Anna K; Staerk, Dan
2014-11-26
Type 2 diabetes affects millions of people worldwide, and new improved drugs or functional foods containing selective α-amylase inhibitors are needed for improved management of blood glucose. In this article the development of a microplate-based high-resolution α-amylase inhibition assay with direct photometric measurement of α-amylase activity is described. The inhibition assay is based on porcine pancreatic α-amylase with 2-chloro-4-nitrophenyl-α-D-maltotriose as substrate, which this gives a stable, sensitive, and cheap inhibition assay as requested for high-resolution purposes. In combination with HPLC-HRMS-SPE-NMR, this provides an analytical platform that allows simultaneous chemical and biological profiling of α-amylase inhibitors in plant extracts. Proof-of-concept with an artificial mixture of six compounds-of which three are known α-amylase inhibitors-showed that the high-resolution α-amylase inhibition profiles allowed detection of sub-microgram amounts of the α-amylase inhibitors. Furthermore, the high-resolution α-amylase inhibition assay/HPLC-HRMS-SPE-NMR platform allowed identification of cinnamaldehyde as the α-amylase inhibitor in cinnamon (Cinnamomum verum Presl.).
Development of Matrix Metalloproteinase-2 Inhibitors for Cardioprotection
Bencsik, Péter; Kupai, Krisztina; Görbe, Anikó; Kenyeres, Éva; Varga, Zoltán V.; Pálóczi, János; Gáspár, Renáta; Kovács, László; Weber, Lutz; Takács, Ferenc; Hajdú, István; Fabó, Gabriella; Cseh, Sándor; Barna, László; Csont, Tamás; Csonka, Csaba; Dormán, György; Ferdinandy, Péter
2018-01-01
The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction. PMID:29674965
Ward, Richard A; Anderton, Mark J; Ashton, Susan; Bethel, Paul A; Box, Matthew; Butterworth, Sam; Colclough, Nicola; Chorley, Christopher G; Chuaqui, Claudio; Cross, Darren A E; Dakin, Les A; Debreczeni, Judit É; Eberlein, Cath; Finlay, M Raymond V; Hill, George B; Grist, Matthew; Klinowska, Teresa C M; Lane, Clare; Martin, Scott; Orme, Jonathon P; Smith, Peter; Wang, Fengjiang; Waring, Michael J
2013-09-12
A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.
Covalent docking of selected boron-based serine beta-lactamase inhibitors
NASA Astrophysics Data System (ADS)
Sgrignani, Jacopo; Novati, Beatrice; Colombo, Giorgio; Grazioso, Giovanni
2015-05-01
AmpC β-lactamase is a hydrolytic enzyme conferring resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds able to inhibit the enzyme is crucial for the development of novel antibacterial therapies. In general, AmpC inhibitors have to engage the highly solvent-exposed catalytic site of the enzyme. Therefore, understanding the implications of ligand-protein induced-fit and water-mediated interactions behind the inhibitor-enzyme recognition process is fundamental for undertaking structure-based drug design process. Here, we focus on boronic acids, a promising class of beta-lactamase covalent inhibitors. First, we optimized a docking protocol able to reproduce the experimentally determined binding mode of AmpC inhibitors bearing a boronic group. This goal was pursued (1) performing rigid and flexible docking calculations aiming to establish the role of the side chain conformations; and (2) investigating the role of specific water molecules in shaping the enzyme active site and mediating ligand protein interactions. Our calculations showed that some water molecules, conserved in the majority of the considered X-ray structures, are needed to correctly predict the binding pose of known covalent AmpC inhibitors. On this basis, we formalized our findings in a docking and scoring protocol that could be useful for the structure-based design of new boronic acid AmpC inhibitors.
Cai, Haiyan; Liu, Qiufeng; Gao, Dingding; Wang, Ting; Chen, Tiantian; Yan, Guirui; Chen, Kaixian; Xu, Yechun; Wang, Heyao; Li, Yingxia; Zhu, Weiliang
2015-01-27
Fatty acid binding protein 4 (FABP4) is a potential drug target for diabetes and atherosclerosis. For discovering new chemical entities as FABP4 inhibitors, structure-based virtual screening (VS) was performed, bioassay demonstrated that 16 of 251 tested compounds are FABP4 inhibitors, among which compound m1 are more active than endogenous ligand linoleic acid (LA). Based on the structure of m1, new derivatives were designed and prepared, leading to the discovery of two more potent inhibitors, compounds 9 and 10. To further explore the binding mechanisms of these new inhibitors, we determined the X-ray structures of the complexes of FABP4-9 and FABP4-10, which revealed similar binding conformations of the two compounds. Residue Ser53 and Arg126 formed direct hydrogen bonding with the ligands. We also found that 10 could significantly reduce the levels of lipolysis on mouse 3T3-L1 adipocytes. Taken together, in silico, in vitro and crystallographic data provide useful hints for future development of novel inhibitors against FABP4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Investigational Notch and Hedgehog Inhibitors – Therapies for Cardiovascular disease
Redmond, EM; Guha, S; Walls, D; Cahill, PA
2011-01-01
Importance to the field During the past decade a variety of Notch and Hedgehog pathway inhibitors have been developed for the treatment of several cancers. An emerging paradigm suggests that these same gene regulatory networks are often recapitulated in the context of cardiovascular disease and may now offer an attractive target for therapeutic intervention. Areas Covered This article briefly reviews the profile of Notch and Hedgehog inhibitors that have reached the pre-clinic and clinic for cancer treatment and discusses the clinical issues surrounding targeted use of these inhibitors in the treatment of vascular disorders. Expert Opinion Pre-clinical and clinical data using pan-Notch inhibitors (γ-secretase inhibitors) and selective antibodies to preferentially target notch receptors and ligands has proven successful but concerns remain over normal organ homeostasis and significant pathology in multiple organs. In contrast, the Hedgehog based drug pipeline is rich with more than a dozen Smoothened (SMO) inhibitors at various stages of development. Overall, refined strategies will be necessary to harness these pathways safely as a powerful tool to disrupt angiogenesis and vascular proliferative phenomena without causing prohibitive side effects already seen with cancer models and patients. PMID:22007748
Colorimetric micro-assay for accelerated screening of mould inhibitors
Carol A. Clausen; Vina W. Yang
2013-01-01
Since current standard laboratory methods are time-consuming macro-assays that rely on subjective visual ratings of mould growth, rapid and quantitative laboratory methods are needed to screen potential mould inhibitors for use in and on cellulose-based products. A colorimetric micro-assay has been developed that uses XTT tetrazolium salt to enzymatically assess...
Identification of a Novel Family of BRAF[superscript V600E] Inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Jie; Xie, Peng; Ventocilla, Christian
The BRAF oncoprotein is mutated in about half of malignant melanomas and other cancers, and a kinase activating single valine to glutamate substitution at residue 600 (BRAF{sup V600E}) accounts for over 90% of BRAF-mediated cancers. Several BRAF{sup V600E} inhibitors have been developed, although they harbor some liabilities, thus motivating the development of other BRAF{sup V600E} inhibitor options. We report here the use of an ELISA based high-throughput screen to identify a family of related quinolol/naphthol compounds that preferentially inhibit BRAF{sup V600E} over BRAF{sup WT} and other kinases. We also report the X-ray crystal structure of a BRAF/quinolol complex revealing themore » mode of inhibition, employ structure-based medicinal chemistry efforts to prepare naphthol analogues that inhibit BRAF{sup V600E} in vitro with IC{sub 50} values in the 80-200 nM range under saturating ATP concentrations, and demonstrate that these compounds inhibit MAPK signaling in melanoma cells. Prospects for improving the potency and selectivity of these inhibitors are discussed.« less
In Silico Identification of a Novel Hinge-Binding Scaffold for Kinase Inhibitor Discovery.
Wang, Yanli; Sun, Yuze; Cao, Ran; Liu, Dan; Xie, Yuting; Li, Li; Qi, Xiangbing; Huang, Niu
2017-10-26
To explore novel kinase hinge-binding scaffolds, we carried out structure-based virtual screening against p38α MAPK as a model system. With the assistance of developed kinase-specific structural filters, we identify a novel lead compound that selectively inhibits a panel of kinases with threonine as the gatekeeper residue, including BTK and LCK. These kinases play important roles in lymphocyte activation, which encouraged us to design novel kinase inhibitors as drug candidates for ameliorating inflammatory diseases and cancers. Therefore, we chemically modified our substituted triazole-class lead compound to improve the binding affinity and selectivity via a "minimal decoration" strategy, which resulted in potent and selective kinase inhibitors against LCK (18 nM) and BTK (8 nM). Subsequent crystallographic experiments validated our design. These rationally designed compounds exhibit potent on-target inhibition against BTK in B cells or LCK in T cells, respectively. Our work demonstrates that structure-based virtual screening can be applied to facilitate the development of novel chemical entities in crowded chemical space in the field of kinase inhibitor discovery.
Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity
Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao; ...
2015-08-24
Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here in this paper, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diversemore » subtypes of clinical isolates (IC 50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.« less
Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao
Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here in this paper, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diversemore » subtypes of clinical isolates (IC 50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.« less
Lee, Hyun; Zhu, Tian; Patel, Kavankumar; Zhang, Yan-Yan; Truong, Lena; Hevener, Kirk E; Gatuz, Joseph L; Subramanya, Gitanjali; Jeong, Hyun-Young; Uprichard, Susan L; Johnson, Michael E
2013-01-01
Development of drug-resistant mutations has been a major problem with all currently developed Hepatitis C Virus (HCV) NS3/4A inhibitors, including the two FDA approved drugs, significantly reducing the efficacy of these inhibitors. The high incidence of drug-resistance mutations and the limited utility of these inhibitors against only genotype 1 highlight the need for novel, broad-spectrum HCV therapies. Here we used high-throughput screening (HTS) to identify low molecular weight inhibitors against NS3/4A from multiple genotypes. A total of 40,967 compounds from four structurally diverse molecular libraries were screened by HTS using fluorescence-based enzymatic assays, followed by an orthogonal binding analysis using surface plasmon resonance (SPR) to eliminate false positives. A novel small molecule compound was identified with an IC50 value of 2.2 µM against the NS3/4A from genotype 1b. Mode of inhibition analysis subsequently confirmed this compound to be a competitive inhibitor with respect to the substrate, indicating direct binding to the protease active site, rather than to the allosteric binding pocket that was discovered to be the binding site of a few recently discovered small molecule inhibitors. This newly discovered inhibitor also showed promising inhibitory activity against the NS3/4As from three other HCV genotypes, as well as five common drug-resistant mutants of genotype 1b NS3/4A. The inhibitor was selective for NS3 from multiple HCV genotypes over two human serine proteases, and a whole cell lysate assay confirmed inhibitory activity in the cellular environment. This compound provides a lead for further development of potentially broader spectrum inhibitors.
Shinde, Ranajit Nivrutti; Kumar, G Siva; Eqbal, Shahbaz; Sobhia, M Elizabeth
2018-01-01
Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for Type 2 diabetes due to its specific role as a negative regulator of insulin signaling pathways. Discovery of active site directed PTP1B inhibitors is very challenging due to highly conserved nature of the active site and multiple charge requirements of the ligands, which makes them non-selective and non-permeable. Identification of the PTP1B allosteric site has opened up new avenues for discovering potent and selective ligands for therapeutic intervention. Interactions made by potent allosteric inhibitor in the presence of PTP1B were studied using Molecular Dynamics (MD). Computationally optimized models were used to build separate pharmacophore models of PTP1B and TCPTP, respectively. Based on the nature of interactions the target residues offered, a receptor based pharmacophore was developed. The pharmacophore considering conformational flexibility of the residues was used for the development of pharmacophore hypothesis to identify potentially active inhibitors by screening large compound databases. Two pharmacophore were successively used in the virtual screening protocol to identify potential selective and permeable inhibitors of PTP1B. Allosteric inhibition mechanism of these molecules was established using molecular docking and MD methods. The geometrical criteria values confirmed their ability to stabilize PTP1B in an open conformation. 23 molecules that were identified as potential inhibitors were screened for PTP1B inhibitory activity. After screening, 10 molecules which have good permeability values were identified as potential inhibitors of PTP1B. This study confirms that selective and permeable inhibitors can be identified by targeting allosteric site of PTP1B.
Patterson, Stephen; Alphey, Magnus S; Jones, Deuan C; Shanks, Emma J; Street, Ian P; Frearson, Julie A; Wyatt, Paul G; Gilbert, Ian H; Fairlamb, Alan H
2011-10-13
Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei , the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR-ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.
Tang, Dandan; Zhang, Jinyi; Zhou, Rongxin; Xie, Ya-Ni; Hou, Xiandeng; Xu, Kailai; Wu, Peng
2018-05-10
Overexpression and crystallization of uric acid have been recognized as the course of hyperuricemia and gout, which is produced via xanthine oxidase (XOD)-catalyzed oxidation of xanthine. Therefore, the medicinal therapy of hyperuricemia and gout is majorly based on the inhibition of the XOD enzymatic pathway. The spectroscopic nature of xanthine and uric acid, namely both absorption (near the ultraviolet region) and emission (non-fluorescent) characteristics, hinders optical assay development for XOD analysis. Therefore, the state-of-the-art analysis of XOD and the screening of XOD inhibitors are majorly based on chromatography. Here, we found the near ultraviolet absorption of uric acid overlapped well with the absorption of a large bandgap semiconductor quantum dots, ZnS. On the other hand, the intrinsic weak fluorescence of ZnS QDs can be substantially improved via transition metal ion doping. Therefore, herein, we developed an inner filter effect-based assay for XOD analysis and inhibitor screening with Mn-doped ZnS QDs. The phosphorescence of Mn-doped ZnS QDs could be quenched by uric acid generated from xanthine catabolism by XOD, leading to the phosphorescence turn-off detection of XOD with a limit of detection (3σ) of 0.02 U L-1. Furthermore, the existence of XOD inhibitors could inhibit the XOD enzymatic reaction, resulting in weakened phosphorescence quenching. Therefore, the proposed assay could also be explored for the facile screening analysis of XOD inhibitors, which is important for the potential medicinal therapy of hyperuricemia and gout.
Manoharan, Prabu; Ghoshal, Nanda
2018-05-01
Traditional structure-based virtual screening method to identify drug-like small molecules for BACE1 is so far unsuccessful. Location of BACE1, poor Blood Brain Barrier permeability and P-glycoprotein (Pgp) susceptibility of the inhibitors make it even more difficult. Fragment-based drug design method is suitable for efficient optimization of initial hit molecules for target like BACE1. We have developed a fragment-based virtual screening approach to identify/optimize the fragment molecules as a starting point. This method combines the shape, electrostatic, and pharmacophoric features of known fragment molecules, bound to protein conjugate crystal structure, and aims to identify both chemically and energetically feasible small fragment ligands that bind to BACE1 active site. The two top-ranked fragment hits were subjected for a 53 ns MD simulation. Principle component analysis and free energy landscape analysis reveal that the new ligands show the characteristic features of established BACE1 inhibitors. The potent method employed in this study may serve for the development of potential lead molecules for BACE1-directed Alzheimer's disease therapeutics.
NASA Astrophysics Data System (ADS)
Popov, K. I.; Kovaleva, N. E.; Rudakova, G. Ya.; Kombarova, S. P.; Larchenko, V. E.
2016-02-01
Scale formation is a challenge worldwide. Recently, scale inhibitors represent the best solution of this problem. The polyaminocarboxylic acids have been the first to be successfully applied in the field, although their efficacy was rather low. The next generation was developed on the grounds of polyphosphonic acids. The main disadvantage of these is associated with low biodegradation level. Polyacrylate-based phosphorous free inhibitors proposed as an alternative to phosphonates all also had low biodegradability. Thus, the main trend of recent R&D is the development of a new generation: environmentally friendly biodegradable scale inhibitors. The recent state of the word and domestic scale inhibitors markets is considered, the main industrial inhibitors manufacturers and marketed substances, as well as the general trends of R&D in the field, are characterized. It is demonstrated that most research is focused on biodegradable polymers and on phosponates with low phosphorus content, as well as on implementation of biodegradable fragments into polyacrylate matrixes for biodegradability enhancement. The problem of research results comparability is indicated along with domestic-made inhibitors quality and the gaps in scale inhibition mechanism. The actuality of fluorescent indicator fragment implementation into the scale inhibitor molecule for the better reagent monitoring in a cooling water system is specially emphasized.
DNA synthesis inhibitors for the treatment of gastrointestinal cancer.
Yasui, Hiroshi; Tsurita, Giichiro; Imai, Kohzoh
2014-11-01
Intensive laboratory, preclinical and clinical studies have identified and validated molecular targets in cancers, leading to a shift toward the development of novel, rationally designed and specific therapeutic agents. However, gastrointestinal cancers continue to have a poor prognosis, largely due to drug resistance. Here, we discuss the current understanding of DNA synthesis inhibitors and their mechanisms of action for the treatment of gastrointestinal malignancies. Conventional agents, including DNA synthesis inhibitors such as fluoropyrimidines and platinum analogs, remain the most effective therapeutics and are the standards against which new drugs are compared. Novel DNA synthesis inhibitors for the treatment of gastrointestinal malignancies include a combination of the antimetabolite TAS-102, which consists of trifluorothymidine with a thymidine phosphorylase inhibitor, and a novel micellar formulation of cisplatin NC-6004 that uses a nanotechnology-based drug delivery system. The challenges of translational cancer research using DNA synthesis inhibitors include the identification of drugs that are specific to tumor cells to reduce toxicity and increase antitumor efficacy, biomarkers to predict pharmacological responses to chemotherapeutic drugs, identification of ways to overcome drug resistance and development of novel combination therapies with DNA synthesis inhibitors and other cancer therapies, such as targeted molecular therapeutics. Here, we discuss the current understanding of DNA synthesis inhibitors and their mechanisms of action for the treatment of gastrointestinal malignancies.
Wada, Carol K
2004-01-01
Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.
Hillman, L C; Chiragakis, L; Shadbolt, B; Kaye, G L; Clarke, A C
2008-02-15
It has been shown that the presence on diagnosis of endoscopic macroscopic markers indicates a high-risk group for Barrett's oesophagus. To determine whether proton pump inhibitor therapy prior to diagnosis of Barrett's oesophagus influences markers for risk development of subsequent high-grade dysplasia/adenocarcinoma. A review of all patients with Barrett's oesophagus entering a surveillance programme was undertaken. Five hundred and two patients diagnosed with Barrett's oesophagus were assessed on diagnosis for endoscopic macroscopic markers or low-grade dysplasia. Subsequent development of high-grade dysplasia/adenocarcinoma was documented. The relationship between the initiation of proton pump inhibitor therapy prior to the diagnosis of BE and the presence of macroscopic markers or low-grade dysplasia at entry was determined. Fourteen patients developed high-grade dysplasia/adenocarcinoma during surveillance. Patients who entered without prior proton pump inhibitor therapy were 3.4 times (95% CI: 1.98-5.85) more likely to have a macroscopic marker or low-grade dysplasia than those patients already on a proton pump inhibitor. Use of proton pump inhibitor therapy prior to diagnosis of Barrett's oesophagus significantly reduced the presence of markers used to stratify patient risk. Widespread use of proton pump inhibitors will confound surveillance strategies for patients with Barrett's oesophagus based on entry characteristics but is justified because of the lower risk of neoplastic progression.
Golding, Brandon; Luu, Anita; Jones, Robert; Viloria-Petit, Alicia M
2018-02-19
Lung cancer is the leading cause of death by cancer in North America. A decade ago, genomic rearrangements in the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase were identified in a subset of non-small cell lung carcinoma (NSCLC) patients. Soon after, crizotinib, a small molecule ATP-competitive ALK inhibitor was proven to be more effective than chemotherapy in ALK-positive NSCLC patients. Crizotinib and two other ATP-competitive ALK inhibitors, ceritinib and alectinib, are approved for use as a first-line therapy in these patients, where ALK rearrangement is currently diagnosed by immunohistochemistry and in situ hybridization. The clinical success of these three ALK inhibitors has led to the development of next-generation ALK inhibitors with even greater potency and selectivity. However, patients inevitably develop resistance to ALK inhibitors leading to tumor relapse that commonly manifests in the form of brain metastasis. Several new approaches aim to overcome the various mechanisms of resistance that develop in ALK-positive NSCLC including the knowledge-based alternate and successive use of different ALK inhibitors, as well as combined therapies targeting ALK plus alternative signaling pathways. Key issues to resolve for the optimal implementation of established and emerging treatment modalities for ALK-rearranged NSCLC therapy include the high cost of the targeted inhibitors and the potential of exacerbated toxicities with combination therapies.
Kalva, Sukesh; Vadivelan, S; Sanam, Ramadevi; Jagarlapudi, Sarma ARP; Saleena, Lilly M
2012-01-01
In this study, chemical feature based pharmacophore models of MMP-1, MMP-8 and MMP-13 inhibitors have been developed with the aid of HypoGen module within Catalyst program package. In MMP-1 and MMP-13, all the compounds in the training set mapped HBA and RA, while in MMP-8, the training set mapped HBA and HY. These features revealed responsibility for the high molecular bioactivity, and this is further used as a three dimensional query to screen the knowledge based designed molecules. These pharmacophore models for collagenases picked up some potent and novel inhibitors. Subsequently, docking studies were performed for the potent molecules and novel hits were suggested for further studies based on the docking score and active site interactions in MMP-1, MMP-8 and MMP-13. PMID:22553386
2005-02-01
Akt in the P13K pathway. Given the emerging data for a positive feedback loop induced by mTOR inhibition, a bispecific 5 inhibitor might be attractive...cells relatively sensitive to rapamycin are also sensitive to thioridazine. PTEN null cells are known to be preferentially sensitized to mTOR ...a potent mTOR inhibitor, a downstream protein kinase in the Akt pathway. Rapamycin showed strong growth inhibitory effect in PTEN-null cells but 786
Antiviral agents: structural basis of action and rational design.
Menéndez-Arias, Luis; Gago, Federico
2013-01-01
During the last 30 years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs inhibiting hepatitis C virus replication. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by using a computer-based approach. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g. oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e. the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs in preclinical development acting against picornaviruses, hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy.
Monge, Matthieu; Lorthioir, Aurélien; Bobrie, Guillaume; Azizi, Michel
2013-12-01
There is a persistent need for the development of new antihypertensive drugs, because the control of blood pressure is still not achievable in a significant proportion of hypertensive patients. Since the approval in 2007 of aliskiren, no other new antihypertensive based on new mechanism(s) of action have been approved. In fact, the development of promising novel drugs has been stopped for safety, efficacy or marketing reasons. Despite these difficulties, the pipeline is not dry and different new antihypertensive strategies targeting the renin-angiotensin-aldosterone pathway, are in clinical development stage. The dual angiotensin II receptor-neprilysin inhibitor LCZ696, a single molecule synthetized by cocrystallisation of valsartan and the neprilysin inhibitor prodrug AHU377 is in development for resistant hypertension and for heart failure. Daglutril is a dual neprylisin-endothelin converting enzyme inhibitor which was shown to decrease BP in patients with type 2 diabetic nephropathy. Aldosterone synthase inhibitors and the third and fourth generation non-steroidal dihydropyridine based mineralocorticoid receptors blockers are new ways to target the multiple noxious effects of aldosterone in the kidney, vessels and heart. Centrally acting aminopeptidase A inhibitors block brain angiotensin III formation, one of the main effector peptides of the brain renin angiotensin system. However, a long time will be still necessary to evaluate extensively the efficacy and safety of these new approaches. In the mean time, using appropriate and personalized daily doses of available drugs, decreasing physician inertia, improving treatment adherence, improving access to healthcare and reducing treatment costs remain major objectives to reduce the incidence of resistant hypertension.
Shi, Leilei; Zhou, Jianfeng; Wu, Jifeng; Shen, Yuemao; Li, Xun
2016-01-01
Tumor angiogenesis has always been a major gap for effective cancer therapy. Interruption of aberrant angiogenesis by specific inhibitors targeting receptor tyrosine kinases (RTKs) has been of great interests to medicinal chemists. Among the factors that are involved in tumor angiogenesis, vascular endothelial growth factor receptor-2 (VEGFR-2) is validated as the most closely related factor which can drive angiogenesis through binding with its natural ligand VEGF. The well-validated VEGF-driven VEGFR-2 signaling pathway can stimulate many endothelial responses, including increasing vessel permeability and enhancing endothelial cell proliferation, migration and differentiation. Consequently, circumventing angiogenesis by VEGFR-2 inhibitors represents a promising strategy for counteracting various VEGFR-2-mediated disorders as well as drug resistance. Over the past decades, a considerable number of novel small molecular VEGFR-2 inhibitors have been exploited with diverse chemical scaffolds. Especially, recent frequently launched inhibitors have declared their research values and therapeutic potentials in oncology. Still, the antiangiogenesis based treatment remains an ongoing challenge. In this review, a comprehensive retrospective of newly emerged VEGFR-2 inhibitors have been summarized, with the emphasis on the structure-activity relationship (SAR) investigation, and also binding patterns of representative inhibitors with biotargets. On the basis of all of this information, varied strategies for developing potent VEGFR-2 inhibitors and the future prospect of the clinical application of antiangiogenic inhibitors are discussed hereby.
Vasilakaki, Sofia; Barbayianni, Efrosini; Leonis, Georgios; Papadopoulos, Manthos G.; Mavromoustakos, Thomas; Gelb, Michael H.; Kokotos, George
2016-01-01
Inhibition of group IIA secreted phospholipase A2 (GIIA sPLA2) has been an important objective for medicinal chemists. We have previously shown that inhibitors incorporating the 2-oxoamide functionality may inhibit human and mouse GIIA sPLA2s. Herein, the development of new potent inhibitors by molecular docking calculations using the structure of the known inhibitor 7 as scaffold, are described. Synthesis and biological evaluation of the new compounds revealed that the long chain 2-oxoamide based on (S)-valine GK241 led to improved activity (IC50 = 143 nM and 68 nM against human and mouse GIIA sPLA2, respectively). In addition, molecular dynamics simulations were employed to shed light on GK241 potent and selective inhibitory activity. PMID:26970660
Seebeck, Thomas; Sterk, Geert Jan; Ke, Hengming
2011-01-01
Protozoan infections remain a major unsolved medical problem in many parts of our world. A major obstacle to their treatment is the blatant lack of medication that is affordable, effective, safe and easy to administer. For some of these diseases, including human sleeping sickness, very few compounds are available, many of them old and all of them fraught with toxic side effects. We explore a new concept for developing new-generation antiprotozoan drugs that are based on phosphodiesterase (PDE) inhibitors. Such inhibitors are already used extensively in human pharmacology. Given the high degree of structural similarity between the human and the protozoan PDEs, the vast expertise available in the human field can now be applied to developing disease-specific PDE inhibitors as new antiprotozoan drugs. PMID:21859303
Chang, Hung-Chi; Yang, Su-Fu; Huang, Ching-Chun; Lin, Tzung-Sheng; Liang, Pi-Hui; Lin, Chun-Jung; Hsu, Lih-Ching
2013-08-01
Sodium-coupled glucose co-transporters SGLT1 and SGLT2 play important roles in intestinal absorption and renal reabsorption of glucose, respectively. Blocking SGLT2 is a novel mechanism for lowering the blood glucose level by inhibiting renal glucose reabsorption and selective SGLT2 inhibitors are under development for treatment of type 2 diabetes. Furthermore, it has been reported that perturbation of SGLT1 is associated with cardiomyopathy and cancer. Therefore, both SGLT1 and SGLT2 are potential therapeutic targets. Here we report the development of a non-radioactive cell-based method for the screening of SGLT inhibitors using COS-7 cells transiently expressing human SGLT1 (hSGLT1), CHO-K1 cells stably expressing human SGLT2 (hSGLT2), and a novel fluorescent d-glucose analogue 1-NBDG as a substrate. Our data indicate that 1-NBDG can be a good replacement for the currently used isotope-labeled SGLT substrate, (14)C-AMG. The Michaelis constant of 1-NBDG transport (0.55 mM) is similar to that of d-glucose (0.51 mM) and AMG (0.40 mM) transport through hSGLT1. The IC50 values of a SGLT inhibitor phlorizin for hSGLT1 obtained using 1-NBDG and (14)C-AMG were identical (0.11 μM) in our cell-based system. The IC50 values of dapagliflozin, a well-known selective SGLT2 inhibitor, for hSGLT2 and hSGLT1 determined using 1-NBDG were 1.86 nM and 880 nM, respectively, which are comparable to the published results obtained using (14)C-AMG. Compared to (14)C-AMG, the use of 1-NBDG is cost-effective, convenient and potentially more sensitive. Taken together, a non-radioactive system using 1-NBDG has been validated as a rapid and reliable method for the screening of SGLT1 and SGLT2 inhibitors.
Li, Jianzong; Liu, Wei; Luo, Hao; Bao, Jinku
2016-09-01
Anaplastic lymphoma kinase (ALK) plays a crucial role in multiple malignant cancers. It is known as a well-established target for the treatment of ALK-dependent cancers. Even though substantial efforts have been made to develop ALK inhibitors, only crizotinib, ceritinib, and alectinib had been approved by the U.S. Food and Drug Administration for patients with ALK-positive non-small cell lung cancer (NSCLC). The secondary mutations with drug-resistance bring up difficulties to develop effective drugs for ALK-positive cancers. To give a comprehensive understanding of molecular mechanism underlying inhibitor response to ALK tyrosine kinase mutations, we established an accurate assessment for the extensive profile of drug against ALK mutations by means of computational approaches. The molecular mechanics-generalized Born surface area (MM-GBSA) method based on molecular dynamics (MD) simulation was carried out to calculate relative binding free energies for receptor-drug systems. In addition, the structure-based virtual screening was utilized to screen effective inhibitors targeting wild-type ALK and the gatekeeper mutation L1196M from 3180 approved drugs. Finally, the mechanism of drug resistance was discussed, several novel potential wild-type and L1196M mutant ALK inhibitors were successfully identified.
Jacobs, K R; Guillemin, G J; Lovejoy, D B
2018-02-01
Kynurenine 3-monooxygenase (KMO) is a well-validated therapeutic target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Huntington's disease (HD). This work reports a facile fluorescence-based KMO assay optimized for high-throughput screening (HTS) that achieves a throughput approximately 20-fold higher than the fastest KMO assay currently reported. The screen was run with excellent performance (average Z' value of 0.80) from 110,000 compounds across 341 plates and exceeded all statistical parameters used to describe a robust HTS assay. A subset of molecules was selected for validation by ultra-high-performance liquid chromatography, resulting in the confirmation of a novel hit with an IC 50 comparable to that of the well-described KMO inhibitor Ro-61-8048. A medicinal chemistry program is currently underway to further develop our novel KMO inhibitor scaffolds.
JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders
Vainchenker, William; Leroy, Emilie; Gilles, Laure; Marty, Caroline; Plo, Isabelle; Constantinescu, Stefan N.
2018-01-01
JAK inhibitors have been developed following the discovery of the JAK2V617F in 2005 as the driver mutation of the majority of non- BCR-ABL1 myeloproliferative neoplasms (MPNs). Subsequently, the search for JAK2 inhibitors continued with the discovery that the other driver mutations ( CALR and MPL) also exhibited persistent JAK2 activation. Several type I ATP-competitive JAK inhibitors with different specificities were assessed in clinical trials and exhibited minimal hematologic toxicity. Interestingly, these JAK inhibitors display potent anti-inflammatory activity. Thus, JAK inhibitors targeting preferentially JAK1 and JAK3 have been developed to treat inflammation, autoimmune diseases, and graft-versus-host disease. Ten years after the beginning of clinical trials, only two drugs have been approved by the US Food and Drug Administration: one JAK2/JAK1 inhibitor (ruxolitinib) in intermediate-2 and high-risk myelofibrosis and hydroxyurea-resistant or -intolerant polycythemia vera and one JAK1/JAK3 inhibitor (tofacitinib) in methotrexate-resistant rheumatoid arthritis. The non-approved compounds exhibited many off-target effects leading to neurological and gastrointestinal toxicities, as seen in clinical trials for MPNs. Ruxolitinib is a well-tolerated drug with mostly anti-inflammatory properties. Despite a weak effect on the cause of the disease itself in MPNs, it improves the clinical state of patients and increases survival in myelofibrosis. This limited effect is related to the fact that ruxolitinib, like the other type I JAK2 inhibitors, inhibits equally mutated and wild-type JAK2 (JAK2WT) and also the JAK2 oncogenic activation. Thus, other approaches need to be developed and could be based on either (1) the development of new inhibitors specifically targeting JAK2V617F or (2) the combination of the actual JAK2 inhibitors with other therapies, in particular with molecules targeting pathways downstream of JAK2 activation or the stability of JAK2 molecule. In contrast, the strong anti-inflammatory effects of the JAK inhibitors appear as a very promising therapeutic approach for many inflammatory and auto-immune diseases. PMID:29399328
The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?
Nissan, Moriah H; Solit, David B
2011-12-01
Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.
Dolado, Ignacio; Nieto, Joan; Saraiva, Maria João M; Arsequell, Gemma; Valencia, Gregori; Planas, Antoni
2005-01-01
Stabilization of tetrameric transthyretin (TTR) by binding of small ligands is a current strategy aimed at inhibiting amyloid fibrillogenesis in transthyretin-associated pathologies, such as senile systemic amyloidosis (SSA) and familial amyloidotic polyneuropathy (FAP). A kinetic assay is developed for rapid evaluation of compounds as potential in vitro inhibitors in a high-throughput screening format. It is based on monitoring the time-dependent increase of absorbance due to turbidity occurring by acid-induced protein aggregation. The method uses the highly amyloidogenic Y78F mutant of human transthyretin (heterogously expressed in Escherichia coli cells). Initial rates of protein aggregation at different inhibitor concentrations follow a monoexponential dose-response curve from which inhibition parameters are calculated. For the assay development, thyroid hormones and nonsteroidal antiinflamatory drugs were chosen among other reference compounds. Some of them are already known to be in vitro inhibitors of TTR amyloidogenesis. Analysis time is optimized to last 1.5 h, and the method is implemented in microtiter plates for screening of libraries of potential fibrillogenesis inhibitors.
Melagraki, G; Afantitis, A
2011-01-01
Virtual Screening (VS) has experienced increased attention into the recent years due to the large datasets made available, the development of advanced VS techniques and the encouraging fact that VS has contributed to the discovery of several compounds that have either reached the market or entered clinical trials. Hepatitis C Virus (HCV) nonstructural protein 5B (NS5B) has become an attractive target for the development of antiviral drugs and many small molecules have been explored as possible HCV NS5B inhibitors. In parallel with experimental practices, VS can serve as a valuable tool in the identification of novel effective inhibitors. Different techniques and workflows have been reported in literature with the goal to prioritize possible potent hits. In this context, different virtual screening strategies have been deployed for the identification of novel Hepatitis C Virus (HCV) inhibitors. This work reviews recent applications of virtual screening in an effort to identify novel potent HCV inhibitors.
Methods Of Using Chemical Libraries To Search For New Kinase Inhibitors
Gray, Nathanael S. , Schultz, Peter , Wodicka, Lisa , Meijer, Laurent , Lockhart, David J.
2003-06-03
The generation of selective inhibitors for specific protein kinases would provide new tools for analyzing signal transduction pathways and possibly new therapeutic agents. We have invented an approach to the development of selective protein kinase inhibitors based on the unexpected binding mode of 2,6,9-trisubstituted purines to the ATP binding site of human CDK2. The most potent inhibitor, purvalanol B (IC.sub.50 =6 nM), binds with a 30-fold greater affinity than the known CDK2 inhibitor, flavopiridol. The cellular effects of this class of compounds were examined and compared to those of flavopiridol by monitoring changes in mRNA expression levels for all genes in treated cells of Saccharomyces cerevisiae using high-density oligonucleotide probe arrays.
Synthesis and evaluation of phosphorus containing, specific CDK9/CycT1 inhibitors.
Németh, Gábor; Greff, Zoltán; Sipos, Anna; Varga, Zoltán; Székely, Rita; Sebestyén, Mónika; Jászay, Zsuzsa; Béni, Szabolcs; Nemes, Zoltán; Pirat, Jean-Luc; Volle, Jean-Noël; Virieux, David; Gyuris, Ágnes; Kelemenics, Katalin; Ay, Eva; Minarovits, Janos; Szathmary, Susan; Kéri, György; Orfi, László
2014-05-22
Although there is a significant effort in the design of a selective CDK9/CycT1 inhibitor, no compound has been proven to be a specific inhibitor of this kinase so far. The aim of this research was to develop novel and selective phosphorus containing CDK9/CycT1 inhibitors. Molecules bearing phosphonamidate, phosphonate, and phosphinate moieties were synthesized. Prepared compounds were evaluated in an enzymatic CDK9/CycT1 assay. The most potent molecules were tested in cell-based toxicity and HIV proliferation assays. Selectivity of shortlisted compounds against CDKs and other kinases was tested. The best compound was shown to be a highly specific, ATP-competitive inhibitor of CDK9/CycT1 with antiviral activity.
Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E
2015-10-15
Aspartate-β-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.
Novel copper complexes as potential proteasome inhibitors for cancer treatment (Review).
Zhang, Zhen; Wang, Huiyun; Yan, Maocai; Wang, Huannan; Zhang, Chunyan
2017-01-01
The use of metal complexes in the pharmaceutical industry has recently increased and as a result, novel metal‑based complexes have initiated an interest as potential anticancer agents. Copper (Cu), which is an essential trace element in all living organisms, is important in maintaining the function of numerous proteins and enzymes. It has recently been demonstrated that Cu complexes may be used as tumor‑specific proteasome inhibitors and apoptosis inducers, by targeting the ubiquitin‑proteasome pathway (UPP). Cu complexes have demonstrated promising results in preclinical studies. The UPP is important in controlling the expression, activity and location of various proteins. Therefore, selective proteasome inhibition and apoptotic induction in cancer cells have been regarded as potential anticancer strategies. The present short review discusses recent progress in the development of Cu complexes, including clioquinol, dithiocarbamates and Schiff bases, as proteasome inhibitors for cancer treatment. A discussion of recent research regarding the understanding of metal inhibitors based on Cu and ligand platforms is presented.
NASA Astrophysics Data System (ADS)
Ragno, Rino; Ballante, Flavio; Pirolli, Adele; Wickersham, Richard B.; Patsilinakos, Alexandros; Hesse, Stéphanie; Perspicace, Enrico; Kirsch, Gilbert
2015-08-01
Vascular endothelial growth factor receptor-2, (VEGFR-2), is a key element in angiogenesis, the process by which new blood vessels are formed, and is thus an important pharmaceutical target. Here, 3-D quantitative structure-activity relationship (3-D QSAR) were used to build a quantitative screening and pharmacophore model of the VEGFR-2 receptors for design of inhibitors with improved activities. Most of available experimental data information has been used as training set to derive optimized and fully cross-validated eight mono-probe and a multi-probe quantitative models. Notable is the use of 262 molecules, aligned following both structure-based and ligand-based protocols, as external test set confirming the 3-D QSAR models' predictive capability and their usefulness in design new VEGFR-2 inhibitors. From a survey on literature, this is the first generation of a wide-ranging computational medicinal chemistry application on VEGFR2 inhibitors.
Innovative computer-aided methods for the discovery of new kinase ligands.
Abuhammad, Areej; Taha, Mutasem
2016-04-01
Recent evidence points to significant roles played by protein kinases in cell signaling and cellular proliferation. Faulty protein kinases are involved in cancer, diabetes and chronic inflammation. Efforts are continuously carried out to discover new inhibitors for selected protein kinases. In this review, we discuss two new computer-aided methodologies we developed to mine virtual databases for new bioactive compounds. One method is ligand-based exploration of the pharmacophoric space of inhibitors of any particular biotarget followed by quantitative structure-activity relationship-based selection of the best pharmacophore(s). The second approach is structure-based assuming that potent ligands come into contact with binding site spots distinct from those contacted by weakly potent ligands. Both approaches yield pharmacophores useful as 3D search queries for the discovery of new bioactive (kinase) inhibitors.
Liu, Shu; Bolger, Joshua K; Kirkland, Lindsay O; Premnath, Padmavathy N; McInnes, Campbell
2010-12-17
An alternative strategy for inhibition of the cyclin dependent kinases (CDKs) in antitumor drug discovery is afforded through the substrate recruitment site on the cyclin positive regulatory subunit. Critical CDK substrates such as the Rb and E2F families must undergo cyclin groove binding before phosphorylation, and hence inhibitors of this interaction also block substrate specific kinase activity. This approach offers the potential to generate highly selective and cell cycle specific CDK inhibitors and to reduce the inhibition of transcription mediated through CDK7 and 9, commonly observed with ATP competitive compounds. While highly potent peptide and small molecule inhibitors of CDK2/cyclin A, E substrate recruitment have been reported, little information has been generated on the determinants of inhibitor binding to the cyclin groove of the CDK4/cyclin D1 complex. CDK4/cyclin D is a validated anticancer drug target and continues to be widely pursued in the development of new therapeutics based on cell cycle blockade. We have therefore investigated the structural basis for peptide binding to its cyclin groove and have examined the features contributing to potency and selectivity of inhibitors. Peptidic inhibitors of CDK4/cyclin D of pRb phosphorylation have been synthesized, and their complexes with CDK4/cyclin D1 crystal structures have been generated. Based on available structural information, comparisons of the cyclin grooves of cyclin A2 and D1 are presented and provide insights into the determinants for peptide binding and the basis for differential binding and inhibition. In addition, a complex structure has been generated in order to model the interactions of the CDKI, p27(KIP)¹, with cyclin D1. This information has been used to shed light onto the endogenous inhibition of CDK4 and also to identify unique aspects of cyclin D1 that can be exploited in the design of cyclin groove based CDK inhibitors. Peptidic and nonpeptidic compounds have been synthesized in order to explore structure-activity relationship for binding to the cyclin D1 groove, which to date has not been carried out in a systematic fashion. Collectively, the data presented provide new insights into how compounds can be developed that function as chemical biology probes to determine the cellular and antitumor effects of CDK inhibition. Furthermore, such compounds will serve as templates for structure-guided efforts to develop potential therapeutics based on selective inhibition of CDK4/cyclin D activity.
Sethi, Kalyan K; Verma, Saurabh M
2014-08-01
Drug design involves the design of small molecules that are complementary in shape and charge to the biomolecular target with which they interact and therefore will bind to it. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed for a series of carbonic anhydrase IX inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques with the help of SYBYL 7.1 software. The large set of 36 different aromatic/heterocyclic sulfamates carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, such as hCA IX, was chosen for this study. The conventional ligand-based 3D-QSAR studies were performed based on the low energy conformations employing database alignment rule. The ligand-based model gave q(2) values 0.802 and 0.829 and r(2) values 1.000 and 0.994 for CoMFA and CoMSIA, respectively, and the predictive ability of the model was validated. The predicted r(2) values are 0.999 and 0.502 for CoMFA and CoMSIA, respectively. SEA (steric, electrostatic, hydrogen bond acceptor) of CoMSIA has the significant contribution for the model development. The docking of inhibitors into hCA IX active site using Glide XP (Schrödinger) software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps are well in agreement with the structural characteristics of the binding pocket of hCA IX active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved hCA IX inhibitors as leads for various types of metastatic cancers including those of cervical, renal, breast and head and neck origin.
Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines.
Mohammed, M Z; Vyjayanti, V N; Laughton, C A; Dekker, L V; Fischer, P M; Wilson, D M; Abbotts, R; Shah, S; Patel, P M; Hickson, I D; Madhusudan, S
2011-02-15
Modulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy. An industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses. Several specific APE1 inhibitors were isolated by this approach. The IC(50) for APE1 inhibition ranged between 30 nM and 50 μM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines. Our study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma.
Ramnauth, Jailall; Renton, Paul; Dove, Peter; Annedi, Subhash C; Speed, Joanne; Silverman, Sarah; Mladenova, Gabriela; Maddaford, Shawn P; Zinghini, Salvatore; Rakhit, Suman; Andrews, John; Lee, David K H; Zhang, Dongqin; Porreca, Frank
2012-03-22
Numerous studies have shown that selective nNOS inhibitors could be therapeutic in many neurological disorders. Previously, we reported a series of 1,2,3,4-tetrahydroquinoline-based potent and selective nNOS inhibitors, highlighted by 1 ( J. Med. Chem. 2011 , 54 , 5562 - 5575 ). Despite showing activity in two rodent pain models, 1 suffered from low oral bioavailability (18%) and moderate hERG channel inhibition (IC(50) = 4.7 μM). To optimize the properties of 1, we synthesized a small focused library containing various alkylamino groups on the 1-position of the 1,2,3,4-tetrahydroquinoline scaffold. The compounds were triaged based on their activity in the NOS and hERG manual patch clamp assays and their calculated physicochemical parameters. From these studies, we identified 47 as a potent and selective nNOS inhibitor with improved oral bioavailability (60%) and no hERG channel inhibition (IC(50) > 30 μM). Furthermore, 47 was efficacious in the Chung model of neuropathic pain and has an excellent safety profile, making it a promising preclinical development candidate.
Development of scale inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, J.S.
1996-12-01
During the last fifty years, scale inhibition has gone from an art to a science. Scale inhibition has changed from simple pH adjustment to the use of optimized dose of designer polymers from multiple monomers. The water-treatment industry faces many challenges due to the need to conserve water, availability of only low quality water, increasing environmental regulations of the water discharge, and concern for human safety when using acid. Natural materials such as starch, lignin, tannin, etc., have been replaced with hydrolytically stable organic phosphates and synthetic polymers. Most progress in scale inhibition has come from the use of synergisticmore » mixtures and copolymerizing different functionalities to achieve specific goals. Development of scale inhibitors requires an understanding of the mechanism of crystal growth and its inhibition. This paper discusses the historic perspective of scale inhibition and the development of new inhibitors based on the understanding of the mechanism of crystal growth and the use of powerful tools like molecular modeling to visualize crystal-inhibitor interactions.« less
USP7 small-molecule inhibitors interfere with ubiquitin binding.
Kategaya, Lorna; Di Lello, Paola; Rougé, Lionel; Pastor, Richard; Clark, Kevin R; Drummond, Jason; Kleinheinz, Tracy; Lin, Eva; Upton, John-Paul; Prakash, Sumit; Heideker, Johanna; McCleland, Mark; Ritorto, Maria Stella; Alessi, Dario R; Trost, Matthias; Bainbridge, Travis W; Kwok, Michael C M; Ma, Taylur P; Stiffler, Zachary; Brasher, Bradley; Tang, Yinyan; Jaishankar, Priyadarshini; Hearn, Brian R; Renslo, Adam R; Arkin, Michelle R; Cohen, Frederick; Yu, Kebing; Peale, Frank; Gnad, Florian; Chang, Matthew T; Klijn, Christiaan; Blackwood, Elizabeth; Martin, Scott E; Forrest, William F; Ernst, James A; Ndubaku, Chudi; Wang, Xiaojing; Beresini, Maureen H; Tsui, Vickie; Schwerdtfeger, Carsten; Blake, Robert A; Murray, Jeremy; Maurer, Till; Wertz, Ingrid E
2017-10-26
The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy more broadly applicable to inhibiting proteins that require ubiquitin binding for full functional activity.
Triazolopyridines as selective JAK1 inhibitors: from hit identification to GLPG0634.
Menet, Christel J; Fletcher, Stephen R; Van Lommen, Guy; Geney, Raphael; Blanc, Javier; Smits, Koen; Jouannigot, Nolwenn; Deprez, Pierre; van der Aar, Ellen M; Clement-Lacroix, Philippe; Lepescheux, Liên; Galien, René; Vayssiere, Béatrice; Nelles, Luc; Christophe, Thierry; Brys, Reginald; Uhring, Muriel; Ciesielski, Fabrice; Van Rompaey, Luc
2014-11-26
Janus kinases (JAK1, JAK2, JAK3, and TYK2) are involved in the signaling of multiple cytokines important in cellular function. Blockade of the JAK-STAT pathway with a small molecule has been shown to provide therapeutic immunomodulation. Having identified JAK1 as a possible new target for arthritis at Galapagos, the compound library was screened against JAK1, resulting in the identification of a triazolopyridine-based series of inhibitors represented by 3. Optimization within this chemical series led to identification of GLPG0634 (65, filgotinib), a selective JAK1 inhibitor currently in phase 2B development for RA and phase 2A development for Crohn's disease (CD).
Vijayakumar, Balakrishnan; Velmurugan, Devadasan
2012-01-01
Protein Kinase C β-II (PKC β-II) is an important enzyme in the development of diabetic complications like cardiomyopathy, retinopathy, neuropathy, nephropathy and angiopathy. PKC β-II is activated in vascular tissues during diabetic vascular abnormalities. Thus, PKC β-II is considered as a potent drug target and the crystal structure of the kinase domain of PKC β-II (PDB id: 2I0E) was used to design inhibitors using Structure-Based Drug Design (SBDD) approach. Sixty inhibitors structurally similar to Staurosporine were retrieved from PubChem Compound database and High Throughput Virtual screening (HTVs) was carried out with PKC β-II. Based on the HTVs results and the nature of active site residues of PKC β-II, Staurosporine inhibitors were designed using SBDD. Induced Fit Docking (IFD) studies were carried out between kinase domain of PKC β-II and the designed inhibitors. These IFD complexes showed favorable docking score, glide energy, glide emodel and hydrogen bond and hydrophobic interactions with the active site of PKC β-II. Binding free energy was calculated for IFD complexes using Prime MM-GBSA method. The conformational changes induced by the inhibitor at the active site of PKC β-II were observed for the back bone Cα atoms and side-chain chi angles. PASS prediction tool was used to analyze the biological activities for the designed inhibitors. The various physicochemical properties were calculated for the compounds. One of the designed inhibitors successively satisfied all the in silico parameters among the others and seems to be a potent inhibitor against PKC β-II. PMID:22829732
Kusakabe, Ken-ichi; Ide, Nobuyuki; Daigo, Yataro; Tachibana, Yuki; Itoh, Takeshi; Yamamoto, Takahiko; Hashizume, Hiroshi; Hato, Yoshio; Higashino, Kenichi; Okano, Yousuke; Sato, Yuji; Inoue, Makiko; Iguchi, Motofumi; Kanazawa, Takayuki; Ishioka, Yukichi; Dohi, Keiji; Kido, Yasuto; Sakamoto, Shingo; Yasuo, Kazuya; Maeda, Masahiro; Higaki, Masayo; Ueda, Kazuo; Yoshizawa, Hidenori; Baba, Yoshiyasu; Shiota, Takeshi; Murai, Hitoshi; Nakamura, Yusuke
2013-06-13
Monopolar spindle 1 (Mps1) is essential for centrosome duplication, the spindle assembly check point, and the maintenance of chromosomal instability. Mps1 is highly expressed in cancer cells, and its expression levels correlate with the histological grades of cancers. Thus, selective Mps1 inhibitors offer an attractive opportunity for the development of novel cancer therapies. To design novel Mps1 inhibitors, we utilized the pan-kinase inhibitor anthrapyrazolone (4, SP600125) and its crystal structure bound to JNK1. Our design efforts led to the identification of indazole-based lead 6 with an Mps1 IC50 value of 498 nM. Optimization of the 3- and 6-positions on the indazole core of 6 resulted in 23c with improved Mps1 activity (IC50 = 3.06 nM). Finally, application of structure-based design using the X-ray structure of 23d bound to Mps1 culminated in the discovery of 32a and 32b with improved potency for cellular Mps1 and A549 lung cancer cells. Moreover, 32a and 32b exhibited reasonable selectivities over 120 and 166 kinases, respectively.
Leverson, Joel D; Sampath, Deepak; Souers, Andrew J; Rosenberg, Saul H; Fairbrother, Wayne J; Amiot, Martine; Konopleva, Marina; Letai, Anthony
2017-12-01
Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high-priority goal for cancer therapy. After decades of effort, drug-discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL2 biology, were essential to the development of BH3 mimetics such as the BCL2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL2 biology and facilitated the clinical development of venetoclax. Significance: Basic research into the pathways governing programmed cell death have paved the way for the discovery of apoptosis-inducing agents such as venetoclax, a BCL2-selective inhibitor that was recently approved by the FDA and the European Medicines Agency. Preclinical studies aimed at identifying BCL2-dependent tumor types have translated well into the clinic thus far and will likely continue to inform the clinical development of venetoclax and other BCL2 family inhibitors. Cancer Discov; 7(12); 1376-93. ©2017 AACR. ©2017 American Association for Cancer Research.
Kruzliak, Peter; Novák, Jan; Novák, Miroslav
2014-01-01
Hypertension is the most common adverse effect of the inhibitors of vascular endothelial growth factor (VEGF) pathway-based therapy (VEGF pathway inhibitors therapy, VPI therapy) in cancer patients. VPI includes monoclonal antibodies against VEGF, tyrosine kinase inhibitors, VEGF Traps, and so-called aptamers that may become clinically relevant in the future. All of these substances inhibit the VEGF pathway, which in turn causes a decrease in nitric oxide (NO) and an increase in blood pressure, with the consequent development of hypertension and its final events (e.g., myocardial infarction or stroke). To our knowledge, there is no current study on how to provide an optimal therapy for patients on VPI therapy with hypertension. This review summarizes the roles of VEGF and NO in vessel biology, provides an overview of VPI agents, and suggests a potential treatment procedure for patients with VPI-induced hypertension.
Kalathiya, Umesh; Padariya, M; Baginski, M
2016-11-01
Pancreatic lipase is a potential therapeutic target to treat diet-induced obesity in humans, as obesity-related diseases continue to be a global problem. Despite intensive research on finding potential inhibitors, very few compounds have been introduced to clinical studies. In this work, new chemical scaffold 1H-indene-(1,3,5,6)-tetrol was proposed using knowledge-based approach, and 36 inhibitors were derived by modifying its functional groups at different positions in scaffold. To explore binding affinity and interactions of ligands with protein, CDOCKER and AutoDock programs were used for molecular docking studies. Analyzing results of rigid and flexible docking algorithms, inhibitors C_12, C_24, and C_36 were selected based on different properties and high predicted binding affinities for further analysis. These three inhibitors have different moieties placed at different functional groups in scaffold, and to characterize structural rationales for inhibitory activities of compounds, molecular dynamics simulations were performed (500 nSec). It has been shown through simulations that two structural fragments (indene and indole) in inhibitor can be treated as isosteric structures and their position at binding cleft can be replaced by each other. Taking into account these information, two lines of inhibitors can further be developed, each line based on a different core scaffold, that is, indene/indole. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach.
Cui, Huaqing; Kamal, Zeeshan; Ai, Teng; Xu, Yanli; More, Swati S; Wilson, Daniel J; Chen, Liqiang
2014-10-23
Sirtuin 2 (SIRT2) is one of the sirtuins, a family of NAD(+)-dependent deacetylases that act on a variety of histone and non-histone substrates. Accumulating biological functions and potential therapeutic applications have drawn interest in the discovery and development of SIRT2 inhibitors. Herein we report our discovery of novel SIRT2 inhibitors using a fragment-based approach. Inspired by the purported close binding proximity of suramin and nicotinamide, we prepared two sets of fragments, namely, the naphthylamide sulfonic acids and the naphthalene-benzamides and -nicotinamides. Biochemical evaluation of these two series provided structure-activity relationship (SAR) information, which led to the design of (5-benzamidonaphthalen-1/2-yloxy)nicotinamide derivatives. Among these inhibitors, one compound exhibited high anti-SIRT2 activity (48 nM) and excellent selectivity for SIRT2 over SIRT1 and SIRT3. In vitro, it also increased the acetylation level of α-tubulin, a well-established SIRT2 substrate, in both concentration- and time-dependent manners. Further kinetic studies revealed that this compound behaves as a competitive inhibitor against the peptide substrate and most likely as a noncompetitive inhibitor against NAD(+). Taken together, these results indicate that we have discovered a potent and selective SIRT2 inhibitor whose novel structure merits further exploration.
FAITH – Fast Assembly Inhibitor Test for HIV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadravová, Romana; Rumlová, Michaela, E-mail: michaela.rumlova@vscht.cz; Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague
Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification ofmore » the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.« less
Singh, Pankaj Kumar; Silakari, Om
2017-10-01
Clinical reports suggest that EGFR-mutated lung cancer usually respond significantly towards small molecule tyrosine kinase inhibitors. Same studies also report the eventual development of acquired resistance within a median time interval of 9 to 14months. One of the major mechanisms involved in this acquired resistance was found to be a secondary point mutation at gate-keeper residue, EGFR T790M. However, there are other recent studies which disclose the role of few other novel key players such as, ZEB1, TOPK etc., in the development of tolerance towards the EGFR TKI's, along with other commonly known mechanisms, such as amplification of signalling pathways such as, c-MET, Erbb2, AXL, additional acquired secondary mutations (PIK3CA, BRAF), or phenotypic transformation (small cell or epithelial to mesenchymal transitions). Interestingly, a recent study showed development of resistance via another point mutation, C797S, in case of tumors which were previously resistant and were administered agents capable of overcoming T790M gatekeeper mutation based resistance. Thus, raising serious concern over the direction of drug development involving tyrosine kinases such as EGFR. Current approaches focussing on development of third generation inhibitors, dual inhibitors or inhibitors of HSP90 have shown significant activity but do not answer the long term question of resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
2012-01-01
Background Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. Results We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. Conclusions SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates. PMID:23173901
NASA Astrophysics Data System (ADS)
Hu, Xin; Legler, Patricia M.; Southall, Noel; Maloney, David J.; Simeonov, Anton; Jadhav, Ajit
2014-07-01
Botulinum neurotoxin serotype A (BoNT/A) is the most lethal toxin among the Tier 1 Select Agents. Development of potent and selective small molecule inhibitors against BoNT/A zinc metalloprotease remains a challenging problem due to its exceptionally large substrate binding surface and conformational plasticity. The exosites of the catalytic domain of BoNT/A are intriguing alternative sites for small molecule intervention, but their suitability for inhibitor design remains largely unexplored. In this study, we employed two recently identified exosite inhibitors, D-chicoric acid and lomofungin, to probe the structural features of the exosites and molecular mechanisms of synergistic inhibition. The results showed that D-chicoric acid favors binding at the α-exosite, whereas lomofungin preferentially binds at the β-exosite by mimicking the substrate β-sheet binding interaction. Molecular dynamics simulations and binding interaction analysis of the exosite inhibitors with BoNT/A revealed key elements and hotspots that likely contribute to the inhibitor binding and synergistic inhibition. Finally, we performed database virtual screening for novel inhibitors of BoNT/A targeting the exosites. Hits C1 and C2 showed non-competitive inhibition and likely target the α- and β-exosites, respectively. The identified exosite inhibitors may provide novel candidates for structure-based development of therapeutics against BoNT/A intoxication.
Hu, Xin; Legler, Patricia M; Southall, Noel; Maloney, David J; Simeonov, Anton; Jadhav, Ajit
2014-07-01
Botulinum neurotoxin serotype A (BoNT/A) is the most lethal toxin among the Tier 1 Select Agents. Development of potent and selective small molecule inhibitors against BoNT/A zinc metalloprotease remains a challenging problem due to its exceptionally large substrate binding surface and conformational plasticity. The exosites of the catalytic domain of BoNT/A are intriguing alternative sites for small molecule intervention, but their suitability for inhibitor design remains largely unexplored. In this study, we employed two recently identified exosite inhibitors, D-chicoric acid and lomofungin, to probe the structural features of the exosites and molecular mechanisms of synergistic inhibition. The results showed that D-chicoric acid favors binding at the α-exosite, whereas lomofungin preferentially binds at the β-exosite by mimicking the substrate β-sheet binding interaction. Molecular dynamics simulations and binding interaction analysis of the exosite inhibitors with BoNT/A revealed key elements and hotspots that likely contribute to the inhibitor binding and synergistic inhibition. Finally, we performed database virtual screening for novel inhibitors of BoNT/A targeting the exosites. Hits C1 and C2 showed non-competitive inhibition and likely target the α- and β-exosites, respectively. The identified exosite inhibitors may provide novel candidates for structure-based development of therapeutics against BoNT/A intoxication.
Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers
Jhaveri, Komal; Taldone, Tony; Modi, Shanu; Chiosis, Gabriela
2011-01-01
Hsp90 is an ATP dependent molecular chaperone protein which integrates multiple oncogenic pathways. As such, Hsp90 inhibition is a promising anti-cancer strategy. Several inhibitors that act on Hsp90 by binding to its N-terminal ATP pocket have entered clinical evaluation. Robust pre-clinical data suggested anti-tumor activity in multiple cancer types. Clinically, encouraging results have been demonstrated in melanoma, acute myeloid leukemia, castrate refractory prostate cancer, non-small cell lung carcinoma and multiple myeloma. In breast cancer, proof-of-concept was demonstrated by first generation Hsp90 inhibitors in combination with trastuzumab mainly in human epidermal growth factor receptor 2 (HER2) + metastatic breast cancer. There are a multitude of second generation Hsp90 inhibitors currently under investigation. To date, however, there is no FDA approved Hsp90 inhibitor nor standardized assay to ascertain Hsp90 inhibition. This review summarizes the current status of both first and second generation Hsp90 inhibitors based on their chemical classification and stage of clinical development. It also discusses the pharmacodynamic assays currently implemented in clinic as well as other novel strategies aimed at enhancing the effectiveness of Hsp90 inhibitors. Ultimately, these efforts will aid in maximizing the full potential of this class of agents. PMID:22062686
Rahman, Mona N.; Vukomanovic, Dragic; Vlahakis, Jason Z.; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao
2013-01-01
The development of heme oxygenase (HO) inhibitors, especially those that are isozyme-selective, promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties and may play a role in several disease states, making it an enticing therapeutic target. Traditionally, the metalloporphyrins have been used as competitive HO inhibitors owing to their structural similarity with the substrate, heme. However, given heme's important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), non-selectivity is an unfortunate side-effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort to develop novel compounds as potent, selective inhibitors of HO. This resulted in the creation of non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated, which provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies. PMID:23097500
Higashide, Tadahisa; Narukawa, Megumi; Shimada, Yukihisa; Soeno, Kazuo
2014-04-02
To develop a growth inhibitor, the effects of auxin inhibitors were investigated. Application of 30 μM L-α-aminooxy-β-phenylpropionic acid (AOPP) or (S)-methyl 2-((1,3-dioxoisoindolin-2-yl)oxy)-3-phenylpropanoate (KOK1101), decreased the endogenous IAA levels in tomato seedlings at 8 days after sowing. Then, 10-1200 μM AOPP or KOK1101 were sprayed on the leaves and stem of 2-3 leaf stage tomato plants grown under a range of environmental conditions. We predicted plant growth and environmental response using a model based on the observed suppression of leaf enlargement. Spraying AOPP or KOK1101 decreased stem length and leaf area. Concentration-dependent inhibitions and dose response curves were observed. Although the effects of the inhibitors on dry weight varied according to the environmental conditions, the net assimilation rate was not influenced by the inhibitors. Accordingly, the observed decrease in dry weight caused by the inhibitors may result from decreased leaf area. Validation of the model based on observed data independent of the dataset showed good correlations between the observed and predicted values of dry weight and leaf area index.
NASA Astrophysics Data System (ADS)
Jha, Vibhu; Bhadoriya, Kamlendra Singh
2018-04-01
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of newly developed antidiabetic drugs that bock DPP-4. DPP-4 is responsible for degradation of incretins harmones such as GLP-1 (Glucagon like Peptide) and GIP (Gastric inhibitory polypeptide) that maintain blood-glucose level. Pyrimidinedione based compounds were designed and synthesized for DPP-4 inhibitory activity. These heterocycles were designed by taking Alogliptin as a reference DPP-4 inhibitors and synthesized as N-methylated and N-benzylated pyrimidinediones. These compounds were subjected to DPP-4 assay, five out of nine synthesized compounds have shown in vitro DPP-4 inhibitory activity in significant range. Further, molecular docking studies of these compounds were performed on DPP-4 subunit and compared with natural DPP-4 inhibitors like Flavone, Resveratrol, Quercetin, Diprotin A. Docking studies have led to the conclusion that there are some identical amino acid interactions as Tyr 666 and Tyr 662, seen in both synthesized compounds and natural DPP-4 inhibitors. This study completely gives a good scope for further derivatisation and optimization of synthesized compounds to get clinical candidate as DPP-4 inhibitor for antidiabetic activity.
NASA Astrophysics Data System (ADS)
Jain, Sankalp; Grandits, Melanie; Richter, Lars; Ecker, Gerhard F.
2017-06-01
The bile salt export pump (BSEP) actively transports conjugated monovalent bile acids from the hepatocytes into the bile. This facilitates the formation of micelles and promotes digestion and absorption of dietary fat. Inhibition of BSEP leads to decreased bile flow and accumulation of cytotoxic bile salts in the liver. A number of compounds have been identified to interact with BSEP, which results in drug-induced cholestasis or liver injury. Therefore, in silico approaches for flagging compounds as potential BSEP inhibitors would be of high value in the early stage of the drug discovery pipeline. Up to now, due to the lack of a high-resolution X-ray structure of BSEP, in silico based identification of BSEP inhibitors focused on ligand-based approaches. In this study, we provide a homology model for BSEP, developed using the corrected mouse P-glycoprotein structure (PDB ID: 4M1M). Subsequently, the model was used for docking-based classification of a set of 1212 compounds (405 BSEP inhibitors, 807 non-inhibitors). Using the scoring function ChemScore, a prediction accuracy of 81% on the training set and 73% on two external test sets could be obtained. In addition, the applicability domain of the models was assessed based on Euclidean distance. Further, analysis of the protein-ligand interaction fingerprints revealed certain functional group-amino acid residue interactions that could play a key role for ligand binding. Though ligand-based models, due to their high speed and accuracy, remain the method of choice for classification of BSEP inhibitors, structure-assisted docking models demonstrate reasonably good prediction accuracies while additionally providing information about putative protein-ligand interactions.
Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.
Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi
2018-02-06
Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors
Davare, Monika A.; Vellore, Nadeem A.; Wagner, Jacob P.; Eide, Christopher A.; Goodman, James R.; Drilon, Alexander; Deininger, Michael W.; O’Hare, Thomas; Druker, Brian J.
2015-01-01
Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib’s dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1G2032R mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure–function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies. PMID:26372962
Analogue based design of MMP-13 (Collagenase-3) inhibitors.
Sarma, J A R P; Rambabu, G; Srikanth, K; Raveendra, D; Vithal, M
2002-10-07
3D-QSAR studies using MFA and RSA methods were performed on a series of 39MMP-13 inhibitors. Model developed by MFA method has a r(2)(cv) (cross-validated) of 0.616 while its r(2) (conventional) value is 0.822. For the RSA model r(2)(cv) and r(2) are 0.681 and 0.847, respectively. Both the models indicate good internal as well as external predictive abilities. These models provide crucial information about the field descriptors for the design of potential inhibitors of MMP-13.
Wang, Shan-Chun; Zeng, Li-Li; Ding, Yu-Yang; Zeng, Shao-Gao; Song, Hong-Rui; Hu, Wen-Hui; Xie, Hui
2014-01-01
Though all the marketed drugs of dipeptidyl peptidase IV inhibitors are structurally different, their inherent correlation is worthy of further investigation. Herein we rapidly discovered a novel DPP-IV inhibitor 8g (IC50 = 4.9 nmol.L-1) which exhibits as good activity and selectivity as the market drugs through scaffold hopping and drug splicing strategies based on alogliptin and linagliptin. This study demonstrated that the employment of classic medicinal chemistry strategy to the marketed drugs with specific target is an efficient approach to discover novel bioactive molecules.
Ferraroni, Marta; Lucarini, Laura; Masini, Emanuela; Korsakov, Mikhail; Scozzafava, Andrea; Supuran, Claudiu T; Krasavin, Mikhail
2017-09-01
Two lead 1,3-oxazole-based carbonic anhydrase inhibitors (CAIs) earlier identified as selective, picomolar inhibitors of hCA II (a cytosolic target for treatment of glaucoma) have been investigated further. Firstly, they were found to be conveniently synthesized on multigram scale, which enables further development. These compounds were found to be comparable in efficacy to dorzolamide eye drops when applied in the eye drop form as well. Finally, the reasons for unusually high potency of these compounds became understood from their high-resolution X-ray crystallography structures. These data significantly expand our understanding of heterocycle-based primary sulfonamides, many of which have recently emerged from our labs - particularly, from the corneal permeability standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bairy, Santhosh Kumar; Suneel Kumar, B V S; Bhalla, Joseph Uday Tej; Pramod, A B; Ravikumar, Muttineni
2009-04-01
c-Src kinase play an important role in cell growth and differentiation and its inhibitors can be useful for the treatment of various diseases, including cancer, osteoporosis, and metastatic bone disease. Three dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on quinazolin derivatives inhibiting c-Src kinase. Molecular field analysis (MFA) models with four different alignment techniques, namely, GLIDE, GOLD, LIGANDFIT and Least squares based methods were developed. glide based MFA model showed better results (Leave one out cross validation correlation coefficient r(2)(cv) = 0.923 and non-cross validation correlation coefficient r(2)= 0.958) when compared with other models. These results help us to understand the nature of descriptors required for activity of these compounds and thereby provide guidelines to design novel and potent c-Src kinase inhibitors.
Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo
2013-01-01
Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.
Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo
2013-01-01
Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115
Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.
Altenhöfer, Sebastian; Radermacher, Kim A; Kleikers, Pamela W M; Wingler, Kirstin; Schmidt, Harald H H W
2015-08-10
Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.
Hegedus, Csilla; Ozvegy-Laczka, Csilla; Szakács, Gergely; Sarkadi, Balázs
2009-05-01
Protein kinase inhibitors (PKI) are becoming key agents in modern cancer chemotherapy, and combination of PKIs with classical chemotherapeutic drugs may help to overcome currently untreatable metastatic cancers. Since chemotherapy resistance is a recurrent problem, mechanisms of resistance should be clarified in order to help further drug development. Here we suggest that in addition to PKI resistance based on altered target structures, the active removal of these therapeutic agents by the MDR-ABC transporters should also be considered as a major cause of clinical resistance. We discuss the occurring systemic and cellular mechanisms, which may hamper PKI efficiency, and document the role of selected MDR-ABC transporters in these phenomena through their interactions with these anticancer agents. Moreover, we suggest that PKI interactions with ABC transporters may modulate overall drug metabolism, including the fate of diverse, chemically or target-wise unrelated drugs. These effects are based on multiple forms of MDR-ABC transporter interaction with PKIs, as these compounds may be both substrates and/or inhibitors of an ABC transporter. We propose that these interactions should be carefully considered in clinical application, and a combined MDR-ABC transporter and PKI effect may bring a major advantage in future drug development.
Polyvalent 2D Entry Inhibitors for Pseudorabies and African Swine Fever Virus.
Ziem, Benjamin; Rahn, Jessica; Donskyi, Ievgen; Silberreis, Kim; Cuellar, Luis; Dernedde, Jens; Keil, Günther; Mettenleiter, Thomas C; Haag, Rainer
2017-06-01
African swine fever virus (ASFV) is one of the most dangerous viruses for pigs and is endemic in Africa but recently also spread into the Russian Federation and the Eastern border of the EU. So far there is no vaccine or antiviral drug available to curtail the infection. Thus, control strategies based on novel inhibitors are urgently needed. Another highly relevant virus infection in pigs is Aujeszky's disease caused by the alphaherpesvirus pseudorabies virus (PrV). This article reports the synthesis and biological evaluation of novel extracellular matrix-inspired entry inhibitors based on polyglycerol sulfate-functionalized graphene sheets. The developed 2D architectures bind enveloped viruses during the adhesion process and thereby exhibit strong inhibitory effects, which are equal or better than the common standards enrofloxacin and heparin as demonstrated for ASFV and PrV. Overall, the developed polyvalent 2D entry inhibitors are nontoxic and efficient nanoarchitectures, which interact with various types of enveloped viruses. Therefore they prevent viral adhesion to the host cell and especially target viruses that rely on a heparan sulfate-dependent cell entry mechanism. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Szu-Huei; Yao, Chun-Hsu; Hsieh, Chieh-Jui; Liu, Yu-Wei; Chao, Yu-Sheng; Song, Jen-Shin; Lee, Jinq-Chyi
2015-07-10
Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are of current interest as a treatment for type 2 diabetes. Efforts have been made to discover phlorizin-related glycosides with good SGLT2 inhibitory activity. To increase structural diversity and better understand the role of non-glycoside SGLT2 inhibitors on glycemic control, we initiated a research program to identify non-glycoside hits from high-throughput screening. Here, we report the development of a novel, fluorogenic probe-based glucose uptake system based on a Cu(I)-catalyzed [3+2] cycloaddition. The safer processes and cheaper substances made the developed assay our first priority for large-scale primary screening as compared to the well-known [(14)C]-labeled α-methyl-D-glucopyranoside ([(14)C]-AMG) radioactive assay. This effort culminated in the identification of a benzimidazole, non-glycoside SGLT2 hit with an EC50 value of 0.62 μM by high-throughput screening of 41,000 compounds. Copyright © 2015 Elsevier B.V. All rights reserved.
Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol*
Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; Fiamengo, Bryan A.; Foley, Sage E.; Frank, Kristine E.; George, Jonathan S.; Harris, Christopher M.; Hobson, Adrian D.; Ihle, David C.; Marcotte, Douglas; Merta, Philip J.; Michalak, Mark E.; Murdock, Sara E.; Tomlinson, Medha J.; Voss, Jeffrey W.
2015-01-01
The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases. PMID:25552479
Design and discovery of mushroom tyrosinase inhibitors and their therapeutic applications.
Mendes, Eduarda; Perry, Maria de Jesus; Francisco, Ana Paula
2014-05-01
Tyrosinase inhibitors could have a huge importance in medicine, cosmetics and agriculture. Although many tyrosinase inhibitors are available, they have demonstrated only mild efficacy and safety concerns. This has led to the discovery of novel tyrosinase inhibitors that are more safe, potent and efficacious. The authors provide an overview of the recent scientific accounts describing the design of new molecules. These compounds belong to different chemical families. The review emphasizes the rationale behind the discovery, the study of structure-activity relationships, the study of the mechanism and kinetic of inhibition and the cellular effect of the inhibitors. The article is based on the literature published from 2007 onward related with the development of synthetic tyrosinase inhibitors. Although a great number of tyrosinase inhibitors have been published in the literature, none, as of yet, have reached the potency and safety requirements needed to enter clinical trials. The emergence of new in vitro and in vivo tests will finally allow the arrival of new compounds that are more potent and safe.
Berti, Federico; Frecer, Vladimir; Miertus, Stanislav
2014-01-01
Despite the fact that HIV-Protease is an over 20 years old target, computational approaches to rational design of its inhibitors still have a great potential to stimulate the synthesis of new compounds and the discovery of new, potent derivatives, ever capable to overcome the problem of drug resistance. This review deals with successful examples of inhibitors identified by computational approaches, rather than by knowledge-based design. Such methodologies include the development of energy and scoring functions, docking protocols, statistical models, virtual combinatorial chemistry. Computations addressing drug resistance, and the development of related models as the substrate envelope hypothesis are also reviewed. In some cases, the identified structures required the development of synthetic approaches in order to obtain the desired target molecules; several examples are reported.
2012-01-01
Optimization of the imidazo[4,5-b]pyridine-based series of Aurora kinase inhibitors led to the identification of 6-chloro-7-(4-(4-chlorobenzyl)piperazin-1-yl)-2-(1,3-dimethyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine (27e), a potent inhibitor of Aurora kinases (Aurora-A Kd = 7.5 nM, Aurora-B Kd = 48 nM), FLT3 kinase (Kd = 6.2 nM), and FLT3 mutants including FLT3-ITD (Kd = 38 nM) and FLT3(D835Y) (Kd = 14 nM). FLT3-ITD causes constitutive FLT3 kinase activation and is detected in 20–35% of adults and 15% of children with acute myeloid leukemia (AML), conferring a poor prognosis in both age groups. In an in vivo setting, 27e strongly inhibited the growth of a FLT3-ITD-positive AML human tumor xenograft (MV4–11) following oral administration, with in vivo biomarker modulation and plasma free drug exposures consistent with dual FLT3 and Aurora kinase inhibition. Compound 27e, an orally bioavailable dual FLT3 and Aurora kinase inhibitor, was selected as a preclinical development candidate for the treatment of human malignancies, in particular AML, in adults and children. PMID:23043539
Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M
2018-01-01
Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine
Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivativesmore » was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.« less
NMR-Fragment Based Virtual Screening: A Brief Overview.
Singh, Meenakshi; Tam, Benjamin; Akabayov, Barak
2018-01-25
Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.
Kumar, B V S Suneel; Kotla, Rohith; Buddiga, Revanth; Roy, Jyoti; Singh, Sardar Shamshair; Gundla, Rambabu; Ravikumar, Muttineni; Sarma, Jagarlapudi A R P
2011-01-01
Structure and ligand based pharmacophore modeling and docking studies carried out using diversified set of c-Jun N-terminal kinase-3 (JNK3) inhibitors are presented in this paper. Ligand based pharmacophore model (LBPM) was developed for 106 inhibitors of JNK3 using a training set of 21 compounds to reveal structural and chemical features necessary for these molecules to inhibit JNK3. Hypo1 consisted of two hydrogen bond acceptors (HBA), one hydrogen bond donor (HBD), and a hydrophobic (HY) feature with a correlation coefficient (r²) of 0.950. This pharmacophore model was validated using test set containing 85 inhibitors and had a good r² of 0.846. All the molecules were docked using Glide software and interestingly, all the docked conformations showed hydrogen bond interactions with important hinge region amino acids (Gln155 and Met149)and these interactions were compared with Hypo1 features. The results of ligand based pharmacophore model (LBPM)and docking studies are validated each other. The structure based pharmacophore model (SBPM) studies have identified additional features, two hydrogen bond donors and one hydrogen bond acceptor. The combination of these methodologies is useful in designing ideal pharmacophore which provides a powerful tool for the discovery of novel and selective JNK3 inhibitors.
Reis, Joana; Encarnação, Igor; Gaspar, Alexandra; Morales, Aliuska; Milhazes, Nuno; Borges, Fernanda
2012-01-01
Parkinson's disease (PD) is a neurodegenerative disorder mainly characterized by a progressive neurodegeneration of the dopaminergic neurons. The available pharmacological therapy for PD aims to stop the progress of symptoms, reduce disability, slowing the neurodegenerative process and/or preventing long-term complications along the therapy. The main strategic developments that have led to progress in the medical management of PD have focused on improvements in dopaminergic therapies. Despite all the recent research, there are only a few classes of drugs approved for the treatment of motor related symptoms of PD which primarily act on the dopaminergic neurons system: L-dopa, dopamine agonists, monoamine oxidase-B (MAO-B) and catechol-O-methyl transferase (COMT) inhibitors. Anticholinergic drugs and glutamate antagonists are also available but are not commonly used in routine practice. As no effective therapeutic strategy has yet been attended, other solutions must be investigated. Privileged structures, such as indoles, arylpiperazines, biphenyls and benzopyranes are currently ascribed as helpful approaches. Different families of nitrogen and oxygen heterocycles, such as pyrazoles, hydrazinylthiazoles, xanthones, coumarins or chromones have also been extensively used as scaffolds in medicinal chemistry programs for searching novel MAO-B inhibitors. Nitrogen derivatives play a key role in this subject with several studies pointing out hydrazines, thiazoles or indoles as important scaffolds for the development of novel MAO-B inhibitors. This review comprises an overview of the state of the art on the actual pharmacological therapy for PD followed by a specific focus on the discovery and development of nitrogen-based heterocyclic compounds analogues as promising MAO-B inhibitors.
Isolation of a small molecule inhibitor of DNA base excision repair
Madhusudan, Srinivasan; Smart, Fiona; Shrimpton, Paul; Parsons, Jason L.; Gardiner, Laurence; Houlbrook, Sue; Talbot, Denis C.; Hammonds, Timothy; Freemont, Paul A.; Sternberg, Michael J. E.; Dianov, Grigory L.; Hickson, Ian D.
2005-01-01
The base excision repair (BER) pathway is essential for the removal of DNA bases damaged by alkylation or oxidation. A key step in BER is the processing of an apurinic/apyrimidinic (AP) site intermediate by an AP endonuclease. The major AP endonuclease in human cells (APE1, also termed HAP1 and Ref-1) accounts for >95% of the total AP endonuclease activity, and is essential for the protection of cells against the toxic effects of several classes of DNA damaging agents. Moreover, APE1 overexpression has been linked to radio- and chemo-resistance in human tumors. Using a newly developed high-throughput screen, several chemical inhibitors of APE1 have been isolated. Amongst these, CRT0044876 was identified as a potent and selective APE1 inhibitor. CRT0044876 inhibits the AP endonuclease, 3′-phosphodiesterase and 3′-phosphatase activities of APE1 at low micromolar concentrations, and is a specific inhibitor of the exonuclease III family of enzymes to which APE1 belongs. At non-cytotoxic concentrations, CRT0044876 potentiates the cytotoxicity of several DNA base-targeting compounds. This enhancement of cytotoxicity is associated with an accumulation of unrepaired AP sites. In silico modeling studies suggest that CRT0044876 binds to the active site of APE1. These studies provide both a novel reagent for probing APE1 function in human cells, and a rational basis for the development of APE1-targeting drugs for antitumor therapy. PMID:16113242
Pavadai, Elumalai; El Mazouni, Farah; Wittlin, Sergio; de Kock, Carmen; Phillips, Margaret A.; Chibale, Kelly
2016-01-01
Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a key enzyme in the de novo pyrimidine biosynthesis pathway, which the Plasmodium falciparum relies on exclusively for survival, has emerged as a promising target for antimalarial drugs. In an effort to discover new and potent PfDHODH inhibitors, 3D-QSAR pharmacophore models were developed based on the structures of known PfDHODH inhibitors and the validated Hypo1 model was used as a 3D search query for virtual screening of the National Cancer Institute database. The virtual hit compounds were further filtered based on molecular docking and Molecular Mechanics/Generalized Born Surface Area binding energy calculations. The combination of the pharmacophore and structure-based virtual screening resulted in the identification of nine new compounds that showed >25% inhibition of PfDHODH at a concentration of 10 μM, three of which exhibited IC50 values in the range of 0.38–20 μM. The most active compound, NSC336047, displayed species-selectivity for PfDHODH over human DHODH and inhibited parasite growth with an IC50 of 26 μM. In addition to this, thirteen compounds inhibited parasite growth with IC50 values of ≤ 50 μM, four of which showed IC50 values in the range of 5–12 μM. These compounds could be further explored in the identification and development of more potent PfDHODH and parasite growth inhibitors. PMID:26915022
Moschetti, Tommaso; Sharpe, Timothy; Fischer, Gerhard; Marsh, May E; Ng, Hong Kin; Morgan, Matthew; Scott, Duncan E; Blundell, Tom L; R Venkitaraman, Ashok; Skidmore, John; Abell, Chris; Hyvönen, Marko
2016-11-20
Protein-protein interactions (PPIs) are increasingly important targets for drug discovery. Efficient fragment-based drug discovery approaches to tackle PPIs are often stymied by difficulties in the production of stable, unliganded target proteins. Here, we report an approach that exploits protein engineering to "humanise" thermophilic archeal surrogate proteins as targets for small-molecule inhibitor discovery and to exemplify this approach in the development of inhibitors against the PPI between the recombinase RAD51 and tumour suppressor BRCA2. As human RAD51 has proved impossible to produce in a form that is compatible with the requirements of fragment-based drug discovery, we have developed a surrogate protein system using RadA from Pyrococcus furiosus. Using a monomerised RadA as our starting point, we have adopted two parallel and mutually instructive approaches to mimic the human enzyme: firstly by mutating RadA to increase sequence identity with RAD51 in the BRC repeat binding sites, and secondly by generating a chimeric archaeal human protein. Both approaches generate proteins that interact with a fourth BRC repeat with affinity and stoichiometry comparable to human RAD51. Stepwise humanisation has also allowed us to elucidate the determinants of RAD51 binding to BRC repeats and the contributions of key interacting residues to this interaction. These surrogate proteins have enabled the development of biochemical and biophysical assays in our ongoing fragment-based small-molecule inhibitor programme and they have allowed us to determine hundreds of liganded structures in support of our structure-guided design process, demonstrating the feasibility and advantages of using archeal surrogates to overcome difficulties in handling human proteins. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
New synthetic thrombin inhibitors: molecular design and experimental verification.
Sinauridze, Elena I; Romanov, Alexey N; Gribkova, Irina V; Kondakova, Olga A; Surov, Stepan S; Gorbatenko, Aleksander S; Butylin, Andrey A; Monakov, Mikhail Yu; Bogolyubov, Alexey A; Kuznetsov, Yuryi V; Sulimov, Vladimir B; Ataullakhanov, Fazoyl I
2011-01-01
The development of new anticoagulants is an important goal for the improvement of thromboses treatments. The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin inhibitors for intravenous administration. Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions (calculated binding energies) were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured. New compounds that are both effective direct thrombin inhibitors (the best K(I) was <1 nM) and strong anticoagulants in plasma (an IC(50) in the thrombin generation assay of approximately 100 nM) were discovered. These compounds contain one of the following new residues as the basic fragment: isothiuronium, 4-aminopyridinium, or 2-aminothiazolinium. LD(50) values for the best new inhibitors ranged from 166.7 to >1111.1 mg/kg. A plasma-substituting solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 µM solutions) were stable after sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room temperature and at 4°C. The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed may be promising for potential medical applications.
Moulin, M M; Rodrigues, R; Ribeiro, S F F; Gonçalves, L S A; Bento, C S; Sudré, C P; Vasconcelos, I M; Gomes, V M
2014-11-07
Several plant organs contain proteinase inhibitors, which are produced during normal plant development or are induced upon pathogen attack to suppress the enzymatic activity of phytopathogenic microorganisms. In this study, we examined the presence of proteinase inhibitors, specifically trypsin inhibitors, in the leaf extract of Capsicum baccatum var. pendulum inoculated with PepYMV (Pepper yellow mosaic virus). Leaf extract from plants with the accession number UENF 1624, which is resistant to PepYMV, was collected at 7 different times (0, 24, 48, 72, 96, 120, and 144 h). Seedlings inoculated with PepYMV and control seedlings were grown in a growth chamber. Protein extract from leaf samples was partially purified by reversed-phase chromatography using a C2/C18 column. Residual trypsin activity was assayed to detect inhibitors followed by Tricine-SDS-PAGE analysis to determine the N-terminal peptide sequence. Based on trypsin inhibitor assays, trypsin inhibitors are likely constitutively synthesized in C. baccatum var. pendulum leaf tissue. These inhibitors are likely a defense mechanism for the C. baccatum var. pendulum- PepYMV pathosystem.
Structures of the prefusion form of measles virus fusion protein in complex with inhibitors.
Hashiguchi, Takao; Fukuda, Yoshinari; Matsuoka, Rei; Kuroda, Daisuke; Kubota, Marie; Shirogane, Yuta; Watanabe, Shumpei; Tsumoto, Kouhei; Kohda, Daisuke; Plemper, Richard Karl; Yanagi, Yusuke
2018-03-06
Measles virus (MeV), a major cause of childhood morbidity and mortality, is highly immunotropic and one of the most contagious pathogens. MeV may establish, albeit rarely, persistent infection in the central nervous system, causing fatal and intractable neurodegenerative diseases such as subacute sclerosing panencephalitis and measles inclusion body encephalitis. Recent studies have suggested that particular substitutions in the MeV fusion (F) protein are involved in the pathogenesis by destabilizing the F protein and endowing it with hyperfusogenicity. Here we show the crystal structures of the prefusion MeV-F alone and in complex with the small compound AS-48 or a fusion inhibitor peptide. Notably, these independently developed inhibitors bind the same hydrophobic pocket located at the region connecting the head and stalk of MeV-F, where a number of substitutions in MeV isolates from neurodegenerative diseases are also localized. Since these inhibitors could suppress membrane fusion mediated by most of the hyperfusogenic MeV-F mutants, the development of more effective inhibitors based on the structures may be warranted to treat MeV-induced neurodegenerative diseases.
Disruptive innovations: new anti-infectives in the age of resistance
Tegos, George P.; Hamblin, Michael R.
2013-01-01
This special issue of Current Opinion in Pharmacology is concerned with new developments in antimicrobial drugs and covers innovative strategies for dealing with microbial infection in the age of multi-antibiotic resistance. Despite widespread fears that many infectious diseases may become untreatable, disruptive innovations are in the process of being discovered and developed that may go some way to leading the fight-back against the rising threat. Natural products, quorum sensing inhibitors, biofilm disruptors, gallium-based drugs, cyclodextrin inhibitors of pore-forming toxins, anti-fungals that deal with biofilms, and light based antimicrobial strategies are specifically addressed. New non-vertebrate animal models of infection may facilitate high-throughput screening (HTS) of novel anti-infectives. PMID:24012294
Yu, Chenggong; He, Feng; Qu, Ying; Zhang, Qiuqiong; Lv, Jiahui; Zhang, Xiangna; Xu, Ana; Miao, Pannan; Wu, Jingde
2018-05-01
Histone deacetylase inhibitors (HDACIs) are effective small molecules in the treatment of human cancers. In our continuing efforts to develop novel N-hydroxyterephthalamide-based HDACIs, herein we report the design and development of a new class of N-hydroxybenzamide-based HDACIs. In this new class of analogs, we inserted an ethylene moiety in the linker and used indole as a part of the Y-shaped cap group. Biological characterization identified compounds 4o, 4p, 4q and 4t to show improved HDAC inhibition, while no isoform selectivity for HDACs was observed. These compounds also exhibited improved anti-proliferative activity against multiple cancer cell lines when compared to their parent compound and positive control SAHA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Rongfeng; Liu, Yu-Chih; Meng, Junwei; Zhu, Haiyan; Zhang, Xuehong
2017-11-01
The β-secretase (BACE1) initiates the generation of toxic amyloid-β peptide (Aβ) from amyloid-β precursor protein (APP), which was widely considered to play a key role in the pathogenesis of Alzheimer's disease (AD). Here, a novel microfluidics-based mobility shift assay (MMSA) was developed, validated, and applied for the screening of BACE1 inhibitors for AD. First, the BACE1 activity assay was established with a new fluorescent peptide substrate (FAM-EVNLDAEF) derived from the Swedish mutant APP, and high-quality ratiometric data were generated in both endpoint and kinetic modes by electrophoretic separation of peptide substrate from the BACE1 cleaved product (FAM-EVNL) before fluorescence quantification. To validate the assay, the inhibition and kinetic parameter values of two known inhibitors (AZD3839 and AZD3293) were evaluated, and the results were in good agreement with those reported by other methods. Finally, the assay was applied to screen for new inhibitors from a 900-compound library in a 384-well format, and one novel hit (IC 50 = 26.5 ± 1.5 μM) was identified. Compared with the common fluorescence-based assays, the primary advantage of the direct MMSA was to discover novel BACE1 inhibitors with lower auto-fluorescence interference, and its superb capability for kinetic study. Graphical abstract Microfluidics-based mobility shift assay for BACE1.
Structure-Activity Relationship Analysis of 3-phenylcoumarin-Based Monoamine Oxidase B Inhibitors
NASA Astrophysics Data System (ADS)
Rauhamäki, Sanna; Postila, Pekka A.; Niinivehmas, Sanna; Kortet, Sami; Schildt, Emmi; Pasanen, Mira; Manivannan, Elangovan; Ahinko, Mira; Koskimies, Pasi; Nyberg, Niina; Huuskonen, Pasi; Multamäki, Elina; Pasanen, Markku; Juvonen, Risto O.; Raunio, Hannu; Huuskonen, Juhani; Pentikäinen, Olli T.
2018-03-01
Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson’s disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM - 1 µM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.
Tao, Yi; Zhang, Yufeng; Wang, Yi; Cheng, Yiyu
2013-06-27
A novel kind of immobilized enzyme affinity selection strategy based on hollow fibers has been developed for screening inhibitors from extracts of medicinal plants. Lipases from porcine pancreas were adsorbed onto the surface of polypropylene hollow fibers to form a stable matrix for ligand fishing, which was called hollow fibers based affinity selection (HF-AS). A variety of factors related to binding capability, including enzyme concentration, incubation time, temperature, buffer pH and ion strength, were optimized using a known lipase inhibitor hesperidin. The proposed approach was applied in screening potential lipase bound ligands from extracts of lotus leaf, followed by rapid characterization of active compounds using high performance liquid chromatography-mass spectrometry. Three flavonoids including quercetin-3-O-β-D-arabinopyranosyl-(1→2)-β-D-galactopyranoside, quercetin-3-O-β-D-glucuronide and kaempferol-3-O-β-d-glucuronide were identified as lipase inhibitors by the proposed HF-AS approach. Our findings suggested that the hollow fiber-based affinity selection could be a rapid and convenient approach for drug discovery from natural products resources. Copyright © 2013 Elsevier B.V. All rights reserved.
Kashima, Hajime; Momose, Fumiyasu; Umehara, Hiroshi; Miyoshi, Nao; Ogo, Naohisa; Muraoka, Daisuke; Shiku, Hiroshi; Harada, Naozumi; Asai, Akira
2016-01-01
Forkhead box protein p3 (Foxp3) is crucial to the development and suppressor function of regulatory T cells (Tregs) that have a significant role in tumor-associated immune suppression. Development of small molecule inhibitors of Foxp3 function is therefore considered a promising strategy to enhance anti-tumor immunity. In this study, we developed a novel cell-based assay system in which the NF-κB luciferase reporter signal is suppressed by the co-expressed Foxp3 protein. Using this system, we screened our chemical library consisting of approximately 2,100 compounds and discovered that a cancer chemotherapeutic drug epirubicin restored the Foxp3-inhibited NF-κB activity in a concentration-dependent manner without influencing cell viability. Using immunoprecipitation assay in a Treg-like cell line Karpas-299, we found that epirubicin inhibited the interaction between Foxp3 and p65. In addition, epirubicin inhibited the suppressor function of murine Tregs and thereby improved effector T cell stimulation in vitro. Administration of low dose epirubicin into tumor-bearing mice modulated the function of immune cells at the tumor site and promoted their IFN-γ production without direct cytotoxicity. In summary, we identified the novel action of epirubicin as a Foxp3 inhibitor using a newly established luciferase-based cellular screen. Our work also demonstrated our screen system is useful in accelerating discovery of Foxp3 inhibitors.
Kumar, Gyanendra; Swaminathan, Subramanyam
2015-03-01
Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are also potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, andmore » these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.« less
Small-Molecule Inhibitors of the SOX18 Transcription Factor.
Fontaine, Frank; Overman, Jeroen; Moustaqil, Mehdi; Mamidyala, Sreeman; Salim, Angela; Narasimhan, Kamesh; Prokoph, Nina; Robertson, Avril A B; Lua, Linda; Alexandrov, Kirill; Koopman, Peter; Capon, Robert J; Sierecki, Emma; Gambin, Yann; Jauch, Ralf; Cooper, Matthew A; Zuegg, Johannes; Francois, Mathias
2017-03-16
Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gril, B; Liu, W Q; Lenoir, C; Garbay, C; Vidal, M
2006-04-01
Growth factor receptor-bound protein 2 (Grb2) is an adapter protein involved in the Ras-dependent signaling pathway that plays an important role in human cancers initiated by oncogenic receptors. Grb2 is constituted by one Src homology 2 domain surrounded by two SH3 domains, and the inhibition of the interactions produced by these domains could provide an antitumor approach. In evaluating chemical libraries, to search for potential Grb2 inhibitors, it was necessary to elaborate a rapid test for their screening. We have developed, first, a batch method based on the use of an affinity column bearing a Grb2-SH3 peptide ligand to isolate highly purified Grb2. We subsequently describe a very rapid 96-well screening of inhibitors based on a simple competition between purified Grb2 and a peroxidase-coupled proline-rich peptide.
Kumar, Gyanendra; Swaminathan, Subramanyam
2015-01-01
Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, and these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.
Crystal structures of potent thiol-based inhibitors bound to carboxypeptidase B.
Adler, Marc; Bryant, Judi; Buckman, Brad; Islam, Imadul; Larsen, Brent; Finster, Silke; Kent, Lorraine; May, Karen; Mohan, Raju; Yuan, Shendong; Whitlow, Marc
2005-07-05
This paper presents the crystal structure of porcine pancreatic carboxypeptidase B (pp-CpB) in complex with a variety of thiol-based inhibitors that were developed as antagonists of activated thrombin-activatable fibrinolysis inhibitor (TAFIa). Recent studies have indicated that a selective inhibitor of TAFIa could enhance the efficacy of existing thrombolytic agents for the treatment of acute myocardial infarction, one of the most prevalent forms of heart attacks. Unfortunately, activated TAFIa rapidly degrades in solution and cannot be used for crystallographic studies. In contrast, porcine pancreatic CpB is stable at room temperature and is available from commercial sources. Both pancreatic CpB and TAFIa are zinc-based exopeptidases, and the proteins share a 47% sequence identity. The homology improves considerably in the active site where nearly all of the residues are conserved. The inhibitors used in this study were designed to mimic a C-terminal arginine residue, one of the natural substrates of TAFIa. The X-ray structures show that the thiol group chelates the active site zinc, the carboxylic acid forms a salt bridge to Arg145, and the guanidine group forms two hydrogen bonds to Asp255. A meta-substituted phenyl was introduced into our inhibitors to reduce conformational freedom. This modification vastly improved the selectivity of compounds against other exopeptidases that cleave basic residues. Comparisons between structures indicate that selectivity derives from the interaction between the guanidine group in the inhibitors and an acidic active site residue. The location of this acidic residue is not conserved in the various carboxypeptidases.
Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors.
Shih, Kuei-Chung; Shiau, Chung-Wai; Chen, Ting-Shou; Ko, Ching-Huai; Lin, Chih-Lung; Lin, Chun-Yuan; Hwang, Chrong-Shiong; Tang, Chuan-Yi; Chen, Wan-Ru; Huang, Jui-Wen
2011-08-01
Chemical features based 3D pharmacophore model for REarranged during Transfection (RET) tyrosine kinase were developed by using a training set of 26 structurally diverse known RET inhibitors. The best pharmacophore hypothesis, which identified inhibitors with an associated correlation coefficient of 0.90 between their experimental and estimated anti-RET values, contained one hydrogen-bond acceptor, one hydrogen-bond donor, one hydrophobic, and one ring aromatic features. The model was further validated by a testing set, Fischer's randomization test, and goodness of hit (GH) test. We applied this pharmacophore model to screen NCI database for potential RET inhibitors. The hits were docked to RET with GOLD and CDOCKER after filtering by Lipinski's rules. Ultimately, 24 molecules were selected as potential RET inhibitors for further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hast, Michael A.; Fletcher, Steven; Cummings, Christopher G.
Protein farnesyltransferase (FTase) catalyzes an essential posttranslational lipid modification of more than 60 proteins involved in intracellular signal transduction networks. FTase inhibitors have emerged as a significant target for development of anticancer therapeutics and, more recently, for the treatment of parasitic diseases caused by protozoan pathogens, including malaria (Plasmodium falciparum). We present the X-ray crystallographic structures of complexes of mammalian FTase with five inhibitors based on an ethylenediamine scaffold, two of which exhibit over 1000-fold selective inhibition of P. falciparum FTase. These structures reveal the dominant determinants in both the inhibitor and enzyme that control binding and selectivity. Comparison tomore » a homology model constructed for the P. falciparum FTase suggests opportunities for further improving selectivity of a new generation of antimalarial inhibitors.« less
Innovative Approaches for Immune Tolerance to Factor VIII in the Treatment of Hemophilia A
Sherman, Alexandra; Biswas, Moanaro; Herzog, Roland W.
2017-01-01
Hemophilia A (coagulation factor VIII deficiency) is a debilitating genetic disorder that is primarily treated with intravenous replacement therapy. Despite a variety of factor VIII protein formulations available, the risk of developing anti-dug antibodies (“inhibitors”) remains. Overall, 20–30% of patients with severe disease develop inhibitors. Current clinical immune tolerance induction protocols to eliminate inhibitors are not effective in all patients, and there are no prophylactic protocols to prevent the immune response. New experimental therapies, such as gene and cell therapies, show promising results in pre-clinical studies in animal models of hemophilia. Examples include hepatic gene transfer with viral vectors, genetically engineered regulatory T cells (Treg), in vivo Treg induction using immune modulatory drugs, and maternal antigen transfer. Furthermore, an oral tolerance protocol is being developed based on transgenic lettuce plants, which suppressed inhibitor formation in hemophilic mice and dogs. Hopefully, some of these innovative approaches will reduce the risk of and/or more effectively eliminate inhibitor formation in future treatment of hemophilia A. PMID:29225598
Small molecule inhibitors of mesotrypsin from a structure-based docking screen
Kayode, Olumide; Huang, Zunnan; Soares, Alexei S.; ...
2017-05-02
PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the pathological role of this enzyme, and could potentially form the basis for novel therapeutic strategies targeting mesotrypsin. A virtual screen of the Natural Product Database (NPD) and Food and Drug Administration (FDA) approved Drug Database was conducted by high-throughput molecular docking utilizing crystal structures of mesotrypsin. Twelve high-scoring compounds were selected for testing based on lowest free energy docking scores, interaction with key mesotrypsin active sitemore » residues, and commercial availability. Diminazene (C1D22956468), along with two similar compounds presenting the bis-benzamidine substructure, was validated as a competitive inhibitor of mesotrypsin and other human trypsin isoforms. Diminazene is the most potent small molecule inhibitor of mesotrypsin reported to date with an inhibitory constant (K i) of 3.6±0.3 pM. Diminazene was subsequently co-crystalized with mesotrypsin and the crystal structure was solved and refined to 1.25 Å resolution. This high resolution crystal structure can now offer a foundation for structure-guided efforts to develop novel and potentially more selective mesotrypsin inhibitors based on similar molecular substructures.« less
Small molecule inhibitors of mesotrypsin from a structure-based docking screen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayode, Olumide; Huang, Zunnan; Soares, Alexei S.
PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the pathological role of this enzyme, and could potentially form the basis for novel therapeutic strategies targeting mesotrypsin. A virtual screen of the Natural Product Database (NPD) and Food and Drug Administration (FDA) approved Drug Database was conducted by high-throughput molecular docking utilizing crystal structures of mesotrypsin. Twelve high-scoring compounds were selected for testing based on lowest free energy docking scores, interaction with key mesotrypsin active sitemore » residues, and commercial availability. Diminazene (C1D22956468), along with two similar compounds presenting the bis-benzamidine substructure, was validated as a competitive inhibitor of mesotrypsin and other human trypsin isoforms. Diminazene is the most potent small molecule inhibitor of mesotrypsin reported to date with an inhibitory constant (K i) of 3.6±0.3 pM. Diminazene was subsequently co-crystalized with mesotrypsin and the crystal structure was solved and refined to 1.25 Å resolution. This high resolution crystal structure can now offer a foundation for structure-guided efforts to develop novel and potentially more selective mesotrypsin inhibitors based on similar molecular substructures.« less
Paraiso, Kim H T; Das Thakur, Meghna; Fang, Bin; Koomen, John M; Fedorenko, Inna V; John, Jobin K; Tsao, Hensin; Flaherty, Keith T; Sondak, Vernon K; Messina, Jane L; Pasquale, Elena B; Villagra, Alejandro; Rao, Uma N; Kirkwood, John M; Meier, Friedegund; Sloot, Sarah; Gibney, Geoffrey T; Stuart, Darrin; Tawbi, Hussein; Smalley, Keiran S M
2015-03-01
Many patients with BRAF inhibitor resistance can develop disease at new sites, suggesting that drug-induced selection pressure drives metastasis. Here, we used mass spectrometry-based phosphoproteomic screening to uncover ligand-independent EPHA2 signaling as an adaptation to BRAF inhibitor therapy that led to the adoption of a metastatic phenotype. The EPHA2-mediated invasion was AKT-dependent and readily reversible upon removal of the drug as well as through PI3K and AKT inhibition. In xenograft models, BRAF inhibition led to the development of EPHA2-positive metastases. A retrospective analysis of patients with melanoma on BRAF inhibitor therapy showed that 68% of those failing therapy develop metastases at new disease sites, compared with 35% of patients on dacarbazine. Further IHC staining of melanoma specimens taken from patients on BRAF inhibitor therapy as well as metastatic samples taken from patients failing therapy showed increased EPHA2 staining. We suggest that inhibition of ligand-independent EPHA2 signaling may limit metastases associated with BRAF inhibitor therapy. This study provides evidence that BRAF inhibition promotes the adoption of a reversible, therapy-driven metastatic phenotype in melanoma. The cotargeting of ligand-independent EPHA2 signaling and BRAF may be one strategy to prevent the development of therapy-mediated disease at new sites. ©2014 American Association for Cancer Research.
Shen, Sida; Benoy, Veronick; Bergman, Joel A; Kalin, Jay H; Frojuello, Mariana; Vistoli, Giulio; Haeck, Wanda; Van Den Bosch, Ludo; Kozikowski, Alan P
2016-02-17
Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A.
Mukherjee, Abhisek; Syeb, Kathleen; Concannon, John; Callegari, Keri; Soto, Claudio; Glicksman, Marcie A
2015-01-01
Currently there is no effective treatment available for major neurodegenerative disorders associated to protein misfolding, including Alzheimer's and Parkinson's disease. One of most promising therapeutic approaches under development focuses on inhibiting the misfolding and aggregation pathway. However, it is likely that by the time clinical symptoms appear, there is a large accumulation of misfolded aggregates and a very substantial damage to the brain. Thus, it seems that at the clinical stage of the disease it is necessary also to develop strategies aiming to prevent the neuronal damage produced by already formed misfolded aggregates. Chronic activation of calcineurin (CaN), a type IIB phosphatase, has been implicated as a pivotal molecule connecting synaptic loss and neuronal damage to protein misfolding. The fact that the crystal structure of CaN is also well established makes it an ideal target for drug discovery. CaN activity assays for High Throughput Screening (HTS) reported so far are based on absorbance. In this article we report the development of a fluorescent quenching based CaN activity assay suitable for robotic screening of large chemical libraries to find novel inhibitors. The assay yielded a Z score of 0.84 with coefficient of variance ≤ 15%. Our results also show that this assay can be used to identify CaN inhibitors with a wide range of potencies.
Coughlin, Jane M; Kundu, Rituparna; Cooper, Julian C; Ball, Zachary T
2014-11-15
A small molecule containing a rhodium(II) tetracarboxylate fragment is shown to be a potent inhibitor of the prolyl isomerase FKBP12. The use of small molecules conjugates of rhodium(II) is presented as a general strategy for developing new protein inhibitors based on distinct structural and sequence features of the enzyme active site. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ruan, Ban-Feng; Cheng, Hui-Jie; Ren, Jing; Li, Hong-Lin; Guo, Lu-Lu; Zhang, Xing-Xing; Liao, Chenzhong
2015-10-20
Using a fragment-based drug design strategy, two biomedical interesting fragments, resveratrol and coumarin were linked to design a series of novel human monoamine oxidase (hMAO) inhibitors with a scaffold of 3-((E)-3-(2-((E)-styryl)phenyl)acryloyl)-2H-chromen-2-one, which demonstrated a very interesting selectivity profile against hMAO-A and hMAO-B: some compounds with this scaffold are selective hMAO-A inhibitors, whereas some are selective hMAO-B inhibitors. The small changes in the substituents of the coumarin moiety led to this interesting selectivity profile. The most potent selective hMAO-B inhibitor D7 has a selectivity ratio of 20.93, with an IC₅₀ value of 2.78 μM, similar or better than selegiline (IC₅₀ = 2.89 μM), a selective hMAO-B inhibitor currently in the market for the treatment of Parkinson's disease. Our modeling study indicates that Tyr 326 of hMAO-B (or corresponded Ile 335 of hMAO-A) may be the determinant for the specificity of these compounds. The selectivity profile of compounds reported herein suggests that we can further develop both selective hMAO-A and hMAO-B inhibitors based on this novel scaffold. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Structure-based design and profiling of novel 17β-HSD14 inhibitors.
Braun, Florian; Bertoletti, Nicole; Möller, Gabriele; Adamski, Jerzy; Frotscher, Martin; Guragossian, Nathalie; Madeira Gírio, Patrícia Alexandra; Le Borgne, Marc; Ettouati, Laurent; Falson, Pierre; Müller, Sebastian; Vollmer, Günther; Heine, Andreas; Klebe, Gerhard; Marchais-Oberwinkler, Sandrine
2018-05-22
The human enzyme 17β-hydroxysteroid dehydrogenase 14 (17β-HSD14) oxidizes the hydroxyl group at position 17 of estradiol and 5-androstenediol using NAD + as cofactor. However, the physiological role of the enzyme remains unclear. We recently described the first class of nonsteroidal inhibitors for this enzyme with compound 1 showing a high 17β-HSD14 inhibitory activity. Its crystal structure was used as starting point for a structure-based optimization in this study. The goal was to develop a promising chemical probe to further investigate the enzyme. The newly designed compounds revealed mostly very high inhibition of the enzyme and for seven of them the crystal structures of the corresponding inhibitor-enzyme complexes were resolved. The crystal structures disclosed that a small change in the substitution pattern of the compounds resulted in an alternative binding mode for one inhibitor. The profiling of a set of the most potent inhibitors identified 13 (K i = 9 nM) with a good selectivity profile toward three 17β-HSDs and the estrogen receptor alpha. This inhibitor displayed no cytotoxicity, good solubility, and auspicious predicted bioavailability. Overall, 13 is a highly interesting 17β-HSD14 inhibitor, which might be used as chemical probe for further investigation of the target enzyme. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
The EPIC study: a lesson to learn.
Auerswald, G; Kurnik, K; Aledort, L M; Chehadeh, H; Loew-Baselli, A; Steinitz, K; Reininger, A J
2015-09-01
Inhibitory antibodies to factor VIII occur in about 30% of previously untreated patients (PUPs) and are the most serious complication of haemophilia A. It is unclear why some patients develop inhibitors and others do not. The Early Prophylaxis Immunologic Challenge (EPIC) study was designed to test the hypothesis that inhibitor incidence in PUPs with severe or moderately severe haemophilia A could be reduced when a once-weekly FVIII prophylaxis starts with 25 IU kg(-1) rAHF-PFM before 1 year of age and immunological danger signals are minimized. These signals were minimized by avoiding: surgery; the first FVIII infusion during severe bleeding or an infection; central venous access devices and administering vaccinations intramuscularly 3-4 days before or after FVIII. Eight of the 19 treated subjects (42.1%) developed confirmed inhibitors. Eleven of the 19 treated subjects were PUPs without any prior exposure to FVIII. Three of them (27.3%) developed a confirmed inhibitor together with FVIII-binding antibodies. The study was stopped because the likelihood to reach the primary objective was minimal, a decision endorsed by the data safety monitoring board. Because of early termination, the EPIC study hypothesis could not be corroborated. Nonetheless, our data analyses indicate that the current definition of an inhibitor only based on plasma inhibitor activity ≥0.6 BU mL(-1) may not always reflect the presence of FVIII-neutralizing antibodies. The findings of this study teach us that low-level inhibitor activity results need in addition a confirmatory test and/or the assessment of the therapeutic response. © 2015 John Wiley & Sons Ltd.
Poda, Suresh B; Kobayashi, Masakazu; Nachane, Ruta; Menon, Veena; Gandhi, Adarsh S; Budac, David P; Li, Guiying; Campbell, Brian M; Tagmose, Lena
2015-10-01
Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway, was identified as a potential therapeutic target for treating neurodegenerative and psychiatric disorders. In this article, we describe a surface plasmon resonance (SPR) assay that delivers both kinetics and the mechanism of binding (MoB) data, enabling a detailed characterization of KMO inhibitors for the enzyme in real time. SPR assay development included optimization of the protein construct and the buffer conditions. The stability and inhibitor binding activity of the immobilized KMO were significantly improved when the experiments were performed at 10°C using a buffer containing 0.05% n-dodecyl-β-d-maltoside (DDM) as the detergent. The KD values of the known KMO inhibitors (UPF648 and RO61-8048) from the SPR assay were in good accordance with the biochemical LC/MS/MS assay. Also, the SPR assay was able to differentiate the binding kinetics (k(a) and k(d)) of the selected unknown KMO inhibitors. For example, the inhibitors that showed comparable IC50 values in the LC/MS/MS assay displayed differences in their residence time (τ = 1/k(d)) in the SPR assay. To better define the MoB of the inhibitors to KMO, an SPR-based competition assay was developed, which demonstrated that both UPF648 and RO61-8048 bound to the substrate-binding site. These results demonstrate the potential of the SPR assay for characterizing the affinity, the kinetics, and the MoB profiles of the KMO inhibitors.
Investigation into adamantane-based M2 inhibitors with FB-QSAR.
Wei, Hang; Wang, Cheng-Hua; Du, Qi-Shi; Meng, Jianzong; Chou, Kuo-Chen
2009-07-01
Because of their high resistance rate to the existing drugs, influenza A viruses have become a threat to human beings. It is known that the replication of influenza A viruses needs a pH-gated proton channel, the so-called M2 channel. Therefore, to develop effective drugs against influenza A, the most logic strategy is to inhibit the M2 channel. Recently, the atomic structure of the M2 channel was determined by NMR spectroscopy (Schnell, J.R. and Chou, J.J., Nature, 2008, 451, 591-595). The high-resolution NMR structure has provided a solid basis for structure-based drug design approaches. In this study, a benchmark dataset has been constructed that contains 34 newly-developed adamantane-based M2 inhibitors and covers considerable structural diversities and wide range of bioactivities. Based on these compounds, an in-depth analysis was performed with the newly developed fragment-based quantitative structure-activity relationship (FB-QSAR) algorithm. The results thus obtained provide useful insights for dealing with the drug-resistant problem and designing effective adamantane-based antiflu drugs.
Kiris, Erkan; Nuss, Jonathan E.; Stanford, Stephanie M.; Wanner, Laura M.; Cazares, Lisa; Maestre, Michael F.; Du, Hao T.; Gomba, Glenn Y.; Burnett, James C.; Gussio, Rick; Bottini, Nunzio; Panchal, Rekha G.; Kane, Christopher D.; Tessarollo, Lino; Bavari, Sina
2015-01-01
There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists. PMID:26061731
Kiris, Erkan; Nuss, Jonathan E; Stanford, Stephanie M; Wanner, Laura M; Cazares, Lisa; Maestre, Michael F; Du, Hao T; Gomba, Glenn Y; Burnett, James C; Gussio, Rick; Bottini, Nunzio; Panchal, Rekha G; Kane, Christopher D; Tessarollo, Lino; Bavari, Sina
2015-01-01
There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.
Rational design and validation of a Tip60 histone acetyltransferase inhibitor
NASA Astrophysics Data System (ADS)
Gao, Chunxia; Bourke, Emer; Scobie, Martin; Famme, Melina Arcos; Koolmeister, Tobias; Helleday, Thomas; Eriksson, Leif A.; Lowndes, Noel F.; Brown, James A. L.
2014-06-01
Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors have been described. We identified the HAT Tip60 as an excellent candidate for targeted drug development, as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive charges attributed to two specific side chains. We used structure based drug design to develop a novel Tip60 inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60 activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage (following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834 did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of breast cancer.
Dutta, Shuchismita; Dimitropoulos, Dimitris; Feng, Zukang; Persikova, Irina; Sen, Sanchayita; Shao, Chenghua; Westbrook, John; Young, Jasmine; Zhuravleva, Marina A; Kleywegt, Gerard J; Berman, Helen M
2014-01-01
With the accumulation of a large number and variety of molecules in the Protein Data Bank (PDB) comes the need on occasion to review and improve their representation. The Worldwide PDB (wwPDB) partners have periodically updated various aspects of structural data representation to improve the integrity and consistency of the archive. The remediation effort described here was focused on improving the representation of peptide-like inhibitor and antibiotic molecules so that they can be easily identified and analyzed. Peptide-like inhibitors or antibiotics were identified in over 1000 PDB entries, systematically reviewed and represented either as peptides with polymer sequence or as single components. For the majority of the single-component molecules, their peptide-like composition was captured in a new representation, called the subcomponent sequence. A novel concept called “group” was developed for representing complex peptide-like antibiotics and inhibitors that are composed of multiple polymer and nonpolymer components. In addition, a reference dictionary was developed with detailed information about these peptide-like molecules to aid in their annotation, identification and analysis. Based on the experience gained in this remediation, guidelines, procedures, and tools were developed to annotate new depositions containing peptide-like inhibitors and antibiotics accurately and consistently. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 659–668, 2014. PMID:24173824
Kalhotra, Poonam; Chittepu, Veera C S R; Osorio-Revilla, Guillermo; Gallardo-Velázquez, Tzayhri
2018-06-06
Numerous studies indicate that diets with a variety of fruits and vegetables decrease the incidence of severe diseases, like diabetes, obesity, and cancer. Diets contain a variety of bioactive compounds, and their features, like diverge scaffolds, and structural complexity make them the most successful source of potential leads or hits in the process of drug discovery and drug development. Recently, novel serine protease dipeptidyl peptidase-4 (DPP-4) inhibitors played a role in the management of diabetes, obesity, and cancer. This study describes the development of field template, field-based qualitative structure⁻activity relationship (SAR) model demonstrating DPP-4 inhibitors of natural origin, and the same model is used to screen virtually focused food database composed of polyphenols as potential DPP-4 inhibitors. Compounds’ similarity to field template, and novelty score “high and very high”, were used as primary criteria to identify novel DPP-4 inhibitors. Molecular docking simulations were performed on the resulting natural compounds using FlexX algorithm. Finally, one natural compound, chrysin, was chosen to be evaluated experimentally to demonstrate the applicability of constructed SAR model. This study provides the molecular insights necessary in the discovery of new leads as DPP-4 inhibitors, to improve the potency of existing DPP-4 natural inhibitors.
Structure based drug design: development of potent and selective factor IXa (FIXa) inhibitors.
Wang, Shouming; Beck, Richard; Burd, Andrew; Blench, Toby; Marlin, Frederic; Ayele, Tenagne; Buxton, Stuart; Dagostin, Claudio; Malic, Maja; Joshi, Rina; Barry, John; Sajad, Mohammed; Cheung, Chiming; Shaikh, Shaheda; Chahwala, Suresh; Chander, Chaman; Baumgartner, Christine; Holthoff, Hans-Peter; Murray, Elizabeth; Blackney, Michael; Giddings, Amanda
2010-02-25
On the basis of our understanding on the binding interactions of the benzothiophene template within the FIXa active site by X-ray crystallography and molecular modeling studies, we developed our SAR strategy by targeting the 4-position of the template to access the S1 beta and S2-S4 sites. A number of highly selective and potent factor Xa (FXa) and FIXa inhibitors were identified by simple switch of functional groups with conformational changes toward the S2-S4 sites.
Novel Mps1 kinase inhibitors: from purine to pyrrolopyrimidine and quinazoline leads.
Bursavich, Matthew G; Dastrup, David; Shenderovich, Mark; Yager, Kraig M; Cimbora, Daniel M; Williams, Brandi; Kumar, D Vijay
2013-12-15
Mps1, also known as TTK, is a mitotic checkpoint protein kinase that has become a promising new target of cancer research. In an effort to improve the lead-likeness of our recent Mps1 purine lead compounds, a scaffold hopping exercise has been undertaken. Structure-based design, principles of conformational restriction, and subsequent scaffold hopping has led to novel pyrrolopyrimidine and quinazoline Mps1 inhibitors. These new single-digit nanomolar leads provide the basis for developing potent, novel Mps1 inhibitors with improved drug-like properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Harrell, William A; Vieira, Rebecca C; Ensel, Susan M; Montgomery, Vicki; Guernieri, Rebecca; Eccard, Vanessa S; Campbell, Yvette; Roxas-Duncan, Virginia; Cardellina, John H; Webb, Robert P; Smith, Leonard A
2017-02-01
Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC 50 values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay. Published by Elsevier Ltd.
Marine-derived angiogenesis inhibitors for cancer therapy.
Wang, Ying-Qing; Miao, Ze-Hong
2013-03-15
Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs.
Liu, Gang; Szczepankiewicz, Bruce G; Pei, Zhonghua; Janowick, David A; Xin, Zhili; Hajduk, Philip J; Abad-Zapatero, Cele; Liang, Heng; Hutchins, Charles W; Fesik, Stephen W; Ballaron, Steve J; Stashko, Mike A; Lubben, Tom; Mika, Amanda K; Zinker, Bradley A; Trevillyan, James M; Jirousek, Michael R
2003-05-22
Protein Tyrosine phosphatase 1B (PTP1B) has been implicated as a key negative regulator of both insulin and leptin signaling pathways. Using an NMR-based screening approach with 15N- and 13C-labeled PTP1B, we have identified 2,3-dimethylphenyloxalylaminobenzoic acid (1) as a general, reversible, and competitive PTPase inhibitor. Structure-based approach guided by X-ray crystallography facilitated the development of 1 into a novel series of potent and selective PTP1B inhibitors occupying both the catalytic site and a portion of the noncatalytic, second phosphotyrosine binding site. Interestingly, oral biovailability has been observed in rats for some compounds. Furthermore, we demonstrated in vivo plasma glucose lowering effects with compound 12d in ob/ob mice.
Design and Synthesis of New Peptidomimetics as Potential Inhibitors of MurE.
Zivec, Matej; Turk, Samo; Blanot, Didier; Gobec, Stanislav
2011-03-01
With the continuing emergence and spread of multidrug-resistant bacteria, there is an urgent need for the development of new antimicrobial agents. One possible source of new antibacterial targets is the biosynthesis of the bacterial cell-wall peptidoglycan. The assembly of the peptide stem is carried out by four essential enzymes, known as the Mur ligases (MurC, D, E and F). We have designed and synthesised a focused library of compounds as potential inhibitors of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:L-lysine ligase (MurE) from Staphylococcus aureus. This was achieved using two approaches: (i) synthesis of transition-state analogues based on the methyleneamino core; and (ii) synthesis of MurE reaction product analogues. Two methyleneamino-based compounds are identified as initial hits for inhibitors of MurE.
Inhibitors to Responsibility-Based Professional Development with In-Service Teachers
ERIC Educational Resources Information Center
Hemphill, Michael A.
2015-01-01
Researchers of continuing professional development (CPD) in physical education have called for new models that move beyond the traditional CPD model. The outcomes of CPD protocols are hard to predict even when they align with the best practices. Responsibility-based CPD has become the focus of recent attention to assist physical educators in…
High-throughput Screening Identification of Poliovirus RNA-dependent RNA Polymerase Inhibitors
Campagnola, Grace; Gong, Peng; Peersen, Olve B.
2011-01-01
Viral RNA-dependent RNA polymerase (RdRP) enzymes are essential for the replication of positive-strand RNA viruses and established targets for the development of selective antiviral therapeutics. In this work we have carried out a high-throughput screen of 154,267 compounds to identify poliovirus polymerase inhibitors using a fluorescence based RNA elongation assay. Screening and subsequent validation experiments using kinetic methods and RNA product analysis resulted in the identification of seven inhibitors that affect the RNA binding, initiation, or elongation activity of the polymerase. X-ray crystallography data show clear density for five of the compounds in the active site of the poliovirus polymerase elongation complex. The inhibitors occupy the NTP binding site by stacking on the priming nucleotide and interacting with the templating base, yet competition studies show fairly weak IC50 values in the low μM range. A comparison with nucleotide bound structures suggests that weak binding is likely due to the lack of a triphosphate group on the inhibitors. Consequently, the inhibitors are primarily effective at blocking polymerase initiation and do not effectively compete with NTP binding during processive elongation. These findings are discussed in the context of the polymerase elongation complex structure and allosteric control of the viral RdRP catalytic cycle. PMID:21722674
RICIN-inhibitor design. Final report, 15 April 1993-14 April 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, V.L.
1996-05-01
The purpose of this proposal was to provide information which will permit the design of transition state inhibitors for ricin A-chain. The original goals were to solve the transition state structure based on kinetic isotope effects. Substrates were synthesized and the conditions for assays optimized to provide catalytic rates at least 1000 fold greater than those published prior to this work. Reliable assay methods have been established to permit routine assays for ricin A-chain. Substrate analogues for N-ribohydrolase reactions have been designed to establish whether the reaction involves leaving-group activation or oxycarbonium ion formation. Based on these results, leaving groupmore » activation is a major contributor and oxycarbonium-ion formation is a secondary contribution in the mechanism of catalysis by ricin A-chain. Using this information, the first submicromolar inhibitor of ricin A-chain has been synthesized, tested and kinetically characterized. The development of powerful inhibitors will be a direct extrapolation of these results.« less
Parthasarathy, Saravanan; Henry, Kenneth; Pei, Huaxing; Clayton, Josh; Rempala, Mark; Johns, Deidre; De Frutos, Oscar; Garcia, Pablo; Mateos, Carlos; Pleite, Sehila; Wang, Yong; Stout, Stephanie; Condon, Bradley; Ashok, Sheela; Lu, Zhohai; Ehlhardt, William; Raub, Tom; Lai, Mei; Geeganage, Sandaruwan; Burkholder, Timothy P
2018-06-01
During the course of our research efforts to develop potent and selective AKT inhibitors, we discovered enatiomerically pure substituted dihydropyridopyrimidinones (DHP) as potent inhibitors of protein kinase B/AKT with excellent selectivity against ROCK 2 . A key challenge in this program was the poor physicochemical properties of the initial lead compound 5. Integration of structure-based drug design and physical properties-based design resulted in replacement of a highly hydrophobic poly fluorinated aryl ring by a simple trifluoromethyl that led to identification of compound 6 with much improved physicochemical properties. Subsequent SAR studies led to the synthesis of new pyran analog 7 with improved cell potency. Further optimization of pharmacokintetics properties by increasing permeability with appropriate fluorinated alkyl led to compound 8 as a potent, selective AKT inhibitors that blocks the phosphorylation of GSK3β in vivo and had robust, dose and concentration dependent efficacy in the U87MG tumor xenograft model. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.
2011-07-01
The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacingmore » a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors.« less
Development of α-glucosidase inhibitors by room temperature C-C cross couplings of quinazolinones.
Garlapati, Ramesh; Pottabathini, Narender; Gurram, Venkateshwarlu; Kasani, Kumara Swamy; Gundla, Rambabu; Thulluri, Chiranjeevi; Machiraju, Pavan Kumar; Chaudhary, Avinash B; Addepally, Uma; Dayam, Raveendra; Chunduri, Venkata Rao; Patro, Balaram
2013-08-07
Novel quinazolinone based α-glucosidase inhibitors have been developed. For this purpose a virtual screening model has been generated and validated utilizing acarbose as a α-glucosidase inhibitor. Homology modeling, docking, and virtual screening were successfully employed to discover a set of structurally diverse compounds active against α-glucosidase. A search of a 3D database containing 22,500 small molecules using the structure based virtual model yielded ten possible candidates. All ten candidates were N-3-pyridyl-2-cyclopropyl quinazolinone-4-one derivatives, varying at the 6 position. This position was modified by Suzuki-Miyaura cross coupling with aryl, heteroaryl, and alkyl boronic acids. A catalyst screen was performed, and using the best optimal conditions, a series of twenty five compounds was synthesized. Notably, the C-C cross coupling reactions of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one precursor have been accomplished at room temperature. A comparison of the relative reactivities of 6-bromo and 6-chloro-2,3-disubstituted quinazolinones with phenyl boronic acid was conducted. An investigation of pre-catalyst loading for the reaction of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one substrate was also carried out. Finally, we submitted our compounds to biological assays against α-glucosidase inhibitors. Of these, three hits (compounds 4a, 4t and 4r) were potentially active as α-glucosidase inhibitors and showed activity with IC50 values <20 μM. Based on structural novelty and desirable drug-like properties, 4a was selected for structure-activity relationship study, and thirteen analogs were synthesized. Nine out of thirteen analogs acted as α-glucosidase inhibitors with IC50 values <10 μM. These lead compounds have desirable physicochemical properties and are excellent candidates for further optimization.
How we treat myelofibrosis after failure of JAK inhibitors.
Pardanani, Animesh; Tefferi, Ayalew
2018-06-04
The introduction of JAK inhibitors, leading to regulatory approval of ruxolitinib, represents a major therapeutic advance in myelofibrosis. Most patients experience reduction in splenomegaly and improved quality of life from symptom improvement. It is a paradox however that, despite inhibition of signaling downstream of disease-related driver mutations, JAK inhibitor treatment is not associated with consistent molecular or pathologic responses in myelofibrosis. Furthermore, there are important limitations to JAK inhibitor therapy including development of dose-limiting cytopenias and/or non-hematological toxicities such as neuropathy or opportunistic infections. Over half the patients discontinue treatment within three years of starting treatment. While data are sparse, clinical outcome after JAK inhibitor 'failure' is likely poor; consequently, it is important to understand patterns of failure to select appropriate salvage treatment(s). An algorithmic approach, particularly one that incorporates cytogenetics/molecular data, is most helpful in selecting stem cell transplant candidates. Treatment of transplant-ineligible patients relies on a problem-based approach that includes use of investigational drugs, or consideration of splenectomy or radiotherapy. Data from early-phase ruxolitinib combination studies, despite promising pre-clinical data, has not shown clear benefit over monotherapy thus far. Development of effective treatment strategies for myelofibrosis patients failing JAK inhibitors remains a major unmet need. Copyright © 2018 American Society of Hematology.
NASA Astrophysics Data System (ADS)
Cao, Shandong
2012-08-01
The purpose of the present study was to develop in silico models allowing for a reliable prediction of polo-like kinase inhibitors based on a large diverse dataset of 136 compounds. As an effective method, quantitative structure activity relationship (QSAR) was applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The proposed QSAR models showed reasonable predictivity of thiophene analogs (Rcv2=0.533, Rpred2=0.845) and included four molecular descriptors, namely IC3, RDF075m, Mor02m and R4e+. The optimal model for imidazopyridine derivatives (Rcv2=0.776, Rpred2=0.876) was shown to perform good in prediction accuracy, using GATS2m and BEHe1 descriptors. Analysis of the contour maps helped to identify structural requirements for the inhibitors and served as a basis for the design of the next generation of the inhibitor analogues. Docking studies were also employed to position the inhibitors into the polo-like kinase active site to determine the most probable binding mode. These studies may help to understand the factors influencing the binding affinity of chemicals and to develop alternative methods for prescreening and designing of polo-like kinase inhibitors.
Chemical Proteomics and Structural Biology Define EPHA2 Inhibition by Clinical Kinase Drugs.
Heinzlmeir, Stephanie; Kudlinzki, Denis; Sreeramulu, Sridhar; Klaeger, Susan; Gande, Santosh Lakshmi; Linhard, Verena; Wilhelm, Mathias; Qiao, Huichao; Helm, Dominic; Ruprecht, Benjamin; Saxena, Krishna; Médard, Guillaume; Schwalbe, Harald; Kuster, Bernhard
2016-12-16
The receptor tyrosine kinase EPHA2 (Ephrin type-A receptor 2) plays important roles in oncogenesis, metastasis, and treatment resistance, yet therapeutic targeting, drug discovery, or investigation of EPHA2 biology is hampered by the lack of appropriate inhibitors and structural information. Here, we used chemical proteomics to survey 235 clinical kinase inhibitors for their kinase selectivity and identified 24 drugs with submicromolar affinities for EPHA2. NMR-based conformational dynamics together with nine new cocrystal structures delineated drug-EPHA2 interactions in full detail. The combination of selectivity profiling, structure determination, and kinome wide sequence alignment allowed the development of a classification system in which amino acids in the drug binding site of EPHA2 are categorized into key, scaffold, potency, and selectivity residues. This scheme should be generally applicable in kinase drug discovery, and we anticipate that the provided information will greatly facilitate the development of selective EPHA2 inhibitors in particular and the repurposing of clinical kinase inhibitors in general.
Emerging insights into resistance to BRAF inhibitors in melanoma.
Bucheit, Amanda D; Davies, Michael A
2014-02-01
Melanoma is the most aggressive form of skin cancer. The treatment of patients with advanced melanoma is rapidly evolving due to an improved understanding of molecular drivers of this disease. Somatic mutations in BRAF are the most common genetic alteration found in these tumors. Recently, two different mutant-selective small molecule inhibitors of BRAF, vemurafenib and dabrafenib, have gained regulatory approval based on positive results in randomized phase III trials. While the development of these agents represents a landmark in the treatment of melanoma, the benefit of these agents is limited by the frequent and rapid onset of resistance. The identification of several molecular mechanisms of resistance to BRAF inhibitors is rapidly leading to the clinical testing of combinatorial strategies to improve the clinical benefit of these agents. These mechanisms, and the lessons learned from the initial testing of the BRAF inhibitors, provide multiple insights that may facilitate the development of targeted therapies against other oncogenic mutations in melanoma, as well as in other cancers. Copyright © 2013 Elsevier Inc. All rights reserved.
Current status of NADPH oxidase research in cardiovascular pharmacology.
Rodiño-Janeiro, Bruno K; Paradela-Dobarro, Beatriz; Castiñeiras-Landeira, María Isabel; Raposeiras-Roubín, Sergio; González-Juanatey, José R; Alvarez, Ezequiel
2013-01-01
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.
Current status of NADPH oxidase research in cardiovascular pharmacology
Rodiño-Janeiro, Bruno K; Paradela-Dobarro, Beatriz; Castiñeiras-Landeira, María Isabel; Raposeiras-Roubín, Sergio; González-Juanatey, José R; Álvarez, Ezequiel
2013-01-01
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years. PMID:23983473
NASA Astrophysics Data System (ADS)
Fu, Ying; Sun, Yi-Na; Yi, Ke-Han; Li, Ming-Qiang; Cao, Hai-Feng; Li, Jia-Zhong; Ye, Fei
2018-02-01
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is a potent new bleaching herbicide target. Therefore, in silico structure-based virtual screening was performed in order to speed up the identification of promising HPPD inhibitors. In this study, an integrated virtual screening protocol by combining 3D-pharmacophore model, molecular docking and molecular dynamics (MD) simulation was established to find novel HPPD inhibitors from four commercial databases. 3D-pharmacophore Hypo1 model was applied to efficiently narrow potential hits. The hit compounds were subsequently submitted to molecular docking studies, showing four compounds as potent inhibitor with the mechanism of the Fe(II) coordination and interaction with Phe360, Phe403 and Phe398. MD result demonstrated that nonpolar term of compound 3881 made great contributions to binding affinities. It showed an IC50 being 2.49 µM against AtHPPD in vitro. The results provided useful information for developing novel HPPD inhibitors, leading to further understanding of the interaction mechanism of HPPD inhibitors.
Structure-based design of bacterial nitric oxide synthase inhibitors
Holden, Jeffrey K.; Kang, Soosung; Hollingsworth, Scott A.; ...
2014-12-18
Inhibition of bacterial nitric oxide synthase (bNOS) has the potential to improve the efficacy of antimicrobials used to treat infections by Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis. However, inhibitor specificity toward bNOS over the mammalian NOS (mNOS) isoforms remains a challenge because of the near identical NOS active sites. One key structural difference between the NOS isoforms is the amino acid composition of the pterin cofactor binding site that is adjacent to the NOS active site. Previously, we demonstrated that a NOS inhibitor targeting both the active and pterin sites was potent and functioned as an antimicrobial. Here wemore » present additional crystal structures, binding analyses, and bacterial killing studies of inhibitors that target both the active and pterin sites of a bNOS and function as antimicrobials. Lastly, these data provide a framework for continued development of bNOS inhibitors, as each molecule represents an excellent chemical scaffold for the design of isoform selective bNOS inhibitors.« less
SGLT2 inhibitors: a novel choice for the combination therapy in diabetic kidney disease.
Zou, Honghong; Zhou, Baoqin; Xu, Gaosi
2017-05-16
Diabetic kidney disease (DKD) is the most common cause of end stage renal disease. The comprehensive management of DKD depends on combined target-therapies for hyperglycemia, hypertension, albuminuria, and hyperlipaemia, etc. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, the most recently developed oral hypoglycemic agents acted on renal proximal tubules, suppress glucose reabsorption and increase urinary glucose excretion. Besides improvements in glycemic control, they presented excellent performances in direct renoprotective effects and the cardiovascular (CV) safety by decreasing albuminuria and the independent CV risk factors such as body weight and blood pressure, etc. Simultaneous use of SGLT-2 inhibitors and renin-angiotensin-aldosterone system (RAAS) blockers are novel strategies to slow the progression of DKD via reducing inflammatory and fibrotic markers induced by hyperglycaemia more than either drug alone. The available population and animal based studies have described SGLT2 inhibitors plus RAAS blockers. The present review was to systematically review the potential renal benefits of SGLT2 inhibitors combined with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, mineralocorticoid receptor antagonists, and especially the angiotensin-converting enzyme inhibitors/angiotensin receptor blockers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanches, Mario; Duffy, Nicole M.; Talukdar, Manisha
2014-10-24
Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy–aldehyde moieties, termed hydroxy–aryl–aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase-active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a hydrogen bond with Tyr892.more » Structure–activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor-binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design.« less
Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol
Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; ...
2014-12-31
The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less
Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.
The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less
Park, Hwangseo; Kim, Sukyoung; Kim, Yong Eun; Lim, Soo-Jeong
2010-04-06
The inhibitors of histone deacetylases (HDACs) have drawn a great deal of attention due to their promising potential as small-molecule therapeutics for the treatment of cancer. By means of virtual screening with docking simulations under consideration of the effects of ligand solvation, we were able to identify six novel HDAC inhibitors with IC(50) values ranging from 1 to 100 muM. These newly identified inhibitors are structurally diverse and have various chelating groups for the active site zinc ion, including N-[1,3,4]thiadiazol-2-yl sulfonamide, N-thiazol-2-yl sulfonamide, and hydroxamic acid moieties. The former two groups are included in many drugs in current clinical use and have not yet been reported as HDAC inhibitors. Therefore, they can be considered as new inhibitor scaffolds for the development of anticancer drugs by structure-activity relationship studies to improve the inhibitory activities against HDACs. Interactions with the HDAC1 active site residues responsible for stabilizing these new inhibitors are addressed in detail.
Yang, Guan-Jun; Zhong, Hai-Jing; Ko, Chung-Nga; Wong, Suk-Yu; Vellaisamy, Kasipandi; Ye, Min; Ma, Dik-Lung; Leung, Chung-Hang
2018-03-06
The rhodium(iii) complex 1 was identified as a potent Wee1 inhibitor in vitro and in cellulo. It decreased Wee1 activity and unscheduled mitotic entry, and induced cell damage and death in TP53-mutated triple-negative breast cancer cells. 1 represents a promising scaffold for further development of more potent metal-based Wee1 antagonists.
Consensus model for identification of novel PI3K inhibitors in large chemical library.
Liew, Chin Yee; Ma, Xiao Hua; Yap, Chun Wei
2010-02-01
Phosphoinositide 3-kinases (PI3Ks) inhibitors have treatment potential for cancer, diabetes, cardiovascular disease, chronic inflammation and asthma. A consensus model consisting of three base classifiers (AODE, kNN, and SVM) trained with 1,283 positive compounds (PI3K inhibitors), 16 negative compounds (PI3K non-inhibitors) and 64,078 generated putative negatives was developed for predicting compounds with PI3K inhibitory activity of IC(50) < or = 10 microM. The consensus model has an estimated false positive rate of 0.75%. Nine novel potential inhibitors were identified using the consensus model and several of these contain structural features that are consistent with those found to be important for PI3K inhibitory activities. An advantage of the current model is that it does not require knowledge of 3D structural information of the various PI3K isoforms, which is not readily available for all isoforms.
Consensus model for identification of novel PI3K inhibitors in large chemical library
NASA Astrophysics Data System (ADS)
Liew, Chin Yee; Ma, Xiao Hua; Yap, Chun Wei
2010-02-01
Phosphoinositide 3-kinases (PI3Ks) inhibitors have treatment potential for cancer, diabetes, cardiovascular disease, chronic inflammation and asthma. A consensus model consisting of three base classifiers (AODE, kNN, and SVM) trained with 1,283 positive compounds (PI3K inhibitors), 16 negative compounds (PI3K non-inhibitors) and 64,078 generated putative negatives was developed for predicting compounds with PI3K inhibitory activity of IC50 ≤ 10 μM. The consensus model has an estimated false positive rate of 0.75%. Nine novel potential inhibitors were identified using the consensus model and several of these contain structural features that are consistent with those found to be important for PI3K inhibitory activities. An advantage of the current model is that it does not require knowledge of 3D structural information of the various PI3K isoforms, which is not readily available for all isoforms.
Disruptive innovations: new anti-infectives in the age of resistance.
Tegos, George P; Hamblin, Michael R
2013-10-01
This special issue of Current Opinion in Pharmacology is concerned with new developments in antimicrobial drugs and covers innovative strategies for dealing with microbial infection in the age of multi-antibiotic resistance. Despite widespread fears that many infectious diseases may become untreatable, disruptive innovations are in the process of being discovered and developed that may go some way to leading the fight-back against the rising threat. Natural products, quorum sensing inhibitors, biofilm disruptors, gallium-based drugs, cyclodextrin inhibitors of pore-forming toxins, anti-fungals that deal with biofilms, and light based antimicrobial strategies are specifically addressed. New non-vertebrate animal models of infection may facilitate high-throughput screening (HTS) of novel anti-infectives. Copyright © 2013. Published by Elsevier Ltd.
2017-01-01
Cytochrome P450 aromatase (CYP19A1) plays a key role in the development of estrogen dependent breast cancer, and aromatase inhibitors have been at the front line of treatment for the past three decades. The development of potent, selective and safer inhibitors is ongoing with in silico screening methods playing a more prominent role in the search for promising lead compounds in bioactivity-relevant chemical space. Here we present a set of comprehensive binding affinity prediction models for CYP19A1 using our automated Linear Interaction Energy (LIE) based workflow on a set of 132 putative and structurally diverse aromatase inhibitors obtained from a typical industrial screening study. We extended the workflow with machine learning methods to automatically cluster training and test compounds in order to maximize the number of explained compounds in one or more predictive LIE models. The method uses protein–ligand interaction profiles obtained from Molecular Dynamics (MD) trajectories to help model search and define the applicability domain of the resolved models. Our method was successful in accounting for 86% of the data set in 3 robust models that show high correlation between calculated and observed values for ligand-binding free energies (RMSE < 2.5 kJ mol–1), with good cross-validation statistics. PMID:28776988
Efficient Synthesis and Discovery of Schiff Bases as Potent Cholinesterase Inhibitors.
Razik, Basma M Abd; Osman, Hasnah; Ezzat, Mohammed O; Basiri, Alireza; Salhin, Abdussalam; Kia, Yalda; Murugaiyah, Vikneswaran
2016-01-01
The search for new cholinesterase inhibitors is still a promising approach for management of Alzheimer`s disease. Schiff bases are considered as important class of organic compounds, which have wide range of applications including as enzyme inhibitors. In the present study, a new green ionic liquid mediated strategy was developed for convenient synthesis of two series of Schiff bases 3(a-j) and 5(a-j) as potential cholinesterase inhibitors using aromatic aldehydes and primary amines in [bmim]Br. The synthesized compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential by modified Ellman's method. The molecular interactions between the most active compound and the enzyme were analyzed by molecular docking. Among them, 3j displayed higher inhibitory activities than reference drug, galanthamine, with IC50 values of 2.05 and 5.77 µM, for AChE and BChE, respectively. Interestingly, all the compounds except 3b displayed higher BChE inhibitions than galanthamine with IC50 values ranging from 5.77 to 18.52 µM. Molecular docking of compound 3j inside the TcAChE and hBChE completely coincided with the inhibitory activities observed. The compound forms strong hydrogen bonding at the peripheral anionic site of AChE whereas on BChE, it had hydrophobic and mild polar interactions. An efficient and eco-friendly synthetic methodology has been developed to synthesize Schiff bases in a very short reaction time and excellent yields in ionic solvent, whereby the compounds from series 3 showed promising cholinesterase inhibitory activity.
Patel, Disha; Antwi, Janet; Koneru, Pratibha C; Serrao, Erik; Forli, Stefano; Kessl, Jacques J; Feng, Lei; Deng, Nanjie; Levy, Ronald M; Fuchs, James R; Olson, Arthur J; Engelman, Alan N; Bauman, Joseph D; Kvaratskhelia, Mamuka; Arnold, Eddy
2016-11-04
HIV-1 integrase (IN) is essential for virus replication and represents an important multifunctional therapeutic target. Recently discovered quinoline-based allosteric IN inhibitors (ALLINIs) potently impair HIV-1 replication and are currently in clinical trials. ALLINIs exhibit a multimodal mechanism of action by inducing aberrant IN multimerization during virion morphogenesis and by competing with IN for binding to its cognate cellular cofactor LEDGF/p75 during early steps of HIV-1 infection. However, quinoline-based ALLINIs impose a low genetic barrier for the evolution of resistant phenotypes, which highlights a need for discovery of second-generation inhibitors. Using crystallographic screening of a library of 971 fragments against the HIV-1 IN catalytic core domain (CCD) followed by a fragment expansion approach, we have identified thiophenecarboxylic acid derivatives that bind at the CCD-CCD dimer interface at the principal lens epithelium-derived growth factor (LEDGF)/p75 binding pocket. The most active derivative (5) inhibited LEDGF/p75-dependent HIV-1 IN activity in vitro with an IC 50 of 72 μm and impaired HIV-1 infection of T cells at an EC 50 of 36 μm The identified lead compound, with a relatively small molecular weight (221 Da), provides an optimal building block for developing a new class of inhibitors. Furthermore, although structurally distinct thiophenecarboxylic acid derivatives target a similar pocket at the IN dimer interface as the quinoline-based ALLINIs, the lead compound, 5, inhibited IN mutants that confer resistance to quinoline-based compounds. Collectively, our findings provide a plausible path for structure-based development of second-generation ALLINIs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Sun, Lin; Gao, Ping; Dong, Guanyu; Zhang, Xujie; Cheng, Xiqiang; Ding, Xiao; Wang, Xueshun; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Menéndez-Arias, Luis; Zhan, Peng; Liu, Xinyong
2018-06-18
We reported herein the design, synthesis and biological evaluation of a series of 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as HIV-1 reverse transcriptase (RT) ribonuclease H (RNase H) inhibitors using a privileged structure-guided scaffold refining strategy. In view of the similarities between the pharmacophore model of RNase H and integrase (IN) inhibitors as well as their catalytic sites, we also performed IN inhibition assays. Notably, the majority of these derivatives inhibited RNase H and IN at micromolar concentrations. Among them, compound 7a exhibited similar inhibitory activity against RNase H and IN (IC 50 RNase H = 1.77 μM, IC 50 IN = 1.18 μM, ratio = 1.50). To the best of our knowledge, this is the first reported dual HIV-1 RNase H-IN inhibitor based on a 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one structure. Molecular modeling has been used to predict the binding mode of 7a in complex with the catalytic cores of HIV-1 RNase H and IN. Taken together these results strongly support the feasibility of developing HIV-1 dual inhibitors from analog-based optimization of divalent metal ion chelators. Recently, the identification of dual inhibitors proved to be a highly effective strategy for novel antivirals discovery. Therefore, these compounds appear to be useful leads that can be further modified to develop more valuable anti-HIV-1 molecules with suitable drug profiles. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.
2015-01-01
The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.
Discovery of Novel New Delhi Metallo-β-Lactamases-1 Inhibitors by Multistep Virtual Screening
Wang, Xuequan; Lu, Meiling; Shi, Yang; Ou, Yu; Cheng, Xiaodong
2015-01-01
The emergence of NDM-1 containing multi-antibiotic resistant "Superbugs" necessitates the needs of developing of novel NDM-1inhibitors. In this study, we report the discovery of novel NDM-1 inhibitors by multi-step virtual screening. From a 2,800,000 virtual drug-like compound library selected from the ZINC database, we generated a focused NDM-1 inhibitor library containing 298 compounds of which 44 chemical compounds were purchased and evaluated experimentally for their ability to inhibit NDM-1 in vitro. Three novel NDM-1 inhibitors with micromolar IC50 values were validated. The most potent inhibitor, VNI-41, inhibited NDM-1 with an IC50 of 29.6 ± 1.3 μM. Molecular dynamic simulation revealed that VNI-41 interacted extensively with the active site. In particular, the sulfonamide group of VNI-41 interacts directly with the metal ion Zn1 that is critical for the catalysis. These results demonstrate the feasibility of applying virtual screening methodologies in identifying novel inhibitors for NDM-1, a metallo-β-lactamase with a malleable active site and provide a mechanism base for rational design of NDM-1 inhibitors using sulfonamide as a functional scaffold. PMID:25734558
Ebselen Reversibly Inhibits Human Glutamate Dehydrogenase at the Catalytic Site.
Jin, Yanhong; Li, Di; Lu, Shiying; Zhao, Han; Chen, Zhao; Hou, Wei; Ruan, Benfang Helen
Human glutamate dehydrogenase (GDH) plays an important role in neurological diseases, tumor metabolism, and hyperinsulinism-hyperammonemia syndrome (HHS). However, there are very few inhibitors known for human GDH. Recently, Ebselen was reported to crosslink with Escherichia coli GDH at the active site cysteine residue (Cys321), but the sequence alignment showed that the corresponding residue is Ala329 in human GDH. To investigate whether Ebselen could be an inhibitor for human GDH, we cloned and expressed an N-terminal His-tagged human GDH in E. coli. The recombinant human GDH enzyme showed expected properties such as adenosine diphosphate activation and nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate dual recognition. Further, we developed a 2-(3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazol-3-ium-5-yl) benzenesulfonate sodium salt (EZMTT)-based assay for human GDH, which was highly sensitive and is suitable for high-throughput screening for potent GDH inhibitors. In addition, ForteBio binding assays demonstrated that Ebselen is a reversible active site inhibitor for human GDH. Since Ebselen is a multifunctional organoselenium compound in Phase III clinical trials for inflammation, an Ebselen-based GDH inhibitor might be valuable for future drug discovery for HHS patients.
Gorelik, Maryna; Orlicky, Stephen; Sartori, Maria A.; ...
2016-03-14
Skp1–Cul1–F-box (SCF) E3 ligases play key roles in multiple cellular processes through ubiquitination and subsequent degradation of substrate proteins. Although Skp1 and Cul1 are invariant components of all SCF complexes, the 69 different human F-box proteins are variable substrate binding modules that determine specificity. SCF E3 ligases are activated in many cancers and inhibitors could have therapeutic potential. Here, we used phage display to develop specific ubiquitin-based inhibitors against two F-box proteins, Fbw7 and Fbw11. Unexpectedly, the ubiquitin variants bind at the interface of Skp1 and F-box proteins and inhibit ligase activity by preventing Cul1 binding to the same surface.more » Using structure-based design and phage display, we modified the initial inhibitors to generate broad-spectrum inhibitors that targeted many SCF ligases, or conversely, a highly specific inhibitor that discriminated between even the close homologs Fbw11 and Fbw1. We propose that most F-box proteins can be targeted by this approach for basic research and for potential cancer therapies.« less
Uba, Abdullahi Ibrahim; Yelekçi, Kemal
2017-10-23
Histone deacetylases (HDACs) have gained increased attention as targets for anticancer drug design and development. HDAC inhibitors have proven to be effective for reversing the malignant phenotype in HDAC-dependent cancer cases. However, lack of selectivity of the many HDAC inhibitors in clinical use and trials contributes to toxicities to healthy cells. It is believed that, the continued identification of isoform-selective inhibitors will eliminate these undesirable adverse effects - a task that remains a major challenge to HDAC inhibitor designs. Here, in an attempt to identify isoform-selective inhibitors, a large compound library containing 2,703,000 compounds retrieved from Otava database was screened against class I HDACs by exhaustive approach of structure-based virtual screening using rDOCK and Autodock Vina. A total of 41 compounds were found to show high-isoform selectivity and were further redocked into their respective targets using Autodock4. Thirty-six compounds showed remarkable isoform selectivity and passed drug-likeness and absorption, distribution, metabolism, elimination and toxicity prediction tests using ADMET Predictor™ and admetSAR. Furthermore, to study the stability of ligand binding modes, 10 ns-molecular dynamics (MD) simulations of the free HDAC isoforms and their complexes with respective best-ranked ligands were performed using nanoscale MD software. The inhibitors remained bound to their respective targets over time of the simulation and the overall potential energy, root-mean-square deviation, root-mean-square fluctuation profiles suggested that the detected compounds may be potential isoform-selective HDAC inhibitors or serve as promising scaffolds for further optimization towards the design of selective inhibitors for cancer therapy.
Animal model for hepatitis C virus infection.
Tsukiyama-Kohara, Kyoko; Kohara, Michinori
2015-01-01
Hepatitis C virus (HCV) infects more than 170 million people in the world and chronic HCV infection develops into cirrhosis and hepatocellular carcinoma (HCC). Recently, the effective compounds have been approved for HCV treatment, the protease inhibitor and polymerase inhibitor (direct acting antivirals; DAA). DAA-based therapy enabled to cure from HCV infection. However, development of new drug and vaccine is still required because of the generation of HCV escape mutants from DAA, development of HCC after treatment of DAA, and the high cost of DAA. In order to develop new anti-HCV drug and vaccine, animal infection model of HCV is essential. In this manuscript, we would like to introduce the history and the current status of the development of HCV animal infection model.
NASA Astrophysics Data System (ADS)
Bharatham, Kavitha; Bharatham, Nagakumar; Kwon, Yong Jung; Lee, Keun Woo
2008-12-01
Allosteric inhibition of protein tyrosine phosphatase 1B (PTP1B), has paved a new path to design specific inhibitors for PTP1B, which is an important drug target for the treatment of type II diabetes and obesity. The PTP1B1-282-allosteric inhibitor complex crystal structure lacks α7 (287-298) and moreover there is no available 3D structure of PTP1B1-298 in open form. As the interaction between α7 and α6-α3 helices plays a crucial role in allosteric inhibition, α7 was modeled to the PTP1B1-282 in open form complexed with an allosteric inhibitor (compound-2) and a 5 ns MD simulation was performed to investigate the relative orientation of the α7-α6-α3 helices. The simulation conformational space was statistically sampled by clustering analyses. This approach was helpful to reveal certain clues on PTP1B allosteric inhibition. The simulation was also utilized in the generation of receptor based pharmacophore models to include the conformational flexibility of the protein-inhibitor complex. Three cluster representative structures of the highly populated clusters were selected for pharmacophore model generation. The three pharmacophore models were subsequently utilized for screening databases to retrieve molecules containing the features that complement the allosteric site. The retrieved hits were filtered based on certain drug-like properties and molecular docking simulations were performed in two different conformations of protein. Thus, performing MD simulation with α7 to investigate the changes at the allosteric site, then developing receptor based pharmacophore models and finally docking the retrieved hits into two distinct conformations will be a reliable methodology in identifying PTP1B allosteric inhibitors.
Ren, Ji-Xia; Li, Cheng-Ping; Zhou, Xiu-Ling; Cao, Xue-Song; Xie, Yong
2017-08-22
Myeloid cell leukemia-1 (Mcl-1) has been a validated and attractive target for cancer therapy. Over-expression of Mcl-1 in many cancers allows cancer cells to evade apoptosis and contributes to the resistance to current chemotherapeutics. Here, we identified new Mcl-1 inhibitors using a multi-step virtual screening approach. First, based on two different ligand-receptor complexes, 20 pharmacophore models were established by simultaneously using 'Receptor-Ligand Pharmacophore Generation' method and manual build feature method, and then carefully validated by a test database. Then, pharmacophore-based virtual screening (PB-VS) could be performed by using the 20 pharmacophore models. In addition, docking study was used to predict the possible binding poses of compounds, and the docking parameters were optimized before performing docking-based virtual screening (DB-VS). Moreover, a 3D QSAR model was established by applying the 55 aligned Mcl-1 inhibitors. The 55 inhibitors sharing the same scaffold were docked into the Mcl-1 active site before alignment, then the inhibitors with possible binding conformations were aligned. For the training set, the 3D QSAR model gave a correlation coefficient r 2 of 0.996; for the test set, the correlation coefficient r 2 was 0.812. Therefore, the developed 3D QSAR model was a good model, which could be applied for carrying out 3D QSAR-based virtual screening (QSARD-VS). After the above three virtual screening methods orderly filtering, 23 potential inhibitors with novel scaffolds were identified. Furthermore, we have discussed in detail the mapping results of two potent compounds onto pharmacophore models, 3D QSAR model, and the interactions between the compounds and active site residues.
Ogedegbe, Gbenga; Shah, Nirav R.; Phillips, Christopher; Goldfeld, Keith; Roy, Jason; Guo, Yu; Gyamfi, Joyce; Torgersen, Christopher; Capponi, Louis; Bangalore, Sripal
2015-01-01
BACKGROUND Clinical trial evidence suggests poorer outcomes in blacks compared to whites when treated with angiotensin-converting enzyme (ACE) inhibitor-based regimen, but this has not been evaluated in clinical practice. OBJECTIVES We evaluated the comparative effectiveness of an ACE inhibitor-based regimen on a composite outcome of all-cause mortality, stroke, and acute myocardial infarction (AMI) in hypertensive blacks compared to whites. METHODS We conducted a retrospective cohort study of 434,646 patients in a municipal health care system. Four exposure groups (Black-ACE, Black-NoACE, White-ACE, White-NoACE) were created based on race and treatment exposure (ACE or NoACE). Risk of the composite outcome and its components was compared across treatment groups and race using weighted Cox proportional hazard models. RESULTS Our analysis included 59,316 new users of ACE inhibitors, 47% of whom were black. Baseline characteristics were comparable for all groups after inverse probability weighting adjustment. For the composite outcome, the race treatment interaction was significant (p = 0.04); ACE use in blacks was associated with poorer cardiovascular outcomes (ACE vs. NoACE: 8.69% vs. 7.74%; p = 0.05) but not in whites (6.40% vs. 6.74%; p = 0.37). Similarly, the Black-ACE group had higher rates of AMI (0.46% vs. 0.26%; p = 0.04), stroke (2.43% vs. 1.93%; p = 0.05) and chronic heart failure (3.75% vs. 2.25%; p < 0.0001) than the Black-NoACE group. However, the Black-ACE group was no more likely to develop adverse effects than the White-ACE group. CONCLUSIONS ACE inhibitor-based therapy was associated with poorer cardiovascular outcomes in hypertensive blacks but not in whites. These findings confirm clinical trial evidence that hypertensive blacks have poorer outcomes than whites when treated with an ACE inhibitor-based regimen. PMID:26361152
Hou, X; Chen, X; Zhang, M; Yan, A
2016-01-01
Plasmodium falciparum, the most fatal parasite that causes malaria, is responsible for over one million deaths per year. P. falciparum dihydroorotate dehydrogenase (PfDHODH) has been validated as a promising drug development target for antimalarial therapy since it catalyzes the rate-limiting step for DNA and RNA biosynthesis. In this study, we investigated the quantitative structure-activity relationships (QSAR) of the antimalarial activity of PfDHODH inhibitors by generating four computational models using a multilinear regression (MLR) and a support vector machine (SVM) based on a dataset of 255 PfDHODH inhibitors. All the models display good prediction quality with a leave-one-out q(2) >0.66, a correlation coefficient (r) >0.85 on both training sets and test sets, and a mean square error (MSE) <0.32 on training sets and <0.37 on test sets, respectively. The study indicated that the hydrogen bonding ability, atom polarizabilities and ring complexity are predominant factors for inhibitors' antimalarial activity. The models are capable of predicting inhibitors' antimalarial activity and the molecular descriptors for building the models could be helpful in the development of new antimalarial drugs.
[Current Status of Targeted Treatment in Breast Cancer].
Seiffert, Katharina; Schmalfeldt, Barbara; Müller, Volkmar
2017-11-01
Within the last years, significant improvements have been achieved in breast cancer treatment, particularly with the development of targeted therapies. Major progress has been made in identifying the drivers malignant growth in oestrogen-receptor-positive breast cancer and the mechanisms of resistance to endocrine therapy. This progress has translated into several targeted therapies that enhance the efficacy of endocrine therapy; inhibitors of the cyclin-dependent kinases CDK4 and CDK6 like palbociclib and inhibitors of mTOR substantially improve progression-free survival. For patients with HER2-positive disease the addition of Pertuzumab to Trastuzumab in combination with chemotherapy has been a significant improvement in anti-HER2 therapy in early as well as metastatic breast cancer. Evidence-based further line therapy options in the metastatic setting include T-DM1 and in later lines Lapatinib. For triple negative disease the angiogenesis inhibitor Bevacizumab is approved, which increases progression free survival. Immune checkpoint inhibitors, PARP-inhibitors or anti-androgens represent promising strategies, all of which are currently being evaluated in clinical trials. The development of predictive biomarkers to guide targeted therapies is still the subject of research. © Georg Thieme Verlag KG Stuttgart · New York.
Resetca, Diana; Haftchenary, Sina; Gunning, Patrick T; Wilson, Derek J
2014-11-21
The activity of the transcription factor signal transducer and activator of transcription 3 (STAT3) is dysregulated in a number of hematological and solid malignancies. Development of pharmacological STAT3 Src homology 2 (SH2) domain interaction inhibitors holds great promise for cancer therapy, and a novel class of salicylic acid-based STAT3 dimerization inhibitors that includes orally bioavailable drug candidates has been recently developed. The compounds SF-1-066 and BP-1-102 are predicted to bind to the STAT3 SH2 domain. However, given the highly unstructured and dynamic nature of the SH2 domain, experimental confirmation of this prediction was elusive. We have interrogated the protein-ligand interaction of STAT3 with these small molecule inhibitors by means of time-resolved electrospray ionization hydrogen-deuterium exchange mass spectrometry. Analysis of site-specific evolution of deuterium uptake induced by the complexation of STAT3 with SF-1-066 or BP-1-102 under physiological conditions enabled the mapping of the in silico predicted inhibitor binding site to the STAT3 SH2 domain. The binding of both inhibitors to the SH2 domain resulted in significant local decreases in dynamics, consistent with solvent exclusion at the inhibitor binding site and increased rigidity of the inhibitor-complexed SH2 domain. Interestingly, inhibitor binding induced hot spots of allosteric perturbations outside of the SH2 domain, manifesting mainly as increased deuterium uptake, in regions of STAT3 important for DNA binding and nuclear localization. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Grant, Karen M.; Dunion, Morag H.; Yardley, Vanessa; Skaltsounis, Alexios-Leandros; Marko, Doris; Eisenbrand, Gerhard; Croft, Simon L.; Meijer, Laurent; Mottram, Jeremy C.
2004-01-01
The CRK3 cyclin-dependent kinase of Leishmania has been shown by genetic manipulation of the parasite to be essential for proliferation. We present data which demonstrate that chemical inhibition of CRK3 impairs the parasite's viability within macrophages, thus further validating CRK3 as a potential drug target. A microtiter plate-based histone H1 kinase assay was developed to screen CRK3 against a chemical library enriched for protein kinase inhibitors. Twenty-seven potent CRK3 inhibitors were discovered and screened against Leishmania donovani amastigotes in vitro. Sixteen of the CRK3 inhibitors displayed antileishmanial activity, with a 50% effective dose (ED50) of less than 10 μM. These compounds fell into four chemical classes: the 2,6,9-trisubstituted purines, including the C-2-alkynylated purines; the indirubins; the paullones; and derivatives of the nonspecific kinase inhibitor staurosporine. The paullones and staurosporine derivatives were toxic to macrophages. The 2,6,9-trisubstituted purines inhibited CRK3 in vitro, with 50% inhibitory concentrations ranging from high nanomolar to low micromolar concentrations. The most potent inhibitors of CRK3 (compounds 98/516 and 97/344) belonged to the indirubin class; the 50% inhibitory concentrations for these inhibitors were 16 and 47 nM, respectively, and the ED50s for these inhibitors were 5.8 and 7.6 μM, respectively. In culture, the indirubins caused growth arrest, a change in DNA content, and aberrant cell types, all consistent with the intracellular inhibition of a cyclin-dependent kinase and disruption of cell cycle control. Thus, use of chemical inhibitors supports genetic studies to confirm CRK3 as a validated drug target in Leishmania and provides pharmacophores for further drug development. PMID:15273118
Recognition and Resistance in TEM [superscript beta]-Lactamase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaojun; Minasov, George; Blazquez, Jesus
Developing antimicrobials that are less likely to engender resistance has become an important design criterion as more and more drugs fall victim to resistance mutations. One hypothesis is that the more closely an inhibitor resembles a substrate, the more difficult it will be to develop resistant mutations that can at once disfavor the inhibitor and still recognize the substrate. To investigate this hypothesis, 10 transition-state analogues, of greater or lesser similarity to substrates, were tested for inhibition of TEM-1 beta-lactamase, the most widespread resistance enzyme to penicillin antibiotics. The inhibitors were also tested against four characteristic mutant enzymes: TEM-30, TEM-32,more » TEM-52, and TEM-64. The inhibitor most similar to the substrate, compound 10, was the most potent inhibitor of the WT enzyme, with a K(i) value of 64 nM. Conversely, compound 10 was the most susceptible to the TEM-30 (R244S) mutant, for which inhibition dropped by over 100-fold. The other inhibitors were relatively impervious to the TEM-30 mutant enzyme. To understand recognition and resistance to these transition-state analogues, the structures of four of these inhibitors in complex with TEM-1 were determined by X-ray crystallography. These structures suggest a structural basis for distinguishing inhibitors that mimic the acylation transition state and those that mimic the deacylation transition state; they also suggest how TEM-30 reduces the affinity of compound 10. In cell culture, this inhibitor reversed the resistance of bacteria to ampicillin, reducing minimum inhibitory concentrations of this penicillin by between 4- and 64-fold, depending on the strain of bacteria. Notwithstanding this activity, the resistance of TEM-30, which is already extant in the clinic, suggests that there can be resistance liabilities with substrate-based design.« less
Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease.
West, Andrew B
2017-12-01
In the translation of discoveries from the laboratory to the clinic, the track record in developing disease-modifying therapies in neurodegenerative disease is poor. A carefully designed development pipeline built from discoveries in both pre-clinical models and patient populations is necessary to optimize the chances for success. Genetic variation in the leucine-rich repeat kinase two gene (LRRK2) is linked to Parkinson disease (PD) susceptibility. Pathogenic mutations, particularly those in the LRRK2 GTPase (Roc) and COR domains, increase LRRK2 kinase activities in cells and tissues. In some PD models, small molecule LRRK2 kinase inhibitors that block these activities also provide neuroprotection. Herein, the genetic and biochemical evidence that supports the involvement of LRRK2 kinase activity in PD susceptibility is reviewed. Issues related to the definition of a therapeutic window for LRRK2 inhibition and the safety of chronic dosing are discussed. Finally, recommendations are given for a biomarker-guided initial entry of LRRK2 kinase inhibitors in PD patients. Four key areas must be considered for achieving neuroprotection with LRRK2 kinase inhibitors in PD: 1) identification of patient populations most likely to benefit from LRRK2 kinase inhibitors, 2) prioritization of superior LRRK2 small molecule inhibitors based on open disclosures of drug performance, 3) incorporation of biomarkers and empirical measures of LRRK2 kinase inhibition in clinical trials, and 4) utilization of appropriate efficacy measures guided in part by rigorous pre-clinical modeling. Meticulous and rational development decisions can potentially prevent incredibly costly errors and provide the best chances for LRRK2 inhibitors to slow the progression of PD. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Macroporous hydrogel micropillars for quantifying Met kinase activity in cancer cell lysates.
Powers, Alicia D; Liu, Bi; Lee, Andrew G; Palecek, Sean P
2012-09-07
Overactive and overexpressed kinases have been implicated in the cause and progression of many cancers. Kinase inhibitors offer a targeted approach for treating cancers associated with increased or deregulated kinase activity. Often, however, cancer cells exhibit initial resistance to these inhibitors or evolve to develop resistance during treatment. Additionally, cancers of any one tissue type are typically heterogeneous in their oncogenesis mechanisms, and thus diagnosis of a particular type of cancer does not necessarily provide insight into what kinase therapies may be effective. For example, while some lung cancer cells that overexpress the epidermal growth factor receptor (EFGR) respond to treatment with EGFR kinase inhibitors, overexpression or hyperactivity of Met kinase correlates with resistance to EGFR kinase inhibitors. Here we describe a microfluidic-based assay for quantifying Met kinase activity in cancer cell lysates with the eventual goals of predicting cancer cell responsiveness to kinase inhibitors and monitoring development of resistance to these inhibitors. In this assay, we immobilized a phosphorylation substrate for Met kinase into macroporous hydrogel micropillars. We then exposed the micropillars to a cancer cell lysate and detected substrate phosphorylation using a fluorescently conjugated antibody. This assay is able to quantify Met kinase activity in whole cell lysate from as few as 150 cancer cells. It can also detect cells expressing overactive Met kinase in a background of up to 75% non-cancerous cells. Additionally, the assay can quantify kinase inhibition by the Met-specific kinase inhibitors SU11274 and PHA665752, suggesting predictive capability for cellular response to kinase inhibitors.
Development of Quantum Chemical Method to Calculate Half Maximal Inhibitory Concentration (IC50 ).
Bag, Arijit; Ghorai, Pradip Kr
2016-05-01
Till date theoretical calculation of the half maximal inhibitory concentration (IC50 ) of a compound is based on different Quantitative Structure Activity Relationship (QSAR) models which are empirical methods. By using the Cheng-Prusoff equation it may be possible to compute IC50 , but this will be computationally very expensive as it requires explicit calculation of binding free energy of an inhibitor with respective protein or enzyme. In this article, for the first time we report an ab initio method to compute IC50 of a compound based only on the inhibitor itself where the effect of the protein is reflected through a proportionality constant. By using basic enzyme inhibition kinetics and thermodynamic relations, we derive an expression of IC50 in terms of hydrophobicity, electric dipole moment (μ) and reactivity descriptor (ω) of an inhibitor. We implement this theory to compute IC50 of 15 HIV-1 capsid inhibitors and compared them with experimental results and available other QASR based empirical results. Calculated values using our method are in very good agreement with the experimental values compared to the values calculated using other methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar G.; Swaminathan S.; Kumaran, D.
Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} ofmore » 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.« less
Kumar, Gyanendra; Kumaran, Desigan; Ahmed, S Ashraf; Swaminathan, Subramanyam
2012-05-01
Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC(50) of 0.9 µM and a K(i) of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features. © 2012 International Union of Crystallography
Chakraborty, Sandipan; Ramachandran, Balaji; Basu, Soumalee
2014-10-01
Mimicking receptor flexibility during receptor-ligand binding is a challenging task in computational drug design since it is associated with a large increase in the conformational search space. In the present study, we have devised an in silico design strategy incorporating receptor flexibility in virtual screening to identify potential lead compounds as inhibitors for flexible proteins. We have considered BACE1 (β-secretase), a key target protease from a therapeutic perspective for Alzheimer's disease, as the highly flexible receptor. The protein undergoes significant conformational transitions from open to closed form upon ligand binding, which makes it a difficult target for inhibitor design. We have designed a hybrid structure-activity model containing both ligand based descriptors and energetic descriptors obtained from molecular docking based on a dataset of structurally diverse BACE1 inhibitors. An ensemble of receptor conformations have been used in the docking study, further improving the prediction ability of the model. The designed model that shows significant prediction ability judged by several statistical parameters has been used to screen an in house developed 3-D structural library of 731 phytochemicals. 24 highly potent, novel BACE1 inhibitors with predicted activity (Ki) ≤ 50 nM have been identified. Detailed analysis reveals pharmacophoric features of these novel inhibitors required to inhibit BACE1.
Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors
Zhou, Nannan; Xu, Yuan; Liu, Xian; Wang, Yulan; Peng, Jianlong; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang
2015-01-01
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors. PMID:26110383
Shah, Falgun; Mukherjee, Prasenjit; Gut, Jiri; Legac, Jennifer; Rosenthal, Philip J; Tekwani, Babu L; Avery, Mitchell A
2011-04-25
Malaria, in particular that caused by Plasmodium falciparum , is prevalent across the tropics, and its medicinal control is limited by widespread drug resistance. Cysteine proteases of P. falciparum , falcipain-2 (FP-2) and falcipain-3 (FP-3), are major hemoglobinases, validated as potential antimalarial drug targets. Structure-based virtual screening of a focused cysteine protease inhibitor library built with soft rather than hard electrophiles was performed against an X-ray crystal structure of FP-2 using the Glide docking program. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FP-2 from a large chemical database. Biological evaluation of 50 selected compounds identified 21 diverse nonpeptidic inhibitors of FP-2 with a hit rate of 42%. Atomic Fukui indices were used to predict the most electrophilic center and its electrophilicity in the identified hits. Comparison of predicted electrophilicity of electrophiles in identified hits with those in known irreversible inhibitors suggested the soft-nature of electrophiles in the selected target compounds. The present study highlights the importance of focused libraries and enrichment studies in structure-based virtual screening. In addition, few compounds were screened against homologous human cysteine proteases for selectivity analysis. Further evaluation of structure-activity relationships around these nonpeptidic scaffolds could help in the development of selective leads for antimalarial chemotherapy.
Analysis of the efficacy of SGLT2 inhibitors using semi-mechanistic model
Demin, Oleg; Yakovleva, Tatiana; Kolobkov, Dmitry; Demin, Oleg
2014-01-01
The Renal sodium-dependent glucose co-transporter 2 (SGLT2) is one of the most promising targets for the treatment of type 2 diabetes. Two SGLT2 inhibitors, dapagliflozin, and canagliflozin, have already been approved for use in USA and Europe; several additional compounds are also being developed for this purpose. Based on the in vitro IC50 values and plasma concentration of dapagliflozin measured in clinical trials, the marketed dosage of the drug was expected to almost completely inhibit SGLT2 function and reduce glucose reabsorption by 90%. However, the administration of dapagliflozin resulted in only 30–50% inhibition of reabsorption. This study was aimed at investigating the mechanism underlying the discrepancy between the expected and observed levels of glucose reabsorption. To this end, systems pharmacology models were developed to analyze the time profile of dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, and tofogliflozin in the plasma and urine; their filtration and active secretion from the blood to the renal proximal tubules; reverse reabsorption; urinary excretion; and their inhibitory effect on SGLT2. The model shows that concentration levels of tofogliflozin, ipragliflozin, and empagliflozin are higher than levels of other inhibitors following administration of marketed SGLT2 inhibitors at labeled doses and non-marketed SGLT2 inhibitors at maximal doses (approved for phase 2/3 studies). All the compounds exhibited almost 100% inhibition of SGLT2. Based on the results of our model, two explanations for the observed low efficacy of SGLT2 inhibitors were supported: (1) the site of action of SGLT2 inhibitors is not in the lumen of the kidney's proximal tubules, but elsewhere (e.g., the kidneys proximal tubule cells); and (2) there are other transporters that could facilitate glucose reabsorption under the conditions of SGLT2 inhibition (e.g., other transporters of SGLT family). PMID:25352807
Design, Synthesis, and Evaluation of Dihydrobenzo[cd]indole-6-sulfonamide as TNF-α Inhibitors.
Deng, Xiaobing; Zhang, Xiaoling; Tang, Bo; Liu, Hongbo; Shen, Qi; Liu, Ying; Lai, Luhua
2018-01-01
Tumor necrosis factor-α (TNF-α) plays a pivotal role in inflammatory response. Dysregulation of TNF can lead to a variety of disastrous pathological effects, including auto-inflammatory diseases. Antibodies that directly targeting TNF-α have been proven effective in suppressing symptoms of these disorders. Compared to protein drugs, small molecule drugs are normally orally available and less expensive. Till now, peptide and small molecule TNF-α inhibitors are still in the early stage of development, and much more efforts should be made. In a previously study, we reported a TNF-α inhibitor, EJMC-1 with modest activity. Here, we optimized this compound by shape screen and rational design. In the first round, we screened commercial compound library for EJMC-1 analogs based on shape similarity. Out of the 68 compounds tested, 20 compounds showed better binding affinity than EJMC-1 in the SPR competitive binding assay. These 20 compounds were tested in cell assay and the most potent compound was 2-oxo-N-phenyl-1,2-dihydrobenzo[ cd ]indole-6-sulfonamide ( S10 ) with an IC 50 of 14 μM, which was 2.2-fold stronger than EJMC-1 . Based on the docking analysis of S10 and EJMC-1 binding with TNF-α, in the second round, we designed S10 analogs, purchased seven of them, and synthesized seven new compounds. The best compound, 4e showed an IC 50 -value of 3 μM in cell assay, which was 14-fold stronger than EJMC-1 . 4e was among the most potent TNF-α organic compound inhibitors reported so far. Our study demonstrated that 2-oxo-N-phenyl-1,2-dihydrobenzo[ cd ]indole-6-sulfonamide analogs could be developed as potent TNF-α inhibitors. 4e can be further optimized for its activity and properties. Our study provides insights into designing small molecule inhibitors directly targeting TNF-α and for protein-protein interaction inhibitor design.
Design, Synthesis, and Evaluation of Dihydrobenzo[cd]indole-6-sulfonamide as TNF-alpha Inhibitors
NASA Astrophysics Data System (ADS)
Deng, Xiaobing; Zhang, Xiaoling; Tang, Bo; Liu, Hongbo; Shen, Qi; Liu, Ying; Lai, Luhua
2018-04-01
Tumor necrosis factor-α (TNF-α) plays a pivotal role in inflammatory response. Dysregulation of TNF can lead to a variety of disastrous pathological effects, including auto-inflammatory diseases. Antibodies that directly targeting TNF-α have been proven effective in suppressing symptoms of these disorders. Compared to protein drugs, small molecule drugs are normally orally available and less expensive. Till now, peptide and small molecule TNF-α inhibitors are still in the early stage of development, and much more efforts should be made. In a previously study, we reported a TNF-α inhibitor, EJMC-1 with modest activity. Here, we optimized this compound by shape screen and rational design. In the first round, we screened commercial compound library for EJMC-1 analogs based on shape similarity. Out of the 68 compounds tested, 20 compounds showed better binding affinity than EJMC-1 in the SPR competitive binding assay. These 20 compounds were tested in cell assay and the most potent compound was 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide (S10) with an IC50 of 14 M, which was 2.2-fold stronger than EJMC-1. Based on the docking analysis of S10 and EJMC-1 binding with TNF-α, in the second round, we designed S10 analogues, purchased 7 of them and synthesized 7 new compounds. The best compound, 4e showed an IC50 value of 3 M in cell assay, which was 14-fold stronger than EJMC-1. 4e was among the most potent TNF-α organic compound inhibitors reported so far. Our study demonstrated that 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide analogues could be developed as potent TNF-α inhibitors. 4e can be further optimized for its activity and properties. Our study provides insights into designing small molecule inhibitors directly targeting TNF-α and for protein-protein interaction inhibitor design.
Inhibition of AAK1 Kinase as a Novel Therapeutic Approach to Treat Neuropathic Pain
Kostich, Walter; Hamman, Brian D.; Li, Yu-Wen; Naidu, Sreenivasulu; Dandapani, Kumaran; Feng, Jianlin; Easton, Amy; Bourin, Clotilde; Baker, Kevin; Allen, Jason; Savelieva, Katerina; Louis, Justin V.; Dokania, Manoj; Elavazhagan, Saravanan; Vattikundala, Pradeep; Sharma, Vivek; Das, Manish Lal; Shankar, Ganesh; Kumar, Anoop; Holenarsipur, Vinay K.; Gulianello, Michael; Molski, Ted; Brown, Jeffrey M.; Lewis, Martin; Huang, Yanling; Lu, Yifeng; Pieschl, Rick; O’Malley, Kevin; Lippy, Jonathan; Nouraldeen, Amr; Lanthorn, Thomas H.; Ye, Guilan; Wilson, Alan; Balakrishnan, Anand; Denton, Rex; Grace, James E.; Lentz, Kimberley A.; Santone, Kenneth S.; Bi, Yingzhi; Main, Alan; Swaffield, Jon; Carson, Ken; Mandlekar, Sandhya; Vikramadithyan, Reeba K.; Nara, Susheel J.; Dzierba, Carolyn; Bronson, Joanne; Macor, John E.; Zaczek, Robert; Westphal, Ryan; Kiss, Laszlo; Bristow, Linda; Conway, Charles M.
2016-01-01
To identify novel targets for neuropathic pain, 3097 mouse knockout lines were tested in acute and persistent pain behavior assays. One of the lines from this screen, which contained a null allele of the adapter protein-2 associated kinase 1 (AAK1) gene, had a normal response in acute pain assays (hot plate, phase I formalin), but a markedly reduced response to persistent pain in phase II formalin. AAK1 knockout mice also failed to develop tactile allodynia following the Chung procedure of spinal nerve ligation (SNL). Based on these findings, potent, small-molecule inhibitors of AAK1 were identified. Studies in mice showed that one such inhibitor, LP-935509, caused a reduced pain response in phase II formalin and reversed fully established pain behavior following the SNL procedure. Further studies showed that the inhibitor also reduced evoked pain responses in the rat chronic constriction injury (CCI) model and the rat streptozotocin model of diabetic peripheral neuropathy. Using a nonbrain-penetrant AAK1 inhibitor and local administration of an AAK1 inhibitor, the relevant pool of AAK1 for antineuropathic action was found to be in the spinal cord. Consistent with these results, AAK1 inhibitors dose-dependently reduced the increased spontaneous neural activity in the spinal cord caused by CCI and blocked the development of windup induced by repeated electrical stimulation of the paw. The mechanism of AAK1 antinociception was further investigated with inhibitors of α2 adrenergic and opioid receptors. These studies showed that α2 adrenergic receptor inhibitors, but not opioid receptor inhibitors, not only prevented AAK1 inhibitor antineuropathic action in behavioral assays, but also blocked the AAK1 inhibitor–induced reduction in spinal neural activity in the rat CCI model. Hence, AAK1 inhibitors are a novel therapeutic approach to neuropathic pain with activity in animal models that is mechanistically linked (behaviorally and electrophysiologically) to α2 adrenergic signaling, a pathway known to be antinociceptive in humans. PMID:27411717
Virtual High-Throughput Screening for Matrix Metalloproteinase Inhibitors.
Choi, Jun Yong; Fuerst, Rita
2017-01-01
Structure-based virtual screening (SBVS) is a common method for the fast identification of hit structures at the beginning of a medicinal chemistry program in drug discovery. The SBVS, described in this manuscript, is focused on finding small molecule hits that can be further utilized as a starting point for the development of inhibitors of matrix metalloproteinase 13 (MMP-13) via structure-based molecular design. We intended to identify a set of structurally diverse hits, which occupy all subsites (S1'-S3', S2, and S3) centering the zinc containing binding site of MMP-13, by the virtual screening of a chemical library comprising more than ten million commercially available compounds. In total, 23 compounds were found as potential MMP-13 inhibitors using Glide docking followed by the analysis of the structural interaction fingerprints (SIFt) of the docked structures.
Naß, Janine; Efferth, Thomas
2017-01-01
Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. The combination of genetic and pharmacological research may lead to novel targetbased drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The successes and failures of HIV drug discovery.
Hashimoto, Chie; Tanaka, Tomohiro; Narumi, Tetsuo; Nomura, Wataru; Tamamura, Hirokazu
2011-10-01
To date, several anti-human immunodeficiency virus (HIV) drugs, including reverse transcriptase inhibitors and protease inhibitors, have been developed and used clinically for the treatment of patients infected with HIV. Recently, novel drugs have been discovered which have different mechanisms of action from those of the above inhibitors, including entry inhibitors and integrase (IN) inhibitors; the clinical use of three of these inhibitors has been approved. Other inhibitors are still in development. This review article summarizes the history of the development of anti-HIV drugs and also focuses on successes in the development of these entry and IN inhibitors, along with looking at exploratory approaches for the development of other inhibitors. Currently used highly active antiretroviral therapy can be subject to a loss of efficacy, due to the emergence of multi-drug resistant (MDR) strains; a change of regimens of the drug combination is required to combat this, along with careful monitoring of the virus and CD4 in the blood, by methods such as cellular tropism testing. In such a situation, entry inhibitors such as CCR5/CXCR4 antagonists, CD4 mimics, fusion inhibitors and IN inhibitors might be optional agents for an expansion of the drug repertoire available to patients at all stages of HIV infection.
Norman, Peter
2011-02-01
This patent application claims a novel crystalline form (Form A) of a tosylate salt of a previously disclosed neutrophil elastase inhibitor. It also claims oral compositions of the salt and a process for the preparation of the crystalline form. The novel form is indicated to show improved physical properties relative to the free base. The claimed compound is evidently one of the elastase inhibitors currently being developed by AstraZeneca.
Sharp, Phillip P; Garnier, Jean-Marc; Hatfaludi, Tamas; Xu, Zhen; Segal, David; Jarman, Kate E; Jousset, Hélène; Garnham, Alexandra; Feutrill, John T; Cuzzupe, Anthony; Hall, Peter; Taylor, Scott; Walkley, Carl R; Tyler, Dean; Dawson, Mark A; Czabotar, Peter; Wilks, Andrew F; Glaser, Stefan; Huang, David C S; Burns, Christopher J
2017-12-14
A number of diazepines are known to inhibit bromo- and extra-terminal domain (BET) proteins. Their BET inhibitory activity derives from the fusion of an acetyl-lysine mimetic heterocycle onto the diazepine framework. Herein we describe a straightforward, modular synthesis of novel 1,2,3-triazolobenzodiazepines and show that the 1,2,3-triazole acts as an effective acetyl-lysine mimetic heterocycle. Structure-based optimization of this series of compounds led to the development of potent BET bromodomain inhibitors with excellent activity against leukemic cells, concomitant with a reduction in c- MYC expression. These novel benzodiazepines therefore represent a promising class of therapeutic BET inhibitors.
Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices
NASA Astrophysics Data System (ADS)
Matsuura, Koji; Huang, Han-Wei; Chen, Ming-Cheng; Chen, Yu; Cheng, Chao-Min
2017-04-01
Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P < 0.05), suggesting that a sperm-related enzymatic reaction is involved in sperm motility. Under this protocol, MTT reduction was coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.
Recent developments in trans-sialidase inhibitors of Trypanosoma cruzi.
Kashif, Muhammad; Moreno-Herrera, Antonio; Lara-Ramirez, Edgar E; Ramírez-Moreno, Esther; Bocanegra-García, Virgilio; Ashfaq, Muhammad; Rivera, Gildardo
2017-07-01
Chagas is a lethal chronic disease that currently affects 8-10 million people worldwide, primarily in South and Central America. Trypanosoma cruzi trans-sialidase is an enzyme that is of vital importance for the survival of the parasite due to its key role in the transfer of sialic acid from the host to the parasite surface and it also helps the parasite combat the host's immune system. This enzyme has no equivalent human enzyme; thus, it has become an interesting target for the development of inhibitors that combat the parasite. In this review, we summarize three classes of inhibitors (acceptor, donor and unrelated) with their inhibition values and their mode of action against this enzyme. Based on molecular docking, molecular dynamics and structure-activity relationship studies, it has been discovered that the molecules with -NH 2 , -OH and -COOH groups on an aromatic ring could be used as a scaffold for the development of new and potent trans-sialidase inhibitors due to their key interaction with active enzyme sites. In particular, carboxylic acid derivatives have importance over the sugar moiety due to their ease of synthesis and unique structure-activity relationship.
Saxena, Shalini; Durgam, Laxman; Guruprasad, Lalitha
2018-05-14
Development of new antimalarial drugs continues to be of huge importance because of the resistance of malarial parasite towards currently used drugs. Due to the reliance of parasite on glycolysis for energy generation, glycolytic enzymes have played important role as potential targets for the development of new drugs. Plasmodium falciparum lactate dehydrogenase (PfLDH) is a key enzyme for energy generation of malarial parasites and is considered to be a potential antimalarial target. Presently, there are nearly 15 crystal structures bound with inhibitors and substrate that are available in the protein data bank (PDB). In the present work, we attempted to consider multiple crystal structures with bound inhibitors showing affinity in the range of 1.4 × 10 2 -1.3 × 10 6 nM efficacy and optimized the pharmacophore based on the energy involved in binding termed as e-pharmacophore mapping. A high throughput virtual screening (HTVS) combined with molecular docking, ADME predictions and molecular dynamics simulation led to the identification of 20 potential compounds which could be further developed as novel inhibitors for PfLDH.
Bonfield, Kevin; Amato, Erica; Bankemper, Tony; Agard, Hannah; Steller, Jeffrey; Keeler, James M.; Roy, David; McCallum, Adam; Paula, Stefan; Ma, Lili
2014-01-01
Aromatase (CYP19) catalyzes the aromatization reaction of androgen substrates to estrogens, the last and rate-limiting step in estrogen biosynthesis. Inhibition of aromatase is a new and promising approach to treat hormone-dependent breast cancer. We present here the design and development of isoflavanone derivatives as potential aromatase inhibitors. Structural modifications were performed on the A and B rings of isoflavanones via microwave-assisted, gold-catalyzed annulation reactions of hydroxyaldehydes and alkynes. The in vitro aromatase inhibition of these compounds was determined by fluorescence-based assays utilizing recombinant human aromatase (baculovirus/insect cell-expressed). The compounds 3-(4-phenoxyphenyl)chroman-4-one (1h), 6-methoxy-3-phenylchroman-4-one (2a) and 3-(pyridin-3-yl)chroman-4-one (3b) exhibited potent inhibitory effects against aromatase with IC50 values of 2.4 μM, 0.26 μM and 5.8 μM, respectively. Docking simulations were employed to investigate crucial enzyme/inhibitor interactions such as hydrophobic interactions, hydrogen bonding and heme iron coordination. This report provides useful information on aromatase inhibition and serves as a starting point for the development of new flavonoid aromatase inhibitors. PMID:22444875
Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam
2012-02-28
Botulinum neurotoxins are one of the most poisonous biological substances known to humans and present a potential bioterrorism threat. There are no therapeutic interventions developed so far. Here, we report the first small molecule non-peptide inhibitor for botulinum neurotoxin serotype E discovered by structure-based virtual screening and propose a mechanism for its inhibitory activity. This journal is © The Royal Society of Chemistry 2012
Rust Inhibitor And Fungicide For Cooling Systems
NASA Technical Reports Server (NTRS)
Adams, James F.; Greer, D. Clay
1988-01-01
Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities andmore » differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.« less
Yanamandra, Mahesh; Kole, Labanyamoy; Giri, Archana; Mitra, Sayan
2014-03-15
The phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate the cellular signal transduction pathways involved in cell growth, proliferation, survival, apoptosis, and adhesion. Deregulation of these pathways are common in oncogenesis, and they are known to be altered in other metabolic disorders as well. Despite its huge potential as an attractive target in these diseases, there is an unmet need for the development of a successful inhibitor. Unlike protein kinase inhibitors, screening for lipid kinase inhibitors has been challenging. Here we report, for the first time, the development of a radioactive lipid kinase screening platform using a phosphocellulose plate that involves transfer of radiolabeled [γ-(32)P]ATP to phosphatidylinositol 4,5-phosphate forming phosphatidylinositol 3,4,5-phosphate, captured on the phosphocellulose plate. Enzyme kinetics and inhibitory properties were established in the plate format using standard inhibitors, such as LY294002, TGX-221, and wortmannin, having different potencies toward PI3K isoforms. ATP and lipid apparent Km for both were determined and IC50 values generated that matched the historical data. Here we report the use of a phosphocellulose plate for a lipid kinase assay (PI3Kβ as the target) as an excellent platform for the identification of novel chemical entities in PI3K drug discovery. Copyright © 2013 Elsevier Inc. All rights reserved.
Achievements, challenges and unmet needs for haemophilia patients with inhibitors
DARGAUD, Y.; PAVLOVA, A.; LACROIX-DESMAZES, S.; FISCHER, K.; SOUCIE, M.; CLAEYSSENS, S.; SCOTT, D.W.; d’OIRON, R.; LAVIGNE-LISSALDE, G.; KENET, G.; ETTINGSHAUSEN, C. ESCURIOLA; BOREL-DERLON, A.; LAMBERT, T.; PASTA, G.; NÉGRIER, C.
2016-01-01
Summary Over the past 20 years, there have been many advances in haemophilia treatment that have allowed patients to take greater control of their disease. However, the development of factor VIII (FVIII) inhibitors is the greatest complication of the disease and a challenge in the treatment of haemophilia making management of bleeding episodes difficult and surgical procedures very challenging. A meeting to discuss the unmet needs of haemophilia patients with inhibitors was held in Paris on 20 November 2014. Topics discussed were genetic and non-genetic risk factors for the development of inhibitors, immunological aspects of inhibitor development, FVIII products and inhibitor development, generation and functional properties of engineered antigen-specific T regulatory cells, suppression of immune responses to FVIII, prophylaxis in haemophilia patients with inhibitors, epitope mapping of FVIII inhibitors, current controversies in immune tolerance induction therapy, surgery in haemophilia patients with inhibitors and future perspectives for the treatment of haemophilia patients with inhibitors. A summary of the key points discussed is presented in this paper. PMID:26728503
Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors?
Supuran, Claudiu T
2018-12-01
A set of compounds incorporating carbon-based zinc-binding groups (ZBGs), of the type PhX (X = COOH, CONH 2 , CONHNH 2 , CONHOH, CONHOMe), and the corresponding derivatives with sulphur(VI)-based ZBGs (X = SO 3 H, SO 2 NH 2 , SO 2 NHNH 2 , SO 2 NHOH, SO 2 NHOMe) were tested as inhibitors of all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1), CA I-XV. Three factors connected with the ZBG influenced the efficacy as CA inhibitor (CAI) of the investigated compounds: (i) the pKa of the ZBG; (ii) its geometry (tetrahedral, i.e. sulphur-based, versus trigonal, i.e. carbon-based ZBGs), and (iii) orientation of the organic scaffold induced by the nature of the ZBG. Benzenesulphonamide was the best inhibitor of all isoforms, but other ZBGs led to interesting inhibition profiles, although with an efficacy generally reduced when compared to the sulphonamide. The nature of the ZBG also influenced the CA inhibition mechanism. Most of these derivatives were zinc binders, but some of them (sulfonates, carboxylates) may interact with the enzyme by anchoring to the zinc-coordinated water molecule or by other inhibition mechanisms (occlusion of the active site entrance, out of the active site binding, etc.). Exploring structurally diverse ZBGs may lead to interesting new developments in the field of CAIs.
The war against influenza: discovery and development of sialidase inhibitors.
von Itzstein, Mark
2007-12-01
The threat of a major human influenza pandemic, in particular from highly aggressive strains such as avian H5N1, has emphasized the need for therapeutic strategies to combat these pathogens. At present, two inhibitors of sialidase (also known as neuraminidase), a viral enzyme that has a key role in the life cycle of influenza viruses, would be the mainstay of pharmacological strategies in the event of such a pandemic. This article provides a historical perspective on the discovery and development of these drugs--zanamivir and oseltamivir--and highlights the value of structure-based drug design in this process.
Targeting Lysine Deacetylases (KDACs) in Parasites
Wang, Qi; Rosa, Bruce A.; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R.; Mitreva, Makedonka
2015-01-01
Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in targeting Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to address the challenges of targeting specific parasitic diseases while limiting host toxicity. PMID:26402733
de Souza, Iure Kalinine Ferraz; da Silva, Alcino Lázaro; de Araújo, Alex; Santos, Fernanda Carolina Barbosa; Mendonça, Bernardo Pinto Coelho Keuffer
2013-01-01
For a few decades the long-term use of proton pump inhibitors has had wide application in the treatment of several gastrointestinal diseases. Since then, however, several studies have called attention to the possible development of anatomical and pathological changes of gastric mucosa, resulting from the long term use of this therapeutic modality. Recent experimental and clinical studies suggest that these changes have connection not only to the development of precancerous lesions, but also of gastric tumors. To present a qualitative analysis of anatomical and pathological changes of gastric mucosa resulting from the long-term use of proton pump inhibitors. The headings used were: proton pump inhibitors, precancerous lesions and gastric neoplasms for a non systematic review of the literature, based on Medline, Lillacs and Scielo. Twelve articles were selected from clinical (9) and experimental (3) studies, for qualitative analysis of the results. The gastric acid suppression by high doses of proton pump inhibitors induces hypergastrinemia and the consequent emergence of neuroendocrine tumors in animal models. Morphological changes most often found in these experimental studies were: enterochromaffin-like cell hyperplasia, neuroendocrine tumor, atrophy, metaplasia and adenocarcinoma. In the studies in humans, however, despite enterochromaffin-like cell hyperplasia, the other effects, neuroendocrine tumor and gastric atrophy, gastric metaplasia and or adenocarcinoma, were not identified. Although it is not possible to say that the long-term treatment with proton pump inhibitors induces the appearance or accelerates the development of gastric cancer in humans, several authors have suggested that prolonged administration of this drug could provoke the development of gastric cancer. Thus, the evidence demonstrated in the animal model as well as the large number of patients who do or will do a long-term treatment with proton pump inhibitors, justifies the maintenance of this important line of research.
Rahm, Fredrik; Viklund, Jenny; Trésaugues, Lionel; Ellermann, Manuel; Giese, Anja; Ericsson, Ulrika; Forsblom, Rickard; Ginman, Tobias; Günther, Judith; Hallberg, Kenth; Lindström, Johan; Persson, Lars Boukharta; Silvander, Camilla; Talagas, Antoine; Díaz-Sáez, Laura; Fedorov, Oleg; Huber, Kilian V M; Panagakou, Ioanna; Siejka, Paulina; Gorjánácz, Mátyás; Bauser, Marcus; Andersson, Martin
2018-03-22
Recent literature has both suggested and questioned MTH1 as a novel cancer target. BAY-707 was just published as a target validation small molecule probe for assessing the effects of pharmacological inhibition of MTH1 on tumor cell survival, both in vitro and in vivo. (1) In this report, we describe the medicinal chemistry program creating BAY-707, where fragment-based methods were used to develop a series of highly potent and selective MTH1 inhibitors. Using structure-based drug design and rational medicinal chemistry approaches, the potency was increased over 10,000 times from the fragment starting point while maintaining high ligand efficiency and drug-like properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Xiaoyi; Gujjar, Ramesh; El Mazouni, Farah
Malaria remains a major global health burden and current drug therapies are compromised by resistance. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) was validated as a new drug target through the identification of potent and selective triazolopyrimidine-based DHODH inhibitors with anti-malarial activity in vivo. Here we report x-ray structure determination of PfDHODH bound to three inhibitors from this series, representing the first of the enzyme bound to malaria specific inhibitors. We demonstrate that conformational flexibility results in an unexpected binding mode identifying a new hydrophobic pocket on the enzyme. Importantly this plasticity allows PfDHODH to bind inhibitors from different chemical classes andmore » to accommodate inhibitor modifications during lead optimization, increasing the value of PfDHODH as a drug target. A second discovery, based on small molecule crystallography, is that the triazolopyrimidines populate a resonance form that promotes charge separation. These intrinsic dipoles allow formation of energetically favorable H-bond interactions with the enzyme. The importance of delocalization to binding affinity was supported by site-directed mutagenesis and the demonstration that triazolopyrimidine analogs that lack this intrinsic dipole are inactive. Finally, the PfDHODH-triazolopyrimidine bound structures provide considerable new insight into species-selective inhibitor binding in this enzyme family. Together, these studies will directly impact efforts to exploit PfDHODH for the development of anti-malarial chemotherapy.« less
Chang, Yi-Pin; Chu, Yen-Ho
2014-05-16
The design, synthesis and screening of diversity-oriented peptide libraries using a "libraries from libraries" strategy for the development of inhibitors of α1-antitrypsin deficiency are described. The major buttress of the biochemical approach presented here is the use of well-established solid-phase split-and-mix method for the generation of mixture-based libraries. The combinatorial technique iterative deconvolution was employed for library screening. While molecular diversity is the general consideration of combinatorial libraries, exquisite design through systematic screening of small individual libraries is a prerequisite for effective library screening and can avoid potential problems in some cases. This review will also illustrate how large peptide libraries were designed, as well as how a conformation-sensitive assay was developed based on the mechanism of the conformational disease. Finally, the combinatorially selected peptide inhibitor capable of blocking abnormal protein aggregation will be characterized by biophysical, cellular and computational methods.
Gong, Chao-Jun; Gao, An-Hui; Zhang, Yang-Ming; Su, Ming-Bo; Chen, Fei; Sheng, Li; Zhou, Yu-Bo; Li, Jing-Ya; Li, Jia; Nan, Fa-Jun
2016-04-13
Histone deacetylases (HDACs) are a class of epigenetic modulators with complex functions in histone post-translational modifications and are well known targets for antineoplastic drugs. We have previously developed a series of bisthiazole-based hydroxamic acids as novel potent HDAC inhibitors. In the present work, a new series of bisthiazole-based compounds with different zinc binding groups (ZBGs) have been designed and synthesized. Among them is compound 7, containing a trifluoromethyl ketone as the ZBG, which displays potent inhibitory activity towards human HDACs and improved antiproliferative activity in several cancer cell lines. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Szelag, Malgorzata; Czerwoniec, Anna; Wesoly, Joanna; Bluyssen, Hans A. R.
2015-01-01
Signal transducers and activators of transcription (STATs) facilitate action of cytokines, growth factors and pathogens. STAT activation is mediated by a highly conserved SH2 domain, which interacts with phosphotyrosine motifs for specific STAT-receptor contacts and STAT dimerization. The active dimers induce gene transcription in the nucleus by binding to a specific DNA-response element in the promoter of target genes. Abnormal activation of STAT signaling pathways is implicated in many human diseases, like cancer, inflammation and auto-immunity. Searches for STAT-targeting compounds, exploring the phosphotyrosine (pTyr)-SH2 interaction site, yielded many small molecules for STAT3 but sparsely for other STATs. However, many of these inhibitors seem not STAT3-specific, thereby questioning the present modeling and selection strategies of SH2 domain-based STAT inhibitors. We generated new 3D structure models for all human (h)STATs and developed a comparative in silico docking strategy to obtain further insight into STAT-SH2 cross-binding specificity of a selection of previously identified STAT3 inhibitors. Indeed, by primarily targeting the highly conserved pTyr-SH2 binding pocket the majority of these compounds exhibited similar binding affinity and tendency scores for all STATs. By comparative screening of a natural product library we provided initial proof for the possibility to identify STAT1 as well as STAT3-specific inhibitors, introducing the ‘STAT-comparative binding affinity value’ and ‘ligand binding pose variation’ as selection criteria. In silico screening of a multi-million clean leads (CL) compound library for binding of all STATs, likewise identified potential specific inhibitors for STAT1 and STAT3 after docking validation. Based on comparative virtual screening and docking validation, we developed a novel STAT inhibitor screening tool that allows identification of specific STAT1 and STAT3 inhibitory compounds. This could increase our understanding of the functional role of these STATs in different diseases and benefit the clinical need for more drugable STAT inhibitors with high specificity, potency and excellent bioavailability. PMID:25710482
Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors.
Liu, Tong-Chao; Peng, Xia; Ma, Yu-Chi; Ji, Yin-Chun; Chen, Dan-Qi; Zheng, Ming-Yue; Zhao, Dong-Mei; Cheng, Mao-Sheng; Geng, Mei-Yu; Shen, Jing-Kang; Ai, Jing; Xiong, Bing
2016-05-01
Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs.
Improvement of kynurenine aminotransferase-II inhibitors guided by mimicking sulfate esters.
Jayawickrama, Gayan S; Nematollahi, Alireza; Sun, Guanchen; Church, William Bret
2018-01-01
The mammalian kynurenine aminotransferase (KAT) enzymes are a family of related isoforms that are pyridoxal 5'-phosphate-dependent, responsible for the irreversible transamination of kynurenine to kynurenic acid. Kynurenic acid is implicated in human diseases such as schizophrenia where it is found in elevated levels and consequently KAT-II, as the isoform predominantly responsible for kynurenic acid production in the brain, has been targeted for the development of specific inhibitors. One class of compounds that have also shown inhibitory activity towards the KAT enzymes are estrogens and their sulfate esters. Estradiol disulfate in particular is very strongly inhibitory and it appears that the 17-sulfate makes a significant contribution to its potency. The work here demonstrates that the effect of this moiety can be mirrored in existing KAT-II inhibitors, from the development of two novel inhibitors, JN-01 and JN-02. Both inhibitors were based on NS-1502 (IC50: 315 μM), but the deliberate placement of a sulfonamide group significantly improved the potency of JN-01 (IC50: 73.8 μM) and JN-02 (IC50: 112.8 μM) in comparison to the parent compound. This 3-4 fold increase in potency shows the potential of these moieties to be accommodated in the KAT-II active site and the effect they can have on improving inhibitors, and the environments in the KAT-II have been suitably modelled using docking calculations.
He, Gu; Qiu, Minghua; Li, Rui; Ouyang, Liang; Wu, Fengbo; Song, Xiangrong; Cheng, Li; Xiang, Mingli; Yu, Luoting
2012-06-01
Aurora-A has been known as one of the most important targets for cancer therapy, and some Aurora-A inhibitors have entered clinical trails. In this study, combination of the ligand-based and structure-based methods is used to clarify the essential quantitative structure-activity relationship of known Aurora-A inhibitors, and multicomplex-based pharmacophore-guided method has been suggested to generate a comprehensive pharmacophore of Aurora-A kinase based on a collection of crystal structures of Aurora-A-inhibitor complex. This model has been successfully used to identify the bioactive conformation and align 37 structurally diverse N-substituted 2'-(aminoaryl)benzothiazoles derivatives. The quantitative structure-activity relationship analyses have been performed on these Aurora-A inhibitors based on multicomplex-based pharmacophore-guided alignment. These results may provide important information for further design and virtual screening of novel Aurora-A inhibitors. © 2012 John Wiley & Sons A/S.
Inhibitors of the HSP90 molecular chaperone: attacking the master regulator in cancer.
McDonald, Edward; Workman, Paul; Jones, Keith
2006-01-01
The heat shock protein 90 (HSP90) chaperones represent some 1-2% of all cellular protein and are key players in protein quality control in cells. They are over expressed in many human cancers and the fact that many oncogenic proteins are clients has prompted much recent research on HSP90 inhibitors as new cancer therapeutics. A brief introduction is followed by a detailed review of the various classes of inhibitors, both natural product-based and synthetic, that have emerged over the last decade. The natural products geldanamycin, radicicol and novobiocin have provided the start points for new drugs in this area and their medicinal chemistry is reviewed, including the exciting recent results emerging from clinical trials using geldanamycin analogues. The detailed understanding of the binding mode of these compounds to HSP90 has been significantly enhanced by X-ray crystallography of HSP90 constructs co-crystallised with various ligands. Efforts to replace the natural product inhibitors with more drug-like synthetic compounds have mushroomed over the last 4 years. The purines and the 3,4-diarylpyrazoles have proven to be the most successful and their medicinal chemistry is reviewed with particular emphasis on structure-based design. Protein/ligand co-crystal structures have shown that conserved water molecules in the active site are a vital part of the hydrogen-bonding network established on binding both natural product and synthetic inhibitors. Medicinal chemists have used this information to develop high affinity lead compounds. Recent research provides the platform for exciting developments in the area of HSP90 inhibition over the next few years.
Opsenica, Igor; Burnett, James C; Gussio, Rick; Opsenica, Dejan; Todorović, Nina; Lanteri, Charlotte A; Sciotti, Richard J; Gettayacamin, Montip; Basilico, Nicoletta; Taramelli, Donatella; Nuss, Jonathan E; Wanner, Laura; Panchal, Rekha G; Solaja, Bogdan A; Bavari, Sina
2011-03-10
A 1,7-bis(alkylamino)diazachrysene-based small molecule was previously identified as an inhibitor of the botulinum neurotoxin serotype A light chain metalloprotease. Subsequently, a variety of derivatives of this chemotype were synthesized to develop structure-activity relationships, and all are inhibitors of the BoNT/A LC. Three-dimensional analyses indicated that half of the originally discovered 1,7-DAAC structure superimposed well with 4-amino-7-chloroquinoline-based antimalarial agents. This observation led to the discovery that several of the 1,7-DAAC derivatives are potent in vitro inhibitors of Plasmodium falciparum and, in general, are more efficacious against CQ-resistant strains than against CQ-susceptible strains. In addition, by inhibiting β-hematin formation, the most efficacious 1,7-DAAC-based antimalarials employ a mechanism of action analogous to that of 4,7-ACQ-based antimalarials and are well tolerated by normal cells. One candidate was also effective when administered orally in a rodent-based malaria model. Finally, the 1,7-DAAC-based derivatives were examined for Ebola filovirus inhibition in an assay employing Vero76 cells, and three provided promising antiviral activities and acceptably low toxicities.
Opsenica, Igor; Burnett, James C.; Gussio, Rick; Opsenica, Dejan; Todorović, Nina; Lanteri, Charlotte A.; Sciotti, Richard J.; Gettayacamin, Montip; Basilico, Nicoletta; Taramelli, Donatella; Nuss, Jonathan E.; Wanner, Laura; Panchal, Rekha G.; Šolaja, Bogdan A.; Bavari, Sina
2011-01-01
A 1,7-bis(alkylamino)diazachrysene-based small molecule was previously identified as an inhibitor of the botulinum neurotoxin serotype A light chain metalloprotease. Subsequently, a variety of derivatives of this chemotype were synthesized to develop structure-activity relationships, and all are inhibitors of the BoNT/A LC. Three-dimensional analyses indicated that half of the originally discovered 1,7-DAAC structure superimposed well with 4-amino-7-chloroquinoline-based antimalarial agents. This observation led to the discovery that several of the 1,7-DAAC derivatives are potent in vitro inhibitors of Plasmodium falciparum, and in general, are more efficacious against CQ-resistant strains than against CQ-susceptible strains. In addition, by inhibiting β-hematin formation, the most efficacious 1,7-DAAC-based antimalarials employ a mechanism of action analogous to that of 4,7-ACQ-based antimalarials, and are well tolerated by normal cells. One candidate was also effective when administered orally in a rodent-based malaria model. Finally, the 1,7-DAAC-based derivatives were examined for Ebola filovirus inhibition in an assay employing Vero76 cells, and three provided promising antiviral activities and acceptably low toxicities. PMID:21265542
A Targeted Quantitative Proteomics Strategy for Global Kinome Profiling of Cancer Cells and Tissues*
Xiao, Yongsheng; Guo, Lei; Wang, Yinsheng
2014-01-01
Kinases are among the most intensively pursued enzyme superfamilies as targets for anti-cancer drugs. Large data sets on inhibitor potency and selectivity for more than 400 human kinases became available recently, offering the opportunity to design rationally novel kinase-based anti-cancer therapies. However, the expression levels and activities of kinases are highly heterogeneous among different types of cancer and even among different stages of the same cancer. The lack of effective strategy for profiling the global kinome hampers the development of kinase-targeted cancer chemotherapy. Here, we introduced a novel global kinome profiling method, based on our recently developed isotope-coded ATP-affinity probe and a targeted proteomic method using multiple-reaction monitoring (MRM), for assessing simultaneously the expression of more than 300 kinases in human cells and tissues. This MRM-based assay displayed much better sensitivity, reproducibility, and accuracy than the discovery-based shotgun proteomic method. Approximately 250 kinases could be routinely detected in the lysate of a single cell line. Additionally, the incorporation of iRT into MRM kinome library rendered our MRM kinome assay easily transferrable across different instrument platforms and laboratories. We further employed this approach for profiling kinase expression in two melanoma cell lines, which revealed substantial kinome reprogramming during cancer progression and demonstrated an excellent correlation between the anti-proliferative effects of kinase inhibitors and the expression levels of their target kinases. Therefore, this facile and accurate kinome profiling assay, together with the kinome-inhibitor interaction map, could provide invaluable knowledge to predict the effectiveness of kinase inhibitor drugs and offer the opportunity for individualized cancer chemotherapy. PMID:24520089
Fragment-Based Identification of Influenza Endonuclease Inhibitors
2016-01-01
The influenza virus is responsible for millions of cases of severe illness annually. Yearly variance in the effectiveness of vaccination, coupled with emerging drug resistance, necessitates the development of new drugs to treat influenza infections. One attractive target is the RNA-dependent RNA polymerase PA subunit. Herein we report the development of inhibitors of influenza PA endonuclease derived from lead compounds identified from a metal-binding pharmacophore (MBP) library screen. Pyromeconic acid and derivatives thereof were found to be potent inhibitors of endonuclease. Guided by modeling and previously reported structural data, several sublibraries of molecules were elaborated from the MBP hits. Structure–activity relationships were established, and more potent molecules were designed and synthesized using fragment growth and fragment merging strategies. This approach ultimately resulted in the development of a lead compound with an IC50 value of 14 nM, which displayed an EC50 value of 2.1 μM against H1N1 influenza virus in MDCK cells. PMID:27291165
New treatment options for ALK+ advanced non-small-cell lung cancer: critical appraisal of ceritinib
Rothschild, Sacha I
2016-01-01
Rearrangements in ALK gene and EML4 gene were first described in 2007. This genomic aberration is found in about 2%–8% of non-small-cell lung cancer (NSCLC) patients. Crizotinib was the first ALK tyrosine kinase inhibitor licensed for the treatment of metastatic ALK-positive NSCLC based on a randomized Phase III trial. Despite the initial treatment response of crizotinib, disease progression inevitably develops after approximately 10 months of therapy. Different resistance mechanisms have recently been described. One relevant mechanism of resistance is the development of mutations in ALK. Novel ALK tyrosine kinase inhibitors have been developed to overcome these mutations. Ceritinib is an oral second-generation ALK inhibitor showing clinical activity not only in crizotinib-resistant ALK-positive NSCLC but also in treatment-naïve ALK-positive disease. In this paper, preclinical and clinical data of ceritinib are reviewed, and its role in the clinical setting is put into perspective. PMID:27217763
New treatment options for ALK+ advanced non-small-cell lung cancer: critical appraisal of ceritinib.
Rothschild, Sacha I
2016-01-01
Rearrangements in ALK gene and EML4 gene were first described in 2007. This genomic aberration is found in about 2%-8% of non-small-cell lung cancer (NSCLC) patients. Crizotinib was the first ALK tyrosine kinase inhibitor licensed for the treatment of metastatic ALK-positive NSCLC based on a randomized Phase III trial. Despite the initial treatment response of crizotinib, disease progression inevitably develops after approximately 10 months of therapy. Different resistance mechanisms have recently been described. One relevant mechanism of resistance is the development of mutations in ALK. Novel ALK tyrosine kinase inhibitors have been developed to overcome these mutations. Ceritinib is an oral second-generation ALK inhibitor showing clinical activity not only in crizotinib-resistant ALK-positive NSCLC but also in treatment-naïve ALK-positive disease. In this paper, preclinical and clinical data of ceritinib are reviewed, and its role in the clinical setting is put into perspective.
Pyrrolo[2,3-d]pyrimidines active as Btk inhibitors.
Musumeci, Francesca; Sanna, Monica; Greco, Chiara; Giacchello, Ilaria; Fallacara, Anna Lucia; Amato, Rosario; Schenone, Silvia
2017-12-01
Btk is a tyrosine kinase dysregulated in several B-cell malignancies and autoimmune diseases, and this has given rise to a search for Btk inhibitors. Nevertheless, only one Btk inhibitor, ibrutinib, has been approved to date, although other compounds are currently being evaluated in clinical trials or in preclinal stages. Area covered: This review, after a brief introduction on Btk and its inhibitors already in clinical trials, focusses on pyrrolo[2,3-d]pyrimidine derivatives patented in the last five years as Btk inhibitors. Indeed, the pyrrolo[2,3-d]pyrimidine scaffold, being a deaza-isostere of adenine, the nitrogenous base of ATP, is an actively pursued target for Btk inhibitors. The patent literature since 2012 have been extensively investigated, pointing out the general features of the patented compounds and, when it is possible, their mechanism of action. Expert opinion: The recently patented pyrrolo[2,3-d]pyrimidines, acting as reversible or irreversible inhibitors, showed a very interesting in vitro activity. For this reason, the development of compounds endowed with this scaffold could afford a significant impact in the search for drug candidates for the treatment of immune diseases or B-cell malignancies.
D'Ascenzio, Melissa; Guglielmi, Paolo; Carradori, Simone; Secci, Daniela; Florio, Rosalba; Mollica, Adriano; Ceruso, Mariangela; Akdemir, Atilla; Sobolev, Anatoly P; Supuran, Claudiu T
2017-12-01
A large number of novel secondary sulfonamides based on the open saccharin scaffold were synthesized and evaluated as selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). They were obtained by reductive ring opening of the newly synthesized N-alkylated saccharin derivatives and were shown to be inactive against the two cytosolic off-target hCA I and II (K i s > 10 µM). Interestingly, these compounds inhibited hCA IX in the low nanomolar range with K i s ranging between 20 and 298 nM and were extremely potent inhibitors of hCA XII isoenzyme (K i s ranging between 4.3 and 432 nM). Since hCA IX and XII are the cancer-related isoforms recently validated as drug targets, these results represent an important goal in the development of new anticancer candidates. Finally, a computational approach has been performed to better correlate the biological data to the binding mode of these inhibitors.
2017-01-01
Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei (Tb). We solved crystal structures of several TbPTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of TbPTR1 with low toxicity. In particular, compound 4m, a biphenyl-thiadiazole-2,5-diamine with IC50 = 16 μM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti-T. brucei agents can be obtained. PMID:28983525
Linciano, Pasquale; Dawson, Alice; Pöhner, Ina; Costa, David M; Sá, Monica S; Cordeiro-da-Silva, Anabela; Luciani, Rosaria; Gul, Sheraz; Witt, Gesa; Ellinger, Bernhard; Kuzikov, Maria; Gribbon, Philip; Reinshagen, Jeanette; Wolf, Markus; Behrens, Birte; Hannaert, Véronique; Michels, Paul A M; Nerini, Erika; Pozzi, Cecilia; di Pisa, Flavio; Landi, Giacomo; Santarem, Nuno; Ferrari, Stefania; Saxena, Puneet; Lazzari, Sandra; Cannazza, Giuseppe; Freitas-Junior, Lucio H; Moraes, Carolina B; Pascoalino, Bruno S; Alcântara, Laura M; Bertolacini, Claudia P; Fontana, Vanessa; Wittig, Ulrike; Müller, Wolfgang; Wade, Rebecca C; Hunter, William N; Mangani, Stefano; Costantino, Luca; Costi, Maria P
2017-09-30
Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei ( Tb ). We solved crystal structures of several Tb PTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of Tb PTR1 with low toxicity. In particular, compound 4m , a biphenyl-thiadiazole-2,5-diamine with IC 50 = 16 μM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC 50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti- T. brucei agents can be obtained.
Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings
NASA Technical Reports Server (NTRS)
Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.
2015-01-01
The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.
Toward innovative combinational immunotherapy: A systems biology perspective.
Li, Xue-Tao; Yang, Jin-Ji; Wu, Yi-Long; Hou, Jun
2018-05-08
The treatment of non-small-cell lung cancer (NSCLC) has advanced significantly in the last decades. Especially immune checkpoint inhibitors have shown inconceivable effect on enhancing host anti-tumor activity in NSCLC. However, the limitation of checkpoint blockade monotherapy seems unavoidable in most of the NSCLC patients and only ∼20% of them achieved response to monotherapy with immune checkpoint inhibitors. Thus combining immune checkpoint inhibitors with other agents with different action mechanisms holds a promise to revitalize NSCLC treatment, such as the combination of checkpoint inhibitors with angiogenesis inhibitors, or with chemotherapy, as well as the combination of two checkpoint inhibitors. Recently, various combinational strategies have been explored to setup promising combination regimens and to understand the action mechanisms. In this review, we summarize the suspected synergistic mechanisms of several combinational approaches by reviewing the available preclinical and clinical data. Then we discuss in light of the current knowledge of cancer biology and systems biology the important facets to be examined when setting up a framework for developing immunotherapy-based combination strategies. Copyright © 2018. Published by Elsevier Ltd.
Watterson, Scott H; Chen, Ping; Zhao, Yufen; Gu, Henry H; Dhar, T G Murali; Xiao, Zili; Ballentine, Shelley K; Shen, Zhongqi; Fleener, Catherine A; Rouleau, Katherine A; Obermeier, Mary; Yang, Zheng; McIntyre, Kim W; Shuster, David J; Witmer, Mark; Dambach, Donna; Chao, Sam; Mathur, Arvind; Chen, Bang-Chi; Barrish, Joel C; Robl, Jeffrey A; Townsend, Robert; Iwanowicz, Edwin J
2007-07-26
Inosine monophosphate dehydrogenase (IMPDH), a key enzyme in the de novo synthesis of guanosine nucleotides, catalyzes the irreversible nicotinamide-adenine dinucleotide dependent oxidation of inosine-5'-monophosphate to xanthosine-5'-monophosphate. Mycophenolate Mofetil (MMF), a prodrug of mycophenolic acid, has clinical utility for the treatment of transplant rejection based on its inhibition of IMPDH. The overall clinical benefit of MMF is limited by what is generally believed to be compound-based, dose-limiting gastrointestinal (GI) toxicity that is related to its specific pharmacokinetic characteristics. Thus, development of an IMPDH inhibitor with a novel structure and a different pharmacokinetic profile may reduce the likelihood of GI toxicity and allow for increased efficacy. This article will detail the discovery and SAR leading to a novel and potent acridone-based IMPDH inhibitor 4m and its efficacy and GI tolerability when administered orally in a rat adjuvant arthritis model.
Fu, Ying; Sun, Yi-Na; Yi, Ke-Han; Li, Ming-Qiang; Cao, Hai-Feng; Li, Jia-Zhong; Ye, Fei
2017-06-09
p -Hydroxyphenylpyruvate dioxygenase (HPPD) is not only the useful molecular target in treating life-threatening tyrosinemia type I, but also an important target for chemical herbicides. A combined in silico structure-based pharmacophore and molecular docking-based virtual screening were performed to identify novel potential HPPD inhibitors. The complex-based pharmacophore model (CBP) with 0.721 of ROC used for screening compounds showed remarkable ability to retrieve known active ligands from among decoy molecules. The ChemDiv database was screened using CBP-Hypo2 as a 3D query, and the best-fit hits subjected to molecular docking with two methods of LibDock and CDOCKER in Accelrys Discovery Studio 2.5 (DS 2.5) to discern interactions with key residues at the active site of HPPD. Four compounds with top rankings in the HipHop model and well-known binding model were finally chosen as lead compounds with potential inhibitory effects on the active site of target. The results provided powerful insight into the development of novel HPPD inhibitors herbicides using computational techniques.
Balimane, Praveen V; Chong, Saeho
2005-09-14
The objective of this project was to develop a cell based in vitro experimental procedure that can differentiate P-glycoprotein (P-gp) substrates from inhibitors in a single assay. Caco-2 cells grown to confluency on 12-well Transwell were used for this study. The efflux permeability (B to A) of P-gp specific probe (viz., digoxin) in the presence of test compounds (e.g. substrates, inhibitors and non-substrates of P-gp) was monitored, and the influx permeability (A to B) of test compounds was evaluated after complete P-gp blockade. Radiolabelled digoxin was added on the basolateral side with buffer on the apical side. The digoxin concentration appearing on the apical side represents digoxin efflux permeability during the control phase (0-1 h period). After 1 h, a test compound (10 microM) was added on the apical side. The reduced efflux permeability of digoxin suggests that the added test compound is an inhibitor. The influx permeability of test compound is also determined during the 1-2 h study period by measuring the concentration of the test compound in the basolateral side. At the end of 2 h, a potent P-gp inhibitor (GF120918) was added. The increased influx permeability of test compound during the 2-3 h incubation period indicates that the added test compound is a substrate. Samples were taken from both sides at the end of 1-3 h and the concentrations of the test compounds and digoxin were quantitated. Digoxin efflux permeability remained unchanged when incubated with P-gp substrates (e.g., etoposide, rhodamine123, taxol). However, when a P-gp inhibitor was added to the apical side, the digoxin efflux (B to A permeability) was significantly reduced (ketoconazole=51% reduction) as expected. The influx permeability of substrates increased significantly (rhodamine123=70%, taxol=220%, digoxin=290%) after the P-gp inhibitor (GF120918) was introduced, whereas the influx permeability of P-gp inhibitor and non-substrates was not affected by GF120918. Thus, this combined assay provides an efficient cell based in vitro screening tool to simultaneously distinguish compounds that are P-gp substrates from P-gp inhibitors.
Guitot, Karine; Scarabelli, Silvia; Drujon, Thierry; Bolbach, Gérard; Amoura, Mehdi; Burlina, Fabienne; Jeltsch, Albert; Sagan, Sandrine; Guianvarc'h, Dominique
2014-07-01
Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Amin, Sk. Abdul; Adhikari, Nilanjan; Gayen, Shovanlal; Jha, Tarun
2017-09-01
Glutaminase is one of the important key enzymes regulating cellular metabolism, growth, and proliferation in cancer. Therefore, it is being explored as a crucial target regarding anticancer drug design and development. However, none of the potent and selective glutaminase inhibitors is available in the market though two prototype glutaminase inhibitors are reported namely DON as well as BPTES. Due to severe toxicity in clinical trials, the use of DON is restricted. However, BPTES is an allosteric glutaminase inhibitor with less toxic profile and, therefore, lead optimization of BPTES may be a good option to develop newer drug candidates. In this study, a multi-QSAR modeling is carried out on a series of BPTES analogs. A significant connection between different descriptors and the glutaminase inhibitory activities is noticed by employing multiple linear regression, artificial neural network and support vector machine techniques. The classification-based QSAR such as linear discriminant analysis and Bayesian classification modeling are also performed to search important molecular fingerprints or substructures that may help in classifying the probability of finding 'active' and 'inactive' BPTES analogs. Moreover, HQSAR and Topomer CoMFA analyses are also performed. In addition, the SAR observations are interpreted with all these validated computational models along with the structure-based contours. Finally, new twenty two compounds are designed and predicted for their probable glutaminase inhibitory activity.
Dargaud, Y; Pavlova, A; Lacroix-Desmazes, S; Fischer, K; Soucie, M; Claeyssens, S; Scott, D W; d'Oiron, R; Lavigne-Lissalde, G; Kenet, G; Escuriola Ettingshausen, C; Borel-Derlon, A; Lambert, T; Pasta, G; Négrier, C
2016-01-01
Over the past 20 years, there have been many advances in haemophilia treatment that have allowed patients to take greater control of their disease. However, the development of factor VIII (FVIII) inhibitors is the greatest complication of the disease and a challenge in the treatment of haemophilia making management of bleeding episodes difficult and surgical procedures very challenging. A meeting to discuss the unmet needs of haemophilia patients with inhibitors was held in Paris on 20 November 2014. Topics discussed were genetic and non-genetic risk factors for the development of inhibitors, immunological aspects of inhibitor development, FVIII products and inhibitor development, generation and functional properties of engineered antigen-specific T regulatory cells, suppression of immune responses to FVIII, prophylaxis in haemophilia patients with inhibitors, epitope mapping of FVIII inhibitors, current controversies in immune tolerance induction therapy, surgery in haemophilia patients with inhibitors and future perspectives for the treatment of haemophilia patients with inhibitors. A summary of the key points discussed is presented in this paper. © 2016 John Wiley & Sons Ltd.
Esposito, Francesca; Tintori, Cristina; Martini, Riccardo; Christ, Frauke; Debyser, Zeger; Ferrarese, Roberto; Cabiddu, Gianluigi; Corona, Angela; Ceresola, Elisa Rita; Calcaterra, Andrea; Iovine, Valentina; Botta, Bruno; Clementi, Massimo; Canducci, Filippo; Botta, Maurizio; Tramontano, Enzo
2015-11-01
HIV-1 integrase (IN) active site inhibitors are the latest class of drugs approved for HIV treatment. The selection of IN strand-transfer drug-resistant HIV strains in patients supports the development of new agents that are active as allosteric IN inhibitors. Here, a docking-based virtual screening has been applied to a small library of natural ligands to identify new allosteric IN inhibitors that target the sucrose binding pocket. From theoretical studies, kuwanon-L emerged as the most promising binder and was thus selected for biological studies. Biochemical studies showed that kuwanon-L is able to inhibit the HIV-1 IN catalytic activity in the absence and in the presence of LEDGF/p75 protein, the IN dimerization, and the IN/LEDGF binding. Kuwanon-L also inhibited HIV-1 replication in cell cultures. Overall, docking and biochemical results suggest that kuwanon-L binds to an allosteric binding pocket and can be considered an attractive lead for the development of new allosteric IN antiviral agents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Szałaj, Natalia; Bajda, Marek; Dudek, Katarzyna; Brus, Boris; Gobec, Stanislav; Malawska, Barbara
2015-08-01
Alzheimer's disease (AD) is a fatal and complex neurodegenerative disorder for which effective treatment remains the unmet challenge. Using donepezil as a starting point, we aimed to develop novel potential anti-AD agents with a multidirectional biological profile. We designed the target compounds as dual binding site acetylcholinesterase inhibitors, where the N-benzylamine pharmacophore is responsible for interactions with the catalytic anionic site of the enzyme. The heteroaromatic fragment responsible for interactions with the peripheral anionic site was modified and three different heterocycles were introduced: isoindoline, isoindolin-1-one, and saccharine. Based on the results of the pharmacological evaluation, we identified compound 8b with a saccharine moiety as the most potent and selective human acetylcholinesterase inhibitor (IC50 = 33 nM) and beta amyloid aggregation inhibitor. It acts as a non-competitive acetylcholinesterase inhibitor and is able to cross the blood-brain barrier in vitro. We believe that compound 8b represents an important lead compound for further development as potential anti-AD agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kong, Xiangqian; Qin, Jie; Li, Zeng; Vultur, Adina; Tong, Linjiang; Feng, Enguang; Rajan, Geena; Liu, Shien; Lu, Junyan; Liang, Zhongjie; Zheng, Mingyue; Zhu, Weiliang; Jiang, Hualiang; Herlyn, Meenhard; Liu, Hong; Marmorstein, Ronen; Luo, Cheng
2012-01-01
Oncogenic mutations in critical nodes of cellular signaling pathways have been associated with tumorigenesis and progression. The B-Raf protein kinase, a key hub in the canonical MAPK signaling cascade, is mutated in a broad range of human cancers and especially in malignant melanoma. The most prevalent B-RafV600E mutant exhibits elevated kinase activity and results in constitutive activation of the MAPK pathway, thus making it a promising drug target for cancer therapy. Herein, we described the development of novel B-RafV600E selective inhibitors via multi-step virtual screening and hierarchical hit optimization. Nine hit compounds with low micromolar IC50 values were identified as B-RafV600E inhibitors through virtual screening. Subsequent scaffold-based analogue searching and medicinal chemistry efforts significantly improved both the inhibitor potency and oncogene selectivity. In particular, compounds 22f and 22q possess nanomolar IC50 values with selectivity for B-RafV600E in vitro and exclusive cytotoxicity against B-RafV600E harboring cancer cells. PMID:22875039
Kong, Xiangqian; Qin, Jie; Li, Zeng; Vultur, Adina; Tong, Linjiang; Feng, Enguang; Rajan, Geena; Liu, Shien; Lu, Junyan; Liang, Zhongjie; Zheng, Mingyue; Zhu, Weiliang; Jiang, Hualiang; Herlyn, Meenhard; Liu, Hong; Marmorstein, Ronen; Luo, Cheng
2012-09-28
Oncogenic mutations in critical nodes of cellular signaling pathways have been associated with tumorigenesis and progression. The B-Raf protein kinase, a key hub in the canonical MAPK signaling cascade, is mutated in a broad range of human cancers and especially in malignant melanoma. The most prevalent B-Raf(V600E) mutant exhibits elevated kinase activity and results in constitutive activation of the MAPK pathway, thus making it a promising drug target for cancer therapy. Herein, we describe the development of novel B-Raf(V600E) selective inhibitors via multi-step virtual screening and hierarchical hit optimization. Nine hit compounds with low micromolar IC(50) values were identified as B-Raf(V600E) inhibitors through virtual screening. Subsequent scaffold-based analogue searching and medicinal chemistry efforts significantly improved both the inhibitor potency and oncogene selectivity. In particular, compounds 22f and 22q possess nanomolar IC(50) values with selectivity for B-Raf(V600E)in vitro and exclusive cytotoxicity against B-Raf(V600E) harboring cancer cells.
Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.; Ulrich, Robert G.; Burke, Terrence R.; Waugh, David S.
2011-01-01
Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacing a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors. PMID:21697602
2015-01-01
The bifunctional enzyme N5,N10-methylenetetrahydrofolate dehydrogenase/cyclo hydrolase (FolD) is essential for growth in Trypanosomatidae. We sought to develop inhibitors of Trypanosoma brucei FolD (TbFolD) as potential antiparasitic agents. Compound 2 was synthesized, and the molecular structure was unequivocally assigned through X-ray crystallography of the intermediate compound 3. Compound 2 showed an IC50 of 2.2 μM, against TbFolD and displayed antiparasitic activity against T. brucei (IC50 49 μM). Using compound 2, we were able to obtain the first X-ray structure of TbFolD in the presence of NADP+ and the inhibitor, which then guided the rational design of a new series of potent TbFolD inhibitors. PMID:26322631
Selective inhibitors of zinc-dependent histone deacetylases. Therapeutic targets relevant to cancer.
Kollar, Jakub; Frecer, Vladimir
2015-01-01
Histone deacetylases (HDACs), which act on acetylated histones and/or other non-histone protein substrates, represent validated epigenetic targets for the treatment of cancer and other human diseases. The inhibition of HDAC activity was shown to induce cell cycle arrest, differentiation, apoptosis as well as a decrease in proliferation, angiogenesis, migration, and cell resistance to chemotherapy. Targeting single HDAC isoforms with selective inhibitors will help to reveal the role of individual HDACs in cancer development or uncover further biological consequences of protein acetylation. This review focuses on conventional zinc-containing HDACs. In its first part, the biological role of individual HDACs in various types of cancer is summarized. In the second part, promising HDAC inhibitors showing activity both in enzymatic and cell-based assays are surveyed with an emphasis on the inhibitors selective to the individual HDACs.
Tanabe, Kenji
2016-04-27
Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570 image features were obtained and subjected to multivariate analysis. Fourteen compounds that affected EGFR or its pathways were classified into four clusters, based on their phenotypic features. Surprisingly, one EGFR inhibitor (CAS 879127-07-8) was classified into the same cluster as nocodazole, a microtubule depolymerizer. In fact, this compound directly depolymerized microtubules. These results indicate that CAS 879127-07-8 could be used as a chemical probe to investigate both the EGFR pathway and microtubule dynamics. The image-based multivariate analysis developed herein has potential as a powerful tool for discovering unexpected drug properties.
Ishihara, Tsukasa; Koga, Yuji; Iwatsuki, Yoshiyuki; Hirayama, Fukushi
2015-01-15
Anticoagulant agents have emerged as a promising class of therapeutic drugs for the treatment and prevention of arterial and venous thrombosis. We investigated a series of novel orally active factor Xa inhibitors designed using our previously reported conjugation strategy to boost oral anticoagulant effect. Structural optimization of anthranilamide derivative 3 as a lead compound with installation of phenolic hydroxyl group and extensive exploration of the P1 binding element led to the identification of 5-chloro-N-(5-chloro-2-pyridyl)-3-hydroxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}benzamide (33, AS1468240) as a potent factor Xa inhibitor with significant oral anticoagulant activity. We also reported a newly developed Free-Wilson-like fragment recommender system based on the integration of R-group decomposition with collaborative filtering for the structural optimization process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potent peptidic fusion inhibitors of influenza virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries
Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangementsmore » associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.« less
Munigunti, Ranjith; Calderón, Angela I
2012-09-15
Plasmodium falciparum (Pf) thioredoxin reductase (TrxR) catalyzes the reduction of thioredoxin disulfide (Trx-S(2)) to thioredoxin dithiol (Trx-(SH)(2)) that is essential for antioxidant defense mechanism and DNA synthesis in the parasite and is a validated drug target for new antimalarial agents. In this study, we have developed a liquid chromatography/mass spectrometry (LC/MS)-based functional assay to identify inhibitors of PfTrxR by quantifying the product formed (Trx-(SH)(2)) in the enzymatic reaction. Relative quantitation of the reaction product (intact Trx-(SH)(2)) was carried out using an Agilent 6520 QTOF mass spectrometer equipped with a positive mode electrospray ionization (ESI) source. The calibration curve prepared for Trx-(SH)(2) at concentrations ranging from 1.8 to 116.5 µg/mL was linear (R(2) >0.998). The limit of detection (LOD) and limit of quantification (LOQ) of Trx-(SH)(2) were at 0.45 and 1.8 µg/mL respectively. To validate the developed functional assay we have screened reference compounds 1, 2 and 3 for their PfTrxR inhibitory activity and ten natural compounds (at 10 μM) which were earlier identified as ligands of PfTrxR by a UF-LC/MS based binding assay. The developed LC/MS-based functional assay for identification of inhibitors of PfTrxR is a sensitive and reliable method that is also amendable for high-throughput format. This is the first representation of a relative quantitation of intact Trx-(SH)(2) using LC/MS. Copyright © 2012 John Wiley & Sons, Ltd.
Xu, Y; Li, YF; Zhang, D; Dockendorf, M; Tetteh, E; Rizk, ML; Grobler, JA; Lai, M‐T; Gobburu, J
2016-01-01
We applied model‐based meta‐analysis of viral suppression as a function of drug exposure and in vitro potency for short‐term monotherapy in human immunodeficiency virus type 1 (HIV‐1)‐infected treatment‐naïve patients to set pharmacokinetic targets for development of nonnucleoside reverse transcriptase inhibitors (NNRTIs) and integrase strand transfer inhibitors (InSTIs). We developed class‐specific models relating viral load kinetics from monotherapy studies to potency normalized steady‐state trough plasma concentrations. These models were integrated with a literature assessment of doses which demonstrated to have long‐term efficacy in combination therapy, in order to set steady‐state trough concentration targets of 6.17‐ and 2.15‐fold above potency for NNRTIs and InSTIs, respectively. Both the models developed and the pharmacokinetic targets derived can be used to guide compound selection during preclinical development and to predict the dose–response of new antiretrovirals to inform early clinical trial design. PMID:27171172
Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex.
Hao, Ge-Fei; Wang, Fu; Li, Hui; Zhu, Xiao-Lei; Yang, Wen-Chao; Huang, Li-Shar; Wu, Jia-Wei; Berry, Edward A; Yang, Guang-Fu
2012-07-11
A critical challenge to the fragment-based drug discovery (FBDD) is its low-throughput nature due to the necessity of biophysical method-based fragment screening. Herein, a method of pharmacophore-linked fragment virtual screening (PFVS) was successfully developed. Its application yielded the first picomolar-range Q(o) site inhibitors of the cytochrome bc(1) complex, an important membrane protein for drug and fungicide discovery. Compared with the original hit compound 4 (K(i) = 881.80 nM, porcine bc(1)), the most potent compound 4f displayed 20 507-fold improved binding affinity (K(i) = 43.00 pM). Compound 4f was proved to be a noncompetitive inhibitor with respect to the substrate cytochrome c, but a competitive inhibitor with respect to the substrate ubiquinol. Additionally, we determined the crystal structure of compound 4e (K(i) = 83.00 pM) bound to the chicken bc(1) at 2.70 Å resolution, providing a molecular basis for understanding its ultrapotency. To our knowledge, this study is the first application of the FBDD method in the discovery of picomolar inhibitors of a membrane protein. This work demonstrates that the novel PFVS approach is a high-throughput drug discovery method, independent of biophysical screening techniques.
Sarkar, Sampa; Sarkar, Dhiman
2012-08-01
The development of a macrophage-based, antitubercular high-throughput screening system could expedite discovery programs for identifying novel inhibitors. In this study, the kinetics of nitrate reduction (NR) by Mycobacterium tuberculosis during growth in Thp1 macrophages was found to be almost parallel to viable bacilli count. NR in the culture medium containing 50 mM of nitrate was found to be optimum on the fifth day after infection with M. tuberculosis. The signal-to-noise (S/N) ratio and Z-factor obtained from this macrophage-based assay were 5.4 and 0.965, respectively, which confirms the robustness of the assay protocol. The protocol was further validated by using standard antitubercular inhibitors such as rifampicin, isoniazid, streptomycin, ethambutol, and pyrazinamide, added at their IC(90) value, on the day of infection. These inhibitors were not able to kill the bacilli when added to the culture on the fifth day after infection. Interestingly, pentachlorophenol and rifampicin killed the bacilli immediately after addition on the fifth day of infection. Altogether, this assay protocol using M. tuberculosis-infected Thp-1 macrophages provides a novel, cost-efficient, robust, and easy-to-perform screening platform for the identification of both active and hypoxic stage-specific inhibitors against tuberculosis.
Zhang, Tao; Li, Yanyan; Zou, Peng; Yu, Jing-yu; McEachern, Donna; Wang, Shaomeng; Sun, Duxin
2013-09-01
The inhibitors of apoptosis proteins (IAPs) are a class of key apoptosis regulators overexpressed or dysregulated in cancer. SM-406/AT-406 is a potent and selective small molecule mimetic of Smac that antagonizes the inhibitor of apoptosis proteins (IAPs). A physiologically based pharmacokinetic and pharmacodynamic (PBPK-PD) model was developed to predict the tissue concentration-time profiles of SM-406, the related onco-protein levels in tumor, and the tumor growth inhibition in a mouse model bearing human breast cancer xenograft. In the whole body physiologically based pharmacokinetic (PBPK) model for pharmacokinetics characterization, a well stirred (perfusion rate-limited) model was used to describe SM-406 pharmacokinetics in the lung, heart, kidney, intestine, liver and spleen, and a diffusion rate-limited (permeability limited) model was used for tumor. Pharmacodynamic (PD) models were developed to correlate the SM-406 concentration in tumor to the cIAP1 degradation, pro-caspase 8 decrease, CL-PARP accumulation and tumor growth inhibition. The PBPK-PD model well described the experimental pharmacokinetic data, the pharmacodynamic biomarker responses and tumor growth. This model may be helpful to predict tumor and plasma SM-406 concentrations in the clinic. Copyright © 2013 John Wiley & Sons, Ltd.
Lowery, Colin A; Abe, Takumi; Park, Junguk; Eubanks, Lisa M; Sawada, Daisuke; Kaufmann, Gunnar F; Janda, Kim D
2009-11-04
Quorum sensing (QS) systems have been discovered in a wide variety of bacteria, and mediate both intra- and interspecies communication. The AI-2-based QS system represents the most studied of these proposed interspecies systems and has been shown to regulate diverse functions such as bioluminescence, expression of virulence factors, and biofilm formation. As such, the development of modulatory compounds, both agonists and antagonists, is of great interest for the study of unknown AI-2-based QS systems and the potential treatment of bacterial infections. The fimbrolide class of natural products has exhibited excellent inhibitory activity against AI-2-based QS and as such may be considered the "gold standard" of AI-2 inhibitors. Thus, we sought to include a fimbrolide as a control compound for our recently developed alkyl-DPD panel of AI-2 modulators. Herein, we present a revised synthesis of a commonly studied fimbrolide as well as a direct comparison between the fimbrolide and alkyl-DPD analogues. We demonstrate that our alkyl-DPD analogues are more potent inhibitors of QS in both Vibrio harveyi and Salmonella typhimurium, the two organisms with defined AI-2 QS systems, and in doing so call into question the widely accepted use of fimbrolide-derived compounds as the "gold standard" of AI-2 inhibition.
Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation.
Burghaus, Rolf; Coboeken, Katrin; Gaub, Thomas; Kuepfer, Lars; Sensse, Anke; Siegmund, Hans-Ulrich; Weiss, Wolfgang; Mueck, Wolfgang; Lippert, Joerg
2011-04-22
Rivaroxaban is an oral, direct Factor Xa inhibitor approved in the European Union and several other countries for the prevention of venous thromboembolism in adult patients undergoing elective hip or knee replacement surgery and is in advanced clinical development for the treatment of thromboembolic disorders. Its mechanism of action is antithrombin independent and differs from that of other anticoagulants, such as warfarin (a vitamin K antagonist), enoxaparin (an indirect thrombin/Factor Xa inhibitor) and dabigatran (a direct thrombin inhibitor). A blood coagulation computer model has been developed, based on several published models and preclinical and clinical data. Unlike previous models, the current model takes into account both the intrinsic and extrinsic pathways of the coagulation cascade, and possesses some unique features, including a blood flow component and a portfolio of drug action mechanisms. This study aimed to use the model to compare the mechanism of action of rivaroxaban with that of warfarin, and to evaluate the efficacy and safety of different rivaroxaban doses with other anticoagulants included in the model. Rather than reproducing known standard clinical measurements, such as the prothrombin time and activated partial thromboplastin time clotting tests, the anticoagulant benchmarking was based on a simulation of physiologically plausible clotting scenarios. Compared with warfarin, rivaroxaban showed a favourable sensitivity for tissue factor concentration inducing clotting, and a steep concentration-effect relationship, rapidly flattening towards higher inhibitor concentrations, both suggesting a broad therapeutic window. The predicted dosing window is highly accordant with the final dose recommendation based upon extensive clinical studies.
Evaluation of the Efficacy and Safety of Rivaroxaban Using a Computer Model for Blood Coagulation
Burghaus, Rolf; Coboeken, Katrin; Gaub, Thomas; Kuepfer, Lars; Sensse, Anke; Siegmund, Hans-Ulrich; Weiss, Wolfgang; Mueck, Wolfgang; Lippert, Joerg
2011-01-01
Rivaroxaban is an oral, direct Factor Xa inhibitor approved in the European Union and several other countries for the prevention of venous thromboembolism in adult patients undergoing elective hip or knee replacement surgery and is in advanced clinical development for the treatment of thromboembolic disorders. Its mechanism of action is antithrombin independent and differs from that of other anticoagulants, such as warfarin (a vitamin K antagonist), enoxaparin (an indirect thrombin/Factor Xa inhibitor) and dabigatran (a direct thrombin inhibitor). A blood coagulation computer model has been developed, based on several published models and preclinical and clinical data. Unlike previous models, the current model takes into account both the intrinsic and extrinsic pathways of the coagulation cascade, and possesses some unique features, including a blood flow component and a portfolio of drug action mechanisms. This study aimed to use the model to compare the mechanism of action of rivaroxaban with that of warfarin, and to evaluate the efficacy and safety of different rivaroxaban doses with other anticoagulants included in the model. Rather than reproducing known standard clinical measurements, such as the prothrombin time and activated partial thromboplastin time clotting tests, the anticoagulant benchmarking was based on a simulation of physiologically plausible clotting scenarios. Compared with warfarin, rivaroxaban showed a favourable sensitivity for tissue factor concentration inducing clotting, and a steep concentration–effect relationship, rapidly flattening towards higher inhibitor concentrations, both suggesting a broad therapeutic window. The predicted dosing window is highly accordant with the final dose recommendation based upon extensive clinical studies. PMID:21526168
Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors
Dienstmann, R.; Rodon, J.; Prat, A.; Perez-Garcia, J.; Adamo, B.; Felip, E.; Cortes, J.; Iafrate, A. J.; Nuciforo, P.; Tabernero, J.
2014-01-01
The fibroblast growth factor receptor (FGFR) cascade plays crucial roles in tumor cell proliferation, angiogenesis, migration and survival. Accumulating evidence suggests that in some tumor types, FGFRs are bona fide oncogenes to which cancer cells are addicted. Because FGFR inhibition can reduce proliferation and induce cell death in a variety of in vitro and in vivo tumor models harboring FGFR aberrations, a growing number of research groups have selected FGFRs as targets for anticancer drug development. Multikinase FGFR/vascular endothelial growth factor receptor (VEGFR) inhibitors have shown promising activity in breast cancer patients with FGFR1 and/or FGF3 amplification. Early clinical trials with selective FGFR inhibitors, which may overcome the toxicity constraints raised by multitarget kinase inhibition, are recruiting patients with known FGFR(1–4) status based on genomic screens. Preliminary signs of antitumor activity have been demonstrated in some tumor types, including squamous cell lung carcinomas. Rational combination of targeted therapies is expected to further increase the efficacy of selective FGFR inhibitors. Herein, we discuss unsolved questions in the clinical development of these agents and suggest guidelines for management of hyperphosphatemia, a class-specific mechanism-based toxicity. In addition, we propose standardized definitions for FGFR1 and FGFR2 gene amplification based on in situ hybridization methods. Extended access to next-generation sequencing platforms will facilitate the identification of diseases in which somatic FGFR(1–4) mutations, amplifications and fusions are potentially driving cancer cell viability, further strengthening the role of FGFR signaling in cancer biology and providing more possibilities for the therapeutic application of FGFR inhibitors. PMID:24265351
Amar, Natalie; Peretz, Avi; Gerchman, Yoram
2017-02-01
Helicobacter pylori is the most frequent and persistent bacterial infection worldwide, and a risk factor for active gastritis, peptic ulcers, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Although combined antibiotics treatment is effective cases of antibiotic resistance are reported at an alarming rate. The H. pylori urease enzyme is essential for the bacteria establishment in the gastric mucosa, resulting urease inhibitors being sought after as effective and specific anti- H. pylori treatment. To-date, screening assays are based mostly on the analog plant urease enzyme but difference in properties of the plant and bacterial enzymes hamper these efforts. We have developed a screening assay based on recombinant Escherichia coli expressing native H. pylori urease, and validated this assay using thiourea and a methanolic extract of Pistacia atlantica. The assay demonstrated the thiourea and the extract to be potent urease inhibitors, with the extract having strong bacteriostatic activity against clinical isolates of H. pylori, including such with antibiotic resistance. The extract was also found to be neutral toward common probiotic bacteria, supporting its specificity and compatibility with digestive system desired microflora and suggesting it could be a good source for anti-H. pylori compounds. The assay has proven to be cheap, simple and native alternative to the plant enzyme based assay and could allow for high throughput screening for new urease inhibitors and could expedite screening and development of novel, better H. pylori remedies helping us to combat this infection. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzan, Atefeh; Willby, Melisa J.; Green, Keith D.
A two-drug combination therapy where one drug targets an offending cell and the other targets a resistance mechanism to the first drug is a time-tested, yet underexploited approach to combat or prevent drug resistance. By high-throughput screening, we identified a sulfonamide scaffold that served as a pharmacophore to generate inhibitors of Mycobacterium tuberculosis acetyltransferase Eis, whose upregulation causes resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN) in Mycobacterium tuberculosis. Rational systematic derivatization of this scaffold to maximize Eis inhibition and abolish the Eis-mediated KAN resistance of M. tuberculosis yielded several highly potent agents. A crystal structure of Eis inmore » complex with one of the most potent inhibitors revealed that the inhibitor bound Eis in the AG-binding pocket held by a conformationally malleable region of Eis (residues 28–37) bearing key hydrophobic residues. These Eis inhibitors are promising leads for preclinical development of innovative AG combination therapies against resistant TB.« less
Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors
NASA Astrophysics Data System (ADS)
Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.
2017-09-01
Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.
Ge, Yang; Jin, Yue; Wang, Changyuan; Zhang, Jianbin; Tang, Zeyao; Peng, Jinyong; Liu, Kexin; Li, Yanxia; Zhou, Youwen; Ma, Xiaodong
2016-12-08
Based on the pyrimidine skeleton of EGFR T790M inhibitors, a series of N ,9-diphenyl-9 H -purin-2-amine derivatives were identified as effective BTK inhibitors. Among these compounds, inhibitors 10d , 10i , and 10j , possessing IC 50 values of 0.5, 0.5, and 0.4 nM, displayed anti-BTK kinase activity that was as potent as the reference compounds. In particular, compound 10j suppressed the proliferation of two typical B-cell leukemia cell lines expressing high levels of BTK with concentrations of 7.75 and 12.6 μM. The activity of the subject compound as determined by the CCK-8 method and apoptosis analysis validated that inhibitor 1 0j is slightly more potent than AVL-292 and ibrutinib. The results of these experimental explorations suggested that 10j could serve as a valuable molecule for control of leukemia pending further developments.
Dion, Johann; Advedissian, Tamara; Storozhylova, Nataliya; Dahbi, Samir; Lambert, Annie; Deshayes, Frédérique; Viguier, Mireille; Tellier, Charles; Poirier, Françoise; Téletchéa, Stéphane; Dussouy, Christophe; Tateno, Hiroaki; Hirabayashi, Jun; Grandjean, Cyrille
2017-12-14
Glycan microarrays are useful tools for lectin glycan profiling. The use of a glycan microarray based on evanescent-field fluorescence detection was herein further extended to the screening of lectin inhibitors in competitive experiments. The efficacy of this approach was tested with 2/3'-mono- and 2,3'-diaromatic type II lactosamine derivatives and galectins as targets and was validated by comparison with fluorescence anisotropy proposed as an orthogonal protein interaction measurement technique. We showed that subtle differences in the architecture of the inhibitor could be sensed that pointed out the preference of galectin-3 for 2'-arylamido derivatives over ureas, thioureas, and amines and that of galectin-7 for derivatives bearing an α substituent at the anomeric position of glucosamine. We eventually identified a diaromatic oxazoline as a highly specific inhibitor of galectin-3 versus galectin-1 and galectin-7. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
SF2312 is a natural phosphonate inhibitor of Enolase
Maxwell, David; Lin, Yu-Hsi; Hammoudi, Naima; Peng, Zhenghong; Pisaneschi, Federica; Link, Todd M.; Lee, Gilbert R.; Sun, Duoli; Prasad, Basvoju A. Bhanu; Di Francesco, Maria Emilia; Czako, Barbara; Asara, John M.; Wang, Y. Alan; Bornmann, William; DePinho, Ronald A.; Muller, Florian L.
2016-01-01
Despite being critical for energy generation in most forms of life, few if any microbial antibiotics specifically inhibit glycolysis. To develop a specific inhibitor of the glycolytic enzyme Enolase 2 for the treatment of cancers with deletion of Enolase 1, we modeled the synthetic tool compound inhibitor, Phosphonoacetohydroxamate (PhAH) into the active site of human ENO2. A ring-stabilized analogue of PhAH, with the hydroxamic nitrogen linked to the alpha-carbon by an ethylene bridge, was predicted to increase binding affinity by stabilizing the inhibitor in a bound conformation. Unexpectedly, a structure based search revealed that our hypothesized back-bone-stabilized PhAH bears strong similarity to SF2312, a phosphonate antibiotic of unknown mode of action produced by the actinomycete Micromonospora, which is active under anaerobic conditions. Here, we present multiple lines of evidence, including a novel X-ray structure, that SF2312 is a highly potent, low nM inhibitor of Enolase. PMID:27723749
Kulkarni, Ashish; Natarajan, Siva Kumar; Chandrasekar, Vineethkrishna; Pandey, Prithvi Raj; Sengupta, Shiladitya
2016-09-29
A major limitation of immune checkpoint inhibitors is that only a small subset of patients achieve durable clinical responses. This necessitates the development of combinatorial regimens with immunotherapy. However, some combinations, such as MEK- or PI3K-inhibitors with a PD1-PDL1 checkpoint inhibitor, are pharmacologically challenging to implement. We rationalized that such combinations can be enabled using nanoscale supramolecular targeted therapeutics, which spatially home into tumors and exert temporally sustained inhibition of the target. Here we describe two case studies where nanoscale MEK- and PI3K-targeting supramolecular therapeutics were engineered using a quantum mechanical all-atomistic simulation-based approach. The combinations of nanoscale MEK- and PI3K-targeting supramolecular therapeutics with checkpoint PDL1 and PD1 inhibitors exert enhanced antitumor outcome in melanoma and breast cancers in vivo, respectively. Additionally, the temporal sequence of administration impacts the outcome. The combination of supramolecular therapeutics and immunotherapy could emerge as a paradigm shift in the treatment of cancer.
2-Arylbenzo[b]furan derivatives as potent human lipoxygenase inhibitors.
Lang, Li; Dong, Ningning; Wu, Deyan; Yao, Xue; Lu, Weiqiang; Zhang, Chen; Ouyang, Ping; Zhu, Jin; Tang, Yun; Wang, Wei; Li, Jian; Huang, Jin
2016-01-01
Human lipoxygenases (LOXs) have been emerging as effective therapeutic targets for inflammatory diseases. In this study, we found that four natural 2-arylbenzo[b]furan derivatives isolated from Artocarpus heterophyllus exhibited potent inhibitory activities against human LOXs, including moracin C (1), artoindonesianin B-1 (2), moracin D (3), moracin M (4). In our in vitro experiments, compound 1 was identified as the most potent LOX inhibitor and the moderate subtype selective inhibitor of 12-LOX. Compounds 1 and 2 act as competitive inhibitors of LOXs. Moreover, 1 significantly inhibits LTB4 production and chemotactic capacity of neutrophils, and is capable of protecting vascular barrier from plasma leakage in vivo. In addition, the preliminary structure-activity relationship analysis was performed based on the above four naturally occurring (1-4) and six additional synthetic 2-arylbenzo[b]furan derivatives. Taken together, these 2-arylbenzo[b]furan derivatives, as LOXs inhibitors, could represent valuable leads for the future development of therapeutic agents for inflammatory diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, Anthony M.; Cheung, Pamela; Swartz, Talia H.
Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors thatmore » block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.« less
Kumar, Anuradha; Casey, Allen; Odingo, Joshua; Kesicki, Edward A; Abrahams, Garth; Vieth, Michal; Masquelin, Thierry; Mizrahi, Valerie; Hipskind, Philip A; Sherman, David R; Parish, Tanya
2013-01-01
The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis. It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of PanC, optimized it for high-throughput screening, and tested a large and diverse library of compounds for activity. Two compounds belonging to the same chemical class of 3-biphenyl-4- cyanopyrrole-2-carboxylic acids had activity against the purified recombinant protein, and also inhibited growth of live M. tuberculosis in manner consistent with PanC inhibition. Thus we have identified a new class of PanC inhibitors with whole cell activity that can be further developed.
Brown, S A; Barnes, C; Curtin, J; Dunkley, S; Ockelford, P; Phillips, J; Rowell, J; Smith, M; Tran, H
2012-11-01
The management of bleeds in patients with haemophilia A or B complicated by inhibitors is complex. Recombinant activated Factor VII (rFVIIa; NovoSeven RT) is an established therapy in these patients. To develop a consensus-based guide on the practical usage of rFVIIa in haemophilia complicated by inhibitors, nine expert haemophilia specialists from Australia and New Zealand developed practice points on the usage of rFVIIa, based on their experience and supported by published data. Practice points were developed for 13 key topics: control of acute bleeding; prophylaxis; surgical prophylaxis; control of breakthrough bleeding during surgery or treatment of acute bleeds; paediatric use; use in elderly; intracranial haemorrhage; immune tolerance induction; difficult bleeds; clinical monitoring of therapy; laboratory monitoring of therapy; concomitant antifibrinolytic medication; practical dosing. Access to home therapy with rFVIIa is important in allowing patients to administer treatment early in bleed management. In adults, 90-120 μg/kg is the favoured starting dose in most settings. Initial dosing using 90-180 μg/kg is recommended for children due to the effect of age on the pharmacokinetics of rFVIIa. In the management of acute bleeds, 2-hourly dosing is appropriate until bleeding is controlled, with concomitant antifibrinolytic medication unless contraindicated. The practice points provide guidance on the usage of rFVIIa for all clinicians involved in the management of haemophilia complicated by inhibitors. © 2012 The Authors; Internal Medicine Journal © 2012 Royal Australasian College of Physicians.
Recent advances in the development of p21-activated kinase inhibitors.
Coleman, Natalia; Kissil, Joseph
2012-04-01
The p21-activated kinases (PAKs) are downstream effectors of the small G-proteins of the Rac and cdc42 family and have been implicated as essential for cell proliferation and survival. Recent studies have also demonstrated the promise of PAKs as therapeutic targets in various types of cancers. The PAKs are divided into two major groups (group I and II) based on sequence similarities. Although the different roles the PAK groups might play are not well understood, recent efforts have focused on the identification of kinase inhibitors that can discriminate between the two groups. In this review these efforts and newly identified inhibitors will be described and future directions discussed.
Ahamed, T K Shameera; Muraleedharan, K
2017-12-01
In this study, ligand based comparative molecular field analysis (CoMFA) with five principal components was performed on class of 3', 4'-dihydroxyflavone derivatives for potent rat 5-LOX inhibitors. The percentage contributions in building of CoMFA model were 91.36% for steric field and 8.6% for electrostatic field. R 2 values for training and test sets were found to be 0.9320 and 0.8259, respectively. In case of LOO, LTO and LMO cross validation test, q 2 values were 0.6587, 0.6479 and 0.5547, respectively. These results indicate that the model has high statistical reliability and good predictive power. The extracted contour maps were used to identify the important regions where the modification was necessary to design a new molecule with improved activity. The study has developed a homology model for rat 5-LOX and recognized the key residues at the binding site. Docking of most active molecule to the binding site of 5-LOX confirmed the stability and rationality of CoMFA model. Based on molecular docking results and CoMFA contour plots, new inhibitors with higher activity with respect to the most active compound in data set were designed. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng
2010-09-30
Bcr-Abl is the oncogenic protein tyrosine kinase responsible for chronic myeloid leukemia (CML). Treatment of the disease with imatinib (Gleevec) often results in drug resistance via kinase mutations at the advanced phases of the disease, which has necessitated the development of new mutation-resistant inhibitors, notably against the T315I gatekeeper mutation. As part of our efforts to discover such mutation resistant Abl inhibitors, we have focused on optimizing purine template kinase inhibitors, leading to the discovery of potent DFG-in and DFG-out series of Abl inhibitors that are also potent Src inhibitors. Here we present crystal structures of Abl bound by twomore » such inhibitors, based on a common N9-arenyl purine, and that represent both DFG-in and -out binding modes. In each structure the purine template is bound deeply in the adenine pocket and the novel vinyl linker forms a non-classical hydrogen bond to the gatekeeper residue, Thr315. Specific template substitutions promote either a DFG-in or -out binding mode, with the kinase binding site adjusting to optimize molecular recognition. Bcr-Abl T315I mutant kinase is resistant to all currently marketed Abl inhibitors, and is the focus of intense drug discovery efforts. Notably, our DFG-out inhibitor, AP24163, exhibits modest activity against this mutant, illustrating that this kinase mutant can be inhibited by DFG-out class inhibitors. Furthermore our DFG-out inhibitor exhibits dual Src-Abl activity, absent from the prototypical DFG-out inhibitor, imatinib as well as its analog, nilotinib. The data presented here provides structural guidance for the further design of novel potent DFG-out class inhibitors against Src, Abl and Abl T315I mutant kinases.« less
Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.
2016-01-01
This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods.Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed.The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.
Inhibitor development in non-severe haemophilia across Europe.
Fischer, Kathelijn; Iorio, Alfonso; Lassila, Riitta; Peyvandi, Flora; Calizzani, Gabriele; Gatt, Alex; Lambert, Thierry; Windyga, Jerzy; Gilman, Estelle A; Hollingsworth, R; Makris, Michael
2015-10-01
Evidence about inhibitor formation in non-severe haemophilia and the potential role for clotting factor concentrate type is scant. It was the aim of this study to report inhibitor development in non-severe haemophilia patients enrolled in the European Haemophilia Safety Surveillance (EUHASS) study. Inhibitors are reported quarterly and total treated patients annually. Incidence rates and 95% confidence intervals (95% CI) were calculated according to diagnosis and concentrate used. Between 1-10-2008 and 31-12-2012, 68 centres reported on 7,969 patients with non-severe haemophilia A and 1,863 patients with non-severe haemophilia B. For haemophilia A, 37 inhibitors occurred in 8,622 treatment years, resulting in an inhibitor rate of 0.43/100 treatment years (95% CI 0.30-0.59). Inhibitors occurred at a median age of 35 years, after a median of 38 exposure days (EDs; P25-P75: 20-80); with 72% occurring within the first 50 EDs. In haemophilia B, one inhibitor was detected in 2,149 treatment years, resulting in an inhibitor rate of 0.05/100 years (95% CI 0.001-0.26). This inhibitor developed at the age of six years, after six EDs. The rate of inhibitors appeared similar across recombinant and plasma derived factor VIII (FVIII) concentrates. Rates for individual concentrates could not be calculated at this stage due to low number of events. In conclusion, inhibitors in non-severe haemophilia occur three times more frequently than in previously treated patients with severe haemophilia at a rate of 0.43/100 patient years (haemophilia A) and 0.05/100 years (haemophilia B). Although the majority of inhibitors developed in the first 50 EDs, inhibitor development continued with increasing exposure to FVIII.
Iminopyrimidinones: A novel pharmacophore for the development of orally active renin inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKittrick, Brian A.; Caldwell, John P.; Bara, Thomas
2015-04-01
The development of renin inhibitors with favorable oral pharmacokinetic profiles has been a longstanding challenge for the pharmaceutical industry. As part of our work to identify inhibitors of BACE1, we have previously developed iminopyrimidinones as a novel pharmacophore for aspartyl protease inhibition. In this letter we describe how we modified substitution around this pharmacophore to develop a potent, selective and orally active renin inhibitor.
A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes.
Cohen, Seth M
2017-08-15
Metal-dependent enzymes (i.e., metalloenzymes) make up a large fraction of all enzymes and are critically important in a wide range of biological processes, including DNA modification, protein homeostasis, antibiotic resistance, and many others. Consequently, metalloenzymes represent a vast and largely untapped space for drug development. The discovery of effective therapeutics that target metalloenzymes lies squarely at the interface of bioinorganic and medicinal chemistry and requires expertise, methods, and strategies from both fields to mount an effective campaign. In this Account, our research program that brings together the principles and methods of bioinorganic and medicinal chemistry are described, in an effort to bridge the gap between these fields and address an important class of medicinal targets. Fragment-based drug discovery (FBDD) is an important drug discovery approach that is particularly well suited for metalloenzyme inhibitor development. FBDD uses relatively small but diverse chemical structures that allow for the assembly of privileged molecular collections that focus on a specific feature of the target enzyme. For metalloenzyme inhibition, the specific feature is rather obvious, namely, a metal-dependent active site. Surprisingly, prior to our work, the exploration of diverse molecular fragments for binding the metal active sites of metalloenzymes was largely unexplored. By assembling a modest library of metal-binding pharmacophores (MBPs), we have been able to find lead hits for many metalloenzymes and, from these hits, develop inhibitors that act via novel mechanisms of action. A specific case study on the use of this strategy to identify a first-in-class inhibitor of zinc-dependent Rpn11 (a component of the proteasome) is highlighted. The application of FBDD for the development of metalloenzyme inhibitors has raised several other compelling questions, such as how the metalloenzyme active site influences the coordination chemistry of bound fragments, how one can identify the best fragments for a given metalloenzyme, and many others. Among the most significant, and concerning, questions for metalloenzyme inhibition are those that reside around issues of specificity and whether metalloenzyme inhibitors can be as selective and specific as other small molecule inhibitors (i.e., compounds that inhibit enzymes that do not utilize a metal at their active site). This also leads to the question of whether metalloenzyme inhibitors might interfere more broadly with the metallome. Efforts to address these and related questions are discussed, with the expectation that our findings will illuminate some of these topics, alleviate some of these concerns, and encourage greater interest in this important, undervalued class of drug targets.
Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W.; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E.; Knudson, Susan E.; Bommineni, Gopal R.; Walker, Stephen G.; Slayden, Richard A.; Sotriffer, Christoph A.; Tonge, Peter J.; Kisker, Caroline
2014-01-01
Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms. PMID:24739388
Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E; Knudson, Susan E; Bommineni, Gopal R; Walker, Stephen G; Slayden, Richard A; Sotriffer, Christoph A; Tonge, Peter J; Kisker, Caroline
2014-06-06
Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Unexpected involvement of staple leads to redesign of selective bicyclic peptide inhibitor of Grb7
NASA Astrophysics Data System (ADS)
Gunzburg, Menachem J.; Kulkarni, Ketav; Watson, Gabrielle M.; Ambaye, Nigus D.; Del Borgo, Mark P.; Brandt, Rebecca; Pero, Stephanie C.; Perlmutter, Patrick; Wilce, Matthew C. J.; Wilce, Jacqueline A.
2016-06-01
The design of potent and specific peptide inhibitors to therapeutic targets is of enormous utility for both proof-of-concept studies and for the development of potential new therapeutics. Grb7 is a key signaling molecule in the progression of HER2 positive and triple negative breast cancers. Here we report the crystal structure of a stapled bicyclic peptide inhibitor G7-B1 in complex with the Grb7-SH2 domain. This revealed an unexpected binding mode of the peptide, in which the staple forms an alternative contact with the surface of the target protein. Based on this structural information, we designed a new series of bicyclic G7 peptides that progressively constrain the starting peptide, to arrive at the G7-B4 peptide that binds with an approximately 2-fold enhanced affinity to the Grb7-SH2 domain (KD = 0.83 μM) compared to G7-B1 and shows low affinity binding to Grb2-, Grb10- and Grb14-SH2 domains (KD > 100 μM). Furthermore, we determined the structure of the G7-B4 bicyclic peptide in complex with the Grb7-SH2 domain, both before and after ring closing metathesis to show that the closed staple is essential to the target interaction. The G7-B4 peptide represents an advance in the development of Grb7 inhibitors and is a classical example of structure aided inhibitor development.
Fun, Axel; van Maarseveen, Noortje M; Pokorná, Jana; Maas, Renée Em; Schipper, Pauline J; Konvalinka, Jan; Nijhuis, Monique
2011-08-24
Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different proteases. These findings highlight the complicated interactions between the viral protease and its substrate. By providing a better understanding of these interactions, we aim to help guide the development of second generation maturation inhibitors.
Wagner, Christian; Pan, Yuzhuo; Hsu, Vicky; Grillo, Joseph A; Zhang, Lei; Reynolds, Kellie S; Sinha, Vikram; Zhao, Ping
2015-01-01
The US Food and Drug Administration (FDA) has seen a recent increase in the application of physiologically based pharmacokinetic (PBPK) modeling towards assessing the potential of drug-drug interactions (DDI) in clinically relevant scenarios. To continue our assessment of such approaches, we evaluated the predictive performance of PBPK modeling in predicting cytochrome P450 (CYP)-mediated DDI. This evaluation was based on 15 substrate PBPK models submitted by nine sponsors between 2009 and 2013. For these 15 models, a total of 26 DDI studies (cases) with various CYP inhibitors were available. Sponsors developed the PBPK models, reportedly without considering clinical DDI data. Inhibitor models were either developed by sponsors or provided by PBPK software developers and applied with minimal or no modification. The metric for assessing predictive performance of the sponsors' PBPK approach was the R predicted/observed value (R predicted/observed = [predicted mean exposure ratio]/[observed mean exposure ratio], with the exposure ratio defined as [C max (maximum plasma concentration) or AUC (area under the plasma concentration-time curve) in the presence of CYP inhibition]/[C max or AUC in the absence of CYP inhibition]). In 81 % (21/26) and 77 % (20/26) of cases, respectively, the R predicted/observed values for AUC and C max ratios were within a pre-defined threshold of 1.25-fold of the observed data. For all cases, the R predicted/observed values for AUC and C max were within a 2-fold range. These results suggest that, based on the submissions to the FDA to date, there is a high degree of concordance between PBPK-predicted and observed effects of CYP inhibition, especially CYP3A-based, on the exposure of drug substrates.
Hu, Yue; Miao, Zhao-Yi; Zhang, Xiao-Jing; Yang, Xiao-Tong; Tang, Ying-Ying; Yu, Sheng; Shan, Chen-Xiao; Wen, Hong-Mei; Zhu, Dong
2018-05-01
The currently utilized ligand fishing for bioactive molecular screening from complex matrixes cannot perform imaging screening. Here, we developed a new solid-phase ligand fishing coupled with an in situ imaging protocol for the specific enrichment and identification of heat shock protein 90 (Hsp 90) inhibitors from Tripterygium wilfordii, utilizing a multiple-layer and microkernel-based mesoporous nanostructure composed of a protective silica coating CdTe quantum dot (QD) core and a mesoporous silica shell, i.e., microkernel-based mesoporous (SiO 2 -CdTe-SiO 2 )@SiO 2 fluorescent nanoparticles (MMFNPs) as extracting carries and fluorescent probes. The prepared MMFNPs showed a highly uniform spherical morphology, retention of fluorescence emission, and great chemical stability. The fished ligands by Hsp 90α-MMFNPs were evaluated via the preliminary bioactivity based on real-time cellular morphology imaging by confocal laser scanning microscopy (CLSM) and then identified by mass spectrometry (MS). Celastrol was successfully isolated as an Hsp 90 inhibitor, and two other specific components screened by Hsp 90α-MMFNPs, i.e., demecolcine and wilforine, were preliminarily identified as potential Hsp 90 inhibitors through the verification of strong affinity to Hsp 90 and antitumor bioactivity. The approach based on the MMFNPs provides a strong platform for imaging screening and discovery of plant-derived biologically active molecules with high efficiency and selectivity.
Ziarek, Joshua J.; Liu, Yan; Smith, Emmanuel; Zhang, Guolin; Peterson, Francis C.; Chen, Jun; Yu, Yongping; Chen, Yu; Volkman, Brian F.; Li, Rongshi
2013-01-01
The chemokine CXCL12 and its G protein-coupled receptor (GPCR) CXCR4 are high-priority clinical targets because of their involvement in metastatic cancers (also implicated in autoimmune disease and cardiovascular disease). Because chemokines interact with two distinct sites to bind and activate their receptors, both the GPCRs and chemokines are potential targets for small molecule inhibition. A number of chemokines have been validated as targets for drug development, but virtually all drug discovery efforts focus on the GPCRs. However, all CXCR4 receptor antagonists with the exception of MSX-122 have failed in clinical trials due to unmanageable toxicities, emphasizing the need for alternative strategies to interfere with CXCL12/CXCR4-guided metastatic homing. Although targeting the relatively featureless surface of CXCL12 was presumed to be challenging, focusing efforts at the sulfotyrosine (sY) binding pockets proved successful for procuring initial hits. Using a hybrid structure-based in silico/NMR screening strategy, we recently identified a ligand that occludes the receptor recognition site. From this initial hit, we designed a small fragment library containing only nine tetrazole derivatives using a fragment-based and bioisostere approach to target the sY binding sites of CXCL12. Compound binding modes and affinities were studied by 2D NMR spectroscopy, X-ray crystallography, molecular docking and cell-based functional assays. Our results demonstrate that the sY binding sites are conducive to the development of high affinity inhibitors with better ligand efficiency (LE) than typical protein-protein interaction inhibitors (LE ≤ 0.24). Our novel tetrazole-based fragment 18 was identified to bind the sY21 site with a Kd of 24 μM (LE = 0.30). Optimization of 18 yielded compound 25 which specifically inhibits CXCL12-induced migration with an improvement in potency over the initial hit 9. The fragment from this library that exhibited the highest affinity and ligand efficiency (11: Kd = 13 μM, LE = 0.33) may serve as a starting point for development of inhibitors targeting the sY12 site. PMID:23368099
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laufersweiler, Matthew; Brugel, Todd; Clark, Michael
Novel substituted [5,5]-bicyclic pyrzazolones are presented as inhibitors of tumor necrosis factor-{alpha} (TNF-{alpha}) production. Many of these compounds show low nanomolar activity against lipopolysaccaride (LPS)-induced TNF-{alpha} production in THP-1 cells. This class of molecules was co-crystallized with mutated p38, and several analogs showed good oral bioavailability in the rat. Oral activity of these compounds in the rat iodoacetate model for osteoarthritis is discussed.
Testing and Evaluation of Multifunctional Smart Coatings
NASA Technical Reports Server (NTRS)
Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.; Pearman, Benjamin; Zhang, Xuejun
2015-01-01
A smart coating system, based on pH sensitive microcontainers (microparticles and microcapsules) has been developed. Various corrosion inhibitors have been encapsulated and incorporated into commercial and formulated coatings to test the functionality imparted on the coating by the incorporation of the inhibitor microcontainers. Coated carbon steel and aluminum alloy panels were tested using salt immersion, salt fog, and coastal atmospheric exposure conditions. This paper provides the details on coating sample preparation, evaluation methods, as well as test results of the inhibiting function of smart coatings.
Structure Based Discovery of Pan Active Botulinum Neurotoxin Inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieni, Casey; McGillick, Brian; Kumaran, Desigan
Clostridium botulinum neurotoxins (BoNTs) released by the bacterium Clostridium botulinum are the most potent toxins causing the fatal disease called botulism. There are seven distinct serotypes of BoNTs (A to G) released by various strains of botulinum. They all have high sequence homology and similar three-dimensional structure. The toxicity of BoNT follows a four-step process – binding, internalization, translocation, and cleavage of its target protein, one of the three components of the SNARE complex (Soluble N-ethylmaleimde-sensitive factor attachment protein receptor) required for membrane docking and neurotransmitter release. Cleavage of one of the three proteins causes blockage of neurotransmitter release leadingmore » to flaccid paralysis. Though anyone of the above four steps could be a target for developing antidotes for botulism, the catalytic domain is the most suitable target for post exposure treatment. Of the seven serotypes BoNT/A, B, E and probably F affect humans, with BoNT/A considered to be the most potent. Development of drugs for botulism is focused on serotype specific inhibitors, but a pan-active inhibitor acting on several serotypes is preferable since it is difficult to identify the serotype before the treatment, especially since there is at least a 36-hour window before botulism can be diagnosed. Using structure-based drug discovery, we have developed three heptapeptides based on the SNARE proteins which inhibit BoNT/A, B and E equally well. Probable reasons for pan-activity of these peptides are discussed.« less
Structure Based Discovery of Pan Active Botulinum Neurotoxin Inhibitors
Vieni, Casey; McGillick, Brian; Kumaran, Desigan; ...
2018-02-14
Clostridium botulinum neurotoxins (BoNTs) released by the bacterium Clostridium botulinum are the most potent toxins causing the fatal disease called botulism. There are seven distinct serotypes of BoNTs (A to G) released by various strains of botulinum. They all have high sequence homology and similar three-dimensional structure. The toxicity of BoNT follows a four-step process – binding, internalization, translocation, and cleavage of its target protein, one of the three components of the SNARE complex (Soluble N-ethylmaleimde-sensitive factor attachment protein receptor) required for membrane docking and neurotransmitter release. Cleavage of one of the three proteins causes blockage of neurotransmitter release leadingmore » to flaccid paralysis. Though anyone of the above four steps could be a target for developing antidotes for botulism, the catalytic domain is the most suitable target for post exposure treatment. Of the seven serotypes BoNT/A, B, E and probably F affect humans, with BoNT/A considered to be the most potent. Development of drugs for botulism is focused on serotype specific inhibitors, but a pan-active inhibitor acting on several serotypes is preferable since it is difficult to identify the serotype before the treatment, especially since there is at least a 36-hour window before botulism can be diagnosed. Using structure-based drug discovery, we have developed three heptapeptides based on the SNARE proteins which inhibit BoNT/A, B and E equally well. Probable reasons for pan-activity of these peptides are discussed.« less
Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li
2015-01-01
The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase-ligand interaction space in the PDB.
NASA Astrophysics Data System (ADS)
Lawrenz, Morgan E.; Salter, E. A.; Wierzbicki, Andrzej; Thompson, W. J.
Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of enzymes that hydrolyze the second messengers adenosine and guanosine 3',5'-cyclic monophosphate (cAMP and cGMP) to their noncyclic nucleotides (5'-AMP and 5'-GMP). Selective inhibitors of all 11 gene families of PDEs are being sought based on the different biochemical properties of the different isoforms, including their substrate specificities. The PDE4 gene family consists of cAMP-specific isoforms; selective PDE4 inhibitors such as rolipram have been developed, and related agents are used clinically as anti-inflammatory agents for asthma and COPD. The known crystal structures of PDE4 bound with rolipram and IBMX have allowed us to define plausible binding orientations for a novel class of benzylpyridazinone-based PDE4 inhibitors represented by EMD 94360 and EMD 95832 that are structurally distinct from rolipram. Molecular mechanics modeling with autodocking is used to explore energetically favorable binding orientations within the PDE4 catalytic site. We present two putative orientations for EMD 94360/95832 inhibitor binding. Our estimated interaction energies for rolipram, IBMX, EMD 94360, and EMD 95832 are consistent with the experimental data for their IC50 values. Key binding residues and interactions in these orientations are identified and compared with known binding motifs proposed for rolipram. The experimentally observed improved strength of inhibition exhibited by this novel class of PDE4 inhibitors is explained by the molecular modeling reported here.
Drerup, Christian; Ermert, Johannes; Coenen, Heinz H
2016-09-01
Nitric oxide (NO), an important multifunctional signaling molecule, is produced by three isoforms of NO-synthase (NOS) and has been associated with neurodegenerative disorders. Selective inhibitors of the subtypes iNOS (inducible) or nNOS (neuronal) are of great interest for decoding neurodestructive key factors, and (18)F-labelled analogues would allow investigating the NOS-function by molecular imaging with positron emission tomography. Especially, the highly selective nNOS inhibitor 6-((3-((3-fluorophenethylamino)methyl)phenoxy)methyl)-4-methylpyridin-2-amine (10) lends itself as suitable compound to be (18)F-labelled in no-carrier-added (n.c.a.) form. For preparation of the (18)F-labelled nNOS-Inhibitor [(18)F]10 a "build-up" radiosynthesis was developed based on a corresponding iodonium ylide as labelling precursor. The such activated phenethyl group of the compound was efficiently and regioselectively labelled with n.c.a. [(18)F]fluoride in 79% radiochemical yield (RCY). After conversion by reductive amination and microwave assisted displacement of the protecting groups, the desired nNOS-inhibitor was obtained in about 15% total RCY. Alternatively, for a simplified "late-stage" (18)F-labelling procedure a corresponding boronic ester precursor was synthesized and successfully used in a newer, copper(II) mediated n.c.a. (18)F-fluoro-deboroniation reaction, achieving the same total RCY. Thus, both methods proved comparatively suited to provide the highly selective NOS-inhibitor [(18)F]10 as probe for preclinical in vivo studies.
Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li
2015-01-01
The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase–ligand interaction space in the PDB. PMID:26229444
De Luca, Laura; Mancuso, Francesca; Ferro, Stefania; Buemi, Maria Rosa; Angeli, Andrea; Del Prete, Sonia; Capasso, Clemente; Supuran, Claudiu T; Gitto, Rosaria
2018-01-01
Coumarin derivatives are a peculiar class of inhibitors of the family of metalloenzymes carbonic anhydrases (CA, EC 4.2.1.1). Several coumarins display higher affinity and selectivity toward most relevant and druggable CA isoforms. By decorating the natural compound umbelliferone (1) we have identified a new series of coumarin-based compounds demonstrating high CA inhibitory effects with nanomolar affinity for hCA IX and hCA XII isoforms that were considered a target amenable to develop antitumor agents. The most active tested compounds proved to be potent inhibitors with K i values equal to that of the well-known inhibitor acetazolamide (AAZ), that lacks selectivity over ubiquitous hCA I and hCA II. As suggested by docking studies the coumarins, that are lacking of the canonical metal binding groups, do not interact with Zinc ion within the catalytic site as found for classical sulfonamide type inhibitors of CAs. Thus, the studied inhibitors might possess a non-classical inhibitory mode of action preventing the carbon dioxide to entry into catalytic cavity and its conversion into bicarbonate ion. Specifically, the most active inhibitor of hCA XII compound 18i (K i value of 5.5 nM) and its supposed hydrolytic products could establish a web of H-bond interactions within the enzymatic cavity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors
Liu, Tong-chao; Peng, Xia; Ma, Yu-chi; Ji, Yin-chun; Chen, Dan-qi; Zheng, Ming-yue; Zhao, Dong-mei; Cheng, Mao-sheng; Geng, Mei-yu; Shen, Jing-kang; Ai, Jing; Xiong, Bing
2016-01-01
Aim: Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Methods: Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. Results: The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. Conclusion: This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs. PMID:27041462
Parra Lopez, Rafael; Nemes, Laszlo; Jimenez-Yuste, Victor; Rusen, Luminita; Cid, Ana R; Charnigo, Robert J; Baumann, James A; Smith, Lynne; Korth-Bradley, Joan M; Rendo, Pablo
2015-10-01
This prospective, open-label, postauthorisation safety surveillance study assessed clinically significant inhibitor development in patients with severe haemophilia A transitioning from moroctocog alfa or other factor VIII (FVIII) replacement products to reformulated moroctocog alfa (AF-CC). Males aged ≥ 12 years with severe haemophilia A (FVIII:C) < 1 IU/dl), > 150 exposure days (EDs) to recombinant or plasma-derived FVIII products, and no detectable inhibitor at screening were enrolled. Primary end point was the incidence of clinically significant FVIII inhibitor development. Secondary end points included annualised bleeding rate (ABR), less-than-expected therapeutic effect (LETE), and FVIII recovery. Patients were assigned to one of two cohorts based on whether they were transitioning to moroctocog alfa (AF-CC) from moroctocog alfa (cohort 1; n=146) or from another recombinant or plasma-derived FVIII product (cohort 2; n=62). Mean number of EDs on study was 94 (range, 1-139). Six positive FVIII inhibitor results, as determined by local laboratories, were reported in four patients; none were confirmed by a central laboratory, no inhibitor-related clinical manifestations were reported, and all anti-FVIII antibody assays were negative. Median ABRs were 23.4 and 3.4 in patients categorised at baseline as following on-demand and prophylactic regimens, respectively; 86.5% of bleeding episodes resolved after one infusion. LETE incidence was 0.06% and 0.19% in the on-demand and prophylaxis settings, respectively. FVIII recovery remained constant throughout the study. No new safety concerns were identified. This study found no increased risk of clinically significant FVIII inhibitor development in patients transitioning from moroctocog alfa or other FVIII replacement products to moroctocog alfa (AF-CC).
Development of a high-throughput screen to detect inhibitors of TRPS1 sumoylation.
Brandt, Martin; Szewczuk, Lawrence M; Zhang, Hong; Hong, Xuan; McCormick, Patricia M; Lewis, Tia S; Graham, Taylor I; Hung, Sunny T; Harper-Jones, Amber D; Kerrigan, John J; Wang, Da-Yuan; Dul, Edward; Hou, Wangfang; Ho, Thau F; Meek, Thomas D; Cheung, Mui H; Johanson, Kyung O; Jones, Christopher S; Schwartz, Benjamin; Kumar, Sanjay; Oliff, Allen I; Kirkpatrick, Robert B
2013-06-01
Small ubiquitin-like modifier (SUMO) belongs to the family of ubiquitin-like proteins (Ubls) that can be reversibly conjugated to target-specific lysines on substrate proteins. Although covalently sumoylated products are readily detectible in gel-based assays, there has been little progress toward the development of robust quantitative sumoylation assay formats for the evaluation of large compound libraries. In an effort to identify inhibitors of ubiquitin carrier protein 9 (Ubc9)-dependent sumoylation, a high-throughput fluorescence polarization assay was developed, which allows detection of Lys-1201 sumoylation, corresponding to the major site of functional sumoylation within the transcriptional repressor trichorhino-phalangeal syndrome type I protein (TRPS1). A minimal hexapeptide substrate peptide, TMR-VVK₁₂₀₁TEK, was used in this assay format to afford high-throughput screening of the GlaxoSmithKline diversity compound collection. A total of 728 hits were confirmed but no specific noncovalent inhibitors of Ubc9 dependent trans-sumoylation were found. However, several diaminopyrimidine compounds were identified as inhibitors in the assay with IC₅₀ values of 12.5 μM. These were further characterized to be competent substrates which were subject to sumoylation by SUMO-Ubc9 and which were competitive with the sumoylation of the TRPS1 peptide substrates.
NASA Astrophysics Data System (ADS)
Li, Wenlian; Si, Hongzong; Li, Yang; Ge, Cuizhu; Song, Fucheng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin
2016-08-01
Viral hepatitis C infection is one of the main causes of the hepatitis after blood transfusion and hepatitis C virus (HCV) infection is a global health threat. The HCV NS5B polymerase, an RNA dependent RNA polymerase (RdRp) and an essential role in the replication of the virus, has no functional equivalent in mammalian cells. So the research and development of efficient NS5B polymerase inhibitors provides a great strategy for antiviral therapy against HCV. A combined three-dimensional quantitative structure-activity relationship (QSAR) modeling was accomplished to profoundly understand the structure-activity correlation of a train of indole-based inhibitors of the HCV NS5B polymerase to against HCV. A comparative molecular similarity indices analysis (COMSIA) model as the foundation of the maximum common substructure alignment was developed. The optimum model exhibited statistically significant results: the cross-validated correlation coefficient q2 was 0.627 and non-cross-validated r2 value was 0.943. In addition, the results of internal validations of bootstrapping and Y-randomization confirmed the rationality and good predictive ability of the model, as well as external validation (the external predictive correlation coefficient rext2 = 0.629). The information obtained from the COMSIA contour maps enables the interpretation of their structure-activity relationship. Furthermore, the molecular docking study of the compounds for 3TYV as the protein target revealed important interactions between active compounds and amino acids, and several new potential inhibitors with higher activity predicted were designed basis on our analyses and supported by the simulation of molecular docking. Meanwhile, the OSIRIS Property Explorer was introduced to help select more satisfactory compounds. The satisfactory results from this study may lay a reliable theoretical base for drug development of hepatitis C virus NS5B polymerase inhibitors.
Chen, Wenmin; Zhan, Peng; Wu, Jingde; Li, Zhenyu; Liu, Xinyong
2012-01-01
1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) was discovered as the first HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) in 1989. The research on HEPT derivatives (HEPTs) has been lasted for more than 20 years and HEPT family is probably the most investigated NNRTI. Extensive molecular modifications on HEPT have led to many highly potent compounds with broad-resistance spectrum and optimal pharmacokinetic profiles. Moreover, X-crystallographic studies of HEPTs/RT complexes revealed the binding mode of HEPTs and the action mechanism of NNRTI, which has greatly facilitated the design of novel NNRTIs. Recently, the development of HEPTs was accelerated by the application of the "follow-on"-based chemical evolution strategies, such as designed multiple ligands (DMLs) and molecular hybridization (MH). Herein, this article will provide an insight into the development of HEPTs, including structural modifications, crystal structure of RT complexed with HEPTs and its structure-activity relationship (SAR). Additionally, this review also covers the emerging HEPT related dual inhibitors and HEPT-pyridinone hybrids, as well as the contributions of HEPTs to the development of dihydro-alkoxy-benzyl-oxopyrimidine (DABO) family, thus highlighting the importance of HEPTs on the development of NNRTIs.
Tuberculosis (TB) is an infectious disease that typically affects the lungs. Current therapies include a panel of antibiotics given over a range of 6-9 months. As a result of the expense of treatment, the extended timeframe needed for effective treatment, and the scarcity of medicines in some developing countries, patient compliance with TB treatment is very low and results in multi-drug resistant TB (MDR-TB). There remains a need for a faster, more effective treatment for TB. NCI researchers seek licensing and/or co-development of peptide inhibitors of STAT3 and IL-10 developed to treat bacterial infections such as tuberculosis. See aslo: NIH inventions E-164-2007 and E-167-2010
The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies.
Reales-Calderón, Jose A; Molero, Gloria; Gil, Concha; Martínez, José L
2016-08-01
The risks for toxicity of novel antifungal compounds, together with the emergence of resistance, makes the use of inhibitors of resistance, in combination with antifungal compounds, a suitable strategy for developing novel antifungal formulations. Among them, inhibitors of efflux pumps are suitable candidates. Increasing drug influx or interfering with the stress response may also improve the efficacy of antifungals. Therapies as induction of fungal apoptosis or immunostimulation are also good strategies for reducing the risks for resistance and to improve antifungals' efficacy. Understanding the effect of the acquisition of resistance on the fungal physiology and determining the collateral sensitivity networks are useful for the development of novel strategies based on combination of antifungals for improving the efficacy of the therapy.
2010-01-01
Human papillomaviruses (HPVs) are the most common on sexually transmitted viruses in the world. HPVs are responsible for a large spectrum of deseases, both benign and malignant. The certain types of HPV are involved in the development of cervical cancer. In attemps to find additional drugs in the treatment of cervical cancer, inhibitors of the histone deacetylases (HDAC) have received much attention due to their low cytotoxic profiles and the E6/E7 oncogene function of human papilomavirus can be completely by passed by HDAC inhibition. The histone deacetylase inhibitors can induce growth arrest, differentiation and apoptosis of cancer cells. HDAC class I and class II are considered the main targets for cancer. Therefore, the six HDACs class II was modeled and about two inhibitors (SAHA and TSA) were docked using AutoDock4.2, to each of the inhibitor in order to identify the pharmacological properties. Based on the results of docking, SAHA and TSA were able to bind with zinc ion in HDACs models as a drug target. SAHA was satisfied almost all the properties i.e., binding affinity, the Drug-Likeness value and Drug Score with 70% oral bioavailability and the carbonyl group of these compound fits well into the active site of the target where the zinc is present. Hence, SAHA could be developed as potential inhibitors of class II HDACs and valuable cervical cancer drug candidate. PMID:21106123
Tambunan, Usman Sumo Friend; Wulandari, Evi Kristin
2010-10-15
Human papillomaviruses (HPVs) are the most common on sexually transmitted viruses in the world. HPVs are responsible for a large spectrum of deseases, both benign and malignant. The certain types of HPV are involved in the development of cervical cancer. In attemps to find additional drugs in the treatment of cervical cancer, inhibitors of the histone deacetylases (HDAC) have received much attention due to their low cytotoxic profiles and the E6/E7 oncogene function of human papilomavirus can be completely by passed by HDAC inhibition. The histone deacetylase inhibitors can induce growth arrest, differentiation and apoptosis of cancer cells. HDAC class I and class II are considered the main targets for cancer. Therefore, the six HDACs class II was modeled and about two inhibitors (SAHA and TSA) were docked using AutoDock4.2, to each of the inhibitor in order to identify the pharmacological properties. Based on the results of docking, SAHA and TSA were able to bind with zinc ion in HDACs models as a drug target. SAHA was satisfied almost all the properties i.e., binding affinity, the Drug-Likeness value and Drug Score with 70% oral bioavailability and the carbonyl group of these compound fits well into the active site of the target where the zinc is present. Hence, SAHA could be developed as potential inhibitors of class II HDACs and valuable cervical cancer drug candidate.
Corrosion inhibitors for water-base slurry in multiblade sawing
NASA Technical Reports Server (NTRS)
Chen, C. P.; Odonnell, T. P.
1982-01-01
The use of a water-base slurry instead of the standard PC oil vehicle was proposed for multiblade sawing (MBS) silicon wafering technology. Potential cost savings were considerable; however, significant failures of high-carbon steel blades were observed in limited tests using a water-based slurry during silicon wafering. Failures were attributed to stress corrosion. A specially designed fatigue test of 1095 steel blades in distilled water with various corrosion inhibitor solutions was used to determine the feasibility of using corrosion inhibitors in water-base MBS wafering. Fatigue tests indicate that several corrosion inhibitors have significant potential for use in a water-base MBS operation. Blade samples tested in these specific corrosion-inhibitor solutions exhibited considerably greater lifetime than those blades tested in PC oil.
Sagiv, Oded; Kandl, Thomas J; Thakar, Sudip D; Thuro, Bradley A; Busaidy, Naifa L; Cabanillas, Maria; Jimenez, Camilo; Dadu, Ramona; Graham, Paul H; Debnam, J Matthew; Esmaeli, Bita
2018-06-19
To describe thyroid eye disease (TED)-like orbital inflammatory syndrome in 3 cancer patients treated with immune checkpoint inhibitors. All consecutive patients treated by the senior author who were receiving immune checkpoint inhibitors and developed TED-like orbital inflammation were included. Three cancer patients treated with immune checkpoint inhibitors developed orbital inflammation. The first patient was treated with a combination of a cytotoxic T-lymphocyte antigen-4 inhibitor and a programmed cell death protein 1 inhibitor and developed TED-like orbital inflammation with normal thyroid function and antibody levels. The second patient had a previous diagnosis of Graves disease without TED, and developed TED soon after initiating treatment with a programmed cell death protein 1 inhibitor. The third patient developed acute hyperthyroidism with symptomatic TED following treatment with an investigational cytotoxic T-lymphocyte antigen-4 inhibitor agent. All 3 patients were managed with either systemic steroids or observation, with resolution of their symptoms and without the need to halt immune checkpoint inhibitor treatment for their cancer. TED-like orbital inflammation may occur as a side effect of immune checkpoint inhibitor therapy with anti-cytotoxic T-lymphocyte antigen-4 or anti-PD-1 inhibitors. To the best of their knowledge, this is the first reported case of TED as a result of programmed cell death protein 1 inhibitor monotherapy. All 3 patients were treated with systemic steroids and responded quickly while continuing treatment with immune checkpoint inhibitors for their cancer. With increasing use of this class of drugs, clinicians should be familiar with the clinical manifestations and treatments for this adverse reaction.
Amprenavir, new protease inhibitor, approved.
James, J S
1999-05-07
A new protease inhibitor, amprenavir (Agenerase), has received FDA marketing approval. The approval was based on two 24-week controlled trials and safety data in more than 1,400 patients under FDA accelerated-approval rules. Amprenavir is approved for patients 4 years of age and older. The drug is taken twice daily, with or without food. Side effects include gastrointestinal disturbances, rashes, and oral paresthesia. Severe or life-threatening rashes have occurred in 1 percent of all patients. Pregnant women should not use the drug unless necessary. The drug was developed by Vertex Pharmaceuticals Inc. and is being marketed by Glaxo Wellcome. Some studies suggest that amprenavir is less likely than other protease inhibitors to be associated with lipid metabolism problems. It may have a resistance profile different from that of other protease inhibitors, and therefore may cause different cross resistance problems. Amprenavir appears to be synergistic with abacavir (Ziagen) in laboratory tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eung-Yoon; Choi, Young-Jin; Innopharmascreen, Inc., Asan 336-795
2009-11-20
Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these datamore » suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.« less
Identification of Broad-Based HIV-1 Protease Inhibitors From Combinatorial Libraries
Chang, Max W.; Giffin, Michael J.; Muller, Rolf; Savage, Jeremiah; Lin, Ying C.; Hong, Sukwon; Jin, Wei; Whitby, Landon R.; Elder, John H.; Boger, Dale L.; Torbett, Bruce E.
2011-01-01
Clinically approved inhibitors of HIV-1 protease function via a competitive mechanism. A particular vulnerability of competitive inhibitors is their sensitivity to increases in substrate concentration, as may occur during virion assembly, budding and processing into a mature, infectious viral particle. Advances in chemical synthesis have led to the development of new chemical libraries with high diversity using rapid in-solution syntheses. These libraries have been previously shown to be effective at disrupting protein-protein and protein-nucleic acid interfaces. We have screened 44,000 compounds from such a library to identify inhibitors of HIV-1 protease. One compound was identified that inhibits wild type protease, as well as a drug-resistant protease with 6 mutations. Moreover, analysis of this compound suggests an allosteric, non-competitive mechanism of inhibition and may represent a starting point for an additional strategy for anti-retroviral therapy. PMID:20507280
Inhibitors for human glutaminyl cyclase by structure based design and bioisosteric replacement.
Buchholz, Mirko; Hamann, Antje; Aust, Susanne; Brandt, Wolfgang; Böhme, Livia; Hoffmann, Torsten; Schilling, Stephan; Demuth, Hans-Ulrich; Heiser, Ulrich
2009-11-26
The inhibition of human glutaminyl cyclase (hQC) has come into focus as a new potential approach for the treatment of Alzheimer's disease. The hallmark of this principle is the prevention of the formation of Abeta(3,11(pE)-40,42), as these Abeta-species were shown to be of elevated neurotoxicity and likely to act as a seeding core leading to an accelerated formation of Abeta-oligomers and fibrils. Starting from 1-(3-(1H-imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)thiourea, bioisosteric replacements led to the development of new classes of inhibitors. The optimization of the metal-binding group was achieved by homology modeling and afforded a first insight into the probable binding mode of the inhibitors in the hQC active site. The efficacy assessment of the hQC inhibitors was performed in cell culture, directly monitoring the inhibition of Abeta(3,11(pE)-40,42) formation.
Liu, Jianling; Liu, Mengmeng; Yao, Yao; Wang, Jinan; Li, Yan; Li, Guohui; Wang, Yonghua
2012-01-01
Chitinolytic β-N-acetyl-d-hexosaminidases, as a class of chitin hydrolysis enzyme in insects, are a potential species-specific target for developing environmentally-friendly pesticides. Until now, pesticides targeting chitinolytic β-N-acetyl-d-hexosaminidase have not been developed. This study demonstrates a combination of different theoretical methods for investigating the key structural features of this enzyme responsible for pesticide inhibition, thus allowing for the discovery of novel small molecule inhibitors. Firstly, based on the currently reported crystal structure of this protein (OfHex1.pdb), we conducted a pre-screening of a drug-like compound database with 8 × 106 compounds by using the expanded pesticide-likeness criteria, followed by docking-based screening, obtaining 5 top-ranked compounds with favorable docking conformation into OfHex1. Secondly, molecular docking and molecular dynamics simulations are performed for the five complexes and demonstrate that one main hydrophobic pocket formed by residues Trp424, Trp448 and Trp524, which is significant for stabilization of the ligand–receptor complex, and key residues Asp477 and Trp490, are respectively responsible for forming hydrogen-bonding and π–π stacking interactions with the ligands. Finally, the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) analysis indicates that van der Waals interactions are the main driving force for the inhibitor binding that agrees with the fact that the binding pocket of OfHex1 is mainly composed of hydrophobic residues. These results suggest that screening the ZINC database can maximize the identification of potential OfHex1 inhibitors and the computational protocol will be valuable for screening potential inhibitors of the binding mode, which is useful for the future rational design of novel, potent OfHex1-specific pesticides. PMID:22605995
The development of Bruton's tyrosine kinase (BTK) inhibitors from 2012 to 2017: A mini-review.
Liang, Chengyuan; Tian, Danni; Ren, Xiaodong; Ding, Shunjun; Jia, Minyi; Xin, Minhang; Thareja, Suresh
2018-05-10
Bruton's tyrosine kinase (BTK) has emerged as a promising drug target for multiple diseases, particularly haematopoietic malignancies and autoimmune diseases related to B lymphocytes. This review focuses on the diverse, small-molecule inhibitors of BTK kinase that have shown good prospects for clinical application. Individual examples of these inhibitors, including both reversible and irreversible inhibitors and a recently developed reversible covalent inhibitor of BTK, are discussed. Considerable progress has been made in the development of irreversible inhibitors, most of which target the SH3 pocket and the cysteine 481 residue of BTK. The present review also surveys the pharmacological advantages and deficiencies of both reversible and irreversible BTK drugs, with a focus on the structure-activity relationship (SARs) and binding modes of representative drugs, which could inspire critical thinking and new ideas for developing potent BTK inhibitors with less unwanted off-target effects. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Precision medicine in ALK rearranged NSCLC: A rapidly evolving scenario.
Addeo, Alfredo; Tabbò, Fabrizio; Robinson, Tim; Buffoni, Lucio; Novello, Silvia
2018-02-01
The identification of anaplastic lymphoma kinase (ALK) rearrangements in 2-5% of non-small cell lung cancer (NSCLC) patients led to the rapid clinical development of its oral tyrosine kinase inhibitor (TKI). Crizotinib was the first ALK inhibitor approved and utilised in the treatment of ALK+ NSCLC patients in the second line setting first and subsequently in the first line one. Since then many other ALK inhibitors have been developed (ceritinib, alectinib, brigatinib, lorlatinib,etc) and the treatment paradigm of these patients has considerably drifted. The questions regarding their treatment at progression remains unanswered at the moment. Our review clarifies what it is the state of the art in the treatment of ALK rearranged NSCLC patients, highlights the mechanisms of primary and secondary resistance mutations and suggests a treatment algorithm based on specific primary resistance or acquired mutations. Studies that enrolled ALK+ NSCLC patients with locally advance or metastatic disease receiving treatment with ALK inhibitor, first or second line, were identified using electronic databases (MEDLINE, EMBASE, and Cochrane library). Trials were excluded if they were phase 1, enrolled less than 10 patients. Overall 1942 patients were included in our review. It confirms the role and the efficacy in first line of Alectinib but it highlights also that all the ALK inhibitors could play a crucial role during the patients' journey. Identifying the different mutations and utilising the most active ALK inhibitor depending on the "up-to-date" driven mutation is the way forward in the management of those patients. the review shows the rapid drifting in the management of ALK+ NSCLC patients and the importance of fully understanding and acknowledging the role of the resistance mutation, primary or acquired. We strongly advocate a comprehensive genomic approach in the management of ALK+ NSCLC patients who develop resistance mutations that are still targetable by a different ALK inhibitor. Copyright © 2018 Elsevier B.V. All rights reserved.
De Barros, M F; Herrero, J C M; Sell, A M; De Melo, F C; Braga, M A; Pelissari, C B; Machado, J; De Souza Schiller, S; De Souza Hirle, L; Visentainer, J E L
2012-05-01
Congenital haemophilia A is a chromosome-linked recessive disorder caused by the deficiency or reduction of factor VIII (FVIII) pro-coagulant activity. During treatment, some patients develop alloantibodies (FVIII inhibitors) that neutralize the action of exogenously administered FVIII. Currently, the presence of these inhibitors is the most serious adverse event found in replacement therapy. Some studies have suggested that genetic factors influence the development of the FVIII coagulation inhibitors. To identify the class I and II alleles that may be influencing the formation of inhibitors in severe haemophilic patients. Genotyping of the class I (HLA-A, -B and -C) and class II (HLA-DRB1, -DQA1 and -DQB1) alleles of 122 patients with severe haemophilia A, including 36 who had developed antibodies to factor VIII, was performed. After the comparison of the group without inhibitors and the group with inhibitors, HLA-C*16 [Odds ratio (OR) = 7.73; P = 0.0092] and HLA-DRB1*14 (OR = 4.52; P = 0.0174) were found to be positively associated with the formation of the inhibitors. These results confirm that HLA alleles are involved in inhibitor production and could be used as a tool for recognition of groups at high risk of possible inhibitor development in Southern Brazilian haemophilic patients. © 2011 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehst, D.
2006-09-30
The objectives of the Project are: (1) to design effective anti-corrosion preparations (biocides, inhibitors, penetrants and their combinations) for gas- and oil-exploration industries; (2) to study a possibility of development of environmentally beneficial ('green') biocides and inhibitors of the new generation; (3) to develop chemical and microbiological methods of monitoring of sites at risk of corrosion; and (4) to evaluate potentialities in terms of technology, raw materials and material and technical basis to set up a production of effective anti-corrosion preparations of new generation in Russia. During the four years of the project 228 compounds and formulations were synthesized andmore » studied in respect to their corrosion inhibiting activity. A series of compounds which were according to the Bubble tests more efficient (by a factor of 10-100) than the reference inhibitor SXT-1102, some possessing the similar activity or slightly better activity than new inhibitor ??-1154? (company ONDEO/Nalco). Two synthetic routes for the synthesis of mercaptopyrimidines as perspective corrosion inhibitors were developed. Mercaptopyrimidine derivatives can be obtained in one or two steps from cheap and easily available precursors. The cost for their synthesis is not high and can be further reduced after the optimization of the production processes. A new approach for lignin utilization was proposed. Water-soluble derivative of lignin can by transformed to corrosion protective layer by its electropolymerization on a steel surface. Varying lignosulfonates from different sources, as well as conditions of electrooxidation we proved, that drop in current at high anodic potentials is due to electropolymerization of lignin derivative at steel electrode surface. The electropolymerization potential can be sufficiently decreased by an increase in ionic strength of the growing solution. The lignosulfonate electropolymerization led to the considerable corrosion protection effect of carbon steel. More than three times decrease of corrosion rate on steel surface was observed after lignosulfonate electropolymerization, exceeding protective effect of standard commercially available corrosion inhibitor. Solikamsky lignin could be a promising candidate as a base for the development of the future green corrosion inhibitor. A protective effect of isothiazolones in compositions with other biocides and inhibitors was investigated. Additionally to high biocidal properties, combination of kathon 893 and copper sulfate may also produce a strong anticorrosion effect depending on concentrations of the biocides. Based on its joint biocidal and anticorrosion properties, this combination can be recommended for protection of pipelines against carbon dioxide-induced corrosion. By means of linear polarization resistance test, corrosion properties of biocides of different classes were studied. Isothiazolones can be recommended for treating oil-processing waters in Tatarstan to curb carbon dioxide - induced corrosion. A laboratory research on evaluation of the efficiency of biocides, inhibitors and penetrants by biological and physical-and-chemical methods has been carried out. It was shown that action of corrosion inhibitors and biocides strongly depends on character of their interaction with mineral substances available in waters on oil-exploration sites. It was found that one of approaches to designing environmentally safe ('green') antimicrobial formulations may be the use of synergetic combinations, which allow one to significantly decrease concentrations of biocides. It was shown that the efficacy of biocides and inhibitors depends on physicochemical characteristics of the environment. Anticorrosion and antimicrobial effects of biocides and inhibitors depended in much on the type of medium and aeration regimen. Effects of different biocides, corrosion inhibitors. penetrants and their combinations on the biofilm were investigated. It has been shown that minimal inhibiting concentrations of the reagents for the biofilm are much higher than those for aquatic microorganisms. Results obtained from the research in stationary conditions have been confirmed with data from experiments carried out in hydrodynamic conditions. New approaches to the investigation of biocorrosive processes on the basis of bioluminescent method of intracellular ATP determination have been developed. Approaches and methods developed on the basis of bioluminescent method could significantly simplify the analysis of biocorrosion processes and allow to conduct the analysis directly under the field conditions in situ. An express method to assess biogenic sulfate reduction in soil and water samples has been elaborated. The method intends for field application and allows one to no-problem assess action of such harmful and corrosion provoking microorganisms, as sulfate-reducing bacteria.« less
A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors
NASA Astrophysics Data System (ADS)
Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra
2016-07-01
The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development.
NASA Astrophysics Data System (ADS)
Kusumastuti, Rahayu; Pramana, Rakhmad Indra; Soedarsono, Johny W.
2017-03-01
The effect and mechanism of green corrosion inhibitor of Morinda Citrifolia (Noni) toward low carbon steel material has been researched. The general background is to develop the cheap and eco-friendly corrosion inhibitor based on components taken from tropical plants that grow +in Indonesia. This research aims to determine the effectiveness of the use of the extracts of noni as green corrosion inhibitor of carbon steel material in aggressive environment. The medium applied for this experiment is 3.5% natrium chloride solution. The variation of the concentration and immersion time duration has been applied as the experimental parameters. All the work was done at room temperature. The corrosion rate was measured by electrochemical polarization method with CMS 600-Gamry instruments and weight loss. The adsorption of inhibitor into the metal surface, which induced bonding formation after immersion was observed by using FTIR method. Inhibition mechanism was observed by polarization curves and fitted by the Langmuir adsorption models. The experimental results show that the higher concentration of inhibitor increasing the inhibition effect. The optimum inhibition is obtained at 3 ppm noni fruit extract, after immersion for about 288 hours. The corrosion rates obtained was 1.385 mpy, with the inhibitor efficiency of 76.92%. The monolayer film is formed coating the surface material as a result of mixed type corrosion inhibitor behavior of Noni. It can be concluded that this green inhibitor is effective to be used for low carbon steel material.
Ren, Ji-Xia; Li, Lin-Li; Zheng, Ren-Lin; Xie, Huan-Zhang; Cao, Zhi-Xing; Feng, Shan; Pan, You-Li; Chen, Xin; Wei, Yu-Quan; Yang, Sheng-Yong
2011-06-27
In this investigation, we describe the discovery of novel potent Pim-1 inhibitors by employing a proposed hierarchical multistage virtual screening (VS) approach, which is based on support vector machine-based (SVM-based VS or SB-VS), pharmacophore-based VS (PB-VS), and docking-based VS (DB-VS) methods. In this approach, the three VS methods are applied in an increasing order of complexity so that the first filter (SB-VS) is fast and simple, while successive ones (PB-VS and DB-VS) are more time-consuming but are applied only to a small subset of the entire database. Evaluation of this approach indicates that it can be used to screen a large chemical library rapidly with a high hit rate and a high enrichment factor. This approach was then applied to screen several large chemical libraries, including PubChem, Specs, and Enamine as well as an in-house database. From the final hits, 47 compounds were selected for further in vitro Pim-1 inhibitory assay, and 15 compounds show nanomolar level or low micromolar inhibition potency against Pim-1. In particular, four of them were found to have new scaffolds which have potential for the chemical development of Pim-1 inhibitors.
Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41
Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K.; Jiang, Shibo
2015-01-01
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development. PMID:26324044
Fragment-based approaches to TB drugs.
Marchetti, Chiara; Chan, Daniel S H; Coyne, Anthony G; Abell, Chris
2018-02-01
Tuberculosis is an infectious disease associated with significant mortality and morbidity worldwide, particularly in developing countries. The rise of antibiotic resistance in Mycobacterium tuberculosis (Mtb) urgently demands the development of new drug leads to tackle resistant strains. Fragment-based methods have recently emerged at the forefront of pharmaceutical development as a means to generate more effective lead structures, via the identification of fragment molecules that form weak but high quality interactions with the target biomolecule and subsequent fragment optimization. This review highlights a number of novel inhibitors of Mtb targets that have been developed through fragment-based approaches in recent years.
Risk factors for inhibitor development in severe hemophilia a.
Garagiola, Isabella; Palla, Roberta; Peyvandi, Flora
2018-05-25
Although significant advances in hemophilia treatment have improved patient outcomes and quality of life, one of the greatest complications in severe hemophilia A is the development of anti-Factor VIII (FVIII) antibodies that inhibit FVIII activity in almost 30% of previously untreated patients (PUPs). Inhibitors make very difficult the management of patients and increase their morbidity and mortality reducing drastically their quality of life. Numerous studies have investigated the mechanisms leading to the development of FVIII inhibitors. However, the etiology of their onset is complex and not yet fully understood. Inhibitors develop from a multicausal immune response involving both genetic (unmodifiable) and environmental (modifiable) factors. F8 gene mutations are the most important genetic risk factor, with null mutations being associated with the highest risk of inhibitor development. Immune response genes (e.g. the human leukocyte antigen complex) and proteins (e.g. cytokines) were studied without any strong confirmation of their role in modulating of inhibitor development. Type of FVIII product is the most important modifiable risk factor. The plasma-derived products containing von Willebrand factor were recently suggested to determine a lower incidence of inhibitor development than recombinant products in PUPs, in the first 50 exposure days (EDs). Other environmental factors including, age at first treatment, treatment intensity and the danger signal effect (surgery, severe bleeds, vaccinations and infections) has also been postulated as an explanation for environment-related inhibitor risk. This review reports the current knowledge on genetic and environmental risk factors on inhibitor development in patients with severe hemophilia A. Copyright © 2018 Elsevier Ltd. All rights reserved.
Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors.
Choi, Jun Yong; Fuerst, Rita; Knapinska, Anna M; Taylor, Alexander B; Smith, Lyndsay; Cao, Xiaohang; Hart, P John; Fields, Gregg B; Roush, William R
2017-07-13
We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn 2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn 2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn 2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.
Clerc, Jérôme; Groll, Michael; Illich, Damir J.; Bachmann, André S.; Huber, Robert; Schellenberg, Barbara; Dudler, Robert; Kaiser, Markus
2009-01-01
Syrbactins, a family of natural products belonging either to the syringolin or glidobactin class, are highly potent proteasome inhibitors. Although sharing similar structural features, they differ in their macrocyclic lactam core structure and exocyclic side chain. These structural variations critically influence inhibitory potency and proteasome subsite selectivity. Here, we describe the total synthesis of syringolin A and B, which together with enzyme kinetic and structural studies, allowed us to elucidate the structural determinants underlying the proteasomal subsite selectivity and binding affinity of syrbactins. These findings were used successfully in the rational design and synthesis of a syringolin A-based lipophilic derivative, which proved to be the most potent syrbactin-based proteasome inhibitor described so far. With a Ki′ of 8.65 ± 1.13 nM for the chymotryptic activity, this syringolin A derivative displays a 100-fold higher potency than the parent compound syringolin A. In light of the medicinal relevance of proteasome inhibitors as anticancer compounds, the present findings may assist in the rational design and development of syrbactin-based chemotherapeutics. PMID:19359491
Mazur, Pawel K; Herner, Alexander; Mello, Stephano S; Wirth, Matthias; Hausmann, Simone; Sánchez-Rivera, Francisco J; Lofgren, Shane M; Kuschma, Timo; Hahn, Stephan A; Vangala, Deepak; Trajkovic-Arsic, Marija; Gupta, Aayush; Heid, Irina; Noël, Peter B; Braren, Rickmer; Erkan, Mert; Kleeff, Jörg; Sipos, Bence; Sayles, Leanne C; Heikenwalder, Mathias; Heßmann, Elisabeth; Ellenrieder, Volker; Esposito, Irene; Jacks, Tyler; Bradner, James E; Khatri, Purvesh; Sweet-Cordero, E Alejandro; Attardi, Laura D; Schmid, Roland M; Schneider, Guenter; Sage, Julien; Siveke, Jens T
2016-01-01
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers and shows resistance to any therapeutic strategy used. Here we tested small-molecule inhibitors targeting chromatin regulators as possible therapeutic agents in PDAC. We show that JQ1, an inhibitor of the bromodomain and extraterminal (BET) family of proteins, suppresses PDAC development in mice by inhibiting both MYC activity and inflammatory signals. The histone deacetylase (HDAC) inhibitor SAHA synergizes with JQ1 to augment cell death and more potently suppress advanced PDAC. Finally, using a CRISPR-Cas9–based method for gene editing directly in the mouse adult pancreas, we show that de-repression of p57 (also known as KIP2 or CDKN1C) upon combined BET and HDAC inhibition is required for the induction of combination therapy–induced cell death in PDAC. SAHA is approved for human use, and molecules similar to JQ1 are being tested in clinical trials. Thus, these studies identify a promising epigenetic-based therapeutic strategy that may be rapidly implemented in fatal human tumors. PMID:26390243
Salas-Sarduy, Emir; Guerra, Yasel; Covaleda Cortés, Giovanni; Avilés, Francesc Xavier; Chávez Planes, María A.
2017-01-01
Natural products from marine origin constitute a very promising and underexplored source of interesting compounds for modern biotechnological and pharmaceutical industries. However, their evaluation is quite challenging and requires specifically designed assays to reliably identify the compounds of interest in a highly heterogeneous and interfering context. In the present study, we describe a general strategy for the confident identification of tight-binding protease inhibitors in the aqueous extracts of 62 Cuban marine invertebrates, using Plasmodium falciparum hemoglobinases Plasmepsin II and Falcipain 2 as model enzymes. To this end, we first developed a screening strategy that combined enzymatic with interaction-based assays and then validated screening conditions using five reference extracts. Interferences were evaluated and minimized. The results from the massive screening of such extracts, the validation of several hits by a variety of interaction-based assays and the purification and functional characterization of PhPI, a multifunctional and reversible tight-binding inhibitor for Plasmepsin II and Falcipain 2 from the gorgonian Plexaura homomalla, are presented. PMID:28430158
Iftikhar, Fatima; Ali, Yousaf; Ahmad Kiani, Farooq; Fahad Hassan, Syed; Fatima, Tabeer; Khan, Ajmal; Niaz, Basit; Hassan, Abbas; Latif Ansari, Farzana; Rashid, Umer
2017-10-01
In our previous report, we have identified 3,4-dihydropyrimidine scaffold as promising class of urease inhibitor in a structure based virtual screen (SBVS) experiment. In present study, we attempted to optimize the scaffold by varying C-5 substituent. The elongation of the C-5 chain was achieved by the reaction of C-5 ester with hydrazine leading to C-5 carbohydrazides which were further used as building blocks for the synthesis of fifteen new compounds having diverse moieties. A significantly higher in vitro urease inhibitory activity with IC 50 values in submicromolar range was observed for semithiocarbazide derivatives (4a-c, 0.58-0.79µM) and isatin Schiff base derivative 5a (0.23µM). Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its key amino acid residues. The overall results of urease inhibition have shown that these compounds can be further optimized and developed as lead urease inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.
Xue, Xin; Zhao, Ning-Yi; Yu, Hai-Tao; Sun, Yuan; Kang, Chen; Huang, Qiong-Bin; Sun, Hao-Peng
2016-01-01
Major research efforts have been devoted to the discovery and development of new chemical entities that could inhibit the protein–protein interaction between HIF-1α and the von Hippel–Lindau protein (pVHL), which serves as the substrate recognition subunit of an E3 ligase and is regarded as a crucial drug target in cancer, chronic anemia, and ischemia. Currently there is only one class of compounds available to interdict the HIF-1α/pVHL interaction, urging the need to discover chemical inhibitors with more diversified structures. We report here a strategy combining shape-based virtual screening and cascade docking to identify new chemical scaffolds for the designing of novel inhibitors. Based on this strategy, nine active hits have been identified and the most active hit, 9 (ZINC13466751), showed comparable activity to pVHL with an IC50 of 2.0 ± 0.14 µM, showing the great potential of utilizing these compounds for further optimization and serving as drug candidates for the inhibition of HIF-1α/von Hippel–Lindau interaction. PMID:27994971
Booij, Tijmen H; Klop, Maarten J D; Yan, Kuan; Szántai-Kis, Csaba; Szokol, Balint; Orfi, Laszlo; van de Water, Bob; Keri, Gyorgy; Price, Leo S
2016-10-01
3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting. © 2016 Society for Laboratory Automation and Screening.
Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors.
Rahman, Mona N; Vlahakis, Jason Z; Roman, Gheorghe; Vukomanovic, Dragic; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao
2010-03-01
The development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques. Comparison of the structures of four such compounds each in complex with hHO-1 revealed a common binding mode, despite having different structural fragments. The compounds bind to the distal side of heme through an azole "anchor" which coordinates with the heme iron. An expansion of the distal pocket, mainly due to distal helix flexibility, allows accommodation of the compounds without displacing heme or the critical Asp140 residue. Rather, binding displaces a catalytically critical water molecule and disrupts an ordered hydrogen-bond network involving Asp140. The presence of a triazole "anchor" may provide further stability via a hydrogen bond with the protein. A hydrophobic pocket acts to stabilize the region occupied by the phenyl or adamantanyl moieties of these compounds. Further, a secondary hydrophobic pocket is formed via "induced fit" to accommodate bulky substituents at the 4-position of the dioxolane ring. Copyright 2009 Elsevier Inc. All rights reserved.
Treating ALK-positive non-small cell lung cancer
Tsiara, Anna; Tsironis, Georgios; Lykka, Maria; Liontos, Michalis; Bamias, Aristotelis; Dimopoulos, Meletios-Athanasios
2018-01-01
Targeting genomic alterations, such as epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) gene rearrangements, have radically changed the treatment of patients with non-small cell lung cancer (NSCLC). In the case of ALK-rearranged gene, subsequent rapid development of effective genotype-directed therapies with ALK tyrosine kinase inhibitors (TKIs) triggered major advances in the personalized molecularly based approach of NSCLC. Crizotinib was the first-in-class ALK TKI with proven superiority over standard platinum-based chemotherapy for the 1st-line therapy of ALK-rearranged NSCLC patients. However, the acquired resistance to crizotinib and its diminished efficacy to the central nervous system (CNS) relapse led to the development of several novel ALK inhibitors, more potent and with different selectivity compared to crizotinib. To date, four ALK TKIs, crizotinib, ceritinib, alectinib and brigatinib have received approval from the Food and Drug Administration (FDA) and/or the European Medicines Agency (EMA) and even more agents are currently under investigation for the treatment of ALK-rearranged NSCLC. However, the optimal frontline approach and the exact sequence of ALK inhibitors are still under consideration. Recently announced results of phase III trials recognized higher efficacy of alectinib compared to crizotinib in first-line setting, even in patients with CNS involvement. In this review, we will discuss the current knowledge regarding the biology of the ALK-positive NSCLC, the available therapeutic inhibitors and we will focus on the raised issues from their use in clinical practise. PMID:29862230
SGLT2 Inhibitors May Predispose to Ketoacidosis.
Taylor, Simeon I; Blau, Jenny E; Rother, Kristina I
2015-08-01
Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients.
Callahan, Leigh F.; Rini, Christine; Altpeter, Mary; Hackney, Betsy; Schecher, Arielle; Wilson, Anne; Muss, Hyman B.
2015-01-01
Adding aromatase inhibitors (AIs) to adjuvant treatment of postmenopausal women with hormone-receptor–positive breast cancer significantly reduces cancer recurrence. A common side effect of AIs is noninflammatory joint pain and stiffness (arthralgia) similar to arthritis symptoms. An evidence-based walking program developed by the Arthritis Foundation — Walk With Ease (WWE) — reduces arthritis-related joint symptoms. We hypothesized that WWE may also reduce AI-associated arthralgia. However, the potential for different barriers and facilitators to physical activity for these 2 patient populations suggested a need to adapt WWE before testing it with breast cancer survivors. We conducted qualitative research with 46 breast cancer survivors to explore program modification and inform the development of materials for an adapted program (Walk With Ease-Breast Cancer). Our process parallels the National Cancer Institute’s Research-Tested Intervention Programs (RTIPs) guidelines for adapting evidence-based programs for cancer populations. Findings resulted in a customized 8-page brochure to supplement existing WWE materials. PMID:26068412
Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*
Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang; Jian, Yap Li; Chao, Alexander Theodore; Lescar, Julien; Yin, Zheng; Vedananda, T. R.; Keller, Thomas H.; Shi, Pei-Yong
2011-01-01
Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome. PMID:21147775
Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features.
Speranzini, Valentina; Rotili, Dante; Ciossani, Giuseppe; Pilotto, Simona; Marrocco, Biagina; Forgione, Mariantonietta; Lucidi, Alessia; Forneris, Federico; Mehdipour, Parinaz; Velankar, Sameer; Mai, Antonello; Mattevi, Andrea
2016-09-01
Because of its involvement in the progression of several malignant tumors, the histone lysine-specific demethylase 1 (LSD1) has become a prominent drug target in modern medicinal chemistry research. We report on the discovery of two classes of noncovalent inhibitors displaying unique structural features. The antibiotics polymyxins bind at the entrance of the substrate cleft, where their highly charged cyclic moiety interacts with a cluster of positively charged amino acids. The same site is occupied by quinazoline-based compounds, which were found to inhibit the enzyme through a most peculiar mode because they form a pile of five to seven molecules that obstruct access to the active center. These data significantly indicate unpredictable strategies for the development of epigenetic inhibitors.
Wang, Jinghui; Yang, Yinfeng; Li, Yan; Wang, Yonghua
2016-07-27
Bovine viral diarrhea virus (BVDV) infections are prevailing in cattle populations on a worldwide scale. The BVDV RNA-dependent RNA polymerase (RdRp), as a promising target for new anti-BVDV drug development, has attracted increasing attention. To explore the interaction mechanism of 65 benzimidazole scaffold-based derivatives as BVDV inhibitors, presently, a computational study was performed based on a combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) simulations. The resultant optimum CoMFA and CoMSIA models present proper reliabilities and strong predictive abilities (with Q(2) = 0. 64, R(2)ncv = 0.93, R(2)pred = 0.80 and Q(2) = 0. 65, R(2)ncv = 0.98, R(2)pred = 0.86, respectively). In addition, there was good concordance between these models, molecular docking, and MD results. Moreover, the MM-PBSA energy analysis reveals that the major driving force for ligand binding is the polar solvation contribution term. Hopefully, these models and the obtained findings could offer better understanding of the interaction mechanism of BVDV inhibitors as well as benefit the new discovery of more potent BVDV inhibitors.
Zhang, Guoqing; Xing, Jing; Wang, Yulan; Wang, Lihao; Ye, Yan; Lu, Dong; Zhao, Jihui; Luo, Xiaomin; Zheng, Mingyue; Yan, Shiying
2018-01-01
Indoleamine 2,3-dioxygenase 1 (IDO1) is an intracellular monomeric heme-containing enzyme that catalyzes the first and the rate limiting step in catabolism of tryptophan via the kynurenine (KYN) pathway, which plays a significant role in the proliferation and differentiation of T cells. IDO1 has been proven to be an attractive target for anticancer therapy and chronic viral infections. In the present study, a class of IDO1 inhibitors with novel scaffolds were identified by virtual screening and biochemical validation, in which the compound DC-I028 shows moderate IDO1 inhibitory activity with an IC50 of 21.61 μM on enzymatic level and 89.11 μM on HeLa cell. In the following hit expansion stage, DC-I02806, an analog of DC-I028, showed better inhibitory activity with IC50 about 18 μM on both enzymatic level and cellular level. The structure–activity relationship (SAR) of DC-I028 and its analogs was then discussed based on the molecular docking result. The novel IDO1 inhibitors of DC-I028 and its analogs may provide useful clues for IDO1 inhibitor development. PMID:29651242
Pirhadi, Somayeh; Ghasemi, Jahan B
2012-12-01
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity and low toxicity in antiretroviral combination therapies used to treat HIV. In this study, chemical feature based pharmacophore models of different classes of NNRT inhibitors of HIV-1 have been developed. The best HypoRefine pharmacophore model, Hypo 1, which has the best correlation coefficient (0.95) and the lowest RMS (0.97), contains two hydrogen bond acceptors, one hydrophobic and one ring aromatic feature, as well as four excluded volumes. Hypo 1 was further validated by test set and Fischer validation method. The best pharmacophore model was then utilized as a 3D search query to perform a virtual screening to retrieve potential inhibitors. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking studies by Libdock and Gold methods to refine the retrieved hits. Finally, 7 top ranked compounds based on Gold score fitness function were subjected to in silico ADME studies to investigate for compliance with the standard ranges. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cavalier, Michael C.; Melville, Zephan; Aligholizadeh, Ehson; Raman, E. Prabhu; Yu, Wenbo; Fang, Lei; Alasady, Milad; Pierce, Adam D.; Wilder, Paul T.; MacKerell, Alexander D.; Weber, David J.
2016-01-01
Structure-based drug discovery is under way to identify and develop small-molecule S100B inhibitors (SBiXs). Such inhibitors have therapeutic potential for treating malignant melanoma, since high levels of S100B downregulate wild-type p53 tumor suppressor function in this cancer. Computational and X-ray crystallographic studies of two S100B–SBiX complexes are described, and both compounds (apomorphine hydrochloride and ethidium bromide) occupy an area of the S100B hydrophobic cleft which is termed site 3. These data also reveal novel protein–inhibitor interactions which can be used in future drug-design studies to improve SBiX affinity and specificity. Of particular interest, apomorphine hydrochloride showed S100B-dependent killing in melanoma cell assays, although the efficacy exceeds its affinity for S100B and implicates possible off-target contributions. Because there are no structural data available for compounds occupying site 3 alone, these studies contribute towards the structure-based approach to targeting S100B by including interactions with residues in site 3 of S100B. PMID:27303795
Cohen, Itay; Kayode, Olumide; Hockla, Alexandra; Sankaran, Banumathi; Radisky, Derek C; Radisky, Evette S; Papo, Niv
2016-05-15
Engineered protein therapeutics offer advantages, including strong target affinity, selectivity and low toxicity, but like natural proteins can be susceptible to proteolytic degradation, thereby limiting their effectiveness. A compelling therapeutic target is mesotrypsin, a protease up-regulated with tumour progression, associated with poor prognosis, and implicated in tumour growth and progression of many cancers. However, with its unique capability for cleavage and inactivation of proteinaceous inhibitors, mesotrypsin presents a formidable challenge to the development of biological inhibitors. We used a powerful yeast display platform for directed evolution, employing a novel multi-modal library screening strategy, to engineer the human amyloid precursor protein Kunitz protease inhibitor domain (APPI) simultaneously for increased proteolytic stability, stronger binding affinity and improved selectivity for mesotrypsin inhibition. We identified a triple mutant APPIM17G/I18F/F34V, with a mesotrypsin inhibition constant (Ki) of 89 pM, as the strongest mesotrypsin inhibitor yet reported; this variant displays 1459-fold improved affinity, up to 350 000-fold greater specificity and 83-fold improved proteolytic stability compared with wild-type APPI. We demonstrated that APPIM17G/I18F/F34V acts as a functional inhibitor in cell-based models of mesotrypsin-dependent prostate cancer cellular invasiveness. Additionally, by solving the crystal structure of the APPIM17G/I18F/F34V-mesotrypsin complex, we obtained new insights into the structural and mechanistic basis for improved binding and proteolytic resistance. Our study identifies a promising mesotrypsin inhibitor as a starting point for development of anticancer protein therapeutics and establishes proof-of-principle for a novel library screening approach that will be widely applicable for simultaneously evolving proteolytic stability in tandem with desired functionality for diverse protein scaffolds. © 2016 Authors; published by Portland Press Limited.
Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Nasuda, Shuhei
2017-01-01
The awn is a long needle-like structure formed at the tip of the lemma in the florets of some grass species. It plays a role in seed dispersal and protection against animals, and can contribute to the photosynthetic activity of spikes. Three main dominant inhibitors of awn development (Hd, B1 and B2) are known in hexaploid wheat, but the causal genes have not been cloned yet and a genetic association with awn length diversity has been found only for the B1 allele. To analyze the prevalence of these three awning inhibitors, we attempted to predict the genotypes of 189 hexaploid wheat varieties collected worldwide using markers tightly linked to these loci. Using recombinant inbred lines derived from two common wheat cultivars, Chinese Spring and Mironovskaya 808, both with short awns, and a high-density linkage map, we performed quantitative trait locus analysis to identify tightly linked markers. Because this linkage map was constructed with abundant array-based markers, we converted the linked markers to PCR-based markers and determined the genotypes of 189 hexaploids. A significant genotype-phenotype correlation was observed at the Hd and B1 regions. We also found that interaction among these three awning inhibitors is involved in development of a membranous outgrowth at the base of awn resembling the Hooded mutants of barley. For the hooded awn phenotype, presence of the Hd dominant allele was essential but not sufficient, so B2 and other factors appear to act epistatically to produce the ectopic tissue. On the other hand, the dominant B1 allele acted as a suppressor of the hooded phenotype. These three awning inhibitors largely contribute to the genetic variation in awn length and shape of common wheat. PMID:28437453
Yoshioka, Motohiro; Iehisa, Julio C M; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Nasuda, Shuhei; Takumi, Shigeo
2017-01-01
The awn is a long needle-like structure formed at the tip of the lemma in the florets of some grass species. It plays a role in seed dispersal and protection against animals, and can contribute to the photosynthetic activity of spikes. Three main dominant inhibitors of awn development (Hd, B1 and B2) are known in hexaploid wheat, but the causal genes have not been cloned yet and a genetic association with awn length diversity has been found only for the B1 allele. To analyze the prevalence of these three awning inhibitors, we attempted to predict the genotypes of 189 hexaploid wheat varieties collected worldwide using markers tightly linked to these loci. Using recombinant inbred lines derived from two common wheat cultivars, Chinese Spring and Mironovskaya 808, both with short awns, and a high-density linkage map, we performed quantitative trait locus analysis to identify tightly linked markers. Because this linkage map was constructed with abundant array-based markers, we converted the linked markers to PCR-based markers and determined the genotypes of 189 hexaploids. A significant genotype-phenotype correlation was observed at the Hd and B1 regions. We also found that interaction among these three awning inhibitors is involved in development of a membranous outgrowth at the base of awn resembling the Hooded mutants of barley. For the hooded awn phenotype, presence of the Hd dominant allele was essential but not sufficient, so B2 and other factors appear to act epistatically to produce the ectopic tissue. On the other hand, the dominant B1 allele acted as a suppressor of the hooded phenotype. These three awning inhibitors largely contribute to the genetic variation in awn length and shape of common wheat.
Simithy, Johayra; Gill, Gobind; Wang, Yu; Goodwin, Douglas C; Calderón, Angela I
2015-02-17
A simple and reliable liquid chromatography-mass spectrometry (LC-MS) assay has been developed and validated for the kinetic characterization and evaluation of inhibitors of shikimate kinase from Mycobacterium tuberculosis (MtSK), a potential target for the development of novel antitubercular drugs. This assay is based on the direct determination of the reaction product shikimate-3-phosphate (S3P) using electrospray ionization (ESI) and a quadrupole time-of-flight (Q-TOF) detector. A comparative analysis of the kinetic parameters of MtSK obtained by the LC-MS assay with those obtained by a conventional UV-assay was performed. Kinetic parameters determined by LC-MS were in excellent agreement with those obtained from the UV assay, demonstrating the accuracy, and reliability of this method. The validated assay was successfully applied to the kinetic characterization of a known inhibitor of shikimate kinase; inhibition constants and mode of inhibition were accurately delineated with LC-MS.
Oliva, M L; Santomauro-Vaz, E M; Andrade, S A; Juliano, M A; Pott, V J; Sampaio, M U; Sampaio, C A
2001-01-01
We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.
Recombinant factor concentrates may increase inhibitor development: a single centre cohort study.
Strauss, T; Lubetsky, A; Ravid, B; Bashari, D; Luboshitz, J; Lalezari, S; Misgav, M; Martinowitz, U; Kenet, G
2011-07-01
Recent reports have raised concerns regarding potential risk factors for inhibitor development. In Israel, all haemophilia patients (n = 479) are followed by the National Hemophilia Center. Most children are neonatally exposed to factor concentrate (due to circumcision performed at the age of 8 days). The impact of early exposure and recombinant FVIII products (rFVIII) administration (approved in Israel since 1996) upon inhibitor occurrence in our cohort of haemophilia A (HA) patients was analysed. Two hundred ninety-two consecutive paediatric cases with a first symptomatic onset of HA were enrolled and followed over a median time of 7 years [min-max: 9 months to 17 years]. Study endpoint was inhibitor development against factor VIII. In addition, the treatment regimens applied, i.e. bolus administration or 'continuous infusion' and the family history of inhibitor development were investigated. During the follow-up period 31/292 children (10.6%) developed high titre inhibitors. Inhibitors occurred in 14/43 (32.5%) HA patients neonatally exposed to rFVIII, as compared to 22/249 previously treated with Plasma Derived (PD) products (8.8%). The odds ratio for inhibitor formation in rFVIII treated HA patients was 3.43 (95% CI: 1.36-8.65). Transient inhibitor evolved among 2/43 paediatric HA patients, only among those treated with rFVIII. The risk of inhibitor detection significantly increased among HA children treated by continuous infusion (P = 0.025). Our experience shows that the risk of inhibitor formation may be increased by early exposure to recombinant concentrates. The multiple variables affecting inhibitor incidence deserve further attention by larger prospective studies. © 2011 Blackwell Publishing Ltd.
Benmansour, Fatiha; Trist, Iuni; Coutard, Bruno; Decroly, Etienne; Querat, Gilles; Brancale, Andrea; Barral, Karine
2017-01-05
With the aim to help drug discovery against dengue virus (DENV), a fragment-based drug design approach was applied to identify ligands targeting a main component of DENV replication complex: the NS5 AdoMet-dependent mRNA methyltransferase (MTase) domain, playing an essential role in the RNA capping process. Herein, we describe the identification of new inhibitors developed using fragment-based, structure-guided linking and optimization techniques. Thermal-shift assay followed by a fragment-based X-ray crystallographic screening lead to the identification of three fragment hits binding DENV MTase. We considered linking two of them, which bind to proximal sites of the AdoMet binding pocket, in order to improve their potency. X-ray crystallographic structures and computational docking were used to guide the fragment linking, ultimately leading to novel series of non-nucleoside inhibitors of flavivirus MTase, respectively N-phenyl-[(phenylcarbamoyl)amino]benzene-1-sulfonamide and phenyl [(phenylcarbamoyl)amino]benzene-1-sulfonate derivatives, that show a 10-100-fold stronger inhibition of 2'-O-MTase activity compared to the initial fragments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Bagherzadeh, Kowsar; Shirgahi Talari, Faezeh; Sharifi, Amirhossein; Ganjali, Mohammad Reza; Saboury, Ali Akbar; Amanlou, Massoud
2015-01-01
Tyrosinase, a widely spread enzyme in micro-organisms, animals, and plants, participates in two rate-limiting steps in melanin formation pathway which is responsible for skin protection against UV lights' harm whose functional deficiency result in serious dermatological diseases. This enzyme seems to be responsible for neuromelanin formation in human brain as well. In plants, the enzyme leads the browning pathway which is commonly observed in injured tissues that is economically very unfavorable. Among different types of tyrosinase, mushroom tyrosinase has the highest homology with the mammalian tyrosinase and the only commercial tyrosinase available. In this study, ligand-based pharmacophore drug discovery method was applied to rapidly identify mushroom tyrosinase enzyme inhibitors using virtual screening. The model pharmacophore of essential interactions was developed and refined studying already experimentally discovered potent inhibitors employing Docking analysis methodology. After pharmacophore virtual screening and binding modes prediction, 14 compounds from ZINC database were identified as potent inhibitors of mushroom tyrosinase which were classified into five groups according to their chemical structures. The inhibition behavior of the discovered compounds was further studied through Classical Molecular Dynamic Simulations and the conformational changes induced by the presence of the studied ligands were discussed and compared to those of the substrate, tyrosine. According to the obtained results, five novel leads are introduced to be further optimized or directly used as potent inhibitors of mushroom tyrosinase.
HPPD: ligand- and target-based virtual screening on a herbicide target.
López-Ramos, Miriam; Perruccio, Francesca
2010-05-24
Hydroxyphenylpyruvate dioxygenase (HPPD) has proven to be a very successful target for the development of herbicides with bleaching properties, and today HPPD inhibitors are well established in the agrochemical market. Syngenta has a long history of HPPD-inhibitor research, and HPPD was chosen as a case study for the validation of diverse ligand- and target-based virtual screening approaches to identify compounds with inhibitory properties. Two-dimensional extended connectivity fingerprints, three-dimensional shape-based tools (ROCS, EON, and Phase-shape) and a pharmacophore approach (Phase) were used as ligand-based methods; Glide and Gold were used as target-based. Both the virtual screening utility and the scaffold-hopping ability of the screening tools were assessed. Particular emphasis was put on the specific pitfalls to take into account for the design of a virtual screening campaign in an agrochemical context, as compared to a pharmaceutical environment.
NASA Astrophysics Data System (ADS)
Hosseini, Yaser; Mollica, Adriano; Mirzaie, Sako
2016-12-01
The human immunodeficiency virus (HIV) which is strictly related to the development of AIDS, is treated by a cocktail of drugs, but due its high propensity gain drug resistance, the rational development of new medicine is highly desired. Among the different mechanism of action we selected the reverse transcriptase (RT) inhibition, for our studies. With the aim to identify new chemical entities to be used for further rational drug design, a set of 3000 molecules from the Zinc Database have been screened by docking experiments using AutoDock Vina software. The best ranked compounds with respect of the crystallographic inhibitor MK-4965 resulted to be five compounds, and the best among them was further tested by molecular dynamics (MD) simulation. Our results indicate that comp1 has a stronger interaction with the subsite p66 of RT than MK-4965 and that both are able to stabilize specific conformational changes of the RT 3D structure, which may explain their activity as inhibitors. Therefore comp1 could be a good candidate for biological tests and further development.
Ai, Haixin; Zhang, Li; Chang, Alan K; Wei, Hongyun; Che, Yuchen; Liu, Hongsheng
2014-03-01
Inhibition of CPSF30 function by the effector domain of influenza A virus of non-structural protein 1 (NS1A) protein plays a critical role in the suppression of host key antiviral response. The CPSF30-binding site of NS1A appears to be a very attractive target for the development of new drugs against influenza A virus. In this study, structure-based molecular docking was utilized to screen more than 30,000 compounds from a Traditional Chinese Medicine (TCM) database. Four drug-like compounds were selected as potential inhibitors for the CPSF30-binding site of NS1A. Docking conformation analysis results showed that these potential inhibitors could bind to the CPSF30-binding site with strong hydrophobic interactions and weak hydrogen bonds. Molecular dynamics simulations and MM-PBSA calculations suggested that two of the inhibitors, compounds 32056 and 31674, could stably bind to the CPSF30-binding site with high binding free energy. These two compounds could be modified to achieve higher binding affinity, so that they may be used as potential leads in the development of new anti-influenza drugs.
QSAR studies on triazole derivatives as sglt inhibitors via CoMFA and CoMSIA
NASA Astrophysics Data System (ADS)
Zhi, Hui; Zheng, Junxia; Chang, Yiqun; Li, Qingguo; Liao, Guochao; Wang, Qi; Sun, Pinghua
2015-10-01
Forty-six sodium-dependent glucose cotransporters-2 (SGLT-2) inhibitors with hypoglycemic activity were selected to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. A training set of 39 compounds were used to build up the models, which were then evaluated by a series of internal and external cross-validation techniques. A test set of 7 compounds was used for the external validation. The CoMFA model predicted a q2 value of 0.792 and an r2 value of 0.985. The best CoMSIA model predicted a q2 value of 0.633 and an r2 value of 0.895 based on a combination of steric, electrostatic, hydrophobic and hydrogen-bond acceptor effects. The predictive correlation coefficients (rpred2) of CoMFA and CoMSIA models were 0.872 and 0.839, respectively. The analysis of the contour maps from each model provided insight into the structural requirements for the development of more active sglt inhibitors, and on the basis of the models 8 new sglt inhibitors were designed and predicted.
Liu, X H; Song, H Y; Zhang, J X; Han, B C; Wei, X N; Ma, X H; Cui, W K; Chen, Y Z
2010-05-17
Histone deacetylase inhibitors (HDACi) have been successfully used for the treatment of cancers and other diseases. Search for novel type ZBGs and development of non-hydroxamate HDACi has become a focus in current research. To complement this, it is desirable to explore a virtual screening (VS) tool capable of identifying different types of potential inhibitors from large compound libraries with high yields and low false-hit rates similar to HTS. This work explored the use of support vector machines (SVM) combined with our newly developed putative non-inhibitor generation method as such a tool. SVM trained by 702 pre-2008 hydroxamate HDACi and 64334 putative non-HDACi showed good yields and low false-hit rates in cross-validation test and independent test using 220 diverse types of HDACi reported since 2008. The SVM hit rates in scanning 13.56 M PubChem and 168K MDDR compounds are comparable to HTS rates. Further structural analysis of SVM virtual hits suggests its potential for identification of non-hydroxamate HDACi. From this analysis, a series of novel ZBG and cap groups were proposed for HDACi design. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Emerging growth factor receptor antagonists for the treatment of renal cell carcinoma.
Zahoor, Haris; Rini, Brian I
2016-12-01
The landscape of systemic treatment for metastatic renal cell carcinoma (RCC) has dramatically changed with the introduction of targeted agents including vascular endothelial growth factor (VEGF) inhibitors. Recently, multiple new agents including growth factor receptor antagonists and a checkpoint inhibitor were approved for the treatment of refractory metastatic RCC based on encouraging benefit shown in clinical trials. Areas covered: The background and biological rationale of existing treatment options including a brief discussion of clinical trials which led to their approval, is presented. This is followed by reviewing the limitations of these therapeutic options, medical need to develop new treatments and major goals of ongoing research. We then discuss two recently approved growth factor receptor antagonists i.e. cabozantinib and lenvatinib, and a recently approved checkpoint inhibitor, nivolumab, and issues pertaining to drug development, and future directions in treatment of metastatic RCC. Expert opinion: Recently approved growth factor receptor antagonists have shown encouraging survival benefit but associated drug toxicity is a major issue. Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, has similarly shown survival benefit and is well tolerated. With multiple options now available in this patient population, the right sequence of these agents remains to be determined.
Steindl, Theodora M; Crump, Carolyn E; Hayden, Frederick G; Langer, Thierry
2005-10-06
The development and application of a sophisticated virtual screening and selection protocol to identify potential, novel inhibitors of the human rhinovirus coat protein employing various computer-assisted strategies are described. A large commercially available database of compounds was screened using a highly selective, structure-based pharmacophore model generated with the program Catalyst. A docking study and a principal component analysis were carried out within the software package Cerius and served to validate and further refine the obtained results. These combined efforts led to the selection of six candidate structures, for which in vitro anti-rhinoviral activity could be shown in a biological assay.
Mondal, Milon; Unver, M Yagiz; Pal, Asish; Bakker, Matthijs; Berrier, Stephan P; Hirsch, Anna K H
2016-10-10
There is an urgent need for the development of efficient methodologies that accelerate drug discovery. We demonstrate that the strategic combination of fragment linking/optimization and protein-templated click chemistry is an efficient and powerful method that accelerates the hit-identification process for the aspartic protease endothiapepsin. The best binder, which inhibits endothiapepsin with an IC 50 value of 43 μm, represents the first example of triazole-based inhibitors of endothiapepsin. Our strategy could find application on a whole range of drug targets. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
α-Keto phenylamides as P1'-extended proteasome inhibitors.
Voss, Constantin; Scholz, Christoph; Knorr, Sabine; Beck, Philipp; Stein, Martin L; Zall, Andrea; Kuckelkorn, Ulrike; Kloetzel, Peter-Michael; Groll, Michael; Hamacher, Kay; Schmidt, Boris
2014-11-01
The major challenge for proteasome inhibitor design lies in achieving high selectivity for, and activity against, the target, which requires specific interactions with the active site. Novel ligands aim to overcome off-target-related side effects such as peripheral neuropathy, which is frequently observed in cancer patients treated with the FDA-approved proteasome inhibitors bortezomib (1) or carfilzomib (2). A systematic comparison of electrophilic headgroups recently identified the class of α-keto amides as promising for next generation drug development. On the basis of crystallographic knowledge, we were able to develop a structure-activity relationship (SAR)-based approach for rational ligand design using an electronic parameter (Hammett's σ) and in silico molecular modeling. This resulted in the tripeptidic α-keto phenylamide BSc4999 [(S)-3-(benzyloxycarbonyl-(S)-leucyl-(S)-leucylamino)-5-methyl-2-oxo-N-(2,4-dimethylphenyl)hexanamide, 6 a], a highly potent (IC50 = 38 nM), cell-permeable, and slowly reversible covalent inhibitor which targets both the primed and non-primed sites of the proteasome's substrate binding channel as a special criterion for selectivity. The improved inhibition potency and selectivity of this new α-keto phenylamide makes it a promising candidate for targeting a wider range of tumor subtypes than commercially available proteasome inhibitors and presents a new candidate for future studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Šmelcerović, Andrija; Tomović, Katarina; Šmelcerović, Žaklina; Petronijević, Živomir; Kocić, Gordana; Tomašič, Tihomir; Jakopin, Žiga; Anderluh, Marko
2017-07-28
Xanthine oxidase (XO), a versatile metalloflavoprotein enzyme, catalyzes the oxidative hydroxylation of hypoxanthine and xanthine to uric acid in purine catabolism while simultaneously producing reactive oxygen species. Both lead to the gout-causing hyperuricemia and oxidative damage of the tissues where overactivity of XO is present. Over the past years, significant progress and efforts towards the discovery and development of new XO inhibitors have been made and we believe that not only experts in the field, but also general readership would benefit from a review that addresses this topic. Accordingly, the aim of this article was to overview and select the most potent recently reported XO inhibitors and to compare their structures, mechanisms of action, potency and effectiveness of their inhibitory activity, in silico calculated physico-chemical properties as well as predicted pharmacokinetics and toxicity. Derivatives of imidazole, 1,3-thiazole and pyrimidine proved to be more potent than febuxostat while also displaying/possessing favorable predicted physico-chemical, pharmacokinetic and toxicological properties. Although being structurally similar to febuxostat, these optimized inhibitors bear some structural freshness and could be adopted as hits for hit-to-lead development and further evaluation by in vivo studies towards novel drug candidates, and represent valuable model structures for design of novel XO inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Pei, Yameng; Wang, Chunting; Yan, S Frank; Liu, Gang
2017-08-10
For decades, treatment of hepatitis B virus (HBV) infection has been relying on interferon (IFN)-based therapies and nucleoside/nucleotide analogues (NAs) that selectively target the viral polymerase reverse transcriptase (RT) domain and thereby disrupt HBV viral DNA synthesis. We have summarized here the key steps in the HBV viral life cycle, which could potentially be targeted by novel anti-HBV therapeutics. A wide range of next-generation direct antiviral agents (DAAs) with distinct mechanisms of actions are discussed, including entry inhibitors, transcription inhibitors, nucleoside/nucleotide analogues, inhibitors of viral ribonuclease H (RNase H), modulators of viral capsid assembly, inhibitors of HBV surface antigen (HBsAg) secretion, RNA interference (RNAi) gene silencers, antisense oligonucleotides (ASOs), and natural products. Compounds that exert their antiviral activities mainly through host factors and immunomodulation, such as host targeting agents (HTAs), programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors, and Toll-like receptor (TLR) agonists, are also discussed. In this Perspective, we hope to provide an overview, albeit by no means being comprehensive, for the recent development of novel therapeutic agents for the treatment of chronic HBV infection, which not only are able to sustainably suppress viral DNA but also aim to achieve functional cure warranted by HBsAg loss and ultimately lead to virus eradication and cure of hepatitis B.
Yin, Huanshun; Wang, Mo; Li, Bingchen; Yang, Zhiqing; Zhou, Yunlei; Ai, Shiyun
2015-01-15
A simple, highly sensitive and selective electrochemical assay is developed for the detection of protein kinase A (PKA) activity based on the specific recognition utility of Phos-tag for kinase-induced phosphopeptides and enzymatic signal amplification. When the substrate peptide was phosphorylated by PKA reaction, they could specifically bind with Phos-tag-biotin in the presence of Zn(2+) through the formation of a specific noncovalent complex with the phosphomonoester dianion in phosphorylated peptides. Through the further specific interaction between biotin and avidin, avidin functionalized horseradish peroxidase (HRP) can be captured on the electrode surface. Under the catalytic effect of HRP, a sensitive electrochemical signal for benzoquinone was obtained, which was related to PKA activity. Under the optimal experiment conditions, the proposed electrochemical method presented dynamic range from 0.5 to 25 unit/mL with low detection limit of 0.15 unit/mL. This new detection strategy was also successfully applied to analyze the inhibition effect of inhibitors (ellagic acid and H-89) on PKA activity and monitored the PKA activity in cell lysates. Therefore, this Phos-tag-based electrochemical assay offers an alternative platform for PKA activity assay and inhibitor screening, and thus it might be a valuable tool for development of targeted therapy and clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Yanamandra, Mahesh; Kole, Labanyamoy; Giri, Archana; Mitra, Sayan
2017-01-01
Phosphatidylinositol-3 kinase (PI3K) pathway regulates multiple cellular functions involving cell survival, growth, motility proliferation, apoptosis, and adhesion. These are deregulated in various diseases such as cancer, atherosclerosis, and inflammation. PI3Ks phosphorylate phosphatidylinositol 4,5-biphosphate (PIP2) yielding phosphatidylinositol 3, 4, 5 triphosphate (PIP3) which in turn activate AKT kinase (serine/threonine kinase), the central enzyme in regulation of metabolic functions. Due to their implications in disease pathophysiology, PI3K/AKT inhibitors became attractive targets for pharmaceutical industries. In order to assess the functional response generated by PI3K inhibitors, an appropriate cell-based screening system is essential in any screening cascade. Here we report the development of highly sensitive in-vitro cell-based kinase ELISA which quantifies the phosphorylated AKT kinase (serine 473) and total AKT kinase directly within the cells upon compound treatment. PI3Kβ overexpressing NIH3T3 cells stimulated by lysophosphatidic acid was used for PI3K/Akt pathway activation. Assay performance reliability and robustness were determined by percentage coefficient of variation (%CV) and Z factor which demonstrated an excellent agreement with assay guidelines. This 96-well plate medium throughput assay methodology was used to screen novel molecules and proved a commendable tool to study the mechanism of action property and target engagement of novel PI3K inhibitors in drug discovery.
Meng, Juncai; Lai, Ming-Tain; Munshi, Vandna; Grobler, Jay; McCauley, John; Zuck, Paul; Johnson, Eric N; Uebele, Victor N; Hermes, Jeffrey D; Adam, Gregory C
2015-06-01
HIV-1 protease (PR) represents one of the primary targets for developing antiviral agents for the treatment of HIV-infected patients. To identify novel PR inhibitors, a label-free, high-throughput mass spectrometry (HTMS) assay was developed using the RapidFire platform and applied as an orthogonal assay to confirm hits identified in a fluorescence resonance energy transfer (FRET)-based primary screen of > 1 million compounds. For substrate selection, a panel of peptide substrates derived from natural processing sites for PR was evaluated on the RapidFire platform. As a result, KVSLNFPIL, a new substrate measured to have a ~ 20- and 60-fold improvement in k cat/K m over the frequently used sequences SQNYPIVQ and SQNYPIV, respectively, was identified for the HTMS screen. About 17% of hits from the FRET-based primary screen were confirmed in the HTMS confirmatory assay including all 304 known PR inhibitors in the set, demonstrating that the HTMS assay is effective at triaging false-positives while capturing true hits. Hence, with a sampling rate of ~7 s per well, the RapidFire HTMS assay enables the high-throughput evaluation of peptide substrates and functions as an efficient tool for hits triage in the discovery of novel PR inhibitors. © 2015 Society for Laboratory Automation and Screening.
The latest development of antihypertensive medication
NASA Astrophysics Data System (ADS)
Nasution, S.; Rey, I.; Effendi-YS, R.
2018-03-01
Hypertension is the most common risk factor for cardiovascular disease, stroke, renal failure, and death. Recent drug monitoring studies found non-adherence to BP lowering therapy in 25% to 65% of patients with apparent treatment-resistant hypertension (TRH). This review focuses on the latest development of antihypertensive medication, such as vasopeptidase inhibitors, aldosterone synthase inhibitors, Soluble Epoxide Hydrolase Inhibitors, agonists of natriuretic peptide receptor, Vasoactive Intestinal Peptide Receptor Agonist, a novel mineralocorticoid receptor antagonist, inhibitors of aminopeptidase A, dopamine β-hydroxylase inhibitor, intestinal Na+/H+ exchanger 3 inhibitor and other agents.
Ryan, Ali; Keany, Sebastian; Eleftheriadou, Olga; Ballet, Romain; Cheng, Hung-Yuan; Sim, Edith
2014-01-01
Mycobacterium tuberculosis remains the leading cause of death by a bacterial pathogen worldwide. Increasing prevalence of multidrug-resistant organisms means prioritizing identification of targets for antituberculars. 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (HsaD), part of the cholesterol metabolism operon, is vital for survival within macrophage. The C-C bond hydrolase, HsaD, has a serine protease-like catalytic triad. We tested a range of serine protease and esterase inhibitors for their effects on HsaD activity. As well as providing a potential starting point for drug development, the data provides evidence for the mechanism of C-C bond hydrolysis. This screen also provides a route to initiate development of fragment-based inhibitors. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Filone, Claire Marie; Hodges, Erin N.; Honeyman, Brian; Bushkin, G. Guy; Boyd, Karla; Platt, Andrew; Ni, Feng; Strom, Kyle; Hensley, Lisa; Snyder, John K.; Connor, John H.
2013-01-01
There are no approved therapeutics for the most deadly nonsegmented negative-strand (NNS) RNA viruses, including Ebola (EBOV). To identify new chemical scaffolds for development of broad-spectrum antivirals, we undertook a prototype-based lead identification screen. Using the prototype NNS virus, vesicular stomatitis virus (VSV), multiple inhibitory compounds were identified. Three compounds were investigated for broad-spectrum activity, and inhibited EBOV infection. The most potent, CMLDBU3402, was selected for further study. CMLDBU3402 did not show significant activity against segmented negative-strand RNA viruses suggesting proscribed broad-spectrum activity. Mechanistic analysis indicated that CMLDBU3402 blocked VSV viral RNA synthesis and inhibited EBOV RNA transcription, demonstrating a consistent mechanism of action against genetically distinct viruses. The identification of this chemical backbone as a broad-spectrum inhibitor of viral RNA synthesis offers significant potential for the development of new therapies for highly pathogenic viruses. PMID:23521799
Li, Zhengqiu; Zheng, Binbin; Guo, Haijun; Xu, Jiaqian; Ma, Nan; Ni, Yun; Li, Lin; Hao, Piliang; Ding, Ke
2018-06-25
AXL has been defined as a novel target for cancer therapeutics. However, only a few potent and selective inhibitors targeting AXL are available to date. Our group has developed a lead compound, 9im, capable of excellent inhibition against AXL. With the aim of understanding its cellular and tissue mechanism of actions and direct subsequent structure optimization, a study on competitive affinity-based proteome profiling and bioimaging was carried out. A series of unknown cellular and tissue targets, including RYK, PCK, ATP1A3, EIF4A, Ptprn and Cox5b were discovered. In addition, trans-cyclooctene (TCO) and acedan-containing probes were developed to image the binding between 9im and its target proteins inside live cells and tumor tissues. These probes would be useful tools in the detection of expression and activity of AXL. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Wenlian; Xiao, Faqi; Zhou, Mingming; Jiang, Xuejin; Liu, Jun; Si, Hongzong; Xie, Meng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin
2016-09-01
The three dimensional-quantitative structure activity relationship (3D-QSAR) study was performed on a series of 4-hydroxyamino α-pyranone carboxamide analogues using comparative molecular similarity indices analysis (COMSIA). The purpose of the present study was to develop a satisfactory model providing a reliable prediction based on 4-hydroxyamino α-pyranone carboxamide analogues as anti-HCV (hepatitis C virus) inhibitors. The statistical results and the results of validation of this optimum COMSIA model were satisfactory. Furthermore, analysis of the contour maps helped to provide guidelines for finding structural requirement. Therefore, the satisfactory results from this study may provide useful guidelines for drug development of anti-HCV inhibitors.
Cheng, Ji; Iorio, Alfonso; Marcucci, Maura; Romanov, Vadim; Pullenayegum, Eleanor M; Marshall, John K; Thabane, Lehana
2016-01-01
Background Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information. Methods We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population – patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A) post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting prior information or scaling up the study data was evaluated. Results Results based on noninformative priors were similar to the classical approach. Using priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 [0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. Increasing the number of patients by two and ten times substantially narrowed the credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], respectively). Increasing the number of studies by two and ten times for the multiple study scenarios (Case 2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; Case 3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], respectively) had a similar effect. Conclusion Bayesian approach as a robust, transparent, and reproducible analytic method can be efficiently used to estimate the inhibitor rate of hemophilia A in complex clinical settings. PMID:27822129
Cheng, Ji; Iorio, Alfonso; Marcucci, Maura; Romanov, Vadim; Pullenayegum, Eleanor M; Marshall, John K; Thabane, Lehana
2016-01-01
Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information. We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population - patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A) post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting prior information or scaling up the study data was evaluated. Results based on noninformative priors were similar to the classical approach. Using priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 [0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. Increasing the number of patients by two and ten times substantially narrowed the credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], respectively). Increasing the number of studies by two and ten times for the multiple study scenarios (Case 2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; Case 3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], respectively) had a similar effect. Bayesian approach as a robust, transparent, and reproducible analytic method can be efficiently used to estimate the inhibitor rate of hemophilia A in complex clinical settings.
Zhu, Shun; Travis, Sue M; Elcock, Adrian H
2013-07-09
A major current challenge for drug design efforts focused on protein kinases is the development of drug resistance caused by spontaneous mutations in the kinase catalytic domain. The ubiquity of this problem means that it would be advantageous to develop fast, effective computational methods that could be used to determine the effects of potential resistance-causing mutations before they arise in a clinical setting. With this long-term goal in mind, we have conducted a combined experimental and computational study of the thermodynamic effects of active-site mutations on a well-characterized and high-affinity interaction between a protein kinase and a small-molecule inhibitor. Specifically, we developed a fluorescence-based assay to measure the binding free energy of the small-molecule inhibitor, SB203580, to the p38α MAP kinase and used it measure the inhibitor's affinity for five different kinase mutants involving two residues (Val38 and Ala51) that contact the inhibitor in the crystal structure of the inhibitor-kinase complex. We then conducted long, explicit-solvent thermodynamic integration (TI) simulations in an attempt to reproduce the experimental relative binding affinities of the inhibitor for the five mutants; in total, a combined simulation time of 18.5 μs was obtained. Two widely used force fields - OPLS-AA/L and Amber ff99SB-ILDN - were tested in the TI simulations. Both force fields produced excellent agreement with experiment for three of the five mutants; simulations performed with the OPLS-AA/L force field, however, produced qualitatively incorrect results for the constructs that contained an A51V mutation. Interestingly, the discrepancies with the OPLS-AA/L force field could be rectified by the imposition of position restraints on the atoms of the protein backbone and the inhibitor without destroying the agreement for other mutations; the ability to reproduce experiment depended, however, upon the strength of the restraints' force constant. Imposition of position restraints in corresponding simulations that used the Amber ff99SB-ILDN force field had little effect on their ability to match experiment. Overall, the study shows that both force fields can work well for predicting the effects of active-site mutations on small molecule binding affinities and demonstrates how a direct combination of experiment and computation can be a powerful strategy for developing an understanding of protein-inhibitor interactions.
New associations: INFG and TGFB1 genes and the inhibitor development in severe haemophilia A.
de Alencar, J B; Macedo, L C; de Barros, M F; Rodrigues, C; Shinzato, A H; Pelissari, C B; Machado, J; Sell, A M; Visentainer, J E L
2015-07-01
The development of factor VIII (FVIII) inhibitor is the main complication of replacement therapy in patients with haemophilia A (HA). A ratio of 5-7% of individuals HA develops antibodies (inhibitors) against the FVIII infused during the treatment, thereby reducing their pro-coagulant activity. The immunomodulatory cytokine genes have been related to the risk of development of alloantibodies in several studies, mainly in HA with severe form. We investigated the polymorphisms in regulatory regions of cytokine genes (IL1A, IL1B, IL1R, IL1RA, IL4RA, IL12, INFG, TGFB1, TNF, IL2, IL4, IL6, IL10) that could influence the risk of developing inhibitors in patients with severe HA. The genotyping of cytokine genes of 117 patients with HA was performed by polymerase chain reaction with sequence-specific primers (PCR-SSP) using the protocol recommended by the manufacturer (Invitrogen kit Cytokines(®) , Canoga Park, USA) RESULTS: From the cohort of 117 patients with severe HA, 35 developed inhibitors. There was a higher frequency of +874 T allele in INFG and of +869 TT and TG/TG in TGFB1 genes on patients with inhibitors. This suggests that polymorphisms in INFG and in TGFB1 genes are related to risk of developing inhibitor, and could contribute to a genetic profile of the individual HA for the risk of inhibitors development to FVIII. © 2015 John Wiley & Sons Ltd.
Design and synthesis of N-(4-aminopyridin-2-yl)amides as B-Raf(V600E) inhibitors.
Li, Xiaokai; Shen, Jiayi; Tan, Li; Zhang, Zhang; Gao, Donglin; Luo, Jinfeng; Cheng, Huimin; Zhou, Xiaoping; Ma, Jie; Ding, Ke; Lu, Xiaoyun
2016-06-15
B-Raf(V600E) was an effective target for the treatment of human cancers. Based on a pan-Raf inhibitor TAK-632, a series of N-(4-aminopyridin-2-yl)amide derivatives were designed as novel B-Raf(V600E) inhibitors. Detailed structure-activity studies of the compounds revealed that most of the compounds displayed potent enzymatic activity against B-Raf(V600E), and good selectivity over B-Raf(WT). One of the most promising compound 4l exhibited potent inhibitory activity with an IC50 value of 38nM for B-raf(V600E), and displayed antiproliferative activities against colo205 and HT29 cells with IC50 values of 0.136 and 0.094μM, respectively. It also displayed good selectivity on both enzymatic and cellular assays over B-Raf(WT). These inhibitors may serve as lead compounds for further developing novel B-Raf(V600E) inhibitors as anticancer drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Xiang-Qian; Xu, Qi; Luo, Jiao; Wang, Li-Jun; Jiang, Bo; Zhang, Ren-Shuai; Shi, Da-Yong
2017-08-18
Protein tyrosine phosphatases 1B (PTP1B) is a promising and validated therapeutic target to effectively treat T2DM and obesity. However, the development of charged PTP1B inhibitors was restricted due to their low cell permeability and poor bioavailability. Based on active natural products, two series of uncharged catechol derivatives were identified as PTP1B inhibitors by targeting a secondary aryl phosphate-binding site as well as the catalytic site. The most potent inhibitor 22 showed an IC 50 of 0.487 μM against PTP1B and strong selectivity (27-fold) over TCPTP. Kinetic studies were also performed that 22 act as a competitive PTP1B inhibitor. The treatment of C2C12 myotubes with 22 markedly increased the phosphorylation levels of IRβ, Akt and IRS1 phosphorylation. The similarity of its action profiling with that produced by insulin suggested its potential as a new non-insulin-dependent drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Structural Basis for Inhibitor-Induced Hydrogen Peroxide Production by Kynurenine 3-Monooxygenase.
Kim, Hyun Tae; Na, Byeong Kwan; Chung, Jiwoung; Kim, Sulhee; Kwon, Sool Ki; Cha, Hyunju; Son, Jonghyeon; Cho, Joong Myung; Hwang, Kwang Yeon
2018-04-19
Kynurenine 3-monooxygenase (KMO) inhibitors have been developed for the treatment of neurodegenerative disorders. The mechanisms of flavin reduction and hydrogen peroxide production by KMO inhibitors are unknown. Herein, we report the structure of human KMO and crystal structures of Saccharomyces cerevisiae (sc) and Pseudomonas fluorescens (pf) KMO with Ro 61-8048. Proton transfer in the hydrogen bond network triggers flavin reduction in p-hydroxybenzoate hydroxylase, but the mechanism triggering flavin reduction in KMO is different. Conformational changes via π-π interactions between the loop above the flavin and substrate or non-substrate effectors lead to disorder of the C-terminal α helix in scKMO and shifts of domain III in pfKMO, stimulating flavin reduction. Interestingly, Ro 61-8048 has two different binding modes. It acts as a competitive inhibitor in scKMO and as a non-substrate effector in pfKMO. These findings provide understanding of the catalytic cycle of KMO and insight for structure-based drug design of KMO inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Qiufeng; Huang, Fubao; Yuan, Xiaojing; Wang, Kai; Zou, Yi; Shen, Jianhua; Xu, Yechun
2017-12-28
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a promising therapeutic target for atherosclerosis, Alzheimer's disease, and diabetic macular edema. Here we report the identification of novel sulfonamide scaffold Lp-PLA2 inhibitors derived from a relatively weak fragment. Similarity searching on this fragment followed by molecular docking leads to the discovery of a micromolar inhibitor with a 300-fold potency improvement. Subsequently, by the application of a structure-guided design strategy, a successful hit-to-lead optimization was achieved and a number of Lp-PLA2 inhibitors with single-digit nanomolar potency were obtained. After preliminary evaluation of the properties of drug-likeness in vitro and in vivo, compound 37 stands out from this congeneric series of inhibitors for good inhibitory activity and favorable oral bioavailability in male Sprague-Dawley rats, providing a quality candidate for further development. The present study thus clearly demonstrates the power and advantage of integrally employing fragment screening, crystal structures determination, virtual screening, and medicinal chemistry in an efficient lead discovery project, providing a good example for structure-based drug design.
KGFR as a possible therapeutic target in middle ear cholesteatoma.
Yamamoto-Fukuda, Tomomi; Akiyama, Naotaro; Shibata, Yasuaki; Takahashi, Haruo; Ikeda, Tohru; Kohno, Michiaki; Koji, Takehiko
2014-11-01
We demonstrated that repression of keratinocyte growth factor (KGF) receptor (KGFR) could be a potentially useful strategy in the conservative treatment of middle ear cholesteatoma. Recently, the use of a selective inhibitor of the KGFR, SU5402, in an in vitro experiment resulted in the inhibition of the differentiation and proliferation of epithelial cells through KGF secretion by fibroblasts isolated from the cholesteatoma. In this study, we investigated the effects of the KGFR inhibitor during middle ear cholesteatoma formation in vivo. Based on the role of KGF in the development of cholesteatoma, Flag-hKGF cDNA driven by CMV14 promoter was transfected through electroporation into the external auditory canal of rats five times on every fourth day. Ears transfected with empty vector were used as controls. KGFR selective inhibitor (SU5402) or MEK inhibitor (PD0325901) was administered in the right ear of five rats after vector transfection. In the control, 2% DMSO in PBS was administered in the other ears after vector transfection. The use of a selective KGFR inhibitor, SU5402, completely prevented middle ear cholesteatoma formation in the rats.
NASA Astrophysics Data System (ADS)
Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.
2017-06-01
Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.
Liang, Zhibin; Li, Qing X
2018-05-16
Glycogen synthase kinase-3β (GSK-3β) is a key enzyme responsible for tau hyperphosphorylation and is a viable therapeutic target of Alzheimer's disease (AD). We developed a new class of GSK-3β inhibitors based on the 6- C-glycosylflavone isoorientin (1). The new inhibitors are passive membrane permeable and constitutively attenuate GSK-3β mediated tau hyperphosphorylation and amyloid neurotoxicity in an AD cellular model. Enzymatic assays and kinetic studies demonstrated that compound 30 is a GSK-3β substrate-competitive inhibitor with distinct kinase selectivity, isoform-selectivity and over 310-fold increased potency as compared to 1. Structure-activity relationship analyses and in silico modeling suggest the mechanism of actions by which the hydrophobic, π-cation, and orthogonal multipolar interactions of 30 with the substrate site are critical for the GSK-3β inhibition and selectivity. The results provide new insights into GSK-3β drug discovery. The new inhibitors are valuable chemical probes and drug leads with therapeutic potential to tackle AD and other GSK-3β relevant diseases.
Pham-The, H; Casañola-Martin, G; Diéguez-Santana, K; Nguyen-Hai, N; Ngoc, N T; Vu-Duc, L; Le-Thi-Thu, H
2017-03-01
Histone deacetylases (HDAC) are emerging as promising targets in cancer, neuronal diseases and immune disorders. Computational modelling approaches have been widely applied for the virtual screening and rational design of novel HDAC inhibitors. In this study, different machine learning (ML) techniques were applied for the development of models that accurately discriminate HDAC2 inhibitors form non-inhibitors. The obtained models showed encouraging results, with the global accuracy in the external set ranging from 0.83 to 0.90. Various aspects related to the comparison of modelling techniques, applicability domain and descriptor interpretations were discussed. Finally, consensus predictions of these models were used for screening HDAC2 inhibitors from four chemical libraries whose bioactivities against HDAC1, HDAC3, HDAC6 and HDAC8 have been known. According to the results of virtual screening assays, structures of some hits with pair-isoform-selective activity (between HDAC2 and other HDACs) were revealed. This study illustrates the power of ML-based QSAR approaches for the screening and discovery of potent, isoform-selective HDACIs.
2016-05-01
AWARD NUMBER: W81XWH-15-1-0072 TITLE: Development of Tethered Hsp90 Inhibitors Carrying Radioiodinated Probes to Specifically Discriminate and...1 May 2015 - 30 Apr 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of Tethered Hsp90 Inhibitors Carrying Radioiodinated Probes to...inhibitor capable of carrying various radioactive iodine isotopes for early detection and ablation of metastatic breast cancers. These probes
Jing, Jing; Nelson, Cara; Paik, Jisun; Shirasaka, Yoshiyuki; Amory, John K.
2017-01-01
All-trans retinoic acid (atRA) is a front-line treatment of acute promyelocytic leukemia (APL). Due to its activity in regulating the cell cycle, it has also been evaluated for the treatment of other cancers. However, the efficacy of atRA has been limited by atRA inducing its own metabolism during therapy, resulting in a decrease of atRA exposure during continuous dosing. Frequent relapse occurs in patients receiving atRA monotherapy. In an attempt to combat therapy resistance, inhibitors of atRA metabolism have been developed. Of these, ketoconazole and liarozole have shown some benefits, but their usage is limited by side effects and low potency toward the cytochrome P450 26A1 isoform (CYP26A1), the main atRA hydroxylase. We determined the pharmacokinetic basis of therapy resistance to atRA and tested whether the complex disposition kinetics of atRA could be predicted in healthy subjects and in cancer patients in the presence and absence of inhibitors of atRA metabolism using physiologically based pharmacokinetic (PBPK) modeling. A PBPK model of atRA disposition was developed and verified in healthy individuals and in cancer patients. The population-based PBPK model of atRA disposition incorporated saturable metabolic clearance of atRA, induction of CYP26A1 by atRA, and the absorption and distribution kinetics of atRA. It accurately predicted the changes in atRA exposure after continuous dosing and when coadministered with ketoconazole and liarozole. The developed model will be useful in interpretation of atRA disposition and efficacy, design of novel dosing strategies, and development of next-generation atRA metabolism inhibitors. PMID:28275201
Takano, Yoko; Echizen, Honami; Hanaoka, Kenjiro
2017-10-01
Hydrogen sulfide (H 2 S) plays roles in many physiological processes, including relaxation of vascular smooth muscles, mediation of neurotransmission, inhibition of insulin signaling, and regulation of inflammation. Also, hydropersulfide (R-S-SH) and polysulfide (-S-S n -S-) have recently been identified as reactive sulfur species (RSS) that regulate the bioactivities of multiple proteins via S-sulfhydration of cysteine residues (protein Cys-SSH) and show cytoprotection. Chemical tools such as fluorescent probes and selective inhibitors are needed to establish in detail the physiological roles of H 2 S and polysulfide. Recent Advances: Although many fluorescent probes for H 2 S are available, fluorescent probes for hydropersulfide and polysulfide have only recently been developed and used to detect these sulfur species in living cells. In this review, we summarize recent progress in developing chemical tools for the study of H 2 S, hydropersulfide, and polysulfide, covering fluorescent probes based on various design strategies and selective inhibitors of H 2 S- and polysulfide-producing enzymes (cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase), and we summarize their applications in biological studies. Despite recent progress, the precise biological functions of H 2 S, hydropersulfide, and polysulfide remain to be fully established. Fluorescent probes and selective inhibitors are effective chemical tools to study the physiological roles of these sulfur molecules in living cells and tissues. Therefore, further development of a broad range of practical fluorescent probes and selective inhibitors as tools for studies of RSS biology is currently attracting great interest. Antioxid. Redox Signal. 27, 669-683.
Cholinesterase inhibitors: a patent review (2007 - 2011).
de los Ríos, Cristóbal
2012-08-01
Cholinesterase inhibitors participate in the maintenance of the levels of the neurotransmitter acetylcholine by inhibiting the enzymes implicated in its degradation, namely, butyrylcholinesterase and acetylcholinesterase. This pharmacological action has an important role in several diseases, including neurodegenerative diseases such as Alzheimer's. This article reviews recent advances in the development of cholinesterase enzyme inhibitors, covering the development of new chemical entities, new pharmaceutical formulations with known inhibitors or treatments in combination with other drug families. The development of cholinesterase inhibitors has to face several issues, including the fact that the principal indication for these drugs, Alzheimer's disease, is not currently believed to derivate from a cholinergic deficiency, although most of the drugs clinically used for these disease are cholinesterase inhibitors. Moreover, the adverse effects found when administering cholinesterase inhibitors limit their use in other diseases, such as gastrointestinal diseases, glaucoma, or analgesia.
Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...
Cyclooxygenase inhibitory natural products: current status.
Jachak, Sanjay M
2006-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are of huge therapeutic benefit in the treatment of rheumatoid arthritis and various types of inflammatory conditions. The target for these drugs is cyclooxygenase (COX), a rate-limiting enzyme involved in the conversion of arachidonic acid into inflammatory prostaglandins. COX-2 selective inhibitors are believed to have the same anti-inflammatory, anti-pyretic and analgesic activities as that of nonselective inhibitor NSAIDs with little or none of the gastrointestinal side effects. Thus, in the last 6-7 years several selective COX-2 inhibitors including coxibs were discovered and introduced into clinic. Recent reports evidence that selective COX-2 inhibitor such as rofecoxib, can lead to thrombotic cardiovascular events through inhibition of prostacyclin formation in the infracted heart. This has resulted in withdrawal of rofecoxib from the clinic in September 2004. Moreover, the COX-2/COX-1 selectivity ratio is vital in the design of COX-2 inhibitory drugs, as it is clear from rofecoxib, which is more than 50-fold COX-2 selective. After looking at all above mentioned facts, natural product-based compounds seem better as these compounds are generally supposed to be devoid of severe side effects. The literature indicates that natural product-based compounds are mainly COX-1 selective. Through minor semi-synthetic changes in the structures, their selectivity towards COX-2 can be increased. The present review article addresses natural product COX inhibitors of plant and marine origin, reported during last ten years and their advantages, possible leads for further development and current status. In addition we describe our experience in the characterization, design and synthesis of potential natural COX inhibitors.
Targeting Insulin-Degrading Enzyme to Treat Type 2 Diabetes Mellitus.
Tang, Wei-Jen
2016-01-01
Insulin-degrading enzyme (IDE) selectively degrades peptides, such as insulin, amylin, and amyloid β (Aβ) that form toxic aggregates, to maintain proteostasis. IDE defects are linked to the development of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). Structural and biochemical analyses revealed the molecular basis for IDE-mediated destruction of amyloidogenic peptides and this information has been exploited to develop promising inhibitors of IDE to improve glucose homeostasis. However, the inhibition of IDE can also lead to glucose intolerance. In this review, I focus on recent advances regarding our understanding of the structure and function of IDE and the discovery of IDE inhibitors, as well as challenges in developing IDE-based therapy for human diseases, particularly T2DM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yu, Weixuan; Neckles, Carla; Chang, Andrew; Bommineni, Gopal Reddy; Spagnuolo, Lauren; Zhang, Zhuo; Liu, Nina; Lai, Christina; Truglio, James; Tonge, Peter J.
2015-01-01
The classical methods for quantifying drug-target residence time (tR) use loss or regain of enzyme activity in progress curve kinetic assays. However, such methods become imprecise at very long residence times, mitigating the use of alternative strategies. Using the NAD(P)H-dependent FabI enoyl-ACP reductase as a model system, we developed a Penefsky column-based method for direct measurement of tR, where the off-rate of the drug was determined with radiolabeled [adenylate-32P] NAD(P+) cofactor. Twenty-three FabI inhibitors were analyzed and a mathematical model was used to estimate limits to the tR values of each inhibitor based on percent drug-target complex recovery following gel filtration. In general, this method showed good agreement with the classical steady state kinetic methods for compounds with tR values of 10-100 min. In addition, we were able to identify seven long tR inhibitors (100-1500 min) and to accurately determine their tR values. The method was then used to measure tR as a function of temperature, an analysis not previously possible using the standard kinetic approach due to decreased NAD(P)H stability at elevated temperatures. In general, a 4-fold difference in tR was observed when the temperature was increased from 25 °C to 37 °C . PMID:25684450
The USEPA’s ToxCast program is developing a novel approach to chemical toxicity testing using high-throughput screening (HTS) assays to rapidly test thousands of chemicals against hundreds of in vitro molecular targets. This approach is based on the premise that in vitro HTS bioa...
Design, synthesis and biological evaluation of indole derivatives as Vif inhibitors.
Pu, Chunlan; Luo, Rong-Hua; Zhang, Mengqi; Hou, Xueyan; Yan, Guoyi; Luo, Jiang; Zheng, Yong-Tang; Li, Rui
2017-09-01
The crystal structure of viral infectivity factor (Vif) was reported recently, which makes it possible to design new inhibitors against Vif by structure-based drug design. Through analysis of the protein surface of Vif, the C2 pocket located in the N-terminal was found, which is suit for developing small molecular inhibitors. Then, in our article, fragment-based virtual screening (FBVS) was conducted and a series of fragments was obtained, among which, Zif-1 bearing indole scaffold and pyridine ring can form H-bonds with Tyr148 and Ile155. Subsequently, 19 derivatives of Zif-1 were synthesized. Through the immune-fluorescence staining and Western blot assays, Zif-15 shows potent activity in inhibiting Vif-mediated A3G degradation. Further docking experiment shows that Zif-15 form H-bond interactions with residues His139, Tyr148 and Ile155. Therefore, Zif-15 is a promising lead compound against Vif that can be used to treat AIDS. Copyright © 2017. Published by Elsevier Ltd.
Xu, Y; Li, Y F; Zhang, D; Dockendorf, M; Tetteh, E; Rizk, M L; Grobler, J A; Lai, M-T; Gobburu, J; Ankrom, W
2016-08-01
We applied model-based meta-analysis of viral suppression as a function of drug exposure and in vitro potency for short-term monotherapy in human immunodeficiency virus type 1 (HIV-1)-infected treatment-naïve patients to set pharmacokinetic targets for development of nonnucleoside reverse transcriptase inhibitors (NNRTIs) and integrase strand transfer inhibitors (InSTIs). We developed class-specific models relating viral load kinetics from monotherapy studies to potency normalized steady-state trough plasma concentrations. These models were integrated with a literature assessment of doses which demonstrated to have long-term efficacy in combination therapy, in order to set steady-state trough concentration targets of 6.17- and 2.15-fold above potency for NNRTIs and InSTIs, respectively. Both the models developed and the pharmacokinetic targets derived can be used to guide compound selection during preclinical development and to predict the dose-response of new antiretrovirals to inform early clinical trial design. © 2016 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Kantsadi, Anastassia L; Parmenopoulou, Vanessa; Bakalov, Dimitar N; Snelgrove, Laura; Stravodimos, George A; Chatzileontiadou, Demetra S M; Manta, Stella; Panagiotopoulou, Angeliki; Hayes, Joseph M; Komiotis, Dimitri; Leonidas, Demetres D
2015-01-01
Glycogen phosphorylase (GP), a validated target for the development of anti-hyperglycaemic agents, has been targeted for the design of novel glycopyranosylamine inhibitors. Exploiting the two most potent inhibitors from our previous study of N-acyl-β-D-glucopyranosylamines (Parmenopoulou et al., Bioorg. Med. Chem. 2014, 22, 4810), we have extended the linking group to -NHCONHCO- between the glucose moiety and the aliphatic/aromatic substituent in the GP catalytic site β-cavity. The N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors were synthesized and their efficiency assessed by biochemical methods, revealing inhibition constant values of 4.95 µM and 2.53 µM. Crystal structures of GP in complex with these inhibitors were determined and analyzed, providing data for further structure based design efforts. A novel Linear Response - Molecular Mechanics Coulomb Surface Area (LR-MM-CBSA) method has been developed which relates predicted and experimental binding free energies for a training set of N-acyl-N´-(β-D-glucopyranosyl) urea ligands with a correlation coefficient R(2) of 0.89 and leave-one-out cross-validation (LOO-cv) Q(2) statistic of 0.79. The method has significant applications to direct future lead optimization studies, where ligand entropy loss on binding is revealed as a key factor to be considered. ADMET property predictions revealed that apart from potential permeability issues, the synthesized N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors have drug-like potential without any toxicity warnings.
Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael; Bensen, Daniel C.; Chen, Zhiyong; Lam, Thanh; Zhang, Junhu; Lee, Suk Joong; Hough, Grayson; Phillipson, Doug; Akers-Rodriguez, Suzanne; Cunningham, Mark L.; Kwan, Bryan P.; Nelson, Kirk J.; Castellano, Amanda; Locke, Jeff B.; Brown-Driver, Vickie; Murphy, Timothy M.; Ong, Voon S.; Pillar, Chris M.; Shinabarger, Dean L.; Nix, Jay; Lightstone, Felice C.; Wong, Sergio E.; Nguyen, Toan B.; Shaw, Karen J.; Finn, John
2013-01-01
Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. However, growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highly conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models. PMID:24386374
2008-10-07
in a competent orientation for attack by the catalytic water in the protease, resulting in the cleavage of the peptide bond. A cocrystal structure of...in future struc- ture-based discovery and design investigations. Implications for BoNT/A LC Inhibitor Development Our cocrystal provides a new...the Met residues in I1 and SNAP-25 are shown as sticks, with the sulfur atom colored yellow. The Zn2+ is shown as a light blue sphere.The cocrystal
2007-02-01
receptor antagonists (such as haloperidol ) failed to score in the FOXO localization assays. Phenothiazines are also known to be inhibitors of calmodulin...were representative of assay. None of the inhibitors— haloperidol , clozapine, L745870, CANCER CELL : DECEMBER 2003 469 A R T I C L E Figure 6... haloperidol (80 M), clozapine (20 M), L745870 (80 M), and L-speri- done (80 M) do not inhibit FOXO1a export sig- nificantly. C: Treatment with structurally
[Pharmacological differences between inhibitor drugs of the renin-angiotensin aldosterone system].
Méndez-Durán, Antonio
2011-01-01
The activation of the renin-angiotensin-aldosterone cascade is a mechanism that generates high blood pressure. The structure has been identified and can be blocked through specific enzymatic pathways or receptors. We have a diversity of medications that act on this system. It is useful to develop the skill in clinical practice for selecting a drug from a wide variety. Renin-angiotensin system inhibitors share many pharmacological and pharmacokinetic characteristics but not all them are equivalent. Knowledge based on scientific evidence allows the clinician to choose the ideal drug for each patient.
Shafique, Shagufta; Rashid, Sajid
2017-03-01
The critical role of βTrCP1 in cancer development makes it a discerning target for the development of small drug like molecules. Currently, no inhibitor exists that is able to target its substrate binding site. Through molecular docking and dynamics simulation assays, we explored the comparative binding pattern of βTrCP1-WD40 domain with ACV and its phospho-derivatives (ACVMP, ACVDP and ACVTP). Consequently, through principal component analysis, βTrCP1-ACVTP was found to be more stable complex by obscuring a reduced conformational space than other systems. Thus based on the residual contribution and hydrogen bonding pattern, ACVTP was considered as a noteworthy inhibitor which demarcated binding in the cleft formed by βTrCP1-WD40 specific β-propeller. The outcomes of this study may provide a platform for rational design of specific and potent inhibitor against βTrCP1, with special emphasis on anticancer activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Eggert, Erik; Hillig, Roman C; Koehr, Silke; Stöckigt, Detlef; Weiske, Jörg; Barak, Naomi; Mowat, Jeffrey; Brumby, Thomas; Christ, Clara D; Ter Laak, Antonius; Lang, Tina; Fernandez-Montalvan, Amaury E; Badock, Volker; Weinmann, Hilmar; Hartung, Ingo V; Barsyte-Lovejoy, Dalia; Szewczyk, Magdalena; Kennedy, Steven; Li, Fengling; Vedadi, Masoud; Brown, Peter J; Santhakumar, Vijayaratnam; Arrowsmith, Cheryl H; Stellfeld, Timo; Stresemann, Carlo
2016-05-26
Protein lysine methyltransferases have recently emerged as a new target class for the development of inhibitors that modulate gene transcription or signaling pathways. SET and MYND domain containing protein 2 (SMYD2) is a catalytic SET domain containing methyltransferase reported to monomethylate lysine residues on histone and nonhistone proteins. Although several studies have uncovered an important role of SMYD2 in promoting cancer by protein methylation, the biology of SMYD2 is far from being fully understood. Utilization of highly potent and selective chemical probes for target validation has emerged as a concept which circumvents possible limitations of knockdown experiments and, in particular, could result in an improved exploration of drug targets with a complex underlying biology. Here, we report the development of a potent, selective, and cell-active, substrate-competitive inhibitor of SMYD2, which is the first reported inhibitor suitable for in vivo target validation studies in rodents.
A Multifunctional Smart Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.
2012-01-01
Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This
Santarpia, Mariacarmela; Altavilla, Giuseppe; Rosell, Rafael
2015-06-01
Crizotinib was the first clinically available anaplastic lymphoma kinase (ALK) inhibitor, showing remarkable activity against ALK-rearranged non-small-cell lung cancer (NSCLC). Despite initial responses, acquired resistance to crizotinib inevitably develops, with the brain being a common site of relapse. Alectinib is a highly selective, next-generation ALK inhibitor with potent inhibitory activity also against ALK mutations conferring resistance to crizotinib, including the gatekeeper L1196M substitution. In a Phase I/II study from Japan, alectinib was found to be highly active and safe in crizotinib-naïve, ALK-rearranged NSCLC patients. Alectinib also demonstrated promising antitumor activity in crizotinib-resistant patients, including those with CNS metastases. Based on these data, the drug received Breakthrough Therapy Designation by the US FDA and has been recently approved in Japan for the treatment of ALK-positive, advanced NSCLC patients. However, patients may eventually develop resistance to alectinib, highlighting the need for novel therapeutic strategies to further improve the management of ALK-rearranged NSCLC.
Cheung, Mui; Tangirala, Raghuram S; Bethi, Sridhar R; Joshi, Hemant V; Ariazi, Jennifer L; Tirunagaru, Vijaya G; Kumar, Sanjay
2018-02-08
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) plays an important role in triglyceride synthesis and is a target of interest for the treatment of metabolic disorders. Herein we describe the structure-activity relationship of a novel tetralone series of DGAT1 inhibitors and our strategies for overcoming genotoxic liability of the anilines embedded in the chemical structures, leading to the discovery of a candidate compound, ( S )-2-(6-(5-(3-(3,4-difluorophenyl)ureido)pyrazin-2-yl)-1-oxo-2-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydronaphthalen-2-yl)acetic acid (GSK2973980A, 26d ). Compound 26d is a potent and selective DGAT1 inhibitor with excellent DMPK profiles and in vivo efficacy in a postprandial lipid excursion model in mice. Based on the overall biological and developability profiles and acceptable safety profiles in the 7-day toxicity studies in rats and dogs, compound 26d was selected as a candidate compound for further development in the treatment of metabolic disorders.
Rafehi, Haloom; Kaspi, Antony; Ziemann, Mark; Okabe, Jun; Karagiannis, Tom C; El-Osta, Assam
2017-01-01
Given the skyrocketing costs to develop new drugs, repositioning of approved drugs, such as histone deacetylase (HDAC) inhibitors, may be a promising strategy to develop novel therapies. However, a gap exists in the understanding and advancement of these agents to meaningful translation for which new indications may emerge. To address this, we performed systems-level analyses of 33 independent HDAC inhibitor microarray studies. Based on network analysis, we identified enrichment for pathways implicated in metabolic syndrome and diabetes (insulin receptor signaling, lipid metabolism, immunity and trafficking). Integration with ENCODE ChIP-seq datasets identified suppression of EP300 target genes implicated in diabetes. Experimental validation indicates reversal of diabetes-associated EP300 target genes in primary vascular endothelial cells derived from a diabetic individual following inhibition of HDACs (by SAHA), EP300, or EP300 knockdown. Our computational systems biology approach provides an adaptable framework for the prediction of novel therapeutics for existing disease.
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.
2010-01-01
Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.
Synthesis of Barbiturate-Based Methionine Aminopeptidase-1 Inhibitors
Haldar, Manas K.; Scott, Michael D.; Sule, Nitesh; Srivastava, D. K.; Mallik, Sanku
2008-01-01
The syntheses of a new class of barbiturate-based inhibitors for human and E. Coli Methionine Aminopeptidase -1 (MetAP-1) are described. Some of the synthesized inhibitors show selective inhibition of the human enzyme with high potency. PMID:18343108
Selective Targeting of CTNNB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs
Uitdehaag, Joost C. M.; de Roos, Jeroen A. D. M.; van Doornmalen, Antoon M.; Prinsen, Martine B. W.; Spijkers-Hagelstein, Jill A. P.; de Vetter, Judith R. F.; de Man, Jos; Buijsman, Rogier C.; Zaman, Guido J. R.
2015-01-01
The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes. PMID:26018524
Progress of small molecular inhibitors in the development of anti-influenza virus agents
Wu, Xiaoai; Wu, Xiuli; Sun, Qizheng; Zhang, Chunhui; Yang, Shengyong; Li, Lin; Jia, Zhiyun
2017-01-01
The influenza pandemic is a major threat to human health, and highly aggressive strains such as H1N1, H5N1 and H7N9 have emphasized the need for therapeutic strategies to combat these pathogens. Influenza anti-viral agents, especially active small molecular inhibitors play important roles in controlling pandemics while vaccines are developed. Currently, only a few drugs, which function as influenza neuraminidase (NA) inhibitors and M2 ion channel protein inhibitors, are approved in clinical. However, the acquired resistance against current anti-influenza drugs and the emerging mutations of influenza virus itself remain the major challenging unmet medical needs for influenza treatment. It is highly desirable to identify novel anti-influenza agents. This paper reviews the progress of small molecular inhibitors act as antiviral agents, which include hemagglutinin (HA) inhibitors, RNA-dependent RNA polymerase (RdRp) inhibitors, NA inhibitors and M2 ion channel protein inhibitors etc. Moreover, we also summarize new, recently reported potential targets and discuss strategies for the development of new anti-influenza virus drugs. PMID:28382157
Chung, Christine C; Ohwaki, Kenji; Schneeweis, Jonathan E; Stec, Erica; Varnerin, Jeffrey P; Goudreau, Paul N; Chang, Amy; Cassaday, Jason; Yang, Lihu; Yamakawa, Takeru; Kornienko, Oleg; Hodder, Peter; Inglese, James; Ferrer, Marc; Strulovici, Berta; Kusunoki, Jun; Tota, Michael R; Takagi, Toshimitsu
2008-06-01
Here we report the development and miniaturization of a cell-free enzyme assay for ultra-high-throughput screening (uHTS) for inhibitors of two potential drug targets for obesity and cancer: fatty acid synthase (FAS) and acetyl-coenzyme A (CoA) carboxylase (ACC) 2. This assay detects CoA, a product of the FAS-catalyzed condensation of malonyl-CoA and acetyl-CoA. The free thiol of CoA can react with 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM), a profluorescent coumarin maleimide derivative that becomes fluorescent upon reaction with thiols. FAS produces long-chain fatty acid and CoA from the condensation of malonyl-CoA and acetyl-CoA. In our FAS assay, CoA released in the FAS reaction forms a fluorescence adduct with CPM that emits at 530 nm when excited at 405 nm. Using this detection method for CoA, we measured the activity of sequential enzymes in the fatty acid synthesis pathway to develop an ACC2/FAS-coupled assay where ACC2 produces malonyl-CoA from acetyl-CoA. We miniaturized the FAS and ACC2/FAS assays to 3,456- and 1,536-well plate format, respectively, and completed uHTSs for small molecule inhibitors of this enzyme system. This report shows the results of assay development, miniaturization, and inhibitor screening for these potential drug targets.