Science.gov

Sample records for inhibitor everolimus rad001

  1. RAD001 (everolimus) inhibits tumour growth in xenograft models of human hepatocellular carcinoma.

    PubMed

    Huynh, Hung; Chow, K H Pierce; Soo, Khee Chee; Toh, Han Chong; Choo, Su Pin; Foo, Kian Fong; Poon, Donald; Ngo, Van Chanh; Tran, Evelyn

    2009-07-01

    Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and highly resistant to available chemotherapies. Mammalian target of rapamycin (mTOR) functions to regulate protein translation, angiogenesis and cell cycle progression in many cancers including HCC. In the present study, subcutaneous patient-derived HCC xenografts were used to study the effects of an mTOR inhibitor, RAD001 (everolimus), on tumour growth, apoptosis and angiogenesis. We report that oral administration of RAD001 to mice bearing patient-derived HCC xenografts resulted in a dose-dependent inhibition of tumour growth. RAD001-induced growth suppression was associated with inactivation of downstream targets of mTOR, reduction in VEGF expression and microvessel density, inhibition of cell proliferation, up-regulation of p27(Kip1) and down-regulation of p21(Cip1/Waf1), Cdk-6, Cdk-2, Cdk-4, cdc-25C, cyclin B1 and c-Myc. Our data indicate that the mTOR pathway plays an important role in angiogenesis, cell cycle progression and proliferation of liver cancer cells. Our study provides a strong rationale for clinical investigation of mTOR inhibitor RAD001 in patients with HCC.

  2. RTOG 0913: A Phase 1 Study of Daily Everolimus (RAD001) in Combination With Radiation Therapy and Temozolomide in Patients With Newly Diagnosed Glioblastoma

    SciTech Connect

    Chinnaiyan, Prakash; Won, Minhee; Wen, Patrick Y.; Wendland, Merideth; Dipetrillo, Thomas A.; Corn, Benjamin W.; Mehta, Minesh P.

    2013-08-01

    Purpose: To determine the safety of the mammalian target of rapamycin inhibitor everolimus (RAD001) administered daily with concurrent radiation and temozolomide in newly diagnosed glioblastoma patients. Methods and Materials: Everolimus was administered daily with concurrent radiation (60 Gy in 30 fractions) and temozolomide (75 mg/m{sup 2} per day). Everolimus was escalated from 2.5 mg/d (dose level 1) to 5 mg/d (dose level 2) to 10 mg/d (dose level 3). Adjuvant temozolomide was delivered at 150 to 200 mg/m{sup 2} on days 1 to 5, every 28 days, for up to 12 cycles, with concurrent everolimus at the previously established daily dose of 10 mg/d. Dose escalation continued if a dose level produced dose-limiting toxicities (DLTs) in fewer than 3 of the first 6 evaluable patients. Results: Between October 28, 2010, and July 2, 2012, the Radiation Therapy Oncology Group 0913 protocol initially registered a total of 35 patients, with 25 patients successfully meeting enrollment criteria receiving the drug and evaluable for toxicity. Everolimus was successfully escalated to the predetermined maximum tolerated dose of 10 mg/d. Two of the first 6 eligible patients had a DLT at each dose level. DLTs included gait disturbance, febrile neutropenia, rash, fatigue, thrombocytopenia, hypoxia, ear pain, headache, and mucositis. Other common toxicities were grade 1 or 2 hypercholesterolemia and hypertriglyceridemia. At the time of analysis, there was 1 death reported, which was attributed to tumor progression. Conclusions: Daily oral everolimus (10 mg) combined with both concurrent radiation and temozolomide followed by adjuvant temozolomide is well tolerated, with an acceptable toxicity profile. A randomized phase 2 clinical trial with mandatory correlative biomarker analysis is currently under way, designed to both determine the efficacy of this regimen and identify molecular determinants of response.

  3. North Central Cancer Treatment Group Phase I Trial N057K of Everolimus (RAD001) and Temozolomide in Combination With Radiation Therapy in Patients With Newly Diagnosed Glioblastoma Multiforme

    SciTech Connect

    Sarkaria, Jann N.; Galanis, Evanthia; Wu Wenting; Peller, Patrick J.; Giannini, Caterina; Brown, Paul D.; Uhm, Joon H.; McGraw, Steven; Jaeckle, Kurt A.; Buckner, Jan C.

    2011-10-01

    Background: The mammalian target of rapamycin (mTOR) functions within the PI3K/Akt signaling pathway as a critical modulator of cell survival. On the basis of promising preclinical data, the safety and tolerability of therapy with the mTOR inhibitor RAD001 in combination with radiation (RT) and temozolomide (TMZ) was evaluated in this Phase I study. Methods and Materials: All patients received weekly oral RAD001 in combination with standard chemoradiotherapy, followed by RAD001 in combination with standard adjuvant temozolomide. RAD001 was dose escalated in cohorts of 6 patients. Dose-limiting toxicities were defined during RAD001 combination therapy with TMZ/RT. Results: Eighteen patients were enrolled, with a median follow-up of 8.4 months. Combined therapy was well tolerated at all dose levels, with 1 patient on each dose level experiencing a dose-limiting toxicity: Grade 3 fatigue, Grade 4 hematologic toxicity, and Grade 4 liver dysfunction. Throughout therapy, there were no Grade 5 events, 3 patients experienced Grade 4 toxicities, and 6 patients had Grade 3 toxicities attributable to treatment. On the basis of these results, the recommended Phase II dosage currently being tested is RAD001 70 mg/week in combination with standard chemoradiotherapy. Fluorodeoxyglucose (FDG) positron emission tomography scans also were obtained at baseline and after the second RAD001 dose before the initiation of TMZ/RT; the change in FDG uptake between scans was calculated for each patient. Fourteen patients had stable metabolic disease, and 4 patients had a partial metabolic response. Conclusions: RAD001 in combination with RT/TMZ and adjuvant TMZ was reasonably well tolerated. Changes in tumor metabolism can be detected by FDG positron emission tomography in a subset of patients within days of initiating RAD001 therapy.

  4. Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs

    PubMed Central

    Bianco, R; Garofalo, S; Rosa, R; Damiano, V; Gelardi, T; Daniele, G; Marciano, R; Ciardiello, F; Tortora, G

    2008-01-01

    Inhibition of a single transduction pathway is often inefficient due to activation of alternative signalling. The mammalian target of rapamycin (mTOR) is a key intracellular kinase integrating proliferation, survival and angiogenic pathways and has been implicated in the resistance to EGFR inhibitors. Thus, mTOR blockade is pursued to interfere at multiple levels with tumour growth. We used everolimus (RAD001) to inhibit mTOR, alone or in combination with anti-EGFR drugs gefitinib or cetuximab, on human cancer cell lines sensitive and resistant to EGFR inhibitors, both in vitro and in vivo. We demonstrated that everolimus is active against EGFR-resistant cancer cell lines and partially restores the ability of EGFR inhibitors to inhibit growth and survival. Everolimus reduces the expression of EGFR-related signalling effectors and VEGF production, inhibiting proliferation and capillary tube formation of endothelial cells, both alone and in combination with gefitinib. Finally, combination of everolimus and gefitinib inhibits growth of GEO and GEO-GR (gefitinib resistant) colon cancer xenografts, activation of signalling proteins and VEGF secretion. Targeting mTOR pathway with everolimus overcomes resistance to EGFR inhibitors and produces a cooperative effect with EGFR inhibitors, providing a valid therapeutic strategy to be tested in a clinical setting. PMID:18319715

  5. Everolimus

    MedlinePlus

    Everolimus (Afinitor) is used to treat advanced renal cell carcinoma (RCC; cancer that begins in the kidneys) that has already been treated unsuccessfully with other medications. Everolimus (Afinitor) is ...

  6. Molecular analysis of a male breast cancer patient with prolonged stable disease under mTOR/PI3K inhibitors BEZ235/everolimus

    PubMed Central

    Brannon, A. Rose; Frizziero, Melissa; Chen, David; Hummel, Jennifer; Gallo, Jorge; Riester, Markus; Patel, Parul; Cheung, Wing; Morrissey, Michael; Carbone, Carmine; Cottini, Silvia; Tortora, Giampaolo; Melisi, Davide

    2016-01-01

    The mTORC1 inhibitor everolimus (Afinitor/RAD001) has been approved for multiple cancer indications, including ER+/HER2− metastatic breast cancer. However, the combination of everolimus with the dual PI3K/mTOR inhibitor BEZ235 was shown to be more efficacious than either everolimus or BEZ235 alone in preclinical models. Herein, we describe a male breast cancer (MBC) patient who was diagnosed with hormone receptor-positive (HR+)/HER2− stage IIIA invasive ductal carcinoma and sequentially treated with chemoradiotherapy and hormonal therapy. Upon the development of metastases, the patient began a 200 mg twice-daily BEZ235 and 2.5 mg weekly everolimus combination regimen. The patient sustained a prolonged stable disease of 18 mo while undergoing the therapy, before his tumor progressed again. Therefore, we sought to both better understand MBC and investigate the underlying molecular mechanisms of the patient's sensitivity and subsequent resistance to the BEZ235/everolimus combination therapy. Genomic and immunohistochemical analyses were performed on samples collected from the initial invasive ductal carcinoma pretreatment and a metastasis postprogression on the BEZ235/everolimus combination treatment. Both tumors were relatively quiet genomically with no overlap to recurrent MBC alterations in the literature. Markers of PI3K/mTOR pathway hyperactivation were not identified in the pretreatment sample, which complements previous reports of HR+ female breast cancers being responsive to mTOR inhibition without this activation. The postprogression sample, however, demonstrated greater than fivefold increased estrogen receptor and pathogenesis-related protein expression, which could have constrained the PI3K/mTOR pathway inhibition by BEZ235/everolimus. Overall, these analyses have augmented the limited episteme on MBC genetics and treatment. PMID:27148582

  7. Molecular analysis of a male breast cancer patient with prolonged stable disease under mTOR/PI3K inhibitors BEZ235/everolimus.

    PubMed

    Brannon, A Rose; Frizziero, Melissa; Chen, David; Hummel, Jennifer; Gallo, Jorge; Riester, Markus; Patel, Parul; Cheung, Wing; Morrissey, Michael; Carbone, Carmine; Cottini, Silvia; Tortora, Giampaolo; Melisi, Davide

    2016-03-01

    The mTORC1 inhibitor everolimus (Afinitor/RAD001) has been approved for multiple cancer indications, including ER(+)/HER2(-) metastatic breast cancer. However, the combination of everolimus with the dual PI3K/mTOR inhibitor BEZ235 was shown to be more efficacious than either everolimus or BEZ235 alone in preclinical models. Herein, we describe a male breast cancer (MBC) patient who was diagnosed with hormone receptor-positive (HR(+))/HER2(-) stage IIIA invasive ductal carcinoma and sequentially treated with chemoradiotherapy and hormonal therapy. Upon the development of metastases, the patient began a 200 mg twice-daily BEZ235 and 2.5 mg weekly everolimus combination regimen. The patient sustained a prolonged stable disease of 18 mo while undergoing the therapy, before his tumor progressed again. Therefore, we sought to both better understand MBC and investigate the underlying molecular mechanisms of the patient's sensitivity and subsequent resistance to the BEZ235/everolimus combination therapy. Genomic and immunohistochemical analyses were performed on samples collected from the initial invasive ductal carcinoma pretreatment and a metastasis postprogression on the BEZ235/everolimus combination treatment. Both tumors were relatively quiet genomically with no overlap to recurrent MBC alterations in the literature. Markers of PI3K/mTOR pathway hyperactivation were not identified in the pretreatment sample, which complements previous reports of HR(+) female breast cancers being responsive to mTOR inhibition without this activation. The postprogression sample, however, demonstrated greater than fivefold increased estrogen receptor and pathogenesis-related protein expression, which could have constrained the PI3K/mTOR pathway inhibition by BEZ235/everolimus. Overall, these analyses have augmented the limited episteme on MBC genetics and treatment.

  8. In vitro activity of the mTOR inhibitor everolimus, in a large panel of breast cancer cell lines and analysis for predictors of response.

    PubMed

    Hurvitz, Sara A; Kalous, Ondrej; Conklin, Dylan; Desai, Amrita J; Dering, Judy; Anderson, Lee; O'Brien, Neil A; Kolarova, Teodora; Finn, Richard S; Linnartz, Ronald; Chen, David; Slamon, Dennis J

    2015-02-01

    Everolimus (RAD001, Afinitor(®)) is an oral, selective mTOR inhibitor recently approved by the US-FDA in combination with exemestane for treatment of hormone receptor positive advanced breast cancer. To date, no molecular predictors of response to everolimus in breast cancer have been identified. We hypothesized predictive markers could be identified using preclinical models. Using a molecularly characterized panel of human breast cancer and immortalized breast epithelial cell lines, we determined sensitivity to everolimus alone or in combination with ER- or HER2- targeted therapy. Gene expression microarrays and comparative genomic hybridization were performed on the cell lines to identify predictors of response to everolimus. Among 13 everolimus-sensitive cell lines, 10/13(77 %) were luminal, while in 26 resistant cell lines, 16/26(62 %) were non-luminal, and 10/26(38 %) were luminal. Only 3/24 non-luminal lines were sensitive, two of which were HER2+. Everolimus enhanced the anti-proliferative effect of both tamoxifen (TAM) and fulvestrant (FUL) in ER+ breast cancer cell lines, as well as trastuzumab in HER2+ cell lines. Everolimus + FUL but not everolimus + TAM reversed acquired resistance to TAM. Everolimus inhibited mTOR in tested cell lines by decreasing S6 phosphorylation, mediating its anti-proliferative effect by G0/G1 cell cycle arrest and induction of apoptosis. Chromosomal amplifications of AURKA (p value = 0.04) and HER2 (p value = 0.03) were each associated with increased sensitivity to everolimus. Transcript expression microarrays identified GSK3A, PIK3R3, KLF8, and MAPK10 among the genes overexpressed in sensitive luminal lines, while PGP, RPL38, GPT, and GFAP were among the genes overexpressed in resistant luminal cell lines. These preclinical in vitro data provide further support for continued clinical development of everolimus in luminal (ER+ or HER2+) breast cancer in combination with targeted therapies. We identified several potential

  9. Everolimus in renal cell carcinoma.

    PubMed

    Wang, Y

    2010-08-01

    Everolimus (also known as RAD-001; Afinitor®) is an orally active inhibitor of the intracellular protein kinase mammalian target of rapamycin. The U.S. Food and Drug Administration and the European Medicines Agency recently approved everolimus for the treatment of advanced renal cell carcinoma (RCC) on the basis of the results of a randomized phase III clinical trial. In the trial, 10 mg daily everolimus was effective and well tolerated by patients with advanced RCC, whose disease had progressed while under the treatment with sunitinib and/or sorafenib. Everolimus treatment led to 36% of 6-month progression-free survival (PFS) rate and 31% of 3-month PFS rate. Most of the adverse events were mild to moderate (grade 1-2) in severity. The most frequent grade 3-4 adverse events were stomatitis, fatigue, pneumonitis and infections. Clinical trials on everolimus in combination with sunitinib, sorafenib, imatinib and vatalanib for the treatment of RCC are ongoing. PMID:20830316

  10. Autophagy inhibition enhances RAD001-induced cytotoxicity in human bladder cancer cells

    PubMed Central

    Lin, Ji-Fan; Lin, Yi-Chia; Yang, Shan-Che; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng

    2016-01-01

    Background Mammalian target of rapamycin (mTOR), involved in PI3K/AKT/mTOR pathway, is known to play a central role in regulating the growth of cancer cells. The PI3K/AKT/mTOR pathway enhances tumor survival and proliferation through suppressing autophagy, which sustains energy homeostasis by collecting and recycling cellular components under stress conditions. Conversely, inhibitors of the mTOR pathway such as RAD001 induce autophagy, leading to promotion of tumor survival and limited antitumor efficacy. We thus hypothesized that the use of autophagy inhibitor in combination with mTOR inhibition improves the cytotoxicity of mTOR inhibitors in bladder cancer. Materials and methods The cytotoxicity of RT4, 5637, HT1376, and T24 human bladder cancer cells treated with RAD001 alone or combined with autophagy inhibitors (3-methyladenine (3-MA), bafilomycin A1 (Baf A1), chloroquine, or hydroxychloroquine) was assessed using the WST-8 cell viability kit. The autophagy status in cells was analyzed by the detection of microtubule-associated light chain 3 form II (LC3-II), using immunofluorescent staining and Western blot. Acidic vesicular organelle (AVO) formation in treated cells was determined by acridine orange vital staining. Inhibition of mTOR pathway by RAD001 was monitored by using a homemade quantitative polymerase chain reaction gene array, while phospho-mTOR was detected using Western blot. Induced apoptosis was determined by measurement of caspase 3/7 activity and DNA fragmentation in cells after treatment. Results Advanced bladder cancer cells (5637, HT1376, and T24) were more resistant to RAD001 than RT4. Autophagy flux detected by the expression of LC3-II showed RAD001-induced autophagy. AVO formation was detected in cells treated with RAD001 and was inhibited by the addition of 3-MA or Baf A1. Cotreatment of RAD001 with autophagy inhibitors further reduced cell viability and induced apoptosis in bladder cancer cells. Conclusion Our results indicate that

  11. Everolimus in combination with cyclosporin a as pre- and posttransplantation immunosuppressive therapy in nonmyeloablative allogeneic hematopoietic stem cell transplantation.

    PubMed

    Junghanss, Christian; Rathsack, Susanne; Wacke, Rainer; Weirich, Volker; Vogel, Heike; Drewelow, Bernd; Mueller, Sabrina; Altmann, Simone; Freund, Mathias; Lange, Sandra

    2012-07-01

    Everolimus (RAD001) is an mTOR inhibitor that has been successfully used as an immunosuppressant in solid-organ transplantation. Data in allogeneic hematopoietic stem cell transplantation (HSCT) is limited. This study aimed to investigate pharmacokinetics, safety, and efficacy of RAD001 in a canine allogeneic HSCT model. First, pharmacokinetics of RAD001 were performed in healthy dogs in order to determine the appropriate dosing. Doses of 0.25 mg RAD001 twice daily in combination with 15 mg/kg cyclosporin A (CsA) twice daily were identified as appropriate starting doses to achieve the targeted range of RAD001 (3-8 μg/L) when orally administered. Subsequently, 10 dogs were transplanted using 2 Gy total body irradiation (TBI) for conditioning and 0.25 mg RAD001 twice daily plus 15 mg/kg CsA twice daily for pre- and posttransplantation immunosuppression. Seven of the 10 transplanted dogs were maintained at the starting RAD001 dose throughout the study. For the remaining 3 dogs, dose adjustments were necessary. RAD001 accumulation over time did not occur. All dogs initially engrafted. Five dogs eventually rejected the graft (weeks 10, 10, 13, 27, and 56). Two dogs died of pneumonia (weeks 8 and 72) but were chimeric until then. Total cholesterol rose from median 4.1 mmol/L (3.5-5.7 mmol/L) before HSCT to 6.0 mmol/l (5.0-8.5 mmol/l) at day 21 after HSCT, but remained always within normal range. Changes in creatinine and triglyceride values were not observed. Long-term engraftment rates were inferior to sirolimus/CsA and mycophenolate mofetil (MMF)/CsA regimen, respectively. RAD001/CsA caused a more pronounced reduction of platelet counts to median 2 × 10(9)/L (range: 0-21 × 10(9)/L) and longer time to platelet recovery of 21 days (range: 14-24 days) compared with MMF/CsA. CsA c(2h) levels were significantly enhanced in the RAD001/CsA regimen, but c(0h) and area under the curve from 0 to 12 hours (AUC(0-12h)) values did not differ compared with an MMF

  12. Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex.

    PubMed

    MacKeigan, Jeffrey P; Krueger, Darcy A

    2015-12-01

    Tuberous sclerosis complex (TSC) is a genetic autosomal dominant disorder characterized by benign tumor-like lesions, called hamartomas, in multiple organ systems, including the brain, skin, heart, kidneys, and lung. These hamartomas cause a diverse set of clinical problems based on their location and often result in epilepsy, learning difficulties, and behavioral problems. TSC is caused by mutations within the TSC1 or TSC2 genes that inactivate the genes' tumor-suppressive function and drive hamartomatous cell growth. In normal cells, TSC1 and TSC2 integrate growth signals and nutrient inputs to downregulate signaling to mammalian target of rapamycin (mTOR), an evolutionarily conserved serine-threonine kinase that controls cell growth and cell survival. The molecular connection between TSC and mTOR led to the clinical use of allosteric mTOR inhibitors (sirolimus and everolimus) for the treatment of TSC. Everolimus is approved for subependymal giant cell astrocytomas and renal angiomyolipomas in patients with TSC. Sirolimus, though not approved for TSC, has undergone considerable investigation to treat various aspects of the disease. Everolimus and sirolimus selectively inhibit mTOR signaling with similar molecular mechanisms, but with distinct clinical profiles. This review differentiates mTOR inhibitors in TSC while describing the molecular mechanisms, pathogenic mutations, and clinical trial outcomes for managing TSC. PMID:26289591

  13. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury.

    PubMed

    Nakagawa, Shunsaku; Nishihara, Kumiko; Inui, Ken-ichi; Masuda, Satohiro

    2012-12-01

    Inhibitors of mammalian target of rapamycin (mTOR) have immunosuppressive and anti-cancer effects, but their effects on the progression of kidney disease are not fully understood. Using cells from normal kidney epithelial cell lines, we found that the antiproliferative effects of mTOR inhibitor everolimus accompanied the accumulation of a marker for cellular autophagic activity, the phosphatidylethanolamine-conjugated form of microtubule-associated protein 1 light chain 3 (LC3-II) in cells. We also showed that the primary autophagy factor UNC-51-like kinase 1 was involved in the antiproliferative effects of everolimus. Levels of LC3-II decreased in the kidneys of rats treated with ischemia-reperfusion or cisplatin; however, renal LC3-II levels increased after administration of everolimus to rats subjected to ischemia-reperfusion or cisplatin treatment. Simultaneously, increased signals for kidney injury molecule-1 and single-stranded DNA and decreased signals for Ki-67 in the proximal tubules were observed after treatment with everolimus, indicating that everolimus diminished renal function after acute tubular injury. We also found leakage of LC3 protein into rat urine after treatment with everolimus, and urinary LC3 protein was successfully measured between 0.1 and 500ng/mL by using an enzyme-linked immunosorbent assay. Urinary LC3 levels were increased after administration of everolimus to rats subjected to ischemia-reperfusion or cisplatin treatment, suggesting that renal LC3-II and urinary LC3 protein are new biomarkers for autophagy in acute kidney injury. Taken together, our results demonstrated that the induction of autophagy by everolimus aggravates tubular dysfunction during recovery from kidney injury. PMID:23022334

  14. Everolimus in combination with mycophenolate mofetil as pre- and post-transplantation immunosuppression after nonmyeloablative hematopoietic stem cell transplantation in canine littermates.

    PubMed

    Machka, Christoph; Lange, Sandra; Werner, Juliane; Wacke, Rainer; Killian, Doreen; Knueppel, Anne; Knuebel, Gudrun; Vogel, Heike; Lindner, Iris; Roolf, Catrin; Murua Escobar, Hugo; Junghanss, Christian

    2014-09-01

    The mammalian target of rapamycin inhibitor everolimus (RAD001) is a successfully used immunosuppressant in solid-organ transplantation. Several studies have already used RAD001 in combination with calcineurin inhibitors after hematopoietic stem cell transplantation (HSCT). We investigated calcineurin inhibitor-free pre- and post-transplantation immunosuppression of RAD001 combined with mycophenolate mofetil (MMF) in a nonmyeloablative HSCT setting. After nonmyeloablative conditioning with 2 Gy total body irradiation, 8 dogs received HSCT from dog leukocyte antigen-identical siblings. Immunosuppressives were given at doses of 1.5 mg RAD001 twice daily from day -1 to +49, then tapered until day +56, and 20 mg/kg MMF from day 0 to +28, then tapered until day +42. An historical cyclosporin A (CsA)/MMF regimen was used in the control group. All dogs engrafted. Median platelet nadir amounted in all dogs to 0 × 10(9)/L (median, day +10; duration <50 × 10(9)/L, 22 days) and median leukocyte nadir was 1.0 × 10(9)/L (range, .1 to 2.5 × 10(9)/L; median, day +13). Eventually, 5 of 8 (63%) animals rejected their grafts. Two dogs died of infections on day +19 and +25. Pharmacokinetics of RAD001 and MMF showed median trough levels of 19.1 (range, 10.5 to 43.2) μg/L and .3 (.1 to 1.3) mg/L, respectively. The median area under the curve was 325 (range, 178 to 593) μg/L × hour for RAD001 and 29.6 (range, 7.9 to 40.5) ng/L × hour for MMF. All dogs developed clinically mucosal viral infections during the clinical course. Compared with the control group, the level of toxicities for RAD001/MMF increased in all qualities. Combined immunosuppression of RAD001 and MMF after nonmyeloablative HSCT is associated with significant toxicities, including a prolonged platelet recovery time as well as increased infections compared to the CsA/MMF regimen. PMID:24923538

  15. mTOR inhibitor-associated stomatitis (mIAS) in three patients with cancer treated with everolimus.

    PubMed

    Kalogirou, Eleni-Marina; Tosios, Konstantinos I; Piperi, Evangelia P; Sklavounou, Alexandra

    2015-01-01

    Mammalian targets of rapamycin inhibitors (mTOR inhibitors, mTORI) are indicated for the management of several cancer types, including hormone receptor--positive or HER2-negative breast cancer, advanced renal cell carcinoma, advanced neuroendocrine tumors of pancreatic origin, and tuberous sclerosis complex-related tumors. Among the most common adverse events of mTORI medication are discrete, large, solitary or multiple, superficial ulcers, almost exclusively situated on nonkeratinized oral mucosa, described as mTORI-associated stomatitis (mIAS). We describe the clinical presentation, course, and management of mIAS in three patients receiving the mTORI everolimus (Afinitor, Novartis, East Hanover, NJ). In two patients, mIAS manifested 9 and 30 days after first using everolimus, respectively, whereas in the third patient, it recurred 3 months after re-introduction of everolimus. Oral rinses with a "magic mouthwash" solution (dexamethasone oral drops solution 2 mg/mL × 10 mL, lidocaine gel 2% × 30 g, doxycycline suspension 50 mg/5 mL × 60 mL, and sucralfate oral suspension 1000 mg/5 mL × 150 mL, dissolved in sodium chloride 0.9% × 2000 mL) four times daily proved helpful in alleviating the symptoms, and the ulcers healed in 4 to 15 days. No side effects were recorded, and dose reduction or discontinuation of everolimus was not necessitated in two cases. PMID:25442249

  16. Use of the mTOR inhibitor everolimus in a patient with multiple manifestations of tuberous sclerosis complex including epilepsy

    PubMed Central

    Wheless, James W.

    2015-01-01

    Tuberous sclerosis complex (TSC) is a genetic disease in which overactivation of mechanistic target of rapamycin (mTOR) signaling leads to the growth of benign hamartomas in multiple organs, including the brain, and is associated with a high rate of epilepsy and neurological deficits. The mTOR inhibitor everolimus has been used in the treatment of subependymal giant cell astrocytomas and renal angiomyolipomas in patients with TSC. This article describes the case of a 13-year-old girl with TSC-associated epilepsy with refractory generalized seizures who initiated treatment with everolimus and experienced subsequent improvement in several TSC manifestations, including a reduction in seizure frequency from clusters of two or three daily to one every 2 to 4 weeks after 1.5 years of treatment. PMID:26543807

  17. Everolimus in the treatment of renal cell carcinoma and neuroendocrine tumors.

    PubMed

    Chan, Hiu-yan; Grossman, Ashley B; Bukowski, Ronald M

    2010-08-01

    Renal cell carcinoma (RCC) and neuroendocrine tumors (NET) are uncommon malignancies, highly resistant to chemotherapy, that have emerged as attractive platforms for evaluating novel targeted regimens. Everolimus is an oral rapamycin derivative within the mammalian target of rapamycin class of agents. Preclinical series have shown that everolimus exhibits anticancer effects in RCC and NET cell lines. A phase 3 placebo-controlled study in advanced clear-cell RCC, known as RECORD-1 (for "REnal Cell cancer treatment with Oral RAD001 given Daily"), documented that everolimus stabilizes tumor progression, prolongs progression-free survival and has acceptable tolerability in patients previously treated with the multikinase inhibitors sunitinib and/or sorafenib. Everolimus has been granted regulatory approval for use in sunitinib-pretreated and/or sorafenib-pretreated advanced RCC and incorporated into clinical practice guidelines, and the RECORD-1 safety data are being used to develop recommendations for managing clinically important adverse events in everolimus-treated patients. Ongoing clinical trials are evaluating everolimus as earlier RCC therapy (first-line for advanced disease and as neoadjuvant therapy), in non-clear-cell tumors, and in combination with various other approved or investigational targeted therapies for RCC. Regarding advanced NET, recently published phase 2 data support the ability of everolimus to improve disease control in patients with advanced NET as monotherapy or in combination with somatostatin analogue therapy, octreotide long-acting release (LAR). Forthcoming data from phase 3 placebo-controlled trials of everolimus, one focused on monotherapy for pancreatic NET and the other on combination use with octreotide LAR for patients with advanced NET and a history of carcinoid syndrome, will provide insight into its future place in NET therapy. The results of a number of ongoing phase 3 evaluations of everolimus will determine its broader

  18. A randomized, controlled study to assess the conversion from calcineurin-inhibitors to everolimus after liver transplantation--PROTECT.

    PubMed

    Fischer, L; Klempnauer, J; Beckebaum, S; Metselaar, H J; Neuhaus, P; Schemmer, P; Settmacher, U; Heyne, N; Clavien, P-A; Muehlbacher, F; Morard, I; Wolters, H; Vogel, W; Becker, T; Sterneck, M; Lehner, F; Klein, C; Kazemier, G; Pascher, A; Schmidt, J; Rauchfuss, F; Schnitzbauer, A; Nadalin, S; Hack, M; Ladenburger, S; Schlitt, H J

    2012-07-01

    Posttransplant immunosuppression with calcineurin inhibitors (CNIs) is associated with impaired renal function, while mTor inhibitors such as everolimus may provide a renal-sparing alternative. In this randomized 1-year study in patients with liver transplantation (LTx), we sought to assess the effects of everolimus on glomerular filtration rate (GFR) after conversion from CNIs compared to continued CNI treatment. Eligible study patients received basiliximab induction, CNI with/without corticosteroids for 4 weeks post-LTx, and were then randomized (if GFR > 50 mL/min) to continued CNIs (N = 102) or subsequent conversion to EVR (N = 101). Mean calculated GFR 11 months postrandomization (ITT population) revealed no significant difference between treatments using the Cockcroft-Gault formula (-2.9 mL/min in favor of EVR, 95%-CI: [-10.659; 4.814], p = 0.46), whereas use of the MDRD formula showed superiority for EVR (-7.8 mL/min, 95%-CI: [-14.366; -1.191], p = 0.021). Rates of mortality (EVR: 4.2% vs. CNI: 4.1%), biopsy-proven acute rejection (17.7% vs. 15.3%), and efficacy failure (20.8% vs. 20.4%) were similar. Infections, leukocytopenia, hyperlipidemia and treatment discontinuations occurred more frequently in the EVR group. No hepatic artery thrombosis and no excess of wound healing impairment were noted. Conversion from CNI-based to EVR-based immunosuppression proved to be a safe alternative post-LTx that deserves further investigation in terms of nephroprotection.

  19. The mTOR inhibitor Everolimus synergizes with the PI3K inhibitor GDC0941 to enhance anti-tumor efficacy in uveal melanoma

    PubMed Central

    Amirouchene-Angelozzi, Nabil; Frisch-Dit-Leitz, Estelle; Carita, Guillaume; Dahmani, Ahmed; Raymondie, Chloé; Liot, Géraldine; Gentien, David; Némati, Fariba; Decaudin, Didier

    2016-01-01

    Uveal melanoma (UM) is the most frequent malignant ocular tumor in adults. While the primary tumor is efficiently treated by surgery and/or radiotherapy, about one third of UM patients develop metastases, for which no effective treatment is currently available. The PKC, MAPK and PI3K/AKT/mTOR signaling cascades have been shown to be associated with tumor growth. However, none of the compounds against those pathways results in tumor regression when used as single agents. To identify more effective therapeutic strategies for UM patients, we performed a combination screen using seven targeted agents inhibiting PKC, MEK, AKT, PI3K and mTOR in a panel of ten UM cell lines, representative of the UM disease. We identified a strong synergy between the mTOR inhibitor Everolimus and the PI3K inhibitor GDC0941. This combination resulted in an increase in apoptosis in several UM cell lines compared to monotherapies and enhanced the anti-tumor effect of each single agent in two patient-derived xenografts. Furthermore, we showed that the synergism between the two drugs was associated with the relief by GDC0491 of a reactivation of AKT induced by Everolimus. Altogether, our results highlight a novel and effective combination strategy, which could be beneficial for UM patients. PMID:26988753

  20. The combination of IκB kinase β inhibitor and everolimus modulates expression of interleukin-10 in human T-cell lymphotropic virus type-1-infected T cells.

    PubMed

    Nishioka, Chie; Ikezoe, Takayuki; Yang, Jing; Udaka, Keiko; Yokoyama, Akihito

    2013-03-01

    Adult T-cell leukaemia-lymphoma (ATLL) is an aggressive malignancy of CD4(+)  CD25(+) T lymphocytes, characterized by a severely compromised immunosystem, in which the human T-cell lymphotropic virus type 1 (HTLV-1) has been recognized as the aetiological agent. This study found that an IκB kinase β (IKKβ) inhibitor Bay11-7082 inactivated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 and transcription factor nuclear factor-κB in HTLV-1-infected T cells; this was significantly enhanced in the presence of the mTOR inhibitor everolimus. In addition, Bay11-7082 decreased production of the immunosuppressive cytokine interleukin-10 (IL-10), which was further down-regulated when Bay11-7082 was combined with evelolimus in HTLV-1-infected T and ATLL cells isolated from patients. Interleukin-10 is known to inhibit maturation and the antigen-presenting function of dendritic cells (DCs). The culture media of HTLV-1-infected MT-1 cells, which contained a large amout of IL-10, hampered tumour necrosis factor-α-induced maturation of DCs isolated from healthy volunteers. Culture supernatant of MT-1 cells treated with a combination of Bay11-7082 and everolimus augmented maturation of DCs in association with a decrease in production of IL-10 and enhanced the allostimulatory function of DCs. Similarly, when DCs isolated from patients with ATLL were treated with the combination of Bay11-7082 and everolimus, they were fully matured and their capability to stimulate proliferation of lymphocytes was augmented. Taken together, the combination of Bay11-7082 and everolimus might exhibit immunostimulatory properties in HTLV-1-infected T and ATLL cells isolated from patients, and this combination may be potentially therapeutic to regain the compromised immunosystem in ATLL patients.

  1. The combination of NVP-BKM120 with trastuzumab or RAD001 synergistically inhibits the growth of breast cancer stem cells in vivo.

    PubMed

    Yu, Feng; Zhao, Jing; Hu, Yunhui; Zhou, Yang; Guo, Rong; Bai, Jingchao; Zhang, Sheng; Zhang, Huilai; Zhang, Jin

    2016-07-01

    Deregulation of the phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway is common in breast cancer and is frequently associated with resistance to both traditional chemotherapy and targeted drugs. There is a growing body of evidence indicating that a small subpopulation of self-renewing cells, the so called cancer stem cells (CSC), are responsible for the growth of drug resistant secondary tumors. As many CSCs have upregulated the PI3K/Akt signalling pathway, preclinical and clinical studies are addressing the inhibition of this axis to target drug resistance. We evaluated the susceptibility of breast CSCs to NVP-BKM120 (BKM120), a new generation of PI3K-specific inhibitor, when used individually or in combination with trastuzumab or RAD001 both in vitro and in vivo. For this, a stem-like cell population (SC) was enriched from breast cancer cell lines after mammosphere cultures. We demonstrated that BKM120 inhibits growth, generation of drug-resistant derivatives and SC formation in a panel of four breast cancer cell lines: MCF-7, MDA-MB-231, SK-BR-3 and CAL51. Importantly, BKM120 inhibits the PI3K/Akt signalling pathway in SCs from these cell lines. When BKM120 was used in combination with trastuzumab, a targeted therapy to treat HER2-positive breast cancer, we found synergistic cell growth inhibition, generation of drug resistant cells as well as SC formation from SK-BR-3 cells. Importantly, SK-BR-3 xenograft-derived tumors showed marginal growth when the drug combination was used. We also found a similar synergistic anticancer effect of BKM120 in combination with RAD001, an mTOR inhibitor, when treating triple-negative breast cancer cells in vitro and in both MDA-MB-231 and CAL51- mouse xenografts. Moreover, mouse data indicate that these drug combinations are well tolerated and provide the proof-of-concept and rationale to initiate clinical trials in both HER2-positive and triple-negative breast cancer. PMID:27175939

  2. Anti-Angiogenic/Vascular Effects of the mTOR Inhibitor Everolimus Are Not Detectable by FDG/FLT-PET1

    PubMed Central

    Honer, Michael; Ebenhan, Thomas; Allegrini, Peter R; Ametamey, Simon M; Becquet, Mike; Cannet, Catherine; Lane, Heidi A; O'Reilly, Terence M; Schubiger, Pius A; Sticker-Jantscheff, Melanie; Stumm, Michael; McSheehy, Paul MJ

    2010-01-01

    Noninvasive functional imaging of tumors can provide valuable early-response biomarkers, in particular, for targeted chemotherapy. Using various experimental tumor models, we have investigated the ability of positron emission tomography (PET) measurements of 2-deoxy-2-[18F]fluoro-glucose (FDG) and 3′-deoxy-3′-[18F]fluorothymidine (FLT) to detect response to the allosteric mammalian target of rapamycin (mTOR) inhibitor everolimus. Tumor models were declared sensitive (murine melanoma B16/BL6 and human lung H596) or relatively insensitive (human colon HCT116 and cervical KB31), according to the IC50 values (concentration inhibiting cell growth by 50%) for inhibition of proliferation in vitro (<10 nM and >1 µM, respectively). Everolimus strongly inhibited growth of the sensitive models in vivo but also significantly inhibited growth of the insensitive models, an effect attributable to its known anti-angiogenic/vascular properties. However, although tumor FDG and FLT uptake was significantly reduced in the sensitive models, it was not affected in the insensitive models, suggesting that endothelial-directed effects could not be detected by these PET tracers. Consistent with this hypothesis, in a well-vascularized orthotopic rat mammary tumor model, other antiangiogenic agents also failed to affect FDG uptake, despite inhibiting tumor growth. In contrast, the cytotoxic patupilone, a microtubule stabilizer, blocked tumor growth, and markedly reduced FDG uptake. These results suggest that FDG/FLT-PET may not be a suitable method for early markers of response to antiangiogenic agents and mTOR inhibitors in which anti-angiogenic/vascular effects predominate because the method could provide false-negative responses. These conclusions warrant clinical testing. PMID:20689768

  3. Regression of Cardiac Rhabdomyomas in a Neonate after Everolimus Treatment

    PubMed Central

    Bornaun, Helen; Öztarhan, Kazım; Erener-Ercan, Tugba; Dedeoğlu, Reyhan; Tugcu, Deniz; Aydoğmuş, Çiğdem; Cetinkaya, Merih; Kavuncuoglu, Sultan

    2016-01-01

    Cardiac rhabdomyoma often shows spontaneous regression and usually requires only close follow-up. However, patients with symptomatic inoperable rhabdomyomas may be candidates for everolimus treatment. Our patient had multiple inoperable cardiac rhabdomyomas causing serious left ventricle outflow-tract obstruction that showed a dramatic reduction in the size after everolimus therapy, a mammalian target of rapamycin (mTOR) inhibitor. After discontinuation of therapy, an increase in the diameter of masses occurred and everolimus was restarted. After 6 months of treatment, rhabdomyomas decreased in size and therapy was stopped. In conclusion, everolimus could be a possible novel therapy for neonates with clinically significant rhabdomyomas. PMID:27429821

  4. Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B-RET re-arranged non-small cell lung cancer with brain metastases.

    PubMed

    Subbiah, Vivek; Berry, Jenny; Roxas, Michael; Guha-Thakurta, Nandita; Subbiah, Ishwaria Mohan; Ali, Siraj M; McMahon, Caitlin; Miller, Vincent; Cascone, Tina; Pai, Shobha; Tang, Zhenya; Heymach, John V

    2015-07-01

    In-frame fusion KIF5B (the-kinesin-family-5B-gene)-RET transcripts have been characterized in 1-2% of non-small cell lung cancers and are known oncogenic drivers. The RET tyrosine kinase inhibitor, vandetanib, suppresses fusion-induced, anchorage-independent growth activity. In vitro studies have shown that vandetanib is a high-affinity substrate of breast cancer resistance protein (Bcrp1/Abcg2) but is not transported by P-glycoprotein (P-gp), limiting its blood-brain barrier penetration. A co-administration strategy to enhance the brain accumulation of vandetanib by modulating P-gp/Abcb1- and Bcrp1/Abcg2-mediated efflux with mTOR inhibitors, specifically everolimus, was shown to increase the blood-brain barrier penetration. We report the first bench-to-bedside evidence that RET inhibitor combined with an mTOR inhibitor is active against brain-metastatic RET-rearranged lung cancer and the first evidence of blood-brain barrier penetration. A 74-year-old female with progressive adenocarcinoma of the lung (wild-type EGFR and no ALK rearrangement) presented for therapy options. A deletion of 5'RET was revealed by FISH assay, indicating RET-gene rearrangement. Because of progressive disease in the brain, she was enrolled in a clinical trial with vandetanib and everolimus (NCT01582191). Comprehensive genomic profiling revealed fusion of KIF5B (the-kinesin-family-5B-gene) and RET, in addition to AKT2 gene amplification. After two cycles of therapy a repeat MRI brain showed a decrease in the intracranial disease burden and PET/CT showed systemic response as well. Interestingly, AKT2 amplification seen is a critical component of the PI3K/mTOR pathway, alterations of which has been associated with both de novo and acquired resistance to targeted therapy. The addition of everolimus may have both overcome the AKT2 amplification to produce a response in addition to its direct effects on the RET gene. Our case report forms the first evidence of blood-brain barrier penetration by

  5. Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B-RET re-arranged non-small cell lung cancer with brain metastases.

    PubMed

    Subbiah, Vivek; Berry, Jenny; Roxas, Michael; Guha-Thakurta, Nandita; Subbiah, Ishwaria Mohan; Ali, Siraj M; McMahon, Caitlin; Miller, Vincent; Cascone, Tina; Pai, Shobha; Tang, Zhenya; Heymach, John V

    2015-07-01

    In-frame fusion KIF5B (the-kinesin-family-5B-gene)-RET transcripts have been characterized in 1-2% of non-small cell lung cancers and are known oncogenic drivers. The RET tyrosine kinase inhibitor, vandetanib, suppresses fusion-induced, anchorage-independent growth activity. In vitro studies have shown that vandetanib is a high-affinity substrate of breast cancer resistance protein (Bcrp1/Abcg2) but is not transported by P-glycoprotein (P-gp), limiting its blood-brain barrier penetration. A co-administration strategy to enhance the brain accumulation of vandetanib by modulating P-gp/Abcb1- and Bcrp1/Abcg2-mediated efflux with mTOR inhibitors, specifically everolimus, was shown to increase the blood-brain barrier penetration. We report the first bench-to-bedside evidence that RET inhibitor combined with an mTOR inhibitor is active against brain-metastatic RET-rearranged lung cancer and the first evidence of blood-brain barrier penetration. A 74-year-old female with progressive adenocarcinoma of the lung (wild-type EGFR and no ALK rearrangement) presented for therapy options. A deletion of 5'RET was revealed by FISH assay, indicating RET-gene rearrangement. Because of progressive disease in the brain, she was enrolled in a clinical trial with vandetanib and everolimus (NCT01582191). Comprehensive genomic profiling revealed fusion of KIF5B (the-kinesin-family-5B-gene) and RET, in addition to AKT2 gene amplification. After two cycles of therapy a repeat MRI brain showed a decrease in the intracranial disease burden and PET/CT showed systemic response as well. Interestingly, AKT2 amplification seen is a critical component of the PI3K/mTOR pathway, alterations of which has been associated with both de novo and acquired resistance to targeted therapy. The addition of everolimus may have both overcome the AKT2 amplification to produce a response in addition to its direct effects on the RET gene. Our case report forms the first evidence of blood-brain barrier penetration by

  6. A pilot study of JI-101, an inhibitor of VEGFR-2, PDGFR-β, and EphB4 receptors, in combination with everolimus and as a single agent in an ovarian cancer expansion cohort.

    PubMed

    Werner, Theresa L; Wade, Mark L; Agarwal, Neeraj; Boucher, Kenneth; Patel, Jesal; Luebke, Aaron; Sharma, Sunil

    2015-12-01

    JI-101 is an oral multi-kinase inhibitor that targets vascular endothelial growth factor receptor type 2 (VEGFR-2), platelet derived growth factor receptor β (PDGFR-β), and ephrin type-B receptor 4 (EphB4). None of the currently approved angiogenesis inhibitors have been reported to inhibit EphB4, and therefore, JI-101 has a novel mechanism of action. We conducted a pilot trial to assess the pharmacokinetics (PK), tolerability, and efficacy of JI-101 in combination with everolimus in advanced cancers, and pharmacodynamics (PD), tolerability, and efficacy of JI-101 in ovarian cancer. This was the first clinical study assessing anti-tumor activity of JI-101 in a combinatorial regimen. In the PK cohort, four patients received single agent 10 mg everolimus on day 1, 10 mg everolimus and 200 mg JI-101 combination on day 8, and single agent 200 mg JI-101 on day 15. In the PD cohort, eleven patients received single agent JI-101 at 200 mg twice daily for 28 day treatment cycles. JI-101 was well tolerated as a single agent and in combination with everolimus. No serious adverse events were observed. Common adverse events were hypertension, nausea, and abdominal pain. JI-101 increased exposure of everolimus by approximately 22%, suggestive of drug-drug interaction. The majority of patients had stable disease at their first set of restaging scans (two months), although no patients demonstrated a response to the drug per RECIST criteria. The novel mechanism of action of JI-101 is promising in ovarian cancer treatment and further prospective studies of this agent may be pursued in a less refractory patient population or in combination with cytotoxic chemotherapy.

  7. Blood concentrations of everolimus are markedly increased by ketoconazole.

    PubMed

    Kovarik, J M; Beyer, D; Bizot, M N; Jiang, Q; Shenouda, M; Schmouder, R L

    2005-05-01

    The authors sought to quantify the influence of the CYP3A and P-glycoprotein inhibitor ketoconazole on the pharmacokinetics of everolimus in healthy subjects. This was a 2-period, single-sequence, crossover study in 12 healthy subjects. In period 1, subjects received the reference treatment of a single 2-mg dose of everolimus. In period 2, they received the test treatment of ketoconazole 200 mg twice daily for a total of 8 days and a single dose of everolimus coadministered on the fourth day of ketoconazole therapy. The test/reference ratio and 90% confidence interval were derived for everolimus maximum concentration and area under the curve. During ketoconazole coadministration, everolimus maximum concentration increased 3.9-fold (90% confidence interval, 3.4-4.6) from 15 +/- 4 ng/mL to 59 +/- 13 ng/mL. Everolimus area under the curve increased 15.0-fold (90% confidence interval, 13.6-16.6) from 90 +/- 23 ng*h/mL to 1324 +/- 232 ng*h/mL. Everolimus half-life was prolonged by 1.9-fold from 30 +/- 4 hours to 56 +/- 5 hours. Everolimus did not appear to alter ketoconazole predose concentrations. Given the magnitude of this drug interaction, use of ketoconazole should be avoided if possible in everolimus-treated patients. PMID:15831774

  8. Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors

    PubMed Central

    Nunes-Xavier, Caroline E.; Karlsen, Karine Flem; Tekle, Christina; Pedersen, Cathrine; Øyjord, Tove; Hongisto, Vesa; Nesland, Jahn M.; Tan, Ming; Sahlberg, Kristine Kleivi; Fodstad, Øystein

    2016-01-01

    B7 family proteins are important immune response regulators, and can mediate oncogenic signaling and cancer development. We have used human triple-negative breast cancer cell lines with different expression levels of B7-H3 to evaluate its effects on the sensitivity to 22 different anticancer compounds in a drug screen. API-2 (triciribidine) and everolimus (RAD-001), two inhibitors that target the PI3K/AKT/mTOR pathway, showed enhanced inhibition of cell viability and proliferation in B7-H3 knockdown tumor cells compared to their B7-H3 expressing counterparts. Similar inhibition was seen in control cells treated with an anti-B7-H3 monoclonal antibody. In B7-H3 overexpressing cells, the effects of the two drugs were reduced, supported also by in vivo experiments in which B7-H3 overexpressing xenografts were less sensitive to everolimus than control tumors. In API-2 and everolimus-treated B7-H3 overexpressing cells, phospho-mTOR levels were decreased. However, phosphorylation of p70S6K was differentially regulated in B7-H3 cells treated with API-2 or everolimus, suggesting a different B7-H3-mediated mechanism downstream of mTOR. Both API-2 and everolimus decreased the glycolysis of the cells, whereas knockdown of B7-H3 decreased and B7-H3 overexpression increased the glycolytic capacity. In conclusion, we have unveiled a previously unknown relationship between B7-H3 expression and glycolytic capacity in tumor cells, and found that B7-H3 confers resistance to API-2 and everolimus. The results provide novel insights into the function of B7-H3 in cancer, and suggest that targeting of B7-H3 may be a novel alternative to improve current anticancer therapies. PMID:26771843

  9. The combination of IκB kinase β inhibitor and everolimus modulates expression of interleukin‐10 in human T‐cell lymphotropic virus type‐1‐infected T cells

    PubMed Central

    Nishioka, Chie; Ikezoe, Takayuki; Yang, Jing; Udaka, Keiko; Yokoyama, Akihito

    2013-01-01

    Summary Adult T‐cell leukaemia‐lymphoma (ATLL) is an aggressive malignancy of CD4+ CD25+ T lymphocytes, characterized by a severely compromised immunosystem, in which the human T‐cell lymphotropic virus type 1 (HTLV‐1) has been recognized as the aetiological agent. This study found that an IκB kinase β (IKKβ) inhibitor Bay11‐7082 inactivated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 and transcription factor nuclear factor‐κB in HTLV‐1‐infected T cells; this was significantly enhanced in the presence of the mTOR inhibitor everolimus. In addition, Bay11‐7082 decreased production of the immunosuppressive cytokine interleukin‐10 (IL‐10), which was further down‐regulated when Bay11‐7082 was combined with evelolimus in HTLV‐1‐infected T and ATLL cells isolated from patients. Interleukin‐10 is known to inhibit maturation and the antigen‐presenting function of dendritic cells (DCs). The culture media of HTLV‐1‐infected MT‐1 cells, which contained a large amout of IL‐10, hampered tumour necrosis factor‐α‐induced maturation of DCs isolated from healthy volunteers. Culture supernatant of MT‐1 cells treated with a combination of Bay11‐7082 and everolimus augmented maturation of DCs in association with a decrease in production of IL‐10 and enhanced the allostimulatory function of DCs. Similarly, when DCs isolated from patients with ATLL were treated with the combination of Bay11‐7082 and everolimus, they were fully matured and their capability to stimulate proliferation of lymphocytes was augmented. Taken together, the combination of Bay11‐7082 and everolimus might exhibit immunostimulatory properties in HTLV‐1‐infected T and ATLL cells isolated from patients, and this combination may be potentially therapeutic to regain the compromised immunosystem in ATLL patients. PMID:23278479

  10. Recommendations for the use of everolimus (Certican) in heart transplantation: results from the second German-Austrian Certican Consensus Conference.

    PubMed

    Rothenburger, Markus; Zuckermann, Andreas; Bara, Christoph; Hummel, Manfred; Strüber, Martin; Hirt, Stephan; Lehmkuhl, Hans

    2007-04-01

    Everolimus (Certican; Novartis Pharma AG, Basel, Switzerland) represents the latest generation of proliferation signal inhibitors (PSIs). Everolimus is indicated for use as an immunosuppressive drug in renal and heart transplantation. This report reflects the recommendations of the second German-Austrian Certican Consensus Conference, held in January 2006, for the clinical use of everolimus. PMID:17403469

  11. CGP57380 enhances efficacy of RAD001 in non-small cell lung cancer through abrogating mTOR inhibition-induced phosphorylation of eIF4E and activating mitochondrial apoptotic pathway

    PubMed Central

    Wen, Qiuyuan; Wang, Weiyuan; Luo, Jiadi; Chu, Shuzhou; Chen, Lingjiao; Xu, Lina; Zang, Hongjing; Alnemah, Mohannad Ma; Ma, Jian; Fan, Songqing

    2016-01-01

    The mammalian target of rapamycin (mTOR) is a potentially important therapeutic target in a broad range of cancer types. mTOR inhibitors such as rapamycin and its analogs (rapalogs) have been proven effective as anticancer agents in non-small cell lung cancer (NSCLC), whereas they strongly enhance phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) and activation of Akt, which cause resistance to mTOR-targeted therapy after an initial response. Rapamycin induces eIF4E phosphorylation by activating MAPK-interacting kinases (Mnks), and therefore targeting Mnk/eIF4E pathway represents a potential therapeutic strategy for the treatment of NSCLC. Here, our results showed that over-expression of p-Mnk1 and p-eIF4E was significantly associated with poor overall survival of NSCLC patients and high expression of p-Mnk1 might act as an independent prognostic biomarker for these patients. Meanwhile, inhibiting Mnk1 expression by Mnk inhibitor (CGP57380) could abrogate rapalogs (RAD001)-induced eIF4E phosphorylation and Akt activation. Furthermore, combination of CGP57380 and RAD001 could induce NSCLC cells apoptosis via activating intrinsic mitochondrial pathway, and exert synergistic antitumor efficacy both in vitro and in vivo. In conclusion, combination of targeting both mTOR and Mnk/eIF4E signaling pathways to enhance effectiveness of mTOR-targeted cancer therapy might be significant innovation for the personalized treatment of NSCLC. PMID:27050281

  12. Myeloma cell growth inhibition is augmented by synchronous inhibition of the insulin-like growth factor-1 receptor by NVP-AEW541 and inhibition of mammalian target of rapamycin by Rad001.

    PubMed

    Baumann, Philipp; Hagemeier, Hilke; Mandl-Weber, Sonja; Franke, Daniel; Schmidmaier, Ralf

    2009-04-01

    Multiple myeloma is still incurable. Myeloma cells become resistant to common drugs and patients eventually die of tumour progression. Therefore, new targets and drugs are needed immediately. NVP-AEW541 is a new, orally bioavailable small molecule inhibitor of the insulin-like growth factor-1 receptor (IGF-1R). Here, we show that NVP-AEW541 inhibits cell growth in myeloma cells at low concentrations in a time-dependent and a dose-dependent manner. Further experiments using the annexin-V-fluorescein isothiocyanate/propidium iodide assay revealed induction of apoptosis in common myeloma cell lines, but not in peripheral blood mononuclear cell from healthy donors. Stimulation of myeloma cells with IGF-1 led to a vast increase of cell growth and this was blocked by low doses of NVP-AEW541. Stimulation of myeloma cells with conditioned medium obtained from a 48-h-old HS-5 stromal cell culture was only partly blocked by NVP-AEW541. Western blotting experiments revealed that NVP-AEW541 decreased the phosphorylation status of P70S6 kinase and 4E-BP-1 but not of mammalian target of rapamycin (mTOR). Combined inhibition of IGF-1R and mTOR using the novel mTOR inhibitor Rad001 led to additive/synergistic increase of cell growth inhibition in multiple myeloma cells, which was accompanied by a stronger dephosphorylation of P70S6 kinase and 4E-BP-1. Taken together, we show that the combined inhibition of IGF-1R and mTOR by combining NVP-AEW541 and Rad001 is highly effective in multiple myeloma and might represent a potential new treatment strategy.

  13. Everolimus in advanced pancreatic neuroendocrine tumors: the clinical experience.

    PubMed

    Yao, James C; Phan, Alexandria T; Jehl, Valentine; Shah, Gaurav; Meric-Bernstam, Funda

    2013-03-01

    The incidence of neuroendocrine tumors (NET) has increased dramatically in the past 30 years. This information has revitalized basic and clinical research into the molecular biology of NET and has resulted in the recent approval of new therapies for pancreatic NET (pNET), including the oral inhibitor of the mTOR everolimus. Everolimus significantly improved progression-free survival among patients with pNET in the phase III RADIANT-3 study. Here, we review the clinical studies showing the efficacy of everolimus in pNET and summarize the translational science from these studies. To understand the mechanisms of resistance and cause of treatment failure, we compared the type of progression events observed in the everolimus and placebo arms of the RADIANT-3 study. Comparison of the everolimus arm to the placebo arm indicated the fractions of progression events due to new metastasis only (21% vs. 22%), growth of preexisting lesions only (54% vs. 49%), and new metastasis along with growth of preexisting lesions (24% vs. 27%) were similar. These results suggest that although everolimus delays disease progression in patients with pNET, patients who experience disease progression while on everolimus do not appear to have a more aggressive metastatic phenotype than those whose disease progresses while on placebo.

  14. Everolimus and Malignancy after Solid Organ Transplantation: A Clinical Update

    PubMed Central

    De Simone, Paolo

    2016-01-01

    Malignancy after solid organ transplantation remains a major cause of posttransplant mortality. The mammalian target of rapamycin (mTOR) inhibitor class of immunosuppressants exerts various antioncogenic effects, and the mTOR inhibitor everolimus is licensed for the treatment of several solid cancers. In kidney transplantation, evidence from registry studies indicates a lower rate of de novo malignancy under mTOR inhibition, with some potentially supportive data from randomized trials of everolimus. Case reports and small single-center series have suggested that switch to everolimus may be beneficial following diagnosis of posttransplant malignancy, particularly for Kaposi's sarcoma and nonmelanoma skin cancer, but prospective studies are lacking. A systematic review has shown mTOR inhibition to be associated with a significantly lower rate of hepatocellular carcinoma (HCC) recurrence versus standard calcineurin inhibitor therapy. One meta-analysis has concluded that patients with nontransplant HCC experience a low but significant survival benefit under everolimus monotherapy, so far unconfirmed in a transplant population. Data are limited in heart transplantation, although observational data and case reports have indicated that introduction of everolimus is helpful in reducing the recurrence of skin cancers. Overall, it can be concluded that, in certain settings, everolimus appears a promising option to lessen the toll of posttransplant malignancy.

  15. The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma

    PubMed Central

    Witzig, Thomas E.; Reeder, Craig; Han, Jing Jing; LaPlant, Betsy; Stenson, Mary; Tun, Han W.; Macon, William; Ansell, Stephen M.; Habermann, Thomas M.; Inwards, David J.; Micallef, Ivana N.; Johnston, Patrick B.; Porrata, Luis F.; Colgan, Joseph P.; Markovic, Svetomir; Nowakowski, Grzegorz S.

    2015-01-01

    Everolimus is an oral agent that targets the mammalian target of rapamycin (mTOR) pathway. This study investigated mTOR pathway activation in T-cell lymphoma (TCL) cell lines and assessed antitumor activity in patients with relapsed/refractory TCL in a phase 2 trial. The mTOR pathway was activated in all 6 TCL cell lines tested and everolimus strongly inhibited malignant T-cell proliferation with minimal cytotoxic effects. Everolimus completely inhibited phosphorylation of ribosomal S6, a raptor/mTOR complex 1 (mTORC1) target, without a compensatory activation of the rictor/mTORC2 target Akt (S475). In the clinical trial, 16 patients with relapsed TCL were enrolled and received everolimus 10 mg by mouth daily. Seven patients (44%) had cutaneous (all mycosis fungoides); 4 (25%) had peripheral T cell not otherwise specified; 2 (13%) had anaplastic large cell; and 1 each had extranodal natural killer/T cell, angioimmunoblastic, and precursor T-lymphoblastic leukemia/lymphoma types. The overall response rate was 44% (7/16; 95% confidence interval [CI]: 20% to 70%). The median progression-free survival was 4.1 months (95% CI, 1.5-6.5) and the median overall survival was 10.2 months (95% CI, 2.6-44.3). The median duration of response for the 7 responders was 8.5 months (95% CI, 1.0 to not reached). These studies indicate that everolimus has antitumor activity and provide proof-of-concept that targeting the mTORC1 pathway in TCL is clinically relevant. This trial was registered at www.clinicaltrials.gov as #NCT00436618. PMID:25921059

  16. Gene expression profiling of response to mTOR inhibitor everolimus in pre-operatively treated post-menopausal women with oestrogen receptor-positive breast cancer.

    PubMed

    Sabine, Vicky S; Sims, Andrew H; Macaskill, E Jane; Renshaw, Lorna; Thomas, Jeremy S; Dixon, J Michael; Bartlett, John M S

    2010-07-01

    There is growing evidence that uncontrolled activation of the PI3K/Akt/mTOR pathway contributes to the development and progression of breast cancer. Inhibition of this pathway has antitumour effects in preclinical studies and efficacy in combination with other agents in breast cancer patients. The aim of this study is to characterise the effects of pre-operative everolimus treatment in primary breast cancer patients and to identify potential molecular predictors of response. Twenty-seven patients with oestrogen receptor (ER)-positive breast cancer completed 11-14 days of neoadjuvant treatment with 5-mg everolimus. Core biopsies were taken before and after treatment and analysed using Illumina HumanRef-8 v2 Expression BeadChips. Changes in proliferation (Ki67) and phospho-AKT were measured on diagnostic core biopsies/resection samples embedded in paraffin by immunohistochemistry to determine response to treatment. Patients that responded to everolimus treatment with significant reductions in proliferation (fall in % Ki67 positive cells) also had significant decreases in the expression of genes involved in cell cycle (P = 8.70E-09) and p53 signalling (P = 0.01) pathways. Highly proliferating tumours that have a poor prognosis exhibited dramatic reductions in the expression of cell cycle genes following everolimus treatment. The genes that most clearly separated responding from non-responding pre-treatment tumours were those involved with protein modification and dephosphorylation, including DYNLRB2, ERBB4, PTPN13, ULK2 and DUSP16. The majority of ER-positive breast tumours treated with everolimus showed a significant reduction in genes involved with proliferation, these may serve as markers of response and predict which patients will derive most benefit from mTOR inhibition.

  17. Cabozantinib versus everolimus in advanced renal cell carcinoma

    PubMed Central

    Choueiri, Toni K.; Escudier, Bernard; Powles, Thomas; Mainwaring, Paul; Rini, Brian I.; Donskov, Frede; Hammers, Hans; Hutson, Thomas E.; Lee, Jae-Lyun; Peltola, Katriina; Roth, Bruce J.; Bjarnason, Georg A.; Géczi, Lajos; Keam, Bhumsuk; Moroto, Pablo; Heng, Daniel Y. C.; Schmidinger, Manuela; Kantoff, Philip W.; Borgman, Anne; Hessel, Colin; Scheffold, Christian; Schwab, Gisela M.; Tannir, Nizar M.; Motzer, Robert J.

    2016-01-01

    Background Cabozantinib is an oral small molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptor (VEGFR) as well as MET and AXL; each has been implicated in metastatic renal cell carcinoma (RCC) pathobiology or development of resistance to antiangiogenic drugs. This randomized open-label phase 3 trial evaluated the efficacy of cabozantinib compared to everolimus in RCC patients who progressed after VEGFR-targeted therapy. Methods The trial randomized 658 patients to receive cabozantinib at a dose of 60 mg daily, or everolimus at a dose of 10 mg daily. The primary endpoint was progression-free survival. Secondary efficacy endpoints were overall survival and objective response rate. Results Median progression-free survival was 7.4 months with cabozantinib and 3.8 months with everolimus. The risk of progression or death was 42% lower with cabozantinib compared to everolimus (hazard ratio, 0.58; 95% confidence interval [CI] 0.45 to 0.75; P < 0.001). Objective response rates were 21% with cabozantinib and 5% with everolimus (P < 0.001). A planned interim analysis showed that overall survival was improved with cabozantinib (hazard ratio, 0.67; 95% CI, 0.51 to 0.89; P = 0.005) but did not cross the significance boundary. Adverse events (grade 3 or 4, regardless of causality) were reported in 74% of cabozantinib patients and 65% of everolimus patients. Discontinuation of study treatment for adverse events occurred in 9.1% of cabozantinib patients and 10% of everolimus patients. Conclusions Cabozantinib improved progression-free survival compared to everolimus in RCC patients who progressed after VEGFR-targeted therapy. PMID:26406150

  18. Everolimus exhibits anti-tumorigenic activity in obesity-induced ovarian cancer

    PubMed Central

    Guo, Hui; Zhong, Yan; Jackson, Amanda L.; Clark, Leslie H.; Kilgore, Josh; Zhang, Lu; Han, Jianjun; Sheng, Xiugui; Gilliam, Timothy P.; Gehrig, Paola A.; Zhou, Chunxiao; Bae, Victoria L.

    2016-01-01

    Everolimus inhibits mTOR kinase activity and its downstream targets by acting on mTORC1 and has anti-tumorigenic activity in ovarian cancer. Clinical and epidemiologic data find that obesity is associated with worse outcomes in ovarian cancer. In addition, obesity leads to hyperactivation of the mTOR pathway in epithelial tissues, suggesting that mTOR inhibitors may be a logical choice for treatment in obesity-driven cancers. However, it remains unclear if obesity impacts the effect of everolimus on tumor growth in ovarian cancer. The present study was aimed at evaluating the effects of everolimus on cytotoxicity, cell metabolism, apoptosis, cell cycle, cell stress and invasion in human ovarian cancer cells. A genetically engineered mouse model of serous ovarian cancer fed a high fat diet or low fat diet allowed further investigation into the inter-relationship between everolimus and obesity in vivo. Everolimus significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, reduced invasion and caused cellular stress via inhibition of mTOR pathways in vitro. Hypoglycemic conditions enhanced the sensitivity of cells to everolimus through the disruption of glycolysis. Moreover, everolimus was found to inhibit ovarian tumor growth in both obese and lean mice. This reduction coincided with a decrease in expression of Ki-67 and phosphorylated-S6, as well as an increase in cleaved caspase 3 and phosphorylated-AKT. Metabolite profiling revealed that everolimus was able to alter tumor metabolism through different metabolic pathways in the obese and lean mice. Our findings support that everolimus may be a promising therapeutic agent for obesity-driven ovarian cancers. PMID:26959121

  19. Targeting the mTOR Complex by Everolimus in NRAS Mutant Neuroblastoma.

    PubMed

    Kiessling, Michael K; Curioni-Fontecedro, Alessandra; Samaras, Panagiotis; Lang, Silvia; Scharl, Michael; Aguzzi, Adriano; Oldrige, Derek A; Maris, John M; Rogler, Gerhard

    2016-01-01

    High-risk neuroblastoma remains lethal in about 50% of patients despite multimodal treatment. Recent attempts to identify molecular targets for specific therapies have shown that Neuroblastoma RAS (NRAS) is significantly mutated in a small number of patients. However, few inhibitors for the potential treatment for NRAS mutant neuroblastoma have been investigated so far. In this in-vitro study, we show that MEK inhibitors AZD6244, MEK162 and PD0325901 block cell growth in NRAS mutant neuroblastoma cell lines but not in NRAS wild-type cell lines. Several studies show that mutant NRAS leads to PI3K pathway activation and combined inhibitors of PI3K/mTOR effectively block cell growth. However, we observed the combination of MEK inhibitors with PI3K or AKT inhibitors did not show synergestic effects on cell growth. Thus, we tested single mTOR inhibitors Everolimus and AZD8055. Interestingly, Everolimus and AZD8055 alone were sufficient to block cell growth in NRAS mutant cell lines but not in wild-type cell lines. We found that Everolimus alone induced apoptosis in NRAS mutant neuroblastoma. Furthermore, the combination of mTOR and MEK inhibitors resulted in synergistic growth inhibition. Taken together, our results show that NRAS mutant neuroblastoma can be targeted by clinically available Everolimus alone or in combination with MEK inhibitors which could impact future clinical studies. PMID:26821351

  20. Targeting the mTOR Complex by Everolimus in NRAS Mutant Neuroblastoma

    PubMed Central

    Kiessling, Michael K.; Curioni-Fontecedro, Alessandra; Samaras, Panagiotis; Lang, Silvia; Scharl, Michael; Aguzzi, Adriano; Oldrige, Derek A.; Maris, John M.; Rogler, Gerhard

    2016-01-01

    High-risk neuroblastoma remains lethal in about 50% of patients despite multimodal treatment. Recent attempts to identify molecular targets for specific therapies have shown that Neuroblastoma RAS (NRAS) is significantly mutated in a small number of patients. However, few inhibitors for the potential treatment for NRAS mutant neuroblastoma have been investigated so far. In this in-vitro study, we show that MEK inhibitors AZD6244, MEK162 and PD0325901 block cell growth in NRAS mutant neuroblastoma cell lines but not in NRAS wild-type cell lines. Several studies show that mutant NRAS leads to PI3K pathway activation and combined inhibitors of PI3K/mTOR effectively block cell growth. However, we observed the combination of MEK inhibitors with PI3K or AKT inhibitors did not show synergestic effects on cell growth. Thus, we tested single mTOR inhibitors Everolimus and AZD8055. Interestingly, Everolimus and AZD8055 alone were sufficient to block cell growth in NRAS mutant cell lines but not in wild-type cell lines. We found that Everolimus alone induced apoptosis in NRAS mutant neuroblastoma. Furthermore, the combination of mTOR and MEK inhibitors resulted in synergistic growth inhibition. Taken together, our results show that NRAS mutant neuroblastoma can be targeted by clinically available Everolimus alone or in combination with MEK inhibitors which could impact future clinical studies. PMID:26821351

  1. Everolimus Stabilizes Podocyte Microtubules via Enhancing TUBB2B and DCDC2 Expression

    PubMed Central

    Jeruschke, Stefanie; Jeruschke, Kay; DiStasio, Andrew; Karaterzi, Sinem; Büscher, Anja K.; Nalbant, Perihan; Klein-Hitpass, Ludger; Hoyer, Peter F.; Weiss, Jürgen; Stottmann, Rolf W.; Weber, Stefanie

    2015-01-01

    Background Glomerular podocytes are highly differentiated cells that are key components of the kidney filtration units. The podocyte cytoskeleton builds the basis for the dynamic podocyte cytoarchitecture and plays a central role for proper podocyte function. Recent studies implicate that immunosuppressive agents including the mTOR-inhibitor everolimus have a protective role directly on the stability of the podocyte actin cytoskeleton. In contrast, a potential stabilization of microtubules by everolimus has not been studied so far. Methods To elucidate mechanisms underlying mTOR-inhibitor mediated cytoskeletal rearrangements, we carried out microarray gene expression studies to identify target genes and corresponding pathways in response to everolimus. We analyzed the effect of everolimus in a puromycin aminonucleoside experimental in vitro model of podocyte injury. Results Upon treatment with puromycin aminonucleoside, microarray analysis revealed gene clusters involved in cytoskeletal reorganization, cell adhesion, migration and extracellular matrix composition to be affected. Everolimus was capable of protecting podocytes from injury, both on transcriptional and protein level. Rescued genes included tubulin beta 2B class IIb (TUBB2B) and doublecortin domain containing 2 (DCDC2), both involved in microtubule structure formation in neuronal cells but not identified in podocytes so far. Validating gene expression data, Western-blot analysis in cultured podocytes demonstrated an increase of TUBB2B and DCDC2 protein after everolimus treatment, and immunohistochemistry in healthy control kidneys confirmed a podocyte-specific expression. Interestingly, Tubb2bbrdp/brdp mice revealed a delay in glomerular podocyte development as showed by podocyte-specific markers Wilm’s tumour 1, Podocin, Nephrin and Synaptopodin. Conclusions Taken together, our study suggests that off-target, non-immune mediated effects of the mTOR-inhibitor everolimus on the podocyte cytoskeleton

  2. Everolimus in the management of metastatic renal cell carcinoma: an evidence-based review of its place in therapy

    PubMed Central

    Buti, Sebastiano; Leonetti, Alessandro; Dallatomasina, Alice; Bersanelli, Melissa

    2016-01-01

    Introduction Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults, and its pathogenesis is strictly related to altered cellular response to hypoxia, in which mTOR signaling pathway is implicated. Everolimus, an mTOR serine/threonine kinase inhibitor, represents a therapeutic option for the treatment of advanced RCC. Aim The objective of this article is to review the evidence for the treatment of metastatic RCC with everolimus. Evidence review Everolimus was approved for second- and third-line therapy in patients with advanced RCC according to the results of a Phase III pivotal trial that demonstrated a benefit in median progression-free survival of ~2 months compared to placebo after failure of previous lines of therapy, of which at least one was an anti-VEGFR tyrosine kinase inhibitor (TKI). The role of this drug in first-line setting has been investigated in Phase II trials, with no significant clinical benefit, even in combination with bevacizumab. Everolimus activity in non-clear cell RCC is supported by two randomized Phase II trials that confirmed the benefit in second-line setting but not in first line. Recently, two randomized Phase III trials (METEOR and CheckMate 025) demonstrated the inferiority of everolimus in second-line setting compared to the TKI cabozantinib and to the immune checkpoint inhibitor nivolumab, respectively. Moreover, a recent Phase II study demonstrated a significant benefit for the second-line combination treatment with everolimus plus lenvatinib (a novel TKI) in terms of progression-free survival and overall survival compared to the single-agent everolimus. Basing on preclinical data, the main downstream effectors of mTOR cascade, S6RP and its phosphorylated form, could be good predictive biomarkers of response to everolimus. The safety profile of the drug is favorable, with a good cost-effectiveness compared to second-line sorafenib or axitinib, and no significant impact on the quality of life of treated

  3. Everolimus in the management of metastatic renal cell carcinoma: an evidence-based review of its place in therapy

    PubMed Central

    Buti, Sebastiano; Leonetti, Alessandro; Dallatomasina, Alice; Bersanelli, Melissa

    2016-01-01

    Introduction Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults, and its pathogenesis is strictly related to altered cellular response to hypoxia, in which mTOR signaling pathway is implicated. Everolimus, an mTOR serine/threonine kinase inhibitor, represents a therapeutic option for the treatment of advanced RCC. Aim The objective of this article is to review the evidence for the treatment of metastatic RCC with everolimus. Evidence review Everolimus was approved for second- and third-line therapy in patients with advanced RCC according to the results of a Phase III pivotal trial that demonstrated a benefit in median progression-free survival of ~2 months compared to placebo after failure of previous lines of therapy, of which at least one was an anti-VEGFR tyrosine kinase inhibitor (TKI). The role of this drug in first-line setting has been investigated in Phase II trials, with no significant clinical benefit, even in combination with bevacizumab. Everolimus activity in non-clear cell RCC is supported by two randomized Phase II trials that confirmed the benefit in second-line setting but not in first line. Recently, two randomized Phase III trials (METEOR and CheckMate 025) demonstrated the inferiority of everolimus in second-line setting compared to the TKI cabozantinib and to the immune checkpoint inhibitor nivolumab, respectively. Moreover, a recent Phase II study demonstrated a significant benefit for the second-line combination treatment with everolimus plus lenvatinib (a novel TKI) in terms of progression-free survival and overall survival compared to the single-agent everolimus. Basing on preclinical data, the main downstream effectors of mTOR cascade, S6RP and its phosphorylated form, could be good predictive biomarkers of response to everolimus. The safety profile of the drug is favorable, with a good cost-effectiveness compared to second-line sorafenib or axitinib, and no significant impact on the quality of life of treated

  4. Profile of everolimus in the treatment of tuberous sclerosis complex: an evidence-based review of its place in therapy.

    PubMed

    Capal, Jamie K; Franz, David Neal

    2016-01-01

    Tuberous sclerosis complex (TSC) is a relatively rare genetic disorder, affecting one in 6,000 births. Mammalian target of rapamycin (mTOR) inhibitors, such as everolimus, which have been previously used to prevent solid organ transplant rejection, augment anticancer treatment regimens, and prevent neovascularization of artificial cardiac stents, are now approved for treating TSC-related manifestations, such as subependymal giant cell astrocytomas and renal angiomyolipomas. The use of everolimus in treating subependymal giant cell astrocytomas is supported by long-term Phase II and III clinical trials. Seizures are a common feature in TSC, occurring in up to 96% of patients. While mTOR inhibitors currently do not have regulatory approval in treating this manifestation, small clinical studies have demonstrated beneficial outcomes with everolimus. Further evidence from a forthcoming Phase III clinical study may provide additional support for the use of everolimus for this indication. Also, there are no approved treatments for TSC-associated neuropsychiatric disorders, which include intellectual disability, behavioral difficulties, and autism spectrum disorder, but preclinical data and small studies have suggested that some neuropsychiatric symptoms may be improved through mTOR inhibition therapy. More evidence is needed, particularly regarding safety in young infants. This review focuses on the current evidence supporting the use of everolimus in neurologic and neuropsychiatric manifestations of TSC, and the place of everolimus in therapy. PMID:27601910

  5. Profile of everolimus in the treatment of tuberous sclerosis complex: an evidence-based review of its place in therapy

    PubMed Central

    Capal, Jamie K; Franz, David Neal

    2016-01-01

    Tuberous sclerosis complex (TSC) is a relatively rare genetic disorder, affecting one in 6,000 births. Mammalian target of rapamycin (mTOR) inhibitors, such as everolimus, which have been previously used to prevent solid organ transplant rejection, augment anticancer treatment regimens, and prevent neovascularization of artificial cardiac stents, are now approved for treating TSC-related manifestations, such as subependymal giant cell astrocytomas and renal angiomyolipomas. The use of everolimus in treating subependymal giant cell astrocytomas is supported by long-term Phase II and III clinical trials. Seizures are a common feature in TSC, occurring in up to 96% of patients. While mTOR inhibitors currently do not have regulatory approval in treating this manifestation, small clinical studies have demonstrated beneficial outcomes with everolimus. Further evidence from a forthcoming Phase III clinical study may provide additional support for the use of everolimus for this indication. Also, there are no approved treatments for TSC-associated neuropsychiatric disorders, which include intellectual disability, behavioral difficulties, and autism spectrum disorder, but preclinical data and small studies have suggested that some neuropsychiatric symptoms may be improved through mTOR inhibition therapy. More evidence is needed, particularly regarding safety in young infants. This review focuses on the current evidence supporting the use of everolimus in neurologic and neuropsychiatric manifestations of TSC, and the place of everolimus in therapy.

  6. Profile of everolimus in the treatment of tuberous sclerosis complex: an evidence-based review of its place in therapy

    PubMed Central

    Capal, Jamie K; Franz, David Neal

    2016-01-01

    Tuberous sclerosis complex (TSC) is a relatively rare genetic disorder, affecting one in 6,000 births. Mammalian target of rapamycin (mTOR) inhibitors, such as everolimus, which have been previously used to prevent solid organ transplant rejection, augment anticancer treatment regimens, and prevent neovascularization of artificial cardiac stents, are now approved for treating TSC-related manifestations, such as subependymal giant cell astrocytomas and renal angiomyolipomas. The use of everolimus in treating subependymal giant cell astrocytomas is supported by long-term Phase II and III clinical trials. Seizures are a common feature in TSC, occurring in up to 96% of patients. While mTOR inhibitors currently do not have regulatory approval in treating this manifestation, small clinical studies have demonstrated beneficial outcomes with everolimus. Further evidence from a forthcoming Phase III clinical study may provide additional support for the use of everolimus for this indication. Also, there are no approved treatments for TSC-associated neuropsychiatric disorders, which include intellectual disability, behavioral difficulties, and autism spectrum disorder, but preclinical data and small studies have suggested that some neuropsychiatric symptoms may be improved through mTOR inhibition therapy. More evidence is needed, particularly regarding safety in young infants. This review focuses on the current evidence supporting the use of everolimus in neurologic and neuropsychiatric manifestations of TSC, and the place of everolimus in therapy. PMID:27601910

  7. The MANDELA study: A multicenter, randomized, open-label, parallel group trial to refine the use of everolimus after heart transplantation.

    PubMed

    Deuse, Tobias; Bara, Christoph; Barten, Markus J; Hirt, Stephan W; Doesch, Andreas O; Knosalla, Christoph; Grinninger, Carola; Stypmann, Jörg; Garbade, Jens; Wimmer, Peter; May, Christoph; Porstner, Martina; Schulz, Uwe

    2015-11-01

    In recent years a series of trials has sought to define the optimal protocol for everolimus-based immunosuppression in heart transplantation, with the goal of minimizing exposure to calcineurin inhibitors (CNIs) and harnessing the non-immunosuppressive benefits of everolimus. Randomized studies have demonstrated that immunosuppressive potency can be maintained in heart transplant patients receiving everolimus despite marked CNI reduction, although very early CNI withdrawal may be inadvisable. A potential renal advantage has been shown for everolimus, but the optimal time for conversion and the adequate reduction in CNI exposure remain to be defined. Other reasons for use of everolimus include a substantial reduction in the risk of cytomegalovirus infection, and evidence for inhibition of cardiac allograft vasculopathy, a major cause of graft loss. The ongoing MANDELA study is a 12-month multicenter, randomized, open-label, parallel-group study in which efficacy, renal function and safety are compared in approximately 200 heart transplant patients. Patients receive CNI therapy, steroids and everolimus or mycophenolic acid during months 3 to 6 post-transplant, and are then randomized at month 6 post-transplant (i) to convert to CNI-free immunosuppression with everolimus and mycophenolic acid or (ii) to continue reduced-exposure CNI, with concomitant everolimus. Patients are then followed to month 18 post-transplant The rationale and expectations for the trial and its methodology are described herein.

  8. Prolonged clinical benefit of everolimus therapy in the management of high-grade pancreatic neuroendocrine carcinoma.

    PubMed

    Fonseca, Paula J; Uriol, Esther; Galván, José A; Alvarez, Carlos; Pérez, Quionia; Villanueva, Noemi; Berros, José P; Izquierdo, Marta; Viéitez, José M

    2013-01-01

    Treatment options for patients with high-grade pancreatic neuroendocrine tumors (pNET) are limited, especially for those with progressive disease and for those who experience treatment failure. Everolimus, an oral inhibitor of mammalian target of rapamycin (mTOR), has been approved for the treatment of patients with low- or intermediate-grade advanced pNET. In the randomized phase III RADIANT-3 study in patients with low- or intermediate-grade advanced pNET, everolimus significantly increased progression-free survival (PFS) and decreased the relative risk for disease progression by 65% over placebo. This case report describes a heavily pretreated patient with high-grade pNET and liver and peritoneal metastases who achieved prolonged PFS, clinically relevant partial radiologic tumor response, and resolution of constitutional symptoms with improvement in Karnofsky performance status while receiving a combination of everolimus and octreotide long-acting repeatable (LAR). Radiologic and clinical responses were maintained for 19 months, with minimal toxicity over the course of treatment. This case supports the findings that the combination of everolimus plus octreotide LAR may be considered for use in patients with high-grade pNET and progressive disease. Although behavior and aggressiveness are different between low- or intermediate-grade and high-grade pNET, some high-grade pNET may express mTOR; hence, everolimus should be considered in a clinical trial.

  9. Prolonged Clinical Benefit of Everolimus Therapy in the Management of High-Grade Pancreatic Neuroendocrine Carcinoma

    PubMed Central

    Fonseca, Paula J.; Uriol, Esther; Galván, José A.; Álvarez, Carlos; Pérez, Quionia; Villanueva, Noemi; Berros, José P.; Izquierdo, Marta; Viéitez, José M.

    2013-01-01

    Treatment options for patients with high-grade pancreatic neuroendocrine tumors (pNET) are limited, especially for those with progressive disease and for those who experience treatment failure. Everolimus, an oral inhibitor of mammalian target of rapamycin (mTOR), has been approved for the treatment of patients with low- or intermediate-grade advanced pNET. In the randomized phase III RADIANT-3 study in patients with low- or intermediate-grade advanced pNET, everolimus significantly increased progression-free survival (PFS) and decreased the relative risk for disease progression by 65% over placebo. This case report describes a heavily pretreated patient with high-grade pNET and liver and peritoneal metastases who achieved prolonged PFS, clinically relevant partial radiologic tumor response, and resolution of constitutional symptoms with improvement in Karnofsky performance status while receiving a combination of everolimus and octreotide long-acting repeatable (LAR). Radiologic and clinical responses were maintained for 19 months, with minimal toxicity over the course of treatment. This case supports the findings that the combination of everolimus plus octreotide LAR may be considered for use in patients with high-grade pNET and progressive disease. Although behavior and aggressiveness are different between low- or intermediate-grade and high-grade pNET, some high-grade pNET may express mTOR; hence, everolimus should be considered in a clinical trial. PMID:24019785

  10. Adjuvant Everolimus for Resected Kidney Cancer

    Cancer.gov

    In this clinical trial, patients with renal cell cancer who have undergone partial or complete nephrectomy will be randomly assigned to take everolimus tablets or matching placebo tablets daily for 54 weeks.

  11. Clinical evidence of the efficacy of everolimus and its potential in the treatment of breast cancer

    PubMed Central

    Saksena, Rujuta; Wong, Serena T

    2013-01-01

    The PI3K/Akt/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin) pathway regulates several key cellular functions and its dysregulation creates an environment that promotes tumorigenesis as well as resistance to therapy. The mTOR inhibitor everolimus has emerged as a promising agent in the treatment of breast cancer and was recently approved in combination with exemestane for advanced hormone receptor–positive disease after progression on a nonsteroidal aromatase inhibitor. Everolimus may also be effective in combination with cytotoxic and human epidermal growth factor receptor-2-directed therapies for the treatment of other subtypes of breast cancer. This paper highlights preclinical and clinical data that have emerged on the role of mTOR inhibition in breast cancer. Although generally well tolerated, everolimus carries a unique side effect profile of which both patients and providers should be made aware. Recommendations related to the administration of everolimus in the clinical setting are also discussed. PMID:24648755

  12. Therapeutic potential and adverse events of everolimus for treatment of hepatocellular carcinoma - systematic review and meta-analysis.

    PubMed

    Yamanaka, Kenya; Petrulionis, Marius; Lin, Shibo; Gao, Chao; Galli, Uwe; Richter, Susanne; Winkler, Susanne; Houben, Philipp; Schultze, Daniel; Hatano, Etsuro; Schemmer, Peter

    2013-12-01

    Everolimus is an orally administrated mammalian target of rapamycin (mTOR) inhibitor. Several large-scale randomized controlled trials (RCTs) have demonstrated the survival benefits of everolimus at the dose of 10 mg/day for solid cancers. Furthermore, mTOR-inhibitor-based immunosuppression is associated with survival benefits for patients with hepatocellular carcinoma (HCC) who have received liver transplantation. However, a low rate of tumor reduction and some adverse events have been pointed out. This review summarizes the antitumor effects and adverse events of everolimus and evaluates its possible application in advanced HCC. For the meta-analysis of adverse events, we used the RCTs for solid cancers. The odds ratios of adverse events were calculated using the Peto method. Manypreclinical studies demonstrated that everolimus had antitumor effects such as antiproliferation and antiangiogenesis. However, some differences in the effects were observed among in vivo animal studies for HCC treatment. Meanwhile, clinical studies demonstrated that the response rate of single-agent everolimus was low, though survival benefits could be expected. The meta-analysis revealed the odds ratios (95% confidence interval [CI]) of stomatitis: 5.42 [4.31-6.73], hyperglycemia: 3.22 [2.37-4.39], anemia: 3.34 [2.37-4.67], pneumonitis: 6.02 [3.95-9.16], aspartate aminotransferase levels: 2.22 [1.37-3.62], and serum alanine aminotransferase levels: 2.94 [1.72-5.02], respectively. Everolimus at the dose of 10 mg/day significantly increased the risk of the adverse events. In order to enable its application to the standard conventional therapies of HCC, further studies are required to enhance the antitumor effects and manage the adverse events of everolimus. PMID:24403259

  13. Toll-like receptor 9 agonist IMO cooperates with everolimus in renal cell carcinoma by interfering with tumour growth and angiogenesis

    PubMed Central

    Damiano, V; Rosa, R; Formisano, L; Nappi, L; Gelardi, T; Marciano, R; Cozzolino, I; Troncone, G; Agrawal, S; Veneziani, B M; De Placido, S; Bianco, R; Tortora, G

    2013-01-01

    Background: Targeting the mammalian target of rapamycin by everolimus is a successful approach for renal cell carcinoma (RCC) therapy. The Toll-like receptor 9 agonist immune modulatory oligonucleotide (IMO) exhibits direct antitumour and antiangiogenic activity and cooperates with both epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) inhibitors. Methods: We tested the combination of IMO and everolimus on models of human RCC with different Von-Hippel Lindau (VHL) gene status, both in vitro and in nude mice. We studied their direct antiangiogenic effects on human umbilical vein endothelial cells. Results: Both IMO and everolimus inhibited in vitro growth and survival of RCC cell lines, and their combination produced a synergistic inhibitory effect. Moreover, everolimus plus IMO interfered with EGFR-dependent signaling and reduced VEGF secretion in both VHL wild-type and mutant cells. In RCC tumour xenografts, IMO plus everolimus caused a potent and long-lasting cooperative antitumour activity, with reduction of tumour growth, prolongation of mice survival and inhibition of signal transduction. Furthermore, IMO and everolimus impaired the main endothelial cell functions. Conclusion: A combined treatment with everolimus and IMO is effective in VHL wild-type and mutant models of RCC by interfering with tumour growth and angiogenesis, thus representing a potentially effective, rationale-based combination to be translated in the clinical setting. PMID:23571736

  14. Antagonistic effects of chloroquine on autophagy occurrence potentiate the anticancer effects of everolimus on renal cancer cells

    PubMed Central

    Grimaldi, A; Santini, D; Zappavigna, S; Lombardi, A; Misso, G; Boccellino, M; Desiderio, V; Vitiello, P P; Di Lorenzo, G; Zoccoli, A; Pantano, F; Caraglia, M

    2015-01-01

    Renal cell carcinoma is an aggressive disease often asymptomatic and weakly chemo-radiosensitive. Currently, new biologic drugs are used among which everolimus, an mTOR inhibitor, that has been approved for second-line therapy. Since mTOR is involved in the control of autophagy, its antitumor capacity is often limited. In this view, chloroquine, a 4-alkylamino substituted quinoline family member, is an autophagy inhibitor that blocks the fusion of autophagosomes and lysosomes. In the present study, we evaluated the effects of everolimus alone or in combination with chloroquine on renal cancer cell viability and verified possible synergism. Our results demonstrate that renal cancer cells are differently sensitive to everolimus and chloroquine and the pharmacological combination everolimus/chloroquine was strongly synergistic inducing cell viability inhibition. In details, the pharmacological synergism occurs when chloroquine is administered before everolimus. In addition, we found a flow autophagic block and shift of death mechanisms to apoptosis. This event was associated with decrease of Beclin-1/Bcl-2 complex and parallel reduction of anti-apoptotic protein Bcl-2 in combined treatment. At last, we found that the enhancement of apoptosis induced by drug combination occurs through the intrinsic mitochondrial apoptotic pathway activation, while the extrinsic pathway is involved only partly following its activation by chloroquine. These results provide the basis for new therapeutic strategies for the treatment of renal cell carcinoma after appropriate clinical trial. PMID:25866016

  15. Antagonistic effects of chloroquine on autophagy occurrence potentiate the anticancer effects of everolimus on renal cancer cells.

    PubMed

    Grimaldi, A; Santini, D; Zappavigna, S; Lombardi, A; Misso, G; Boccellino, M; Desiderio, V; Vitiello, P P; Di Lorenzo, G; Zoccoli, A; Pantano, F; Caraglia, M

    2015-01-01

    Renal cell carcinoma is an aggressive disease often asymptomatic and weakly chemo-radiosensitive. Currently, new biologic drugs are used among which everolimus, an mTOR inhibitor, that has been approved for second-line therapy. Since mTOR is involved in the control of autophagy, its antitumor capacity is often limited. In this view, chloroquine, a 4-alkylamino substituted quinoline family member, is an autophagy inhibitor that blocks the fusion of autophagosomes and lysosomes. In the present study, we evaluated the effects of everolimus alone or in combination with chloroquine on renal cancer cell viability and verified possible synergism. Our results demonstrate that renal cancer cells are differently sensitive to everolimus and chloroquine and the pharmacological combination everolimus/chloroquine was strongly synergistic inducing cell viability inhibition. In details, the pharmacological synergism occurs when chloroquine is administered before everolimus. In addition, we found a flow autophagic block and shift of death mechanisms to apoptosis. This event was associated with decrease of Beclin-1/Bcl(-)2 complex and parallel reduction of anti-apoptotic protein Bcl(-)2 in combined treatment. At last, we found that the enhancement of apoptosis induced by drug combination occurs through the intrinsic mitochondrial apoptotic pathway activation, while the extrinsic pathway is involved only partly following its activation by chloroquine. These results provide the basis for new therapeutic strategies for the treatment of renal cell carcinoma after appropriate clinical trial. PMID:25866016

  16. Antagonistic effects of chloroquine on autophagy occurrence potentiate the anticancer effects of everolimus on renal cancer cells.

    PubMed

    Grimaldi, A; Santini, D; Zappavigna, S; Lombardi, A; Misso, G; Boccellino, M; Desiderio, V; Vitiello, P P; Di Lorenzo, G; Zoccoli, A; Pantano, F; Caraglia, M

    2015-01-01

    Renal cell carcinoma is an aggressive disease often asymptomatic and weakly chemo-radiosensitive. Currently, new biologic drugs are used among which everolimus, an mTOR inhibitor, that has been approved for second-line therapy. Since mTOR is involved in the control of autophagy, its antitumor capacity is often limited. In this view, chloroquine, a 4-alkylamino substituted quinoline family member, is an autophagy inhibitor that blocks the fusion of autophagosomes and lysosomes. In the present study, we evaluated the effects of everolimus alone or in combination with chloroquine on renal cancer cell viability and verified possible synergism. Our results demonstrate that renal cancer cells are differently sensitive to everolimus and chloroquine and the pharmacological combination everolimus/chloroquine was strongly synergistic inducing cell viability inhibition. In details, the pharmacological synergism occurs when chloroquine is administered before everolimus. In addition, we found a flow autophagic block and shift of death mechanisms to apoptosis. This event was associated with decrease of Beclin-1/Bcl(-)2 complex and parallel reduction of anti-apoptotic protein Bcl(-)2 in combined treatment. At last, we found that the enhancement of apoptosis induced by drug combination occurs through the intrinsic mitochondrial apoptotic pathway activation, while the extrinsic pathway is involved only partly following its activation by chloroquine. These results provide the basis for new therapeutic strategies for the treatment of renal cell carcinoma after appropriate clinical trial.

  17. Phase I/II trial of everolimus in combination with bortezomib and rituximab (RVR) in relapsed/refractory Waldenstrom macroglobulinemia.

    PubMed

    Ghobrial, I M; Redd, R; Armand, P; Banwait, R; Boswell, E; Chuma, S; Huynh, D; Sacco, A; Roccaro, A M; Perilla-Glen, A; Noonan, K; MacNabb, M; Leblebjian, H; Warren, D; Henrick, P; Castillo, J J; Richardson, P G; Matous, J; Weller, E; Treon, S P

    2015-12-01

    We examined the combination of the mammalian target of rapamycin inhibitor everolimus with bortezomib and rituximab in patients with relapsed/refractory Waldenstrom macroglobulinemia (WM) in a phase I/II study. All patients received six cycles of the combination of everolimus/rituximab or everolimus/bortezomib/rituximab followed by maintenance with everolimus until progression. Forty-six patients were treated; 98% received prior rituximab and 57% received prior bortezomib. No dose-limiting toxicities were observed in the phase I. The most common treatment-related toxicities of all grades were fatigue (63%), anemia (54%), leucopenia (52%), neutropenia (48%) and diarrhea (43%). Thirty-six (78%) of the 46 patients received full dose therapy (FDT) of the three drugs. Of these 36, 2 (6%) had complete response (90% confidence interval (CI): 1-16). In all, 32/36 (89%) of patients experienced at least a minimal response (90% CI: 76-96%). The observed partial response or better response rate was 19/36 (53, 90 CI: 38-67%). For the 36 FDT patients, the median progression-free survival was 21 months (95% CI: 12-not estimable). In summary, this study demonstrates that the combination of everolimus, bortezomib and rituximab is well tolerated and achieved 89% response rate even in patients previously treated, making it a possible model of non-chemotherapeutic-based combination therapy in WM.

  18. Targeting of tumor endothelial cells combining 2 Gy/day of X-ray with Everolimus is the effective modality for overcoming clinically relevant radioresistant tumors

    PubMed Central

    Kuwahara, Yoshikazu; Mori, Miyuki; Kitahara, Shuji; Fukumoto, Motoi; Ezaki, Taichi; Mori, Shiro; Echigo, Seishi; Ohkubo, Yasuhito; Fukumoto, Manabu

    2014-01-01

    Radiotherapy is widely used to treat cancer because it has the advantage of physically and functionally conserving the affected organ. To improve radiotherapy and investigate the molecular mechanisms of cellular radioresistance, we established a clinically relevant radioresistant (CRR) cell line, SAS-R, from SAS cells. SAS-R cells continue to proliferate when exposed to fractionated radiation (FR) of 2 Gy/day for more than 30 days in vitro. A xenograft tumor model of SAS-R was also resistant to 2 Gy/day of X-rays for 30 days. The density of blood vessels in SAS-R tumors was higher than in SAS tumors. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, sensitized microvascular endothelial cells to radiation, but failed to radiosensitize SAS and SAS-R cells in vitro. Everolimus with FR markedly reduced SAS and SAS-R tumor volumes. Additionally, the apoptosis of endothelial cells (ECs) increased in SAS-R tumor tissues when both Everolimus and radiation were administered. Both CD34-positive and tomato lectin-positive blood vessel densities in SAS-R tumor tissues decreased remarkably after the Everolimus and radiation treatment. Everolimus-induced apoptosis of vascular ECs in response to radiation was also followed by thrombus formation that leads to tumor necrosis. We conclude that FR combined with Everolimus may be an effective modality to overcome radioresistant tumors via targeting tumor ECs. PMID:24464839

  19. Targeting of tumor endothelial cells combining 2 Gy/day of X-ray with Everolimus is the effective modality for overcoming clinically relevant radioresistant tumors.

    PubMed

    Kuwahara, Yoshikazu; Mori, Miyuki; Kitahara, Shuji; Fukumoto, Motoi; Ezaki, Taichi; Mori, Shiro; Echigo, Seishi; Ohkubo, Yasuhito; Fukumoto, Manabu

    2014-04-01

    Radiotherapy is widely used to treat cancer because it has the advantage of physically and functionally conserving the affected organ. To improve radiotherapy and investigate the molecular mechanisms of cellular radioresistance, we established a clinically relevant radioresistant (CRR) cell line, SAS-R, from SAS cells. SAS-R cells continue to proliferate when exposed to fractionated radiation (FR) of 2 Gy/day for more than 30 days in vitro. A xenograft tumor model of SAS-R was also resistant to 2 Gy/day of X-rays for 30 days. The density of blood vessels in SAS-R tumors was higher than in SAS tumors. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, sensitized microvascular endothelial cells to radiation, but failed to radiosensitize SAS and SAS-R cells in vitro. Everolimus with FR markedly reduced SAS and SAS-R tumor volumes. Additionally, the apoptosis of endothelial cells (ECs) increased in SAS-R tumor tissues when both Everolimus and radiation were administered. Both CD34-positive and tomato lectin-positive blood vessel densities in SAS-R tumor tissues decreased remarkably after the Everolimus and radiation treatment. Everolimus-induced apoptosis of vascular ECs in response to radiation was also followed by thrombus formation that leads to tumor necrosis. We conclude that FR combined with Everolimus may be an effective modality to overcome radioresistant tumors via targeting tumor ECs. PMID:24464839

  20. Long-Term Use of Everolimus in Patients with Tuberous Sclerosis Complex: Final Results from the EXIST-1 Study

    PubMed Central

    Franz, David N.; Belousova, Elena; Sparagana, Steven; Bebin, E. Martina; Frost, Michael D.; Kuperman, Rachel; Witt, Olaf; Kohrman, Michael H.; Flamini, J. Robert; Wu, Joyce Y.; Curatolo, Paolo; de Vries, Petrus J.; Berkowitz, Noah; Niolat, Julie; Jóźwiak, Sergiusz

    2016-01-01

    Background Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, has demonstrated efficacy in treating subependymal giant cell astrocytomas (SEGAs) and other manifestations of tuberous sclerosis complex (TSC). However, long-term use of mTOR inhibitors might be necessary. This analysis explored long-term efficacy and safety of everolimus from the conclusion of the EXIST-1 study (NCT00789828). Methods and Findings EXIST-1 was an international, prospective, double-blind, placebo-controlled phase 3 trial examining everolimus in patients with new or growing TSC-related SEGA. After a double-blind core phase, all remaining patients could receive everolimus in a long-term, open-label extension. Everolimus was initiated at a dose (4.5 mg/m2/day) titrated to a target blood trough of 5–15 ng/mL. SEGA response rate (primary end point) was defined as the proportion of patients achieving confirmed ≥50% reduction in the sum volume of target SEGA lesions from baseline in the absence of worsening nontarget SEGA lesions, new target SEGA lesions, and new or worsening hydrocephalus. Of 111 patients (median age, 9.5 years) who received ≥1 dose of everolimus (median duration, 47.1 months), 57.7% (95% confidence interval [CI], 47.9–67.0) achieved SEGA response. Of 41 patients with target renal angiomyolipomas at baseline, 30 (73.2%) achieved renal angiomyolipoma response. In 105 patients with ≥1 skin lesion at baseline, skin lesion response rate was 58.1%. Incidence of adverse events (AEs) was comparable with that of previous reports, and occurrence of emergent AEs generally decreased over time. The most common AEs (≥30% incidence) suspected to be treatment-related were stomatitis (43.2%) and mouth ulceration (32.4%). Conclusions Everolimus use led to sustained reduction in tumor volume, and new responses were observed for SEGA and renal angiomyolipoma from the blinded core phase of the study. These findings support the hypothesis that everolimus can safely reverse

  1. Everolimus enhances cellular cytotoxicity of lapatinib via the eukaryotic elongation factor-2 kinase pathway in nasopharyngeal carcinoma cells

    PubMed Central

    Liu, Lin; Wang, Zhi-Hui; Han, Jun; Tang, Con; Chen, Nan; Lin, Zhong; Peng, Pei-Jian

    2016-01-01

    Background Nasopharyngeal carcinoma (NPC) has a high relapse and metastatic rates; hence, development of new therapeutics is an immediate requirement. Lapatinib and everolimus have been demonstrated to be effective in the treatment of several carcinomas. This preclinical study aimed to investigate the effect and mechanism of lapatinib combined with everolimus on NPC cells. Methods The Cell Counting Kit 8 and colony formation assay were used to detect the effect of lapatinib alone or lapatinib combined with everolimus on the growth and proliferation of cells. Apoptosis was tested by flow cytometry and was further confirmed by western blot. The targets of lapatinib and the effects of lapatinib or everolimus on the eukaryotic elongation factor-2 (eEF-2) kinase pathway were analyzed by western blot, which also evaluated autophagy activity. Results Lapatinib inhibited the cellular viability and colony formation in NPC cells. At 24–72 h, the average half maximal inhibitory concentration (IC50) values of lapatinib were ranging from 3 to 5 μM. This study further found that lapatinib induced both apoptosis and autophagy in NPC cells, and this autophagic activity was described as type II programmed cell death via an eEF-2 kinase-dependent pathway. In addition, augmentation of lapatinib-induced autophagy by mammalian target of rapamycin (mTOR) inhibitor everolimus enhanced the cytocidal effect of lapatinib in NPC cells via the mTOR/S6 kinase/eEF-2 kinase pathway. Conclusion This study reveals that everolimus can sensitize NPC cells to lapatinib by the activation of eEF-2 kinase and provides a potential model of combination therapy. PMID:27785067

  2. Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus

    PubMed Central

    Kim, Sangwoo; Kim, Sora; Ali, Siraj M.; Greenbowe, Joel R.; Yang, In Seok; Kwon, Nak-Jung; Lee, Jae Lyun; Ryu, Min-Hee; Ahn, Jin-Hee; Lee, Jeeyun; Lee, Min Goo; Kim, Hyo Song; Kim, Hyunki; Kim, Hye Ryun; Moon, Yong Wha; Chung, Hyun Cheol; Kim, Joo-Hang; Kang, Yoon-Koo; Cho, Byoung Chul

    2016-01-01

    Background Given the modest responses to everolimus, a mTOR inhibitor, in multiple tumor types, there is a pressing need to identify predictive biomarkers for this drug. Using targeted ultra-deep sequencing, we aimed to explore genomic alterations that confer extreme sensitivity to everolimus. Results We collected formalin-fixed paraffin-embedded tumor/normal pairs from 39 patients (22 with exceptional clinical benefit, 17 with no clinical benefit) who were treated with everolimus across various tumor types (13 gastric cancers, 15 renal cell carcinomas, 2 thyroid cancers, 2 head and neck cancer, and 7 sarcomas). Ion AmpliSeqTM Comprehensive Cancer Panel was used to identify alterations across all exons of 409 target genes. Tumors were sequenced to a median coverage of 552x. Cancer genomes are characterized by 219 somatic single-nucleotide variants (181 missense, 9 nonsense, 7 splice-site) and 22 frameshift insertions/deletions, with a median of 2.1 mutations per Mb (0 to 12.4 mutations per Mb). Overall, genomic alterations with activating effect on mTOR signaling were identified in 10 of 22 (45%) patients with clinical benefit and these include MTOR, TSC1, TSC2, NF1, PIK3CA and PIK3CG mutations. Recurrently mutated genes in chromatin remodeling genes (BAP1; n = 2, 12%) and receptor tyrosine kinase signaling (FGFR4; n = 2, 12%) were noted only in patients without clinical benefit. Conclusions Regardless of different cancer types, mTOR-pathway-activating mutations confer sensitivity to everolimus. Targeted sequencing of mTOR pathway genes facilitates identification of potential candidates for mTOR inhibitors. PMID:26859683

  3. Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer: Results From BOLERO-2

    PubMed Central

    Chen, David; Piccart, Martine; Rugo, Hope S.; Burris, Howard A.; Pritchard, Kathleen I.; Campone, Mario; Noguchi, Shinzaburo; Perez, Alejandra T.; Deleu, Ines; Shtivelband, Mikhail; Masuda, Norikazu; Dakhil, Shaker; Anderson, Ian; Robinson, Douglas M.; He, Wei; Garg, Abhishek; McDonald, E. Robert; Bitter, Hans; Huang, Alan; Taran, Tetiana; Bachelot, Thomas; Lebrun, Fabienne; Lebwohl, David; Baselga, José

    2016-01-01

    Purpose To explore the genetic landscape of tumors from patients enrolled on the BOLERO-2 trial to identify potential correlations between genetic alterations and efficacy of everolimus treatment. The BOLERO-2 trial has previously demonstrated that the addition of everolimus to exemestane prolonged progression-free survival by more than twofold in patients with hormone receptor–positive, human epidermal growth factor receptor 2–negative, advanced breast cancer previously treated with nonsteroidal aromatase inhibitors. Patients and Methods Next-generation sequencing was used to analyze genetic status of cancer-related genes in 302 archival tumor specimens from patients representative of the BOLERO-2 study population. Correlations between the most common somatic alterations and degree of chromosomal instability, and treatment effect of everolimus were investigated. Results Progression-free survival benefit with everolimus was maintained regardless of alteration status of PIK3CA, FGFR1, and CCND1 or the pathways of which they are components. However, quantitative differences in everolimus benefit were observed between patient subgroups defined by the exon-specific mutations in PIK3CA (exon 20 v 9) or by different degrees of chromosomal instability in the tumor tissues. Conclusion The data from this exploratory analysis suggest that the efficacy of everolimus was largely independent of the most commonly altered genes or pathways in hormone receptor–positive, human epidermal growth factor receptor 2–negative breast cancer. The potential impact of chromosomal instabilities and low-frequency genetic alterations on everolimus efficacy warrants further investigation. PMID:26503204

  4. A single arm phase 1b study of everolimus and sunitinib in patients with advanced renal cell carcinoma (RCC)

    PubMed Central

    Kanesvaran, R.; Watt, K.; Turnbull, J. D.; Armstrong, A. J.; Cohen-Wolkowiez, M.; George, D. J.

    2016-01-01

    Background Everolimus ,an oral inhibitor of mammalian target of rapamycin (mTOR), and sunitinib, an oral inhibitor of VEGF/PDGF receptor tyrosine kinase signaling, have both been shown to provide clinical benefit in patients with advanced RCC. We sought to determine the safety and efficacy of combination therapy with these agents in patients with advanced RCC. Methods We conducted a phase Ib dose escalation trial of sunitinib and everolimus in patients with advanced metastatic RCC. Prior nephrectomy was required, and prior radiation or chemotherapy other than VEGF/mTOR-based therapies was permitted. The primary endpoint was to determine the MTD/recommended phase 2 dose. Results A total of 4 out of a planned 30 subjects were enrolled in this study (M:F= 2:2; mean age 52 years, 50% with KPS <80). The first three patients were enrolled on a 4+2 dosing schedule of daily sunitinib 50 mg and weekly everolimus 30 mg. Mean time on drug was 99 days. One partial response was seen. Toxicities included mucositis, thrombocytopenia, anemia, fatigue, dehydration and hypoglycemia. Due to multiple grade 3–4 toxicities, the protocol was amended to 2+1 dosing of sunitinib 37.5 mg and daily everolimus 5mg. The first patient on this schedule died from multi-organ failure with septic shock after 1 cycle of treatment. Subsequently, the study was closed. Pharmacokinetics results inconclusively suggest that toxicities could be attributed to the drug exposure. Conclusions Combined use of everolimus and sunitinib in the treatment of mRCC was not well tolerated in this small cohort. PMID:26174223

  5. Delayed mTOR Inhibition with Low Dose of Everolimus Reduces TGFβ Expression, Attenuates Proteinuria and Renal Damage in the Renal Mass Reduction Model

    PubMed Central

    Kurdián, Melania; Herrero-Fresneda, Inmaculada; Lloberas, Nuria; Gimenez-Bonafe, Pepita; Coria, Virginia; Grande, María T.; Boggia, José; Malacrida, Leonel; Torras, Joan; Arévalo, Miguel A.; González-Martínez, Francisco; López-Novoa, José M.; Grinyó, Josep; Noboa, Oscar

    2012-01-01

    Background The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFβ expression in the 5/6 nephrectomy model in Wistar rats. Methods This study evaluated the effects of everolimus (0.3 mg/k/day) introduced 15 days after surgical procedure on renal function, proteinuria, renal histology and mechanisms of fibrosis and proliferation. Results Everolimus treated group (EveG) showed significantly less proteinuria and albuminuria, less glomerular and tubulointerstitial damage and fibrosis, fibroblast activation cell proliferation, when compared with control group (CG), even though the EveG remained with high blood pressure. Treatment with everolimus also diminished glomerular hypertrophy. Everolimus effectively inhibited the increase of mTOR developed in 5/6 nephrectomy animals, without changes in AKT mRNA or protein abundance, but with an increase in the pAKT/AKT ratio. Associated with this inhibition, everolimus blunted the increased expression of TGFβ observed in the remnant kidney model. Conclusion Delayed mTOR inhibition with low dose of everolimus significantly prevented progressive renal damage and protected the remnant kidney. mTOR and TGFβ mRNA reduction can partially explain this anti fibrotic effect. mTOR can be a new target to attenuate the progression of chronic kidney disease even in those nephropathies of non-immunologic origin. PMID:22427849

  6. Treatment-Related Mortality With Everolimus in Cancer Patients

    PubMed Central

    Wesolowski, Robert; Abdel-Rasoul, Mahmoud; Lustberg, Maryam; Paskell, Maria; Shapiro, Charles L.

    2014-01-01

    Introduction. The overall incidence and odds of fatal adverse events (FAEs) after exposure to everolimus are not well defined. We performed a comprehensive meta-analysis of published randomized controlled trials (RCTs) to determine the role of everolimus in treatment-related mortality in patients with cancer. Methods. PubMed databases and abstracts from the proceedings of the American Society of Clinical Oncology and the San Antonio Breast Cancer Symposium were searched for RCTs of everolimus either alone or in combination with another agent compared with the control arm without everolimus and that reported deaths from an adverse event from January 1966 to July 2013. The primary objective was to determine the difference of FAEs between everolimus-treated patients and control group patients. Results. In total, 2,997 patients with multiple solid tumors from nine RCTs were included. The overall incidence of FAEs in cancer patients treated with everolimus was 0.7% (95% CI 0.3%–1.1%) compared with 0.4% (95% CI 0.0%–0.7%) in cancer patients who did not receive everolimus. The odds ratio of FAEs was greater in everolimus-treated patients (Peto odds ratio = 3.80, 95% CI 1.59–9.07, p = .003). In subgroup analyses, no significant difference was found in the incidence or odds of FAEs by everolimus administration (alone or in combination) or tumor type (breast cancer vs. nonbreast cancer; p = .63). Conclusion. In patients with cancer, everolimus is associated with a small but significant increase in the odds of a treatment-related fatal events. PMID:24794158

  7. Phase I study of panobinostat plus everolimus in patients with relapsed or refractory lymphoma

    PubMed Central

    Oki, Yasuhiro; Buglio, Daniela; Fanale, Michelle; Fayad, Luis; Copeland, Amanda; Romaguera, Jorge; Kwak, Larry W.; Pro, Barbara; de Castro Faria, Silvana; Neelapu, Sattva; Fowler, Nathan; Hagemeister, Fredrick; Zhang, Jiexin; Zhou, Shouhao; Feng, Lei; Younes, Anas

    2015-01-01

    Purpose To evaluate the safety and efficacy of panobinostat plus everolimus in patients with relapsed Hodgkin and non-Hodgkin lymphoma. The concept was supported by the single agent clinical activity of histone deacetylase inhibitors and mTOR inhibitors, and on the in vitro mechanism-based synergistic antiproliferative activity. Experimental Design This was a phase I study in patients with relapsed or refractory Hodgkin and non-Hodgkin lymphoma using panobinostat orally on Monday/Wednesday/Friday and everolimus orally daily. Toxicity and responses were assessed in dose escalation cohort followed by expansion cohort at maximum tolerated dose. Exploratory analysis of serum cytokine levels were performed. Results Thirty patients were enrolled onto four dose levels The dose limiting toxicity was thrombocytopenia. The maximal tolerated dose was panobinostat 20 mg and everolimus 10 mg. Grade 3/4 toxicity included thrombocytopenia (64%), neutropenia (47%), anemia (20%), infection (10%), fatigue (7%) and dyspnea (7%). A total of 10 patients (33%) (indolent lymphoma, T-cell lymphoma, mantle cell lymphoma, and Hodgkin lymphoma) achieved objective responses. In patients with Hodgkin lymphoma (n=14), overall response rate was 43% with complete response rate of 15%. In patients with Hodgkin lymhpoma, multiple serum cytokine levels decreased significantly after treatment with this combination therapy. Of note, clinical responses were associated with a decrease in serum interleukin-5 levels (day 8, p=0.013 and day 15, p=0.021). Conclusions Our data suggest that the combination therapy is active but with significant thrombocytopenia. Future studies should explore alternate scheduling and different compounds that target the same pathways to improve the tolerability of this novel combination. PMID:24097867

  8. Compensatory activation of Akt in response to mTOR and Raf inhibitors - a rationale for dual-targeted therapy approaches in neuroendocrine tumor disease.

    PubMed

    Zitzmann, Kathrin; Rüden, Janina von; Brand, Stephan; Göke, Burkhard; Lichtl, Jennifer; Spöttl, Gerald; Auernhammer, Christoph J

    2010-09-01

    Several studies have established a link between aberrant PI(3)K-Akt-mTOR- and Ras-Raf-MEK-Erk1/2 signaling and neuroendocrine tumor disease. In this study, we comparatively investigate the antitumor potential of novel small-molecule inhibitors targeting mTOR (RAD001), mTOR/PI(3)K (NVP-BEZ235) and Raf (Raf265) on human NET cell lines of heterogeneous origin. All inhibitors induced potent antitumor effects which involved the induction of apoptosis and G0/G1 arrest. However, the dual mTOR/PI(3)K inhibitor NVP-BEZ235 was more efficient compared to the single mTOR inhibitor RAD001. Consistently, NVP-BEZ235 prevented the negative feedback activation of Akt as observed after treatment with RAD001. Raf265 inhibited Erk1/2 phosphorylation but strongly induced Akt phosphorylation and VEGF secretion, suggesting the existence of a compensatory feedback loop on PI3K-Akt signaling. Finally, combined treatment with RAD001 or NVP-BEZ235 and Raf265 was more efficient than single treatment with either kinase inhibitor. Together, our data provide a rationale for dual targeting of PI(3)K-Akt-mTOR- and Ras-Raf-MEK-Erk1/2 signaling in NET disease.

  9. South American Heart Transplantation Registry of patients receiving everolimus in their immunosuppressive regimens.

    PubMed

    Bortman, G V; Ceruti, B; Ahualli, L; Colque, R; Amuchástegui, M; Sgrosso, J L; Muñoz, J; Vulcano, N; Burgos, C; Diez, F; Rodriguez, M C; Perrone, S V

    2010-01-01

    The increasing number of heart transplant recipients receiving immunosuppression with mammalian target of rapamycin inhibitors prompted the implementation of a South American Transplant Physicians Group to register these patients in a database. Everolimus (EVL) is a signal proliferation inhibition that reduces graft vascular disease when used de novo. Recently, its administration has expanded to subjects with resistant rejection or with side effects due to other immunosuppressive drugs (calcineurin inhibitors and/or steroids), allowing for better regulation of the immunosuppressive regimen. Herein we have shown the data collected from patients receiving EVL in ten South American Heart Transplant Centers. We have concluded that the administration of EVL is a useful adjunctive therapy that allows the reduction or suspension of other immunosuppressive drugs that caused unwanted side effects, without a loss of immunosuppressive efficacy, with manageable side effects, and constituting a valuable therapeutic option. PMID:20172342

  10. Everolimus and intensive behavioral therapy in an adolescent with tuberous sclerosis complex and severe behavior☆☆☆★

    PubMed Central

    Gipson, Tanjala T.; Jennett, Heather; Wachtel, Lee; Gregory, Mary; Poretti, Andrea; Johnston, Michael V.

    2013-01-01

    Background Self-injury and aggression have been reported in individuals with TSC (tuberous sclerosis complex), yet few data exist about treatment. Everolimus, an mTOR inhibitor, has been FDA-approved for subependymal giant cell astrocytomas (SEGAs) and renal angiomyolipomas in TSC. However, clinical use of everolimus with direct, real-time observations of self-injury and aggression in an individual with TSC has not been reported. Methods During an inpatient admission to a neurobehavioral unit, real-time measurements of behaviors and seizures were recorded. An interdisciplinary team used these data to make treatment decisions and applied behavioral and pharmacological treatments, one at a time, in order to evaluate their effects. Results Aggression and self-injury improved with applied behavioral analysis (ABA), lithium, and asenapine. Improvements in SEGA size, facial angiofibromas, seizures, and the most stable low rates of self-injury were observed during the interval of treatment with everolimus. Conclusion Mechanism-based treatments in the setting of an evidence-based behavioral and psychopharmacological intervention program may be a model with utility for characterization and treatment of individuals with severe behavior and TSC. PMID:25667844

  11. Immunoregulatory Effects of Everolimus on In Vitro Alloimmune Responses

    PubMed Central

    Levitsky, Josh; Miller, Joshua; Huang, Xuemei; Gallon, Lorenzo; Leventhal, Joseph R.; Mathew, James M.

    2016-01-01

    Everolimus (EVL) is a novel mTOR-inhibitor similar to sirolimus (SRL) that is used in organ transplant recipients, often in combination with tacrolimus (TAC) or mycophenolate (MPA). The current study aims to determine its effects on regulatory T cells. Increasing concentrations of EVL, MPA and TAC alone or in combination were added to MLRs of healthy volunteers. Lymphoproliferation by 3H-TdR incorporation and the percentage of newly generated CD4+CD127-CD25+FOXP3+ (total Treg) and CD4+CD127-CD25HighFOXP3+ (natural Treg) in CFSE labeled responder cells were assessed by flow cytometry. In comparison to medium controls, EVL and other agents dose-dependently inhibited 3H-TdR incorporation in HLA-2DR-matched and HLA-mismatched MLRs (n = 3–10). However, EVL significantly amplified newly generated total and natural Tregs in CFSE labeled responder cells (p<0.05) at all concentrations, while MPA and SRL did this only at sub-therapeutic concentrations and inhibited at therapeutic levels. In contrast, TAC inhibited newly generated Tregs at all concentrations. When tested in combination with TAC, EVL failed to reverse TAC inhibition of Treg generation. Combinations of EVL and low concentrations of MPA inhibited proliferation and amplified Treg generation in an additive manner when compared to medium controls or each drug tested alone (p<0.05). The relative tolerogenic effect from high to low was EVL > SRL> MPA > TAC. If the results from these in vitro studies are extrapolated to clinical transplantation, it would suggest EVL plus low concentrations of MPA may be the most tolerogenic combination. PMID:27275747

  12. The Synergistic Effect of Everolimus and Chloroquine on Endothelial Cell Number Reduction Is Paralleled by Increased Apoptosis and Reduced Autophagy Occurrence

    PubMed Central

    Grimaldi, Anna; Balestrieri, Maria Luisa; D'Onofrio, Nunzia; Di Domenico, Gilda; Nocera, Cosimo; Lamberti, Monica; Tonini, Giuseppe; Zoccoli, Alice; Santini, Daniele; Caraglia, Michele; Pantano, Francesco

    2013-01-01

    Endothelial Progenitor Cells (EPCs), a minor subpopulation of the mononuclear cell fraction in peripheral blood, play a critical role in cancer development as they contribute to angiogenesis-mediated pathological neovascularization. In response to tumor cytokines, including VEGF, EPCs mobilize from the bone marrow into the peripheral circulation and move to the tumor bed where they incorporate into sprouting neovessels. In the present study, we evaluated the effects of everolimus (Afinitor, Novartis), a rapamycin analogue, alone or in combination with chloroquine, a 4-alkylamino substituted quinoline family member, one of the autophagy inhibitors, on EPCs biological functions. We found that either everolimus or chloroquine induce growth inhibition on EPCs in a dose-dependent manner after 72 h from the beginning of incubation. The combined administration of the two drugs to EPC was synergistic in inducing growth inhibition; in details, the maximal pharmacological synergism between everolimus and chloroquine in inducing growth inhibition on EPCs cells was recorded when chloroquine was administered 24 h before everolimus. Moreover, we have studied the mechanisms of cell death induced by the two agents alone or in combination on EPCs and we have found that the synergistic effect of combination on EPC growth inhibition was paralleled by increased apoptosis induction and reduced autophagy. These effects occurred together with biochemical features that are typical of reduced autophagic death such as increased co-immunoprecipitation between Beclin 1 and Bcl-2. Chloroquine antagonized the inhibition of the activity of Akt→4EBP1 axis mediated by everolimus and at the same time it blocked the feed-back activation of Erk-1/2 induced by RAD in EPCs. These data suggest a new strategy in order to block angiogenesis in tumours in which this process plays a key role in both the sustainment and spreading of cancer cells. PMID:24244540

  13. Cost-effectiveness analysis of everolimus plus exemestane versus exemestane alone for treatment of hormone receptor positive metastatic breast cancer.

    PubMed

    Diaby, Vakaramoko; Adunlin, Georges; Zeichner, Simon B; Avancha, Kiran; Lopes, Gilberto; Gluck, Stefan; Montero, Alberto J

    2014-09-01

    Everolimus in combination with exemestane significantly improved progression-free survival compared to exemestane alone in patients previously treated with non-steroidal aromatase inhibitors in the BOLERO-2 trial. As a result, this combination has been approved by the food and drug administration to treat postmenopausal women with hormone receptor positive and HER2 negative metastatic breast cancer. A cost-effectiveness analysis was conducted to determine whether everolimus represents good value for money, utilizing data from BOLERO-2. A decision-analytic model was used to estimate the incremental cost-effectiveness ratio between treatment arms of the BOLERO-2 trial. Costs were obtained from the Center for Medicare Services drug payment table and physician fee schedule. Benefits were expressed as quality-adjusted progression-free survival weeks (QAPFW) and quality-adjusted progression-free years (QAPFY), with utilities/disutilities derived from the literature. Deterministic and probabilistic sensitivity analyses were performed. A willingness to pay threshold of 1-3 times the per capita gross domestic product was adopted, as per the definition of the World Health Organization. The U.S. per capita gross domestic product in 2013 was $49,965; thus, a threshold varying between $49,965 and $149,895 was considered. Everolimus/exemestane had an incremental benefit of 11.88 QAPFW (0.22 QAPFY) compared to exemestane and an incremental cost of $60,574. This translated into an ICER of $265,498.5/QAPFY. Univariate sensitivity analyses showed important variations of the ICER, ranging between $189,836.4 and $530,947/QAPFY. A tornado analysis suggested that the key drivers of our model, by order of importance, included health utility value for stable disease, everolimus acquisition costs, and transition probabilities from the stable to the progression states. The Monte-Carlo simulation showed results that were similar to the base-case analysis. This cost-effectiveness analysis

  14. Anastrozole and everolimus in advanced gynecologic and breast malignancies: activity and molecular alterations in the PI3K/AKT/mTOR pathway

    PubMed Central

    Wheler, Jennifer J.; Moulder, Stacy L.; Naing, Aung; Janku, Filip; Piha-Paul, Sarina A.; Falchook, Gerald S.; Zinner, Ralph; Tsimberidou, Apostolia M.; Fu, Siqing; Hong, David S.; Atkins, Johnique T.; Yelensky, Roman; Stephens, Philip J.; Kurzrock, Razelle

    2014-01-01

    Background: Since PI3K/AKT/mTOR pathway activation diminishes the effects of hormone therapy, combining aromatase inhibitors (anatrozole) with mTOR inhibitors (everolimus) was investigated. Patients and Methods: We evaluated anastrozole and everolimus in 55 patients with metastatic estrogen (ER) and/or progesterone receptor (PR)-positive breast and gynecologic tumors. Endpoints were safety, antitumor activity and molecular correlates. Results: Full doses of anastrozole (1 mg PO daily) and everolimus (10 mg PO daily) were well tolerated. Twelve of 50 evaluable patients (24%) (median = 3 prior therapies) achieved stable disease (SD) ≥ 6 months/partial response (PR)/complete response (CR) (n = 5 (10%) with PR/CR): 9 of 32 (28%) with breast cancer (n=5 (16%) with PR/CR); 2 of 10 (20%), ovarian cancer; and 1 of 6 (17%), endometrial cancer. Six of 22 patients (27%) with molecular alterations in the PI3K/AKT/mTOR pathway achieved SD ≥ 6 months/PR/CR. Six of 8 patients (75%) with SD ≥ 6 months/PR/CR with molecular testing demonstrated at least one alteration in the PI3K/AKT/mTOR pathway: mutations in PIK3CA (n=3) and AKT1 (n=1) or PTEN loss (n=3). All three responders (CR (n = 1); PR (n=2)) who had next generation sequencing demonstrated additional alterations: amplifications in CCNE1, IRS2, MCL1, CCND1, FGFR1 and MYC and a rearrangement in PRKDC. Conclusions: Combination anastrozole and everolimus is well tolerated at full approved doses, and is active in heavily-pretreated patients with ER and/or PR-positive breast, ovarian and endometrial cancers. Responses were observed in patients with multiple molecular aberrations. Clinical Trails Included: NCT01197170 PMID:24912489

  15. Combined treatment with everolimus and fulvestrant reversed anti-HER2 resistance in a patient with refractory advanced breast cancer: a case report

    PubMed Central

    Sun, Bing; Ding, Lijuan; Wu, Shikai; Meng, Xiangying; Song, Santai

    2016-01-01

    Background Everolimus, an inhibitor of the mammalian target of rapamycin, shows promising antitumor activity when combined with trastuzumab and chemotherapy for human epidermal growth factor receptor-2 (HER2)-positive breast cancer or when combined with endocrine agents for hormone receptor (HR)-positive tumors. However, data are limited regarding the effect of everolimus in combination with endocrine drugs in HER2-positive advanced breast cancer regardless of the HR status. Case presentation A 44-year-old female was diagnosed with recurrent HER2-positive breast cancer. The primary tumor was HR positive; however, the metastatic tumor was HR negative. The patient was resistant to classical chemotherapeutic agents and anti-HER2 treatment. Thus, the combination of everolimus and fulvestrant, a selective estrogen receptor downregulator, was chosen to reverse the resistance to anti-HER2 therapy. Indeed, the patient experienced long-term disease stabilization. Adverse events associated with the treatment were manageable by dose adjustments. We performed genetic testing of the metastatic tumor, which harbored a PIK3CA gene mutation but was positive for phosphatase and tensin homologue expression, which might result in resistance to the mammalian target of rapamycin inhibitor. Conclusion This case study indicates that combined treatment with everolimus and fulvestrant might be a viable option for the treatment of metastatic breast cancer patients who are HER2 positive and carry a PIK3CA gene mutation but are resistant to anti-HER2 therapy and classical chemotherapeutic agents. Further prospective randomized trials are needed to confirm this finding. PMID:27445490

  16. The Changes of Lipid Metabolism in Advanced Renal Cell Carcinoma Patients Treated with Everolimus: A New Pharmacodynamic Marker?

    PubMed Central

    Pantano, Francesco; Santoni, Matteo; Procopio, Giuseppe; Rizzo, Mimma; Iacovelli, Roberto; Porta, Camillo; Conti, Alessandro; Lugini, Antonio; Milella, Michele; Galli, Luca; Ortega, Cinzia; Guida, Francesco Maria; Silletta, Marianna; Schinzari, Giovanni; Verzoni, Elena; Modica, Daniela; Crucitti, Pierfilippo; Rauco, Annamaria; Felici, Alessandra; Ballatore, Valentina; Cascinu, Stefano; Tonini, Giuseppe; Carteni, Giacomo; Russo, Antonio; Santini, Daniele

    2015-01-01

    Background Everolimus is a mammalian target of rapamycin (mTOR) inhibitor approved for the treatment of metastatic renal cell carcinoma (mRCC). We aimed to assess the association between the baseline values and treatmentrelated modifications of total serum cholesterol (C), triglycerides (T), body mass index (BMI), fasting blood glucose level (FBG) and blood pressure (BP) levels and the outcome of patients treated with everolimus for mRCC. Methods 177 patients were included in this retrospective analysis. Time to progression (TTP), clinical benefit (CB) and overall survival (OS) were evaluated. Results Basal BMI was significantly higher in patients who experienced a CB (p=0,0145). C,T and C+T raises were significantly associated with baseline BMI (p=0.0412, 0.0283 and 0.0001). Median TTP was significantly longer in patients with T raise compared to patients without T (10 vs 6, p=0.030), C (8 vs 5, p=0.042) and C+T raise (10.9 vs 5.0, p=0.003). At the multivariate analysis, only C+T increase was associated with improved TTP (p=0.005). T raise (21.0 vs 14.0, p=0.002) and C+T increase (21.0 vs 14.0, p=0.006) were correlated with improved OS but were not significant at multivariate analysis. Conclusion C+T raise is an early predictor for everolimus efficacy for patients with mRCC. PMID:25885920

  17. Everolimus for Primary Intestinal Lymphangiectasia With Protein-Losing Enteropathy.

    PubMed

    Ozeki, Michio; Hori, Tomohiro; Kanda, Kaori; Kawamoto, Norio; Ibuka, Takashi; Miyazaki, Tatsuhiko; Fukao, Toshiyuki

    2016-03-01

    Primary intestinal lymphangiectasia (PIL), also known as Waldmann's disease, is an exudative enteropathy resulting from morphologic abnormalities in the intestinal lymphatics. In this article, we describe a 12-year-old boy with PIL that led to protein-losing enteropathy characterized by diarrhea, hypoalbuminemia associated with edema (serum albumin level: 1.0 g/dL), and hypogammaglobulinemia (serum IgG level: 144 mg/dL). Severe hypoalbuminemia, electrolyte abnormalities, and tetany persisted despite a low-fat diet and propranolol. Everolimus (1.6 mg/m(2)/day) was added to his treatment as an antiangiogenic agent. With everolimus treatment, the patient's diarrhea resolved and replacement therapy for hypoproteinemia was less frequent. Hematologic and scintigraphy findings also improved (serum albumin level: 2.5 g/dL). There were no adverse reactions during the 12-month follow-up. To the best of our knowledge, this is the first report of everolimus use in a patient with PIL. PMID:26908672

  18. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  19. A Phase II Study of BEZ235 in Patients with Everolimus-resistant, Advanced Pancreatic Neuroendocrine Tumours

    PubMed Central

    FAZIO, NICOLA; BUZZONI, ROBERTO; BAUDIN, ERIC; ANTONUZZO, LORENZO; HUBNER, RICHARD A.; LAHNER, HARALD; DE HERDER, WOUTER W.; RADERER, MARKUS; TEULÉ, ALEXANDRE; CAPDEVILA, JAUME; LIBUTTI, STEVEN K.; KULKE, MATTHEW H.; SHAH, MANISHA; DEY, DEBARSHI; TURRI, SABINE; AIMONE, PAOLA; MASSACESI, CRISTIAN; VERSLYPE, CHRIS

    2016-01-01

    Background This was a two-stage, phase II trial of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor BEZ235 in patients with everolimus-resistant pancreatic neuroendocrine tumours (pNETs) (NCT01658436). Patients and Methods In stage 1, 11 patients received 400 mg BEZ235 orally twice daily (bid). Due to tolerability concerns, a further 20 patients received BEZ235 300 mg bid. Stage 2 would be triggered by a 16-week progression-free survival (PFS) rate of ≥60% in stage 1. Results As of 30 June, 2014, 29/31 patients had discontinued treatment. Treatment-related grade 3/4 adverse events were reported in eight (72.7%) patients at 400 mg and eight (40.0%) patients at 300 mg, including hyperglycaemia, diarrhoea, nausea, and vomiting. The estimated 16-week PFS rate was 51.6% (90% confidence interval=35.7–67.3%). Conclusion BEZ235 was poorly tolerated by patients with everolimus-resistant pNETs at 400 and 300 mg bid doses. Although evidence of disease stability was observed, the study did not proceed to stage 2. PMID:26851029

  20. Phase II trial of everolimus and erlotinib in patients with platinum-resistant recurrent and/or metastatic head and neck squamous cell carcinoma

    PubMed Central

    Massarelli, E.; Lin, H.; Ginsberg, L. E.; Tran, H. T.; Lee, J. J.; Canales, J. R.; Williams, M. D.; Blumenschein, G. R.; Lu, C.; Heymach, J. V.; Kies, M. S.; Papadimitrakopoulou, V.

    2015-01-01

    Background Enhanced phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is one of the key adaptive changes accounting for epidermal growth factor receptor (EGFR) inhibitor-resistant growth in head and neck squamous cell carcinoma (HNSCC). We designed a phase II clinical trial of EGFR tyrosine kinase inhibitor (TKI), erlotinib, in association with the mTOR inhibitor, everolimus, based on the hypothesis that the downstream effects of Akt through inhibition of mTOR may enhance the effectiveness of the EGFR-TKI in patients with recurrent/metastatic HNSCC. Patients and methods Patients with histologically or cytologically confirmed platinum-resistant HNSCC received everolimus 5 mg and erlotinib 150 mg daily orally until disease progression, intolerable toxicity, investigator or patient decision. Cytokines and angiogenic factors profile, limited mutation analysis and p16 immunohistochemistry status were included in the biomarker analysis. Results Of the 35 assessable patients, 3 (8%) achieved partial response at 4 weeks, 1 confirmed at 12 weeks; overall response rate at 12 weeks was 2.8%. Twenty-seven (77%) patients achieved disease stabilization at 4 weeks, 11 (31%) confirmed at 12 weeks. Twelve-week progression-free survival (PFS) was 49%, median PFS 11.9 weeks and median overall survival (OS) 10.25 months. High neutrophil gelatinase lipocalin (P = 0.01) and vascular endothelial growth factor (VEGF) (P = 0.04) plasma levels were significantly associated with worse OS. Conclusions The combination of erlotinib and everolimus did not show significant benefit in unselected patients with platinum-resistant metastatic HNSCC despite a manageable toxicity profile. Markers of tumor invasion and hypoxia identify a group of patients with particularly poor prognosis. Clinical trial number NCT00942734. PMID:26025965

  1. Future perspectives for mTOR inhibitors in renal cell cancer treatment.

    PubMed

    Czarnecka, Anna M; Kornakiewicz, Anna; Lian, Fei; Szczylik, Cezary

    2015-01-01

    Everolimus is a mTOR inhibitor that demonstrates antitumor and antiangiogenic activities. In a randomized Phase III trial, patients with metastatic renal cell carcinoma who progressed on sunitinib/sorafenib were treated with everolimus and showed significant improvement in progression-free survival compared with best supportive care. Novel approaches in treatment are expected to ensure less toxic therapies and increase efficacy of everolimus. To provide a new perspective for mTOR inhibitor research and therapy, we discuss renal cell carcinoma cancer stem cells as a potential target for mTOR inhibitors and present new concepts on emerging antiangiogenic therapies. Finally, we point why systems biology approach with reverse molecular engineering may also contribute to the field of drug discovery in renal cell carcinoma.

  2. Sirolimus and Everolimus Pathway: Reviewing Candidate Genes Influencing Their Intracellular Effects

    PubMed Central

    Granata, Simona; Dalla Gassa, Alessandra; Carraro, Amedeo; Brunelli, Matteo; Stallone, Giovanni; Lupo, Antonio; Zaza, Gianluigi

    2016-01-01

    Sirolimus (SRL) and everolimus (EVR) are mammalian targets of rapamycin inhibitors (mTOR-I) largely employed in renal transplantation and oncology as immunosuppressive/antiproliferative agents. SRL was the first mTOR-I produced by the bacterium Streptomyces hygroscopicus and approved for several medical purposes. EVR, derived from SRL, contains a 2-hydroxy-ethyl chain in the 40th position that makes the drug more hydrophilic than SRL and increases oral bioavailability. Their main mechanism of action is the inhibition of the mTOR complex 1 and the regulation of factors involved in a several crucial cellular functions including: protein synthesis, regulation of angiogenesis, lipid biosynthesis, mitochondrial biogenesis and function, cell cycle, and autophagy. Most of the proteins/enzymes belonging to the aforementioned biological processes are encoded by numerous and tightly regulated genes. However, at the moment, the polygenic influence on SRL/EVR cellular effects is still not completely defined, and its comprehension represents a key challenge for researchers. Therefore, to obtain a complete picture of the cellular network connected to SRL/EVR, we decided to review major evidences available in the literature regarding the genetic influence on mTOR-I biology/pharmacology and to build, for the first time, a useful and specific “SRL/EVR genes-focused pathway”, possibly employable as a starting point for future in-depth research projects. PMID:27187382

  3. Everolimus-induced Pneumonitis after Drug-eluting Stent Implantation: A Case Report

    SciTech Connect

    Sakamoto, Susumu Kikuchi, Naoshi; Ichikawa, Atsuo; Sano, Go; Satoh, Keita; Sugino, Keishi; Isobe, Kazutoshi; Takai, Yujiro; Shibuya, Kazutoshi; Homma, Sakae

    2013-08-01

    Despite the wide use of everolimus as an antineoplastic coating agent for coronary stents to reduce the rate of restenosis, little is known about the health hazards of everolimus-eluting stents (EES). We describe a case of pneumonitis that developed 2 months after EES implantation for angina. Lung pathology demonstrated an organizing pneumonia pattern that responded to corticosteroid therapy. Although the efficacy of EES for ischemic heart disease is well established, EES carries a risk of pneumonitis.

  4. Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib.

    PubMed

    Serova, Maria; Tijeras-Raballand, Annemilaï; Dos Santos, Celia; Martinet, Matthieu; Neuzillet, Cindy; Lopez, Alfred; Mitchell, Dianne C; Bryan, Brad A; Gapihan, Guillaume; Janin, Anne; Bousquet, Guilhem; Riveiro, Maria Eugenia; Bieche, Ivan; Faivre, Sandrine; Raymond, Eric; de Gramont, Armand

    2016-06-21

    Angiogenesis is hallmark of clear cell renal cell carcinogenesis. Anti-angiogenic therapies have been successful in improving disease outcome; however, most patients treated with anti-angiogenic agents will eventually progress. In this study we report that clear cell renal cell carcinoma was associated with vasculogenic mimicry in both mice and human with tumor cells expressing endothelial markers in the vicinity of tumor vessels. We show that vasculogenic mimicry was efficiently targeted by sunitinib but eventually associated with tumor resistance and a more aggressive phenotype both in vitro and in vivo. Re-challenging these resistant tumors in mice, we showed that second-line treatment with everolimus particularly affected vasculogenic mimicry and tumor cell differentiation compared to sorafenib and axitinib. Finally, our results highlighted the phenotypic and genotypic changes at the tumor cell and microenvironment levels during sunitinib response and progression and the subsequent improvement second-line therapies bring to the current renal cell carcinoma treatment paradigm. PMID:27509260

  5. Effects of mTOR and calcineurin inhibitors combined therapy in Epstein-Barr virus positive and negative Burkitt lymphoma cells.

    PubMed

    Wowro, Sylvia J; Schmitt, Katharina R L; Tong, Giang; Berger, Felix; Schubert, Stephan

    2016-01-01

    Post-transplant lymphoproliferative disorder is a severe complication in solid organ transplant recipients, which is highly associated with Epstein-Barr virus infection in pediatric patients and occasionally presents as Burkitt- or Burkitt-like lymphoma. The mammalian target of rapamycin (mTOR) pathway has been described as a possible antitumor target whose inhibition may influence lymphoma development and proliferation after pediatric transplantation. We treated Epstein-Barr virus positive (Raji and Daudi) and negative (Ramos) human Burkitt lymphoma derived cells with mTOR inhibitor everolimus alone and in combination with clinically relevant immunosuppressive calcineurin inhibitors (tacrolimus or cyclosporin A). Cell proliferation, toxicity, and mitochondrial metabolic activity were analyzed. The effect on mTOR Complex 1 downstream targets p70 S6 kinase, eukaryotic initiation factor 4G, and S6 ribosomal protein activation was also investigated. We observed that treatment with everolimus alone significantly decreased Burkitt lymphoma cell proliferation and mitochondrial metabolic activity. Everolimus in combination with cyclosporin A had a stronger suppressive effect in Epstein-Barr virus negative but not in Epstein-Barr virus positive cells. In contrast, tacrolimus completely abolished the everolimus-mediated suppressive effects. Moreover, we showed a significant decrease in activation of mTOR Complex 1 downstream targets after treatment with everolimus that was attenuated when combined with tacrolimus, but not with cyclosporin A. For the first time we showed the competitive effect between everolimus and tacrolimus when used as combination therapy on Burkitt lymphoma derived cells. Thus, according to our in vitro data, the combination of calcineurin inhibitor cyclosporin A with everolimus is preferred to the combination of tacrolimus and everolimus. PMID:26613512

  6. Evaluation of QMS everolimus assay using Hitachi 917 Analyzer: comparison with liquid chromatography/mass spectrometry.

    PubMed

    Dasgupta, Amitava; Davis, Bonnet; Chow, Loretta

    2011-04-01

    Everolimus is an immunosuppressant requiring routine monitoring in whole blood. We evaluated the analytical performance of a new immunoassay for everolimus, Quantitative Microsphere System (QMS) everolimus (Thermo Fisher Scientific), which is CE marked and currently under review by Food and Drug Administration of the United States by comparing results with values obtained by using liquid chromatography/mass spectrometry. The total coefficient of variations (CVs) were 8.3% for low control (mean: 3.8 ng/mL), 6.1% for the medium control (mean: 8.0 ng/mL), and 7.5% for the high control (mean: 14.4 ng/mL) (n = 80 for each control, run over 20 nonconsecutive days). The respective total CVs for patients' pool were 13.3% (mean: 4.0 ng/mL), 7.5% (mean: 8.2 ng/mL), and 8.7% (mean: 11.7 ng/mL) (n = 80 for each patient pool). The assay was linear from a whole-blood everolimus level between 1.5 and 20 ng/mL, and the limit of quantitation was 1.3 ng/mL. Comparison was carried out using 90 renal transplant patient samples, and we observed the following Passing and Bablok linear regression plot: y = 1.11, slope = -0.005 (R = 0.92). This assay was not affected by commonly used 70 drugs, but sirolimus, a drug structurally similar to everolimus, showed 46% cross-reactivity. We conclude that QMS everolimus immunoassay has adequate sensitivity and specificity for the determination of whole-blood everolimus and can be used for routine therapeutic drug monitoring.

  7. Real-world study of everolimus in advanced progressive neuroendocrine tumors.

    PubMed

    Panzuto, Francesco; Rinzivillo, Maria; Fazio, Nicola; de Braud, Filippo; Luppi, Gabriele; Zatelli, Maria Chiara; Lugli, Francesca; Tomassetti, Paola; Riccardi, Ferdinando; Nuzzo, Carmen; Brizzi, Maria Pia; Faggiano, Antongiulio; Zaniboni, Alberto; Nobili, Elisabetta; Pastorelli, Davide; Cascinu, Stefano; Merlano, Marco; Chiara, Silvana; Antonuzzo, Lorenzo; Funaioli, Chiara; Spada, Francesca; Pusceddu, Sara; Fontana, Annalisa; Ambrosio, Maria Rosaria; Cassano, Alessandra; Campana, Davide; Cartenì, Giacomo; Appetecchia, Marialuisa; Berruti, Alfredo; Colao, Annamaria; Falconi, Massimo; Delle Fave, Gianfranco

    2014-09-01

    Everolimus is a valid therapeutic option for neuroendocrine tumors (NETs); however, data in a real-world setting outside regulatory trials are sparse. The aim of this study was to determine everolimus tolerability and efficacy, in relation to previous treatments, in a compassionate use program. A total of 169 patients with advanced progressive NETs treated with everolimus were enrolled, including 85 with pancreatic NETs (pNETs) and 84 with nonpancreatic NETs (non-pNETs). Previous treatments included somatostatin analogs (92.9%), peptide receptor radionuclide therapy (PRRT; 50.3%), chemotherapy (49.7%), and PRRT and chemotherapy (22.8%). Overall, 85.2% of patients experienced adverse events (AEs), which were severe (grade 3-4) in 46.1%. The most frequent severe AEs were pneumonitis (8.3%), thrombocytopenia (7.7%), anemia (5.3%), and renal failure (3.5%). In patients previously treated with PRRT and chemotherapy, a 12-fold increased risk for severe toxicity was observed, with grade 3-4 AEs reported in 86.8% (vs. 34.3% in other patients). In addition, 63.3% of patients required temporarily everolimus discontinuation due to toxicity. Overall, 27.8% of patients died during a median follow-up of 12 months. Median progression-free survival (PFS) and overall survival (OS) were 12 months and 32 months, respectively. Similar disease control rates, PFS, and OS were reported in pNETs and non-pNETs. In the real-world setting, everolimus is safe and effective for the treatment of NETs of different origins. Higher severe toxicity occurred in patients previously treated with systemic chemotherapy and PRRT. This finding prompts caution when using this drug in pretreated patients and raises the issue of planning for everolimus before PRRT and chemotherapy in the therapeutic algorithm for advanced NETs.

  8. Real-world study of everolimus in advanced progressive neuroendocrine tumors.

    PubMed

    Panzuto, Francesco; Rinzivillo, Maria; Fazio, Nicola; de Braud, Filippo; Luppi, Gabriele; Zatelli, Maria Chiara; Lugli, Francesca; Tomassetti, Paola; Riccardi, Ferdinando; Nuzzo, Carmen; Brizzi, Maria Pia; Faggiano, Antongiulio; Zaniboni, Alberto; Nobili, Elisabetta; Pastorelli, Davide; Cascinu, Stefano; Merlano, Marco; Chiara, Silvana; Antonuzzo, Lorenzo; Funaioli, Chiara; Spada, Francesca; Pusceddu, Sara; Fontana, Annalisa; Ambrosio, Maria Rosaria; Cassano, Alessandra; Campana, Davide; Cartenì, Giacomo; Appetecchia, Marialuisa; Berruti, Alfredo; Colao, Annamaria; Falconi, Massimo; Delle Fave, Gianfranco

    2014-09-01

    Everolimus is a valid therapeutic option for neuroendocrine tumors (NETs); however, data in a real-world setting outside regulatory trials are sparse. The aim of this study was to determine everolimus tolerability and efficacy, in relation to previous treatments, in a compassionate use program. A total of 169 patients with advanced progressive NETs treated with everolimus were enrolled, including 85 with pancreatic NETs (pNETs) and 84 with nonpancreatic NETs (non-pNETs). Previous treatments included somatostatin analogs (92.9%), peptide receptor radionuclide therapy (PRRT; 50.3%), chemotherapy (49.7%), and PRRT and chemotherapy (22.8%). Overall, 85.2% of patients experienced adverse events (AEs), which were severe (grade 3-4) in 46.1%. The most frequent severe AEs were pneumonitis (8.3%), thrombocytopenia (7.7%), anemia (5.3%), and renal failure (3.5%). In patients previously treated with PRRT and chemotherapy, a 12-fold increased risk for severe toxicity was observed, with grade 3-4 AEs reported in 86.8% (vs. 34.3% in other patients). In addition, 63.3% of patients required temporarily everolimus discontinuation due to toxicity. Overall, 27.8% of patients died during a median follow-up of 12 months. Median progression-free survival (PFS) and overall survival (OS) were 12 months and 32 months, respectively. Similar disease control rates, PFS, and OS were reported in pNETs and non-pNETs. In the real-world setting, everolimus is safe and effective for the treatment of NETs of different origins. Higher severe toxicity occurred in patients previously treated with systemic chemotherapy and PRRT. This finding prompts caution when using this drug in pretreated patients and raises the issue of planning for everolimus before PRRT and chemotherapy in the therapeutic algorithm for advanced NETs. PMID:25117065

  9. Growth hormone abolishes the negative effects of everolimus on intestinal wound healing

    PubMed Central

    Küper, Markus Alexander; Trütschel, Sebastian; Weinreich, Jürgen; Königsrainer, Alfred; Beckert, Stefan

    2016-01-01

    AIM: To investigate whether the simultaneous treatment with human growth hormone (hGH) abolishes the negative effects of everolimus on anastomotic healing. METHODS: Forty-eight male Sprague-Dawley-rats were randomized to three groups of 16 animals each (I: vehicle; II: everolimus 3 mg/kg po; III: everolimus 3 mg/kg po + hGH 2.5 mg/kg sc). Animals were pre-treated with hGH and/or everolimus daily for seven days. Then a standard anastomosis was created in the descending colon and treatment was continued for another seven days. The anastomosis was resected in toto and the bursting pressure was assessed as a mechanical parameter of intestinal healing. Moreover, biochemical (Hydroxyproline, PCNA, MPO, MMP-2 and MMP-9) and histological (cell density, angiogenesis, amount of granulation tissue) parameters of intestinal healing were assessed. RESULTS: Anastomotic bursting pressure was significantly reduced by everolimus and a simultaneous treatment with hGH resulted in considerably higher values (I: 134 ± 19 mmHg, II: 85 ± 25 mmHg, III: 114 ± 25 mmHg; P < 0.05, I vs II; P = 0.09, I vs III and II vs III) Hydroxyproline concentration was significantly increased by hGH compared to everolimus alone (I: 14.9 ± 2.5 μg/mg, II: 8.9 ± 3.6 μg/mg, III: 11.9 ± 2.8 μg/mg; P < 0.05, I vs II/III and II vs III). The number of MPO-positive cells was reduced significantly by hGH compared to everolimus alone (I: 10 ± 1 n/mm², II: 15 ± 3 n/mm², III: 9 ± 2 n/mm²; P < 0.05, I vs II and II vs III), while the number of PCNA-positive cells were increased by hGH (I: 28 ± 3 /mm², II: 12 ± 3 /mm², III: 26 ± 12 /mm²; P < 0.05, I vs II and II vs III). Corresponding to these biochemical findings, HE-histology revealed significantly increased amount of granulation tissue in hGH-treated animals. CONCLUSION: Inhibition of intestinal wound healing by everolimus is partially neutralized by simultaeous treatment with hGH. Both inflammation as well as collagen

  10. Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL– and mutant FLT3-expressing cells

    PubMed Central

    Weisberg, Ellen; Banerji, Lolita; Wright, Renee D.; Barrett, Rosemary; Ray, Arghya; Moreno, Daisy; Catley, Laurence; Jiang, Jingrui; Hall-Meyers, Elizabeth; Sauveur-Michel, Maira; Stone, Richard; Galinsky, Ilene; Fox, Edward; Kung, Andrew L.

    2008-01-01

    Mediators of PI3K/AKT signaling have been implicated in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). Studies have shown that inhibitors of PI3K/AKT signaling, such as wortmannin and LY294002, are able to inhibit CML and AML cell proliferation and synergize with targeted tyrosine kinase inhi-bitors. We investigated the ability of BAG956, a dual PI3K/PDK-1 inhibitor, to be used in combination with inhibitors of BCR-ABL and mutant FLT3, as well as with the mTOR inhibitor, rapamycin, and the rapamycin derivative, RAD001. BAG956 was shown to block AKT phosphorylation induced by BCR-ABL–, and induce apoptosis of BCR-ABL–expressing cell lines and patient bone marrow cells at concentrations that also inhibit PI3K signaling. Enhancement of the inhibitory effects of the tyrosine kinase inhibitors, imatinib and nilotinib, by BAG956 was demonstrated against BCR-ABL expressing cells both in vitro and in vivo. We have also shown that BAG956 is effective against mutant FLT3-expressing cell lines and AML patient bone marrow cells. Enhancement of the inhibitory effects of the tyrosine kinase inhibitor, PKC412, by BAG956 was demonstrated against mutant FLT3-expressing cells. Finally, BAG956 and rapamycin/RAD001 were shown to combine in a nonantagonistic fashion against BCR-ABL– and mutant FLT3-expressing cells both in vitro and in vivo. PMID:18184863

  11. Combination of clopidogrel and everolimus dramatically reduced the development of transplant arteriosclerosis in murine aortic allografts.

    PubMed

    Eckl, Sebastian; Heim, Christian; Abele-Ohl, Silke; Hoffmann, Julia; Ramsperger-Gleixner, Martina; Weyand, Michael; Ensminger, Stephan M

    2010-09-01

    Our group has shown that platelet inhibition with clopidogrel, an antagonist of the P2Y12 adenosine diphosphate receptor on platelets, reduced the formation of transplant arteriosclerosis. The aim of this study was to investigate whether a combination of cyclosporin or everolimus with clopidogrel has a beneficial effect on the development of transplant arteriosclerosis. Fully MHC mismatched C57Bl/6 (H2(b)) donor aortas were transplanted into CBA.J (H2(k)) recipients and mice received either clopidogrel alone (1 mg/kg/day) or in combination with cyclosporin (2 mg/kg/day) or everolimus (0.05 mg/kg/day). Grafts were analysed by histology and morphometry on day 30 after transplantation. In mice treated with clopidogrel alone, transplant arteriosclerosis was significantly reduced [intima proliferation 56 +/- 11% vs. 81 +/- 7% (control)/n = 7]. Daily application of everolimus reduced the development of transplant arteriosclerosis compared with untreated controls [intima proliferation of 29 +/- 9% vs. 81 +/- 7% (control)/n = 7]. Strikingly, combination of clopidogrel and everolimus almost abolished the formation of transplant arteriosclerosis [intima proliferation: 11 +/- 8% vs. 81 +/- 7% (control)/n = 7]. By contrast, combination of cyclosporin and clopidogrel compared with clopidogrel alone showed no additive effect. These results demonstrate that combination of platelet- and mammalian target of Rapamycin-inhibition can dramatically reduce the development of transplant arteriosclerosis.

  12. Phase I Study of Capecitabine, Oxaliplatin, Bevacizumab, and Everolimus in Advanced Solid Tumors

    PubMed Central

    Rangwala, F.; Bendell, J.; Kozloff, M.; Arrowood, C.; Dellinger, A.; Meadows, J.; Tourt-Uhlig, S.; Murphy, J.; Meadows, K.L.; Starr, A.; Broderick, S.; Brady, J.C.; Cushman, S. M.; Morse, M.; Uronis, H.; Hsu, S.D.; Zafar, S.Y.; Wallace, J.; Starodub, A.; Strickler, J.; Pang, H.; Nixon, A.B.; Hurwitz, H.

    2014-01-01

    Purpose To define maximum tolerated dose (MTD), toxicities, and pharmacodynamics of capecitabine, oxaliplatin, bevacizumab, and everolimus in advanced solid tumor patients. Design This was a standard “3+3” dose-escalation trial. All subjects received bevacizumab 7.5mg/kg on day one of each cycle. Doses for capecitabine, oxaliplatin and everolimus were modified per dose limiting toxicity (DLT). Baseline and on-treatment plasma biomarkers were analyzed. Archived tumor mRNA levels were evaluated for NRP1, NRP2 and VEGF-A isoforms. Results Twenty-nine patients were evaluable for toxicity and 30 for efficacy. Two DLTs were observed in cohort 1 and one DLT each was observed in cohort -1 and -1b. Grade ≥3 toxicities included neutropenia, hypertension, perforation/fistula/hemorrhage, hypertriglyceridemia, diarrhea, and thromboembolism. Twelve subjects experienced partial response (PR); 12 had stable disease as best response. Three of seven chemorefractory metastatic colorectal cancer (mCRC) subjects experienced PR; eight of 15 chemonaive mCRC subjects experienced PR. Plasma TβRIII and IL-6 increased on treatment but without correlation to outcome. Increased VEGF165 levels significantly correlated with longer progression free survival. Conclusions Everolimus with full dose capecitabine, oxaliplatin, and bevacizumab had unacceptable toxicity. MTD was: everolimus 5mg daily; capecitabine 680mg/m2 BID days 1-14; oxaliplatin 100mg/m2 and bevacizumab 7.5mg/kg, day one. Activity was noted in mCRC. PMID:24711126

  13. Long-term Cross-validation of Everolimus Therapeutic Drug Monitoring Assays: The Zortracker Study

    PubMed Central

    Schniedewind, B; Niederlechner, S; Galinkin, JL; Johnson-Davis, KL; Christians, U; Meyer, EJ

    2015-01-01

    Background This ongoing academic collaboration was initiated for providing support to set up, validate, and maintain everolimus therapeutic drug monitoring (TDM) assays and to study long-term inter- laboratory performance. Methods This study was based on EDTA whole blood samples collected from transplant patients treated with everolimus in a prospective clinical trial. Samples were handled under controlled conditions during collection, storage, and were shipped on dry ice to minimize freeze-thaw cycles. For more than 1.5 years participating laboratories received a set of 3 blinded samples on a monthly basis. Among others, these samples included individual patient samples, patient sample pools to assess long-term performance and patient samples pools enriched with isolated everolimus metabolites. Results The results between LC-MS/MS and the everolimus Quantitative Microsphere System (QMS, Thermo Fisher) assay were comparable. The monthly inter-laboratory variability (CV%) for cross validation samples ranged from 6.5 – 23.2% (average of 14.8%) for LC-MS/MS and 4.2 – 26.4% (average of 11.1%) for laboratories using the QMS assay. A blinded long-term pool sample was sent to the laboratories for 13 months. The result was 5.31 ± 0.86 ng/mL (range 2.9–7.8 ng/mL) for the LC-MS/MS and 5.20 ± 0.54 ng/mL (range 4.0–6.8 ng/mL) for QMS laboratories. Conclusions Enrichment of patient sample pools with 5–25 ng/mL of purified everolimus metabolites (46-hydroxy everolimus and 39-O-desmethyl everolimus) did not affect the results of either LC-MS/MS or QMS assays. Both LC-MS/MS and QMS assays gave similar results and showed similar performance, albeit with a trend towards higher inter-laboratory variability among laboratories using LC-MS/MS than the QMS assay. PMID:25970506

  14. Everolimus for subependymal giant cell astrocytoma: 5‐year final analysis

    PubMed Central

    Agricola, Karen; Mays, Maxwell; Tudor, Cindy; Care, Marguerite M.; Holland‐Bouley, Katherine; Berkowitz, Noah; Miao, Sara; Peyrard, Séverine; Krueger, Darcy A.

    2015-01-01

    Objective To analyze the cumulative efficacy and safety of everolimus in treating subependymal giant cell astrocytomas (SEGA) associated with tuberous sclerosis complex (TSC) from an open‐label phase II study (NCT00411619). Updated data became available from the conclusion of the extension phase and are presented in this ≥5‐year analysis. Methods Patients aged ≥ 3 years with a definite diagnosis of TSC and increasing SEGA lesion size (≥2 magnetic resonance imaging scans) received everolimus starting at 3mg/m2/day (titrated to target blood trough levels of 5–15ng/ml). The primary efficacy endpoint was reduction from baseline in primary SEGA volume. Results As of the study completion date (January 28, 2014), 22 of 28 (78.6%) initially enrolled patients finished the study per protocol. Median (range) duration of exposure to everolimus was 67.8 (4.7–83.2) months; 12 (52.2%) and 14 (60.9%) of 23 patients experienced SEGA volume reductions of ≥50% and ≥30% relative to baseline, respectively, after 60 months of treatment. The proportion of patients experiencing daily seizures was reduced from 7 of 26 (26.9%) patients at baseline to 2 of 18 (11.1%) patients at month 60. Most commonly reported adverse events (AEs) were upper respiratory tract infection and stomatitis of mostly grade 1 or 2 severity. No patient discontinued treatment due to AEs. The frequency of emergence of most AEs decreased over the course of the study. Interpretation Everolimus continues to demonstrate a sustained effect on SEGA tumor reduction over ≥5 years of treatment. Everolimus remained well‐tolerated, and no new safety concerns were noted. Ann Neurol 2015;78:929–938 PMID:26381530

  15. mTOR Inhibitors Alone and in Combination with JAK2 Inhibitors Effectively Inhibit Cells of Myeloproliferative Neoplasms

    PubMed Central

    Martinelli, Serena; Tozzi, Lorenzo; Guglielmelli, Paola; Bosi, Alberto; Vannucchi, Alessandro M.

    2013-01-01

    Background Dysregulated signaling of the JAK/STAT pathway is a common feature of chronic myeloproliferative neoplasms (MPN), usually associated with JAK2V617F mutation. Recent clinical trials with JAK2 inhibitors showed significant improvements in splenomegaly and constitutional symptoms in patients with myelofibrosis but meaningful molecular responses were not documented. Accordingly, there remains a need for exploring new treatment strategies of MPN. A potential additional target for treatment is represented by the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway that has been found constitutively activated in MPN cells; proof-of-evidence of efficacy of the mTOR inhibitor RAD001 has been obtained recently in a Phase I/II trial in patients with myelofibrosis. The aim of the study was to characterize the effects in vitro of mTOR inhibitors, used alone and in combination with JAK2 inhibitors, against MPN cells. Findings Mouse and human JAK2V617F mutated cell lines and primary hematopoietic progenitors from MPN patients were challenged with an allosteric (RAD001) and an ATP-competitive (PP242) mTOR inhibitor and two JAK2 inhibitors (AZD1480 and ruxolitinib). mTOR inhibitors effectively reduced proliferation and colony formation of cell lines through a slowed cell division mediated by changes in cell cycle transition to the S-phase. mTOR inhibitors also impaired the proliferation and prevented colony formation from MPN hematopoietic progenitors at doses significantly lower than healthy controls. JAK2 inhibitors produced similar antiproliferative effects in MPN cell lines and primary cells but were more potent inducers of apoptosis, as also supported by differential effects on cyclinD1, PIM1 and BcLxL expression levels. Co-treatment of mTOR inhibitor with JAK2 inhibitor resulted in synergistic activity against the proliferation of JAK2V617F mutated cell lines and significantly reduced erythropoietin-independent colony growth in patients with polycythemia vera

  16. Renal function improvement in liver transplant recipients after early everolimus conversion: A clinical practice cohort study in Spain.

    PubMed

    Bilbao, Itxarone; Salcedo, Magdalena; Gómez, Miguel Angel; Jimenez, Carlos; Castroagudín, Javier; Fabregat, Joan; Almohalla, Carolina; Herrero, Ignacio; Cuervas-Mons, Valentín; Otero, Alejandra; Rubín, Angel; Miras, Manuel; Rodrigo, Juan; Serrano, Trinidad; Crespo, Gonzalo; De la Mata, Manuel; Bustamante, Javier; Gonzalez-Dieguez, M Luisa; Moreno, Antonia; Narvaez, Isidoro; Guilera, Magda

    2015-08-01

    A national, multicenter, retrospective study was conducted to assess the results obtained for liver transplant recipients with conversion to everolimus in daily practice. The study included 477 recipients (481 transplantations). Indications for conversion to everolimus were renal dysfunction (32.6% of cases), hepatocellular carcinoma (HCC; 30.2%; prophylactic treatment for 68.9%), and de novo malignancy (29.7%). The median time from transplantation to conversion to everolimus was 68.7 months for de novo malignancy, 23.8 months for renal dysfunction, and 7.1 months for HCC and other indications. During the first year of treatment, mean everolimus trough levels were 5.4 (standard deviation [SD], 2.7) ng/mL and doses remained stable (1.5 mg/day) from the first month after conversion. An everolimus monotherapy regimen was followed by 28.5% of patients at 12 months. Patients with renal dysfunction showed a glomerular filtration rate (4-variable Modification of Diet in Renal Disease) increase of 10.9 mL (baseline mean, 45.8 [SD, 25.3] versus 57.6 [SD, 27.6] mL/minute/1.73 m(2) ) at 3 months after everolimus initiation (P < 0.001), and 6.8 mL at 12 months. Improvement in renal function was higher in patients with early conversion (<1 year). Adverse events were the primary reason for discontinuation in 11.2% of cases. The probability of survival at 3 years after conversion to everolimus was 83.0%, 71.1%, and 59.5% for the renal dysfunction, de novo malignancy, and HCC groups, respectively. Everolimus is a viable option for the treatment of renal dysfunction, and earlier conversion is associated with better recovery of renal function. Prospective studies are needed to confirm advantages in patients with malignancy.

  17. Everolimus inhibits anti-HLA I antibody-mediated endothelial cell signaling, migration and proliferation more potently than sirolimus.

    PubMed

    Jin, Y-P; Valenzuela, N M; Ziegler, M E; Rozengurt, E; Reed, E F

    2014-04-01

    Antibody (Ab) crosslinking of HLA I molecules on the surface of endothelial cells triggers proliferative and pro-survival intracellular signaling, which is implicated in the process of chronic allograft rejection, also known as transplant vasculopathy (TV). The purpose of this study was to investigate the role of mammalian target of rapamycin (mTOR) in HLA I Ab-induced signaling cascades. Everolimus provides a tool to establish how the mTOR signal network regulates HLA I-mediated migration, proliferation and survival. We found that everolimus inhibits mTOR complex 1 (mTORC1) by disassociating Raptor from mTOR, thereby preventing class I-induced phosphorylation of mTOR, p70S6K, S6RP and 4E-BP1, and resultant class I-stimulated cell migration and proliferation. Furthermore, we found that everolimus inhibits class I-mediated mTORC2 activation (1) by disassociating Rictor and Sin1 from mTOR; (2) by preventing class I-stimulated Akt phosphorylation and (3) by preventing class I-mediated ERK phosphorylation. These results suggest that everolimus is more effective than sirolimus at antagonizing both mTORC1 and mTORC2, the latter of which is critical in endothelial cell functional changes leading to TV in solid organ transplantation after HLA I crosslinking. Our findings point to a potential therapeutic effect of everolimus in prevention of chronic Ab-mediated rejection. PMID:24580843

  18. De novo therapy with everolimus and reduced-exposure cyclosporine following pediatric kidney transplantation: a prospective, multicenter, 12-month study.

    PubMed

    Grushkin, Carl; Mahan, John D; Mange, Kevin C; Hexham, J Mark; Ettenger, Robert

    2013-05-01

    Prospective data regarding the de novo use of everolimus following kidney transplantation in children are sparse. In a prospective, 12-month, single-arm, open-label study, pediatric kidney transplant patients received everolimus (target trough concentration ≥3 ng/mL) with reduced-exposure CsA and corticosteroids, with or without basiliximab induction. Sixteen of the 18 patients completed the study on-treatment. Age range was 2-16 yr (mean 10.9 yr); eight patients received a living donor graft. Mean (s.d.) everolimus level was 7.4 (3.1) ng/mL during the first 12 months post-transplant. There were no cases of BPAR, graft loss, or death during the study. Protocol biopsies were performed at month 12 in seven patients, with subclinical (untreated) acute rejection diagnosed in one case. Mean (s.d.) estimated GFR (Schwartz formula) was 98 (34) mL/min/1.73 m(2) at month 12. Three patients experienced one or more serious adverse events with a suspected relation to study medication. One patient discontinued study medication due to post-transplant lymphoproliferative disease (5.6%). Everolimus with reduced-dose CsA and corticosteroids achieved good efficacy and renal function and was well tolerated in this small cohort of pediatric kidney transplant patients. Controlled trials are required to answer remaining questions about the optimal use of everolimus in this setting.

  19. Three-year efficacy and safety results from a study of everolimus versus mycophenolate mofetil in de novo renal transplant patients.

    PubMed

    Vítko, Stefan; Margreiter, Raimund; Weimar, Willem; Dantal, Jacques; Kuypers, Dirk; Winkler, Michael; Øyen, Ole; Viljoen, Hendrik G; Filiptsev, Pavel; Sadek, Sami; Li, Yulan; Cretin, Nathalie; Budde, Klemens

    2005-10-01

    Everolimus 1.5 or 3 mg/day was compared with mycophenolate mofetil (MMF) 2 g/day in a randomized, multicenter 36-month trial in de novo renal allograft recipients (n = 588) receiving cyclosporine microemulsion (CsA) and corticosteroids. The study was double-blind until all patients had completed 12 months, then open-label. By 36 months, graft loss occurred in 7.2, 16.7 and 10.7% of patients in the everolimus 1.5, 3 mg/day, and MMF groups, respectively (p = 0.0048 for everolimus 1.5 mg/day vs. 3 mg/day); efficacy failure (biopsy-proven acute rejection (BPAR), graft loss, death or lost to follow-up) occurred in 33.0, 38.9 and 37.2% of patients (p = 0.455 overall), respectively. Mortality and incidence of BPAR were comparable in all groups. Creatinine values were higher in everolimus groups, requiring a protocol amendment that recommended lower CsA exposure. Diarrhea, lymphocele, peripheral edema and hyperlipidemia were more common among everolimus-treated patients, whereas viral infections, particularly cytomegalovirus infection, increased in the MMF group. Overall safety and tolerability were better with MMF and everolimus 1.5 mg/day than with everolimus 3 mg/day. In conclusion, at 36 months, an immunosuppressive regimen containing everolimus 1.5 mg/day had equivalent patient, and graft survival and rejection rates compared with MMF in de novo renal transplant recipients, whereas everolimus 3 mg/day had inferior graft survival. Renal dysfunction in everolimus cohorts necessitates close monitoring. PMID:16162203

  20. Three-year efficacy and safety results from a study of everolimus versus mycophenolate mofetil in de novo renal transplant patients.

    PubMed

    Vítko, Stefan; Margreiter, Raimund; Weimar, Willem; Dantal, Jacques; Kuypers, Dirk; Winkler, Michael; Øyen, Ole; Viljoen, Hendrik G; Filiptsev, Pavel; Sadek, Sami; Li, Yulan; Cretin, Nathalie; Budde, Klemens

    2005-10-01

    Everolimus 1.5 or 3 mg/day was compared with mycophenolate mofetil (MMF) 2 g/day in a randomized, multicenter 36-month trial in de novo renal allograft recipients (n = 588) receiving cyclosporine microemulsion (CsA) and corticosteroids. The study was double-blind until all patients had completed 12 months, then open-label. By 36 months, graft loss occurred in 7.2, 16.7 and 10.7% of patients in the everolimus 1.5, 3 mg/day, and MMF groups, respectively (p = 0.0048 for everolimus 1.5 mg/day vs. 3 mg/day); efficacy failure (biopsy-proven acute rejection (BPAR), graft loss, death or lost to follow-up) occurred in 33.0, 38.9 and 37.2% of patients (p = 0.455 overall), respectively. Mortality and incidence of BPAR were comparable in all groups. Creatinine values were higher in everolimus groups, requiring a protocol amendment that recommended lower CsA exposure. Diarrhea, lymphocele, peripheral edema and hyperlipidemia were more common among everolimus-treated patients, whereas viral infections, particularly cytomegalovirus infection, increased in the MMF group. Overall safety and tolerability were better with MMF and everolimus 1.5 mg/day than with everolimus 3 mg/day. In conclusion, at 36 months, an immunosuppressive regimen containing everolimus 1.5 mg/day had equivalent patient, and graft survival and rejection rates compared with MMF in de novo renal transplant recipients, whereas everolimus 3 mg/day had inferior graft survival. Renal dysfunction in everolimus cohorts necessitates close monitoring.

  1. [Response to everolimus in patients with giant cell astrocytoma associated to tuberous sclerosis complex].

    PubMed

    Mateos-González, M Elena; López-Laso, Eduardo; Vicente-Rueda, Josefina; Camino-León, Rafael; Fernández-Ramos, Joaquín A; Baena-Gómez, M Auxiliadora; Peña-Rosa, M José

    2014-12-01

    Introduccion. Los astrocitomas subependimarios de celulas gigantes (SEGA) se presentan en el 5-20% de los pacientes con complejo esclerosis tuberosa (CET) y son los tumores cerebrales mas comunes en el CET. Son tumores benignos, de estirpe glioneural, que se desarrollan fundamentalmente en las primeras dos decadas de la vida, en general cercanos al foramen de Monro, y pueden ocasionar hidrocefalia e hipertension intracraneal. Constituyen la principal causa de muerte en el CET. Recientemente, los inhibidores mTOR han demostrado ser una alternativa terapeutica a la reseccion quirurgica. Objetivo. Describir nuestra experiencia con everolimus para el tratamiento de pacientes con SEGA y CET. Pacientes y metodos. Estudio prospectivo de la respuesta de los pacientes con CET y al menos un SEGA en crecimiento. Resultados. Recibieron tratamiento tres mujeres y tres varones con una edad media de 12,3 años. Un paciente habia sido previamente intervenido quirurgicamente por SEGA con hidrocefalia. El diametro maximo medio del SEGA al inicio del tratamiento era de 15,3 mm (rango: 11,3-24,8 mm). Se inicio tratamiento con everolimus, 2,5 mg/dia por via oral en pacientes con superficie corporal < 1,2 m2 y 5 mg/dia en pacientes con superficie corporal > 1,2 m2. Dos pacientes presentaron hipertrigliceridemia; uno, anorexia; otro, un afta; y una paciente, amenorrea. La reduccion media del volumen del SEGA a los tres meses de tratamiento fue del 46%, y la reduccion se mantuvo estable en controles posteriores (6-25 meses). Conclusiones. El tratamiento con everolimus disminuye el tamaño de los SEGA asociados a CET con un perfil de seguridad adecuado, y constituye una alternativa a la cirugia en casos seleccionados.

  2. Circulating biomarkers and outcome from a randomised phase II trial of sunitinib vs everolimus for patients with metastatic renal cell carcinoma

    PubMed Central

    Voss, Martin H; Chen, David; Marker, Mahtab; Hakimi, A Ari; Lee, Chung-Han; Hsieh, James J; Knox, Jennifer J; Voi, Maurizio; Motzer, Robert J

    2016-01-01

    Background: RECORD-3 assessed non-inferiority of progression-free survival (PFS) with everolimus vs sunitinib in previously untreated patients with metastatic renal cell carcinoma. Baseline plasma sample collection and randomised design enabled correlation of circulating biomarkers with efficacy. Methods: Samples were analysed for 121 cancer-related biomarkers. Analyses of biomarkers categorised patients as high or low (vs median) to assess association with first-line PFS (PFS1L) for each treatment arm. A composite biomarker score (CBS) incorporated biomarkers potentially predictive of PFS1L with everolimus. Results: Plasma samples from 442 of the 471 randomised patients were analysed. Biomarkers were associated with PFS1L for everolimus alone (29), sunitinib alone (9) or both (12). Everolimus-specific biomarkers (CSF1, ICAM1, IL-18BP, KIM1, TNFRII) with hazard ratio ⩾1.8 were integrated into a CBS (range 0–5). For CBS low (0–3, n=291) vs high (4–5, n=151), PFS1L differed significantly for everolimus but not for sunitinib. There was no significant difference in PFS1L between everolimus and sunitinib in the high CBS patient cohort. Conclusions: Baseline levels of multiple soluble biomarkers correlated with benefit from everolimus and/or sunitinib, independent of clinical risk factors. A similar PFS1L was observed for both treatments among patients with high CBS score. PMID:26908330

  3. Development and Validation of Stability-indicating High Performance Liquid Chromatographic Method for the Estimation of Everolimus in Tablets.

    PubMed

    Sharmila, D; Rao, A Lakshmana; Kalyani, L

    2015-01-01

    The present study depicts the development of a validated reversed-phase high performance liquid chromatographic method for the determination of the everolimus in presence of degradation products or pharmaceutical excipients. Stress study was performed on everolimus and it was found that it degrade sufficiently in oxidizing and acidic conditions but less degradation was found in alkaline, neutral, thermal and photolytic conditions. The separation was carried out on Hypersil BDS C18 column (100×4.6 mm, 5 μ) column having particle size 5 μ using acetate buffer:acetonitrile (50:50 v/v) with pH 6.5 adjusted with orthophosphoric acid as mobile phase at flow rate of 1 ml/min. The wavelength of the detection was 280 nm. A retention time (Rt) nearly 3.110 min was observed. The calibration curve for everolimus was linear (r(2)=0.999) from range of 25-150 μg/ml with limit of detection and limit of quantification of 0.036 μg/ml and 0.109 μg/ml, respectively. Analytical validation parameters such as selectivity, specificity, linearity, accuracy and precision were evaluated and relative standard deviation value for all the key parameters were less than 2.0%. The recovery of the drug after standard addition was found to be 100.55%. Thus, the developed RP-HPLC method was found to be suitable for the determination of everolimus in tablets containing various excipients. PMID:26798176

  4. A phase I/II trial of BNC105P with everolimus in metastatic renal cell carcinoma (mRCC)

    PubMed Central

    Pal, Sumanta; Azad, Arun; Bhatia, Shailender; Drabkin, Harry; Costello, Brian; Sarantopoulos, John; Kanesvaran, Ravindran; Lauer, Richard; Starodub, Alexander; Hauke, Ralph; Sweeney, Christopher J.; Hahn, Noah M.; Sonpavde, Guru; Richey, Stephen; Breen, Timothy; Kremmidiotis, Gabriel; Leske, Annabell; Doolin, Elizabeth; Bibby, David C.; Simpson, Jeremy; Iglesias, Jose; Hutson, Thomas

    2015-01-01

    Purpose BNC105P inhibits tubulin polymerization, and preclinical studies suggest possible synergy with everolimus. In this phase I/II study, efficacy and safety of the combination were explored in patients with metastatic renal cell carcinoma (mRCC). Experimental Design A phase I study in patients with clear cell mRCC and any prior number of therapies was conducted using a classical 3+3 design to evaluate standard doses of everolimus with increasing doses of BNC105P. At the recommended phase II dose (RP2D), patients with clear cell mRCC and 1-2 prior therapies (including ≥1 VEGF-TKI) were randomized to BNC105P with everolimus (Arm A) or everolimus alone (Arm B). The primary endpoint of the study was 6-month progression-free survival (6MPFS). Secondary endpoints included response rate, PFS, overall survival (OS) and exploratory biomarker analyses. Results In the phase I study (n=15), a dose of BNC105P at 16 mg/m2 with everolimus at 10 mg daily was identified as the RP2D. In the phase II study, 139 patients were randomized, with 69 and 67 evaluable patients in Arms A and B, respectively. 6MPFS was similar in the treatment arms (Arm A: 33.82% v Arm B: 30.30%, P=0.66) and no difference in median PFS was observed (Arm A: 4.7 mos v Arm B: 4.1 mos; P=0.49). Changes in matrix metalloproteinase-9, stem cell factor, sex hormone binding globulin and serum amyloid A protein were associated with clinical outcome with BNC105P. Conclusions Although the primary endpoint was not met in an unselected population, correlative studies suggest several biomarkers that warrant further prospective evaluation. PMID:25788492

  5. mTOR inhibitors synergize on regression, reversal of gene expression, and autophagy in hepatocellular carcinoma.

    PubMed

    Thomas, Hala Elnakat; Mercer, Carol A; Carnevalli, Larissa S; Park, Jongsun; Andersen, Jesper B; Conner, Elizabeth A; Tanaka, Kazuhiro; Matsutani, Tomoo; Iwanami, Akio; Aronow, Bruce J; Manway, Liu; Maira, S Michel; Thorgeirsson, Snorri S; Mischel, Paul S; Thomas, George; Kozma, Sara C

    2012-06-20

    Hepatocellular carcinoma (HCC) affects more than half a million people worldwide and is the third most common cause of cancer deaths. Because mammalian target of rapamycin (mTOR) signaling is up-regulated in 50% of HCCs, we compared the effects of the U.S. Food and Drug Administration-approved mTOR-allosteric inhibitor, RAD001, with a new-generation phosphatidylinositol 3-kinase/mTOR adenosine triphosphate-site competitive inhibitor, BEZ235. Unexpectedly, the two drugs acted synergistically in inhibiting the proliferation of cultured HCC cells. The synergistic effect closely paralleled eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) dephosphorylation, which is implicated in the suppression of tumor cell proliferation. In a mouse model approximating human HCC, the drugs in combination, but not singly, induced a marked regression in tumor burden. However, in the tumor, BEZ235 alone was as effective as the combination in inhibiting 4E-BP1 phosphorylation, which suggests that additional target(s) may also be involved. Microarray analyses revealed a large number of genes that reverted to normal liver tissue expression in mice treated with both drugs, but not either drug alone. These analyses also revealed the down-regulation of autophagy genes in tumors compared to normal liver. Moreover, in HCC patients, altered expression of autophagy genes was associated with poor prognosis. Consistent with these findings, the drug combination had a profound effect on UNC51-like kinase 1 (ULK1) dephosphorylation and autophagy in culture, independent of 4E-BP1, and in parallel induced tumor mitophagy, a tumor suppressor process in liver. These observations have led to an investigator-initiated phase 1B-2 dose escalation trial with RAD001 combined with BEZ235 in patients with HCC and other advanced solid tumors.

  6. Everolimus-eluting stent platforms in percutaneous coronary intervention: comparative effectiveness and outcomes

    PubMed Central

    Panoulas, Vasileios F; Mastoris, Ioannis; Konstantinou, Klio; Tespili, Maurizio; Ielasi, Alfonso

    2015-01-01

    Despite the remarkable benefits obtained following the introduction of the first-generation drug-eluting stent (DES), concerns were raised over its long-term safety, particularly with regard to very late (beyond 1 year) stent thrombosis. Newer-generation DESs have been developed to overcome this limitation using novel stent platforms, new drugs, more biocompatible durable polymers, and bioabsorbable polymers or backbones. To date, new-generation DESs have virtually replaced the use of first-generation DESs worldwide. In this review article, we discuss in detail the design, pharmacology, and mechanism of action of the newer-generation permanent and bioresorbable everolimus-eluting platforms. Furthermore, we present and evaluate the current evidence on the performance and safety of these devices compared to those of other available stent platforms. PMID:26244031

  7. A Phase 1 Study of Everolimus + Weekly Cisplatin + Intensity Modulated Radiation Therapy in Head-and-Neck Cancer

    SciTech Connect

    Fury, Matthew G.; Lee, Nancy Y.; Sherman, Eric; Ho, Alan L.; Rao, Shyam; Heguy, Adriana; Shen, Ronglai; Korte, Susan; Lisa, Donna; Ganly, Ian; Patel, Snehal; Wong, Richard J.; Shaha, Ashok; Shah, Jatin; Haque, Sofia; Katabi, Nora; Pfister, David G.

    2013-11-01

    Purpose: Elevated expression of eukaryotic protein synthesis initiation factor 4E (eIF4E) in histologically cancer-free margins of resected head and neck squamous cell carcinomas (HNSCCs) is mediated by mammalian target of rapamycin complex 1 (mTORC1) and has been associated with increased risk of disease recurrence. Preclinically, inhibition of mTORC1 with everolimus sensitizes cancer cells to cisplatin and radiation. Methods and Materials: This was single-institution phase 1 study to establish the maximum tolerated dose of daily everolimus given with fixed dose cisplatin (30 mg/m{sup 2} weekly × 6) and concurrent intensity modulated radiation therapy for patients with locally and/or regionally advanced head-and-neck cancer. The study had a standard 3 + 3 dose-escalation design. Results: Tumor primary sites were oral cavity (4), salivary gland (4), oropharynx (2), nasopharynx (1), scalp (1), and neck node with occult primary (1). In 4 of 4 cases in which resected HNSCC surgical pathology specimens were available for immunohistochemistry, elevated expression of eIF4E was observed in the cancer-free margins. The most common grade ≥3 treatment-related adverse event was lymphopenia (92%), and dose-limiting toxicities (DLTs) were mucositis (n=2) and failure to thrive (n=1). With a median follow up of 19.4 months, 2 patients have experienced recurrent disease. The maximum tolerated dose was everolimus 5 mg/day. Conclusions: Head-and-neck cancer patients tolerated everolimus at therapeutic doses (5 mg/day) given with weekly cisplatin and intensity modulated radiation therapy. The regimen merits further evaluation, especially among patients who are status post resection of HNSCCs that harbor mTORC1-mediated activation of eIF4E in histologically negative surgical margins.

  8. Differential Antitumoral Properties and Renal-Associated Tissue Damage Induced by Tacrolimus and Mammalian Target of Rapamycin Inhibitors in Hepatocarcinoma: In Vitro and In Vivo Studies.

    PubMed

    Navarro-Villarán, Elena; Tinoco, José; Jiménez, Granada; Pereira, Sheila; Wang, Jize; Aliseda, Sara; Rodríguez-Hernández, María A; González, Raúl; Marín-Gómez, Luís M; Gómez-Bravo, Miguel A; Padillo, Francisco J; Álamo-Martínez, José M; Muntané, Jordi

    2016-01-01

    Orthotopic liver transplantation (OLT) is the recommended treatment for patients at early stages of hepatocarcinoma (HCC) with potential portal hypertension and/or bilirubinemia, but without vascular-associated diseases. The patients are receiving immunosuppressive therapy to reduce graft rejection, but differential side effects have been related to calcineurin and mTOR inhibitor administration regarding tumor recurrence and nephrotoxicity. The in vitro studies showed that Tacrolimus exerted a more potent pro-apoptotic effect than Everolimus (Huh 7>Hep 3B>HepG2), being sirolimus only active in Hep3B cell line. Tacrolimus and Everolimus exerted potent antiproliferative properties in Huh 7 and Hep3B in which cells Sirolimus was inactive. Interestingly, Tacrolimus- and Everolimus-dependent G0/G1 cell accumulation occurred as a consequence of drastic reduction in S, as well as in S and G2+M phases, respectively. The in vivo studies support data on the more effective antitumoral properties of Everolimus, eventual risk of pro-angiogenic tumoral properties and nephrotoxicity of Tacrolimus, and pro-proliferative properties of Sirolimus in tumors developed in nude mice. PMID:27518575

  9. Differential Antitumoral Properties and Renal-Associated Tissue Damage Induced by Tacrolimus and Mammalian Target of Rapamycin Inhibitors in Hepatocarcinoma: In Vitro and In Vivo Studies

    PubMed Central

    Pereira, Sheila; Wang, Jize; Aliseda, Sara; Rodríguez-Hernández, María A.; González, Raúl; Marín-Gómez, Luís M.; Gómez-Bravo, Miguel A.; Padillo, Francisco J.; Álamo-Martínez, José M.; Muntané, Jordi

    2016-01-01

    Orthotopic liver transplantation (OLT) is the recommended treatment for patients at early stages of hepatocarcinoma (HCC) with potential portal hypertension and/or bilirubinemia, but without vascular-associated diseases. The patients are receiving immunosuppressive therapy to reduce graft rejection, but differential side effects have been related to calcineurin and mTOR inhibitor administration regarding tumor recurrence and nephrotoxicity. The in vitro studies showed that Tacrolimus exerted a more potent pro-apoptotic effect than Everolimus (Huh 7>Hep 3B>HepG2), being sirolimus only active in Hep3B cell line. Tacrolimus and Everolimus exerted potent antiproliferative properties in Huh 7 and Hep3B in which cells Sirolimus was inactive. Interestingly, Tacrolimus- and Everolimus-dependent G0/G1 cell accumulation occurred as a consequence of drastic reduction in S, as well as in S and G2+M phases, respectively. The in vivo studies support data on the more effective antitumoral properties of Everolimus, eventual risk of pro-angiogenic tumoral properties and nephrotoxicity of Tacrolimus, and pro-proliferative properties of Sirolimus in tumors developed in nude mice. PMID:27518575

  10. Novel agents and associated toxicities of inhibitors of the pi3k/Akt/mtor pathway for the treatment of breast cancer

    PubMed Central

    Chia, S.; Gandhi, S.; Joy, A.A.; Edwards, S.; Gorr, M.; Hopkins, S.; Kondejewski, J.; Ayoub, J.P.; Califaretti, N.; Rayson, D.; Dent, S.F.

    2015-01-01

    The pi3k/Akt/mtor (phosphatidylinositol 3 kinase/ Akt/mammalian target of rapamycin) signalling pathway is an established driver of oncogenic activity in human malignancies. Therapeutic targeting of this pathway holds significant promise as a treatment strategy. Everolimus, an mtor inhibitor, is the first of this class of agents approved for the treatment of hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer. Everolimus has been associated with significant improvements in progression-free survival; however, it is also associated with increased toxicity related to its specific mechanism of action. Methods A comprehensive review of the literature conducted using a focused medline search was combined with a search of current trials at http://ClinicalTrials.gov/. Summary tables of the toxicities of the various classes of pi3k/Akt/mtor inhibitors were created. A broad group of Canadian health care professionals was assembled to review the data and to produce expert opinion and summary recommendations for possible best practices in managing the adverse events associated with these pathway inhibitors. Results Differing toxicities are associated with the various classes of pi3k/Akt/mtor pathway inhibitors. The most common unique adverse events observed in everolimus clinical trials in breast cancer include stomatitis (all grades: approximately 60%), noninfectious pneumonitis (15%), rash (40%), hyperglycemia (15%), and immunosuppression (40%). To minimize grades 3 and 4 toxicities and to attempt to attain optimal outcomes, effective management of those adverse events is critical. Management should be interdisciplinary and should use approaches that include education, early recognition, active intervention, and potentially prophylactic strategies. Discussion Everolimus likely represents the first of many complex oral targeted therapies for the treatment of breast cancer. Using this agent as a template, it is essential to

  11. The Role of mTOR Inhibitors in the Treatment of Patients with Tuberous Sclerosis Complex: Evidence-based and Expert Opinions.

    PubMed

    Curatolo, Paolo; Bjørnvold, Marit; Dill, Patricia E; Ferreira, José Carlos; Feucht, Martha; Hertzberg, Christoph; Jansen, Anna; Jóźwiak, Sergiusz; Kingswood, J Christopher; Kotulska, Katarzyna; Macaya, Alfons; Moavero, Romina; Nabbout, Rima; Zonnenberg, Bernard A

    2016-04-01

    Tuberous sclerosis complex (TSC) is a genetic disorder arising from mutations in the TSC1 or TSC2 genes. The resulting over-activation of the mammalian target of rapamycin (mTOR) signalling pathway leaves patients with TSC susceptible to the growth of non-malignant tumours in multiple organs. Previously, surgery was the main therapeutic option for TSC. However, pharmacological therapy with mTOR inhibitors such as everolimus and sirolimus is now emerging as an alternate approach. Everolimus and sirolimus have already been shown to be effective in treating subependymal giant cell astrocytoma (SEGA) and renal angiomyolipoma (AML), and everolimus is currently being evaluated in treating TSC-related epilepsy. In November 2013 a group of European experts convened to discuss the current options and practical considerations for treating various manifestations of TSC. This article provides evidence-based recommendations for the treatment of SEGA, TSC-related epilepsy and renal AML, with a focus on where mTOR inhibitor therapy may be considered alongside other treatment options. Safety considerations regarding mTOR inhibitor therapy are also reviewed. With evidence of beneficial effects in neurological and non-neurological TSC manifestations, mTOR inhibitors may represent a systemic treatment for TSC. PMID:26927950

  12. Incidence and time course of everolimus-related adverse events in postmenopausal women with hormone receptor-positive advanced breast cancer: insights from BOLERO-2

    PubMed Central

    Rugo, H. S.; Pritchard, K. I.; Gnant, M.; Noguchi, S.; Piccart, M.; Hortobagyi, G.; Baselga, J.; Perez, A.; Geberth, M.; Csoszi, T.; Chouinard, E.; Srimuninnimit, V.; Puttawibul, P.; Eakle, J.; Feng, W.; Bauly, H.; El-Hashimy, M.; Taran, T.; Burris, H. A.

    2014-01-01

    Background In the BOLERO-2 trial, everolimus (EVE), an inhibitor of mammalian target of rapamycin, demonstrated significant clinical benefit with an acceptable safety profile when administered with exemestane (EXE) in postmenopausal women with hormone receptor-positive (HR+) advanced breast cancer. We report on the incidence, time course, severity, and resolution of treatment-emergent adverse events (AEs) as well as incidence of dose modifications during the extended follow-up of this study. Patients and methods Patients were randomized (2:1) to receive EVE 10 mg/day or placebo (PBO), with open-label EXE 25 mg/day (n = 724). The primary end point was progression-free survival. Secondary end points included overall survival, objective response rate, and safety. Safety evaluations included recording of AEs, laboratory values, dose interruptions/adjustments, and study drug discontinuations. Results The safety population comprised 720 patients (EVE + EXE, 482; PBO + EXE, 238). The median follow-up was 18 months. Class-effect toxicities, including stomatitis, pneumonitis, and hyperglycemia, were generally of mild or moderate severity and occurred relatively early after treatment initiation (except pneumonitis); incidence tapered off thereafter. EVE dose reduction and interruption (360 and 705 events, respectively) required for AE management were independent of patient age. The median duration of dose interruption was 7 days. Discontinuation of both study drugs because of AEs was higher with EVE + EXE (9%) versus PBO + EXE (3%). Conclusions Most EVE-associated AEs occur soon after initiation of therapy, are typically of mild or moderate severity, and are generally manageable with dose reduction and interruption. Discontinuation due to toxicity was uncommon. Understanding the time course of class-effect AEs will help inform preventive and monitoring strategies as well as patient education. Trial registration number NCT00863655. PMID:24615500

  13. Everolimus with low-dose tacrolimus in simultaneous pancreas and kidney transplantation.

    PubMed

    Sageshima, Junichiro; Ciancio, Gaetano; Chen, Linda; Dohi, Takehiko; El-Hinnawi, Ashraf; Paloyo, Siegfredo; Misawa, Ryosuke; Ekwenna, Obi; Yatawatta, Ashanga; Burke, George W

    2014-07-01

    The efficacy and safety of everolimus (EVR) in simultaneous pancreas and kidney transplantation (SPKT) is unclear. We retrospectively evaluated 25 consecutive SPKT recipients at our center from November 2011 to March 2013. All patients received dual induction (Thymoglobulin/basiliximab) and low-dose tacrolimus plus corticosteroids. Nine patients who received EVR were compared with 14 patients who received enteric-coated mycophenolate sodium (EC-MPS); two patients who received sirolimus were excluded from the analysis. With a median follow-up of 14 months, the pancreas graft survival rate was 100% in both groups, and the kidney graft survival rate was 100% and 93% in EVR and EC-MPS patients, respectively. One EC-MPS patient lost her kidney graft from proteinuric kidney disease. Another EC-MPS patient received treatment for clinically diagnosed pancreas and kidney graft rejection. No rejection was observed in EVR patients. Serum creatinine and HbA1c levels were similar between the groups. There was no significant difference of surgical or medical complications. In conclusion, EVR seems to provide comparable short-term outcome to EC-MPS when combined with low-dose tacrolimus/steroids and dual induction therapy. A larger study with a longer follow-up is required to further assess this combination.

  14. Usefulness of Everolimus-Eluting Coronary Stent Implantation in Patients on Maintenance Hemodialysis.

    PubMed

    Ikari, Yuji; Kyono, Hiroyuki; Isshiki, Takaaki; Ishizuka, Shuichi; Nasu, Kenya; Sano, Koichi; Okada, Hisayuki; Sugano, Teruyasu; Uehara, Yoshiki

    2015-09-15

    The outcomes of second-generation drug-eluting stent (DES) are unknown in patients on maintenance hemodialysis (HD) although HD has been reported as a strong predictor of adverse outcome after the first-generation DES implantation. The OUCH-PRO Study is a prospective multicenter single-arm registry design to study clinical and angiographic outcomes after everolimus-eluting stent (EES). Patients who underwent maintenance HD were prospectively enrolled at the time of elective coronary intervention using EES. Quantitative coronary angiography was performed in an independent core laboratory. The primary end point was the occurrence of target vessel failure (TVF) defined as cardiac death, myocardial infarction (MI), and target vessel revascularization at 1 year. A total of 123 patients were enrolled and 161 EES were implanted. The TVF rate at 1 year was 18% (4% cardiac death, 0% MI, 17% target vessel revascularization). No stent thrombosis was documented. Other clinical events at 1 year were 3% noncardiac death, 3% stroke, and 9% non-target-vessel revascularization. Late lumen loss in stent was 0.37 ± 0.63 mm at 8 months. In conclusion, EES had a high TVF rate and great late lumen loss in patients on HD compared with previous huge EES data in non-HD patients. PMID:26219496

  15. Efficacy and Safety of Low-Dose Everolimus as Maintenance Immunosuppression in Cardiac Transplant Recipients

    PubMed Central

    Fuchs, Uwe; Zittermann, Armin; Schulz, Uwe; Gummert, Jan F.

    2012-01-01

    For cardiac transplant (CTx) recipients, the recommended everolimus (EVL) dose is 0.75 mg bid or 1.5 mg bid and the target trough blood level is 3–8 μg/L. We studied a cohort of 56 CTx patients with chronic kidney disease receiving 0.75 mg bid EVL to maintain blood levels of 5–8 ug/L (designated RD group) and a cohort of 51 CTx patients with chronic kidney disease receiving 0.5 mg bid to maintain blood levels of 3–5 ug/L (designated LD group). The primary endpoint was a composite of death, rejection and premature EVL discontinuation up to 1 year after introduction of EVL. The primary endpoint was reached by 32% of patients in the LD group and by 41.1% of patients in the RD group (P = 0.361). Biochemical safety parameters were comparable in both groups. Our results indicate that low-dose EVL may be as effective and safe as regular dose EVL. PMID:22577516

  16. A phase II trial of bevacizumab and everolimus as treatment for patients with refractory, progressive intracranial meningioma.

    PubMed

    Shih, Kent C; Chowdhary, Sajeel; Rosenblatt, Paul; Weir, Alva B; Shepard, Gregg C; Williams, Jeffrey T; Shastry, Mythili; Burris, Howard A; Hainsworth, John D

    2016-09-01

    Meningiomas that progress after standard therapies are challenging with limited effective chemotherapy options. This phase II trial evaluated the efficacy of everolimus plus bevacizumab in patients with recurrent, progressive meningioma after treatment with surgical resection and local radiotherapy when appropriate. Patients with recurrent meningioma (WHO grade I, II, or III) following standard treatments with surgical resection and radiotherapy received bevacizumab (10 mg/kg IV days 1 and 15) and everolimus (10 mg PO daily) each 28 day cycle. Evaluation of response occurred every 2 cycles. The primary endpoint was progression-free survival (PFS). Secondary endpoints included response rate, overall survival and safety. Seventeen patients with a median age of 59 years (29-84) received study treatment. WHO grades at study entry included: I, 5 (29 %); II, 7 (41 %); III, 4 (24 %); unknown, 1 (6 %). Patients received a median of 8 cycles (1-37); all patients are off study treatment. A best response of SD was observed in 15 patients (88 %), and 6 patients had SD for >12 months. Overall median PFS was 22 months (95 % CI 4.5-26.8) and was greater for patients with WHO grade II and III compared to grade I tumors (22.0 months vs 17.5 months). Four patients discontinued treatment due to toxicity (proteinuria, 2; colitis, 1, thrombocytopenia, 1). However, other grade 3 toxicity was uncommon, and no patient had grade 4 toxicity. The combination of everolimus and bevacizumab was well-tolerated, and produced stable disease in 88 % of patients; the median duration of disease stabilization of 10 months (2-29). The median PFS from this prospective trial was similar to previous retrospective reports of bevacizumab in the treatment of recurrent meningioma.

  17. Meta-analysis of long-term clinical outcomes of everolimus-eluting stents.

    PubMed

    Toyota, Toshiaki; Shiomi, Hiroki; Morimoto, Takeshi; Kimura, Takeshi

    2015-07-15

    The superiority of everolimus-eluting stents (EES) over sirolimus-eluting stents (SES) for long-term clinical outcomes has not been yet firmly established. We conducted a systematic review and a meta-analysis of randomized controlled trials (RCTs) comparing EES directly with SES using the longest available follow-up data. We searched PubMed, the Cochrane database, and ClinicalTrials.gov for RCTs comparing outcomes between EES and SES and identified 13,434 randomly assigned patients from 14 RCTs. EES was associated with significantly lower risks than SES for definite stent thrombosis (ST), definite/probable ST, target-lesion revascularization (TLR), and major adverse cardiac events (MACE). The risks for all-cause death and myocardial infarction were similar between EES and SES. By the stratified analysis according to the timing after stent implantation, the favorable trend of EES relative to SES for ST, TLR, and MACE was consistently observed both within and beyond 1 year. The lower risk of EES relative to SES for MACE beyond 1 year was statistically significant (pooled odds ratio 0.77, 95% confidence interval 0.61 to 0.96, p = 0.02). In conclusion, the current meta-analysis of 14 RCTs directly comparing EES with SES suggested that EES provided improvement in both safety and efficacy; EES compared with SES was associated with significantly lower risk for definite ST, definite/probable ST, TLR, and MACE. The direction and magnitude of the effect beyond 1 year were comparable with those observed within 1 year.

  18. Response to everolimus is seen in TSC-associated SEGAs and angiomyolipomas independent of mutation type and site in TSC1 and TSC2.

    PubMed

    Kwiatkowski, David J; Palmer, Michael R; Jozwiak, Sergiusz; Bissler, John; Franz, David; Segal, Scott; Chen, David; Sampson, Julian R

    2015-12-01

    Tuberous sclerosis complex is an autosomal dominant disorder that occurs owing to inactivating mutations in either TSC1 or TSC2. Tuberous sclerosis complex-related tumors in the brain, such as subependymal giant cell astrocytoma, and in the kidney, such as angiomyolipoma, can cause significant morbidity and mortality. Recently, randomized clinical trials (EXIST-1 and EXIST-2) of everolimus for each of these tuberous sclerosis complex-associated tumors demonstrated the benefit of this drug, which blocks activated mammalian target of rapamycin complex 1. Here we report on the spectrum of mutations seen in patients treated during these trials and the association between mutation and response. TSC2 mutations were predominant among patients in both trials and were present in nearly all subjects with angiomyolipoma in whom a mutation was identified (97%), whereas TSC1 mutations were rare in those subjects (3%). The spectrum of mutations seen in each gene was similar to those previously reported. In both trials, there was no apparent association between mutation type or location within each gene and response to everolimus. Everolimus responses were also seen at a similar frequency for the 16-18% of patients in each trial in whom no mutation in either gene was identified. These observations confirm the strong association between TSC2 mutation and angiomyolipoma burden seen in previous studies, and they indicate that everolimus response occurs regardless of mutation type or location or when no mutation in TSC1 or TSC2 has been identified.

  19. Response to everolimus is seen in TSC-associated SEGAs and angiomyolipomas independent of mutation type and site in TSC1 and TSC2

    PubMed Central

    Kwiatkowski, David J; Palmer, Michael R; Jozwiak, Sergiusz; Bissler, John; Franz, David; Segal, Scott; Chen, David; Sampson, Julian R

    2015-01-01

    Tuberous sclerosis complex is an autosomal dominant disorder that occurs owing to inactivating mutations in either TSC1 or TSC2. Tuberous sclerosis complex-related tumors in the brain, such as subependymal giant cell astrocytoma, and in the kidney, such as angiomyolipoma, can cause significant morbidity and mortality. Recently, randomized clinical trials (EXIST-1 and EXIST-2) of everolimus for each of these tuberous sclerosis complex-associated tumors demonstrated the benefit of this drug, which blocks activated mammalian target of rapamycin complex 1. Here we report on the spectrum of mutations seen in patients treated during these trials and the association between mutation and response. TSC2 mutations were predominant among patients in both trials and were present in nearly all subjects with angiomyolipoma in whom a mutation was identified (97%), whereas TSC1 mutations were rare in those subjects (3%). The spectrum of mutations seen in each gene was similar to those previously reported. In both trials, there was no apparent association between mutation type or location within each gene and response to everolimus. Everolimus responses were also seen at a similar frequency for the 16–18% of patients in each trial in whom no mutation in either gene was identified. These observations confirm the strong association between TSC2 mutation and angiomyolipoma burden seen in previous studies, and they indicate that everolimus response occurs regardless of mutation type or location or when no mutation in TSC1 or TSC2 has been identified. PMID:25782670

  20. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells.

    PubMed

    Martinelli, Erika; Troiani, Teresa; D'Aiuto, Elena; Morgillo, Floriana; Vitagliano, Donata; Capasso, Anna; Costantino, Sarah; Ciuffreda, Loreta Pia; Merolla, Francesco; Vecchione, Loredana; De Vriendt, Veerle; Tejpar, Sabine; Nappi, Anna; Sforza, Vincenzo; Martini, Giulia; Berrino, Liberato; De Palma, Raffaele; Ciardiello, Fortunato

    2013-11-01

    The RAS/RAF/MEK/MAPK and the PTEN/PI3K/AKT/mTOR pathways are key regulators of proliferation and survival in human cancer cells. Selective inhibitors of different transducer molecules in these pathways have been developed as molecular targeted anti-cancer therapies. The in vitro and in vivo anti-tumor activity of pimasertib, a selective MEK 1/2 inhibitor, alone or in combination with a PI3K inhibitor (PI3Ki), a mTOR inhibitor (everolimus), or with multi-targeted kinase inhibitors (sorafenib and regorafenib), that block also BRAF and CRAF, were tested in a panel of eight human lung and colon cancer cell lines. Following pimasertib treatment, cancer cell lines were classified as pimasertib-sensitive (IC50 for cell growth inhibition of 0.001 µM) or pimasertib-resistant. Evaluation of basal gene expression profiles by microarrays identified several genes that were up-regulated in pimasertib-resistant cancer cells and that were involved in both RAS/RAF/MEK/MAPK and PTEN/PI3K/AKT/mTOR pathways. Therefore, a series of combination experiments with pimasertib and either PI3Ki, everolimus, sorafenib or regorafenib were conducted, demonstrating a synergistic effect in cell growth inhibition and induction of apoptosis with sustained blockade in MAPK- and AKT-dependent signaling pathways in pimasertib-resistant human colon carcinoma (HCT15) and lung adenocarcinoma (H1975) cells. Finally, in nude mice bearing established HCT15 and H1975 subcutaneous tumor xenografts, the combined treatment with pimasertib and BEZ235 (a dual PI3K/mTOR inhibitor) or with sorafenib caused significant tumor growth delays and increase in mice survival as compared to single agent treatment. These results suggest that dual blockade of MAPK and PI3K pathways could overcome intrinsic resistance to MEK inhibition.

  1. Docosahexaenoic Acid Sensitizes Leukemia Lymphocytes to Barasertib and Everolimus by ROS-dependent Mechanism Without Affecting the Level of ROS and Viability of Normal Lymphocytes.

    PubMed

    Zhelev, Zhivko; Ivanova, Donika; Lazarova, Desislava; Aoki, Ichio; Bakalova, Rumiana; Saga, Tsuneo

    2016-04-01

    The aim of the present study was: (i) to investigate the possibility of sensitizing leukemia lymphocytes to anticancer drugs using docosahexaenoic acid (DHA); (ii) to find combinations with synergistic cytotoxic effect on leukemia lymphocytes, without or with only very low cytotoxicity towards normal lymphocytes; (iii) and to clarify the role of reactive oxygen species (ROS) in the induction of apoptosis and cytotoxicity by such combinations. The study covered 15 anticancer drugs, conventional and new-generation. Well-expressed synergistic cytotoxic effects were observed after treatment of leukemia lymphocytes (Jurkat) with DHA in combination with: barasertib, lonafarnib, everolimus, and palbociclib. We selected two synergistic combinations, DHA with everolimus or barasertib, and investigated their effects on viability of normal lymphocytes, as well as on the production of ROS and induction of apoptosis in both cell lines (leukemia and normal). At the selected concentrations, DHA, everolimus and barasertib (applied separately) were cytotoxic towards leukemia lymphocytes, but not normal lymphocytes. In leukemia cells, the cytotoxicity of combinations was accompanied by strong induction of apoptosis and production of ROS. In normal lymphocytes, drugs alone and in combination with DHA did not affect the level of ROS and did not induce apoptosis. To our knowledge, the present study is the first to report synergistic ROS-dependent cytotoxicity between DHA and new-generation anticancer drugs, such as everolimus and barasertib, that is cancer cell-specific (particularly for acute lymphoblastic leukemia cells Jurkat). These combinations are harmless to normal lymphocytes and do not induce abnormal production of ROS in these cells. The data suggest that DHA could be used as a supplementary component in anticancer chemotherapy, allowing therapeutic doses of everolimus and barasertib to be reduced, minimizing their side-effects. PMID:27069145

  2. Biodegradable-Polymer Biolimus-Eluting Stents versus Durable-Polymer Everolimus-Eluting Stents at One-Year Follow-Up: A Registry-Based Cohort Study.

    PubMed

    Parsa, Ehsan; Saroukhani, Sepideh; Majlessi, Fereshteh; Poorhosseini, Hamidreza; Lofti-Tokaldany, Masoumeh; Jalali, Arash; Salarifar, Mojtaba; Nematipour, Ebrahim; Alidoosti, Mohammad; Aghajani, Hassan; Amirzadegan, Alireza; Kassaian, Seyed Ebrahim

    2016-04-01

    We compared outcomes of percutaneous coronary intervention patients who received biodegradable-polymer biolimus-eluting stents with those who received durable-polymer everolimus-eluting stents. At Tehran Heart Center, we performed a retrospective analysis of the data from January 2007 through December 2011 on 3,270 consecutive patients with coronary artery disease who underwent percutaneous coronary intervention with the biodegradable-polymer biolimus-eluting stent or the durable-polymer everolimus-eluting stent. We excluded patients with histories of coronary artery bypass grafting or percutaneous coronary intervention, acute ST-segment-elevation myocardial infarction, or the implantation of 2 different stent types. Patients were monitored for 12 months. The primary endpoint was a major adverse cardiac event, defined as a composite of death, nonfatal myocardial infarction, and target-vessel and target-lesion revascularization. Durable-polymer everolimus-eluting stents were implanted in 2,648 (81%) and biodegradable-polymer biolimus-eluting stents in 622 (19%) of the study population. There was no significant difference between the 2 groups (2.7% vs 2.7%; P=0.984) in the incidence of major adverse cardiac events. The cumulative adjusted probability of major adverse cardiac events in the biodegradable-polymer biolimus-eluting stent group did not differ from that of such events in the durable-polymer everolimus-eluting stent group (hazard ratio=0.768; 95% confidence interval, 0.421-1.44; P=0.388). We conclude that in our patients the biodegradable-polymer biolimus-eluting stent was as effective and safe, during the 12-month follow-up period, as was the durable-polymer everolimus-eluting stent.

  3. Use of mammalian target of rapamycin inhibitors after failure of tyrosine kinase inhibitors in patients with metastatic renal cell carcinoma undergoing hemodialysis: A single-center experience with four cases.

    PubMed

    Omae, Kenji; Kondo, Tsunenori; Takagi, Toshio; Iizuka, Junpei; Kobayashi, Hirohito; Hashimoto, Yasunobu; Tanabe, Kazunari

    2016-07-01

    We retrospectively identified patients with end-stage renal disease undergoing hemodialysis treated with the mammalian target of rapamycin inhibitors as a second- and/or third-line targeted therapy after treatment failure with the tyrosine kinase inhibitors for metastatic renal cell carcinoma. Patient medical records were reviewed to evaluate the response to therapies and treatment-related toxicities. Four patients were identified. All patients had undergone nephrectomy, and one had received immunotherapy before targeted therapy. Two patients had clear cell histology, and the other two had papillary histology. All patients were classified into the intermediate risk group according to the Memorial Sloan-Kettering Cancer Center risk model. All patients were treated with everolimus as a second- or third-line therapy, and two patients were treated with temsirolimus as a second- or third-line therapy after treatment failure with sorafenib or sunitinib. The median duration of everolimus therapy was 6.7 months, whereas that of temsirolimus was 9.5 months. All patients had stable disease as the best response during each period of therapy. There were no severe adverse events. The use of mammalian target of rapamycin inhibitors in patients who previously failed to respond to tyrosine kinase inhibitors appears to be feasible in patients with end-stage renal disease requiring hemodialysis.

  4. Oral everolimus treatment in a preterm infant with multifocal inoperable cardiac rhabdomyoma associated with tuberous sclerosis complex and a structural heart defect.

    PubMed

    Mohamed, Ibrahim; Ethier, Guillaume; Goyer, Isabelle; Major, Philippe; Dahdah, Nagib

    2014-11-26

    Rhabdomyoma (RHM) is a benign cardiac tumour usually associated with tuberous sclerosis complex (TSC). Most RHMs are asymptomatic and regress spontaneously during the first years of life. Haemodynamically significant RHMs are classically treated with surgical excision. We present a case of a premature infant, born to a mother having TSC, with a prenatal diagnosis of pulmonary valve atresia and a large ventricular septal defect. Multiple cardiac RHMs were also present, including a large tumour affecting the right ventricular filling. Owing to the prematurity and low birth weight, the infant was inoperable. In this report, we describe our approach to pharmacologically reduce the RHM size using oral everolimus in preparation for a two-ventricle surgical repair of the structural cardiac defect. We also specifically describe the dose of everolimus that was used in this case to achieve therapeutic serum levels, which was seven times lower than the conventional dose applicable for older infants.

  5. Co-administration strategy to enhance brain accumulation of vandetanib by modulating P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with m-TOR inhibitors.

    PubMed

    Minocha, Mukul; Khurana, Varun; Qin, Bin; Pal, Dhananjay; Mitra, Ashim K

    2012-09-15

    The objectives of this study were (i) to characterize the interaction of vandetanib with P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) in vitro and in vivo (ii) to study the modulation of P-gp and BCRP mediated efflux of vandetanib with specific transport inhibitors and m-TOR inhibitors, everolimus and temsirolimus. Cellular accumulation and bi-directional transport studies in MDCKII cell monolayers were conducted to delineate the role of efflux transporters on disposition of vandetanib. Brain distribution studies were conducted in male FVB wild-type mice with vandetanib administered intravenously either alone or in the presence of specific inhibitors and m-TOR inhibitors. In vitro studies suggested that vandetanib is a high affinity substrate of Bcrp1 but is not transported by P-gp. Interestingly, in vivo brain distribution studies in FVB wild type mice indicated that vandetanib penetration into the brain is restricted by both Bcrp1 and P-gp mediated active efflux at the blood brain barrier (BBB). Co-administration of elacridar, a dual P-gp/BCRP inhibitor increased the brain to plasma concentration ratio of vandetanib upto 5 fold. Of the two m-TOR pathway inhibitors examined; everolimus showed potent effect on modulating vandetanib brain penetration whereas no significant affect on vandetanib brain uptake was observed following temsirolimus co-administration. This finding could be clinically relevant as everolimus can provide synergistic pharmacological effect in addition to primary role of vandetanib efflux modulation at BBB for the treatment of brain tumors. PMID:22633931

  6. Use of a small particle solid-core packing for improved efficiency and rapid measurement of sirolimus and everolimus by LC-MS/MS.

    PubMed

    Morgan, Phillip; Nwafor, Magnus; Tredger, Mike

    2016-06-01

    Measurement of whole blood sirolimus and everolimus is required in order to optimize patient treatment following solid organ transplant. Assay by LC-MS/MS is increasingly preferred; however efficient use of the instrument and short turnaround times are crucial. Use of a 1.6 µm solid-core packing HPLC column (Cortecs) gave significant increases in efficiency, sensitivity and throughput compared with an existing method, following simple protein precipitation of small-volume (20 μL) whole blood samples. Sirolimus, everolimus and the stable isotopic internal standard ((13) C2 D4 - everolimus) eluted at around 0.8 min, and total analytical run time was 2.2 min, saving almost 4 min per sample compared with an existing method. Within-assay imprecision (CV) was 3.3-8.5%, and between-assay imprecision was 2.2-10.8%. Retrospective assay of external quality assurance samples and comparison of patient samples assayed in parallel showed only small differences (between +6.8 and -1.9%) in results using the Cortecs column when compared with the existing method. No significant interferences or ion suppression were observed. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Tacrolimus plus mycophenolate mofetil vs. cyclosporine plus everolimus in deceased donor kidney transplant recipients: three-yr results of a single-center prospective clinical trial.

    PubMed

    Favi, Evaldo; Spagnoletti, Gionata; Salerno, Maria P; Pedroso, José A; Romagnoli, Jacopo; Citterio, Franco

    2013-01-01

    We compared in kidney transplantation two immunosuppressive regimens: tacrolimus plus mycophenolate mofetil (MMF) (TAC) and everolimus plus low-dose cyclosporine (EVE). Sixty consecutive patients received TAC (30 patients) or EVE (30 patients) as immunosuppressive regimen; all subjects also received induction with basiliximab and corticosteroids. After three-yr follow-up, no difference was found in patient and graft survival (PTS: TAC: 97% vs. EVE: 100%; GS: TAC: 93% vs. EVE: 93%). The incidence of acute rejection was higher in the EVE group but the difference was not statistically significant (17% vs. 23%, p = ns). Patients in EVE showed higher serum cholesterol (205 ± 41 vs. 235 ± 41 mg/dL, p = 0.0012) and lower hemoglobin concentration (13.6 ± 1.4 vs. 12.4 ± 1.9, p = 0.01). Renal function was not significantly different in the two groups (3 Y creatinine: TAC 1.4 ± 0.8 vs. EVE 1.6 ± 0.8 mg/dL, p = ns). Treatment discontinuation was higher in the EVE group (TAC 17 vs. EVE 36%, p = ns). Our data show that in the middle-term follow-up, an immunosuppressive regimen with tacrolimus plus MMF has a similar efficacy and safety profile in comparison with the combination of low-exposure cyclosporine plus everolimus. Further follow up could evidence the benefits related to the anti-proliferative effects of everolimus.

  8. Mechanisms of acquired resistance to insulin-like growth factor 1 receptor inhibitor in MCF-7 breast cancer cell line.

    PubMed

    Ekyalongo, Roudy Chiminch; Mukohara, Toru; Kataoka, Yu; Funakoshi, Yohei; Tomioka, Hideo; Kiyota, Naomi; Fujiwara, Yutaka; Minami, Hironobu

    2013-04-01

    The purpose of this study was to clarify the mechanism of acquired resistance to the insulin-like growth factor-1 receptor (IGF-1R) tyrosine kinase inhibitor NVP-AEW541. We developed an acquired resistant model by continuously exposing MCF-7 breast cancer cells to NVP-AEW541 (MCF-7-NR). MCF-7 and MCF-7-NR were comparatively analyzed for cell signaling and cell growth. While phosphorylation of Akt was completely inhibited by 3 μM NVP-AEW541 in both MCF-7 and MCF-7-NR, phosphorylation of S6K remained high only in MCF-7-NR, suggesting a disconnection between Akt and S6K in MCF-7-NR. Consistently, the mTOR inhibitor everolimus inhibited phosphorylation of S6K and cell growth equally in both lines. Screening of both lines for phosphorylation of 42 receptor tyrosine kinases with and without NVP-AEW541 showed that Tyro3 phosphorylation remained high only in MCF-7-NR. Protein expression of Tyro3 was found to be higher in MCF-7-NR than in MCF-7. Gene silencing of Tyro3 using siRNA resulted in reduced cell growth and cyclin D1 expression in both lines. While Tyro3 expression was inhibited by NVP-AEW541 and everolimus in MCF-7, it was reduced only by everolimus in MCF-7-NR. These findings suggested that cyclin D1 expression was regulated in a S6K/Tyro3-dependent manner in both MCF-7 and MCF-7-NR, and that the disconnection between IGF-1R/Akt and S6K may enable MCF-7-NR to keep cyclin D1 high in the presence of NVP-AEW541. In summary, acquired resistance to NVP-AEW541 appears to result from IGF-1R/Akt-independent activation of S6K and expression of Tyro3 and cyclin D1.

  9. Wound healing complications and the use of mammalian target of rapamycin inhibitors in kidney transplantation: a critical review of the literature.

    PubMed

    Nashan, Björn; Citterio, Franco

    2012-09-27

    Surgical complications, including events such as lymphocele and urological complications that affect wound healing, are reported with an incidence of 15% to 32% after kidney transplantation. The experience of the surgeon and comorbidities play an important role in determining the risk of such complications occurring. Since the introduction of the inosine 5'-monophosphate dehydrogenase inhibitors (mycophenolate mofetil) to the immunosuppressive armamentarium, replacing the antimetabolite prodrug azathioprine, reports have associated certain forms of wound healing complications (wound dehiscence, impaired healing, lymphocele, and incisional hernia) with the use of these agents. When mammalian target of rapamycin (mTOR) inhibitors (sirolimus, everolimus) became available, these findings were observed increasingly, particularly in direct comparisons with inosine 5'-monophosphate dehydrogenase inhibitors. The purpose of this article was to review the reported incidence of wound healing complications from randomized clinical trials that investigated the use of sirolimus- and everolimus-based treatment regimens in de novo kidney transplantation and the information available from the U.S. Food and Drug Administration database. The clinical trials included were primarily identified using biomedical literature database searches, with additional studies added at the authors' discretion. This review summarizes these studies to consider whether modern mTOR inhibitor-based immunosuppressive regimens exert and affect wound healing after kidney transplantation.

  10. Clinical Impact of Dual Antiplatelet Therapy Use in Patients Following Everolimus-eluting Stent Implantation: Insights from the SEEDS Study

    PubMed Central

    Zhang, Yao-Jun; Zhao, Ye-Lin; Xu, Bo; Han, Ya-Ling; Li, Bao; Liu, Qiang; Su, Xi; Pang, Si; Lu, Shu-Zheng; Guo, Xiao-Feng; Yang, Yue-Jin

    2015-01-01

    Background: Studies have suggested that use of prolonged dual antiplatelet therapy (DAPT) following new generation drug-eluting stent implantation may increase costs and potential bleeding events. This study aimed to investigate the association of DAPT status with clinical safety in patients undergoing everolimus-eluting stent (EES) implantation in the SEEDS study (A Registry to Evaluate Safety and Effectiveness of Everolimus Drug-eluting Stent for Coronary Revascularization) at 2-year follow-up. Methods: The SEEDS study is a prospective, multicenter study, where patients (n = 1900) with small vessel, long lesion, or multi-vessel diseases underwent EES implantation. Detailed DAPT status was collected at baseline, 6-month, 1- and 2-year. DAPT interruption was defined as any interruption of aspirin and/or clopidogrel more than 14 days. The net adverse clinical events (NACE, a composite endpoint of all-cause death, all myocardial infarction (MI), stroke, definite/probable stent thrombosis (ST), and major bleeding (Bleeding Academic Research Consortium II-V)) were investigated according to the DAPT status at 2-year follow-up. Results: DAPT was used in 97.8% of patients at 6 months, 69.5% at 12 months and 35.4% at 2 years. It was observed that the incidence of NACE was low (8.1%) at 2 years follow-up, especially its components of all-cause death (0.9%), stroke (1.1%), and definite/probable ST (0.7%). DAPT was not an independent predictor of composite endpoint of all-cause death/MI/stroke (hazard ratio [HR]: 0.693, 95% confidence interval [CI]: 0.096–4.980, P = 0.715) and NACE (HR: 1.041, 95% CI: 0.145–7.454, P = 0.968). Of 73 patients who had DAPT interruption, no patient had ST at 12-month, and only 1 patient experienced ST between 1- and 2-year (1.4%). There was a high frequency of major bleeding events (53/65, 82.5%) occurred in patients receiving DAPT treatment. Conclusions: Prolonged DAPT use was not associated with improved clinical safety. The study

  11. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  12. Role of inhibitors of mammalian target of rapamycin in the treatment of luminal breast cancer.

    PubMed

    Ciruelos, Eva; Cortes-Funes, Hernán; Ghanem, Ismael; Manso, Luis; Arteaga, Carlos

    2013-09-01

    Approximately 75% of patients with breast cancer present hormone receptor-positive tumors. This subtype of breast cancer initially shows a high overall response rate to hormonal treatments. However, resistance eventually develops, resulting in tumor progression. The PI3K/Akt/mTOR pathway regulates several cellular functions in cancer such as cell growth, survival, and proliferation. In addition, a high activation level of the PI3K/Akt/mTOR pathway is related to resistance to conventional chemotherapy and hormone therapy. The mTOR inhibitor everolimus, in combination with hormonal treatments, has led to excellent results in progression-free survival in patients with metastatic breast cancer resistant to hormone therapies. Therefore, everolimus has entered the National Comprehensive Cancer Network (NCCN) guidelines 2012 and its combination with exemestane was approved recently by the US Food and Drug Administration and the European Medicines Agency. This is the first time that a drug will have been approved for the restoration of hormone sensitivity in breast cancer.

  13. Role of mTOR Inhibitors in Kidney Disease

    PubMed Central

    Kajiwara, Moto; Masuda, Satohiro

    2016-01-01

    The first compound that inhibited the mammalian target of rapamycin (mTOR), sirolimus (rapamycin) was discovered in the 1970s as a soil bacterium metabolite collected on Easter Island (Rapa Nui). Because sirolimus showed antiproliferative activity, researchers investigated its molecular target and identified the TOR1 and TOR2. The mTOR consists of mTOR complex 1 (mTORC1) and mTORC2. Rapalogues including sirolimus, everolimus, and temsirolimus exert their effect mainly on mTORC1, whereas their inhibitory effect on mTORC2 is mild. To obtain compounds with more potent antiproliferative effects, ATP-competitive inhibitors of mTOR targeting both mTORC1 and mTORC2 have been developed and tested in clinical trials as anticancer drugs. Currently, mTOR inhibitors are used as anticancer drugs against several solid tumors, and immunosuppressive agents for transplantation of various organs. This review discusses the role of mTOR inhibitors in renal disease with a particular focus on renal cancer, diabetic nephropathy, and kidney transplantation. PMID:27338360

  14. Platelet Inhibitors.

    PubMed

    Shifrin, Megan M; Widmar, S Brian

    2016-03-01

    Antithrombotic medications have become standard of care for management of acute coronary syndrome. Platelet adhesion, activation, and aggregation are essential components of platelet function; platelet-inhibiting medications interfere with these components and reduce incidence of thrombosis. Active bleeding is a contraindication for administration of platelet inhibitors. There is currently no reversal agent for platelet inhibitors, although platelet transfusion may be used to correct active bleeding after administration of platelet inhibitors. PMID:26897422

  15. Fast LC-MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery.

    PubMed

    Koster, Remco A; Alffenaar, Jan-Willem C; Greijdanus, Ben; Uges, Donald R A

    2013-10-15

    We developed a method for the analysis of four immunosuppressants in dried blood spot (DBS) samples to facilitate therapeutic drug monitoring for transplant patients outside the hospital. An 8mm disc from the central part of the DBS was punched, extracted and followed by LC-MS/MS analysis. The method was validated with ranges from 1.00-50.0 µg/L for tacrolimus, sirolimus and everolimus, and from 20.0-2000 µg/L for cyclosporin A. The validation showed a maximum overall bias of 13.0% for the sirolimus LLOQ, while the maximum overall CV was 15.7% for the everolimus LLOQ. All four immunosuppressants showed to be stable in DBS for at least 7 days at 22°C. The volume of the blood spot showed to have minor effect on measured concentrations. A cross-validation test between the 31 ET CHR paper and the Whatman FTA DMPK-C cards showed no significant difference between the two types of paper. During validation the hematocrit (HT) showed to have significant influence on the analytical results. When the measured concentrations were corrected for the effect of the HT, biases improved significantly. Additional recovery tests proved that the combination of especially low HT and high concentration does not only affect the spot size but can also affect the extraction recoveries of sirolimus and especially everolimus. Although the tested parameters like HT and concentrations are extreme and unlikely for routine analysis of outpatients, the fundamental effect of the combination of these parameters on extraction recoveries are proven with this research. The protein binding in the blood and hydrogen binding to the cellulose of the paper is suggested to influence extractions and gives new insights in the extraction methodology of DBS samples. The observed HT effect during the validation appeared to be negligible during the correlation study as no concentration corrections for the HT values were needed. Nevertheless, results from DBS samples with extremely high concentrations combined

  16. PIK3CA genotype and a PIK3CA mutation-related gene signature and response to everolimus and letrozole in estrogen receptor positive breast cancer.

    PubMed

    Loi, Sherene; Michiels, Stefan; Baselga, Jose; Bartlett, John M S; Singhal, Sandeep K; Sabine, Vicky S; Sims, Andrew H; Sahmoud, Tarek; Dixon, J Michael; Piccart, Martine J; Sotiriou, Christos

    2013-01-01

    The phosphatidylinositol 3' kinase (PI3K) pathway is commonly activated in breast cancer and aberrations such as PI3K mutations are common. Recent exciting clinical trial results in advanced estrogen receptor-positive (ER) breast cancer support mTOR activation is a major means of estrogen-independent tumor growth. Hence the means to identify a responsive breast cancer population that would most benefit from these compounds in the adjuvant or earlier stage setting is of high interest. Here we study PIK3CA genotype as well as a previously reported PI3K/mTOR-pathway gene signature (PIK3CA-GS) and their ability to estimate the level of PI3K pathway activation in two clinical trials of newly diagnosed ER-positive breast cancer patients- a total of 81 patients- one of which was randomized between letrozole and placebo vs letrozole and everolimus. The main objectives were to correlate the baseline PIK3CA genotype and GS with the relative change from baseline to day 15 in Ki67 (which has been shown to be prognostic in breast cancer) and phosphorylated S6 (S240) immunohistochemistry (a substrate of mTOR). In the randomized dataset, the PIK3CA-GS could identify those patients with the largest relative decreases in Ki67 to letrozole/everolimus (R = -0.43, p = 0.008) compared with letrozole/placebo (R = 0.07, p = 0.58; interaction test p = 0.02). In a second dataset of pre-surgical everolimus alone, the PIK3CA-GS was not significantly correlated with relative change in Ki67 (R = -0.11, p = 0.37) but with relative change in phosphorlyated S6 (S240) (R = -0.46, p = 0.028). PIK3CA genotype was not significantly associated with any endpoint in either datasets. Our results suggest that the PIK3CA-GS has potential to identify those ER-positive BCs who may benefit from the addition of everolimus to letrozole. Further evaluation of the PIK3CA-GS as a predictive biomarker is warranted as it may facilitate better selection of responsive patient populations for mTOR inhibition in

  17. Corrosion inhibitor

    SciTech Connect

    Wisotsky, M.J.; Metro, S.J.

    1989-10-31

    A corrosion inhibitor for use in synthetic ester lubricating oils is disclosed. It comprises an effective amount of: at least one aromatic amide; and at least one hydroxy substituted aromatic compound. The corrosion inhibitor thus formed is particularly useful in synthetic ester turbo lubricating oils.

  18. Improved oral absorption and chemical stability of everolimus via preparation of solid dispersion using solvent wetting technique.

    PubMed

    Jang, Sun Woo; Kang, Myung Joo

    2014-10-01

    The aim of this study was to improve the physicochemical properties and oral absorption of poorly water-soluble everolimus via preparation of a solid dispersion (SD) system using a solvent wetting (SW) technique. The physicochemical properties, drug release profile, and bioavailability of SD prepared by SW process were also compared to SD prepared by the conventional co-precipitation method. Solid state characterizations using scanning electron microscopy, particle size analysis and X-ray powder diffraction indicated that drug homogeneously dispersed and existed in an amorphous state within the intact polymeric carrier. Whereas, a film-like mass was obtained by a co-precipitation method and further pulverization step was needed for tabletization. The drug release from the SD tablet prepared by SW process at a ratio of drug to hydroxypropyl methylcellulose of 1:15 was markedly higher than the drug alone and equivalent to the marketed product (Afinitor(®), Novartis Pharmaceuticals), a SD tablet prepared by co-precipitation method, archiving over 75% the drug release after 30 min. At the accelerated (40°C/75% R.H.) and stress (80°C) stability tests, the novel formula was more stable than drug powder and provided comparable drug stability with the commercially available product, which contains a potentially risky antioxidant, butylated hydroxyl toluene. The pharmacokinetic parameters after single oral administration in beagles showed no significant difference (P>0.01) between the novel SD-based tablet and the marketed product. The results of this study, therefore, suggest that the novel SD system prepared by the solvent wetting process may be a promising approach for improving the physicochemical stability and oral absorption of the sirolimus derivatives. PMID:25003829

  19. [An Elderly Patient with Metastatic Breast Cancer Who Developed Severe Adverse Events such as Stomatitis and Interstitial Pneumonia after Everolimus plus Exemestane Treatment].

    PubMed

    Sakiyama, Kana; Yoshida, Takashi; Goto, Yoshinari; Kimura, Morihiko

    2016-06-01

    An 80-year-old woman was diagnosed with right breast cancer with clinical Stage IIIA 6 years previously. She underwent mastectomy and axillary lymph node dissection. The pathological diagnosis was invasive micropapillary carcinoma with lymph node involvement. Immunohistochemically, the tumor was positive for estrogen receptor and progesterone receptor, and negative for HER2. Postoperatively, the patient was treated with adjuvant chemotherapy consisting of cyclophosphamide, epirubicin, 5-fluorouracil, and paclitaxel, followed by endocrine therapy with letrozole. Four years after surgery, she experienced a recurrence of breast cancer in the thoracic wall, and was treated with exemestane, toremifene, and fulvestrant for 1 year and 5 months. However, she developed carcinomatous pleurisy and was treated with eribulin. This last treatment was ineffective. Subsequently, she received combination therapy with everolimus and exemestane. Although the pleural effusion reduced markedly after 5 weeks, stomatitis, diarrhea, melena, and interstitial pneumonia occurred as adverse events. The symptoms improved after drug discontinuation and steroid therapy. The combination therapy with everolimus and exemestane is a prospective therapy for hormone-resistant recurrent breast cancer, but the management of adverse events is very important. PMID:27306814

  20. mTOR Inhibitors and Their Potential Role in Therapy in Leukemia and Other Haematologic Malignancies

    PubMed Central

    Teachey, David T.; Grupp, Stephan A.; Brown, Valerie I.

    2009-01-01

    Summary The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that functions as a key regulator of cell growth, protein synthesis, and cell-cycle progression through interactions with a number of signaling pathways, including PI3K/AKT, ras, TCL1, and BCR/ABL. Many haematologic malignancies have aberrant activation of the mTOR and related signaling pathways. Accordingly, mTOR inhibitors, a class of signal transduction inhibitors that were originally developed as immunosuppressive agents, are being investigated in preclinical models and clinical trials for a number of haematologic malignancies. Sirolimus and second generation mTOR inhibitors such as temsirolimus and everolimus, are safe and relatively well-tolerated, making them potentially attractive as single agents or in combination with conventional cytotoxics and other targeted therapies. Promising early clinical data suggests activity of mTOR inhibitors in a number of haematologic diseases, including acute lymphoblastic leukemia, chronic myelogenous leukemia, mantle cell lymphoma, anaplastic large cell lymphoma, and lymphoproliferative disorders. This review describes the rationale for using mTOR inhibitors in a variety of haematologic diseases with a focus on their use in leukemia. PMID:19344392

  1. Everolimus-induced epithelial to mesenchymal transition in immortalized human renal proximal tubular epithelial cells: key role of heparanase

    PubMed Central

    2013-01-01

    Background Everolimus (EVE) is a drug widely used in several renal transplant protocols. Although characterized by a relatively low nephrotoxicity, it may induce several adverse effects including severe fibro-interstitial pneumonitis. The exact molecular/biological mechanism associated to these pro-fibrotic effects is unknown, but epithelial to mesenchymal transition (EMT) may have a central role. Additionally, heparanase, an enzyme recently associated with the progression of chronic allograft nephropathy, could contribute to activate this machinery in renal cells. Methods Several biomolecular strategies (RT-PCR, immunofluorescence, zymography and migration assay) have been used to assess the capability of EVE (10, 100, 200 and 500 nM) to induce an in vitro heparanase-mediated EMT in wild-type (WT) and Heparanase (HPSE)-silenced immortalized human renal epithelial proximal tubular cells (HK-2). Additionally, microarray technology was used to find additional biological elements involved in EVE-induced EMT. Results Biomolecular experiments demonstrated a significant up-regulation (more than 1.5 fold increase) of several genes encoding for well known EMT markers [(alpha-smooth muscle actin (α-SMA), Vimentin (VIM), Fibronectin (FN) and matrix metalloproteinase-9 (MMP9)], enhancement of MMP9 protein level and increment of cells motility in WT HK2 cells treated with high concentrations of EVE (higher than 100 nM). Similarly, immunofluorescence analysis showed that 100 nM of EVE increased α-SMA, VIM and FN protein expression in WT HK2 cells. All these effects were absent in both HPSE- and AKT-silenced cell lines. AKT is a protein having a central role in EMT. Additionally, microarray analysis identified other 2 genes significantly up-regulated in 100 nM EVE-treated cells (p < 0.005 and FDR < 5%): transforming growth factor beta-2 (TGFβ2) and epidermal growth factor receptor (EGFR). Real-time PCR analysis validated microarray. Conclusions Our in vitro study

  2. Mammalian Target of Rapamycin Inhibitors and Nephrotoxicity: Fact or Fiction.

    PubMed

    Barbari, Antoine; Maawad, Maria; Kfoury Kassouf, Hala; Kamel, Gaby

    2015-10-01

    Mammalian target of rapamycin inhibitors, such as rapamycin and more recently everolimus, have substituted calcineurin inhibitors in many minimization strategies. Despite their acclaimed renal safety profile, several lines of evidence are emerging on their potential nephrotoxic effect. Predisposing conditions for nephrotoxicity involve a complex interplay between several environmental and genetic factors in the donor-recipient pair. Renal injury may be enhanced by pharmacodynamic interactions when combined with other drugs such as calcineurin inhibitors or nutrients that are predominantly related to an increase in local tissue exposure. These toxic interactions may occur within adequate doses and therapeutic blood levels. This explains the occurrence of nephrotoxicity in some but not all cases. Here, we postulated that activity of a low permeability glycoprotein efflux pump related to low protein expression and/or inhibition enhanced immunosuppressive drug entry in different cells. A rise in intracellular drug concentration increases bioactivity, leading to greater immunosuppression and more immune-related, nonrenal adverse events in the recipient and increased nephrotoxicity in the kidney graft. Under specific isolated or combined environmental and/or genetic conditions in both the recipient and donor affecting the glycoprotein efflux pump and/or the mammalian target of rapamycin pathway, these renal injuries may be aggravated by heightened drug tissue concentrations despite adherence to therapeutic drug and blood levels. Mammalian target of rapamycin inhibitors may induce predominantly a dose-dependent renal epithelial cell injury affecting either the glomerular or the renal tubular epithelial cells, leading to cell death and apoptosis. Epithelial mesenchymal transition mediated interstitial fibrosis and tubular atrophy observed with these drugs may be the result of a cumulative toxic renal tubular injury induced by the direct insult of the drug itself and

  3. Immunosuppressive potency of mechanistic target of rapamycin inhibitors in solid-organ transplantation

    PubMed Central

    Baroja-Mazo, Alberto; Revilla-Nuin, Beatriz; Ramírez, Pablo; Pons, José A

    2016-01-01

    Mammalian target of rapamycin, also known as mechanistic target of rapamycin (mTOR) is a protein kinase that belongs to the PI3K/AKT/mTOR signaling pathway, which is involved in several fundamental cellular functions such as cell growth, proliferation, and survival. This protein and its associated pathway have been implicated in cancer development and the regulation of immune responses, including the rejection response generated following allograft transplantation. Inhibitors of mTOR (mTORi) such as rapamycin and its derivative everolimus are potent immunosuppressive drugs that both maintain similar rates of efficacy and could optimize the renal function and diminish the side effects compared with calcineurin inhibitors. These drugs are used in solid-organ transplantationtoinduceimmunosuppression while also promoting the expansion of CD4+CD25+FOXP3+ regulatory T-cells that could favor a scenery of immunological tolerance. In this review, we describe the mechanisms by which inhibitors of mTOR induce suppression by regulation of these pathways at different levels of the immune response. In addition, we particularly emphasize about the main methods that are used to assess the potency of immunosuppressive drugs, highlighting the studies carried out about immunosuppressive potency of inhibitors of mTOR. PMID:27011916

  4. mTOR inhibitor therapy: Does it prevent HCC recurrence after liver transplantation?

    PubMed

    Duvoux, Christophe; Toso, Christian

    2015-07-01

    Prevention of hepatocellular carcinoma (HCC) recurrence after liver transplantation is a clinical priority. The importance of the mammalian target of rapamycin (mTOR) pathway in cell growth and survival makes it a logical target for antitumor strategies, as borne out by clinical data in various types of malignancy. A number of studies have indicated that the mTOR inhibitors everolimus and sirolimus suppress cell proliferation and tumor growth in animal models of HCC. Coadministration of an mTOR inhibitor could permit lower dosing of chemotherapeutic agents in HCC management, and trials in non-transplant HCC population are exploring combined used with various agents including sorafenib, the vascular endothelial growth factor inhibitor bevacizumab and conventional agents. In terms of a preventive effect after liver transplantation for HCC, data from retrospective studies and non-randomized prospective analyses in which patients received an mTOR inhibitor with concomitant calcineurin inhibitor therapy have indicated that HCC recurrence rates and overall survival may be improved compared to a standard calcineurin inhibitor regimen. Meta-analyses have supported these findings, but controlled trials are required before any firm conclusions can be drawn. In two of the three randomized trials which have assessed de novo mTOR inhibitor therapy after liver transplantation, there was a numerically lower rate of HCC recurrence by one year post-transplant in patients given an mTOR inhibitor versus the control arm, but absolute numbers were low. Overall, based on the available data from retrospective studies, meta-analyses, and post-hoc assessments of randomized trials, it appears advisable to consider mTOR inhibition-based immunosuppression after transplantation for HCC, particularly in patients who exceed the Milan criteria. Prospective data are awaited. PMID:26071984

  5. Autophagy Inhibition to Augment mTOR Inhibition: A Phase I/II Trial of RAD001 and Hydroxychloroquine in Patients With Previously Treated Renal Cell Carcinoma

    ClinicalTrials.gov

    2015-12-07

    Histological Evidence of Metastatic Clear Cell Renal Cell Carcinoma; That Has Been Previously Treated With 1-3 Prior Regimens. Phase 1 Only, Any Number of Prior Regimens; With Evidence of Progressive Disease on or Within 6 Months; of Discontinuing Sunitinib, Sorafenib or Pazopanib. Previous; Therapy With Bevacizumab, IL2, or Interferon Are Permitted.

  6. Incidence and risk of hepatic toxicities with PD-1 inhibitors in cancer patients: a meta-analysis

    PubMed Central

    Zhang, Xi; Ran, Yuge; Wang, Kunjie; Zhu, Yuanxue; Li, Jinghua

    2016-01-01

    Purpose Anti-programmed cell death receptor-1 (PD-1) antibodies have demonstrated antitumor activity in many cancer entities. Hepatic adverse events (AEs) are one of its major side effects, but the overall risks have not been systematically evaluated. Thus, we conducted this meta-analysis to investigate the overall incidence and risk of developing hepatic AEs in cancer patients treated with PD-1 inhibitors. Methods PubMed, Embase, and oncology conference proceedings were searched for relevant studies. Eligible studies were randomized controlled trials of cancer patients treated with PD-1 inhibitors with adequate data on hepatic AEs. Results A total of nine randomized controlled trials with a variety of solid tumors were eligible for the meta-analysis. The use of PD-1 inhibitors significantly increased the risk of developing all-grade hepatic AEs but not for high-grade hepatic AEs in comparison with chemotherapy or everolimus control. Additionally, the risk of all-grade and high-grade hepatic AEs with a nivolumab/ipilimumab combination was substantially higher than ipilimumab. No significant differences in the risk of all-grade and high-grade hepatic AEs were found between PD-1 inhibitors monotherapy and ipilimumab. Conclusion While the use of PD-1 inhibitors is associated with an increased risk of developing hepatic AEs in cancer patients, this is primarily for lower grade events. PMID:27729774

  7. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells.

    PubMed

    Karthik, Govindasamy-Muralidharan; Ma, Ran; Lövrot, John; Kis, Lorand Levente; Lindh, Claes; Blomquist, Lennart; Fredriksson, Irma; Bergh, Jonas; Hartman, Johan

    2015-10-10

    Breast cancer cells with stem cell characteristics (CSC) are a distinct cell population with phenotypic similarities to mammary stem cells. CSCs are important drivers of tumorigenesis and the metastatic process. Tamoxifen is the most widely used hormonal therapy for estrogen receptor (ER) positive cancers. In our study, tamoxifen was effective in reducing proliferation of ER + adherent cancer cells, but not their CSC population. We isolated, expanded and incubated CSC from seven breast cancers with or without tamoxifen. By genome-wide transcriptional analysis we identified tamoxifen-induced transcriptional pathways associated with ribosomal biogenesis and mRNA translation, both regulated by the mTOR-pathway. We observed induction of the key mTOR downstream targets S6K1, S6RP and 4E-BP1 in-patient derived CSCs by tamoxifen on protein level. Using the mTOR inhibitors rapamycin, everolimus and PF-04691502 (a dual PI3K/mTOR inhibitor) and in combination with tamoxifen, significant reduction in mammosphere formation was observed. Hence, we suggest that the CSC population play a significant role during endocrine resistance through activity of the mTOR pathway. In addition, tamoxifen further stimulates the mTOR-pathway but can be antagonized using mTOR-inhibitors. PMID:26208432

  8. De novo mTOR inhibitor-based immunosuppression in ABO-incompatible kidney transplantation.

    PubMed

    Koch, Martina; Wiech, Thorsten; Marget, Matthias; Peine, Sven; Thude, Hansjörg; Achilles, Eike G; Fischer, Lutz; Lehnhardt, Anja; Thaiss, Friedrich; Nashan, Bjoern

    2015-11-01

    ABO-incompatible (ABOi) kidney transplantation (KTx) has become an accepted therapeutic option in renal replacement therapy for patients without a blood group-compatible living donor. Using different desensitization strategies, most centers apply B-cell depletion with rituximab and maintenance immunosuppression (IS) with tacrolimus and mycophenolic acid. This high load of total IS leads to an increased rate of surgical complications and virus infections in ABOi patients. Our aim was to establish ABOi KTx using an immunosuppressive regimen, which is effective in preventing acute rejection without increasing the risk for viral infections. Therefore, we selected a de novo immunosuppressive protocol with low-dose calcineurin inhibitor and the mTOR inhibitor everolimus for our ABOi program. Here, we report the first 25 patients with a complete three-yr follow-up treated with this regimen. Three-yr patient survival and graft survival were 96% and 83%. The rate of acute T-cell-mediated rejections was low (12%). Cytomegalovirus (CMV) infection was evident in one patient only (4%). Surgical complications were common (40%), but mild in 80% of cases. We demonstrate that ABOi KTx with a de novo mTOR inhibitor-based regimen is feasible without severe surgical or immunological complications and a low rate of viral infections.

  9. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy.

    PubMed

    Ronan, Baptiste; Flamand, Odile; Vescovi, Lionel; Dureuil, Christine; Durand, Laurence; Fassy, Florence; Bachelot, Marie-France; Lamberton, Annabelle; Mathieu, Magali; Bertrand, Thomas; Marquette, Jean-Pierre; El-Ahmad, Youssef; Filoche-Romme, Bruno; Schio, Laurent; Garcia-Echeverria, Carlos; Goulaouic, Hélène; Pasquier, Benoit

    2014-12-01

    Vps34 is a phosphoinositide 3-kinase (PI3K) class III isoform that has attracted major attention over the recent years because of its role in autophagy. Herein we describe the biological characterization of SAR405, which is a low-molecular-mass kinase inhibitor of Vps34 (KD 1.5 nM). This compound has an exquisite protein and lipid kinase selectivity profile that is explained by its unique binding mode and molecular interactions within the ATP binding cleft of human Vps34. To the best of our knowledge, this is the first potent and specific Vps34 inhibitor described so far. Our results demonstrate that inhibition of Vps34 kinase activity by SAR405 affects both late endosome-lysosome compartments and prevents autophagy. Moreover, we show that the concomitant inhibition of Vps34 and mTOR, with SAR405 and the US Food and Drug Administration-approved mTOR inhibitor everolimus, results in synergistic antiproliferative activity in renal tumor cell lines, indicating a potential clinical application in cancer.

  10. Mutation-targeted therapy with sunitinib or everolimus in patients with advanced low-grade or intermediate-grade neuroendocrine tumours of the gastrointestinal tract and pancreas with or without cytoreductive surgery: protocol for a phase II clinical trial

    PubMed Central

    Neychev, Vladimir; Steinberg, Seth M; Cottle-Delisle, Candice; Merkel, Roxanne; Nilubol, Naris; Yao, Jianhua; Meltzer, Paul; Pacak, Karel; Marx, Stephen; Kebebew, Electron

    2015-01-01

    Introduction Finding the optimal management strategy for patients with advanced, metastatic neuroendocrine tumours (NETs) of the gastrointestinal tract and pancreas is a work in progress. Sunitinib and everolimus are currently approved for the treatment of progressive, unresectable, locally advanced or metastatic low-grade or intermediate-grade pancreatic NETs. However, mutation-targeted therapy with sunitinib or everolimus has not been studied in this patient population. Methods and analysis This prospective, open-label phase II clinical trial was designed to determine if mutation-targeting therapy with sunitinib or everolimus for patients with advanced low-grade or intermediate-grade NETs is more effective than historically expected results with progression-free survival (PFS) as the primary end point. Patients ≥18 years of age with progressive, low-grade or intermediate-grade locally advanced or metastatic NETs are eligible for this study. Patients will undergo tumour biopsy (if they are not a surgical candidate) for tumour genotyping. Patients will be assigned to sunitininb or everolimus based on somatic/germline mutations profile. Patients who have disease progression on either sunitinib or everolimus will crossover to the other drug. Treatment will continue until disease progression, unacceptable toxicity, or consent to withdrawal. Using the proposed criteria, 44 patients will be accrued within each treatment group during a 48-month period (a total of 88 patients for the 2 treatments), and followed for up to an additional 12 months (a total of 60 months from entry of the first patient) to achieve 80% power in order to test whether there is an improvement in PFS compared to historically expected results, with a 0.10 α level one-sided significance test. Ethics and dissemination The study protocol was approved by the institutional review board of the National Cancer Institute (NCI-IRB Number 15C0040; iRIS Reference Number 339636). The results will be

  11. Oral mucosal injury caused by mammalian target of rapamycin inhibitors: emerging perspectives on pathobiology and impact on clinical practice.

    PubMed

    Peterson, Douglas E; O'Shaughnessy, Joyce A; Rugo, Hope S; Elad, Sharon; Schubert, Mark M; Viet, Chi T; Campbell-Baird, Cynthia; Hronek, Jan; Seery, Virginia; Divers, Josephine; Glaspy, John; Schmidt, Brian L; Meiller, Timothy F

    2016-08-01

    In recent years oral mucosal injury has been increasingly recognized as an important toxicity associated with mammalian target of rapamycin (mTOR) inhibitors, including in patients with breast cancer who are receiving everolimus. This review addresses the state-of-the-science regarding mTOR inhibitor-associated stomatitis (mIAS), and delineates its clinical characteristics and management. Given the clinically impactful pain associated with mIAS, this review also specifically highlights new research focusing on the study of the molecular basis of pain. The incidence of mIAS varies widely (2-78%). As reported across multiple mTOR inhibitor clinical trials, grade 3/4 toxicity occurs in up to 9% of patients. Managing mTOR-associated oral lesions with topical oral, intralesional, and/or systemic steroids can be beneficial, in contrast to the lack of evidence supporting steroid treatment of oral mucositis caused by high-dose chemotherapy or radiation. However, steroid management is not uniformly efficacious in all patients receiving mTOR inhibitors. Furthermore, technology does not presently exist to permit clinicians to predict a priori which of their patients will develop these lesions. There thus remains a strategic need to define the pathobiology of mIAS, the molecular basis of pain, and risk prediction relative to development of the clinical lesion. This knowledge could lead to novel future interventions designed to more effectively prevent mIAS and improve pain management if clinically significant mIAS lesions develop. PMID:27334013

  12. Adverse Cardiovascular Outcomes associated with Coronary Artery Bypass Surgery and Percutaneous Coronary Intervention with Everolimus Eluting Stents: A Meta-Analysis

    PubMed Central

    Bundhun, Pravesh Kumar; Pursun, Manish; Teeluck, Abhishek Rishikesh; Bhurtu, Akash; Soogund, Mohammad Zafooruddin Sani; Huang, Wei-Qiang

    2016-01-01

    This study aimed to compare the mid-term adverse cardiovascular outcomes associated with Coronary Artery Bypass Surgery (CABG) and Percutaneous Coronary Intervention (PCI) with Everolimus Eluting Stents (EES). Electronic databases were searched for studies comparing the mid-term (>1 year) adverse cardiovascular outcomes between CABG and PCI with EES. Odd Ratios (OR) with 95% Confidence Intervals (CIs) were calculated and the pooled analyses were performed with RevMan 5.3 software. A total number of 5207 patients were involved in this analysis. No significant difference was observed in mortality between CABG and EES with OR: 0.90, 95% CI: 0.73–1.10; P = 0.30. Moreover, CABG was associated with a high stroke rate, with OR: 0.73, 95% CI: 0.45–1.17; P = 0.19, without any statistical significant. CABG was associated with significantly lower Major Adverse Cardiac Events and Myocardial Infarction with OR: 1.46, 95% CI: 1.05–2.04; P = 0.03 and OR: 1.46, 95% CI: 1.01–2.12; P = 0.05 respectively whereas PCI was associated with a significantly higher repeated revascularization with OR: 2.21; 95% CI: 1.76–2.77; P = 0.00001. In conclusion, significant differences were noted in several subgroups analyzing the mid-term cardiovascular outcomes between CABG and EES. PMID:27775055

  13. Pilot conversion trial from mycophenolic acid to everolimus in ABO-incompatible kidney-transplant recipients with BK viruria and/or viremia.

    PubMed

    Belliere, Julie; Kamar, Nassim; Mengelle, Catherine; Allal, Asma; Sallusto, Federico; Doumerc, Nicolas; Game, Xavier; Congy-Jolivet, Nicolas; Esposito, Laure; Debiol, Benedicte; Rostaing, Lionel

    2016-03-01

    Immunosuppression using everolimus (EVR) plus low-dose tacrolimus (Tac) is commonly used in organ transplantation. EVR has potential antiviral effects. Herein, the long-term outcomes and impacts of Tac-EVR on the BK virus are reported in ABO-incompatible kidney-transplant recipients. The initial immunosuppressive regimen combined steroids, Tac, and mycophenolic acid (MPA). At a median of 141 (34-529) days post-transplantation, seven stable ABO-incompatible kidney-transplant recipients were converted from MPA to EVR because of active BK replication, and compared with a reference group of fourteen ABO-incompatible patients receiving classical Tac plus MPA. At 1 month before conversion, at 1, 3 months after, and at last follow-up, clinical and biological parameters were monitored. The median time from conversion to the last follow-up was 784 (398-866) days. Conversion to EVR caused no change to rejection episodes or immunological status (isoagglutinin titers, anti-HLA antibodies). At last follow-up, median eGFR was similar in the Tac-MPA versus Tac-EVR group (40 [range: 14-56] vs. 54.5 ml/min/1.73 m(2) [range: 0-128], P = 0.07). The major adverse event was dyslipidemia. Interestingly, conversion from MPA to EVR decreased BK viral load in five patients. ABO-incompatible kidney-transplant recipients with an active BK virus infection may benefit from conversion to EVR. PMID:26575959

  14. HDAC Inhibitors.

    PubMed

    Olzscha, Heidi; Bekheet, Mina E; Sheikh, Semira; La Thangue, Nicholas B

    2016-01-01

    Lysine acetylation in proteins is one of the most abundant posttranslational modifications in eukaryotic cells. The dynamic homeostasis of lysine acetylation and deacetylation is dictated by the action of histone acetyltransferases (HAT) and histone deacetylases (HDAC). Important substrates for HATs and HDACs are histones, where lysine acetylation generally leads to an open and transcriptionally active chromatin conformation. Histone deacetylation forces the compaction of the chromatin with subsequent inhibition of transcription and reduced gene expression. Unbalanced HAT and HDAC activity, and therefore aberrant histone acetylation, has been shown to be involved in tumorigenesis and progression of malignancy in different types of cancer. Therefore, the development of HDAC inhibitors (HDIs) as therapeutic agents against cancer is of great interest. However, treatment with HDIs can also affect the acetylation status of many other non-histone proteins which play a role in different pathways including angiogenesis, cell cycle progression, autophagy and apoptosis. These effects have led HDIs to become anticancer agents, which can initiate apoptosis in tumor cells. Hematological malignancies in particular are responsive to HDIs, and four HDIs have already been approved as anticancer agents. There is a strong interest in finding adequate biomarkers to predict the response to HDI treatment. This chapter provides information on how to assess HDAC activity in vitro and determine the potency of HDIs on different HDACs. It also gives information on how to analyze cellular markers following HDI treatment and to analyze tissue biopsies from HDI-treated patients. Finally, a protocol is provided on how to detect HDI sensitivity determinants in human cells, based on a pRetroSuper shRNA screen upon HDI treatment. PMID:27246222

  15. Pazopanib: a multikinase inhibitor with activity in advanced renal cell carcinoma.

    PubMed

    Bukowski, Ronald M

    2010-05-01

    Treatment options for patients with metastatic renal cell carcinoma (RCC) have changed dramatically, and a new paradigm has evolved. IFN-alpha and IL-2 were previously mainstays of therapy, but since December 2005, six new agents have been approved in the USA for the treatment of advanced RCC. Three of these new agents are multitargeted kinase inhibitors, including sunitinib, sorafenib, and recently pazopanib, two target the mTOR (temsirolimus and everolimus), and one is a humanized monoclonal antibody (bevacizumab in combination with IFN-alpha) that targets VEGF. Sunitinib has emerged as the standard of care for treatment-naive RCC patients, with the recently approved bevacizumab and IFN-alpha combination providing an additional option for this population. The recent approval of pazopanib, based on the results from sequential Phase II and III clinical trials demonstrating improved overall response rates and progression-free survival, provides yet another option for front-line therapy. The current article examines the pazopanib preclinical and clinical data, provides an overview of the development of this tyrosine kinase inhibitor, and provides some speculation concerning its role in RCC therapy.

  16. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    SciTech Connect

    Skardelly, Marco; Glien, Anja; Groba, Claudia; Schlichting, Nadine; Kamprad, Manja; Meixensberger, Juergen; Milosevic, Javorina

    2013-12-10

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment.

  17. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  18. Malignancies after heart transplantation: incidence, risk factors, and effects of calcineurin inhibitor withdrawal.

    PubMed

    Doesch, A O; Müller, S; Konstandin, M; Celik, S; Kristen, A; Frankenstein, L; Ehlermann, P; Sack, F-U; Katus, H A; Dengler, T J

    2010-11-01

    The objectives of the present study were to evaluate the incidence of malignancies and to describe the effects of immunosuppression on survival and recurrence of malignancies after heart transplantation (HTX). Data were analyzed in 211 cardiac allograft recipients, in whom HTX was performed between 1989 and 2005. All of these patients survived for more than 2 years after HTX and received induction therapy with antithymocyte globulin (RATG) guided by T-cell monitoring since 1994. An immunosuppressive regimen consisting of cyclosporine A (CsA) combined with azathioprine was followed by CsA and mycophenolate mofetil (MMF) in 2001; mammalian target of rapamycin (mTOR) inhibitors (everolimus/sirolimus) were used since 2003. Mean patient age at HTX was 51.4 ± 10.5 years; mean follow-up time after HTX 9.2 ± 4.7 years. Overall incidence of neoplasias was 30.8%. Individual risk factors associated with a higher risk of malignancy after HTX were higher age at transplantation (P = .003), male gender (P = .005) and ischemic cardiomyopathy before HTX (P = .04). Administration of azathioprine (P < .0001) or a calcineurin inhibitor (CNI) (P = .02) for more than 1 year was associated with development of malignancy, whereas significantly fewer malignancies were noticed in patients receiving an mTOR-inhibitor (P < .0001). Kaplan-Meier analysis demonstrated a strong statistical trend toward an improved survival in patients with a noncutaneous neoplasia switched to a CNI-free protocol (P = .05). This study demonstrated the impact of a variety of individual risk factors and immunosuppressive drugs on development of malignancy after HTX. Markedly fewer patients with noncutaneous malignancies died after switch to a CNI-free regimen, not quite reaching statistical significance by Kaplan-Meier analysis, however. PMID:21094840

  19. Are Everolimus-Eluting Stents Associated With Better Clinical Outcomes Compared to Other Drug-Eluting Stents in Patients With Type 2 Diabetes Mellitus?

    PubMed Central

    Bundhun, Pravesh Kumar; Pursun, Manish; Teeluck, Abhishek Rishikesh; Long, Man-Yun

    2016-01-01

    Abstract Controversies still exist with the use of Everolimus-Eluting Stents (EES) compared to other Drug-Eluting Stents (DES) in patients with Type 2 Diabetes Mellitus (T2DM). Therefore, in order to solve this issue, we aim to compare the 1-year adverse clinical outcomes between EES and non-EE DES with a larger number of patients with T2DM. Medline, EMBASE, PubMed databases, as well as the Cochrane library were searched for randomized controlled trials (RCTs) and observational studies (OS) comparing EES and non-EE DES in patients with T2DM. One-year adverse outcomes were considered as the clinical endpoints in this study. Odd ratios (OR) with 95% confidence interval (CI) were used to express the pooled effect on discontinuous variables and the pooled analyses were performed with RevMan 5.3. Ten studies consisting of a total of 11,981 patients with T2DM (6800 patients in the EES group and 5181 in the non-EE DES group) were included in this meta-analysis. EES were associated with a significantly lower major adverse cardiac events (MACEs) with OR: 0.83, 95% CI: 0.70–0.98, P = 0.03. Revascularization including target vessel revascularization (TVR) and target lesion revascularization (TLR) were also significantly lower in the EES group with OR: 0.62, 95% CI: 0.40–0.94, P = 0.03 and OR: 0.74, 95% CI: 0.57–0.95, P = 0.02, respectively. Also, a significantly lower rate of stent thrombosis with OR: 0.63, 95% CI: 0.46–0.86, P = 0.003 was observed in the EES group. However, a similar mortality rate was reported between the EES and non-EE DES groups. During this 1-year follow-up period, EES were associated with significantly better clinical outcomes compared to non-EE DES in patients suffering from T2DM. However, further research comparing EES with non-EE DES in insulin-treated and noninsulin-treated patients with T2DM are recommended. PMID:27057888

  20. Comparison of the Efficacy of Everolimus-Eluting Stents Versus Drug-Eluting Balloons in Patients With In-Stent Restenosis (from the RIBS IV and V Randomized Clinical Trials).

    PubMed

    Alfonso, Fernando; Pérez-Vizcayno, María José; García Del Blanco, Bruno; García-Touchard, Arturo; Masotti, Mónica; López-Minguez, José R; Iñiguez, Andrés; Zueco, Javier; Velazquez, Maite; Cequier, Angel; Lázaro-García, Rosa; Martí, Vicens; Moris, César; Urbano-Carrillo, Cristobal; Bastante, Teresa; Rivero, Fernando; Cárdenas, Alberto; Gonzalo, Nieves; Jiménez-Quevedo, Pilar; Fernández, Cristina

    2016-02-15

    Treatment of patients with in-stent restenosis (ISR) remains a challenge. This study sought to compare the efficacy of everolimus-eluting stents (EESs) and drug-eluting balloons (DEBs) with paclitaxel in patients with ISR. A pooled analysis of the Restenosis Intra-Stent of Drug-Eluting Stents: Drug-Eluting Balloon vs Everolimus-Eluting Stent (RIBS IV) and Restenosis Intra-Stent of Bare-Metal Stents: Drug-Eluting Balloon vs Everolimus-Eluting Stent (RIBS V) randomized trials was performed using patient-level data. In both trials, EESs were compared with DEBs in patients with ISR (RIBS V included 189 patients with bare-metal ISR; RIBS IV included 309 patients with drug-eluting ISR). Inclusion and exclusion criteria were identical in both trials. A total of 249 patients were allocated to EES and 249 to DEB. Clinical follow-up at 1 year was obtained in all (100%) patients and late angiography (median 249 days) in 91% of eligible patients. Compared with patients treated with DEBs, patients treated with EESs obtained better short-term results (postprocedural minimal lumen diameter 2.28 ± 0.5 vs 2.12 ± 0.4 mm, p <0.0001). At follow-up, patients treated with EESs had larger in-segment minimal lumen diameter (primary end point 2.16 ± 0.7 vs 1.88 ± 0.6 mm, p <0.0001; absolute mean difference 0.28 mm; 95% confidence interval [CI] 0.16 to 0.40) and net lumen gain (1.33 ± 0.6 vs 1.00 ± 0.7 mm, p <0.0001) and had lower %diameter stenosis (19 ± 21% vs 28 ± 22%, p <0.0001) and binary restenosis rate (8.7% vs 15.7%, p = 0.02). Consistent results were observed in the in-lesion analysis. No interactions were found between the underlying stent type and treatment effects. At 1-year clinical follow-up, the composite of cardiac death, myocardial infarction, and target vessel revascularization was significantly reduced in the EES arm (8.8% vs 14.5%, p = 0.03; hazard ratio 0.59, 95% CI 0.31 to 0.94) mainly driven by a lower need for target vessel revascularization (6% vs 12.4%, p

  1. Novel corrosion inhibitor technology

    SciTech Connect

    Van de Ven, P.; Fritz, P.; Pellet, R.

    1999-11-01

    A novel, patented corrosion inhibitor technology has been identified for use in heat transfer applications such as automotive and heavy-duty coolant. The new technology is based on a low-toxic, virtually depletion-free carboxylic acid corrosion inhibitor package that performs equally well in mono ethylene glycol and in less toxic propylene glycol coolants. An aqueous inhibitor concentrate is available to provide corrosion protection where freezing protection is not an issue. In the present paper, this inhibitor package is evaluated in the different base fluids: mono ethylene glycol, mono propylene glycol and water. Results are obtained in both standardized and specific corrosion tests as well as in selected field trials. These results indicate that the inhibitor package remains effective and retains the benefits previously identified in automotive engine coolant applications: excellent corrosion protection under localized conditions, general corrosion conditions as well as at high temperature.

  2. Preclinical Effectiveness of Selective Inhibitor of IRS-1/2 NT157 in Osteosarcoma Cell Lines

    PubMed Central

    Garofalo, Cecilia; Capristo, Mariantonietta; Mancarella, Caterina; Reunevi, Hadas; Picci, Piero; Scotlandi, Katia

    2015-01-01

    Osteosarcoma (OS) is the most common primary bone tumor in children and young adults. Several studies have confirmed the involvement of the insulin-like growth factor (IGF) system in the regulation of OS cell proliferation and differentiation as well as in the protection of cells from chemotherapy. Insulin receptor substrate (IRS)-1 is a critical mediator of IGF-1R signaling, and we recently reported that its overexpression in OS cells increases proliferation, migration, and metastasis both in vitro and in vivo. In this study, we evaluated the efficacy of NT157, a selective inhibitor of IRS-1/2, in a panel of OS cells. A strong dose-dependent inhibition of growth was observed in the MG-63, OS-19, and U-2OS OS cell lines, displaying IC50 values at sub-micromolar doses after 72 h of treatment. Exposure to NT157 elicited dose- and time-dependent decreases in IRS-1 levels. Moreover, a protein analysis showed that the degradation of IRS-1 inhibited the activation of principal downstream mediators of the IGF pathway. NT157 significantly affected the cells’ migratory ability, as confirmed by a wound-healing assay. The inhibitor induced cytostatic effects, as evidenced by G2/M cell cycle arrest, and did not affect apoptosis. Consequently, NT157 was combined with drugs used to treat OS in order to capitalize on its therapeutic potential. Simultaneous treatments were made in association with chemotherapeutic agents in a fixed ratio for 72 h and cell proliferation was determined by MTT assay. Synergistic or addictive effects with respect to single agents are expressed as the combination index. Significant synergistic effects were obtained with several targeted drugs, such as Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, and NVP-BEZ235, a dual inhibitor of PI-3K/mTOR. Overall, these findings provide evidence for the effectiveness of a selected inhibitor of IRS-1/2 NT157 in OS cells, displaying a promising approach based on the targeting of IRS-1 combined

  3. Assessing Metabolic Changes in Response to mTOR Inhibition in a Mantle Cell Lymphoma Xenograft Model Using AcidoCEST MRI

    PubMed Central

    Akhenblit, Paul J.; Hanke, Neale T.; Gill, Alexander; Persky, Daniel O.; Howison, Christine M.; Pagel, Mark D.; Baker, Amanda F.

    2016-01-01

    AcidoCEST magnetic resonance imaging (MRI) has previously been shown to measure tumor extracellular pH (pHe) with excellent accuracy and precision. This study investigated the ability of acidoCEST MRI to monitor changes in tumor pHe in response to therapy. To perform this study, we used the Granta 519 human mantle cell lymphoma cell line, which is an aggressive B-cell malignancy that demonstrates activation of the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway. We performed in vitro and in vivo studies using the Granta 519 cell line to investigate the efficacy and associated changes induced by the mTOR inhibitor, everolimus (RAD001). AcidoCEST MRI studies showed a statistically significant increase in tumor pHe of 0.10 pH unit within 1 day of initiating treatment, which foreshadowed a decrease in tumor growth of the Granta 519 xenograft model. AcidoCEST MRI then measured a decrease in tumor pHe 7 days after initiating treatment, which foreshadowed a return to normal tumor growth rate. Therefore, this study is a strong example that acidoCEST MRI can be used to measure tumor pHe that may serve as a marker for therapeutic efficacy of anticancer therapies. PMID:27140422

  4. Pathway modulators and inhibitors.

    PubMed

    Smith, John A

    2009-07-01

    Inhibitors of specific cellular pathways are useful for investigating the roles of proteins of unknown function, and for selectively inhibiting a protein in complex pathways to uncover its relationships to other proteins in this and other interacting pathways. This appendix provides links to Web sites that describe cellular processes and pathways along with the various classes of inhibitors, numerous references, downloadable diagrams, and technical tips.

  5. Update on TNF Inhibitors.

    PubMed

    Kerdel, Francisco A

    2016-06-01

    The introduction of tumor necrosis factor (TNF)-α inhibitors dramatically improved the management of psoriasis. Some newer or investigational biologics with different mechanisms of action have demonstrated noninferiority or superiority to etanercept, the first self-injectable anti-TNF-α agent to become available in the United States. Nonetheless, TNF-α inhibitors are likely to remain a mainstay of therapy for many years.

  6. Synthetic inhibitors of elastase.

    PubMed

    Edwards, P D; Bernstein, P R

    1994-03-01

    For more than two decades investigators around the world, in both academic and industrial institutions, have been developing inhibitors of human neutrophil elastase. A number of very elegant and insightful strategies have been reported. In the case of reversible peptidic inhibitors, this has resulted in the identification of some extremely potent compounds with dissociation constants in the 10(-11) M range. This is quite an accomplishment considering that these low molecular-weight inhibitors are only tri- and tetrapeptides. In the case of the heterocyclic-based inhibitors, the challenge of balancing the heterocycle's inherent reactivity and aqueous stability with the stability of the enzyme-inhibitor adduct has been meet by either using a latent, reactive functionality which is only activated within the enzyme, or by incorporating features which selectively obstruct deacylation but have little effect on the enzyme acylation step. The underlying goal of this research has been the identification of agents to treat diseases associated with HNE. Several animal models have been developed for evaluating the in vivo activity of elastase inhibitors, and compounds have been shown to be effective in all of these models by the intravenous, intratrachael or oral routes of administration. However, only a very small percentage of compounds have possessed all the necessary properties, including lack of toxicity, for progression into the clinic. The peptidyl TFMK ICI 200,880 (25-12) has many of the desired characteristics of a drug to treat the diseases associated with HNE: chemical stability, in vitro and in vivo activity, a long duration of action, and adequate metabolic stability. Currently ICI 200,880 is the only low molecular-weight HNE inhibitor known to be undergoing clinical trials, and may be the compound which finally demonstrates the clinical utility of a synthetic HNE inhibitor. PMID:8189835

  7. The novel Raf inhibitor Raf265 decreases Bcl-2 levels and confers TRAIL-sensitivity to neuroendocrine tumour cells.

    PubMed

    Zitzmann, Kathrin; de Toni, Enrico; von Rüden, Janina; Brand, Stephan; Göke, Burkhard; Laubender, Rüdiger P; Auernhammer, Christoph J

    2011-04-01

    The tumour-selective death receptor ligand tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for the treatment of human cancer. However, many tumours have evolved mechanisms to resist TRAIL-induced apoptosis. A number of studies have demonstrated that aberrant PI(3)K-Akt-mTOR survival signalling may confer TRAIL resistance by altering the balance between pro- and anti-apoptotic proteins. Here, we show that neuroendocrine tumour (NET) cell lines of heterogeneous origin exhibit a range of TRAIL sensitivities and that TRAIL sensitivity correlates with the expression of FLIP(S), caspase-8, and Bcl-2. Neither single mTOR inhibition by everolimus nor dual mTOR/PI(3)K inhibition by NVP-BEZ235 was able to enhance TRAIL susceptibility in any of the tested cell lines. In contrast, dual PI(3)K-Akt-mTOR and Raf-MEK-Erk pathway inhibition by the IGF-1R inhibitor NVP-AEW541 effectively restored TRAIL sensitivity in NCI-H727 bronchus carcinoid cells. Furthermore, blocking Raf-MEK-Erk signalling by the novel Raf inhibitor Raf265 significantly enhanced TRAIL sensitivity in NCI-H727 and CM insulinoma cells. While having no effect on FLIP(S) or caspase-8 expression, Raf265 strongly decreased Bcl-2 levels in those cell lines susceptible to its TRAIL-sensitizing action. Taken together, our findings suggest that combinations of Raf-MEK-Erk pathway inhibitors and TRAIL might offer a novel therapeutic strategy in NET disease.

  8. Efficacy and Toxicity of Mammalian Target Rapamycin Inhibitors in Patients with Metastatic Renal Cell Carcinoma with Renal Insufficiency: The Korean Cancer Study Group GU 14-08

    PubMed Central

    Kim, Ki Hyang; Kim, Joo Hoon; Lee, Ji Young; Kim, Hyo Song; Heo, Su Jin; Kim, Ji Hyung; Kim, Ho Young; Rha, Sun Young

    2016-01-01

    Purpose We evaluated the efficacy and toxicity of mammalian target rapamycin inhibitors in Korean patients with metastatic renal cell carcinoma (mRCC) with chronic renal insufficiency not requiring dialysis. Materials and Methods Korean patients with mRCC and chronic renal insufficiency not requiring dialysis treated with everolimus or temsirolimus between January 2008 and December 2014 were included. Patient characteristics, clinical outcomes, and toxicities were evaluated. Overall survival (OS) and progression-free survival (PFS) durations were evaluated according to the degree of renal impairment. Results Eighteen patients were considered eligible for the study (median age, 59 years). The median glomerular filtration rate was 51.5 mL/min/1.73 m2. The best response was partial response in six patients and stable disease in 11 patients. The median PFS and OS durations were 8 months (95% confidence interval [CI], 0 to 20.4) and 32 months (95% CI, 27.5 to 36.5), respectively. The most common non-hematologic and grade 3/4 adverse events included stomatitis, fatigue, flu-like symptoms, and anorexia as well as elevated creatinine level. Conclusion Mammalian target rapamycin inhibitors were efficacious and did not increase toxicity in Korean patients with mRCC and chronic renal insufficiency not requiring dialysis. PMID:26875195

  9. The use of proliferation signal inhibitors in the prevention and treatment of allograft vasculopathy in heart transplantation.

    PubMed

    Delgado, Juan F; Manito, Nicolás; Segovia, Javier; Almenar, Luis; Arizón, José M; Campreciós, Marta; Crespo-Leiro, Maria G; Díaz, Beatriz; González-Vílchez, Francisco; Mirabet, Sònia; Palomo, Jesús; Roig, Eulàlia; de la Torre, José M

    2009-04-01

    Cardiac allograft vasculopathy (CAV) currently represents one of the most important causes of long-term morbidity and mortality in the heart transplant population. In well-designed studies with de novo patients, the use of proliferation signal inhibitors (PSIs; everolimus and sirolimus) has been shown to significantly prevent the intimal growth of graft coronary arteries in comparison to other immunosuppressive regimens, reducing the incidence of vasculopathy at 12 and 24 months. In addition, conversion to PSIs in maintenance patients with established CAV has also shown promising results in the reduction of the progression of the disease and its clinical consequences. For these reasons the interest shown by various transplantation units in the potential role of PSIs in this field is growing. The aim of the present article is to review the information obtained to date on the use of PSIs in heart transplant recipients, both in the prevention and the treatment of CAV. The principal published recommendations on the introduction and appropriate management of these drugs in clinical practice are also collected, as well as certain recommendations given by the authors based on their experience.

  10. Long-term mTOR inhibitors administration evokes altered calcium homeostasis and platelet dysfunction in kidney transplant patients

    PubMed Central

    López, Esther; Berna-Erro, Alejandro; Bermejo, Nuria; Brull, José María; Martinez, Rocío; Garcia Pino, Guadalupe; Alvarado, Raul; Salido, Ginés María; Rosado, Juan Antonio; Cubero, Juan José; Redondo, Pedro Cosme

    2013-01-01

    The use of the mammal target of rapamycin (mTOR) inhibitors has been consolidated as the therapy of election for preventing graft rejection in kidney transplant patients, despite their immunosuppressive activity is less strong than anti-calcineurin agents like tacrolimus and cyclosporine A. Furthermore, as mTOR is widely expressed, rapamycin (a macrolide antibiotic produced by Streptomyces hygroscopicus) is recommended in patients presenting neoplasia due to its antiproliferative actions. Hence, we have investigated whether rapamycin presents side effects in the physiology of other cell types different from leucocytes, such as platelets. Blood samples were drawn from healthy volunteers and kidney transplant patients long-term medicated with rapamycin: sirolimus and everolimus. Platelets were either loaded with fura-2 or directly stimulated, and immunoassayed or fixed with Laemmli's buffer to perform the subsequent analysis of platelet physiology. Our results indicate that rapamycin evokes a biphasic time-dependent alteration in calcium homeostasis and function in platelets from kidney transplant patients under rapamycin regime, as demonstrated by the reduction in granule secretion observed and subsequent impairment of platelet aggregation in these patients compared with healthy volunteers. Platelet count was also reduced in these patients, thus 41% of patients presented thrombocytopenia. All together our results show that long-term administration of rapamycin to kidney transplant patients evokes alteration in platelet function. PMID:23577651

  11. Small-molecule caspase inhibitors

    NASA Astrophysics Data System (ADS)

    Zhenodarova, S. M.

    2010-02-01

    The review considers low-molecular weight inhibitors of caspases, cysteine proteases being key contributors to apoptosis (programmed cell death). The inhibitors with aspartic acid residues or various heterocyclic systems (both synthetic and natural) are covered. Their possible mechanisms of action are discussed. Data on inhibitor structure-activity relationship studies are systematically surveyed. The interactions of the non-peptide fragments of an inhibitor with the enzymes are examined. Examples of the use of some inhibitors for apoptosis suppression are provided.

  12. Natural inhibitors of thrombin.

    PubMed

    Huntington, James A

    2014-04-01

    The serine protease thrombin is the effector enzyme of blood coagulation. It has many activities critical for the formation of stable clots, including cleavage of fibrinogen to fibrin, activation of platelets and conversion of procofactors to active cofactors. Thrombin carries-out its multiple functions by utilising three special features: a deep active site cleft and two anion binding exosites (exosite I and II). Similarly, thrombin inhibitors have evolved to exploit the unique features of thrombin to achieve rapid and specific inactivation of thrombin. Exogenous thrombin inhibitors come from several different protein families and are generally found in the saliva of haematophagous animals (blood suckers) as part of an anticoagulant cocktail that allows them to feed. Crystal structures of several of these inhibitors reveal how peptides and proteins can be targeted to thrombin in different and interesting ways. Thrombin activity must also be regulated by endogenous inhibitors so that thrombi do not occlude blood flow and cause thrombosis. A single protein family, the serpins, provides all four of the endogenous thrombin inhibitors found in man. The crystal structures of these serpins bound to thrombin have been solved, revealing a similar exosite-dependence on complex formation. In addition to forming the recognition complex, serpins destroy the structure of thrombin, allowing them to be released from cofactors and substrates for clearance. This review examines how the special features of thrombin have been exploited by evolution to achieve inhibition of the ultimate coagulation protease.

  13. SGLT2 inhibitors.

    PubMed

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. PMID:26362302

  14. A randomized multicenter comparison of hybrid sirolimus-eluting stents with bioresorbable polymer versus everolimus-eluting stents with durable polymer in total coronary occlusion: rationale and design of the Primary Stenting of Occluded Native Coronary Arteries IV study

    PubMed Central

    2012-01-01

    Background Percutaneous recanalization of total coronary occlusion (TCO) was historically hampered by high rates of restenosis and reocclusions. The PRISON II trial demonstrated a significant restenosis reduction in patients treated with sirolimus-eluting stents compared with bare metal stents for TCO. Similar reductions in restenosis were observed with the second-generation zotarolimus-eluting stent and everolimus-eluting stent. Despite favorable anti-restenotic efficacy, safety concerns evolved after identifying an increased rate of very late stent thrombosis (VLST) with drug-eluting stents (DES) for the treatment of TCO. Late malapposition caused by hypersensitivity reactions and chronic inflammation was suggested as a probable cause of these VLST. New DES with bioresorbable polymer coatings were developed to address these safety concerns. No randomized trials have evaluated the efficacy and safety of the new-generation DES with bioresorbable polymers in patients treated for TCO. Methods/Design The prospective, randomized, single-blinded, multicenter, non-inferiority PRISON IV trial was designed to evaluate the safety, efficacy, and angiographic outcome of hybrid sirolimus-eluting stents with bioresorbable polymers (Orsiro; Biotronik, Berlin, Germany) compared with everolimus-eluting stents with durable polymers (Xience Prime/Xpedition; Abbott Vascular, Santa Clara, CA, USA) in patients with successfully recanalized TCOs. In total, 330 patients have been randomly allocated to each treatment arm. Patients are eligible with estimated duration of TCO ≥4 weeks with evidence of ischemia in the supply area of the TCO. The primary endpoint is in-segment late luminal loss at 9-month follow-up angiography. Secondary angiographic endpoints include in-stent late luminal loss, minimal luminal diameter, percentage of diameter stenosis, in-stent and in-segment binary restenosis and reocclusions at 9-month follow-up. Additionally, optical coherence tomography is performed in

  15. One-Year Outcomes in "Real-World" Patients Treated With a Thin-Strut, Platinum-Chromium, Everolimus-Eluting Stent (from the PROMUS Element Plus US Post-Approval Study [PE-Plus PAS]).

    PubMed

    Kandzari, David E; Amjadi, Nima; Caputo, Christopher; Rowe, Steven K; Williams, Jerome; Tamboli, Hoshedar P; Christen, Thomas; Allocco, Dominic J; Dawkins, Keith D

    2016-02-15

    The PROMUS Element Plus US Post-Approval Study (PE-Plus PAS) was a prospective, open-label, multicenter, observational study designed to examine outcomes in everyday clinical practice in patients treated with everolimus-eluting, platinum-chromium PROMUS Element Plus stents at 52 centers in the United States. This is the first report of results from this large study. The primary end point of the PE-Plus PAS was 12-month cardiac death or myocardial infarction in the more restricted population of "PLATINUM-like" patients pooled from the PE-Plus PAS, PE-PROVE (PROMUS Element European post-approval study), and PLATINUM Workhorse/Small Vessel trials. Additional clinical end points were tested in the overall PE-Plus PAS patient population. Of the 2,683 patients enrolled in PE-Plus PAS, 70% were men, mean age was 64 years, 33% had diabetes, and 29% were "PLATINUM-like." Among the PLATINUM-like patients, 12-month cardiac death or myocardial infarction was 1.8% (33 of 1,855) with an upper 1-sided 95% confidence interval of 2.3%, which was significantly less than the prespecified performance goal of 3.2% (pnoninferiority <0.001). In the overall PE-Plus population, 12-month target vessel failure (defined as death, MI, or revascularization related to the target vessel) was 6.7% (170 of 2,554), cardiac death was 1.4% (37 of 2,554), MI was 1.1% (28 of 2,554), and ARC-definite/probable stent thrombosis was 0.7% (19 of 2,554). A prespecified secondary end point of 12-month target vessel failure in diabetic patients demonstrated a rate of 4.2% (14 of 332) with an upper 1-sided 95% confidence interval of 6.03%, which was significantly less than the performance goal of 12.6% (pnoninferiority <0.001). In conclusion, in this large registry of unselected patients, coronary artery revascularization with the PROMUS Element Plus everolimus-eluting stent demonstrates favorable results with low 1-year clinical event rates.

  16. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  17. Cholinesterase inhibitors from botanicals.

    PubMed

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P; Ahmed, K K Mueen

    2013-07-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  18. Phosphodiesterase-5 inhibitors.

    PubMed

    Cockrill, Barbara A; Waxman, Aaron B

    2013-01-01

    Nitric oxide (NO) signaling plays a key role in modulating vascular tone and remodeling in the pulmonary circulation. The guanylate cyclase/cyclic guanylate monophosphate-signaling pathway primarily mediates nitric oxide signaling. This pathway is critical in normal regulation of the pulmonary vasculature, and is an important target for therapy in patients with pulmonary hypertension. In the pulmonary vasculature, degradation of cGMP is primarily regulated by PDE-5, and inhibition of this enzyme has important effects on pulmonary vasculature smooth muscle tone. Large randomized placebo-controlled trials of PDE-5 inhibitors demonstrated improved exercise capacity, hemodynamics and quality of life in adult patients with PAH. This chapter will discuss the mechanisms of NO signaling in the vasculature, characteristics of the PDE5-inhibitors approved for treatment of PH, and review available data on the use of phosphodiesterase inhibitors in PH. PMID:24092343

  19. Pectin methylesterase inhibitor.

    PubMed

    Giovane, A; Servillo, L; Balestrieri, C; Raiola, A; D'Avino, R; Tamburrini, M; Ciardiello, M A; Camardella, L

    2004-02-12

    Pectin methylesterase (PME) is the first enzyme acting on pectin, a major component of plant cell wall. PME action produces pectin with different structural and functional properties, having an important role in plant physiology. Regulation of plant PME activity is obtained by the differential expression of several isoforms in different tissues and developmental stages and by subtle modifications of cell wall local pH. Inhibitory activities from various plant sources have also been reported. A proteinaceous inhibitor of PME (PMEI) has been purified from kiwi fruit. The kiwi PMEI is active against plant PMEs, forming a 1:1 non-covalent complex. The polypeptide chain comprises 152 amino acid residues and contains five Cys residues, four of which are connected by disulfide bridges, first to second and third to fourth. The sequence shows significant similarity with the N-terminal pro-peptides of plant PME, and with plant invertase inhibitors. In particular, the four Cys residues involved in disulfide bridges are conserved. On the basis of amino acid sequence similarity and Cys residues conservation, a large protein family including PMEI, invertase inhibitors and related proteins of unknown function has been identified. The presence of at least two sequences in the Arabidopsis genome having high similarity with kiwi PMEI suggests the ubiquitous presence of this inhibitor. PMEI has an interest in food industry as inhibitor of endogenous PME, responsible for phase separation and cloud loss in fruit juice manufacturing. Affinity chromatography on resin-bound PMEI can also be used to concentrate and detect residual PME activity in fruit and vegetable products.

  20. Acyclic peptide inhibitors of amylases.

    PubMed

    Pohl, Nicola

    2005-12-01

    In this issue of Chemistry and Biology, a library screening approach reveals a linear octapeptide inhibitor of alpha-amylases reached by de novo design . The selected molecule shares characteristics with naturally occurring protein inhibitors -- a result that suggests general rules for the design of peptide-based amylase inhibitors may be achievable.

  1. [JAK2 inhibitors].

    PubMed

    Hernández Boluda, Juan Carlos; Gómez, Montse; Pérez, Ariadna

    2016-07-15

    Pharmacological inhibition of the kinase activity of JAK proteins can interfere with the signaling of immunomodulatory cytokines and block the constitutive activation of the JAK-STAT pathway that characterizes certain malignancies, including chronic myeloproliferative neoplasms. JAK inhibitors may, therefore, be useful to treat malignancies as well as inflammatory or immune disorders. Currently, the most significant advances have been made in the treatment of myelofibrosis, where these drugs may lead to a remarkable improvement in the control of hyperproliferative manifestations. However, available data suggest that this treatment is not curative of myelofibrosis. In general, JAK2 inhibition induces cytopaenias, with this being considered a class side-effect. By contrast, the extrahaematologic toxicity profile varies significantly among the different JAK inhibitors. At present, there are several clinical trials evaluating the combination of ruxolitinib with other drugs, in order to improve its therapeutic activity as well as reducing haematologic toxicity. PMID:27033437

  2. Coagulation inhibitors in inflammation.

    PubMed

    Esmon, C T

    2005-04-01

    Coagulation is triggered by inflammatory mediators in a number of ways. However, to prevent unwanted clot formation, several natural anticoagulant mechanisms exist, such as the antithrombin-heparin mechanism, the tissue factor pathway inhibitor mechanism and the protein C anticoagulant pathway. This review examines the ways in which these pathways are down-regulated by inflammation, thus limiting clot formation and decreasing the natural anti-inflammatory mechanisms that these pathways possess. PMID:15787615

  3. Neutrophil Elastase Inhibitors

    PubMed Central

    Groutas, William C.; Dou, Dengfeng; Alliston, Kevin R.

    2011-01-01

    Introduction Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis, and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. Areas covered An overview of major developments in COPD research with emphasis on low molecular weight neutrophil elastase inhibitors is described in this review. Expert opinion Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is till limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as, for instance, an HNE or MMP-12 inhibitor with an anti-inflammatory agent such as a phosphodiesterase-4 inhibitor, or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress PMID:21235378

  4. Protein farnesyltransferase inhibitors.

    PubMed

    Ayral-Kaloustian, Semiramis; Salaski, Edward J

    2002-05-01

    Specific mutations in the ras gene impair the guanosine triphophatase (GTPase) activity of Ras proteins, which play a fundamental role in the signaling cascade, leading to uninterrupted growth signals and to the transformation of normal cells into malignant phenotypes. It has been shown that normal cells transfected with mutant ras gene become cancerous and that unfarnesylated, cytosolic mutant Ras protein does not anchor onto cell membranes and cannot induce this transformation. Posttranslational modification and plasma membrane association of mutant Ras is necessary for this transforming activity. Since its identification, the enzyme protein farnesyltransferase (FTase) that catalyzes the first and essential step of the three Ras-processing steps has emerged as the most promising target for therapeutic intervention. FTase has been implicated as a potential target in inhibiting the prenylation of a variety of proteins, thus in controlling varied disease states (e.g. cancer, neurofibromatosis, restenosis, viral hepatitis, bone resorption, parasitic infections, corneal inflammations, and diabetes) associated with prenyl modifications of Ras and other proteins. Furthermore, it has been suggested that FTase inhibitors indirectly help in inhibiting tumors via suppression of angiogenesis and induction of apoptosis. Major milestones have been achieved with small-molecule FTase inhibitors that show efficacy without toxicity in vitro, as well as in mouse models bearing ras-dependent tumors. With the determination of the crystal structure of mammalian FTase, existent leads have been fine-tuned and new potent molecules of diverse structural classes have been designed. A few of these molecules are currently in the clinic, with at least three drug candidates in Phase II studies and one in Phase III. This article will review the progress that has been reported with FTase inhibitors in drug discovery and in the clinic. PMID:12733981

  5. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  6. High performance oilfield scale inhibitors

    SciTech Connect

    Duccini, Y.; Dufour, A.; Hann, W.M.; Sanders, T.W.; Weinstein, B.

    1997-08-01

    Sea water often reacts with the formation water in offshore fields to produce barium, calcium and strontium sulfate deposits that hinder oil production. Newer fields often have more difficult to control scale problems than older ones, and current technology scale inhibitors are not able to control the deposits as well as needed. In addition, ever more stringent regulations designed to minimize the impact of inhibitors on the environment are being enacted. Three new inhibitors are presented that overcome many of the problems of older technology scale inhibitors.

  7. Osteocompatibility of Biofilm Inhibitors

    PubMed Central

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), farnesol, cis-2-decenoic acid (C2DA), and desformyl flustrabromine (dFBr). In this preliminary study, compatibility of these anti-biofilm agents with differentiating osteoblasts was examined over a 21 days period at levels above and below concentrations active against bacterial biofilm. Anti-biofilm compounds listed above were serially diluted in osteogenic media and added to cultures of MC3T3 cells. Cell viability and cytotoxicity, after exposure to each anti-biofilm agent, were measured using a DNA assay. Differentiation characteristics of osteoblasts were determined qualitatively by observing staining of mineral deposits and quantitatively with an alkaline phosphatase assay. D-AA, LS, and C2DA were all biocompatible within the reported biofilm inhibitory concentration ranges and supported osteoblast differentiation. Farnesol and dFBr induced cytotoxic responses within the reported biofilm inhibitory concentration range and low doses of dFBr were found to inhibit osteoblast differentiation. At high concentrations, such as those that may be present after local delivery, many of these biofilm inhibitors can have effects on cellular viability and osteoblast function. Concentrations at which negative effects on osteoblasts occur should serve as upper limits for delivery to orthopaedic trauma sites and guide development of these potential therapeutics for orthopaedics. PMID:25505496

  8. Osteocompatibility of biofilm inhibitors.

    PubMed

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), farnesol, cis-2-decenoic acid (C2DA), and desformyl flustrabromine (dFBr). In this preliminary study, compatibility of these anti-biofilm agents with differentiating osteoblasts was examined over a 21 days period at levels above and below concentrations active against bacterial biofilm. Anti-biofilm compounds listed above were serially diluted in osteogenic media and added to cultures of MC3T3 cells. Cell viability and cytotoxicity, after exposure to each anti-biofilm agent, were measured using a DNA assay. Differentiation characteristics of osteoblasts were determined qualitatively by observing staining of mineral deposits and quantitatively with an alkaline phosphatase assay. D-AA, LS, and C2DA were all biocompatible within the reported biofilm inhibitory concentration ranges and supported osteoblast differentiation. Farnesol and dFBr induced cytotoxic responses within the reported biofilm inhibitory concentration range and low doses of dFBr were found to inhibit osteoblast differentiation. At high concentrations, such as those that may be present after local delivery, many of these biofilm inhibitors can have effects on cellular viability and osteoblast function. Concentrations at which negative effects on osteoblasts occur should serve as upper limits for delivery to orthopaedic trauma sites and guide development of these potential therapeutics for orthopaedics. PMID:25505496

  9. Biological abatement of cellulase inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  10. Anthranilamide inhibitors of factor Xa.

    PubMed

    Mendel, David; Marquart, Angela L; Joseph, Sajan; Waid, Philip; Yee, Ying K; Tebbe, Anne Louise; Ratz, Andrew M; Herron, David K; Goodson, Theodore; Masters, John J; Franciskovich, Jeffry B; Tinsley, Jennifer M; Wiley, Michael R; Weir, Leonard C; Kyle, Jeffrey A; Klimkowski, Valentine J; Smith, Gerald F; Towner, Richard D; Froelich, Larry L; Buben, John; Craft, Trelia J

    2007-09-01

    SAR about the B-ring of a series of N(2)-aroyl anthranilamide factor Xa (fXa) inhibitors is described. B-ring o-aminoalkylether and B-ring p-amine probes of the S1' and S4 sites, respectively, afforded picomolar fXa inhibitors that performed well in in vitro anticoagulation assays.

  11. Proteinaceous alpha-amylase inhibitors.

    PubMed

    Svensson, Birte; Fukuda, Kenji; Nielsen, Peter K; Bønsager, Birgit C

    2004-02-12

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous alpha-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological approaches have been outlined for exploitation of the inhibitory function. PMID:14871655

  12. Authentic HIV-1 integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Marchand, Christophe; Burke, Terrence R; Pommier, Yves; Nicklaus, Marc C

    2010-01-01

    HIV-1 integrase (IN) is indispensable for HIV-1 replication and has become a validated target for developing anti-AIDS agents. In two decades of development of IN inhibition-based anti-HIV therapeutics, a significant number of compounds were identified as IN inhibitors, but only some of them showed antiviral activity. This article reviews a number of patented HIV-1 IN inhibitors, especially those that possess high selectivity for the strand transfer reaction. These compounds generally have a polar coplanar moiety, which is assumed to chelate two magnesium ions in the binding site. Resistance to those compounds, when given to patients, can develop as a result of IN mutations. We refer to those compounds as authentic IN inhibitors. Continued drug development has so far delivered one authentic IN inhibitor to the market (raltegravir in 2007). Current and future attention will be focused on the development of novel authentic IN inhibitors with the goal of overcoming viral resistance. PMID:21426159

  13. Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor.

    PubMed Central

    Boudier, C; Bieth, J G

    1994-01-01

    N-chlorosuccinimide oxidizes one of the methionine residues of mucus proteinase inhibitor with a second-order rate constant of 1.5 M-1.s-1. Cyanogen bromide cleavage and NH2-terminal sequencing show that the modified residue is methionine-73, the P'1 component of the inhibitor's active centre. Oxidation of the inhibitor decreases its neutrophil elastase inhibitory capacity but does not fully abolish it. The kinetic parameters describing the elastase-oxidized inhibitor interaction are: association rate constant kass. = 2.6 x 10(5) M-1.s-1, dissociation rate constant kdiss. = 2.9 x 10(-3) s-1 and equilibrium dissociation constant Ki = 1.1 x 10(-8) M. Comparison with the native inhibitor indicates that oxidation decreases kass. by a factor of 18.8 and increases kdiss. by a factor of 6.4, and therefore leads to a 120-fold increase in Ki. Yet, the oxidized inhibitor may still act as a potent elastase inhibitor in the upper respiratory tract where its concentration is 500-fold higher than Ki, i.e. where the elastase inhibition is pseudo-irreversible. Experiments in vitro with fibrous human lung elastin, the most important natural substrate of elastase, support this view: 1.35 microM elastase is fully inhibited by 5-6 microM oxidized inhibitor whether the enzyme-inhibitor complex is formed in the presence or absence of elastin and whether elastase is pre-adsorbed on elastin or not. PMID:7945266

  14. Flavivirus Entry Inhibitors.

    PubMed

    Wang, Qing-Yin; Shi, Pei-Yong

    2015-09-11

    Many flaviviruses are significant human pathogens that are transmitted by mosquitoes and ticks. Although effective vaccines are available for yellow fever virus, Japanese encephalitic virus, and tick-borne encephalitis virus, these and other flaviviruses still cause thousands of human deaths and millions of illnesses each year. No clinically approved antiviral therapy is available for flavivirus treatment. To meet this unmet medical need, industry and academia have taken multiple approaches to develop antiflavivirus therapy, among which targeting viral entry has been actively pursued in the past decade. Here we review the current knowledge of flavivirus entry and its use for small molecule drug discovery. Inhibitors of two major steps of flaviviral entry have been reported: (i) molecules that block virus-receptor interaction; (ii) compounds that prevent conformational change of viral envelope protein during virus-host membrane fusion. We also discuss the advantages and disadvantages of targeting viral entry for treatment of flavivirus infection as compared to targeting viral replication proteins. PMID:27617926

  15. Small molecules inhibitors of plasminogen activator inhibitor-1 - an overview.

    PubMed

    Rouch, Anne; Vanucci-Bacqué, Corinne; Bedos-Belval, Florence; Baltas, Michel

    2015-03-01

    PAI-1, a glycoprotein from the serpin family and the main inhibitor of tPA and uPA, plays an essential role in the regulation of intra and extravascular fibrinolysis by inhibiting the formation of plasmin from plasminogen. PAI-1 is also involved in pathological processes such as thromboembolic diseases, atherosclerosis, fibrosis and cancer. The inhibition of PAI-1 activity by small organic molecules has been observed in vitro and with some in vivo models. Based on these findings, PAI-1 appears as a potential therapeutic target for several pathological conditions. Over the past decades, many efforts have therefore been devoted to developing PAI-1 inhibitors. This article provides an overview of the publishing activity on small organic molecules used as PAI-1 inhibitors. The chemical synthesis of the most potent inhibitors as well as their biological and biochemical evaluations is also presented.

  16. Synthetic conversion of ACAT inhibitor to acetylcholinesterase inhibitor.

    PubMed

    Obata, R; Sunazuka, T; Otoguro, K; Tomoda, H; Harigaya, Y; Omura, S

    2000-06-19

    Natural product acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor pyripyropene A was synthetically converted to acetylcholinesterase (AChE) inhibitor via heterolitic cleavage of the 2-pyrone ring, followed by gamma-acylation/cyclization with several aroyl chlorides. The 4-pyridyl analogue selectively showed AChE inhibitory activity (IC50 7.9 microM) and no ACAT inhibitory activity IC50 = >1000 microM. PMID:10890154

  17. Glycosylasparaginase inhibition studies: competitive inhibitors, transition state mimics, noncompetitive inhibitors.

    PubMed

    Risley, J M; Huang, D H; Kaylor, J J; Malik, J J; Xia, Y Q

    2001-01-01

    Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond between asparagine and N-acetylglucosamine in the catabolism of N-linked glycoproteins. Previously only three competitive inhibitors, one noncompetitive inhibitor, and one irreversible inhibitor of glycosylasparaginase activity had been reported. Using human glycosylasparaginase from human amniotic fluid, L-aspartic acid and four of its analogues, where the alpha-amino group was substituted with a chloro, bromo, methyl or hydrogen, were competitive inhibitors having Ki values between 0.6-7.7 mM. These results provide supporting evidence for a proposed intramolecular autoproteolytic activation reaction. A proposed phosphono transition state mimic and a sulfo transition state mimic were competitive inhibitors with Ki values 0.9 mM and 1.4 mM, respectively. These results support a mechanism for the enzyme-catalyzed reaction involving formation of a tetrahedral high-energy intermediate. Three analogues of the natural substrate were noncompetitive inhibitors with Ki values between 0.56-0.75 mM, indicating the presence of a second binding site that may recognize (substituted)acetamido groups.

  18. Selective Inhibitors of Protein Methyltransferases

    PubMed Central

    2015-01-01

    Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs’ physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery. PMID:25406853

  19. Synthesis of lysine methyltransferase inhibitors

    PubMed Central

    Hui, Chunngai; Ye, Tao

    2015-01-01

    Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery. PMID:26258118

  20. [Pharmacology of bone resorption inhibitor].

    PubMed

    Menuki, Kunitaka; Sakai, Akinori

    2015-10-01

    Currently, bone resorption inhibitor is mainly used for osteoporosis. A number of these agents have been developed. These pharmacological action are various. Bisphosphonate inhibit functions of the osteoclasts by inducing apoptosis. On the one hand, RANK-ligand inhibitor and selective estrogen receptor modulator inhibit formation of osteoclasts. It is important to understand these pharmacological action for the selection of the appropriate medicine. PMID:26529923

  1. Peptidomimetic inhibitors of HIV protease.

    PubMed

    Randolph, John T; DeGoey, David A

    2004-01-01

    There are currently (July, 2002) six protease inhibitors approved for the treatment of HIV infection, each of which can be classified as peptidomimetic in structure. These agents, when used in combination with other antiretroviral agents, produce a sustained decrease in viral load, often to levels below the limits of quantifiable detection, and a significant reconstitution of the immune system. Therapeutic regimens containing one or more HIV protease inhibitors thus provide a highly effective method for disease management. The important role of protease inhibitors in HIV therapy, combined with numerous challenges remaining in HIV treatment, have resulted in a continued effort both to optimize regimens using the existing agents and to identify new protease inhibitors that may provide unique properties. This review will provide an overview of the discovery and clinical trials of the currently approved HIV protease inhibitors, followed by an examination of important aspects of therapy, such as pharmacokinetic enhancement, resistance and side effects. A description of new peptidomimetic compounds currently being investigated in the clinic and in preclinical discovery will follow. PMID:15193140

  2. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  3. Evolutionary families of peptidase inhibitors.

    PubMed Central

    Rawlings, Neil D; Tolle, Dominic P; Barrett, Alan J

    2004-01-01

    The proteins that inhibit peptidases are of great importance in medicine and biotechnology, but there has never been a comprehensive system of classification for them. Some of the terminology currently in use is potentially confusing. In the hope of facilitating the exchange, storage and retrieval of information about this important group of proteins, we now describe a system wherein the inhibitor units of the peptidase inhibitors are assigned to 48 families on the basis of similarities detectable at the level of amino acid sequence. Then, on the basis of three-dimensional structures, 31 of the families are assigned to 26 clans. A simple system of nomenclature is introduced for reference to each clan, family and inhibitor. We briefly discuss the specificities and mechanisms of the interactions of the inhibitors in the various families with their target enzymes. The system of families and clans of inhibitors described has been implemented in the MEROPS peptidase database (http://merops.sanger.ac.uk/), and this will provide a mechanism for updating it as new information becomes available. PMID:14705960

  4. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted.

  5. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  6. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  7. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  8. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  9. Corrosion inhibitors from expired drugs.

    PubMed

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%.

  10. An environmentally friendly scale inhibitor

    SciTech Connect

    Dobbs, J.B.; Brown, J.M.

    1999-11-01

    This paper describes a method of inhibiting the formation of scales such as barium and strontium sulfate in low pH aqueous systems, and calcium carbonate in systems containing high concentrations of dissolved iron. The solution, chemically, involves treating the aqueous system with an inhibitor designed to replace organic-phosphonates. Typical low pH aqueous systems where the inhibitor is particularly useful are oilfield produced-water, resin bed water softeners that form scale during low pH, acid regeneration operations. Downhole applications are recommended where high concentrations of dissolved iron are present in the produced water. This new approach to inhibition replaces typical organic phosphonates and polymers with a non-toxic, biodegradable scale inhibitor that performs in harsh environments.

  11. Diverse inhibitors of aflatoxin biosynthesis.

    PubMed

    Holmes, Robert A; Boston, Rebecca S; Payne, Gary A

    2008-03-01

    Pre-harvest and post-harvest contamination of maize, peanuts, cotton, and tree nuts by members of the genus Aspergillus and subsequent contamination with the mycotoxin aflatoxin pose a widespread food safety problem for which effective and inexpensive control strategies are lacking. Since the discovery of aflatoxin as a potently carcinogenic food contaminant, extensive research has been focused on identifying compounds that inhibit its biosynthesis. Numerous diverse compounds and extracts containing activity inhibitory to aflatoxin biosynthesis have been reported. Only recently, however, have tools been available to investigate the molecular mechanisms by which these inhibitors affect aflatoxin biosynthesis. Many inhibitors are plant-derived and a few may be amenable to pathway engineering for tissue-specific expression in susceptible host plants as a defense against aflatoxin contamination. Other compounds show promise as protectants during crop storage. Finally, inhibitors with different modes of action could be used in comparative transcriptional and metabolomic profiling experiments to identify regulatory networks controlling aflatoxin biosynthesis.

  12. Nonnucleoside inhibitors of adenosine kinase.

    PubMed

    Gomtsyan, Arthur; Lee, Chih-Hung

    2004-01-01

    Adenosine (ADO) is an endogenous inhibitory neuromodulator that increases nociceptive thresholds in response to tissue trauma and inflammation. Adenosine kinase (AK) is a key intracellular enzyme regulating intra- and extracellular concentrations of ADO. AK inhibition selectively amplifies extracellular ADO levels at cell and tissue sites where accelerated release of ADO occurs. AK inhibitors have been shown to provide effective antinociceptive, antiinflammatory and anticonvulsant activity in animal models, thus suggesting their potential therapeutic utility for pain, inflammation, epilepsy and possibly other central and peripheral nervous system diseases associated with cellular trauma and inflammation. This beneficial outcome may potentially lack nonspecific effects associated with the systemic administration of ADO receptor agonists. Until recently all of the reported AK inhibitors contained adenosine-like structural motif. The present review will discuss design, synthesis and analgesic and antiinflammatory properties of the novel nonnucleoside AK inhibitors that do not have close structural resemblance with the natural substrate ADO. Two classes of the nonnucleoside AK inhibitors are built on pyridopyrimidine and alkynylpyrimidine cores.

  13. C1-inhibitor and transplantation.

    PubMed

    Kirschfink, Michael

    2002-09-01

    Excessive activation of the protein cascade systems has been associated with post-transplantation inflammatory disorders. There is increasing evidence that complement not only significantly contributes to ischemia/reperfusion injury upon cold storage of the organ but also, although to a different degree, to allograft rejection. Complement activation is most fulminant in hyperacute rejection but seems also to contribute to acute transplant rejection. Therapeutic substitution of appropriate regulators, therefore, appears to be a reasonable approach to reduce undesirable inflammatory reactions in the grafted organ. C1-inhibitor, a multifunctional regulator of the various kinin-generating cascade systems (for review see: E. Hack, chapter in this issue), is frequently reduced in patients suffering from severe inflammatory disorders. Studies applying pathophysiologically relevant animal models of allo- and xenotransplantation as well as promising first clinical results from successful allotransplantation now provide evidence that C1-inhibitor may also serve as an effective means to protect the grafted organ against inflammatory tissue injury. In xenotransplantation, complement inhibition by specific regulators such as C1-inhibitor may help to overcome hyperacute graft rejection. After a brief introduction on the significance of complement to allo- and xenotransplantation the following review will focus on the impact of C1-inhibitor treatment on transplantation-associated inflammatory disorders, where complement contributes to the pathogenesis.

  14. Bivalent Inhibitors of Protein Kinases

    PubMed Central

    Gower, Carrie M.; Chang, Matthew E. K.; Maly, Dustin J.

    2015-01-01

    Protein kinases are key players in a large number of cellular signaling pathways. Dysregulated kinase activity has been implicated in a number of diseases, and members of this enzyme family are of therapeutic interest. However, due to the fact that most inhibitors interact with the highly conserved ATP-binding sites of kinases, it is a significant challenge to develop pharmacological agents that target only one of the greater than 500 kinases present in humans. A potential solution to this problem is the development of bisubstrate and bivalent kinase inhibitors, in which an active site-directed moiety is tethered to another ligand that targets a location outside of the ATP-binding cleft. Because kinase signaling specificity is modulated by regions outside of the ATP-binding site, strategies that exploit these interactions have the potential to provide reagents with high target selectivity. This review highlights examples of kinase interaction sites that can potentially be exploited by bisubstrate and bivalent inhibitors. Furthermore, an overview of efforts to target these interactions with bisubstrate and bivalent inhibitors is provided. Finally, several examples of the successful application of these reagents in a cellular setting are described. PMID:24564382

  15. PDE-5 inhibitors: clinical points.

    PubMed

    Doumas, Michael; Lazaridis, Antonios; Katsiki, Niki; Athyros, Vasilios

    2015-01-01

    Erectile dysfunction is usually of vascular origin and is frequently encountered in men with cardiovascular disease. The introduction of phosphodiesterase-5 inhibitors has revolutionized the management of patients with erectile dysfunction. Currently available phosphodiesterase-5 inhibitors have distinct pharmacokinetic and pharmacodynamic properties, thus permitting for tailoring sexual therapy according to patient characteristics and needs. Phosphodiesterase-5 inhibitors possess vasorelaxing properties and exert systemic hemodynamic effects, which need to be taken into account when other cardiovascular drugs are co-administered. Special caution is needed with alpha-blockers, while the co-administration with nitrates is contra-indicated due to the risk of life-threatening hypotension. This review presents the advent of sexual therapy, describes the mechanism of action and the specific characteristics of commercially available phosphodiesterase-5 inhibitors, summarizes the efficacy and safety of these drugs with special emphasis on the cardiovascular system, and discusses the clinical criteria used for the selection of each drug for the individual patient. PMID:25392015

  16. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    PubMed Central

    Čolović, Mirjana B; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases. PMID:24179466

  17. Biocatalysts with enhanced inhibitor tolerance

    DOEpatents

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  18. OTX015 (MK-8628), a novel BET inhibitor, displays in vitro and in vivo antitumor effects alone and in combination with conventional therapies in glioblastoma models.

    PubMed

    Berenguer-Daizé, Caroline; Astorgues-Xerri, Lucile; Odore, Elodie; Cayol, Mylène; Cvitkovic, Esteban; Noel, Kay; Bekradda, Mohamed; MacKenzie, Sarah; Rezai, Keyvan; Lokiec, François; Riveiro, Maria E; Ouafik, L'Houcine

    2016-11-01

    Bromodomain and extraterminal (BET) bromodomain (BRD) proteins are epigenetic readers that bind to acetylated lysine residues on chromatin, acting as co-activators or co-repressors of gene expression. BRD2 and BRD4, members of the BET family, are significantly increased in glioblastoma multiforme (GBM), the most common primary adult brain cancer. OTX015 (MK-8628), a novel BRD2/3/4 inhibitor, is under evaluation in dose-finding studies in solid tumors, including GBM. We investigated the pharmacologic characteristics of OTX015 as a single agent and combined with targeted therapy or conventional chemotherapies in glioblastoma cell lines. OTX015 displayed higher antiproliferative effects compared to its analog JQ1, with GI50 values of approximately 0.2 µM. In addition, C-MYC and CDKN1A mRNA levels increased transiently after 4 h-exposure to OTX015, while BRD2, SESN3, HEXIM-1, HIST2H2BE, and HIST1H2BK were rapidly upregulated and sustained after 24 h. Studies in three additional GBM cell lines supported the antiproliferative effects of OTX015. In U87MG cells, OTX015 showed synergistic to additive activity when administered concomitant to or before SN38, temozolomide or everolimus. Single agent oral OTX015 significantly increased survival in mice bearing orthotopic or heterotopic U87MG xenografts. OTX015 combined simultaneously with temozolomide improved mice survival over either single agent. The passage of OTX015 across the blood-brain barrier was demonstrated with OTX015 tumor levels 7 to 15-fold higher than in normal tissues, along with preferential binding of OTX015 to tumor tissue. The significant antitumor effects seen with OTX015 in GBM xenograft models highlight its therapeutic potential in GBM patients, alone or combined with conventional chemotherapies. PMID:27388964

  19. Phase II Study of Everolimus Beyond Progression

    ClinicalTrials.gov

    2016-09-23

    Estrogen Receptor-positive Breast Cancer; HER2-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  20. Proton pump inhibitor-induced hypomagnesemic hypoparathyroidism.

    PubMed

    Swaminathan, Krishnan

    2015-01-01

    Proton pump inhibitors are the one of the most widely used drugs in the world. Hypomagnesemic hypoparathyroidism has been reported with different proton pump inhibitors with prolonged oral use. We report the first reported case of possible such effect with intravenous preparation of proton pump inhibitor. This case report raises awareness among physicians worldwide of this often unknown association, as life-threatening cardiac and neuromuscular complications can arise with unrecognized hypocalcemia and hypomagnesemia with proton pump inhibitors.

  1. KID, a Kinase Inhibitor Database project.

    PubMed

    Collin, O; Meijer, L

    1999-01-01

    The Kinase Inhibitor Database is a small specialized database dedicated to the gathering of information on protein kinase inhibitors. The database is accessible through the World Wide Web system and gives access to structural and bibliographic information on protein kinase inhibitors. The data in the database will be collected and submitted by researchers working in the kinase inhibitor field. The submitted data will be checked by the curator of the database before entry.

  2. Salicylanilide inhibitors of Toxoplasma gondii.

    PubMed

    Fomovska, Alina; Wood, Richard D; Mui, Ernest; Dubey, Jitenter P; Ferreira, Leandra R; Hickman, Mark R; Lee, Patricia J; Leed, Susan E; Auschwitz, Jennifer M; Welsh, William J; Sommerville, Caroline; Woods, Stuart; Roberts, Craig; McLeod, Rima

    2012-10-11

    Toxoplasma gondii (T. gondii) is an apicomplexan parasite that can cause eye disease, brain disease, and death, especially in congenitally infected and immune-compromised people. Novel medicines effective against both active and latent forms of the parasite are greatly needed. The current study focused on the discovery of such medicines by exploring a family of potential inhibitors whose antiapicomplexan activity has not been previously reported. Initial screening efforts revealed that niclosamide, a drug approved for anthelmintic use, possessed promising activity in vitro against T. gondii. This observation inspired the evaluation of the activity of a series of salicylanilides and derivatives. Several inhibitors with activities in the nanomolar range with no appreciable in vitro toxicity to human cells were identified. An initial structure-activity relationship was explored. Four compounds were selected for evaluation in an in vivo model of infection, and two derivatives with potentially enhanced pharmacological parameters demonstrated the best activity profiles.

  3. Salicylanilide Inhibitors of Toxoplasma gondii

    PubMed Central

    Fomovska, Alina; Wood, Richard D.; Mui, Ernest; Dubey, Jitenter P.; Ferriera, Leandra R.; Hickman, Mark R.; Lee, Patricia J.; Leed, Susan E.; Auschwitz, Jennifer M.; Welsh, William J.; Sommerville, Caroline; Woods, Stuart; Roberts, Craig; McLeod, Rima

    2012-01-01

    Toxoplasma gondii(T. gondii) is an apicomplexan parasite that can cause eye disease, brain disease, and death, especially in congenitally infected and immune-compromised people. Novel medicines effective against both active and latent forms of the parasite are greatly needed. The current study focused on the discovery of such medicines by exploring a family of potential inhibitors whose anti-apicomplexan activity has not been previously reported. Initial screening efforts revealed that niclosamide, a drug approved for anthelmintic use, possessed promising activity in vitro against T. gondii. This observation inspired the evaluation of the activity of a series of salicylanilides and derivatives. Several inhibitors with activities in the nanomolar range with no appreciable in vitro toxicity to human cells were identified. An initial structure-activity relationship was explored. Four compounds were selected for evaluation in an in vivo model of infection, and two derivatives with potentially enhanced pharmacological parameters demonstrated the best activity profiles. PMID:22970937

  4. Macrocyclic compounds as corrosion inhibitors

    SciTech Connect

    Quraishi, M.A.; Rawat, J.; Ajmal, M.

    1998-12-01

    The influence of three macrocyclic compounds on corrosion of mild steel (MS) in hydrochloric acid (HCl) was investigated using weight loss, potentiodynamic polarization, alternating current (AC) impedance, and hydrogen permeation techniques. All the investigated compounds showed significant efficiencies and reduced permeation of hydrogen through MS in HCl. Inhibition efficiency (IE) varied with the nature and concentrations of the inhibitors, temperature, and concentrations of the acid solutions. The addition of iodide ions (I{sup {minus}}) increased IE of all the tested compounds as a result of the synergistic effect. Potentiodynamic polarization results revealed that macrocyclic compounds acted as mixed inhibitors in 1 M HCl to 5 M HCl. Adsorption on the metal surface obeyed Temkin`s adsorption isotherm. Auger electron spectroscopy (AES) of the polished MS surface, exposed with tetraphenyldithia-octaazacyclotetradeca-hexaene (PTAT) proved adsorption of this compound on the surface through nitrogen and sulfur atoms.

  5. [Proteasome inhibitors in cancer therapy].

    PubMed

    Romaniuk, Wioletta; Ołdziej, Agnieszka Ewa; Zińczuk, Justyna; Kłoczko, Janusz

    2015-01-01

    Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238), delanzomib (CEP-18770), oprozomib (ONX0912/PR-047) and marizomib (NPI-0052). PMID:27259216

  6. Aromatase Inhibitors and Other Compounds for Lowering Breast Cancer Risk

    MedlinePlus

    ... References Aromatase inhibitors and other compounds for lowering breast cancer risk Aromatase inhibitors (drugs that lower estrogen levels) ... day. Can aromatase inhibitors lower the risk of breast cancer? Aromatase inhibitors are used mainly to treat hormone ...

  7. Conformation-specific inhibitors of Raf kinases.

    PubMed

    Wang, Xiaolun; Schleicher, Kristin

    2013-01-01

    Since the discovery linking B-Raf mutations to human tumors in 2002, significant advances in the development of Raf inhibitors have been made, leading to the recent approval of two Raf inhibitor drugs. This chapter includes a brief introduction to B-Raf as a validated target and focuses on the three different binding modes observed with Raf small-molecule inhibitors. These various binding modes lock the Raf kinase in different conformations that impact the toxicity profiles of the inhibitors. Possible solutions to mitigate the side effects caused by inhibitor-induced dimerization are also discussed.

  8. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  9. Carbonic anhydrase inhibitors drug design.

    PubMed

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported. PMID:24146385

  10. ANTIDEPRESSANT ACTIONS OF HDAC INHIBITORS

    PubMed Central

    Covington, Herbert E.; Maze, Ian; LaPlant, Quincey C.; Vialou, Vincent F.; Yoshinori, Ohnishi N.; Berton, Olivier; Fass, Dan M.; Renthal, William; Rush, Augustus J.; Wu, Emma Y.; Ghose, Subroto; Krishnan, Vaishnav; Russo, Scott J.; Tamminga, Carol; Haggarty, Stephen J.; Nestler, Eric J.

    2009-01-01

    Persistent symptoms of depression suggest the involvement of stable molecular adaptations in brain, which may be reflected at the level of chromatin remodeling. We find that chronic social defeat stress in mice causes a transient decrease, followed by a persistent increase, in levels of acetylated histone H3 in the nucleus accumbens, an important limbic brain region. This persistent increase in H3 acetylation is associated with decreased levels of histone deacetylase 2 (HDAC2) in the nucleus accumbens. Similar effects were observed in the nucleus accumbens of depressed humans studied postmortem. These changes in H3 acetylation and HDAC2 expression mediate long-lasting positive neuronal adaptations, since infusion of HDAC inhibitors into the nucleus accumbens, which increases histone acetylation, exerts robust antidepressant-like effects in the social defeat paradigm and other behavioral assays. HDAC inhibitor (MS-275) infusion also reverses the effects of chronic defeat stress on global patterns of gene expression in the nucleus accumbens, as determined by microarray analysis, with striking similarities to the effects of the standard antidepressant, fluoxetine. Stress-regulated genes whose expression is normalized selectively by MS-275 may provide promising targets for the future development of novel antidepressant treatments. Together, these findings provide new insight into the underlying molecular mechanisms of depression and antidepressant action, and support the antidepressant potential of HDAC inhibitors and perhaps other agents that act at the level of chromatin structure. PMID:19759294

  11. Investigating the selectivity of metalloenzyme inhibitors.

    PubMed

    Day, Joshua A; Cohen, Seth M

    2013-10-24

    The inhibitory activity of a broad group of known metalloenzyme inhibitors against a panel of metalloenzymes was evaluated. Clinically approved inhibitors were selected as well as several other reported metalloprotein inhibitors in order to represent a broad range of metal binding groups (MBGs), including hydroxamic acid, carboxylate, hydroxypyridinonate, thiol, and N-hydroxyurea functional groups. A panel of metalloenzymes, including carbonic anhydrase (hCAII), several matrix metalloproteinases (MMPs), angiotensin converting enzyme (ACE), histone deacetylase (HDAC-2), and tyrosinase (TY), was selected based on their clinical importance for a range of pathologies. In addition, each inhibitor was evaluated for its ability to remove Fe(3+) from holo-transferrin to gauge the ability of the inhibitors to access Fe(3+) from a primary transport protein. The results show that the metalloenzyme inhibitors are quite selective for their intended targets, suggesting that despite their ability to bind metal ions, metalloprotein inhibitors are not prone to widespread off-target enzyme inhibition activity.

  12. The burden of inhibitors in haemophilia patients.

    PubMed

    Walsh, Christopher E; Jiménez-Yuste, Víctor; Auerswald, Guenter; Grancha, Salvador

    2016-08-31

    The burden of disease in haemophilia patients has wide ranging implications for the family and to society. There is evidence that having a current inhibitor increases the risk of morbidity and mortality. Morbidity is increased by the inability to treat adequately and its consequent disabilities, which then equates to a poor quality of life compared with non-inhibitor patients. The societal cost of care, or `burden of inhibitors', increases with the ongoing presence of an inhibitor. Therefore, it is clear that successful eradication of inhibitors by immune tolerance induction (ITI) is the single most important milestone one can achieve in an inhibitor patient. The type of factor VIII (FVIII) product used in ITI regimens varies worldwide. Despite ongoing debate, there is in vitro and retrospective clinical evidence to support the use of plasma-derived VWF-containing FVIII concentrates in ITI regimens in order to achieve early and high inhibitor eradication success rates. PMID:27528280

  13. Investigating the Selectivity of Metalloenzyme Inhibitors

    PubMed Central

    Day, Joshua A.; Cohen, Seth M.

    2013-01-01

    The inhibitory activity of a broad group of known metalloenzyme inhibitors against a panel of metalloenzymes was evaluated. Clinically approved inhibitors were selected as well as several other reported metalloprotein inhibitors, in order to represent a broad range of metal binding groups (MBGs), including hydroxamic acid, carboxylate, hydroxypyridinonate, thiol, and N-hydroxyurea functional groups. A panel of metalloenzymes, including carbonic anhydrase (hCAII), several matrix metalloproteinases (MMPs), angiotensin converting enzyme (ACE), histone deacetylase (HDAC-2), and tyrosinase (TY) was selected based on their clinical importance for a range of pathologies. In addition, each inhibitor was evaluated for its ability to remove Fe3+ from holo-transferrin to gauge the ability of the inhibitors to access Fe3+ from a primary transport protein. The results show that the metalloenzyme inhibitors are quite selective for their intended targets, suggesting that despite their ability to bind metal ions, metalloprotein inhibitors are not prone to widespread off-target enzyme inhibition activity. PMID:24074025

  14. Non-ATP competitive protein kinase inhibitors.

    PubMed

    Garuti, L; Roberti, M; Bottegoni, G

    2010-01-01

    Protein kinases represent an attractive target in oncology drug discovery. Most of kinase inhibitors are ATP-competitive and are called type I inhibitors. The ATP-binding pocket is highly conserved among members of the kinase family and it is difficult to find selective agents. Moreover, the ATP-competitive inhibitors must compete with high intracellular ATP levels leading to a discrepancy between IC50s measured by biochemical versus cellular assays. The non-ATP competitive inhibitors, called type II and type III inhibitors, offer the possibility to overcome these problems. These inhibitors act by inducing a conformational shift in the target enzyme such that the kinase is no longer able to function. In the DFG-out form, the phenylalanine side chain moves to a new position. This movement creates a hydrophobic pocket available for occupation by the inhibitor. Some common features are present in these inhibitors. They contain a heterocyclic system that forms one or two hydrogen bonds with the kinase hinge residue. They also contain a hydrophobic moiety that occupies the pocket formed by the shift of phenylalanine from the DFG motif. Moreover, all the inhibitors bear a hydrogen bond donor-acceptor pair, usually urea or amide, that links the hinge-binding portion to the hydrophobic moiety and interacts with the allosteric site. Examples of non ATP-competitive inhibitors are available for various kinases. In this review small molecules capable of inducing the DFG-out conformation are reported, especially focusing on structural feature, SAR and biological properties.

  15. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  16. Techniques for Screening Translation Inhibitors

    PubMed Central

    Osterman, Ilya A.; Bogdanov, Alexey A.; Dontsova, Olga A.; Sergiev, Petr V.

    2016-01-01

    The machinery of translation is one of the most common targets of antibiotics. The development and screening of new antibiotics usually proceeds by testing antimicrobial activity followed by laborious studies of the mechanism of action. High-throughput methods for new antibiotic screening based on antimicrobial activity have become routine; however, identification of molecular targets is usually a challenge. Therefore, it is highly beneficial to combine primary screening with the identification of the mechanism of action. In this review, we describe a collection of methods for screening translation inhibitors, with a special emphasis on methods which can be performed in a high-throughput manner. PMID:27348012

  17. Oligopeptide cyclophilin inhibitors: a reassessment.

    PubMed

    Schumann, Michael; Jahreis, Günther; Kahlert, Viktoria; Lücke, Christian; Fischer, Gunter

    2011-11-01

    Potent cyclophilin A (CypA) inhibitors such as non-immunosuppressive cyclosporin A (CsA) derivatives have been already used in clinical trials in patients with viral infections. CypA is a peptidyl prolyl cis/trans isomerase (PPIase) that catalyzes slow prolyl bond cis/trans interconversions of the backbone of substrate peptides and proteins. In this study we investigate whether the notoriously low affinity inhibitory interaction of linear proline-containing peptides with the active site of CypA can be increased through a combination of a high cis/trans ratio and a negatively charged C-terminus as has been recently reported for Trp-Gly-Pro. Surprisingly, isothermal titration calorimetry did not reveal formation of an inhibitory CypA/Trp-Gly-Pro complex previously described within a complex stability range similar to CsA, a nanomolar CypA inhibitor. Moreover, despite of cis content of 41% at pH 7.5 Trp-Gly-Pro cannot inhibit CypA-catalyzed standard substrate isomerization up to high micromolar concentrations. However, in the context of the CsA framework a net charge of -7 clustered at the amino acid side chain of position 1 resulted in slightly improved CypA inhibition.

  18. Carborane-based carbonic anhydrase inhibitors.

    PubMed

    Brynda, Jiří; Mader, Pavel; Šícha, Václav; Fábry, Milan; Poncová, Kristýna; Bakardiev, Mario; Grüner, Bohumír; Cígler, Petr; Řezáčová, Pavlína

    2013-12-16

    CA inhibitors: Human carbonic anhydrases (CAs) are diagnostic and therapeutic targets. Various carborane cages are shown to act as active-site-directed inhibitors, and substitution with a sulfamide group and other substituents leads to compounds with high selectivity towards the cancer-specific isozyme IX. Crystal structures of the carboranes in the active site provide information that can be applied to the structure-based design of specific inhibitors. PMID:24307504

  19. Mechanism of Resistance and Novel Targets Mediating Resistance to EGFR and c-Met Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer

    PubMed Central

    Chhabra, Gagan; Nlend, Marie

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) against EGFR and c-Met are initially effective when administered individually or in combination to non-small cell lung cancer (NSCLC) patients. However, the overall efficacies of TKIs are limited due to the development of drug resistance. Therefore, it is important to elucidate mechanisms of EGFR and c-Met TKI resistance in order to develop more effective therapies. Model NSCLC cell lines H1975 and H2170 were used to study the similarities and differences in mechanisms of EGFR/c-Met TKI resistance. H1975 cells are positive for the T790M EGFR mutation, which confers resistance to current EGFR TKI therapies, while H2170 cells are EGFR wild-type. Previously, H2170 cells were made resistant to the EGFR TKI erlotinib and the c-Met TKI SU11274 by exposure to progressively increasing concentrations of TKIs. In H2170 and H1975 TKI-resistant cells, key Wnt and mTOR proteins were found to be differentially modulated. Wnt signaling transducer, active β-catenin was upregulated in TKI-resistant H2170 cells when compared to parental cells. GATA-6, a transcriptional activator of Wnt, was also found to be upregulated in resistant H2170 cells. In H2170 erlotinib resistant cells, upregulation of inactive GSK3β (p-GSK3β) was observed, indicating activation of Wnt and mTOR pathways which are otherwise inhibited by its active form. However, in H1975 cells, Wnt modulators such as active β-catenin, GATA-6 and p-GSK3β were downregulated. Additional results from MTT cell viability assays demonstrated that H1975 cell proliferation was not significantly decreased after Wnt inhibition by XAV939, but combination treatment with everolimus (mTOR inhibitor) and erlotinib resulted in synergistic cell growth inhibition. Thus, in H2170 cells and H1975 cells, simultaneous inhibition of key Wnt or mTOR pathway proteins in addition to EGFR and c-Met may be a promising strategy for overcoming EGFR and c-Met TKI resistance in NSCLC patients. PMID:26301867

  20. KH-30 Parafin Inhibitor Treatment

    SciTech Connect

    Rochelle, J.

    2001-09-30

    United Energy Corporation (UNRG) and the U.S. Department of Energy personnel tested KH-30 at the Rocky Mountain Oilfield Testing Center (RMOTC) outside Casper, Wyoming on two separate occasions. KH-30 is a non-toxic, non-hazardous product, which combines the functions of a solvent dispersant, crystal modifier and inhibitor into a single solution. The first test was held in March of 2001, wherein five wells were treated with a mixture of KH-30 and brine water, heated to 180 degrees F. No increase in production was attained in these tests. In June, 2001, three shallow, low pressure RMOTC wells with 30 years of production were treated with a mixture of 40% KH-30 and 60% diesel. Increases were seen in three wells. The wells then returned to their original rates.

  1. Natural Products as Aromatase Inhibitors

    PubMed Central

    Balunas, Marcy J.; Su, Bin; Brueggemeier, Robert W.; Kinghorn, A. Douglas

    2010-01-01

    With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating also the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.g., botanical dietary supplements) may also afford AIs with reduced side effects. A thorough review of the literature regarding natural product extracts and secondary metabolites of plant, microbial, and marine origin that have been shown to exhibit aromatase inhibitory activity is presented herein. PMID:18690828

  2. Tyrosine Kinase Inhibitors and Pregnancy

    PubMed Central

    Abruzzese, Elisabetta; Trawinska, Malgorzata Monika; Perrotti, Alessio Pio; De Fabritiis, Paolo

    2014-01-01

    The management of patients with chronic myeloid leukemia (CML) during pregnancy has become recently a matter of continuous debate. The introduction of the Tyrosine Kinase Inhibitors (TKIs) in clinical practice has dramatically changed the prognosis of CML patients; in fact, patients diagnosed in chronic phase can reasonably expect many years of excellent disease control and good quality of life, as well as a normal life expectancy, including the necessity to address issues relating to fertility and pregnancy. Physicians are frequently being asked for advice regarding the need for, and/or the appropriateness of, stopping treatment in order to conceive. In this report, we will review the data published in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for TKI treated CML patients, as well as how to manage a planned and/or unplanned pregnancy. PMID:24804001

  3. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  4. Enzyme-Inhibitor Association Thermodynamics

    PubMed Central

    Resat, Haluk; Marrone, Tami J.; McCammon, J. Andrew

    1997-01-01

    Studying the thermodynamics of biochemical association reactions at the microscopic level requires efficient sampling of the configurations of the reactants and solvent as a function of the reaction pathways. In most cases, the associating ligand and receptor have complementary interlocking shapes. Upon association, loosely connected or disconnected solvent cavities at and around the binding site are formed. Disconnected solvent regions lead to severe statistical sampling problems when simulations are performed with explicit solvent. It was recently proposed that, when such limitations are encountered, they might be overcome by the use of the grand canonical ensemble. Here we investigate one such case and report the association free energy profile (potential of mean force) between trypsin and benzamidine along a chosen reaction coordinate as calculated using the grand canonical Monte Carlo method. The free energy profile is also calculated for a continuum solvent model using the Poisson equation, and the results are compared to the explicit water simulations. The comparison shows that the continuum solvent approach is surprisingly successful in reproducing the explicit solvent simulation results. The Monte Carlo results are analyzed in detail with respect to solvation structure. In the binding site channel there are waters bridging the carbonyl oxygen groups of Asp189 with the NH2 groups of benzamidine, which are displaced upon inhibitor binding. A similar solvent-bridging configuration has been seen in the crystal structure of trypsin complexed with bovine pancreatic trypsin inhibitor. The predicted locations of other internal waters are in very good agreement with the positions found in the crystal structures, which supports the accuracy of the simulations. ImagesFIGURE 5 PMID:9017183

  5. Pyridopyrimidine analogues as novel adenosine kinase inhibitors.

    PubMed

    Zheng, G Z; Lee, C; Pratt, J K; Perner, R J; Jiang, M Q; Gomtsyan, A; Matulenko, M A; Mao, Y; Koenig, J R; Kim, K H; Muchmore, S; Yu, H; Kohlhaas, K; Alexander, K M; McGaraughty, S; Chu, K L; Wismer, C T; Mikusa, J; Jarvis, M F; Marsh, K; Kowaluk, E A; Bhagwat, S S; Stewart, A O

    2001-08-20

    A novel series of pyridopyrimidine analogues 9 was identified as potent adenosine kinase inhibitors based on the SAR and computational studies. Substitution of the C7 position of the pyridopyrimidino core with C2' substituted pyridino moiety increased the in vivo potency and enhanced oral bioavailability of these adenosine kinase inhibitors.

  6. Rust inhibitor and oil composition containing same

    SciTech Connect

    Bialy, J.J.; Cullen, W.P.; Dorn, P.; Nebzydoski, J.W.; Sung, R.L.

    1981-04-21

    A rust inhibitor comprising the reaction product of a hydrocarbylsuccinic anhydride in which the hydrocarbyl radical has from about 6 to 30 carbon atoms and an aminotriazole is provided. The rust inhibitor is effective in motor fuel and lubricating oil compositions.

  7. Intellectual property issues of immune checkpoint inhibitors

    PubMed Central

    Storz, Ulrich

    2016-01-01

    Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors. PMID:26466763

  8. Intellectual property issues of immune checkpoint inhibitors.

    PubMed

    Storz, Ulrich

    2016-01-01

    Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors.

  9. Computer simulation of inhibitor application -- A review

    SciTech Connect

    Banerjee, G.; Vasanth, K.L.

    1997-12-01

    The rapid development of powerful software as well as hardware in computer technology has changed the traditional approach to all areas of science and technology. In the field of corrosion inhibitors, computers are used to model, simulate, analyze and monitor inhibitor applications in both laboratory and industrial environments. This paper will present an up-to-date critical review of such simulation studies.

  10. Intellectual property issues of immune checkpoint inhibitors.

    PubMed

    Storz, Ulrich

    2016-01-01

    Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors. PMID:26466763

  11. Aminofurazans as potent inhibitors of AKT kinase

    SciTech Connect

    Rouse, Meagan B.; Seefeld, Mark A.; Leber, Jack D.; McNulty, Kenneth C.; Sun, Lihui; Miller, William H.; Zhang, ShuYun; Minthorn, Elisabeth A.; Concha, Nestor O.; Choudhry, Anthony E.; Schaber, Michael D.; Heerding, Dirk A.

    2009-06-24

    AKT inhibitors containing an imidazopyridine aminofurazan scaffold have been optimized. We have previously disclosed identification of the AKT inhibitor GSK690693, which has been evaluated in clinical trials in cancer patients. Herein we describe recent efforts focusing on investigating a distinct region of this scaffold that have afforded compounds (30 and 32) with comparable activity profiles to that of GSK690693.

  12. Trypsin inhibitors of buffalo seminal plasma.

    PubMed

    Ahmed, N; Ramesh, V

    1992-03-01

    Two trypsin inhibitors from acid-treated buffalo seminal plasma were purified by gel filtration and affinity chromatography. These acid-stable trypsin inhibitors having charge heterogeneity were homogeneous with respect to size as revealed by gel filtration and SDS-PAGE. Gel filtration data suggest molecular weight value of 9,900 Da for inhibitor I and 10,900 Da for inhibitor II. Molecular weight estimated by SDS-PAGE was found to be 10,600 Da and 11,200 Da for inhibitors I and II, respectively. The hydrodynamic properties such as Stokes radii (1.58 nm and 1.62 nm); intrinsic viscosity (2.5725 ml/g and 2.5025 ml/g) and diffusion coefficient (13.499 x 10(-11) m2/sec. and 13.166X10(-11) m2/sec) respectively for inhibitor I and II were determined by analytical gel filtration. These inhibitors were fairly thermostable and could not be stained by PAS reagent. Both the inhibitors were found to inhibit buffalo acrosin but not bovine chymotrypsin.

  13. MAO inhibitors: risks, benefits, and lore.

    PubMed

    Wimbiscus, Molly; Kostenko, Olga; Malone, Donald

    2010-12-01

    Monoamine oxidase (MAO) inhibitors were the first antidepressants introduced, but their use has dwindled because of their reported side effects, their food and drug interactions, and the introduction of other classes of agents. However, interest in MAO inhibitors is reviving. Here, we discuss their use, risks, and benefits in clinical medicine.

  14. Exploring the scaffold universe of kinase inhibitors.

    PubMed

    Hu, Ye; Bajorath, Jürgen

    2015-01-01

    The scaffold concept was applied to systematically determine, analyze, and compare core structures of kinase inhibitors. From publicly available inhibitors of the human kinome, scaffolds and cyclic skeletons were systematically extracted and organized taking activity data, structural relationships, and retrosynthetic criteria into account. Scaffold coverage varied greatly across the kinome, and many scaffolds representing compounds with different activity profiles were identified. The majority of kinase inhibitor scaffolds were involved in well-defined yet distinct structural relationships, which had different consequences on compound activity. Scaffolds exclusively representing highly potent compounds were identified as well as structurally analogous scaffolds with very different degrees of promiscuity. Scaffold relationships presented herein suggest a variety of hypotheses for inhibitor design. Our detailed organization of the kinase inhibitor scaffold universe with respect to different activity and structural criteria, all scaffolds, and the original compound data assembled for our analysis are made freely available.

  15. A Spider-Derived Kunitz-Type Serine Protease Inhibitor That Acts as a Plasmin Inhibitor and an Elastase Inhibitor

    PubMed Central

    Wan, Hu; Lee, Kwang Sik; Kim, Bo Yeon; Zou, Feng Ming; Yoon, Hyung Joo; Je, Yeon Ho; Li, Jianhong; Jin, Byung Rae

    2013-01-01

    Kunitz-type serine protease inhibitors are involved in various physiological processes, such as ion channel blocking, blood coagulation, fibrinolysis, and inflammation. While spider-derived Kunitz-type proteins show activity in trypsin or chymotrypsin inhibition and K+ channel blocking, no additional role for these proteins has been elucidated. In this study, we identified the first spider (Araneus ventricosus) Kunitz-type serine protease inhibitor (AvKTI) that acts as a plasmin inhibitor and an elastase inhibitor. AvKTI possesses a Kunitz domain consisting of a 57-amino-acid mature peptide that displays features consistent with Kunitz-type inhibitors, including six conserved cysteine residues and a P1 lysine residue. Recombinant AvKTI, expressed in baculovirus-infected insect cells, showed a dual inhibitory activity against trypsin (Ki 7.34 nM) and chymotrypsin (Ki 37.75 nM), defining a role for AvKTI as a spider-derived Kunitz-type serine protease inhibitor. Additionally, AvKTI showed no detectable inhibitory effects on factor Xa, thrombin, or tissue plasminogen activator; however, AvKTI inhibited plasmin (Ki 4.89 nM) and neutrophil elastase (Ki 169.07 nM), indicating that it acts as an antifibrinolytic factor and an antielastolytic factor. These findings constitute molecular evidence that AvKTI acts as a plasmin inhibitor and an elastase inhibitor and also provide a novel view of the functions of a spider-derived Kunitz-type serine protease inhibitor. PMID:23308198

  16. Designing Inhibitors of Anthrax Toxin

    PubMed Central

    Nestorovich, Ekaterina M.; Bezrukov, Sergey M.

    2014-01-01

    Introduction Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates, and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded “for the development of multiscale models for complex chemical systems” once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial and error approach to a minimum. The “rational drug design” term is rather comprehensive as it includes all contemporary methods of drug discovery where serendipity and screening are substituted by the information-guided search for new and existing compounds. Successful implementation of these innovative drug discovery approaches is inevitably preceded by learning the physics, chemistry, and physiology of functioning of biological structures under normal and pathological conditions. Areas covered This article provides an overview of the recent rational drug design approaches to discover inhibitors of anthrax toxin. Some of the examples include small-molecule and peptide-based post-exposure therapeutic agents as well as several polyvalent compounds. The review also directs the reader to the vast literature on the recognized advances and future possibilities in the field. Expert opinion Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (PA-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, in our view, the situation is still insecure. The FDA’s animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Besides, unlike PA, which is known to be unstable, LF remains active in cells and in animal tissues for days. Therefore, the effectiveness of the post-exposure treatment of the individuals

  17. High-affinity Cyclic Peptide Matriptase Inhibitors*

    PubMed Central

    Quimbar, Pedro; Malik, Uru; Sommerhoff, Christian P.; Kaas, Quentin; Chan, Lai Y.; Huang, Yen-Hua; Grundhuber, Maresa; Dunse, Kerry; Craik, David J.; Anderson, Marilyn A.; Daly, Norelle L.

    2013-01-01

    The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase. PMID:23548907

  18. Leflunomide, a Reversible Monoamine Oxidase Inhibitor.

    PubMed

    Petzer, Jacobus P; Petzer, Anél

    2016-01-01

    A screening study aimed at identifying inhibitors of the enzyme, monoamine oxidase (MAO), among clinically used drugs have indicated that the antirheumatic drug, leflunomide, is an inhibitor of both MAO isoforms. Leflunomide inhibits human MAO-A and MAO-B and exhibits IC50 values of 19.1 μM and 13.7 μM, respectively. The corresponding Ki values are 17.7 μM (MAO-A) and 10.1 μM (MAO-B). Dialyses of mixtures of the MAO enzymes and leflunomide show that inhibition of the MAOs by leflunomide is reversible. The principal metabolite of leflunomide, teriflunomide (A77 1726), in contrast is not an MAO inhibitor. This study concludes that, although leflunomide is only moderately potent as an MAO inhibitor, isoxazole derivatives may represent a general class of MAO inhibitors and this heterocycle may find application in MAO inhibitor design. In this respect, MAO inhibitors are used in the clinic for the treatment of depressive illness and Parkinson's disease, and are under investigation as therapy for certain types of cancer, Alzheimer's disease and age-related impairment of cardiac function. PMID:26299850

  19. SGLT2 Inhibitors May Predispose to Ketoacidosis

    PubMed Central

    Blau, Jenny E.; Rother, Kristina I.

    2015-01-01

    Context: Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Evidence Acquisition: Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. Evidence Synthesis: SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Conclusions: Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients. PMID:26086329

  20. Thrombin-activatable fibrinolysis inhibitor.

    PubMed

    Marx, Pauline F

    2004-09-01

    The coagulation system is a potent mechanism that prevents blood loss after vascular injury. It consists of a number of linked enzymatic reactions resulting in thrombin generation. Thrombin converts soluble fibrinogen into a fibrin clot. The clot is subsequently removed by the fibrinolytic system upon wound healing. Thrombin-activatable fibrinolysis inhibitor (TAFI), which is identical to the previously identified proteins procarboxypeptidase B, R, and U, forms a link between blood coagulation and fibrinolysis. TAFI circulates as an inactive proenzyme in the bloodstream, and becomes activated during blood clotting. The active form, TAFIa, inhibits fibrinolysis by cleaving off C-terminal lysine residues from partially degraded fibrin that stimulates the tissue-type plasminogen activator-mediated conversion of plasminogen to plasmin. Consequently, removal of these lysines leads to less plasmin formation and subsequently to protection of the fibrin clot from break down. Moreover, TAFI may also play a role in other processes such as, inflammation and tissue repair. In this review, recent developments in TAFI research are discussed. PMID:15379716

  1. HIV Protease Inhibitors and Obesity

    PubMed Central

    Anuurad, Erdembileg; Bremer, Andrew; Berglund, Lars

    2011-01-01

    Purpose of review To review the current scientific literature and recent clinical trials on HIV protease inhibitors (PIs) and their potential role in the pathogenesis of lipodystrophy and metabolic disorders. Recent findings HIV PI treatment may affect the normal stimulatory effect of insulin on glucose and fat storage. Further, chronic inflammation from HIV infection and PI treatment trigger cellular homeostatic stress responses with adverse effects on intermediary metabolism. The physiologic outcome is such that total adipocyte storage capacity is decreased, and the remaining adipocytes resist further fat storage. This process leads to a pathologic cycle of lipodystrophy and lipotoxicity, a pro-atherogenic lipid profile, and a clinical phenotype of increased central body fat distribution similar to the metabolic syndrome. Summary PIs are a key component of antiretroviral therapy and have dramatically improved the life expectancy of HIV-infected individuals. However, they are also associated with abnormalities in glucose/lipid metabolism and body fat distribution. Further studies are needed to better define the pathogenesis of PI-associated metabolic and body fat changes and their potential treatment. PMID:20717021

  2. MMP Inhibitors: Past, present and future.

    PubMed

    Cathcart, Jillian M; Cao, Jian

    2015-01-01

      Development of inhibitors of matrix metalloproteinases (MMPs) has been fraught with challenges. Early compounds largely failed due to poor selectivity and bioavailability. Dose-limiting side effects, off-target interactions, and improperly designed clinical trials significantly impeded clinical success. As information becomes available and technology evolves, tools to combat these obstacles have been developed. Improved methods for high throughput screening and drug design have led to identification of compounds exhibiting high potency, binding affinity, and favorable pharmacokinetic profiles. Current research into MMP inhibitors employs innovative approaches for drug delivery methods and allosteric inhibitors. Such innovation is key for development of clinically successful compounds.

  3. An updated review of tyrosinase inhibitors.

    PubMed

    Chang, Te-Sheng

    2009-06-01

    Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed. PMID:19582213

  4. An Updated Review of Tyrosinase Inhibitors

    PubMed Central

    Chang, Te-Sheng

    2009-01-01

    Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed. PMID:19582213

  5. Musical Hallucinations Treated with Acetylcholinesterase Inhibitors

    PubMed Central

    Blom, Jan Dirk; Coebergh, Jan Adriaan F.; Lauw, René; Sommer, Iris E. C.

    2015-01-01

    Musical hallucinations are relatively rare auditory percepts which, due to their intrusive nature and the accompanying fear of impending mental decline, tend to cause significant distress and impairment. Although their etiology and pathophysiology appear to be heterogeneous and no evidence-based treatment methods are available, case reports indicate that acetylcholinesterase inhibitors may yield positive results in patients with comorbid hearing loss. We present two female patients (aged 76 and 78 years) both of whom suffered from hearing impairment and practically incessant musical hallucinations. Both patients were successfully treated with the acetylcholinesterase inhibitor rivastigmine. Based on these two case descriptions and an overview of studies describing the use of acetylcholinesterase inhibitors in similar patients, we discuss possible mechanisms and propose further research on the use of acetylcholinesterase inhibitors for musical hallucinations experienced in concordance with hearing loss. PMID:25904872

  6. A tyrosinase inhibitor from Aspergillus niger.

    PubMed

    Vasantha, K Y; Murugesh, C S; Sattur, A P

    2014-10-01

    Tyrosinase, in the presence of oxygen, is the main culprit in post harvest browning of food products, resulting in the drop in its commercial value. In an effort to seek natural tyrosinase inhibitors for food applications, a screening programme was undertaken. Of the 26 fungal cultures isolated from soil samples of Agumbe forest, India, one isolate S16, identified as Aspergillus niger, gave an inhibition of 84 % against the enzyme. The inhibitor was isolated by following an enzyme inhibition assay guided purification protocol. The structure of the inhibitor was elucidated and found to be kojic acid. The IC50 of the Competitive inhibitor was found to be 8.8 μg with a Ki of 0.085 mM.

  7. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity.

    PubMed

    Pohanka, Miroslav

    2014-06-02

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer's disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a "cholinergic anti-inflammatory pathway" which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system.

  8. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  9. Small-Molecule Inhibitors of Urea Transporters

    PubMed Central

    Verkman, Alan S.; Esteva-Font, Cristina; Cil, Onur; Anderson, Marc O.; Li, Fei; Li, Min; Lei, Tianluo; Ren, Huiwen; Yang, Baoxue

    2015-01-01

    Urea transporter (UT) proteins, which include isoforms of UT-A in kidney tubule epithelia and UT-B in vasa recta endothelia and erythrocytes, facilitate urinary concentrating function. Inhibitors of urea transporter function have potential clinical applications as sodium-sparing diuretics, or ‘urearetics,’ in edema from different etiologies, such as congestive heart failure and cirrhosis, as well as in syndrome of inappropriate antidiuretic hormone (SIADH). High-throughput screening of drug-like small molecules has identified UT-A and UT-B inhibitors with nanomolar potency. Inhibitors have been identified with different UT-A versus UT-B selectivity profiles and putative binding sites on UT proteins. Studies in rodent models support the utility of UT inhibitors in reducing urinary concentration, though testing in clinically relevant animal models of edema has not yet been done. PMID:25298345

  10. Small-molecule inhibitors of myosin proteins

    PubMed Central

    Bond, Lisa M; Tumbarello, David A; Kendrick-Jones, John; Buss, Folma

    2014-01-01

    Advances in screening and computational methods have enhanced recent efforts to discover/design small-molecule protein inhibitors. One attractive target for inhibition is the myosin family of motor proteins. Myosins function in a wide variety of cellular processes, from intracellular trafficking to cell motility, and are implicated in several human diseases (e.g., cancer, hypertrophic cardiomyopathy, deafness and many neurological disorders). Potent and selective myosin inhibitors are, therefore, not only a tool for understanding myosin function, but are also a resource for developing treatments for diseases involving myosin dysfunction or overactivity. This review will provide a brief overview of the characteristics and scientific/therapeutic applications of the presently identified small-molecule myosin inhibitors before discussing the future of myosin inhibitor and activator design. PMID:23256812

  11. Polyaspartate scale inhibitors -- Biodegradable alternatives to polyacrylates

    SciTech Connect

    Ross, R.J.; Low, K.C.; Shannon, J.E.

    1997-04-01

    Polyaspartates are highly biodegradable alternatives to polyacrylate-based scale inhibitors. This article presents laboratory testing data on polyaspartate inhibitors of calcium and barium mineral scales. The optimum molecular weight (Mw) for polyaspartate inhibitors of calcium carbonate, calcium sulfate, and barium sulfate mineral scales was determined to be between 1,000 Mw and 4,000 Mw. For inhibition of calcium carbonate and barium sulfate, polyaspartates in the range of 3,000 Mw to 4,000 Mw were most effective. For calcium sulfate inhibition, the optimum Mw lies in the 1,000 Mw to 2,000 Mw range. Biodegradability data (OECD 301B Ready Biodegradability) on polyaspartates of a variety of Mw is also presented, which demonstrates the high biodegradability of this class of mineral scale inhibitors.

  12. Drug design from the cryptic inhibitor envelope

    PubMed Central

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J.; Zhou, Pei

    2016-01-01

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC—an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target—access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics. PMID:26912110

  13. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    PubMed Central

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  14. Selective Phosphodiesterase 4B Inhibitors: A Review

    PubMed Central

    Azam, Mohammed Afzal; Tripuraneni, Naga Srinivas

    2014-01-01

    Abstract Phosphodiesterase 4B (PDE4B) is a member of the phosphodiesterase family of proteins that plays a critical role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP) by controlling its rate of degradation. It has been demonstrated that this isoform is involved in the orchestra of events which includes inflammation, schizophrenia, cancers, chronic obstructive pulmonary disease, contractility of the myocardium, and psoriatic arthritis. Phosphodiesterase 4B has constituted an interesting target for drug development. In recent years, a number of PDE4B inhibitors have been developed for their use as therapeutic agents. In this review, an up-to-date status of the inhibitors investigated for the inhibition of PDE4B has been given so that this rich source of structural information of presently known PDE4B inhibitors could be helpful in generating a selective and potent inhibitor of PDE4B. PMID:25853062

  15. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer's disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a "cholinergic anti-inflammatory pathway" which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  16. Update on TNF Inhibitors in Dermatology.

    PubMed

    Sobell, Jeffrey M

    2016-06-01

    Emerging data describe new potential indications for tumor necrosis factor (TNF) inhibitors in dermatology, including pediatric psoriasis and hidradenitis suppurativa. New biosimilar TNF agents are in late stages of development and may be available in the United States in the near future. Biosimilar agents are similar but not identical to available TNF inhibitors, and approval requires extensive analytic, toxicity, pharmacokinetic, pharmacodynamic, and clinical testing. Semin Cutan Med Surg 35(supp6):S104-S106. PMID:27537073

  17. Heterocyclics as corrosion inhibitors for acid media

    SciTech Connect

    Ajmal, M.; Khan, M.A.W.; Ahmad, S.; Quraishi, M.A.

    1996-12-01

    The available literature on the use of heterocyclic compounds as corrosion inhibitors in acid media has been reviewed. It has been noted that the workers in this field have either used sulfur or nitrogen containing heterocyclic compounds for studying inhibition action. The authors have synthesized compounds containing sulfur and nitrogen both in the same ring and studied their inhibition action in acid media. These compounds were found to be better inhibitors than those containing either atoms alone.

  18. 2,4-Diaminopyrimidine MK2 inhibitors. Part I: Observation of an unexpected inhibitor binding mode

    SciTech Connect

    Argiriadi, Maria A.; Ericsson, Anna M.; Harris, Christopher M.; Banach, David L.; Borhani, David W.; Calderwood, David J.; Demers, Megan D.; DiMauro, Jennifer; Dixon, Richard W.; Hardman, Jennifer; Kwak, Silvia; Li, Biqin; Mankovich, John A.; Marcotte, Douglas; Mullen, Kelly D.; Ni, Baofu; Pietras, M.; Sadhukhan, Ramkrishna; Sousa, Silvino; Tomlinson, Medha J.; Wang, L.; Xiang, T.; Talanian, R.V.

    2010-09-17

    MK2 is a Ser/Thr kinase of significant interest as an anti-inflammatory drug discovery target. Here we describe the development of in vitro tools for the identification and characterization of MK2 inhibitors, including validation of inhibitor interactions with the crystallography construct and determination of the unique binding mode of 2,4-diaminopyrimidine inhibitors in the MK2 active site.

  19. Aromatase inhibitors in the treatment of endometriosis

    PubMed Central

    Męczekalski, Błażej

    2016-01-01

    Endometriosis is a chronic inflammatory condition in which foci of endometrial tissue grow outside of the uterine cavity. Endometriosis was estimated to affect 176 million women of childbearing potential all over the world in 2010. The presence of extrauterine endometrial tissue is associated with pain and infertility. Typical symptoms of endometriosis include dysmenorrhoea, dyspareunia, heavy menstrual periods (menorrhagia), pelvic pain that is not related to menstrual cycles, dysuria, and chronic fatigue. Medical treatments for endometriosis include combined oral contraceptive pills, danazol, gestrinone, medroxyprogesterone acetate, and gonadotropin-releasing hormone agonists (aGnRHs). A new class of medications called aromatase inhibitors has been identified in recent years as potential therapeutic agents for endometriosis. This article provides general information about aromatase inhibitors, their use in gynaecology, and their adverse effects. In particular, the paper discusses the use of aromatase inhibitors in the treatment of endometriosis in postmenopausal women. Unlike oral contraceptives, gestagens, aGnRHs, and danazol, which suppress ovarian oestrogen synthesis, aromatase inhibitors inhibit mainly extra-ovarian synthesis of oestrogens. Therefore, the use of aromatase inhibitors seems to be particularly relevant in older patients, as most of the body's oestrogen is produced outside the ovaries after menopause. The paper discusses also the use of aromatase inhibitors in the treatment of pain associated with endometriosis and infertility caused by endometriosis. PMID:27095958

  20. CHK1 Inhibitors in Combination Chemotherapy

    PubMed Central

    Dent, Paul; Tang, Yong; Yacoub, Adly; Dai, Yun; Fisher, Paul B.; Grant, Steven

    2011-01-01

    Cellular sensing of DNA damage, along with concomitant cell cycle arrest, is mediated by a great many proteins and enzymes. One focus of pharmaceutical development has been the inhibition of DNA damage signaling, and checkpoint kinases (Chks) in particular, as a means to sensitize proliferating tumor cells to chemotherapies that damage DNA. 7-Hydroxystaurosporine, or UCN-01, is a clinically relevant and well-studied kinase activity inhibitor that exerts chemosensitizing effects by inhibition of Chk1, and a multitude of Chk1 inhibitors have entered development. Clinical development of UCN-01 has overcome many initial obstacles, but the drug has nevertheless failed to show a high level of clinical activity when combined with chemotherapeutic agents. One very likely reason for the lack of clinical efficacy of Chk1 inhibitors may be that the inhibition of Chk1 causes the compensatory activation of ATM and ERK1/2 pathways. Indeed, inhibition of many enzyme activities, not necessarily components of cell cycle regulation, may block Chk1 inhibitor–induced ERK1/2 activation and enhance the toxicity of Chk1 inhibitors. This review examines the rationally hypothesized actions of Chk1 inhibitors as cell cycle modulatory drugs as well as the impact of Chk1 inhibition upon other cell survival signaling pathways. An understanding of Chk1 inhibition in multiple signaling contexts will be essential to the therapeutic development of Chk1 inhibitors. PMID:21540473

  1. Novel inhibitors of advanced glycation endproducts.

    PubMed

    Rahbar, Samuel; Figarola, James L

    2003-11-01

    A number of natural or synthetic compounds as AGE inhibitors have been proposed, discovered or currently being advanced by others and us. We have identified two new classes of aromatic compounds; aryl- (and heterocyclic) ureido and aryl (and heterocyclic) carboxamido phenoxyisobutyric acids, and benzoic acid derivatives and related compounds, as potential inhibitors of glycation and AGE formation. Some of these novel compounds also showed "AGE-breaking" activities in vitro. Current evidence is that chelation of transition metals and/or trapping or indirect inhibition of formation of reactive carbonyl compounds are involved in the mechanisms of action of these novel AGE inhibitors and breakers. Here, we review the inhibitors of glycation and AGE-breakers published to date and present the results of our in vitro and in vivo investigations on a number of these novel AGE inhibitors. These AGE-inhibitors and AGE-breakers may find therapeutic use in the treatment of diseases that AGE formation and accumulation may be responsible for their pathogenesis such as diabetes, Alzheimer's, rheumatoid arthritis, and atherosclerosis. PMID:14568010

  2. Aromatase inhibitors in the treatment of endometriosis.

    PubMed

    Słopień, Radosław; Męczekalski, Błażej

    2016-03-01

    Endometriosis is a chronic inflammatory condition in which foci of endometrial tissue grow outside of the uterine cavity. Endometriosis was estimated to affect 176 million women of childbearing potential all over the world in 2010. The presence of extrauterine endometrial tissue is associated with pain and infertility. Typical symptoms of endometriosis include dysmenorrhoea, dyspareunia, heavy menstrual periods (menorrhagia), pelvic pain that is not related to menstrual cycles, dysuria, and chronic fatigue. Medical treatments for endometriosis include combined oral contraceptive pills, danazol, gestrinone, medroxyprogesterone acetate, and gonadotropin-releasing hormone agonists (aGnRHs). A new class of medications called aromatase inhibitors has been identified in recent years as potential therapeutic agents for endometriosis. This article provides general information about aromatase inhibitors, their use in gynaecology, and their adverse effects. In particular, the paper discusses the use of aromatase inhibitors in the treatment of endometriosis in postmenopausal women. Unlike oral contraceptives, gestagens, aGnRHs, and danazol, which suppress ovarian oestrogen synthesis, aromatase inhibitors inhibit mainly extra-ovarian synthesis of oestrogens. Therefore, the use of aromatase inhibitors seems to be particularly relevant in older patients, as most of the body's oestrogen is produced outside the ovaries after menopause. The paper discusses also the use of aromatase inhibitors in the treatment of pain associated with endometriosis and infertility caused by endometriosis. PMID:27095958

  3. Discovery of Novel Haloalkane Dehalogenase Inhibitors

    PubMed Central

    Buryska, Tomas; Daniel, Lukas; Kunka, Antonin; Brezovsky, Jan; Damborsky, Jiri

    2016-01-01

    Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization. PMID:26773086

  4. Discovering Anti-platelet Drug Combinations with an Integrated Model of Activator-Inhibitor Relationships, Activator-Activator Synergies and Inhibitor-Inhibitor Synergies

    PubMed Central

    Lombardi, Federica; Golla, Kalyan; Fitzpatrick, Darren J.; Casey, Fergal P.; Moran, Niamh; Shields, Denis C.

    2015-01-01

    Identifying effective therapeutic drug combinations that modulate complex signaling pathways in platelets is central to the advancement of effective anti-thrombotic therapies. However, there is no systems model of the platelet that predicts responses to different inhibitor combinations. We developed an approach which goes beyond current inhibitor-inhibitor combination screening to efficiently consider other signaling aspects that may give insights into the behaviour of the platelet as a system. We investigated combinations of platelet inhibitors and activators. We evaluated three distinct strands of information, namely: activator-inhibitor combination screens (testing a panel of inhibitors against a panel of activators); inhibitor-inhibitor synergy screens; and activator-activator synergy screens. We demonstrated how these analyses may be efficiently performed, both experimentally and computationally, to identify particular combinations of most interest. Robust tests of activator-activator synergy and of inhibitor-inhibitor synergy required combinations to show significant excesses over the double doses of each component. Modeling identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and complementarity between inhibitor-inhibitor synergy effects and activator-inhibitor combination effects. This approach accelerates the mapping of combination effects of compounds to develop combinations that may be therapeutically beneficial. We integrated the three information sources into a unified model that predicted the benefits of a triple drug combination targeting ADP, thromboxane and thrombin signaling. PMID:25875950

  5. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1978-01-01

    Inhibitors which appeared promising in previous tests and additional inhibitors including several proprietary products were evaluated. Evaluation of the inhibitors was based on corrosion protection afforded an aluminum-mild steel-copper-stainless steel assembly in a hot corrosive water. Of the inhibitors tested two were found to be effective and show promise for protecting multimetallic solar heating systems.

  6. Potent pyrrolidine- and piperidine-based BACE-1 inhibitors

    SciTech Connect

    Iserloh, U.; Wu, Y.; Cumming, J.N.; Pan, J.; Wang, L.Y.; Stamford, A.W.; Kennedy, M.E.; Kuvelkar, R.; Chen, X.; Parker, E.M.; Strickland, C.; Voigt, J.

    2008-08-18

    Based on lead compound 1 identified from the patent literature, we developed novel patentable BACE-1 inhibitors by introducing a cyclic amine scaffold. Extensive SAR studies on both pyrrolidines and piperidines ultimately led to inhibitor 2f, one of the most potent inhibitors synthesized to date. The discovery and development of novel BACE-1 inhibitors incorporating a cyclic amine scaffold is described.

  7. Selective serotonin reuptake inhibitor exposure.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  8. Selective serotonin reuptake inhibitor exposure.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  9. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    SciTech Connect

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  10. Three Decades of β-Lactamase Inhibitors

    PubMed Central

    Drawz, Sarah M.; Bonomo, Robert A.

    2010-01-01

    Summary: Since the introduction of penicillin, β-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial β-lactamases. β-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome β-lactamase-mediated resistance, β-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner β-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to β-lactam-β-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant β-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of β-lactams. Here, we review the catalytic mechanisms of each β-lactamase class. We then discuss approaches for circumventing β-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of β-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a “second generation” of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of β-lactamases. PMID:20065329

  11. Cardiovascular effects of selective cyclooxygenase-2 inhibitors.

    PubMed

    Krum, Henry; Liew, Danny; Aw, Juan; Haas, Steven

    2004-03-01

    Selective cyclooxygenase-2 inhibitors represent a significant advance in the management of inflammatory disorders. They have similar efficacy to nonselective 'conventional' nonsteroidal anti-inflammatory drugs, but a superior gastrointestinal safety profile. However, a significant caveat is the perceived potential of cyclooxygenase-2 inhibitors to cause adverse cardiovascular effects, an issue first raised by the Vioxx Gastrointestinal Outcomes Research (VIGOR) study of rofecoxib (Vioxx, Merck & Co. Inc.). Mechanisms by which cyclooxygenase-2 inhibitors may increase cardiovascular risk are selective inhibition of prostaglandin I2 over thromboxane A2 within the eicosanoid pathway, which promotes thrombosis, and inhibition of prostaglandins E2 and I2 within the kidney, which leads to sodium and water retention and blood pressure elevation. In spite of this, the cardiovascular findings from VIGOR are not firmly supported by observations from large cohort studies and other clinical trials of selective cyclooxygenase-2 inhibitors, including the Celecoxib Long-term Arthritis Safety Study. The two main theories that explain the VIGOR findings are that the comparator used (naproxen; Naprosyn, Roche) is cardioprotective and that very high doses of rofecoxib were used, but at present neither is backed by firm evidence. Indeed, there is now early evidence that selective cyclooxygenase-2 inhibition with celecoxib may even protect against the progression of cardiovascular disease, on the basis that cyclooxygenase-2 mediates key processes in atherothrombosis. Currently, it is not clear what the net cardiovascular effects of cyclooxygenase-2 inhibitors are. The data are inconsistent and at best, speculative. It may be also that celecoxib and rofecoxib differ in their cardiovascular effects. Clarification of these issues is of vital importance given the vast number of patients presently taking both types of cyclooxygenase-2 inhibitors. Therefore, what is clear in this situation is

  12. Versatile templates for the development of novel kinase inhibitors: Discovery of novel CDK inhibitors

    SciTech Connect

    Dwyer, Michael P.; Paruch, Kamil; Alvarez, Carmen; Doll, Ronald J.; Keertikar, Kerry; Duca, Jose; Fischmann, Thierry O.; Hruza, Alan; Madison, Vincent; Lees, Emma; Parry, David; Seghezzi, Wolfgang; Sgambellone, Nicole; Shanahan, Frances; Wiswell, Derek; Guzi, Timothy J.

    2008-06-30

    A series of four bicyclic cores were prepared and evaluated as cyclin-dependent kinase-2 (CDK2) inhibitors. From the in-vitro and cell-based analysis, the pyrazolo[1,5-a]pyrimidine core (represented by 9) emerged as the superior core for further elaboration in the identification of novel CDK2 inhibitors.

  13. Polyphenol oxidase inhibitor(s) from German cockroach (Blattella germanica) extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extract from German cockroach appears effective in inhibiting browning on apples and potatoes. Successful identification of inhibitor(s) of PPO from German cockroach would be useful to the fruit and vegetable segments of the food industry, due to the losses they incur from enzymatic browning. Ide...

  14. Epidemiological aspects of inhibitor development redefine the clinical importance of inhibitors.

    PubMed

    van den Berg, H M

    2014-05-01

    Inhibitor development is a serious complication of treatment with coagulation products. Presently, 25-30% of all newly diagnosed patients with severe haemophilia A are diagnosed with inhibitors. An increasing number of genetic and non-genetic risk factors have been reported to be involved, although the impact of them in understanding the aetiology is still limited. Much attention has been focused on factor VIII products, but more recent studies show very little, if any, difference between class plasma and recombinant factor VIII products. More intensive treatment and higher dosing are probably more important factors. More than 10% of the inhibitors diagnosed in the last decade are of low titre. A first goal should be to understand their importance. It is argued that the impact of different risk factors should be studied in high-titre inhibitors to prevent dilution by non-significant low-titre inhibitors.

  15. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    SciTech Connect

    Lin, G.; Li, D; Sorio de Carvalho, L; Deng, H; Tao, H; Vogt, G; Wu, K; Schneider, J; Chidawanyika, T; et. al.

    2009-01-01

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.

  16. Inhibitors in LPE growth of garnets

    NASA Astrophysics Data System (ADS)

    De Roode, W. H.; Robertson, J. M.

    1983-09-01

    The growth rate of LPE growth garnets can be reduced considerably by the addition of small amounts of group II oxides. This effect can be helpful for the controlled growth of very thin garnet films for sub-micron bubbles and optical devices. The largest effect was found with the addition of Mg 2+ and Ca 2+, resulting in a maximum decrease of the growth rate of approximately 70%. A semi-empirical formula was used to describe the growth rate as a function of the dipping temperature. The change in the growth rate on the addition of the inhibitor ion at constant temperature was found to be proportional to ( aMO)/( aMO+2 Ln 2O 3), where M is a group II element, Ln 2O 2 is the sum of the yttrium and RE oxides in the melt, and a is the inhibitor factor. The value of the inhibitor factor depends on both the inhibitor ion as well as the composition of the garnet. The lowering of the growth rate on the addition of an inhibitor ion is explained by the introduction of an extra growth resistance due to the charge compensation mechanism of the divalent ions. The influence of the different charge compensation possibilities in the garnet system is examined and the relative importance of these possibilities for charge compensation is discussed.

  17. Inhibitors of the Metalloproteinase Anthrax Lethal Factor.

    PubMed

    Goldberg, Allison B; Turk, Benjamin E

    2016-01-01

    Bacillus anthracis, a rod shaped, spore forming, gram positive bacteria, is the etiological agent of anthrax. B. anthracis virulence is partly attributable to two secreted bipartite protein toxins, which act inside host cells to disrupt signaling pathways important for host defense against infection. These toxins may also directly contribute to mortality in late stage infection. The zinc-dependent metalloproteinase anthrax lethal factor (LF) is a critical component of one of these protein toxins and a prime target for inhibitor development to produce anthrax therapeutics. Here, we describe recent efforts to identify specific and potent LF inhibitors. Derivatization of peptide substrate analogs bearing zinc-binding groups has produced potent and specific LF inhibitors, and X-ray crystallography of LFinhibitor complexes has provided insight into features required for high affinity binding. Novel inhibitor scaffolds have been identified through several approaches, including fragment-based drug discovery, virtual screening, and highthroughput screening of diverse compound libraries. Lastly, efforts to discover LF inhibitors have led to the development of new screening strategies, such as the use of full-length proteins as substrates, that may prove useful for other proteases as well. Overall, these efforts have led to a collection of chemically and mechanistically diverse molecules capable of inhibiting LF activity in vitro and in cells, as well as in animal models of anthrax infection. PMID:27072692

  18. Inhibitors of human immunodeficiency virus integrase.

    PubMed Central

    Fesen, M R; Kohn, K W; Leteurtre, F; Pommier, Y

    1993-01-01

    In an effort to further extend the number of targets for development of antiretroviral agents, we have used an in vitro integrase assay to investigate a variety of chemicals, including topoisomerase inhibitors, antimalarial agents, DNA binders, naphthoquinones, the flavone quercetin, and caffeic acid phenethyl ester as potential human immunodeficiency virus type 1 integrase inhibitors. Our results show that although several topoisomerase inhibitors--including doxorubicin, mitoxantrone, ellipticines, and quercetin--are potent integrase inhibitors, other topoisomerase inhibitors--such as amsacrine, etoposide, teniposide, and camptothecin--are inactive. Other intercalators, such as chloroquine and the bifunctional intercalator ditercalinium, are also active. However, DNA binding does not correlate closely with integrase inhibition. The intercalator 9-aminoacridine and the polyamine DNA minor-groove binders spermine, spermidine, and distamycin have no effect, whereas the non-DNA binders primaquine, 5,8-dihydroxy-1,4-naphthoquinone, and caffeic acid phenethyl ester inhibit the integrase. Caffeic acid phenethyl ester was the only compound that inhibited the integration step to a substantially greater degree than the initial cleavage step of the enzyme. A model of 5,8-dihydroxy-1,4-naphthoquinone interaction with the zinc finger region of the retroviral integrase protein is proposed. Images Fig. 2 PMID:8460151

  19. Resistance to AHAS inhibitor herbicides: current understanding.

    PubMed

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined.

  20. Protease Inhibitors from Plants with Antimicrobial Activity

    PubMed Central

    Kim, Jin-Young; Park, Seong-Cheol; Hwang, Indeok; Cheong, Hyeonsook; Nah, Jae-Woon; Hahm, Kyung-Soo; Park, Yoonkyung

    2009-01-01

    Antimicrobial proteins (peptides) are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides). Plants produce a variety of proteins (peptides) that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins). Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides) with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents. PMID:19582234

  1. Monoamine Reuptake Inhibitors in Parkinson's Disease

    PubMed Central

    Huot, Philippe; Fox, Susan H.; Brotchie, Jonathan M.

    2015-01-01

    The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia. PMID:25810948

  2. SHH inhibitors for the treatment of medulloblastoma.

    PubMed

    Samkari, Ayman; White, Jason; Packer, Roger

    2015-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. It is currently stratified into four molecular variants through the advances in transcriptional profiling. They include: wingless, sonic hedgehog (SHH), Group III, and Group IV. The SHH group is characterized by constitutive activation of the SHH signaling pathway, and genetically characterized by mutations in patched homolog 1 (PTCH1) or other downstream pathway mutations. SHH inhibitors have become of great clinical interest in treating SHH-driven medulloblastoma. Many inhibitors are currently in different stages of development, some already approved for other SHH-driven cancers, such as basal cell carcinoma. In vitro and in vivo medulloblastoma studies have shown efficacy and these findings have been translated into Phase I and II clinical trials. In this review, we present an overview of SHH medulloblastoma, as well as a discussion of currently available SHH inhibitors, and the challenges associated with their use. PMID:26027634

  3. LDL Cholesterol, Statins And PCSK 9 Inhibitors

    PubMed Central

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20–30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through ‘Risk evaluation and Mitigation Strategy (REMS)’. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  4. LDL cholesterol, statins and PCSK 9 inhibitors.

    PubMed

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20-30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through 'Risk evaluation and Mitigation Strategy (REMS)'. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  5. Calcification inhibitors in human ligamentum flavum.

    PubMed

    Maruta, K; Ichimura, K; Matsui, H; Yamagami, T; Sano, A; Tsuji, H

    1993-01-01

    To examine the presence of substances which inhibit calcification in human ligamentum flavum, the inhibitory effect of an Na2HPO4 extract of the flavum was determined in terms of the in vitro calcium uptake of the ligamentum flavum matrix. Additionally, grafts of extracted and non-extracted dry ligamentum flavum matrices were transplanted into the dorsal muscles of rats, and calcification in the grafts was examined radiologically and histochemically. In order to determine if component cells of human ligamentum flavum produce calcification inhibitors, ligamentum flavum cells were cultured, and the crystal inhibitor activity of the culture medium was measured by a seed test which used hydroxyapatite as the nucleus of precipitation. The calcification reaction system demonstrated that the ligamentum flavum extract contains an inhibitory factor for calcium uptake by the ligamentum flavum matrix. The seed test revealed that human ligamentum flavum cells produce calcification inhibitor activity.

  6. Orally Bioavailable Potent Soluble Epoxide Hydrolase Inhibitors

    PubMed Central

    Hwang, Sung Hee; Tsai, Hsing-Ju; Liu, Jun-Yan; Morisseau, Christophe; Hammock, Bruce D.

    2008-01-01

    A series of N,N′-disubstituted ureas having a conformationally restricted cis- or trans-1,4-cyclohexane α to the urea were prepared and tested as soluble epoxide hydrolase (sEH) inhibitors. This series of compounds showed low nanomolar to picomolar activities against recombinant human sEH. Both isomers showed similar potencies, but the trans isomers were more metabolically stable in human hepatic microsomes. Furthermore, these new potent inhibitors show a greater metabolic stability in vivo than previously described sEH inhibitors. We demonstrated that trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid 13g (t-AUCB, IC50 = 1.3 ± 0.05 nM) had excellent oral bioavailability (98%, n = 2) and blood area under the curve in dogs and was effective in vivo to treat hypotension in lipopolysaccharide challenged murine models. PMID:17616115

  7. Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2014-03-01

    The serotonin norepinephrine reuptake inhibitors are a family of antidepressants that inhibit the reuptake of both serotonin and norepinephrine. While these drugs are traditionally considered a group of inter-related antidepressants based upon reuptake inhibition, they generally display different chemical structures as well as different pharmacological properties. In this article, we discuss these and other differences among the serotonin norepinephrine reuptake inhibitors, including the year of approval by the United States Food and Drug Administration, generic availability, approved clinical indications, half-lives, metabolism and excretion, presence or not of active metabolites, dosing schedules, proportionate effects on serotonin and norepinephrine, and the timing of serotonin and norepinephrine reuptake (i.e., sequential or simultaneous). Again, while serotonin norepinephrine reuptake inhibitors are grouped as a family of antidepressants, they exhibit a surprising number of differences- differences that may ultimately relate to clinical nuances in patient care. PMID:24800132

  8. Novel hemagglutinin-based influenza virus inhibitors

    PubMed Central

    Shen, Xintian; Zhang, Xuanxuan

    2013-01-01

    Influenza virus has caused seasonal epidemics and worldwide pandemics, which caused tremendous loss of human lives and socioeconomics. Nowadays, only two classes of anti-influenza drugs, M2 ion channel inhibitors and neuraminidase inhibitors respectively, are used for prophylaxis and treatment of influenza virus infection. Unfortunately, influenza virus strains resistant to one or all of those drugs emerge frequently. Hemagglutinin (HA), the glycoprotein in influenza virus envelope, plays a critical role in viral binding, fusion and entry processes. Therefore, HA is a promising target for developing anti-influenza drugs, which block the initial entry step of viral life cycle. Here we reviewed recent understanding of conformational changes of HA in protein folding and fusion processes, and the discovery of HA-based influenza entry inhibitors, which may provide more choices for preventing and controlling potential pandemics caused by multi-resistant influenza viruses. PMID:23977436

  9. Cyclooxygenase-2 inhibitors: promise or peril?

    PubMed Central

    Mengle-Gaw, Laurel J; Schwartz, Benjamin D

    2002-01-01

    The discovery of two isoforms of the cyclooxygenase enzyme, COX-1 and COX-2, and the development of COX-2-specific inhibitors as anti-inflammatories and analgesics have offered great promise that the therapeutic benefits of NSAIDs could be optimized through inhibition of COX-2, while minimizing their adverse side effect profile associated with inhibition of COX-1. While COX-2 specific inhibitors have proven to be efficacious in a variety of inflammatory conditions, exposure of large numbers of patients to these drugs in postmarketing studies have uncovered potential safety concerns that raise questions about the benefit/risk ratio of COX-2-specific NSAIDs compared to conventional NSAIDs. This article reviews the efficacy and safety profiles of COX-2-specific inhibitors, comparing them with conventional NSDAIDs. PMID:12467519

  10. Transgenic inhibitors of RNA interference in Drosophila.

    PubMed

    Chou, Yu-ting; Tam, Bergin; Linay, Fabien; Lai, Eric C

    2007-01-01

    RNA silencing functions as an adaptive antiviral defense in both plants and animals. In turn, viruses commonly encode suppressors of RNA silencing, which enable them to mount productive infection. These inhibitor proteins may be exploited as reagents with which to probe mechanisms and functions of RNA silencing pathways. In this report, we describe transgenic Drosophila strains that allow inducible expression of the viral RNA silencing inhibitors Flock House virus-B2, Nodamura virus-B2, vaccinia virus-E3L, influenza A virus-NS1 and tombusvirus P19. Some of these, especially the B2 proteins, are effective transgenic inhibitors of double strand RNA-induced gene silencing in flies. On the other hand, none of them is effective against the Drosophila microRNA pathway. Their functional selectivity makes these viral silencing proteins useful reagents with which to study biological functions of the Drosophila RNA interference pathway.

  11. Current and Novel Inhibitors of HIV Protease

    PubMed Central

    Pokorná, Jana; Machala, Ladislav; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    The design, development and clinical success of HIV protease inhibitors represent one of the most remarkable achievements of molecular medicine. This review describes all nine currently available FDA-approved protease inhibitors, discusses their pharmacokinetic properties, off-target activities, side-effects, and resistance profiles. The compounds in the various stages of clinical development are also introduced, as well as alternative approaches, aiming at other functional domains of HIV PR. The potential of these novel compounds to open new way to the rational drug design of human viruses is critically assessed. PMID:21994591

  12. Identification of potent, selective KDM5 inhibitors.

    PubMed

    Gehling, Victor S; Bellon, Steven F; Harmange, Jean-Christophe; LeBlanc, Yves; Poy, Florence; Odate, Shobu; Buker, Shane; Lan, Fei; Arora, Shilpi; Williamson, Kaylyn E; Sandy, Peter; Cummings, Richard T; Bailey, Christopher M; Bergeron, Louise; Mao, Weifeng; Gustafson, Amy; Liu, Yichin; VanderPorten, Erica; Audia, James E; Trojer, Patrick; Albrecht, Brian K

    2016-09-01

    This communication describes the identification and optimization of a series of pan-KDM5 inhibitors derived from compound 1, a hit initially identified against KDM4C. Compound 1 was optimized to afford compound 20, a 10nM inhibitor of KDM5A. Compound 20 is highly selective for the KDM5 enzymes versus other histone lysine demethylases and demonstrates activity in a cellular assay measuring the increase in global histone 3 lysine 4 tri-methylation (H3K4me3). In addition compound 20 has good ADME properties, excellent mouse PK, and is a suitable starting point for further optimization. PMID:27476424

  13. Presence of aromatase inhibitors in cycads.

    PubMed

    Kowalska, M T; Itzhak, Y; Puett, D

    1995-07-28

    Cycads, the most primitive of the living gymnosperms, have been used and continue to be used for food and medicinal purposes by many cultures, although toxins must be removed before ingestion. In our quest to identify tropical plants that contain inhibitors of the cytochrome P-450 aromatase and thus may be efficacious in treating estrogen-dependent tumors, we have screened extracts from 5 species of cycad folia encompassing 3 genera: Cycas cairnsiana F. Muell., Cycas revoluta Thunb., Cycas rumphii Miq., Dioon spinulosum Dyer and Encephalartos ferox Bertol. All extracts were found to contain inhibitors of the human enzyme.

  14. Inhibition of elastase by a synthetic cotton-bound serine protease inhibitor: in vitro kinetics and inhibitor release.

    PubMed

    Edwards, J V; Bopp, A F; Batiste, S; Ullah, A J; Cohen, I K; Diegelmann, R F; Montante, S J

    1999-01-01

    A cotton-bound serine protease inhibitor of elastase (fiber-inhibitor) has been formulated for in vitro evaluation in chronic wound fluid. As a model to understand the properties of the inhibitor in wound dressings, the kinetic profile and in vitro release of the fiber-inhibitor formulation have been examined. The elastase inhibitor N-Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone was modified onto cotton cellulose fibers and assayed as a colloidal system. Amino acid analysis and reversed phase high performance liquid chromatography were compared as semiquantitative methods to assess elastase inhibitor release from the cotton fibers. The kinetics of inhibition was assessed on treated fibers of synthetic dressings such that a colloidal suspension of the fiber-inhibitor and elastase was employed as an assay. A dose-response relationship was observed in the kinetics of substrate hydrolysis catalyzed by three elastases: porcine pancreatic elastase, which was employed to model this approach; human leukocyte elastase; and elastase in human chronic wound fluid. Both freely dissolved and fiber-bound inhibitors were studied. The initial rates of substrate hydrolysis were inversely linear with freely dissolved inhibitor dose. The apparent first order rate constants, kobs, for the elastase-inhibitor complex were calculated from the kinetic profiles. The kobs for inhibitor bound enzyme varied as a function of inhibitor vs. enzyme concentration and based on the order of mixing of substrate, inhibitor and enzyme in the assay. Enzyme inhibition by the fiber-inhibitor was measured as inhibitor concentration at 50% inhibition (I50). I50 values measured from the colloidal assay with fiber-released inhibitor were within the same range to those for freely dissolved inhibitor. Inhibition of elastase activity in chronic wound fluid was observed with 1-5 mg of fiber-inhibitor formulation. This approach constitutes an in vitro assessment of synthetic serine protease inhibitors on

  15. Cyclic amidine sugars as transition-state analogue inhibitors of glycosidases: potent competitive inhibitors of mannosidases.

    PubMed

    Heck, Marie-Pierre; Vincent, Stéphane P; Murray, Brion W; Bellamy, François; Wong, Chi-Huey; Mioskowski, Charles

    2004-02-25

    A series of monocyclic glycoamidines bearing different exocyclic amine, alcohol, or alkyl functionalities and bicyclic amidines derived from D-glucose and D-mannose were synthesized and tested as inhibitors of various glycosidases. All the prepared compounds demonstrated good to excellent inhibition toward glycosidases. In particular, the biscationic D-mannoamidine 9b bearing an exocyclic ethylamine moiety proved to be a selective competitive inhibitor of alpha- and beta-mannosidases (K(i) = 6 nM) making it the most potent inhibitor of these glycosidases reported to date. A favorable B(2,5) boat conformation might explain the selectivity of mannosidase inhibition compared to other glycosidases.

  16. Effect of Chirality of Small Molecule Organofluorine Inhibitors of Amyloid Self-Assembly on Inhibitor Potency

    PubMed Central

    Sood, Abha; Abid, Mohammed; Hailemichael, Samson; Foster, Michelle; Török, Béla

    2009-01-01

    The effect of enantiomeric trifluromethyl-indolyl-acetic acid ethyl esters on the fibrillogenesis of Alzheimer's amyloid β (Aβ) peptide is described. These compounds have been previously identified as effective inhibitors of the Aβ self-assembly in their racemic form. Thioflavin-T Fluorescence Spectroscopy and Atomic Force Microscopy were applied to assess the potency of the chiral target compounds. Both enantiomers showed significant inhibition in the in vitro assays. The potency of the enantiomeric inhibitors appeared to be very similar to each other suggesting the lack of the stereospecific binding interactions between these small molecule inhibitors and the Aβ peptide. PMID:19880318

  17. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    PubMed

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion. PMID:26132857

  18. Small Molecule Inhibitor of AICAR Transformylase Homodimerization

    PubMed Central

    Spurr, Ian B.; Birts, Charles N.; Cuda, Francesco; Benkovic, Stephen J; Blaydes, Jeremy P.; Tavassoli, Ali

    2012-01-01

    Aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is a bifunctional homodimeric enzyme that catalyses the last two steps of de novo purine biosynthesis. Homodimerization of ATIC, a protein-protein interaction with an interface of over 5000 Å2, is required for its aminoimidazole carboxamide ribonucleotide (AICAR) transformylase activity, with the active sites forming at the interface of the interacting proteins. Here, we report the development of a small-molecule inhibitor of AICAR transformylase that functions by preventing the homodimerization of ATIC. The compound is derived from a previously reported cyclic hexa-peptide inhibitor of AICAR transformylase (with a Ki of 17 μM), identified by high-throughput screening. The active motif of the cyclic peptide is identified as an arginine-tyrosine dipeptide, a capped analogue of which inhibits AICAR transformylase with a Ki of 84 μM. A library of non-natural analogues of this dipeptide was designed, synthesized, and assayed. The most potent compound inhibits AICAR transformylase with a Ki of 685 nM, a 25-fold improvement in activity from the parent cyclic peptide. The potential for this AICAR transformylase inhibitor in cancer therapy is assessed by studying its effect on the proliferation of a model breast cancer cell line. Using a non-radioactive proliferation assay and live cell imaging, a dose-dependent reduction in cell numbers and cell division rates was observed in cells treated with our ATIC dimerization inhibitor. PMID:22764122

  19. Alcalase rapeseed inhibitors: purification and partial characterization.

    PubMed

    Vioque, J; Sánchez-Vioque, R; Clemente, A; Pedroche, J; Mar Yust, M; Millán, F

    2001-01-01

    Extensive rapeseed protein hydrolysate obtained sequentially with Alcalase and Flavourzyme showed inhibitory activity towards Alcalase. Inhibitory activity decreased as the hydrolytic process progressed probably by heat denaturation and/or partial protease degradation. Alcalase rapeseed inhibitors were purified by gel filtration and subsequent ion exchange chromatography. They are composed of peptides of 8.4 and 6.1 kDa linked by interchain disulphide bonds, as observed by reducing SDS-PAGE, with a native molecular weight of 18 kDa. Aminoacid composition of the inhibitors was characterized by the high proportion of methionine (4.2%) and cysteine (4.6%). Alcalase inhibitors were partially resistant to heat treatment; after heating at 70 degrees C for 45 minutes more than 50% of the original inhibitory activity remained in the purified protein but after heating at 90 degrees C for 5 minutes, inhibitory activity decreased very fast to a basal level. The possible relation of these protease inhibitors with the 2S albumin storage proteins is discussed.

  20. Curcumin derivatives as HIV-1 protease inhibitors

    SciTech Connect

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  1. Therapeutic potential of peptide deformylase inhibitors.

    PubMed

    Chen, D; Yuan, Z

    2005-09-01

    Peptide deformylase (PDF) is an attractive target for antibacterial drug discovery. Progress in the biological characterisation of the enzyme, coupled with newly obtained mechanistic and structural insight, enabled the pharmaceutical industry to discover potent PDF inhibitors that can be considered as clinical development candidates for this new class of antibacterial agents. The in vitro and in vivo data for several lead PDF inhibitors suggest that the current PDF inhibitors are most suitable for the treatment of respiratory tract infections and they are not cross-resistant to the current clinically used antibiotics. Two PDF inhibitors, BB-83698 and VIC-104959, have progressed to Phase I clinical trials by intravenous and oral administration, respectively. Both of these compounds show promising in vitro and in vivo efficacy and an excellent safety profile. The pharmacokinetics in humans for both of the compounds suggest the possibility of a twice-daily dosing regimen for clinical use. Thus far, all of the data suggest a promising future for this new class of antibacterial agents.

  2. Cellulose biosynthesis inhibitors - a multifunctional toolbox.

    PubMed

    Tateno, Mizuki; Brabham, Chad; DeBolt, Seth

    2016-01-01

    In the current review, we examine the growing number of existing Cellulose Biosynthesis Inhibitors (CBIs) and based on those that have been studied with live cell imaging we group their mechanism of action. Attention is paid to the use of CBIs as tools to ask fundamental questions about cellulose biosynthesis.

  3. Novel proteinase inhibitor promotes resistance to insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  4. Resistant mechanisms to BRAF inhibitors in melanoma

    PubMed Central

    Layos, Laura; Bugés, Cristina; de los Llanos Gil, María; Vila, Laia; Martínez-Balibrea, Eva; Martínez-Cardús, Anna

    2016-01-01

    Patients with advanced melanoma have traditionally had very poor prognosis. However, since 2011 better understanding of the biology and epidemiology of this disease has revolutionized its treatment, with newer therapies becoming available. These newer therapies can be classified into immunotherapy and targeted therapy. The immunotherapy arsenal includes inhibitors of CTLA4, PD-1 and PDL-1, while targeted therapy focuses on BRAF and MEK. BRAF inhibitors (vemurafenib, dabrafenib) have shown benefit in terms of overall survival (OS) compared to chemotherapy, and their combination with MEK inhibitors has recently been shown to improve progression-free survival (PFS), compared with monotherapy with BRAF inhibitors. However, almost 20% of patients initially do not respond, due to intrinsic resistance to therapy and, of those who do, most eventually develop mechanisms of acquired resistance, including reactivation of the MAP kinase pathway, persistent activation of receptor tyrosine kinase (RTKS) receptor, activation of phosphatidyinositol-3OH kinase, overexpression of epidermal growth factor receptor (EGFR), and interactions with the tumor microenvironment. Herein we comment in detail on mechanisms of resistance to targeted therapy and discuss the strategies to overcome them. PMID:27429963

  5. FAAH inhibitors in the limelight, but regrettably

    PubMed Central

    Mallet, Christophe; Dubray, Claude; Dualé, Christian

    2016-01-01

    Abstract. This short review focuses on the recent drug development of FAAH inhibitors, as recent serious adverse events have been reported in a phase I study with a compound of this class. The authors overview the potential interest in targeting FAAH inhibition, the current programs, and the available information on the recent dramatic events. PMID:27191771

  6. Cellulose biosynthesis inhibitors - a multifunctional toolbox.

    PubMed

    Tateno, Mizuki; Brabham, Chad; DeBolt, Seth

    2016-01-01

    In the current review, we examine the growing number of existing Cellulose Biosynthesis Inhibitors (CBIs) and based on those that have been studied with live cell imaging we group their mechanism of action. Attention is paid to the use of CBIs as tools to ask fundamental questions about cellulose biosynthesis. PMID:26590309

  7. Novel Cytoprotective Inhibitors for Apoptotic Endonuclease G

    PubMed Central

    Jang, Dae Song; Penthala, Narsimha R.; Apostolov, Eugene O.; Wang, Xiaoying; Crooks, Peter A.

    2015-01-01

    Apoptotic endonuclease G (EndoG) is responsible for DNA fragmentation both during and after cell death. Previous studies demonstrated that genetic inactivation of EndoG is cytoprotective against various pro-apoptotic stimuli; however, specific inhibitors for EndoG are not available. In this study, we have developed a high-throughput screening assay for EndoG and have used it to screen a chemical library. The screening resulted in the identification of two potent EndoG inhibitors, PNR-3-80 and PNR-3-82, which are thiobarbiturate analogs. As determined by their IC50s, the inhibitors are more potent than ZnCl2 or EDTA. They inhibit EndoG at one or two orders of magnitude greater than another apoptotic endonuclease, DNase I, and do not inhibit the other five tested cell death-related enzymes: DNase II, RNase A, proteinase, lactate dehydrogenase, and superoxide dismutase 1. Exposure of natural EndoG-expressing 22Rv1 or EndoG-overexpressing PC3 cells rendered them significantly resistant to Cisplatin and Docetaxel, respectively. These novel EndoG inhibitors have the potential to be utilized for amelioration of cell injuries in which participation of EndoG is essential. PMID:25401220

  8. Tetra- versus Pentavalent Inhibitors of Cholera Toxin**

    PubMed Central

    Fu, Ou; Pukin, Aliaksei V; van Ufford, H C Quarles; Branson, Thomas R; Thies-Weesie, Dominique M E; Turnbull, W Bruce; Visser, Gerben M; Pieters, Roland J

    2015-01-01

    The five B-subunits (CTB5) of the Vibrio cholerae (cholera) toxin can bind to the intestinal cell surface so the entire AB5 toxin can enter the cell. Simultaneous binding can occur on more than one of the monosialotetrahexosylganglioside (GM1) units present on the cell surface. Such simultaneous binding arising from the toxins multivalency is believed to enhance its affinity. Thus, blocking the initial attachment of the toxin to the cell surface using inhibitors with GM1 subunits has the potential to stop the disease. Previously we showed that tetravalent GM1 molecules were sub-nanomolar inhibitors of CTB5. In this study, we synthesized a pentavalent version and compared the binding and potency of penta- and tetravalent cholera toxin inhibitors, based on the same scaffold, for the first time. The pentavalent geometry did not yield major benefits over the tetravalent species, but it was still a strong inhibitor, and no major steric clashes occurred when binding the toxin. Thus, systems which can adopt more geometries, such as those described here, can be equally potent, and this may possibly be due to their ability to form higher-order structures or simply due to more statistical options for binding. PMID:26478842

  9. Haemophilia pseudotumours in patients with inhibitors.

    PubMed

    Caviglia, H; Candela, M; Landro, M E; Douglas Price, A L; Neme, D; Galatro, G A

    2015-09-01

    Development of inhibitors against factor VIII (FVIII) or FIX is the most serious complication of replacement therapy in patients with haemophilia. Haemophilic pseudotumours in a patient with inhibitors can lead to devastating consequences. The aim of this study is to show our experience in the treatment of 10 pseudotumours in 7 patients with inhibitors who were treated by the same multidisciplinary team in the period between January 2000 and March 2013. Seven severe haemophilia A patients were treated at the Haemophilia Foundation in Buenos Aires, Argentina, for 10 pseudotumours. Eight were bone pseudotumours and two soft tissue. All patients underwent imaging studies at baseline to assess the size and content of the lesion. The patients received Buenos Aires protocol as conservative treatment of their pseudotumours for 6 weeks, after which they were evaluated. Only one patient responded to conservative treatment. Surgery was performed on the others six patients, since their pseudotumours did not shrink to less than half their original size. Any bleeding in the musculoskeletal system must be treated promptly in order to prevent pseudotumours. When pseudotumours do appear in inhibitor patients, they can be surgically removed when patients received proper haemostatic coverage, improving the quality of life of these patients.

  10. Synthesis and Assays of Inhibitors of Methyltransferases.

    PubMed

    Cai, X-C; Kapilashrami, K; Luo, M

    2016-01-01

    Epigenetic regulation requires site-specific modification of the genome and is involved in multiple physiological processes and disease etiology. Methyltransferases, which catalyze the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to various substrates, are critical components of the epigenetic machinery. This group of enzymes can methylate diverse substrates including DNA, RNA, proteins, and small-molecule metabolites. Their dysregulation has also been implicated in multiple disease states such as cancer, neurological, and cardiovascular disorders. Developing potent and selective small-molecule inhibitors of methyltransferases is valuable not only for therapeutic intervention but also for investigating the roles of these enzymes in disease progression. In this chapter, we will discuss the strategies of designing and synthesizing methyltransferases inhibitors based on the SAM scaffold. Following the section of inhibitor design, we will briefly review representative assays that are available to evaluate the potency of these inhibitors along with a detailed description of the most commonly used radiometric assay. PMID:27423865

  11. [Cyclooxygenase 2 inhibitors and colorectal cancer].

    PubMed

    Bernardeau-Mozer, Marianne; Chaussade, Stanislas

    2004-05-01

    Cyclooxygenase-2 (Cox2) is an inductible isoenzyme of cyclooxygenase undetectable in normal colonic mucosa and overexpressed in 80% colonic tumor. Several works in vitro and in vivo showed that Cox2 plays a key role in the multistep process of colorectal tumorigenesis such apoptosis inhibition of cellular proliferation and angiogenesis induction. So that Cox2 represent a potential molecular target in colorectal management and specific Cox2 inhibitors may be useful as chemopreventive as well as therapeutic agent in humans. In animals study Cox2 inhibitors was shown to be effective and in humans Cox2 inhibitors are approved by the Food and Drug Administration as an adjunct to endoscopic surveillance and surgery in patients with Familial Adenomatous Polyposis (FAP). The purpose of this article is to review the relationship between Cox2/Cox2 inhibitors and differents signaling pathways of colorectal carcinogenesis and to precise their possible molecular mechanisms of action. This work although review clinicals data of their efficacy as chemopreventive agent as well as therapeutic in the differents group at risk for colorectal cancer. PMID:15239336

  12. Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors.

    PubMed

    Fischer, Matthias; Kuckenberg, Markus; Kastilan, Robin; Muth, Jost; Gebhardt, Christiane

    2015-02-01

    Plant protease inhibitors are a structurally highly diverse and ubiquitous class of small proteins, which play various roles in plant development and defense against pests and pathogens. Particular isoforms inhibit in vitro proteases and other enzymes that are not their natural substrates, for example proteases that have roles in human diseases. Mature potato tubers are a rich source of several protease inhibitor families. Different cultivars have different inhibitor profiles. With the objective to explore the functional diversity of the natural diversity of potato protease inhibitors, we randomly selected and sequenced 9,600 cDNA clones originated from mature tubers of ten potato cultivars. Among these, 120 unique inhibitor cDNA clones were identified by homology searches. Eighty-eight inhibitors represented novel sequence variants of known plant protease inhibitor families. Most frequent were Kunitz-type inhibitors (KTI), potato protease inhibitors I and II (PIN), pectin methylesterase inhibitors, metallocarboxypeptidase inhibitors and defensins. Twenty-three inhibitors were functionally characterized after heterologous expression in the yeast Pichia pastoris. The purified recombinant proteins were tested for inhibitory activity on trypsin, eleven pharmacological relevant proteases and the non-proteolytic enzyme 5-lipoxygenase. Members of the KTI and PIN families inhibited pig pancreas elastase, β-Secretase, Cathepsin K, HIV-1 protease and potato 5-lipoxygenase. Our results demonstrate in vitro inhibitory diversity of small potato tuber proteins commonly known as protease inhibitors, which might have biotechnological or medical applications.

  13. Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors.

    PubMed

    Fischer, Matthias; Kuckenberg, Markus; Kastilan, Robin; Muth, Jost; Gebhardt, Christiane

    2015-02-01

    Plant protease inhibitors are a structurally highly diverse and ubiquitous class of small proteins, which play various roles in plant development and defense against pests and pathogens. Particular isoforms inhibit in vitro proteases and other enzymes that are not their natural substrates, for example proteases that have roles in human diseases. Mature potato tubers are a rich source of several protease inhibitor families. Different cultivars have different inhibitor profiles. With the objective to explore the functional diversity of the natural diversity of potato protease inhibitors, we randomly selected and sequenced 9,600 cDNA clones originated from mature tubers of ten potato cultivars. Among these, 120 unique inhibitor cDNA clones were identified by homology searches. Eighty-eight inhibitors represented novel sequence variants of known plant protease inhibitor families. Most frequent were Kunitz-type inhibitors (KTI), potato protease inhibitors I and II (PIN), pectin methylesterase inhibitors, metallocarboxypeptidase inhibitors and defensins. Twenty-three inhibitors were functionally characterized after heterologous expression in the yeast Pichia pastoris. The purified recombinant proteins were tested for inhibitory activity on trypsin, eleven pharmacological relevant proteases and the non-proteolytic enzyme 5-lipoxygenase. Members of the KTI and PIN families inhibited pig pancreas elastase, β-Secretase, Cathepsin K, HIV-1 protease and potato 5-lipoxygenase. Our results demonstrate in vitro inhibitory diversity of small potato tuber proteins commonly known as protease inhibitors, which might have biotechnological or medical applications. PMID:25260821

  14. DNA Methyltransferases Inhibitors from Natural Sources.

    PubMed

    Zwergel, Clemens; Valente, Sergio; Mai, Antonello

    2016-01-01

    DNA methyltransferases (DNMTs) catalyze the methylation at cytosine-C5 mainly in a CpG dinucleotide context. Although DNA methylation is essential for fundamental processes like embryonic development or differentiation, aberrant expression and/or activities of DNMTs are involved in several pathologies, from neurodegeneration to cancer. DNMTs inhibition can arrest tumor growth, cells invasiveness and induce differentiation, whereas their increased expression is shown in numerous cancer types. Moreover, hypermethylated promoters of tumor suppressor genes lead to their silencing. Hence, the use of specific inhibitors of DNMT might reactivate those genes and stop or even reverse the aberrant cell processes. To date, the only approved DNMTs inhibitors for therapy belong to the nucleoside-based family of drugs, but they display relevant side effects as well as high chemical instability. Thus, there is a keen interest actually exists to develop novel, potent and safe inhibitors possessing a nonnucleoside structure. Increasing literature evidence is highlighting that natural sources could help the researchers to achieve this goal. Indeed, several polyphenols, flavonoids, antraquinones, and others are described able to inhibit DNMTs activity and/or expression, thus decreasing the methylation/silencing of different genes involved in tumorigenesis. These events can lead to re-expression of such genes and to cell death in diverse cancer cell lines. Epigallocatechin-3-gallate (1) and laccaic acid A (11) resulted the most effective DNMT1 inhibitors with submicromolar IC50 values, acting as competitive inhibitors. Compound 1 and 11 both displayed gene demethylation and re-activation in several cancers. However, all of the natural compounds described in this review showed important results, from gene reactivation to cell growth inhibition. Moreover, some of them displayed interesting activity even in rodent cancer models and very recently entered clinical trials. PMID:26303417

  15. Cost of care of haemophilia with inhibitors.

    PubMed

    Di Minno, M N D; Di Minno, G; Di Capua, M; Cerbone, A M; Coppola, A

    2010-01-01

    In Western countries, the treatment of patients with inhibitors is presently the most challenging and serious issue in haemophilia management, direct costs of clotting factor concentrates accounting for >98% of the highest economic burden absorbed for the healthcare of patients in this setting. Being designed to address questions of resource allocation and effectiveness, decision models are the golden standard to reliably assess the overall economic implications of haemophilia with inhibitors in terms of mortality, bleeding-related morbidity, and severity of arthropathy. However, presently, most data analyses stem from retrospective short-term evaluations, that only allow for the analysis of direct health costs. In the setting of chronic diseases, the cost-utility analysis, that takes into account the beneficial effects of a given treatment/healthcare intervention in terms of health-related quality of life, is likely to be the most appropriate approach. To calculate net benefits, the quality adjusted life year, that significantly reflects such health gain, has to be compared with specific economic impacts. Differences in data sources, in medical practice and/or in healthcare systems and costs, imply that most current pharmacoeconomic analyses are confined to a narrow healthcare payer perspective. Long-term/lifetime prospective or observational studies, devoted to a careful definition of when to start a treatment; of regimens (dose and type of product) to employ, and of inhibitor population (children/adults, low-responding/high responding inhibitors) to study, are thus urgently needed to allow for newer insights, based on reliable data sources into resource allocation, effectiveness and cost-utility analysis in the treatment of haemophiliacs with inhibitors.

  16. Peptidyl cyclopropenones: Reversible inhibitors, irreversible inhibitors, or substrates of cysteine proteases?

    PubMed Central

    Cohen, Meital; Bretler, Uriel; Albeck, Amnon

    2013-01-01

    Peptidyl cyclopropenones were previously introduced as selective cysteine protease reversible inhibitors. In the present study we synthesized one such peptidyl cyclopropenone and investigated its interaction with papain, a prototype cysteine protease. A set of kinetics, biochemical, HPLC, MS, and 13C-NMR experiments revealed that the peptidyl cyclopropenone was an irreversible inhibitor of the enzyme, alkylating the catalytic cysteine. In parallel, this cyclopropenone also behaved as an alternative substrate of the enzyme, providing a product that was tentatively suggested to be either a spiroepoxy cyclopropanone or a gamma-lactone. Thus, a single family of compounds exhibits an unusual variety of activities, being reversible inhibitors, irreversible inhibitors and alternative substrates towards enzymes of the same family. PMID:23553793

  17. Therapeutic substitution post-patent expiry: the cases of ACE inhibitors and proton pump inhibitors.

    PubMed

    Vandoros, Sotiris

    2014-05-01

    This paper examines whether there is a switch in total (originator and generic) consumption after generic entry from molecules that face generic competition towards other molecules of the same class, which are still in-patent. Data from six European countries for the time period 1991 to 2006 are used to study the cases of angiotensin-converting enzyme inhibitors and proton pump inhibitors. Empirical evidence shows that patent expiry of captopril and enalapril led to a switch in total (off-patent originator and generic) consumption towards other in-patent angiotensin-converting enzyme inhibitors, whereas patent expiry of omeprazole led to a switch in consumption towards other proton pump inhibitors. This phenomenon makes generic policies ineffective and results in an increase in pharmaceutical expenditure due to the absence of generic alternatives in the market of in-patent molecules.

  18. Neuroprotective Tri- and Tetracyclic BChE Inhibitors Releasing Reversible Inhibitors upon Carbamate Transfer

    PubMed Central

    2012-01-01

    Tri- and tetracyclic nitrogen-bridgehead compounds were designed and synthesized to yield micromolar cholinesterase (ChE) inhibitors. Structure–activity relationships identified potent compounds with butyrylcholinesterase selectivity. These compounds were selected as starting points for the design and synthesis of carbamate-based (pseudo)irreversible inhibitors. Compounds with superior inhibitory activity and selectivity were obtained and kinetically characterized also with regard to the velocity of enzyme carbamoylation. Structural elements were identified and introduced that additionally showed neuroprotective properties on a hippocampal neuronal cell line (HT-22) after glutamate-induced intracellular reactive oxygen species generation. We have identified potent and selective pseudoirreversible butyrylcholinesterase inhibitors that release reversible inhibitors with neuroprotective properties after carbamate transfer to the active site of cholinesterases. PMID:24900407

  19. Dermatologic adverse events to chemotherapeutic agents, Part 2: BRAF inhibitors, MEK inhibitors, and ipilimumab.

    PubMed

    Choi, Jennifer Nam

    2014-03-01

    The advent of novel targeted chemotherapeutic agents and immunotherapies has dramatically changed the arena of cancer treatment in recent years. BRAF inhibitors, MEK inhibitors, and ipilimumab are among the newer chemotherapy drugs that are being used at an increasing rate. Dermatologic adverse events to these medications are common, and it is important for dermatologists and oncologists alike to learn to recognize and treat such side effects in order to maintain both patients' quality of life and their anticancer treatment. This review describes the cutaneous side effects seen with BRAF inhibitors (eg, maculopapular eruption, photosensitivity, squamoproliferative growths, melanocytic proliferations), MEK inhibitors (eg, papulopustular eruption), and ipilimumab (eg, maculopapular eruption, vitiligo), with a mention of vismodegib and anti-PD-1 agents.

  20. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors

    PubMed Central

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R.; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G.; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A.; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S.; Mohammadi, Moosa; Jänne, Pasi A.; Gray, Nathanael S.

    2014-01-01

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  1. Inhibitor analysis for a solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Tabony, J. H.

    1977-01-01

    A study of potential corrosion inhibitors for the NASA solar heating and cooling system which uses aluminum solar panels is provided. Research consisted of testing using a dynamic corrosion system, along with an economic analysis of proposed corrosion inhibitors. Very good progress was made in finding a suitable inhibitor for the system.

  2. Controlled-release scale inhibitor for use in fracturing treatments

    SciTech Connect

    Powell, R.J.; Gdanski, R.D.; McCabe, M.A.; Buster, D.C.

    1995-11-01

    This paper describes results of laboratory and field testing of a solid, controlled-release scale inhibitor for use in fracturing treatments. Laboratory testing with a continuous flow apparatus has yielded inhibitor release rates under dynamic conditions. The inhibitor was tested to determine the minimum inhibitor concentration required to inhibit the formation of CaCO{sub 3}, CaSO{sub 4}, and BaSO{sub 4} scales in a brine. A model to predict the long-term release rate of the inhibitor was developed from data collected on the continuous flow apparatus. Data from treated wells will be compared with predictions of the model. Inhibitor release-rate testing in a continuous-flow apparatus shows that a solid, calcium-magnesium polyphosphate inhibitor has a sustained release profile. Release-rate testing shows that the inhibitor can be used up to 175 F. The inhibitor is compatible with both borate and zirconium crosslinked fracturing fluids and foamed fluids. The effective lifetime of the scale treatment can be predicted based on a model developed from laboratory data. The input variables required for the prediction include: temperature, water production, amount of inhibitor, minimum effective concentration of inhibitor for the specific brine. The model can be used to aid in the design of the scale inhibitor treatment.

  3. Deletion Mutations Keep Kinase Inhibitors in the Loop

    PubMed Central

    Freed, Daniel M.; Park, Jin H.; Radhakrishnan, Ravi; Lemmon, Mark A.

    2016-01-01

    Effective clinical application of conformationally selective kinase inhibitors requires tailoring drug choice to the tumor's activating mutation(s). In this issue of Cancer Cell, Foster et al. (2016) describe how activating deletions in BRAF, EGFR, and HER2 cause primary resistance to common inhibitors, suggesting strategies for improved inhibitor selection. PMID:27070691

  4. Serine protease inhibitors of parasitic helminths.

    PubMed

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships. PMID:22310379

  5. Penicillin inhibitors of purple acid phosphatase.

    PubMed

    Faridoon; Hussein, Waleed M; Ul Islam, Nazar; Guddat, Luke W; Schenk, Gerhard; McGeary, Ross P

    2012-04-01

    Purple acid phosphatases (PAPs) are binuclear metallohydrolases that have a multitude of biological functions and are found in fungi, bacteria, plants and animals. In mammals, PAP activity is linked with bone resorption and over-expression can lead to bone disorders such as osteoporosis. PAP is therefore an attractive target for the development of drugs to treat this disease. A series of penicillin conjugates, in which 6-aminopenicillanic acid was acylated with aromatic acid chlorides, has been prepared and assayed against pig PAP. The binding mode of most of these conjugates is purely competitive, and some members of this class have potencies comparable to the best PAP inhibitors yet reported. The structurally related penicillin G was shown to be neither an inhibitor nor a substrate for pig PAP. Molecular modelling has been used to examine the binding modes of these compounds in the active site of the enzyme and to rationalise their activities.

  6. mTOR inhibitors in cancer therapy

    PubMed Central

    Xie, Jianling; Wang, Xuemin; Proud, Christopher G.

    2016-01-01

    The mammalian target of rapamycin, mTOR, plays key roles in cell growth and proliferation, acting at the catalytic subunit of two protein kinase complexes: mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by several oncogenic signaling pathways and is accordingly hyperactive in the majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great attention as an anti-cancer therapy. However, progress in using inhibitors of mTOR signaling as therapeutic agents in oncology has been limited by a number of factors, including the fact that the classic mTOR inhibitor, rapamycin, inhibits only some of the effects of mTOR; the existence of several feedback loops; and the crucial importance of mTOR in normal physiology.

  7. Replacing sulfa drugs with novel DHPS inhibitors.

    PubMed

    Hammoudeh, Dalia I; Zhao, Ying; White, Stephen W; Lee, Richard E

    2013-07-01

    More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target. PMID:23859210

  8. New tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates.

    PubMed

    Kim, Young-Jin; Chung, Joo Eun; Kurisawa, Motoichi; Uyama, Hiroshi; Kobayashi, Shiro

    2004-01-01

    In this study, new tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates, have been developed. Tyrosinase is a copper-containing enzyme that catalyzes the hydroxylation of a monophenol (monophenolase activity) and the oxidation of an o-diphenol (diphenolase activity). In the measurement of tyrosinase inhibition activity, (+)-catechin acted as substrate and cofactor of tyrosinase. On the other hand, the polycondensates inhibited the tyrosine hydroxylation and L-DOPA oxidation by chelation to the active site of tyrosinase. The UV-visible spectrum of a mixture of tyrosinase and the polycondensate exhibited a characteristic shoulder peak ascribed to the chelation of the polycondensate to the active site of tyrosinase. Furthermore, circular dichroism measurement showed a small red shift of the band due to the interaction between tyrosinase and the polycondensate. These data support that the polycondensate acts as an inhibitor of tyrosinase. PMID:15003008

  9. mTOR inhibitors in cancer therapy

    PubMed Central

    Xie, Jianling; Wang, Xuemin; Proud, Christopher G.

    2016-01-01

    The mammalian target of rapamycin, mTOR, plays key roles in cell growth and proliferation, acting at the catalytic subunit of two protein kinase complexes: mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by several oncogenic signaling pathways and is accordingly hyperactive in the majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great attention as an anti-cancer therapy. However, progress in using inhibitors of mTOR signaling as therapeutic agents in oncology has been limited by a number of factors, including the fact that the classic mTOR inhibitor, rapamycin, inhibits only some of the effects of mTOR; the existence of several feedback loops; and the crucial importance of mTOR in normal physiology. PMID:27635236

  10. Automated colorimetric screen for apyrase inhibitors.

    PubMed

    Windsor, J B; Thomas, C; Hurley, L; Roux, S J; Lloyd, A M

    2002-11-01

    Apyrases are enzymes that efficiently hydrolyze ATP and ADP and may operate both inside and outside the cell. Although apyrases are important to a variety of cellular mechanisms and uses in industry, there are no available apyrase-specific inhibitors. Colorimetric assays based on the Fiske-Subbarow method for measuring inorganic phosphate are able to detect the release of inorganic phosphate from ATP and other nucleotides. We found that this type of assay could be automated and used to screen for apyrase-inhibiting compounds by assaying for a reduction in released phosphate in the presence of potential inhibitors. The automation of this assay allowed for the successful screening of a commercially available compound library. Several low molecular weight compounds were identified that, when used at micromolar concentrations, effectively inhibited apyrase activity.

  11. Replacing sulfa drugs with novel DHPS inhibitors.

    PubMed

    Hammoudeh, Dalia I; Zhao, Ying; White, Stephen W; Lee, Richard E

    2013-07-01

    More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target.

  12. SGLT2 Inhibitors: Benefit/Risk Balance.

    PubMed

    Scheen, André J

    2016-10-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation.

  13. Proteasome Inhibitors Block Development of Plasmodium spp.

    PubMed Central

    Gantt, Soren M.; Myung, Joon Mo; Briones, Marcelo R. S.; Li, Wei Dong; Corey, E. J.; Omura, Satoshi; Nussenzweig, Victor; Sinnis, Photini

    1998-01-01

    Proteasomes degrade most of the proteins inside eukaryotic cells, including transcription factors and regulators of cell cycle progression. Here we show that nanomolar concentrations of lactacystin, a specific irreversible inhibitor of the 20S proteasome, inhibit development of the exoerythrocytic and erythrocytic stages of the malaria parasite. Although lactacystin-treated Plasmodium berghei sporozoites are still invasive, their development into exoerythrocytic forms (EEF) is inhibited in vitro and in vivo. Erythrocytic schizogony of P. falciparum in vitro is also profoundly inhibited when drug treatment of the synchronized parasites is prior, but not subsequent, to the initiation of DNA synthesis, suggesting that the inhibitory effect of lactacystin is cell cycle specific. Lactacystin reduces P. berghei parasitemia in rats, but the therapeutic index is very low. Along with other studies showing that lactacystin inhibits stage-specific transformation in Trypanosoma and Entamoeba spp., these findings highlight the potential of proteasome inhibitors as drugs for the treatment of diseases caused by protozoan parasites. PMID:9756786

  14. Prospective therapeutic applications of p53 inhibitors

    SciTech Connect

    Gudkov, Andrei V. . E-mail: gudkov@ccf.org; Komarova, Elena A.

    2005-06-10

    p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-{alpha} that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.

  15. Protein synthesis inhibitor from potato tuber

    SciTech Connect

    Romaen, R. )

    1989-04-01

    A protein fraction capable of inhibit in vitro protein synthesis was found in potato tubers in fresh and wounded tissue. Inhibitor activity from fresh tissue decays with wounding. Inhibition activity was detected absorbed to ribsomal fraction and cytosol of potato tuber tissue by a partially reconstituted in vitro system from potato tuber and wheat germ. Adsorbed ribosomal fraction was more suitable of purification. This fraction was washed from ribosomes with 0.3M KCl, concentrated with ammonium sulfate precipitation and purified through sephadex G100 and sephadex G-75 columns chromatography. After 61 fold purification adsorbed protein fraction can inhibit germination of maize, wheat and sesame seeds, as well as {sup 3}H-leucine incorporation into protein by imbibed maize embryos. Inhibition activity was lost by temperature, alkali and protease-K hydrolysis. Preliminar analysis could not show presence of reductor sugars. Physiological role of this inhibitor in relation to rest and active tissue remains to be studied.

  16. mTOR inhibitors in cancer therapy.

    PubMed

    Xie, Jianling; Wang, Xuemin; Proud, Christopher G

    2016-01-01

    The mammalian target of rapamycin, mTOR, plays key roles in cell growth and proliferation, acting at the catalytic subunit of two protein kinase complexes: mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by several oncogenic signaling pathways and is accordingly hyperactive in the majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great attention as an anti-cancer therapy. However, progress in using inhibitors of mTOR signaling as therapeutic agents in oncology has been limited by a number of factors, including the fact that the classic mTOR inhibitor, rapamycin, inhibits only some of the effects of mTOR; the existence of several feedback loops; and the crucial importance of mTOR in normal physiology. PMID:27635236

  17. Replacing sulfa drugs with novel DHPS inhibitors

    PubMed Central

    Hammoudeh, Dalia I; Zhao, Ying; White, Stephen W; Lee, Richard E

    2013-01-01

    More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target. PMID:23859210

  18. Inhibitor prevents corrosion, scale in Chinese waterflood

    SciTech Connect

    Yong, W.; Jianhua, W. )

    1994-03-14

    An imidazoline derivative-based series inhibitor has prevented both corrosion and scale formation in produced-water treatment and water-injection equipment in China National Petroleum Co.'s (CNPC) Shengli oil field. Development of the inhibitor started in 1986, and after successful field trials the chemical is now being extensively applied. To increase oil recovery, water injection is widely used in China's onshore oil fields. Oil production in the Shengli oil field, for example, requires injection of about 4 bbl of water/1 bbl of oil produced. The large volumes of produced formation water contain many substances that can cause serious corrosion and scale. Also, the makeup water from other sources, subsurface or surface, complicates water handling. The paper discusses the following: corrosion and scale, oxygen, carbon dioxide, H[sub 2]S and sulfur reducing bacteria, temperature, inhibition, field tests, applications, and economics.

  19. A Bacterial Cell Shape-Determining Inhibitor.

    PubMed

    Liu, Yanjie; Frirdich, Emilisa; Taylor, Jennifer A; Chan, Anson C K; Blair, Kris M; Vermeulen, Jenny; Ha, Reuben; Murphy, Michael E P; Salama, Nina R; Gaynor, Erin C; Tanner, Martin E

    2016-04-15

    Helicobacter pylori and Campylobacter jejuni are human pathogens and causative agents of gastric ulcers/cancer and gastroenteritis, respectively. Recent studies have uncovered a series of proteases that are responsible for maintaining the helical shape of these organisms. The H. pylori metalloprotease Csd4 and its C. jejuni homologue Pgp1 cleave the amide bond between meso-diaminopimelate and iso-d-glutamic acid in truncated peptidoglycan side chains. Deletion of either csd4 or pgp1 results in bacteria with a straight rod phenotype, a reduced ability to move in viscous media, and reduced pathogenicity. In this work, a phosphinic acid-based pseudodipeptide inhibitor was designed to act as a tetrahedral intermediate analog against the Csd4 enzyme. The phosphinic acid was shown to inhibit the cleavage of the alternate substrate, Ac-l-Ala-iso-d-Glu-meso-Dap, with a Ki value of 1.5 μM. Structural analysis of the Csd4-inhibitor complex shows that the phosphinic acid displaces the zinc-bound water and chelates the metal in a bidentate fashion. The phosphinate oxygens also interact with the key acid/base residue, Glu222, and the oxyanion-stabilizing residue, Arg86. The results are consistent with the "promoted-water pathway" mechanism for carboxypeptidase A catalysis. Studies on cultured bacteria showed that the inhibitor causes significant cell straightening when incubated with H. pylori at millimolar concentrations. A diminished, yet observable, effect on the morphology of C. jejuni was also apparent. Cell straightening was more pronounced with an acapsular C. jejuni mutant strain compared to the wild type, suggesting that the capsule impaired inhibitor accessibility. These studies demonstrate that a highly polar compound is capable of crossing the outer membrane and altering cell shape, presumably by inhibiting cell shape determinant proteases. Peptidoglycan proteases acting as cell shape determinants represent novel targets for the development of antimicrobials

  20. Inhibitors of the AAA+ Chaperone p97

    PubMed Central

    Chapman, Eli; Maksim, Nick; de la Cruz, Fabian; La Clair, James J.

    2015-01-01

    It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology. PMID

  1. Corrosion protection with eco-friendly inhibitors

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3‑2 and NO‑3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10‑4 M 93% efficiency was exhibited at this concentration.

  2. Monoamine oxidase inhibitors from Gentiana lutea.

    PubMed

    Haraguchi, Hiroyuki; Tanaka, Yasumasa; Kabbash, Amal; Fujioka, Toshihiro; Ishizu, Takashi; Yagi, Akira

    2004-08-01

    Three monoamine oxidase (MAO) inhibitors were isolated from Gentiana lutea. Their structures were elucidated to be 3-3''linked-(2'-hydroxy-4-O-isoprenylchalcone)-(2'''-hydroxy-4''-O-isoprenyldihydrochalcone) (1), 2-methoxy-3-(1,1'-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one and 5-hydroxyflavanone. These compounds, and the hydrolysis product of 1, displayed competitive inhibitory properties against MAO-B which was more effective than MAO-A.

  3. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  4. Quinoxaline derivatives: novel and selective butyrylcholinesterase inhibitors.

    PubMed

    Zeb, Aurang; Hameed, Abdul; Khan, Latifullah; Khan, Imran; Dalvandi, Kourosh; Choudhary, M Iqbal; Basha, Fatima Z

    2014-01-01

    Alzheimer's disease (AD) is a progressive brain disorder which occurs due to lower levels of acetylcholine (ACh) neurotransmitters, and results in a gradual decline in memory and other cognitive processes. Acetycholinesterase (AChE) and butyrylcholinesterase (BChE) are considered to be primary regulators of the ACh levels in the brain. Evidence shows that AChE activity decreases in AD, while activity of BChE does not change or even elevate in advanced AD, which suggests a key involvement of BChE in ACh hydrolysis during AD symptoms. Therefore, inhibiting the activity of BChE may be an effective way to control AD associated disorders. In this regard, a series of quinoxaline derivatives 1-17 was synthesized and biologically evaluated against cholinesterases (AChE and BChE) and as well as against α- chymotrypsin and urease. The compounds 1-17 were found to be selective inhibitors for BChE, as no activity was found against other enzymes. Among the series, compounds 6 (IC50 = 7.7 ± 1.0 µM) and 7 (IC50 = 9.7 ± 0.9 µM) were found to be the most active inhibitors against BChE. Their IC50 values are comparable to the standard, galantamine (IC50 = 6.6 ± 0.38 µM). Their considerable BChE inhibitory activity makes them selective candidates for the development of BChE inhibitors. Structure-activity relationship (SAR) of this new class of selective BChE inhibitors has been discussed.

  5. Serendipity in discovery of proteasome inhibitors.

    PubMed

    Dunn, Derek; Iqbal, Mohamed; Husten, Jean; Ator, Mark A; Chatterjee, Sankar

    2012-05-15

    Among its various catalytic activities, the 'chymotrypsin-like' activity of the proteasome, a large multicatalytic proteinase complex has emerged as the focus of drug discovery efforts in cancer therapy. Herein, a series of first generation (2S, 3R)-2-amino-3-hydroxybutyric acid derived proteasome inhibitors that were discovered serendipitously en route to original goal of generating a series of sterically constrained oxazoline derivatives has been reported. PMID:22503349

  6. Rust Inhibitor And Fungicide For Cooling Systems

    NASA Technical Reports Server (NTRS)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  7. Immune Checkpoint Inhibitors in Older Adults.

    PubMed

    Elias, Rawad; Morales, Joshua; Rehman, Yasser; Khurshid, Humera

    2016-08-01

    Cancer is primarily a disease of older adults. The treatment of advanced stage tumors usually involves the use of systemic agents that may be associated with significant risk of toxicity, especially in older patients. Immune checkpoint inhibitors are newcomers to the oncology world with improved efficacy and better safety profiles when compared to traditional cytotoxic drugs. This makes them an attractive treatment option. While there are no elderly specific trials, this review attempts to look at the current available data from a geriatric oncology perspective. We reviewed data from phase III studies that led to newly approved indications of checkpoint inhibitors in non-small cell lung cancer, melanoma, and renal cell cancer. Data were reviewed with respect to response, survival, and toxicity according to three groups: <65 years, 65-75 years, and >75 years. Current literature does not allow one to draw definitive conclusions regarding the role of immune checkpoint inhibitors in older adults. However, they may offer a potentially less toxic but equally efficacious treatment option for the senior adult oncology patient. PMID:27287329

  8. PTEN inhibitors: an evaluation of current compounds.

    PubMed

    Spinelli, Laura; Lindsay, Yvonne E; Leslie, Nicholas R

    2015-01-01

    Small molecule inhibitors of many classes of enzymes, including phosphatases, have widespread use as experimental tools and as therapeutics. Efforts to develop inhibitors against the lipid phosphatase and tumour suppressor, PTEN, was for some time limited by concerns that their use as therapy could result in increased risk of cancer. However, the accumulation of evidence that short term PTEN inhibition may be valuable in conditions such as nerve injury has raised interest. Here we investigate the inhibition of PTEN by four available PTEN inhibitors, bpV(phen), bpV(pic), VO-OHpic and SF1670 and compared this inhibition with that of only 3 other related enzymes, the tyrosine phosphatase SHP1 and the phosphoinositide phosphatases INPP4A and INPP4B. Even with this very small number of comparators, for all compounds, inhibition of multiple enzymes was observed and with all three vanadate compounds, this was similar or more potent than the inhibition of PTEN. In particular, the bisperoxovanadate compounds were found to inhibit PTEN poorly in the presence of reducing agents including the cellular redox buffer glutathione.

  9. Histone deacetylase inhibitors as cancer therapeutics.

    PubMed

    Clawson, Gary A

    2016-08-01

    Cancer cells contain significant alterations in their epigenomic landscape, which several enzyme families reversibly contribute to. One class of epigenetic modifying enzymes is that of histone deacetylases (HDAC), which are receiving considerable scrutiny clinically as a therapeutic target in many cancers. The underlying rationale is that inhibiting HDACs will reverse dysregulated target gene expression by modulating functional histone (or other) acetylation marks. This perspective will discuss a recent paper by Markozashvili and co-workers which appeared in Gene, which indicates that the mechanisms by which HDAC inhibitors (HDACis) alter the epigenetic landscape include widespread alternative effects beyond simply controlling regional epigenetic marks. HDACs are involved in many processes/diseases, and it is not surprising that HDACis have considerable off-target effects, and thus a major effort is being directed toward identification of inhibitors which are selective for HDAC isoforms often uniquely implicated in various cancers. This Perspective will also discuss some representative work with inhibitors targeting individual HDAC classes or isoforms. At present, it is not really clear that isoform-specific HDACis will avoid non-selective effects on other unrecognized activities of HDACs. PMID:27568481

  10. Optogenetic Inhibitor of the Transcription Factor CREB.

    PubMed

    Ali, Ahmed M; Reis, Jakeb M; Xia, Yan; Rashid, Asim J; Mercaldo, Valentina; Walters, Brandon J; Brechun, Katherine E; Borisenko, Vitali; Josselyn, Sheena A; Karanicolas, John; Woolley, G Andrew

    2015-11-19

    Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue-light-controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light-driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events. PMID:26590638

  11. Functional Stability of Plasminogen Activator Inhibitor-1

    PubMed Central

    Kuru, Pinar; Toksoy Oner, Ebru; Agirbasli, Mehmet

    2014-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease. PMID:25386620

  12. The hunt for HIV-1 integrase inhibitors.

    PubMed

    Lataillade, Max; Kozal, Michael J

    2006-07-01

    Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results.

  13. Histone deacetylase inhibitors as cancer therapeutics

    PubMed Central

    2016-01-01

    Cancer cells contain significant alterations in their epigenomic landscape, which several enzyme families reversibly contribute to. One class of epigenetic modifying enzymes is that of histone deacetylases (HDAC), which are receiving considerable scrutiny clinically as a therapeutic target in many cancers. The underlying rationale is that inhibiting HDACs will reverse dysregulated target gene expression by modulating functional histone (or other) acetylation marks. This perspective will discuss a recent paper by Markozashvili and co-workers which appeared in Gene, which indicates that the mechanisms by which HDAC inhibitors (HDACis) alter the epigenetic landscape include widespread alternative effects beyond simply controlling regional epigenetic marks. HDACs are involved in many processes/diseases, and it is not surprising that HDACis have considerable off-target effects, and thus a major effort is being directed toward identification of inhibitors which are selective for HDAC isoforms often uniquely implicated in various cancers. This Perspective will also discuss some representative work with inhibitors targeting individual HDAC classes or isoforms. At present, it is not really clear that isoform-specific HDACis will avoid non-selective effects on other unrecognized activities of HDACs. PMID:27568481

  14. Selective Water-Soluble Gelatinase Inhibitor Prodrugs

    PubMed Central

    Gooyit, Major; Lee, Mijoon; Schroeder, Valerie A.; Ikejiri, Masahiro; Suckow, Mark A.; Mobashery, Shahriar; Chang, Mayland

    2011-01-01

    SB-3CT (1), a selective and potent thiirane-based gelatinase inhibitor, is effective in animal models of cancer metastasis and stroke; however, it is limited by poor aqueous solubility and extensive metabolism. We addressed these issues by blocking the primary site of metabolism and capitalizing on a prodrug strategy to achieve >5000-fold increased solubility. The amide prodrugs were quantitatively hydrolyzed in human blood to a potent gelatinase inhibitor, ND-322 (3). The arginyl amide prodrug (ND-478, 5d) was metabolically stable in mouse, rat, and human liver microsomes. Both 5d and 3 were non-mutagenic in the Ames II mutagenicity assay. The prodrug 5d showed moderate clearance of 0.0582 L/min/kg, remained mostly in the extracellular fluid compartment (Vd = 0.0978 L/kg), and had a terminal half-life of >4 h. The prodrug 5d had superior pharmacokinetic properties than 3, making the thiirane class of selective gelatinase inhibitors suitable for intravenous administration in treatment of acute gelatinase-dependent diseases. PMID:21866961

  15. Salicylanilide diethyl phosphates as cholinesterases inhibitors.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila

    2015-02-01

    Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellman's spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors. PMID:25462625

  16. Immune Checkpoint Inhibitors in Older Adults.

    PubMed

    Elias, Rawad; Morales, Joshua; Rehman, Yasser; Khurshid, Humera

    2016-08-01

    Cancer is primarily a disease of older adults. The treatment of advanced stage tumors usually involves the use of systemic agents that may be associated with significant risk of toxicity, especially in older patients. Immune checkpoint inhibitors are newcomers to the oncology world with improved efficacy and better safety profiles when compared to traditional cytotoxic drugs. This makes them an attractive treatment option. While there are no elderly specific trials, this review attempts to look at the current available data from a geriatric oncology perspective. We reviewed data from phase III studies that led to newly approved indications of checkpoint inhibitors in non-small cell lung cancer, melanoma, and renal cell cancer. Data were reviewed with respect to response, survival, and toxicity according to three groups: <65 years, 65-75 years, and >75 years. Current literature does not allow one to draw definitive conclusions regarding the role of immune checkpoint inhibitors in older adults. However, they may offer a potentially less toxic but equally efficacious treatment option for the senior adult oncology patient.

  17. Inhibitory spectrum of alpha 2-plasmin inhibitor.

    PubMed

    Saito, H; Goldsmith, G H; Moroi, M; Aoki, N

    1979-04-01

    alpha 2-Plasmin inhibitor (alpha 2PI) has been recently characterized as a fast-reacting inhibitor of plasmin in human plasma and appears to play an important role in the regulation of fibrinolysis in vivo. We have studied the effect of purified alpha 2PI upon various proteases participating in human blood coagulation and kinin generation. At physiological concentration (50 microgram/ml), alpha 2PI inhibited the clot-promoting and prekallikrein-activating activity of Hageman factor fragments, the amidolytic, kininogenase, and clot-promoting activities of plasma kallikrein, and the clot-promoting properties of activated plasma thromboplastin antecedent (PTA, Factor XIa) and thrombin. alpha 2PI had minimal inhibitory effect on surface-bound activated PTA and activated Stuart factor (Factor Xa). alpha 2PI did not inhibit the activity of activated Christmas factor (Factor IXa) or urinary kallikrein. Heparin (1.5-2.0 units/ml) did not enhance the inhibitory function of alpha 2PI. These results suggest that, like other plasma protease inhibitors, alpha 2PI possesses a broad in vitro spectrum of inhibitory properties.

  18. Recent advances in designing substrate-competitive protein kinase inhibitors.

    PubMed

    Han, Ki-Cheol; Kim, So Yeon; Yang, Eun Gyeong

    2012-01-01

    Protein kinases play central roles in cellular signaling pathways and their abnormal phosphorylation activity is inseparably linked with various human diseases. Therefore, modulation of kinase activity using potent inhibitors is an attractive strategy for the treatment of human disease. While most protein kinase inhibitors in clinical development are mainly targeted to the highly conserved ATP-binding sites and thus likely promiscuously inhibit multiple kinases including kinases unrelated to diseases, protein substrate-competitive inhibitors are more selective and expected to be promising therapeutic agents. Most substrate-competitive inhibitors mimic peptides derived from substrate proteins, or from inhibitory domains within kinases or inhibitor proteins. In addition, bisubstrate inhibitors are generated by conjugating substrate-competitive peptide inhibitors to ATP-competitive inhibitors to improve affinity and selectivity. Although structural information on protein kinases provides invaluable guidance in designing substrate-competitive inhibitors, other strategies including bioinformatics, computational modeling, and high-throughput screening are often employed for developing specific substrate-competitive kinase inhibitors. This review focuses on recent advances in the design and discovery of substrate-competitive inhibitors of protein kinases.

  19. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics.

    PubMed

    Law, Mary E; Corsino, Patrick E; Narayan, Satya; Law, Brian K

    2015-11-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer.

  20. Solution structures of stromelysin complexed to thiadiazole inhibitors.

    PubMed Central

    Stockman, B. J.; Waldon, D. J.; Gates, J. A.; Scahill, T. A.; Kloosterman, D. A.; Mizsak, S. A.; Jacobsen, E. J.; Belonga, K. L.; Mitchell, M. A.; Mao, B.; Petke, J. D.; Goodman, L.; Powers, E. A.; Ledbetter, S. R.; Kaytes, P. S.; Vogeli, G.; Marshall, V. P.; Petzold, G. L.; Poorman, R. A.

    1998-01-01

    Unregulated or overexpressed matrix metalloproteinases (MMPs), including stromelysin, collagenase, and gelatinase. have been implicated in several pathological conditions including arthritis and cancer. Small-molecule MMP inhibitors may have therapeutic value in the treatment of these diseases. In this regard, the solution structures of two stromelysin/ inhibitor complexes have been investigated using 1H, 13C, and 15N NMR spectroscopy. Both-inhibitors are members of a novel class of matrix metalloproteinase inhibitor that contain a thiadiazole group and that interact with stromelysin in a manner distinct from other classes of inhibitors. The inhibitors coordinate the catalytic zinc atom through their exocyclic sulfur atom, with the remainder of the ligand extending into the S1-S3 side of the active site. The binding of inhibitor containing a protonated or fluorinated aromatic ring was investigated using 1H and 19F NMR spectroscopy. The fluorinated ring was found to have a reduced ring-flip rate compared to the protonated version. A strong, coplanar interaction between the fluorinated ring of the inhibitor and the aromatic ring of Tyr155 is proposed to account for the reduced ring-flip rate and for the increase in binding affinity observed for the fluorinated inhibitor compared to the protonated inhibitor. Binding interactions observed for the thiadiazole class of ligands have implications for the design of matrix metalloproteinase inhibitors. PMID:9827994

  1. Molecular mechanism of respiratory syncytial virus fusion inhibitors.

    PubMed

    Battles, Michael B; Langedijk, Johannes P; Furmanova-Hollenstein, Polina; Chaiwatpongsakorn, Supranee; Costello, Heather M; Kwanten, Leen; Vranckx, Luc; Vink, Paul; Jaensch, Steffen; Jonckers, Tim H M; Koul, Anil; Arnoult, Eric; Peeples, Mark E; Roymans, Dirk; McLellan, Jason S

    2016-02-01

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.

  2. Advances in algal drug research with emphasis on enzyme inhibitors.

    PubMed

    Rengasamy, Kannan R R; Kulkarni, Manoj G; Stirk, Wendy A; Van Staden, Johannes

    2014-12-01

    Enzyme inhibitors are now included in all kinds of drugs essential to treat most of the human diseases including communicable, metabolic, cardiovascular, neurological diseases and cancer. Numerous marine algae have been reported to be a potential source of novel enzyme inhibitors with various pharmaceutical values. Thus, the purpose of this review is to brief the enzyme inhibitors from marine algae of therapeutic potential to treat common diseases. As per our knowledge this is the first review for the potential enzyme inhibitors from marine origin. This review contains 86 algal enzyme inhibitors reported during 1989-2013 and commercial enzyme inhibitors available in the market. Compounds in the review are grouped according to the disease conditions in which they are involved; diabetes, obesity, dementia, inflammation, melanogenesis, AIDS, hypertension and other viral diseases. The structure-activity relationship of most of the compounds are also discussed. In addition, the drug likeness properties of algal inhibitors were evaluated using Lipinski's 'Rule of Five'. PMID:25195189

  3. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  4. Phosphorylation of protein phosphatase inhibitor-1 by protein kinase C.

    PubMed

    Sahin, Bogachan; Shu, Hongjun; Fernandez, Joseph; El-Armouche, Ali; Molkentin, Jeffery D; Nairn, Angus C; Bibb, James A

    2006-08-25

    Inhibitor-1 becomes a potent inhibitor of protein phosphatase 1 when phosphorylated by cAMP-dependent protein kinase at Thr(35). Moreover, Ser(67) of inhibitor-1 serves as a substrate for cyclin-dependent kinase 5 in the brain. Here, we report that dephosphoinhibitor-1 but not phospho-Ser(67) inhibitor-1 was efficiently phosphorylated by protein kinase C at Ser(65) in vitro. In contrast, Ser(67) phosphorylation by cyclin-dependent kinase 5 was unaffected by phospho-Ser(65). Protein kinase C activation in striatal tissue resulted in the concomitant phosphorylation of inhibitor-1 at Ser(65) and Ser(67), but not Ser(65) alone. Selective pharmacological inhibition of protein phosphatase activity suggested that phospho-Ser(65) inhibitor-1 is dephosphorylated by protein phosphatase 1 in the striatum. In vitro studies confirmed these findings and suggested that phospho-Ser(67) protects phospho-Ser(65) inhibitor-1 from dephosphorylation by protein phosphatase 1 in vivo. Activation of group I metabotropic glutamate receptors resulted in the up-regulation of diphospho-Ser(65)/Ser(67) inhibitor-1 in this tissue. In contrast, the activation of N-methyl-d-aspartate-type ionotropic glutamate receptors opposed increases in striatal diphospho-Ser(65)/Ser(67) inhibitor-1 levels. Phosphomimetic mutation of Ser(65) and/or Ser(67) did not convert inhibitor-1 into a protein phosphatase 1 inhibitor. On the other hand, in vitro and in vivo studies suggested that diphospho-Ser(65)/Ser(67) inhibitor-1 is a poor substrate for cAMP-dependent protein kinase. These observations extend earlier studies regarding the function of phospho-Ser(67) and underscore the possibility that phosphorylation in this region of inhibitor-1 by multiple protein kinases may serve as an integrative signaling mechanism that governs the responsiveness of inhibitor-1 to cAMP-dependent protein kinase activation.

  5. Studies on bacterial cell wall inhibitors. VI. Screening method for the specific inhibitors of peptidoglycan synthesis.

    PubMed

    Omura, S; Tanaka, H; Oiwa, R; Nagai, T; Koyama, Y; Takahashi, Y

    1979-10-01

    A screening method was established for selecting new specific inhibitors of bacterial cell wall peptidoglycan synthesis. In the primary test, culture broths of soil isolates were selected based on relative microbial activity. A culture, to be retained, must be active against Bacillus subtilis and lack activities against Acholeplasma laidawii. In the secondary test, inhibitors of bacterial cell wall synthesis were identified by their ability to prevent the incorporation of meso-[3H]diaminopimelic acid but not to prevent the incorporation of L-[4C]leucine into the acid-insoluble macromolecular fraction of growing cells of Bacillus sp. ATCC 21206 (Dpm-). As the tertiary test, inhibitors with molecular weights under 1,000 were selected by passage through a Diaflo UM-2 membrane. By this screening procedure, six known antibiotics and one new one were picked out from ten thousand soil isolates. PMID:528376

  6. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    PubMed

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies. PMID:21997758

  7. Designing Inhibitors Against Fructose 1,6-bisphosphatase: Exploring Natural Products for Novel Inhibitor Scaffolds

    PubMed Central

    Heng, Sabrina; Harris, Katharine M.; Kantrowitz, Evan R.

    2010-01-01

    Natural products often contain unusual scaffold structures that may be elaborated by combinatorial methods to develop new drug-like molecules. Visual inspection of more than 128 natural products with some type of anti-diabetic activity suggested that a subset might provide novel scaffolds for designing potent inhibitors against fructose 1,6-bisphosphatase (FBPase), an enzyme critical in the control of gluconeogenesis. Using in silico docking methodology, these were evaluated to determine those that exhibited affinity for the AMP binding site. Achyrofuran from the South American plant Achyrocline satureoides, was selected for further investigation. Using the achyrofuran scaffold, inhibitors against FBPase were developed. Compounds 15 and 16 inhibited human liver and pig kidney FBPases at IC50 values comparable to that of AMP, the natural allosteric inhibitor. PMID:20116906

  8. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    PubMed

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  9. Structural analysis of Golgi alpha-mannosidase II inhibitors identified from a focused glycosidase inhibitor screen.

    PubMed

    Kuntz, Douglas A; Tarling, Chris A; Withers, Stephen G; Rose, David R

    2008-09-23

    The N-glycosylation pathway is a target for pharmaceutical intervention in a number of pathological conditions including cancer. Golgi alpha-mannosidase II (GMII) is the final glycoside hydrolase in the pathway and has been the target for a number of synthetic efforts aimed at providing more selective and effective inhibitors. Drosophila GMII (dGMII) has been extensively studied due to the ease of obtaining high resolution structural data, allowing the observation of substrate distortion upon binding and after formation of a trapped covalent reaction intermediate. However, attempts to find new inhibitor leads by high-throughput screening of large commercial libraries or through in silico docking were unsuccessful. In this paper we provide a kinetic and structural analysis of five inhibitors derived from a small glycosidase-focused library. Surprisingly, four of these were known inhibitors of beta-glucosidases. X-ray crystallographic analysis of the dGMII:inhibitor complexes highlights the ability of the zinc-containing GMII active site to deform compounds, even ones designed as conformationally restricted transition-state mimics of beta-glucosidases, into binding entities that have inhibitory activity. Although these deformed conformations do not appear to be on the expected conformational itinerary of the enzyme, and are thus not transition-state mimics of GMII, they allow positioning of the three vicinal hydroxyls of the bound gluco-inhibitors into similar locations to those found with mannose-containing substrates, underlining the importance of these hydrogen bonds for binding. Further, these studies show the utility of targeting the acid-base catalyst using appropriately positioned positively charged nitrogen atoms, as well as the challenges associated with aglycon substitutions.

  10. F8 haplotype and inhibitor risk: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort

    PubMed Central

    Schwarz, John; Astermark, Jan; Menius, Erika D.; Carrington, Mary; Donfield, Sharyne M.; Gomperts, Edward D.; Nelson, George W.; Oldenburg, Johannes; Pavlova, Anna; Shapiro, Amy D.; Winkler, Cheryl A.; Berntorp, Erik

    2012-01-01

    Background Ancestral background, specifically African descent, confers higher risk for development of inhibitory antibodies to factor VIII (FVIII) in hemophilia A. It has been suggested that differences in the distribution of factor VIII gene (F8) haplotypes, and mismatch between endogenous F8 haplotypes and those comprising products used for treatment could contribute to risk. Design and Methods Data from the HIGS Combined Cohort were used to determine the association between F8 haplotype 3 (H3) vs. haplotypes 1 and 2 (H1+H2) and inhibitor risk among individuals of genetically-determined African descent. Other variables known to affect inhibitor risk including type of F8 mutation and HLA were included in the analysis. A second research question regarding risk related to mismatch in endogenous F8 haplotype and recombinant FVIII products used for treatment was addressed. Results H3 was associated with higher inhibitor risk among those genetically-identified (N=49) as of African ancestry, but the association did not remain significant after adjustment for F8 mutation type and the HLA variables. Among subjects of all racial ancestries enrolled in HIGS who reported early use of recombinant products (N=223), mismatch in endogenous haplotype and the FVIII proteins constituting the products used did not confer greater risk for inhibitor development. Conclusion H3 was not an independent predictor of inhibitor risk. Further, our findings did not support a higher risk of inhibitors in the presence of a haplotype mismatch between the FVIII molecule infused and that of the individual. PMID:22958194

  11. Design and synthesis of conformationally restricted inhibitors of active thrombin activatable fibrinolysis inhibitor (TAFIa).

    PubMed

    Brink, Mikael; Dahlén, Anders; Olsson, Thomas; Polla, Magnus; Svensson, Tor

    2014-04-01

    A series of 4,5,6,7-tetrahydro-1H-benzimidazole-5-carboxylic acid and 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid derivatives designed as inhibitors of TAFIa has been prepared via a common hydrogenation-alkylation sequence starting from the appropriate benzimidazole and imidazopyridine system. We present a successful design strategy using a conformational restriction approach resulting in potent and selective inhibitors of TAFIa. The X-ray structure of compound 5 in complex with a H333Y/H335Q double mutant TAFI indicate that the conformational restriction is responsible for the observed potency increase. PMID:24588961

  12. Protocol for rational design of covalently interacting inhibitors.

    PubMed

    Schmidt, Thomas C; Welker, Armin; Rieger, Max; Sahu, Prabhat K; Sotriffer, Christoph A; Schirmeister, Tanja; Engels, Bernd

    2014-10-20

    The inhibition potencies of covalent inhibitors mainly result from the formation of a covalent bond to the enzyme during the inhibition mechanism. This class of inhibitors has essentially been ignored in previous target-directed drug discovery projects because of concerns about possible side effects. However, their advantages, such as higher binding energies and longer drug-target residence times moved them into the focus of recent investigations. While the rational design of non-covalent inhibitors became standard the corresponding design of covalent inhibitors is still in its early stages. Potent covalent inhibitors can be retrieved from large compound libraries by covalent docking approaches but protocols are missing that can reliably predict the influence of variations in the substitution pattern on the affinity and/or reactivity of a given covalent inhibitor. Hence, the wanted property profile can only be obtained from trial-and-error proceedings. This paper presents an appropriate protocol which is able to predict improved covalent inhibitors. It uses hybrid approaches, which mix quantum mechanical (QM) and molecular mechanical (MM) methods to predict variations in the reactivity of the inhibitor. They are also used to compute the required information about the non-covalent enzyme-inhibitor complex. Docking tools are employed to improve the inhibitor with respect to the non-covalent interactions formed in the binding site. PMID:25251382

  13. Homologous inhibitors from potato tubers of serine endopeptidases and metallocarboxypeptidases.

    PubMed Central

    Hass, C M; Venkatakrishnan, R; Ryan, C A

    1976-01-01

    A potent polypeptide inhibitor of chymotrypsin has been purified from Russett Burbank potatoes. The inhibitor has no effect on bovine carboxypeptidases A or B but exhibits homology with a carboxypeptidase inhibitor that is also present in potato tubers. The chymotrypsin inhibitor has a molecular weight of approximately 5400 as estimated by gel filtration, amino acid analysis, and titration with chymotrypsin. The polypeptide chain consists of 49 amino acid residues, of which six are half-cystine, forming three disulfide bonds. Its size is similar to that of the carboxypeptidase inhibitor, which contains 39 amino acid residues and also has three disulfide bridges. In immunological double diffusion assays, the chymotrypsin inhibitor and the carboxypeptidase inhibitor do not crossreact; however, automatic Edman degradation of reduced and alkylated derivatives of the chymotrypsin inhibitor, yielding a partial sequence of 18 amino acid residues at the NH2-terminus, reveals a similarity in sequence to that of the carboxypeptidase inhibitor. Thus, inhibitors directed toward two distinct classes of proteases, the serine endopeptidases and the metallocarboxypeptidases, appear to have evolved from a common ancestor. Images PMID:1064864

  14. Three-year patient-related and stent-related outcomes of second-generation everolimus-eluting Xience V stents versus zotarolimus-eluting resolute stents in real-world practice (from the Multicenter Prospective EXCELLENT and RESOLUTE-Korea Registries).

    PubMed

    Lee, Joo Myung; Park, Kyung Woo; Han, Jung-Kyu; Yang, Han-Mo; Kang, Hyun-Jae; Koo, Bon-Kwon; Bae, Jang-Whan; Woo, Sung-Il; Park, Jin Sik; Jin, Dong-Kyu; Jeon, Dong Woon; Oh, Seok Kyu; Park, Jong-Seon; Kim, Doo-Il; Hyon, Min Su; Jeon, Hui-Kyung; Lim, Do-Sun; Kim, Myeong-Gon; Rha, Seung-Woon; Her, Sung-Ho; Hwang, Jin-Yong; Kim, Sanghyun; Choi, Young Jin; Kang, Jin Ho; Moon, Keon-Woong; Jang, Yangsoo; Kim, Hyo-Soo

    2014-11-01

    Long-term outcomes are imperative to confirm safety of drug-eluting stents. There have been 2 randomized controlled trials comparing everolimus-eluting stents (EESs) and Resolute zotarolimus-eluting stents (ZES-Rs). To date, long-term clinical outcomes of these stents were limited to only 1 report, which has recently reported 4-year comparisons of these stents. Therefore, more evidence is needed regarding long-term clinical outcomes of the second-generation stents. This study compared the long-term clinical outcomes of EES with ZES-R in "all-comer" cohorts up to 3-year follow-up. The EXCELLENT and RESOLUTE-Korea registries prospectively enrolled 3,056 patients treated with EES and 1,998 with ZES-R, respectively, without exclusions. Stent-related composite outcomes (target lesion failure) and patient-related composite events up to 3-year follow-up were compared in crude and propensity score-matched analyses. Of 5,054 patients, 3,830 patients (75.8%) had off-label indication (2,217 treated with EES and 1,613 treated with ZES-R). The stent-related outcome (189 [6.2%] vs 127 [6.4%], p = 0.812) and the patient-related outcome (420 [13.7%] vs 250 [12.5%], p = 0.581) did not differ between EES and ZES-R, respectively, at 3 years, which was corroborated by similar results from the propensity score-matched cohort (hazard ratio [HR] 0.92, 95% confidence interval [CI] 0.70 to 1.20, p = 0.523 and 0.85, 95% CI 0.70 to 1.02, p = 0.081, for stent- and patient-related outcomes, respectively). The rate of definite or probable stent thrombosis up to 3 years (22 [0.7%] vs 10 [0.5%], p = 0.370) was also similar. The rate of very late definite or probable stent thrombosis was very low and comparable between the 2 stents (3 [0.1%] vs 1 [0.1%], p = 0.657). In multivariate analysis, chronic renal failure (adjusted HR 3.615, 95% CI 2.440 to 5.354, p <0.001) and off-label indication (adjusted HR 1.782, 95% CI 1.169 to 2.718, p = 0.007) were the strongest predictors of target

  15. Inhibitor development in non-severe haemophilia across Europe.

    PubMed

    Fischer, Kathelijn; Iorio, Alfonso; Lassila, Riitta; Peyvandi, Flora; Calizzani, Gabriele; Gatt, Alex; Lambert, Thierry; Windyga, Jerzy; Gilman, Estelle A; Hollingsworth, R; Makris, Michael

    2015-10-01

    Evidence about inhibitor formation in non-severe haemophilia and the potential role for clotting factor concentrate type is scant. It was the aim of this study to report inhibitor development in non-severe haemophilia patients enrolled in the European Haemophilia Safety Surveillance (EUHASS) study. Inhibitors are reported quarterly and total treated patients annually. Incidence rates and 95% confidence intervals (95% CI) were calculated according to diagnosis and concentrate used. Between 1-10-2008 and 31-12-2012, 68 centres reported on 7,969 patients with non-severe haemophilia A and 1,863 patients with non-severe haemophilia B. For haemophilia A, 37 inhibitors occurred in 8,622 treatment years, resulting in an inhibitor rate of 0.43/100 treatment years (95% CI 0.30-0.59). Inhibitors occurred at a median age of 35 years, after a median of 38 exposure days (EDs; P25-P75: 20-80); with 72% occurring within the first 50 EDs. In haemophilia B, one inhibitor was detected in 2,149 treatment years, resulting in an inhibitor rate of 0.05/100 years (95% CI 0.001-0.26). This inhibitor developed at the age of six years, after six EDs. The rate of inhibitors appeared similar across recombinant and plasma derived factor VIII (FVIII) concentrates. Rates for individual concentrates could not be calculated at this stage due to low number of events. In conclusion, inhibitors in non-severe haemophilia occur three times more frequently than in previously treated patients with severe haemophilia at a rate of 0.43/100 patient years (haemophilia A) and 0.05/100 years (haemophilia B). Although the majority of inhibitors developed in the first 50 EDs, inhibitor development continued with increasing exposure to FVIII.

  16. Structural determinants of Tau aggregation inhibitor potency.

    PubMed

    Schafer, Kelsey N; Cisek, Katryna; Huseby, Carol J; Chang, Edward; Kuret, Jeff

    2013-11-01

    Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers.

  17. Structural Determinants of Tau Aggregation Inhibitor Potency*

    PubMed Central

    Schafer, Kelsey N.; Cisek, Katryna; Huseby, Carol J.; Chang, Edward; Kuret, Jeff

    2013-01-01

    Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers. PMID:24072703

  18. Sifuvirtide, a potent HIV fusion inhibitor peptide

    SciTech Connect

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-05-08

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC{sub 50}), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC{sub 50}) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1{sub IIIB} were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  19. Tools for Characterizing Bacterial Protein Synthesis Inhibitors

    PubMed Central

    Orelle, Cédric; Carlson, Skylar; Kaushal, Bindiya; Almutairi, Mashal M.; Liu, Haipeng; Ochabowicz, Anna; Quan, Selwyn; Pham, Van Cuong; Squires, Catherine L.; Murphy, Brian T.

    2013-01-01

    Many antibiotics inhibit the growth of sensitive bacteria by interfering with ribosome function. However, discovery of new protein synthesis inhibitors is curbed by the lack of facile techniques capable of readily identifying antibiotic target sites and modes of action. Furthermore, the frequent rediscovery of known antibiotic scaffolds, especially in natural product extracts, is time-consuming and expensive and diverts resources that could be used toward the isolation of novel lead molecules. In order to avoid these pitfalls and improve the process of dereplication of chemically complex extracts, we designed a two-pronged approach for the characterization of inhibitors of protein synthesis (ChIPS) that is suitable for the rapid identification of the site and mode of action on the bacterial ribosome. First, we engineered antibiotic-hypersensitive Escherichia coli strains that contain only one rRNA operon. These strains are used for the rapid isolation of resistance mutants in which rRNA mutations identify the site of the antibiotic action. Second, we show that patterns of drug-induced ribosome stalling on mRNA, monitored by primer extension, can be used to elucidate the mode of antibiotic action. These analyses can be performed within a few days and provide a rapid and efficient approach for identifying the site and mode of action of translation inhibitors targeting the bacterial ribosome. Both techniques were validated using a bacterial strain whose culture extract, composed of unknown metabolites, exhibited protein synthesis inhibitory activity; we were able to rapidly detect the presence of the antibiotic chloramphenicol. PMID:24041905

  20. Kynurenine Aminotransferase Isozyme Inhibitors: A Review

    PubMed Central

    Nematollahi, Alireza; Sun, Guanchen; Jayawickrama, Gayan S.; Church, W. Bret

    2016-01-01

    Kynurenine aminotransferase isozymes (KATs 1–4) are members of the pyridoxal-5’-phosphate (PLP)-dependent enzyme family, which catalyse the permanent conversion of l-kynurenine (l-KYN) to kynurenic acid (KYNA), a known neuroactive agent. As KATs are found in the mammalian brain and have key roles in the kynurenine pathway, involved in different categories of central nervous system (CNS) diseases, the KATs are prominent targets in the quest to treat neurodegenerative and cognitive impairment disorders. Recent studies suggest that inhibiting these enzymes would produce effects beneficial to patients with these conditions, as abnormally high levels of KYNA are observed. KAT-1 and KAT-3 share the highest sequence similarity of the isozymes in this family, and their active site pockets are also similar. Importantly, KAT-2 has the major role of kynurenic acid production (70%) in the human brain, and it is considered therefore that suitable inhibition of this isozyme would be most effective in managing major aspects of CNS diseases. Human KAT-2 inhibitors have been developed, but the most potent of them, chosen for further investigations, did not proceed in clinical studies due to the cross toxicity caused by their irreversible interaction with PLP, the required cofactor of the KAT isozymes, and any other PLP-dependent enzymes. As a consequence of the possibility of extensive undesirable adverse effects, it is also important to pursue KAT inhibitors that reversibly inhibit KATs and to include a strategy that seeks compounds likely to achieve substantial interaction with regions of the active site other than the PLP. The main purpose of this treatise is to review the recent developments with the inhibitors of KAT isozymes. This treatise also includes analyses of their crystallographic structures in complex with this enzyme family, which provides further insight for researchers in this and related studies. PMID:27314340

  1. Sifuvirtide, a potent HIV fusion inhibitor peptide.

    PubMed

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-05-01

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC(50)), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC(50)) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1(IIIB) were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  2. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase

    PubMed Central

    Smith, Paul; Ho, C. Kiong; Takagi, Yuko; Djaballah, Hakim

    2016-01-01

    ABSTRACT Eukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM) superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi) knockdown methods to show that Trypanosoma brucei RTPase Cet1 (TbCet1) is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals—including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics—that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s). We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive) against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae). Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition. PMID:26908574

  3. Hypomagnesemia associated with a proton pump inhibitor.

    PubMed

    Matsuyama, Jun; Tsuji, Kunihiro; Doyama, Hisashi; Kim, Fae; Takeda, Yasuhito; Kito, Yosuke; Ito, Renma; Nakanishi, Hiroyoshi; Hayashi, Tomoyuki; Waseda, Yohei; Tsuji, Shigetsugu; Takemura, Kenichi; Yamada, Shinya; Okada, Toshihide; Kanaya, Honin

    2012-01-01

    Severe hypomagnesemia is a serious clinical condition. Proton pump inhibitor (PPI) induced hypomagnesemia has been recognized since 2006. In March 2011 the U.S. Food and Drug Administration advised that long-term use of PPI can induce hypomagnesemia. We report the first Japanese case of hypomagnesemia associated with chronic use of PPIs in a 64-year-old man hospitalized for nausea, bilateral ankle arthritis, and tremor of the extremities who had convulsions 3 days after admission. Blood analysis showed severe hypomagnesemia. He had been taking rabeprazole (10 mg/day) for 5 years. After stopping rabeprazole and correcting the electrolytes imbalances, his symptoms improved without recurrence.

  4. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2006-05-30

    Compounds of formula 1: ##STR00001## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0 3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  5. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2000-01-01

    Compounds of formula 1: ##STR1## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0-3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amnino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  6. A new urease inhibitor from Viola betonicifolia.

    PubMed

    Muhammad, Naveed; Saeed, Muhammad; Khan, Ajmal; Adhikari, Achyut; Wadood, Abdul; Khan, Khalid Mohammed; De Feo, Vincenzo

    2014-10-17

    Urease has attracted much attention, as it is directly involved in the formation of infection stones and contributes to the pathogenesis of urolithiasis, pyelonephritis, ammonia and hepatic encephalopathy, hepatic coma and urinary catheter encrustation. Moreover, urease is the major cause of pathologies induced by H. pylori, such as gastritis and peptic ulcer. In the present work, the new natural compound, 3-methoxydalbergione, was isolated from Viola betonicifolia. A mechanistic study of this compound as a natural urease inhibitor was performed by using enzyme kinetics and docking studies. 3-Methoxydalbergione could be considered as a lead molecule for drugs useful in the urease associated diseases.

  7. Inhibitors of platelet lipoxygenase from Ponkan fruit.

    PubMed

    Nogata, Y; Sekiya, K; Ohta, H; Kusumoto, K; Ishizu, T

    2001-04-01

    An activity-guided separation for inhibitors of rat platelet 12-lipoxygenase led to the isolation of two compounds, 4-O-feruloyl-5-O-caffeoylquinic acid (IC50; 5.5 microM) and methyl 4-O-feruloyl-5-O-caffeoylquinate (IC50; 1.9 microM) from the peel of Ponkan fruit (Citrus reticulata). The complete structure of each phenolic ester was determined by NMR spectroscopy [1H and 13C NMR spectra, 1H-1H correlation spectroscopy (COSY), 1H-detected heteronuclear multiple quantum coherence (HMQC), and heteronuclear multiple bond connectivity (HMBC) spectroscopies] and other spectral methods. PMID:11314960

  8. PDE-10A inhibitors as insulin secretagogues.

    PubMed

    Cantin, Louis-David; Magnuson, Steven; Gunn, David; Barucci, Nicole; Breuhaus, Marina; Bullock, William H; Burke, Jennifer; Claus, Thomas H; Daly, Michelle; Decarr, Lynn; Gore-Willse, Ann; Hoover-Litty, Helana; Kumarasinghe, Ellalahewage S; Li, Yaxin; Liang, Sidney X; Livingston, James N; Lowinger, Timothy; Macdougall, Margit; Ogutu, Herbert O; Olague, Alan; Ott-Morgan, Ronda; Schoenleber, Robert W; Tersteegen, Adrian; Wickens, Philip; Zhang, Zhonghua; Zhu, Jian; Zhu, Lei; Sweet, Laurel J

    2007-05-15

    Modulation of cAMP levels has been linked to insulin secretion in preclinical animal models and in humans. The high expression of PDE-10A in pancreatic islets suggested that inhibition of this enzyme may provide the necessary modulation to elicit increased insulin secretion. Using an HTS approach, we have identified quinoline-based PDE-10A inhibitors as insulin secretagogues in vitro. Optimized compounds were evaluated in vivo where improvements in glucose tolerance and increases in insulin secretion were measured. PMID:17400452

  9. Theoretical study of classical acetylcholinesterase inhibitors

    NASA Astrophysics Data System (ADS)

    Nascimento, Érica C. M.; Martins, João B. L.; dos Santos, Maria L.; Gargano, R.

    2008-06-01

    Semi-empirical, RHF and DFT calculations were carried out to study well known acetylcholinesterase inhibitors, i.e., tacrine, donepezil, galantamine, physostigmine, and tacrine dimer (bis-tacrine). Electronic and structural parameters were used in order to correlate the acetylcholinesterase inhibition activity with their molecular structure. The optimized geometries of these drugs were analyzed by multivariate PCA statistical method. Frontier orbital energies (HOMO and LUMO), the (HOMO-LUMO) gap and the distance between more acidic hydrogen species were used to determine principal components. The PCA results indicated that these drugs were ordered into three groups according to the first principal component: galantamine/physostigmine, donepezil/tacrine dimer and tacrine.

  10. Radical scavengers as ribonucleotide reductase inhibitors.

    PubMed

    Basu, Arijit; Sinha, Barij Nayan

    2012-01-01

    This paper compiled all the previous reports on radical scavengers, an interesting class of ribonucleotide reductase inhibitors. We have highlighted three key research areas: chemical classification of radical scavengers, structural and functional aspects of the radical site, and progress in drug designing for radical scavengers. Under the chemical classification section, we have recorded the discovery of hydroxyurea followed by discussions on hydroxamic acids, amidoximes, hydroxyguanidines, and phenolic compounds. In the next section, we have compiled the structural information for the radical site obtained from different crystallographic and theoretical studies. Finally, we have included the reported ligand based and structure based drug-designing studies.

  11. Inside HDACs with more selective HDAC inhibitors.

    PubMed

    Roche, Joëlle; Bertrand, Philippe

    2016-10-01

    Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.

  12. Protease Inhibitors Targeting Coronavirus and Filovirus Entry

    PubMed Central

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W.; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H.; Renslo, Adam R.; Simmons, Graham

    2016-01-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess, whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  13. Modified 5-fluorouracil: Uridine phosphorylase inhibitor

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Shchekotikhin, A. A.; Shtil, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2016-09-01

    5-Fluorouracil (5-FU) is a medication widely used in chemotherapy to treat various types of cancer. Being a substrate for the reverse reaction catalyzed by uridine phosphorylase (UPase), 5-FU serves as a promising prototype molecule (molecular scaffold) for the design of a selective UPase inhibitor that enhances the antitumor activity of 5-FU and exhibits intrinsic cytostatic effects on cancer cells. The chemical formula of the new compound, which binds to the uracil-binding site and, in the presence of a phosphate anion, to the phosphate-binding site of UPase, is proposed and investigated by molecular simulation methods.

  14. Inactivation of C-1 inhibitor by proteases: demonstration by a monoclonal antibody of a neodeterminant on inactivated, non-complexed C-1 inhibitor.

    PubMed

    Nuijens, J H; Huijbregts, C C; van Mierlo, G M; Hack, C E

    1987-07-01

    Monoclonal antibodies were raised against kallikrein-C-1 inhibitor and factor XIIa-C-1 inhibitor complexes. One of the monoclonal antibodies (KII) appeared to react predominantly with C-1 inhibitor complexes in an ELISA. However, the apparent binding of KII to C-1 inhibitor complexes was probably due to the presence of proteolytically inactivated C-1 inhibitor in the complex mixture used for the coating:KII did not bind either kallikrein-C-1 inhibitor or factor XIIa-C-1 inhibitor complexes generated in plasma by dextran sulphate. SDS-PAGE analysis of C-1 inhibitor incubated with proteases revealed that KII-reactive C-1 inhibitor has a lower molecular weight than native C-1 inhibitor. We propose that the determinant that reacts with KII is exposed after cleavage of C-1 inhibitor in its reactive site. The monoclonal antibody KII will enable us to study the inactivation of C-1 inhibitor in human inflammatory disease.

  15. Examination of the change in returning molecular weight obtained during inhibitor squeeze treatments using polyacrylate based inhibitors

    SciTech Connect

    Graham, G.M.; Sorbie, K.S.

    1995-11-01

    Scale inhibitors based on small polyelectrolytes are often employed in oilfield scale prevention treatments. These materials are injected into the near-well formation of producers in a scale inhibitor squeeze treatment. When the well is brought back on production, the objective is for the return concentration level of the inhibitor in the produced brine to be at or above a certain threshold level, C{sub t}. This threshold level is the minimum inhibitor concentration required to prevent the formation of mineral carbonate or sulfate scales in that well. The squeeze lifetime depends strongly on the nature of the interaction between the inhibitor and the formation either through an adsorption or precipitation mechanism. Both adsorption and precipitation processes depend on the molecular weight of the scale inhibitor, as well as on a range of other factors. However, polymeric inhibitor species always display some degree of polydispersity (spread of molecular weight). In this paper, the authors examine the effects of molecular weight on adsorption/desorption phenomena for polyacrylate based inhibitor species. This work shows that, in the inhibitor effluent after a squeeze treatment, the molecular weight of the returning inhibitor may be different from that which was injected. For commercially available polymeric inhibitor species, they demonstrate using core floods that preferential retention of higher molecular weight components occurs and preferential desorption of lower molecular weight components is observed. This leads to a gradation in molecular weight in the return profile, which can lead to increased molecular weight components returning as the inhibitor concentration approaches the threshold level. The significance of this observation to field application of polymeric inhibitor species is discussed.

  16. Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma.

    PubMed

    Liu, Rui-Ming; Eldridge, Stephanie; Watanabe, Nobuo; Deshane, Jessy; Kuo, Hui-Chien; Jiang, Chunsun; Wang, Yong; Liu, Gang; Schwiebert, Lisa; Miyata, Toshio; Thannickal, Victor J

    2016-02-15

    Asthma is one of the most common respiratory diseases. Although progress has been made in our understanding of airway pathology and many drugs are available to relieve asthma symptoms, there is no cure for chronic asthma. Plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators, has pleiotropic functions besides suppression of fibrinolysis. In this study, we show that administration of TM5275, an orally effective small-molecule PAI-1 inhibitor, 25 days after ovalbumin (OVA) sensitization-challenge, significantly ameliorated airway hyperresponsiveness in an OVA-induced chronic asthma model. Furthermore, we show that TM5275 administration significantly attenuated OVA-induced infiltration of inflammatory cells (neutrophils, eosinophils, and monocytes), the increase in the levels of OVA-specific IgE and Th2 cytokines (IL-4 and IL-5), the production of mucin in the airways, and airway subepithelial fibrosis. Together, the results suggest that the PAI-1 inhibitor TM5275 may have therapeutic potential for asthma through suppressing eosinophilic allergic response and ameliorating airway remodeling. PMID:26702150

  17. Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma.

    PubMed

    Liu, Rui-Ming; Eldridge, Stephanie; Watanabe, Nobuo; Deshane, Jessy; Kuo, Hui-Chien; Jiang, Chunsun; Wang, Yong; Liu, Gang; Schwiebert, Lisa; Miyata, Toshio; Thannickal, Victor J

    2016-02-15

    Asthma is one of the most common respiratory diseases. Although progress has been made in our understanding of airway pathology and many drugs are available to relieve asthma symptoms, there is no cure for chronic asthma. Plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators, has pleiotropic functions besides suppression of fibrinolysis. In this study, we show that administration of TM5275, an orally effective small-molecule PAI-1 inhibitor, 25 days after ovalbumin (OVA) sensitization-challenge, significantly ameliorated airway hyperresponsiveness in an OVA-induced chronic asthma model. Furthermore, we show that TM5275 administration significantly attenuated OVA-induced infiltration of inflammatory cells (neutrophils, eosinophils, and monocytes), the increase in the levels of OVA-specific IgE and Th2 cytokines (IL-4 and IL-5), the production of mucin in the airways, and airway subepithelial fibrosis. Together, the results suggest that the PAI-1 inhibitor TM5275 may have therapeutic potential for asthma through suppressing eosinophilic allergic response and ameliorating airway remodeling.

  18. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors

    PubMed Central

    Nelson, Erik A.; Walker, Sarah R.; Weisberg, Ellen; Bar-Natan, Michal; Barrett, Rosemary; Gashin, Laurie B.; Terrell, Shariya; Klitgaard, Josephine L.; Santo, Loredana; Addorio, Martha R.; Ebert, Benjamin L.; Griffin, James D.

    2011-01-01

    The transcription factor STAT5 is an essential mediator of the pathogenesis of chronic myelogenous leukemia (CML). In CML, the BCR/ABL fusion kinase causes the constitutive activation of STAT5, thereby driving the expression of genes promoting survival. BCR/ABL kinase inhibitors have become the mainstay of therapy for CML, although CML cells can develop resistance through mutations in BCR/ABL. To overcome this problem, we used a cell-based screen to identify drugs that inhibit STAT-dependent gene expression. Using this approach, we identified the psychotropic drug pimozide as a STAT5 inhibitor. Pimozide decreases STAT5 tyrosine phosphorylation, although it does not inhibit BCR/ABL or other tyrosine kinases. Furthermore, pimozide decreases the expression of STAT5 target genes and induces cell cycle arrest and apoptosis in CML cell lines. Pimozide also selectively inhibits colony formation of CD34+ bone marrow cells from CML patients. Importantly, pimozide induces similar effects in the presence of the T315I BCR/ABL mutation that renders the kinase resistant to presently available inhibitors. Simultaneously inhibiting STAT5 with pimozide and the kinase inhibitors imatinib or nilotinib shows enhanced effects in inhibiting STAT5 phosphorylation and in inducing apoptosis. Thus, targeting STAT5 may be an effective strategy for the treatment of CML and other myeloproliferative diseases. PMID:21233313

  19. The role of placental urokinase inhibitor in toxemia of pregnancy.

    PubMed

    Terao, T; Kobayashi, T

    1983-01-01

    The fibrinolysis of the uterus can be reversed during the course of pregnancy. The chief cause of this physiologic change is an increase of urokinase (UK) inhibitor in the placenta. The UK inhibitor also has a pathologic aspect that can influence the course of pregnancy. We have proven that the hypofibrinolysis of toxemic pregnant urine results from increased UK inhibitor. Furthermore, we have shown the existence of UK inhibitor in toxemic pregnant serum and the glomerulus. On the basis of these facts we propose that UK inhibitor leaks into the maternal blood stream from the placenta and inhibits the fibrinolytic activity of UK, forming microthrombuses in the glomerulus. Excess UK inhibitor in the placenta also suppresses the fibrinolytic activity of placental plasminogen activator (PPA). Thus microthrombuses are apt to be formed in both the placenta and glomerulus. Such pathologic inhibition of fibrinolysis strongly influences the course of toxemia. PMID:6360225

  20. Enzyme inhibitors in tuber crops and their thermal stability.

    PubMed

    Prathibha, S; Nambisan, B; Leelamma, S

    1995-10-01

    Tubers of Cassava (Manihot esculenta), yams (Dioscorea esculenta), aroids (Amorphophallus campanulatus, Colocasia esculenta, Xanthosoma sagittfolium) and Coleus (Solenostemon rotundifolius) were screened for inhibitory activities against amylase, trypsin and chymotrypsin. Coleus tuber possessed the highest anti-amylase activity, whereas Colocasia tuber was the most potent source of anti-tryptic and anti-chymotryptic activity. Xanthosoma tubers exhibited amylase inhibitory activity and Amorphophallus tubers antiprotease activity. Dioscorea esculenta had low levels of amylase and chymotrypsin inhibitors, while Cassava tubers were totally free of inhibitors. When tubers were processed by pressure cooking, there was significant reduction/complete elimination in inhibitory activity. Partial retention of inhibition was observed in the case of amylase inhibitor in Dioscorea, chymotrypsin inhibitor in Colocasia and trypsin inhibitor in Colocasia, Coleus and Amorphophallus. In vitro experiments on heat stability of the different inhibitors revealed almost similar pattern of inactivation. PMID:8833431

  1. Hepatitis C Virus NS3 Inhibitors: Current and Future Perspectives

    PubMed Central

    Akimitsu, Nobuyoshi

    2013-01-01

    Currently, hepatitis C virus (HCV) infection is considered a serious health-care problem all over the world. A good number of direct-acting antivirals (DAAs) against HCV infection are in clinical progress including NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and NS5A inhibitors as well as host targeted inhibitors. Two NS3-4A protease inhibitors (telaprevir and boceprevir) have been recently approved for the treatment of hepatitis C in combination with standard of care (pegylated interferon plus ribavirin). The new therapy has significantly improved sustained virologic response (SVR); however, the adverse effects associated with this therapy are still the main concern. In addition to the emergence of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase portion of the HCV NS3 protein. This review article summarizes our current understanding of HCV treatment, particularly with those of NS3 inhibitors. PMID:24282816

  2. GSK-3 Inhibitors: Preclinical and Clinical Focus on CNS

    PubMed Central

    Eldar-Finkelman, Hagit; Martinez, Ana

    2011-01-01

    Inhibiting glycogen synthase kinase-3 (GSK-3) activity via pharmacological intervention has become an important strategy for treating neurodegenerative and psychiatric disorders. The known GSK-3 inhibitors are of diverse chemotypes and mechanisms of action and include compounds isolated from natural sources, cations, synthetic small-molecule ATP-competitive inhibitors, non-ATP-competitive inhibitors, and substrate–competitive inhibitors. Here we describe the variety of GSK-3 inhibitors with a specific emphasis on their biological activities in neurons and neurological disorders. We further highlight our current progress in the development of non-ATP-competitive inhibitors of GSK-3. The available data raise the hope that one or more of these drug design approaches will prove successful at stabilizing or even reversing the aberrant neuropathology and cognitive deficits of certain central nervous system disorders. PMID:22065134

  3. Towards a Green Hydrate Inhibitor: Imaging Antifreeze Proteins on Clathrates

    PubMed Central

    Gordienko, Raimond; Ohno, Hiroshi; Singh, Vinay K.; Jia, Zongchao; Ripmeester, John A.; Walker, Virginia K.

    2010-01-01

    The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs) possess the ability to modify structure II (sII) tetrahydrofuran (THF) hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP). The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors. PMID:20161789

  4. Topical calcineurin inhibitors in systemic lupus erythematosus

    PubMed Central

    Lampropoulos, Christos E; D’Cruz, David P

    2010-01-01

    Cutaneous lupus erythematosus (CLE) encompasses a variety of lesions that may be refractory to systemic or topical agents. Discoid lupus erythematosus (DLE) and subacute cutaneous lupus erythematosus (SCLE) are the most common lesions in clinical practice. The topical calcineurin inhibitors, tacrolimus and pimecrolimus, have been used to treat resistant cutaneous lupus since 2002 and inhibit the proliferation and activation of T-cells and suppress immune-mediated cutaneous inflammation. This article reviews the mechanism of action, efficacy, adverse effects, and the recent concern about their possible carcinogenic effect. Although the total number of patients is small and there is only one relevant randomized controlled study, the data are encouraging. Many patients, previously resistant to systemic agents or topical steroids, improved after four weeks of treatment. DLE and SCLE lesions were less responsive, reflecting the chronicity of the lesions, although more than 50% of patients still showed improvement. Topical calcineurin inhibitors may be a safe and effective alternative to topical steroids for CLE although the only approved indication is for atopic dermatitis. PMID:20421909

  5. SGLT2 Inhibitors: Benefit/Risk Balance.

    PubMed

    Scheen, André J

    2016-10-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation. PMID:27541294

  6. Plasminogen activator inhibitor-1 in aging.

    PubMed

    Yamamoto, Koji; Takeshita, Kyosuke; Saito, Hidehiko

    2014-09-01

    Plasminogen activator inhibitor-1 (PAI-1), a principal inhibitor of fibrinolysis, is induced in thrombotic, fibrotic, and cardiovascular diseases, which in turn primarily afflict the older population. This induction of PAI-1 may play an important role in the pathology of these diseases as PAI-1 can regulate the dissolution of fibrin and also inhibit the degradation of the extracellular matrix by reducing plasmin generation. PAI-1 expression is elevated in aged individuals and is significantly upregulated in a variety of pathologies associated with the process of aging, including myocardial and cerebral infarction, vascular (athero) sclerosis, cardiac and lung fibrosis, metabolic syndromes (e.g., hypertension, hyperlipidemia, and insulin resistance), cancer, and inflammatory/stress responses. Thus, PAI-1 may play a critical role in the development of aging-associated pathological changes. In addition, PAI-1 is recognized as a marker of senescence and a key member of a group of proteins collectively known as the senescence-messaging secretome. In this review, we highlight the role of PAI-1 in the pathophysiology of aging and aging-associated disorders.

  7. Development of sulfonamide AKT PH domain inhibitors

    PubMed Central

    Ahad, Ali Md.; Zuohe, Song; Du-Cuny, Lei; Moses, Sylvestor A.; Zhou, Li Li; Zhang, Shuxing; Powis, Garth; Meuillet, Emmanuelle J.; Mash, Eugene A.

    2011-01-01

    Disruption of the phosphatidylinositol 3-kinase/AKT signaling pathway can lead to apoptosis in cancer cells. Previously we identified a lead sulfonamide that selectively bound to the pleckstrin homology (PH) domain of AKT and induced apoptosis when present at low micromolar concentrations. To examine the effects of structural modification, a set of sulfonamides related to the lead compound was designed, synthesized, and tested for binding to the expressed PH domain of AKT using a surface plasmon resonance-based competitive binding assay. Cellular activity was determined by means of an assay for pAKT production and a cell killing assay using BxPC3 cells. The most active compounds in the set are lipophilic and possess an aliphatic chain of the proper length. Results were interpreted with the aid of computational modeling. This paper represents the first structure-activity relationship (SAR) study of a large family of AKT PH domain inhibitors. Information obtained will be used in the design of the next generation of inhibitors of AKT PH domain function. PMID:21353784

  8. Peptide deformylase inhibitors as potent antimycobacterial agents.

    PubMed

    Teo, Jeanette W P; Thayalan, Pamela; Beer, David; Yap, Amelia S L; Nanjundappa, Mahesh; Ngew, Xinyi; Duraiswamy, Jeyaraj; Liung, Sarah; Dartois, Veronique; Schreiber, Mark; Hasan, Samiul; Cynamon, Michael; Ryder, Neil S; Yang, Xia; Weidmann, Beat; Bracken, Kathryn; Dick, Thomas; Mukherjee, Kakoli

    2006-11-01

    Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from nascent proteins. This is an essential step in bacterial protein synthesis, making PDF an attractive target for antibacterial drug development. Essentiality of the def gene, encoding PDF from Mycobacterium tuberculosis, was demonstrated through genetic knockout experiments with Mycobacterium bovis BCG. PDF from M. tuberculosis strain H37Rv was cloned, expressed, and purified as an N-terminal histidine-tagged recombinant protein in Escherichia coli. A novel class of PDF inhibitors (PDF-I), the N-alkyl urea hydroxamic acids, were synthesized and evaluated for their activities against the M. tuberculosis PDF enzyme as well as their antimycobacterial effects. Several compounds from the new class had 50% inhibitory concentration (IC50) values of <100 nM. Some of the PDF-I displayed antibacterial activity against M. tuberculosis, including MDR strains with MIC90 values of <1 microM. Pharmacokinetic studies of potential leads showed that the compounds were orally bioavailable. Spontaneous resistance towards these inhibitors arose at a frequency of < or =5 x 10(-7) in M. bovis BCG. DNA sequence analysis of several spontaneous PDF-I-resistant mutants revealed that half of the mutants had acquired point mutations in their formyl methyltransferase gene (fmt), which formylated Met-tRNA. The results from this study validate M. tuberculosis PDF as a drug target and suggest that this class of compounds have the potential to be developed as novel antimycobacterial agents.

  9. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  10. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  11. Replication and Inhibitors of Enteroviruses and Parechoviruses.

    PubMed

    van der Linden, Lonneke; Wolthers, Katja C; van Kuppeveld, Frank J M

    2015-08-01

    The Enterovirus (EV) and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV). They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.

  12. A novel molluscicide, corrosion inhibitor, and dispersant

    SciTech Connect

    Kreuser, R.T.; Vanlaer, A.; Damour, A.

    1997-12-01

    The efficacy of filming amines as corrosion inhibitors and dispersants in steam systems is well-documented. A novel formulation retains these functions of traditional filming amines and adds molluscicide capability for controlling macrofouling in fresh water and sea water. Criteria for this development included low toxicity to mammals and to non-target aquatic species, rapid biodegradation, and multifunctionality. Low mammalian toxicity and lack of other hazards exempt it from reporting requirements under SARA Title 3. Toxicity (LC{sub 50}) levels for rainbow trout and fathead minnow are higher than typical dosage rates. Biodegradation is rapid; half life is 22 hours in river water. By effectively dispersing slimes (along with biofilm, scale, and tubercles), it controls slimes without toxicity to biofilm organisms. As corrosion inhibitor, it reduces the open cell potential of metal surfaces by 50--200 millivolts and retards pitting and crevice corrosion. Its molluscicide activity gradually kills and disperses mussels, clams, and barnacles. The protective film, renewed by dosage for a brief period of time each day, proactively prevents scale and slime deposits and repels settling and adhesion by macrofouling species. Refinement of established technology has produced a multi-functional formulation that is safe to handle and has minimal impact on the environment.

  13. RNA aptamer inhibitors of a restriction endonuclease

    PubMed Central

    Mondragón, Estefanía; Maher, L. James

    2015-01-01

    Restriction endonucleases (REases) recognize and cleave short palindromic DNA sequences, protecting bacterial cells against bacteriophage infection by attacking foreign DNA. We are interested in the potential of folded RNA to mimic DNA, a concept that might be applied to inhibition of DNA-binding proteins. As a model system, we sought RNA aptamers against the REases BamHI, PacI and KpnI using systematic evolution of ligands by exponential enrichment (SELEX). After 20 rounds of selection under different stringent conditions, we identified the 10 most enriched RNA aptamers for each REase. Aptamers were screened for binding and specificity, and assayed for REase inhibition. We obtained eight high-affinity (Kd ∼12-30 nM) selective competitive inhibitors (IC50 ∼20-150 nM) for KpnI. Predicted RNA secondary structures were confirmed by in-line attack assay and a 38-nt derivative of the best anti-KpnI aptamer was sufficient for inhibition. These competitive inhibitors presumably act as KpnI binding site analogs, but lack the primary consensus KpnI cleavage sequence and are not cleaved by KpnI, making their potential mode of DNA mimicry fascinating. Anti-REase RNA aptamers could have value in studies of REase mechanism and may give clues to a code for designing RNAs that competitively inhibit DNA binding proteins including transcription factors. PMID:26184872

  14. HTCC: Broad Range Inhibitor of Coronavirus Entry

    PubMed Central

    Milewska, Aleksandra; Kaminski, Kamil; Ciejka, Justyna; Kosowicz, Katarzyna; Zeglen, Slawomir; Wojarski, Jacek; Nowakowska, Maria; Szczubiałka, Krzysztof; Pyrc, Krzysztof

    2016-01-01

    To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1) circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and its hydrophobically-modified derivative (HM-HTCC) as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses. PMID:27249425

  15. Polyphenol Compound as a Transcription Factor Inhibitor.

    PubMed

    Park, Seyeon

    2015-11-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  16. Polyphenol Compound as a Transcription Factor Inhibitor

    PubMed Central

    Park, Seyeon

    2015-01-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  17. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

  18. Replication and Inhibitors of Enteroviruses and Parechoviruses

    PubMed Central

    van der Linden, Lonneke; Wolthers, Katja C.; van Kuppeveld, Frank J.M.

    2015-01-01

    The Enterovirus (EV) and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV). They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors. PMID:26266417

  19. Lonafarnib is a potential inhibitor for neovascularization.

    PubMed

    Sun, Linlin; Xie, Songbo; Peng, Guoyuan; Wang, Jian; Li, Yuanyuan; Qin, Juan; Zhong, Diansheng

    2015-01-01

    Atherosclerosis is a common cardiovascular disease that involves the build-up of plaque on the inner walls of the arteries. Intraplaque neovacularization has been shown to be essential in the pathogenesis of atherosclerosis. Previous studies showed that small-molecule compounds targeting farnesyl transferase have the ability to prevent atherosclerosis in apolipoprotein E-deficient mice, but the underlying mechanism remains to be elucidated. In this study, we found that lonafarnib, a specific inhibitor of farnesyl transferase, elicits inhibitory effect on vascular endothelial capillary assembly in vitro in a dose-dependent manner. In addition, we showed that lonafarnib treatment led to a dose-dependent decrease in scratch wound closure in vitro, whereas it had little effect on endothelial cell proliferation. These data indicate that lonafarnib inhibits neovascularization via directly targeting endothelial cells and disturbing their motility. Moreover, we demonstrated that pharmacological inhibition of farnesyl transferase by lonafarnib significantly impaired centrosome reorientation toward the leading edge of endothelial cells. Mechanistically, we found that the catalytic β subunit of farnesyl transferase associated with a cytoskeletal protein important for the establishment and maintenance of cell polarity. Additionally, we showed that lonafarnib remarkably inhibited the expression of the cytoskeletal protein and interrupted its interaction with farnesyl transferase. Our findings thus offer novel mechanistic insight into the protective effect of farnesyl transferase inhibitors on atherosclerosis and provide encouraging evidence for the potential use of this group of agents in inhibiting plaque neovascularization. PMID:25853815

  20. Epidermal growth factor receptor (EGFR) inhibitor associated skin eruption.

    PubMed

    Seiverling, Elizabeth V; Fernanadez, Emmy M; Adams, David

    2006-04-01

    EGFR Inhibitors are used to treat Non-Small-Cell Lung Cancer (NSCLC) and colorectal cancer (CRC). A common side effect of EGFR Inhibitors is a follicular/pustular skin eruption. We report a case of gefitinib (Iressa) associated skin eruption. The treatment regimen consisted of triamcinolone 0.1% cream twice daily, clindamycin 1% lotion twice daily and sodium sulfacetamide lotion twice daily. The clinical presentation, etiology, and management options of EGFR Inhibitor associated skin eruptions are discussed.

  1. Aromatase inhibitors in men: effects and therapeutic options

    PubMed Central

    2011-01-01

    Aromatase inhibitors effectively delay epiphysial maturation in boys and improve testosterone levels in adult men Therefore, aromatase inhibitors may be used to increase adult height in boys with gonadotropin-independent precocious puberty, idiopathic short stature and constitutional delay of puberty. Long-term efficacy and safety of the use of aromatase inhibitors has not yet been established in males, however, and their routine use is therefore not yet recommended. PMID:21693046

  2. Toxicity issues of organic corrosion inhibitors: Applications of QSAR model

    SciTech Connect

    Singh, W.P.; Bockris, J.O`M.

    1996-12-01

    Less toxic corrosion inhibitors can be designed, if one has a reliable method of estimation of toxicity of these compounds before these are actually synthesized. This paper deals with a review of various methods of estimation of aquatic toxicity of organic compounds and highlights the relationship between the structures of these inhibitors and their aquatic toxicity. Such relationships can form the basis for changing the structure of the existing corrosion inhibitors to make these less toxic.

  3. Synthesis and In Vitro Evaluation of Aspartate Transcarbamoylase Inhibitors

    PubMed Central

    Coudray, Laëtitia; Pennebaker, Anne F.; Montchamp, Jean-Luc

    2009-01-01

    The design, synthesis, and evaluation of a series of novel inhibitors of aspartate transcarbamoylase (ATCase) are reported. Several submicromolar phosphorus-containing inhibitors are described, but all-carboxylate compounds are inactive. Compounds were synthesized to probe the postulated cyclic transition-state of the enzyme-catalyzed reaction. In addition, the associated role of the protonation state at the phosphorus acid moiety was evaluated using phosphinic and carboxylic acids. Although none of the synthesized inhibitors is more potent than N-phosphonacetyl-L-aspartate (PALA), the compounds provide useful mechanistic information, as well as the basis for the design of future inhibitors and/or prodrugs. PMID:19828320

  4. Solderability preservation through the use of organic inhibitors

    SciTech Connect

    Sorensen, N.R.; Hosking, F.M.

    1994-12-01

    Organic inhibitors can be used to prevent corrosion of metals and have application in the electronics industry as solderability preservatives. We have developed a model to describe the action of two inhibitors (benzotriazole and imidazole) during the environmental aging and soldering process. The inhibitors bond with the metal surface and form a barrier that prevents or retards oxidation. At soldering temperatures, the metal-organic complex breaks down leaving an oxide-free metal surface that allows excellent wetting by molten solder. The presence of the inhibitor retards the wetting rate relative to clean copper, but provides a vast improvement relative to oxidized copper.

  5. Discovery of Biarylaminoquinazolines as Novel Tubulin Polymerization Inhibitors

    PubMed Central

    Ferrarese, Alessandro; Brun, Paola; Castagliuolo, Ignazio; Conconi, Maria Teresa; La Regina, Giuseppe; Bai, Ruoli; Silvestri, Romano; Hamel, Ernest; Chilin, Adriana

    2014-01-01

    Cell cycle experiments with our previously reported 4-biphenylaminoquinazoline (1–3) multityrosine kinase inhibitors revealed an activity profile resembling that of known tubulin polymerization inhibitors. Novel 4-biarylaminoquinazoline analogues of compound 2 were synthesized and evaluated as inhibitors of several tyrosine kinases and of tubulin. Although compounds 1–3 acted as dual inhibitors, the heterobiaryl analogues possessed only anti-tubulin properties and targeted the colchicine site. Furthermore, molecular modeling studies allowed the rationalization of the pharmacodynamic properties of the compounds. PMID:24801610

  6. Discovery of a selective irreversible BMX inhibitor for prostate cancer.

    PubMed

    Liu, Feiyang; Zhang, Xin; Weisberg, Ellen; Chen, Sen; Hur, Wooyoung; Wu, Hong; Zhao, Zheng; Wang, Wenchao; Mao, Mao; Cai, Changmeng; Simon, Nicholas I; Sanda, Takaomi; Wang, Jinhua; Look, A Thomas; Griffin, James D; Balk, Steven P; Liu, Qingsong; Gray, Nathanael S

    2013-07-19

    BMX is a member of the TEC family of nonreceptor tyrosine kinases. We have used structure-based drug design in conjunction with kinome profiling to develop a potent, selective, and irreversible BMX kinase inhibitor, BMX-IN-1, which covalently modifies Cys496. BMX-IN-1 inhibits the proliferation of Tel-BMX-transformed Ba/F3 cells at two digit nanomolar concentrations but requires single digit micromolar concentrations to inhibit the proliferation of prostate cancer cell lines. Using a combinatorial kinase inhibitor screening strategy, we discovered that the allosteric Akt inhibitor, MK2206, is able to potentiate BMX inhibitor's antiproliferation efficacy against prostate cancer cells. PMID:23594111

  7. Squash inhibitors: from structural motifs to macrocyclic knottins.

    PubMed

    Chiche, Laurent; Heitz, Annie; Gelly, Jean-Christophe; Gracy, Jérôme; Chau, Pham T T; Ha, Phan T; Hernandez, Jean-François; Le-Nguyen, Dung

    2004-10-01

    In this article, we will first introduce the squash inhibitor, a well established family of highly potent canonical serine proteinase inhibitors isolated from Cucurbitaceae. The squash inhibitors were among the first discovered proteins with the typical knottin fold shared by numerous peptides extracted from plants, animals and fungi. Knottins contain three knotted disulfide bridges, two of them arranged as a Cystine-Stabilized Beta-sheet motif. In contrast to cyclotides for which no natural linear homolog is known, most squash inhibitors are linear. However, Momordica cochinchinensis Trypsin Inhibitor-I and (MCoTI-I and -II), 34-residue squash inhibitors isolated from seeds of a common Cucurbitaceae from Vietnam, were recently shown to be macrocyclic. In these circular squash inhibitors, a short peptide linker connects residues that correspond to the N- and C-termini in homologous linear squash inhibitors. In this review we present the isolation, characterization, chemical synthesis, and activity of these macrocyclic knottins. The solution structure of MCoTI-II will be compared with topologically similar cyclotides, homologous linear squash inhibitors and other knottins, and potential applications of such scaffolds will be discussed. PMID:15551519

  8. Enzymatic synthesis of hyaluronan hybrid urinary trypsin inhibitor.

    PubMed

    Kakizaki, Ikuko; Takahashi, Ryoki; Yanagisawa, Miho; Yoshida, Futaba; Takagaki, Keiichi

    2015-09-01

    Human urinary trypsin inhibitor is a proteoglycan that has a single low-sulfated chondroitin 4-sulfate chain at the seryl residue in position 10 of the core protein as a glycosaminoglycan moiety, and is used as an anti-inflammatory medicine based on the protease inhibitory activity of the core protein. However, the functions of the glycosaminoglycan moiety have not yet been elucidated in detail. In the present study, the glycosaminoglycan chains of a native urinary trypsin inhibitor were remodeled to hyaluronan chains, with no changes to the core protein, using transglycosylation as a reverse reaction of the hydrolysis of bovine testicular hyaluronidase, and the properties of the hybrid urinary trypsin inhibitor were then analyzed. The trypsin inhibitory activitiy of the hyaluronan hybrid urinary trypsin inhibitor was similar to that of the native type; however, its inhibitory effect on the hydrolysis of hyaluronidase were not as strong as that of the native type. This result demonstrated that the native urinary trypsin inhibitor possessed hyaluronidase inhibitory activity on its chondroitin sulfate chain. The hyaluronan hybrid urinary trypsin inhibitors obtained affinity to a hyaluronan-binding protein not exhibited by the native type. The interactions between the hyaluronan hybrid urinary trypsin inhibitors and phosphatidylcholine (abundant in the outer layer of plasma membrane) were stronger than that of the native type. Hyaluronan hybrid urinary trypsin inhibitors may be useful for investigating the functions of the glycosaminoglycan chains of urinary trypsin inhibitors and hyaluronan, and our hybrid synthesizing method may be used widely in research for future medical applications.

  9. Pharmacology and laboratory testing of the oral Xa inhibitors.

    PubMed

    Samama, Meyer Michel; Meddahi, Sadia; Samama, Charles Marc

    2014-09-01

    New oral factor Xa inhibitors are intended to progressively substitute the oral vitamin K antagonists and parenteral indirect inhibitors of factor Xa in the prevention and treatment of venous and arterial thromboembolic episodes. This article focuses on the main clinical studies and on biological measurements of new oral factor Xa inhibitors, and addresses several safety issues. These newer agents do not require any routine laboratory monitoring of blood coagulation; however, biological tests have been developed in order to assess the plasma concentration of these drugs in several clinical settings. This article reviews these 4 oral direct factor Xa inhibitors. PMID:25168939

  10. A series of novel, potent, and selective histone deacetylase inhibitors.

    PubMed

    Jones, Philip; Altamura, Sergio; Chakravarty, Prasun K; Cecchetti, Ottavia; De Francesco, Raffaele; Gallinari, Paola; Ingenito, Raffaele; Meinke, Peter T; Petrocchi, Alessia; Rowley, Michael; Scarpelli, Rita; Serafini, Sergio; Steinkühler, Christian

    2006-12-01

    Histone deacetylase (HDAC) inhibitors offer a promising strategy for cancer therapy and the first generation HDAC inhibitors are currently in clinical trials. A structurally novel series of HDAC inhibitors based on the natural cyclic tetrapeptide Apicidin is described. Selected screening of the sample collection looking for L-2-amino-8-oxodecanoic acid (L-Aoda) derivatives identified a small acyclic lead molecule 1 with the unusual ketone zinc binding group. SAR studies around this lead resulted in optimization to potent, low molecular weight, selective, non-hydroxamic acid HDAC inhibitors, equipotent to current clinical candidates.

  11. Squash inhibitors: from structural motifs to macrocyclic knottins.

    PubMed

    Chiche, Laurent; Heitz, Annie; Gelly, Jean-Christophe; Gracy, Jérôme; Chau, Pham T T; Ha, Phan T; Hernandez, Jean-François; Le-Nguyen, Dung

    2004-10-01

    In this article, we will first introduce the squash inhibitor, a well established family of highly potent canonical serine proteinase inhibitors isolated from Cucurbitaceae. The squash inhibitors were among the first discovered proteins with the typical knottin fold shared by numerous peptides extracted from plants, animals and fungi. Knottins contain three knotted disulfide bridges, two of them arranged as a Cystine-Stabilized Beta-sheet motif. In contrast to cyclotides for which no natural linear homolog is known, most squash inhibitors are linear. However, Momordica cochinchinensis Trypsin Inhibitor-I and (MCoTI-I and -II), 34-residue squash inhibitors isolated from seeds of a common Cucurbitaceae from Vietnam, were recently shown to be macrocyclic. In these circular squash inhibitors, a short peptide linker connects residues that correspond to the N- and C-termini in homologous linear squash inhibitors. In this review we present the isolation, characterization, chemical synthesis, and activity of these macrocyclic knottins. The solution structure of MCoTI-II will be compared with topologically similar cyclotides, homologous linear squash inhibitors and other knottins, and potential applications of such scaffolds will be discussed.

  12. New low toxicity corrosion inhibitors for industrial cleaning operations

    SciTech Connect

    Lindert, A.; Johnston, W.G.

    1999-11-01

    Inhibitors are routinely employed in chemical cleaning solvents used for removing scale from electrical power plants and industrial equipment since these cleaning solvents are corrosive to metal surfaces. This paper discusses the development of three new inhibitors developed for the use in hydrochloric acid, ammoniated EDTA or citric acid chemical cleaning solutions. Synthesis procedures used in the production of Mannich derivatives employed in the inhibitors were optimized for maximum corrosion resistance and reduced toxicity. All auxiliary ingredients used in the formulation of final inhibitor products were chosen to give the lowest possible toxicity of these products.

  13. MEK inhibitors beyond monotherapy: current and future development.

    PubMed

    Templeton, Ian E; Musib, Luna

    2015-08-01

    The development of MEK inhibitors has led to improved progression-free survival in patients with mutant BRAF(V600) cancers when used in combination with BRAF inhibitors. However, resistance to combination therapy remains an issue. This review summarizes our current understanding of the role of MEK in cancer cell proliferation and the mechanisms which lead to resistance in patients. Specific adverse events, which have been linked to the MEK inhibitor class, have been described. Future combinations of MEK inhibitors with other cancer therapy options, currently under investigation in clinical trials, are also discussed.

  14. Characterization of carbonic anhydrase-inhibitor noncovalent complexes

    SciTech Connect

    Cheng, Xueheng; Chen, R.; Bruce, J.E.

    1995-12-31

    Competitive binding of two mixtures of inhibitors to bovine carbonic anhydrase H (BCAII) was studied using electrospray ionization mass spectrometry (ESI-MS). The first mixture contained inhibitors with hydrocarbon/fluorohydrocarbon linker groups and with an 800 fold span of binding constants. The second contained inhibitors with dipeptide extensions synthesized using the solid phase method. Noncovalent enzyme-inhibitor complexes were observed from solutions in 10 mM ammonia acetate having abundances consistent with their relative binding constants measured in solution. The inhibitor with highest affinity was readily identified in an equimolar mixture. The inhibitors with very low affinity were identified to form specific complexes as well. Several control experiments including acidifying the solution or removing the Zn metal from the enzyme resulted in the disappearance of the enzyme-inhibitor complexes, (mass spectrometrically) observed complexation and characterization of biomolecular binding. Good correlation between gas phase inhibitor ion abundances and their binding constants in solution were observed. Structural information and relative binding constants of masses were obtained using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) through multi-stage dissociation experiments. These results support the role of ESI-FTICR-MS in the study of specific noncovalent associations from solution, and show that its unique capabilities can be exploited to extend studies to large mixtures of inhibitors in drug leads discovery.

  15. Behaviour of tetramine inhibitors during pickling of hot rolled steels

    NASA Astrophysics Data System (ADS)

    Cornu, Marie-José; Koltsov, Alexey; Nicolas, Sabrina; Colom, Lydia; Dossot, Manuel

    2014-02-01

    To avoid the dissolution of steel in industrial pickling process, tetramine inhibitors are added to the pickling bath. This study is devoted to the understanding of the action mechanism of these inhibitors in hydrochloric and sulphuric baths on non-alloyed and alloyed steels. Pickling experiments and characterization with XPS, Raman and infrared spectroscopies have shown that inhibitors work only in acid media and leached out from the steel surfaces during the rinsing operation just after pickling. The effectiveness of inhibitors depends on the acid media and the temperature. Experimental data are consistent with a surface mechanism, i.e., the so-called "outer-sphere" adsorption.

  16. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Chiu, Sophia; Koppikar, Priya; Guryanova, Olga A.; Rapaport, Franck; Xu, Ke; Manova, Katia; Pankov, Dmitry; O’Reilly, Richard J.; Kleppe, Maria; McKenney, Anna Sophia; Shih, Alan H.; Shank, Kaitlyn; Ahn, Jihae; Papalexi, Eftymia; Spitzer, Barbara; Socci, Nick; Viale, Agnes; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Rubert, Joëlle; Dammassa, Ernesta; Romanet, Vincent; Dölemeyer, Arno; Zender, Michael; Heinlein, Melanie; Rampal, Rajit; Weinberg, Rona Singer; Hoffman, Ron; Sellers, William R.; Hofmann, Francesco; Murakami, Masato; Baffert, Fabienne; Gaul, Christoph; Radimerski, Thomas; Levine, Ross L.

    2015-01-01

    Summary Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasms (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated if CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2- and MPL-mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients. PMID:26175413

  17. [Prospects for the design of new therapeutically significant protease inhibitors based on knottins and sunflower seed trypsin inhibitor (SFTI 1)].

    PubMed

    Kuznetsova, S S; Kolesanova, E F; Talanova, A V; Veselovsky, A V

    2016-05-01

    Plant seed knottins, mainly from the Cucurbitacea family, and sunflower seed trypsin inhibitor (SFTI 1) are the most low-molecular canonical peptide inhibitors of serine proteases. High efficiency of inhibition of various serine proteases, structure rigidity together with the possibility of limited variations of amino acid sequences, high chemical stability, lack of toxic properties, opportunity of production by either chemical synthesis or use of heterologous expression systems make these inhibitors attractive templates for design of new compounds for regulation of therapeutically significant serine protease activities. Hence the design of such compounds represents a prospective research field. The review considers structural characteristics of these inhibitors, their properties, methods of preparation and design of new analogs. Examples of successful employment of natural serine protease inhibitors belonging to knottin family and SFTI 1 as templates for the design of highly specific inhibitors of certain proteases are given. PMID:27562989

  18. Everolimus and Vatalanib in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2016-04-18

    Gastrinoma; Glucagonoma; Insulinoma; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Pheochromocytoma; Pancreatic Polypeptide Tumor; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Melanoma; Recurrent Neuroendocrine Carcinoma of the Skin; Recurrent Non-small Cell Lung Cancer; Recurrent Pheochromocytoma; Recurrent Renal Cell Cancer; Somatostatinoma; Stage III Neuroendocrine Carcinoma of the Skin; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Stage IV Renal Cell Cancer; Thyroid Gland Medullary Carcinoma; Unspecified Adult Solid Tumor, Protocol Specific

  19. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  20. The presence and inactivation of trypsin inhibitors, tannins, lectins and amylase inhibitors in legume seeds during germination. A review.

    PubMed

    Savelkoul, F H; van der Poel, A F; Tamminga, S

    1992-01-01

    During the germination of legume seeds, enzymes become active in order to degrade starch, storage-protein and proteinaceous antinutritional factors. The degradation of storage-protein is necessary to make peptides and amino acids available in order to stimulate seed growth and early plant growth. Proteinaceous antinutritional factors such as amylase inhibitors, lectins and trypsin inhibitors are present in legume seeds and protect them against predators. However, during germination, they degrade to a lower level by the action of several enzymes. The effect of germination on the content and activity of amylase inhibitors, lectins, tannins and trypsin inhibitors is discussed. PMID:1372122

  1. A fast-acting elastase inhibitor in human monocytes

    PubMed Central

    1985-01-01

    A proteinase inhibitor active against neutrophil and pancreatic elastase was detected in extracts of cultured human monocytes and the human monocyte-like cell line U937. This component forms a covalent complex with the active site of elastase; the complex is stable in boiling sodium dodecyl sulfate solution, and is susceptible to nucleophilic cleavage. The activity of the elastase inhibitor is not detected in extracts of freshly isolated monocytes, but becomes detectable when the monocytes are allowed to mature in culture, with maximum levels occurring at 5-7 d. The monocyte inhibitor is fast- acting; its reaction with 125I-labeled elastase is complete in less than 1 min at 37 degrees C. Analysis by electrophoresis and studies using a heteroantiserum to alpha 1-proteinase inhibitor demonstrated that the elastase inhibitor of monocytes/U937 cells is not identical to alpha 1-proteinase inhibitor, the major elastase inhibitor of blood plasma. The extent of conversion of 125I-elastase to the 125I-elastase- inhibitor complex is proportional to the amount of U937 extract or cultured monocyte extract, indicating that this reaction can serve to quantify the elastase inhibitor. The elastase inhibitor is an abundant component in mature monocytes, with greater than or equal to 1.5 X 10(6) molecules/cell (greater than or equal to 12 micrograms per 10(8) cells, greater than 0.1% of total cell protein). Its mol wt is estimated at 50,000. Thus, the monocyte inhibitor should be classified as a putative regulator of neutrophil (and monocyte) elastase activity at inflammatory sites. This designation is based on the properties of the molecule, including its high concentration in maturing monocytes, its affinity for elastase, and its fast reaction with this enzyme. PMID:3906019

  2. Green corrosion inhibitors: An oil company perspective

    SciTech Connect

    McMahon, A.J.; Harrop, D.

    1995-10-01

    Environmental concerns are increasingly likely to influence the choice of oilfield production and drilling chemicals. The Paris Commission (PARCOM) is currently developing legislation for the North Sea. The regulations which emerge may well restrict the use of many current products. Uncertainty over the eventual details has meant that new product development has been somewhat tentative. Little genuinely new chemistry has been explored to meet the environmental challenge. Polypeptides are one of several new classes which deserve attention. Polyaspartate is the most efficient corrosion inhibitor (ca 80% max) of the polypeptides. Molecular weight (1,000--22,000) does not affect the efficiency but both high [Ca{sup 2+}] and high pH are beneficial. Performance is particularly good in batch treatment tests (> 95% efficiency).

  3. Plasminogen activator inhibitor-1 and diabetic nephropathy.

    PubMed

    Lee, Hi Bahl; Ha, Hunjoo

    2005-10-01

    Diabetic nephropathy is characterized by excessive accumulation of extracellular matrix (ECM) in the kidney. Decreased ECM degradation as well as increased ECM synthesis plays an important role in ECM remodeling that favours tissue fibrosis. Plasminogen activator (PA)/plasmin/PA inhibitor (PAI) system is involved in ECM degradation and PAI-1 plays a critical role in ECM remodeling in the kidney. Normal human kidneys do not express PAI-1 but PAI-1 is overexpressed in pathologic conditions associated with renal fibrosis including diabetic nephropathy. Reactive oxygen species mediate PAI-1 up-regulation in renal cells cultured under high glucose, hypoxia, and TGF-beta1. Recent studies utilizing PAI-1 deficient mice suggest that PAI-1 induce ECM deposition in diabetic kidney through increased ECM synthesis by TGF-beta1 up-regulation as well as through decreased ECM degradation by suppression of plasmin and MMP-2 activity.

  4. Can proton pump inhibitors accentuate skin aging?

    PubMed

    Namazi, Mohammad Reza; Jowkar, Farideh

    2010-02-01

    Skin aging has long been important to human beings and in recent years this field has received tremendous attention by both researchers and the general population. Cutaneous aging includes two distinct phenomena, intrinsic aging and photoaging, and is characterized mainly by the loss of collagen fibers from dermis. Proton pump inhibitors (PPIs) are widely prescribed gastric acid-reducing agents that are usually consumed for long periods in some conditions such as gastroesophageal reflux disease. We suggest that PPIs can accentuate skin aging by two mechanisms. First, through increasing intralysosomal PH, PPIs can suppress transforming growth factor-beta (TGFbeta) processing and consequently decrease its secretion. Second, through inhibiting MNK, a P-type ATPase with steady-state localization at the trans-Golgi network, PPIs can hamper copper transport and consequently curb lysyl oxidase activity. PMID:20470945

  5. Specific cyclooxygenase-2 (COX-2) inhibitors.

    PubMed

    Rubin, B R

    1999-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are currently among the most widely prescribed drugs worldwide. Their therapeutic benefits and their side effects in the gastrointestinal tract and kidney, as well as in hemostasis, are of great importance in modern medicine. Within the past decade, new insights into how NSAIDs produce both their therapeutic benefits and their serious side effects have been discovered. It is now known that there are two froms of the cyclooxygenase (COX) enzyme that metabolize arachidonic acid into prostaglandins. Drugs that specifically inhibit the COX-2 enzyme were formulated and put into clinical trials during the past 5 years. These drugs are now available to treat patients in the United States. Specific COX-2 inhibitors offer the benefit of being able to treat the pain and inflammation of arthritis with potentially little risk of serious gastrointestinal injury.

  6. Mushroom tyrosinase inhibitors from Aloe barbadensis Miller.

    PubMed

    Wu, Xiaofang; Yin, Sheng; Zhong, Jiasheng; Ding, Wenjing; Wan, Jinzhi; Xie, Zhiyong

    2012-12-01

    Two new chromones, 5-((S)-2'-oxo-4'-hydroxypentyl)-2-(β-glucopyranosyl-oxy-methyl)chromone (1) and 5-((S)-2'-oxo-4'-hydroxypentyl)-2-methoxychromone (2), together with four known analogues, 8-C-glucosyl-7-O-methyl-(S)-aloesol (3), isoaloeresin D (4), 8-C-glucosyl-(R)-aloesol (5), and aloesin (6) were isolated from the aqueous extract of Aloe barbadensis Miller. Their structures were determined on the basis of spectroscopic evidences (1-D and 2-D NMR, HRMS, UV, and IR data), chemical methods and the literature data. The Mosher's method was applied to establish the absolute configuration of compounds 1 and 2. The inhibitory effects of these chromones on the activity of mushroom tyrosinase were examined, and compound 6 was identified as a noncompetitive tyrosinase inhibitor with an IC(50) value of 108.62μg·mL(-1).

  7. Protection from extinction by a conditioned inhibitor.

    PubMed

    Sołtysik, S; Wolfe, G

    1980-01-01

    The phenomenon of protection from extinction (PFE) of a conditioned stimulus (CS) by a conditioned inhibitor (CI) has not been yet unequivocally demonstrated for the CS-CI compound in which the CS precedes the onset of the CI. Preliminary data from a project addressed to this problem strongly indicate that PFE is a real and robust phenomenon. Moreover, the protection is demonstrated not only for the CS duration overlapping with the CI but also for the early part of the CS which is not prevented by the CI from eliciting a conditioned response. The review of a few theories of conditioning suggests that the phenomenon of PFE is theoretically acceptable and predicted within the framework of any hypothetical mechanism which allows for post-trial "processing" or "consolidation" of information acquired during the trial.

  8. Histone deacetylase inhibitors and cell death

    PubMed Central

    Zhang, Jing; Zhong, Qing

    2014-01-01

    Histone deacetylases (HDACs) are a vast family of enzymes involved in chromatin remodeling and have crucial roles in numerous biological processes, largely through their repressive influence on transcription. In addition to modifying histones, HDACs also target many other non-histone protein substrates to regulate gene expression. Recently, HDACs have gained growing attention as HDAC-inhibiting compounds are being developed as promising cancer therapeutics. Histone deacetylase inhibitors (HDACi) have been shown to induce differentiation, cell cycle arrest, apoptosis, autophagy and necrosis in a variety of transformed cell lines. In this review, we mainly discuss how HDACi may elicit a therapeutic response to human cancers through different cell death pathways, in particular, apoptosis and autophagy. PMID:24898083

  9. Antithrombin, an Important Inhibitor in Blood Clots.

    PubMed

    Zhu, Ying; Cong, Qing-Wei; Liu, Yue; Wan, Chun-Ling; Yu, Tao; He, Guang; He, Lin; Cai, Lei; Chou, Kuo-Chen

    2016-01-01

    Blood coagulation is healthy and lifesaving because it can stop bleeding. It can, however, be a troublemaker as well, causing serious medical problems including heart attack and stroke. Body has complex blood coagulation cascade to modulate the blood clots. In the environment of plasma, the blood coagulation cascade is regulated by antithrombin, which is deemed one of the most important serine protease inhibitors. It inhibits thrombin; it can inhibit factors IXa and Xa as well. Interestingly, its inhibitory ability will be significantly increased with the existence of heparin. In this minireview paper, we are to summarize the structural features of antithrombin, as well as its heparin binding modes and anti-coagulation mechanisms, in hopes that the discussion and analysis presented in this paper can stimulate new strategies to find more effective approaches or compounds to modulate the antithrombin. PMID:26411319

  10. Inherent formulation issues of kinase inhibitors.

    PubMed

    Herbrink, M; Schellens, J H M; Beijnen, J H; Nuijen, B

    2016-10-10

    The small molecular Kinase Inhibitor (smKI) drug class is very promising and rapidly expanding. All of these drugs are administered orally. The clear relationship between structure and function has led to drugs with a general low intrinsic solubility. The majority of the commercial pharmaceutical formulations of the smKIs are physical mixtures that are limited by the low drug solubility of a salt form. This class of drugs is therefore characterized by an impaired and variable bioavailability rendering them costly and their therapies suboptimal. New formulations are sparingly being reported in literature and patents. The presented data suggests that continued research into formulation design can help to develop more efficient and cost-effective smKI formulation. Moreover, it may also be of help in the future design of the formulations of new smKIs.

  11. [PCSK9 inhibitors : Recommendations for patient selection].

    PubMed

    Laufs, U; Custodis, F; Werner, C

    2016-06-01

    The 2 or 4‑week subcutaneous therapy with the recently approved antibodies alirocumab and evolocumab for inhibition of proprotein convertase subtilisin-kexin type 9 (PCSK9) reduces low-density lipoprotein cholesterol (LDL-C) in addition to statins and ezetimibe by 50-60 %. The therapy is well-tolerated. The safety profile in the published studies is comparable to placebo. Outcome data and information on long-term safety and the influence on cardiovascular events are not yet available but the results of several large trials are expected in 2016-2018. At present (spring 2016) PCSK9 inhibitors represent an option for selected patients with a high cardiovascular risk and high LDL-C despite treatment with the maximum tolerated oral lipid-lowering therapy. This group includes selected patients with familial hypercholesterolemia and high-risk individuals with statin-associated muscle symptoms (SAMS). PMID:27207595

  12. Molecular modeling of auxin transport inhibitors

    SciTech Connect

    Gardner, G.; Black-Schaefer, C.; Bures, M.G. )

    1990-05-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for ({sup 3}H)NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections.

  13. Novel inhibitors of fatty acid amide hydrolase.

    PubMed

    Sit, S Y; Conway, Charlie; Bertekap, Robert; Xie, Kai; Bourin, Clotilde; Burris, Kevin; Deng, Hongfeng

    2007-06-15

    A class of bisarylimidazole derivatives are identified as potent inhibitors of the enzyme fatty acid amide hydrolase (FAAH). Compound 17 (IC(50)=2 nM) dose-dependently (0.1-10mg/kg, iv) potentiates the effects of exogenous anandamide (1 mg/kg, iv) in a rat thermal escape test (Hargreaves test), and shows robust antinociceptive activity in animal models of persistent (formalin test) and neuropathic (Chung model) pain. Compound 17 (20 mg/kg, iv) demonstrates activity in the formalin test that is comparable to morphine (3mg/kg, iv), and is dose-dependently inhibited by the CB1 antagonist SR141716A. In the Chung model, compound 17 shows antineuropathic effects similar to high-dose (100 mg/kg) gabapentin. FAAH inhibition shows potential utility for the clinical treatment of persistent and neuropathic pain.

  14. Identification of pyrazolopyridazinones as PDEδ inhibitors

    PubMed Central

    Papke, Björn; Murarka, Sandip; Vogel, Holger A; Martín-Gago, Pablo; Kovacevic, Marija; Truxius, Dina C; Fansa, Eyad K; Ismail, Shehab; Zimmermann, Gunther; Heinelt, Kaatje; Schultz-Fademrecht, Carsten; Al Saabi, Alaa; Baumann, Matthias; Nussbaumer, Peter; Wittinghofer, Alfred; Waldmann, Herbert; Bastiaens, Philippe I.H.

    2016-01-01

    The prenyl-binding protein PDEδ is crucial for the plasma membrane localization of prenylated Ras. Recently, we have reported that the small-molecule Deltarasin binds to the prenyl-binding pocket of PDEδ, and impairs Ras enrichment at the plasma membrane, thereby affecting the proliferation of KRas-dependent human pancreatic ductal adenocarcinoma cell lines. Here, using structure-based compound design, we have now identified pyrazolopyridazinones as a novel, unrelated chemotype that binds to the prenyl-binding pocket of PDEδ with high affinity, thereby displacing prenylated Ras proteins in cells. Our results show that the new PDEδ inhibitor, named Deltazinone 1, is highly selective, exhibits less unspecific cytotoxicity than the previously reported Deltarasin and demonstrates a high correlation with the phenotypic effect of PDEδ knockdown in a set of human pancreatic cancer cell lines. PMID:27094677

  15. The TRPM4 channel inhibitor 9-phenanthrol

    PubMed Central

    Guinamard, R; Hof, T; Del Negro, C A

    2014-01-01

    The phenanthrene-derivative 9-phenanthrol is a recently identified inhibitor of the transient receptor potential melastatin (TRPM) 4 channel, a Ca2+-activated non-selective cation channel whose mechanism of action remains to be determined. Subsequent studies performed on other ion channels confirm the specificity of the drug for TRPM4. In addition, 9-phenanthrol modulates a variety of physiological processes through TRPM4 current inhibition and thus exerts beneficial effects in several pathological conditions. 9-Phenanthrol modulates smooth muscle contraction in bladder and cerebral arteries, affects spontaneous activity in neurons and in the heart, and reduces lipopolysaccharide-induced cell death. Among promising potential applications, 9-phenanthrol exerts cardioprotective effects against ischaemia-reperfusion injuries and reduces ischaemic stroke injuries. In addition to reviewing the biophysical effects of 9-phenanthrol, here we present information about its appropriate use in physiological studies and possible clinical applications. PMID:24433510

  16. Inhibitors of Kallikrein in Human Plasma

    PubMed Central

    McConnell, David J.

    1972-01-01

    Human plasma was fractionated by ammonium sulfate precipitation, DEAE-cellulose chromatography, and Sephadex G-200 gel filtration to determine which method would give the greatest number of clearly separable kallikrein inhibitory peaks. With G-200 gel filtration three peaks could be separated which were demonstrated to contain α2-macroglobulin, C1̄ inactivator, and α1-antitrypsin. No other kallikrein inhibitors could be identified. The fractions containing C1̄ inactivator and α2-macroglobulin appeared to be more effective against kallikrein than that containing α1-antitrypsin. A patient with hereditary angioneurotic edema was shown to have an abnormal C1̄ inactivator protein capable of interfering with kallikrein's biologic, but not its esterolytic activity. Heat-treated human plasma, a commonly used source of kininogen for experiments with kallikrein, was shown to have kallikrein inhibitory activity. PMID:4113391

  17. Evolution of resistance to quorum sensing inhibitors

    PubMed Central

    Kalia, Vipin C.; Wood, Thomas K.; Kumar, Prasun

    2013-01-01

    The major cause of mortality and morbidity in human beings is bacterial infection. Bacteria have developed resistance to most of the antibiotics primarily due to large scale and “indiscriminate” usage. The need is to develop novel mechanisms to treat bacterial infections. The expression of pathogenicity during bacterial infections is mediated by a cell density dependent phenomenon known as quorum sensing (QS). A wide array of QS systems (QSS) is operative in expressing the virulent behavior of bacterial pathogens. Each QSS may be mediated largely by a few major signals along with others produced in minuscule quantities. Efforts to target signal molecules and their receptors have proved effective in alleviating the virulent behavior of such pathogenic bacteria. These QS inhibitors (QSIs) have been reported to be effective in influencing the pathogenicity without affecting bacterial growth. However, evidence is accumulating that bacteria may develop resistance to QSIs. The big question is whether QSIs will meet the same fate as antibiotics? PMID:24194099

  18. Development of Inhibitors of Salicylic Acid Signaling.

    PubMed

    Jiang, Kai; Kurimoto, Tetsuya; Seo, Eun-kyung; Miyazaki, Sho; Nakajima, Masatoshi; Nakamura, Hidemitsu; Asami, Tadao

    2015-08-19

    Salicylic acid (SA) plays important roles in the induction of systemic acquired resistance (SAR) in plants. Determining the mechanism of SAR will extend our understanding of plant defenses against pathogens. We recently reported that PAMD is an inhibitor of SA signaling, which suppresses the expression of the pathogenesis-related PR genes and is expected to facilitate the understanding of SA signaling. However, PAMD strongly inhibits plant growth. To minimize the side effects of PAMD, we synthesized a number of PAMD derivatives, and identified compound 4 that strongly suppresses the expression of the PR genes with fewer adverse effects on plant growth than PAMD. We further showed that the adverse effects on plant growth were partially caused the stabilization of DELLA, which is also related to the pathogen responses. These results indicate that compound 4 would facilitate our understanding of SA signaling and its cross talk with other plant hormones.

  19. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  20. The new factor Xa inhibitor: Apixaban

    PubMed Central

    Bhanwra, Sangeeta; Ahluwalia, Kaza

    2014-01-01

    Cardiovascular diseases are still the most important cause of morbidity and mortality worldwide and anti-thrombotic treatment is widely used as a result. The currently used drugs include heparin and its derivatives, vitamin K antagonists, though efficacious, have their own set of limitations like unpredictable pharmacokinetic profile, parenteral route (with heparin and its derivatives only), narrow therapeutic window, and constant laboratory monitoring for their efficacy and safety. This lead to the development of novel factor Xa inhibitors which could be given orally, have predictable dose response relationship and are associated with lesser hemorrhagic complications. They include rivaroxaban, apixaban, and edoxaban among others. Apixaban has currently been approved for use in patients undergoing total knee or hip replacement surgery and to prevent stroke in patients with atrial fibrillation. Many trials are ongoing for apixaban to firmly establish its place in future, among the anti-thrombotic drugs. PMID:24554904

  1. Cyclooxygenase (COX) Inhibitors and the Newborn Kidney

    PubMed Central

    Smith, Francine G.; Wade, Andrew W.; Lewis, Megan L.; Qi, Wei

    2012-01-01

    This review summarizes our current understanding of the role of cyclo-oxygenase inhibitors (COXI) in influencing the structural development as well as the function of the developing kidney. COXI administered either during pregnancy or after birth can influence kidney development including nephronogenesis, and can decrease renal perfusion and ultrafiltration potentially leading to acute kidney injury in the newborn period. To date, which COX isoform (COX-1 or COX-2) plays a more important role in during fetal development and influences kidney function early in life is not known, though evidence points to a predominant role for COX-2. Clinical implications of the use of COXI in pregnancy and in the newborn infant are also evaluated herein, with specific reference to the potential effects of COXI on nephronogenesis as well as newborn kidney function. PMID:24281306

  2. Tumour Angiogenesis and Angiogenic Inhibitors: A Review

    PubMed Central

    Yadav, Lalita; Puri, Naveen; Satpute, Pranali; Sharma, Vandana

    2015-01-01

    Angiogenesis is a complex process depending on the coordination of many regulators and there by activating angiogenic switch. Recent advances in understanding of angiogenic mechanism have lead to the development of several anti-angiogenic and anti-metastatic agents that use the strategy of regulation of angiogenic switch. Antiangiogenic therapy is a form of treatment not cure for cancer and represents a highly effective strategy for destroying tumour because vascular supply is the fundamental requirement for growth of tumour. Because of the quiescent nature of normal adult vasculature, angiogenic inhibitors are expected to confer a degree of specificity when compared to nonspecific modalities of chemo and radiotherapy, so it has the advantage of less toxicities, does not induce drug resistance and deliver a relatively non toxic, long term treatment of tumour. PMID:26266204

  3. Comparative QSAR studies on peptide deformylase inhibitors.

    PubMed

    Lee, Ji Young; Doddareddy, Munikumar Reddy; Cho, Yong Seo; Choo, Hyunah; Koh, Hun Yeong; Kang, Jae-Hoon; No, Kyoung Tai; Pae, Ae Nim

    2007-05-01

    Comparative quantitative structure-activity relationship (QSAR) analyses of peptide deformylase (PDF) inhibitors were performed with a series of previously published (British Biotech Pharmaceuticals, Oxford, UK) reverse hydroxamate derivatives having antibacterial activity against Escherichia coli PDF, using 2D and 3D QSAR methods, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR). Statistically reliable models with good predictive power were generated from all three methods (CoMFA r (2) = 0.957, q (2) = 0.569; CoMSIA r (2) = 0.924, q (2) = 0.520; HQSAR r (2) = 0.860, q (2) = 0.578). The predictive capability of these models was validated by a set of compounds that were not included in the training set. The models based on CoMFA and CoMSIA gave satisfactory predictive r (2) values of 0.687 and 0.505, respectively. The model derived from the HQSAR method showed a low predictability of 0.178 for the test set. In this study, 3D prediction models showed better predictive power than 2D models for the test set. This might be because 3D information is more important in the case of datasets containing compounds with similar skeletons. Superimposition of CoMFA contour maps in the active site of the PDF crystal structure showed a meaningful correlation between receptor-ligand binding and biological activity. The final QSAR models, along with information gathered from 3D contour and 2D contribution maps, could be useful for the design of novel active inhibitors of PDF. PMID:17333308

  4. Molecular Dynamics simulations of Inhibitor of Apoptosis Proteins and identification of potential small molecule inhibitors.

    PubMed

    Jayakumar, Jayanthi; Anishetty, Sharmila

    2014-05-01

    Chemotherapeutic resistance due to over expression of Inhibitor of Apoptosis Proteins (IAPs) XIAP, survivin and livin has been observed in various cancers. In the current study, Molecular Dynamics (MD) simulations were carried out for all three IAPs and a common ligand binding scaffold was identified. Further, a novel sequence based motif specific to these IAPs was designed. SMAC is an endogenous inhibitor of IAPs. Screening of ChemBank for compounds similar to lead SMAC-non-peptidomimetics yielded a cemadotin related compound NCIMech_000654. Cemadotin is a derivative of natural anti-tumor peptide dolastatin-15; hence these compounds were docked against all three IAPs. Based on our analysis, we propose that NCIMech_000654/dolastatin-15/cemadotin derivatives may be investigated for their potential in inhibiting XIAP, survivin and livin.

  5. Chemoproteomic characterization of protein kinase inhibitors using immobilized ATP.

    PubMed

    Duncan, James S; Haystead, Timothy A J; Litchfield, David W

    2012-01-01

    Protein kinase inhibitors have emerged as indispensable tools for the elucidation of the biological functions of specific signal transduction pathways and as promising candidates for molecular-targeted therapy. However, because many protein kinase inhibitors are ATP-competitive inhibitors targeting the catalytic site of specific protein kinases, the large number of protein kinases that are encoded within eukaryotic genomes and the existence of many other cellular proteins that bind ATP result in the prospect of off-target effects for many of these compounds. Many of the potential off-target effects remain unrecognized because protein kinase inhibitors are often developed and tested primarily on the basis of in vitro assays using purified components. To overcome this limitation, we describe a systematic approach to characterize ATP-competitive protein kinase inhibitors employing ATP-sepharose to capture the purine-binding proteome from cell extracts. Protein kinase inhibitors can be used in competition experiments to prevent binding of specific cellular proteins to ATP-sepharose or to elute bound proteins from ATP-sepharose. Collectively, these strategies can enable validation of interactions between a specific protein kinase and an inhibitor in complex mixtures and can yield the identification of inhibitor targets.

  6. Bioabatement with xylanase supplementation to reduce enzymatic hydrolysis inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioabatement, using the fungus Coniochaeta ligniaria NRRL30616 can effectively eliminate enzyme inhibitors from pretreated biomass hydrolysis. However, our recent research suggested that bioabatement had no beneficial effect on removing xylo-oligomers which were identified as strong inhibitors to ce...

  7. Small Molecule Inhibitors of Anthrax Lethal Factor Toxin

    PubMed Central

    Williams, John D.; Khan, Atiyya R.; Cardinale, Steven C.; Butler, Michelle M.; Bowlin, Terry L.; Peet, Norton P.

    2014-01-01

    This manuscript describes the preparation of new small molecule inhibitors of Bacillus anthracis lethal factor. Our starting point was the symmetrical, bis-quinolinyl compound 1 (NSC 12155). Optimization of one half of this molecule led to new LF inhibitors that were desymmetrized to afford more drug-like compounds. PMID:24290062

  8. Role of Protease-Inhibitors in Ocular Diseases.

    PubMed

    Pescosolido, Nicola; Barbato, Andrea; Pascarella, Antonia; Giannotti, Rossella; Genzano, Martina; Nebbioso, Marcella

    2014-01-01

    It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI), metalloproteinase inhibitor (TIMP), maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI), and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models. PMID:25493637

  9. A low molecular weight proteinase inhibitor produced by T lymphocytes.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1986-01-01

    A low molecular weight (MW) proteinase inhibitor, between 6500 and 21,500 MW, appeared in the supernatant of rabbit spleen cells cultured at high density for 24 hr. The inhibitor inhibited the enzymatic activity of trypsin for both a high MW natural substrate, fibrinogen, and for a low MW artificial substrate, Chromozym TRY. The low MW proteinase inhibitor is protein in nature and is different, in terms of specificity for enzymes, MW and sensitivity to different physical or chemical treatments, from aprotinin, a low MW proteinase inhibitor (6500 MW) of bovine origin, and from the soybean trypsin inhibitor, a relatively high MW proteinase inhibitor (21,500 MW). The inhibitor was found in the supernatant of purified T cells but not B cells, and its production was increased in the presence of an optimal concentration of Con A. The possibility that this proteinase inhibitor has a role in the regulation of trypsin-like proteinases involved to the immune response remains to be investigated. Images Figure 4 PMID:2417942

  10. Regulation of collagenase inhibitor production in chondrosarcoma chondrocytes

    SciTech Connect

    Harper, J.; Harper, E.

    1987-05-01

    Swarm rat chondrosarcoma chondrocytes produce an inhibitor of collagenase. This inhibitor is similar to those isolated from normal cartilage tissues. These cells will synthesize proteins in the absence of serum. Since serum contains inhibitors of collagenase, it is necessary to culture cells without serum in order to obtain accurate measurements of enzyme and inhibitor levels. They examined the effect of insulin on inhibitor secretion by cultures of Swarm rat chondrosarcoma chondrocytes. They observed a 2.5 to 3.5 fold stimulation of inhibitory activity in the presence of as little as 10 ng/ml insulin as compared to controls in serum free Dulbecco's modified Eagle's medium supplemented with 4.5 g/l glucose. The units of inhibitor were determined over a 7 day culture period. Medium was harvested daily and assayed for collagenase activity and for inhibition of a known collagenase from rabbit skin or human skin, using the /sup 14/C-glycine peptide release assay. The amount of inhibitor obtained from days 2 through 7 were: 1.4 unit (control), 3.8 units (10 ng/ml insulin), 5.2 units (1 ..mu..g/ml insulin). The addition of 1 mM dibutyryl cyclic AMP to these chondrocytes in the presence of 1 ..mu..g/ml insulin caused a decrease in the level of inhibitor, suggesting that a dephosphorylation event may be necessary for this stimulation by insulin to occur.

  11. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  12. Epidermal growth factor receptor inhibitor therapy for recurrent respiratory papillomatosis

    PubMed Central

    Sidman, James D.

    2013-01-01

    The epidermal growth factor pathway has been implicated in various tumors, including human papillomavirus (HPV) lesions such as recurrent respiratory papillomatosis (RRP). Due to the presence of epidermal growth factor receptors in RRP, epidermal growth factor receptor (EGFR) inhibitors have been utilized as adjuvant therapy. This case series examines the response to EGFR inhibitors in RRP. Four patients with life-threatening RRP were treated with EGFR inhibitors. Operative frequency and anatomical Derkay scores were calculated prior to, and following EGFR inhibitor treatment via retrospective chart review. The anatomical Derkay score decreased for all four patients after initiation of EGFR inhibitor therapy. In one patient, the operative frequency increased after switching to an intravenous inhibitor after loss of control with an oral inhibitor. In the other patients there was a greater than 20% decrease in operative frequency in one and a more than doubling in the time between procedures in two.  This study suggests that EGFR inhibitors are a potential adjuvant therapy in RRP and deserve further study in a larger number of patients. PMID:24795806

  13. Electrochemical corrosion testing: An effective tool for corrosion inhibitor evaluation

    SciTech Connect

    Bartley, L.S.; Van de Ven, P.; Mowlem, J.K.

    1996-10-01

    Corrosivity of an Antifreeze/Coolant can lead to localized attacks which are a major cause for metal failure. To prevent this phenomenon, specific corrosion inhibitors are used to protect the different metals in service. This paper will discuss the electrochemical principles behind corrosion, Realized corrosion and corrosion inhibition. It will also discuss electrochemical techniques which allow for the evaluation of these inhibitors.

  14. Indanones as high-potency reversible inhibitors of monoamine oxidase.

    PubMed

    Mostert, Samantha; Petzer, Anél; Petzer, Jacobus P

    2015-05-01

    Recent reports document that α-tetralone (3,4-dihydro-2H-naphthalen-1-one) is an appropriate scaffold for the design of high-potency monoamine oxidase (MAO) inhibitors. Based on the structural similarity between α-tetralone and 1-indanone, the present study involved synthesis of 34 1-indanone and related indane derivatives as potential inhibitors of recombinant human MAO-A and MAO-B. The results show that C6-substituted indanones are particularly potent and selective MAO-B inhibitors, with IC50 values ranging from 0.001 to 0.030 μM. C5-Substituted indanone and indane derivatives are comparatively weaker MAO-B inhibitors. Although the 1-indanone and indane derivatives are selective inhibitors of the MAO-B isoform, a number of homologues are also potent MAO-A inhibitors, with three homologues possessing IC50 values <0.1 μM. Dialysis of enzyme-inhibitor mixtures further established a selected 1-indanone as a reversible MAO inhibitor with a competitive mode of inhibition. It may be concluded that 1-indanones are promising leads for the design of therapies for neurodegenerative and neuropsychiatric disorders such as Parkinson's disease and depression.

  15. Aminopiperidine-Fused Imidazoles as Dipeptidyl Peptidase-IV Inhibitors

    SciTech Connect

    Edmondson, S.; Mastracchio, A; Cox, J; Eiermann, G; He, H; Lyons, K; Patel, R; Patel, S; Petrov, A; et. al.

    2009-01-01

    A new series of DPP-4 inhibitors derived from piperidine-fused benzimidazoles and imidazopyridines is described. Optimization of this class of DPP-4 inhibitors led to the discovery of imidazopyridine 34. The potency, selectivity, cross-species DMPK profiles, and in vivo efficacy of 34 is reported.

  16. Ureidopenicillins and beta-lactam/beta-lactamase inhibitor combinations.

    PubMed

    Bush, L M; Johnson, C C

    2000-06-01

    Although research and development of new penicillins have declined, penicillins continue to be essential antibiotics for the treatment and prophylaxis of infectious diseases. The most recent additions are the ureidopenicillins and beta-lactam/beta-lactamase inhibitor combinations. This article reviews the spectrum of activity, toxicity, pharmacokinetics, and clinical uses of the ureidopenicillins, and the beta-lactam/beta-lactamase inhibitor combination agents.

  17. A new method for evaluating wax inhibitors and drag reducers

    SciTech Connect

    Hsu, J.J.C.; Brubaker, J.P.

    1995-12-01

    Conventional wax inhibitor evaluation methods such as cold finger and laminar flow loop are not adequate and accurate for evaluating wax inhibitors to be used in a wide operating temperature range and flow regimes such as North Sea subsea transport pipelines. A new method has been developed to simultaneously measure fluid rheology change and wax inhibition and to evaluate wax inhibitors or drag reducers at the field operating conditions. Selection criteria have been defined to search for an effective wax inhibitor. The criteria ensure the chemical selected is the most effective one for the specific oil and flow conditions. The operation cost savings by this accurate method is significant. Nine chemical companies joined the project of finding an wax inhibitor for a North Sea prospect. More than twenty wax inhibitors have been tested and evaluated with this new method for several waxy oil fields. The new method provides data of fluid rheology, war deposition rates and wax inhibition in the operating temperature range, overall average wax inhibition and degree of fluid flow improvement. These data are important to evaluate a wax inhibitor or drag reducer. Most of the wax inhibitors tested have good wax inhibition at high temperatures, but not many chemicals work well at low temperatures. The chemical tested may improved fluid flow behavior at low temperature but not wax deposition. Drag reducers tested did not work well at North Sea seabed temperature.

  18. Designing green corrosion inhibitors using chemical computation methods

    SciTech Connect

    Singhl, W.P.; Lin, G.; Bockris, J.O.M.; Kang, Y.

    1998-12-31

    Green corrosion inhibitors have been designed by understanding the relationships between the structure of organic compounds and toxicity as well as corrosion inhibition efficiency. The estimation of aquatic toxicity as well as corrosion inhibition efficiency are made using QSAR techniques. The predicted structures with reduced toxicity and improved corrosion inhibition efficiency are then tested experimentally for these properties, thus leading to green inhibitors.

  19. Discovery – Targeted Treatments and mTOR Inhibitors

    Cancer.gov

    Thanks to discovering the anticancer effects of mTOR inhibitors, cancer treatment for pNet, a rare type of pancreatic cancer, were revolutionized. Through clinical trials, NCI continues to investigate the life-saving potential of mTOR inhibitors.

  20. Role of Protease-Inhibitors in Ocular Diseases.

    PubMed

    Pescosolido, Nicola; Barbato, Andrea; Pascarella, Antonia; Giannotti, Rossella; Genzano, Martina; Nebbioso, Marcella

    2014-01-01

    It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI), metalloproteinase inhibitor (TIMP), maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI), and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models.