Sample records for inhibitor inhibits allergic

  1. Pinocembrin, a novel histidine decarboxylase inhibitor with anti-allergic potential in in vitro.

    PubMed

    Hanieh, Hamza; Hairul Islam, Villianur Ibrahim; Saravanan, Subramanian; Chellappandian, Muthiah; Ragul, Kessavane; Durga, Arumugam; Venugopal, Kaliyamoorthy; Senthilkumar, Venugopal; Senthilkumar, Palanisamy; Thirugnanasambantham, Krishnaraj

    2017-11-05

    Pinocembrin (5, 7- dihydroxy flavanone) is the most abundant chiral flavonoid found in propolis, exhibiting antioxidant, antimicrobial and anti-inflammatory properties. However, the effect of Pinocembrin on allergic response is unexplored. Thus, current study aimed at investigating the effects of Pinocembrin on IgE-mediated allergic response in vitro. A special emphasis was directed toward histidine decarboxylase (HDC) and other pro-allergic and pro-inflammatory mediators. Preliminary studies, using a microbiological model of Klebsiella pneumoniae, provided first evidences that suggest Pinocembrin as a potential thermal stable inhibitor for HDC. Applying docking analysis revealed possible interaction between Pinocembrin and mammalian HDC. In vitro studies validated the predicted interaction and showed that Pinocembrin inhibits HDC activity and histamine in IgE-sensitized RBL-2H3 in response to dinitrophenol (DNP)-bovine serum albumin (BSA) stimulation. In addition, Pinocembrin mitigated the damage in the mitochondrial membrane, formation of cytoplasmic granules and degranulation as indicated by lower β-hexoseaminidase level. Interestingly, it reduced range of pro-inflammatory mediators in the IgE-mediated allergic response including tumor necrosis factor (TNF)-α, interleukin (IL)-6, nitric oxide (NO), inducible NO synthase (iNOS), phosphorylation of inhibitory kappa B (IкB)-α, prostaglandin (PGE)-2 and cyclooxygenase (COX)-2. In conclusion, current study suggests Pinocembrin as a potential HDC inhibitor, and provides the first evidences it is in vitro anti-allergic properties, suggesting Pinocembrin as a new candidate for natural anti-allergic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation.

    PubMed

    Hosoki, Koa; Itazawa, Toshiko; Boldogh, Istvan; Sur, Sanjiv

    2016-02-01

    To discuss the presence and role of neutrophils in asthma and allergic diseases, and outline the importance of pollen and cat dander-induced innate neutrophil recruitment in induction of allergic sensitization and allergic inflammation. Uncontrolled asthma is associated with elevated numbers of neutrophils, and levels of neutrophil-attracting chemokine IL-8 and IL-17 in bronchoalveolar lavage fluids. These parameters negatively correlate with lung function. Pollen allergens and cat dander recruit neutrophils to the airways in a toll-like receptor 4, myeloid differentiation protein-2, and chemokine (C-X-C motif) receptor (CXCR) 2-dependent manner. Repeated recruitment of activated neutrophils by these allergens facilitates allergic sensitization and airway inflammation. Inhibition of neutrophil recruitment with CXCR2 inhibitor, disruption of toll-like receptor 4, or small interfering RNA against myeloid differentiation protein-2 also inhibits allergic inflammation. The molecular mechanisms by which innately recruited neutrophils contribute to shifting the airway inflammatory response induced by allergens from neutrophilic to an eosinophilic-allergic is an area of active research. Recent studies have revealed that neutrophil recruitment is important in the development of allergic sensitization and inflammation. Inhibition of neutrophils recruitment may be a strategy to control allergic inflammation.

  3. Tyrosol Suppresses Allergic Inflammation by Inhibiting the Activation of Phosphoinositide 3-Kinase in Mast Cells.

    PubMed

    Je, In-Gyu; Kim, Duk-Sil; Kim, Sung-Wan; Lee, Soyoung; Lee, Hyun-Shik; Park, Eui Kyun; Khang, Dongwoo; Kim, Sang-Hyun

    2015-01-01

    Allergic diseases such as atopic dermatitis, rhinitis, asthma, and anaphylaxis are attractive research areas. Tyrosol (2-(4-hydroxyphenyl)ethanol) is a polyphenolic compound with diverse biological activities. In this study, we investigated whether tyrosol has anti-allergic inflammatory effects. Ovalbumin-induced active systemic anaphylaxis and immunoglobulin E-mediated passive cutaneous anaphylaxis models were used for the immediate-type allergic responses. Oral administration of tyrosol reduced the allergic symptoms of hypothermia and pigmentation in both animal models. Mast cells that secrete allergic mediators are key regulators on allergic inflammation. Tyrosol dose-dependently decreased mast cell degranulation and expression of inflammatory cytokines. Intracellular calcium levels and activation of inhibitor of κB kinase (IKK) regulate cytokine expression and degranulation. Tyrosol blocked calcium influx and phosphorylation of the IKK complex. To define the molecular target for tyrosol, various signaling proteins involved in mast cell activation such as Lyn, Syk, phosphoinositide 3-kinase (PI3K), and Akt were examined. Our results showed that PI3K could be a molecular target for tyrosol in mast cells. Taken together, these findings indicated that tyrosol has anti-allergic inflammatory effects by inhibiting the degranulation of mast cells and expression of inflammatory cytokines; these effects are mediated via PI3K. Therefore, we expect tyrosol become a potential therapeutic candidate for allergic inflammatory disorders.

  4. Btk Inhibitor RN983 Delivered by Dry Powder Nose-only Aerosol Inhalation Inhibits Bronchoconstriction and Pulmonary Inflammation in the Ovalbumin Allergic Mouse Model of Asthma.

    PubMed

    Phillips, Jonathan E; Renteria, Lorena; Burns, Lisa; Harris, Paul; Peng, Ruoqi; Bauer, Carla M T; Laine, Dramane; Stevenson, Christopher S

    2016-06-01

    In allergen-induced asthma, activated mast cells start the lung inflammatory process with degranulation, cytokine synthesis, and mediator release. Bruton's tyrosine kinase (Btk) activity is required for the mast cell activation during IgE-mediated secretion. This study characterized a novel inhaled Btk inhibitor RN983 in vitro and in ovalbumin allergic mouse models of the early (EAR) and late (LAR) asthmatic response. RN983 potently, selectively, and reversibly inhibited the Btk enzyme. RN983 displayed functional activities in human cell-based assays in multiple cell types, inhibiting IgG production in B-cells with an IC50 of 2.5 ± 0.7 nM and PGD2 production from mast cells with an IC50 of 8.3 ± 1.1 nM. RN983 displayed similar functional activities in the allergic mouse model of asthma when delivered as a dry powder aerosol by nose-only inhalation. RN983 was less potent at inhibiting bronchoconstriction (IC50(RN983) = 59 μg/kg) than the β-agonist salbutamol (IC50(salbutamol) = 15 μg/kg) in the mouse model of the EAR. RN983 was more potent at inhibiting the antigen induced increase in pulmonary inflammation (IC50(RN983) = <3 μg/kg) than the inhaled corticosteroid budesonide (IC50(budesonide) = 27 μg/kg) in the mouse model of the LAR. Inhalation of aerosolized RN983 may be effective as a stand-alone asthma therapy or used in combination with inhaled steroids and β-agonists in severe asthmatics due to its potent inhibition of mast cell activation.

  5. Btk Inhibitor RN983 Delivered by Dry Powder Nose-only Aerosol Inhalation Inhibits Bronchoconstriction and Pulmonary Inflammation in the Ovalbumin Allergic Mouse Model of Asthma

    PubMed Central

    Renteria, Lorena; Burns, Lisa; Harris, Paul; Peng, Ruoqi; Bauer, Carla M.T.; Laine, Dramane; Stevenson, Christopher S.

    2016-01-01

    Abstract Background: In allergen-induced asthma, activated mast cells start the lung inflammatory process with degranulation, cytokine synthesis, and mediator release. Bruton's tyrosine kinase (Btk) activity is required for the mast cell activation during IgE-mediated secretion. Methods: This study characterized a novel inhaled Btk inhibitor RN983 in vitro and in ovalbumin allergic mouse models of the early (EAR) and late (LAR) asthmatic response. Results: RN983 potently, selectively, and reversibly inhibited the Btk enzyme. RN983 displayed functional activities in human cell-based assays in multiple cell types, inhibiting IgG production in B-cells with an IC50 of 2.5 ± 0.7 nM and PGD2 production from mast cells with an IC50 of 8.3 ± 1.1 nM. RN983 displayed similar functional activities in the allergic mouse model of asthma when delivered as a dry powder aerosol by nose-only inhalation. RN983 was less potent at inhibiting bronchoconstriction (IC50(RN983) = 59 μg/kg) than the β-agonist salbutamol (IC50(salbutamol) = 15 μg/kg) in the mouse model of the EAR. RN983 was more potent at inhibiting the antigen induced increase in pulmonary inflammation (IC50(RN983) = <3 μg/kg) than the inhaled corticosteroid budesonide (IC50(budesonide) = 27 μg/kg) in the mouse model of the LAR. Conclusions: Inhalation of aerosolized RN983 may be effective as a stand-alone asthma therapy or used in combination with inhaled steroids and β-agonists in severe asthmatics due to its potent inhibition of mast cell activation. PMID:27111445

  6. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment.

    PubMed

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R; Kurosky, Alexander; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation.

  7. miR-122-SOCS1-JAK2 axis regulates allergic inflammation and allergic inflammation-promoted cellular interactions

    PubMed Central

    Kim, Hanearl; Kim, Hyuna; Byun, Jaehwan; Park, Yeongseo; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2017-01-01

    The regulatory role of suppressor of cytokine signaling 1 (SOCS1) in inflammation has been reported. However, its role in allergic inflammation has not been previously reported. SOCS1 mediated in vitro and in vivo allergic inflammation. Histone deacetylase-3 (HDAC3), a mediator of allergic inflammation, interacted with SOCS1, and miR-384 inhibitor, a positive regulator of HDAC3, induced features of allergic inflammation in an SOCS1-dependent manner. miRNA array analysis showed that the expression of miR-122 was decreased by antigen-stimulation. TargetScan analysis predicted the binding of miR-122 to the 3′-UTR of SOCS1. miR-122 inhibitor induced in vitro and in vivo allergic features in SOCS1-dependent manner. SOCS1 was necessary for allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. SOCS1 and miR-122 regulated cellular interactions involving cancer cells, mast cells and macrophages during allergic inflammation. SOCS1 mimetic peptide, D-T-H-F-R-T-F-R-S-H-S-D-Y-R-R-I, inhibited in vitro and in vivo allergic inflammation, allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells, and cellular interactions during allergic inflammation. Janus kinase 2 (JAK2) exhibited binding to SOCS1 mimetic peptide and mediated allergic inflammation. Transforming growth factor- Δ1 (TGF-Δ1) was decreased during allergic inflammation and showed an anti-allergic effect. SOCS1 and JAK2 regulated the production of anti-allergic TGF-Δ1. Taken together, our results show that miR-122-SOCS1 feedback loop can be employed as a target for the development of anti-allergic and anti-cancer drugs. PMID:28968979

  8. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    PubMed

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment

    PubMed Central

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R.; Kurosky, Alexander; Boldogh, Istvan

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation. PMID:26086549

  10. Computational studies of novel chymase inhibitors against cardiovascular and allergic diseases: mechanism and inhibition.

    PubMed

    Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W

    2012-12-01

    To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.

  11. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses

    PubMed Central

    2013-01-01

    Background Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice. Methods BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge. Results Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice. Conclusion These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor

  12. GS143, an I{kappa}B ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie

    2008-09-26

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-{kappa}B (NF-{kappa}B) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of I{kappa}B ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-{kappa}B activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil andmore » lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that I{kappa}B ubiquitination inhibitor may have therapeutic potential against asthma.« less

  13. A pathophysiological role of PDE3 in allergic airway inflammation

    PubMed Central

    Beute, Jan; Lukkes, Melanie; Koekoek, Ewout P.; Nastiti, Hedwika; Ganesh, Keerthana; de Bruijn, Marjolein J.W.; Hockman, Steve; van Nimwegen, Menno; Braunstahl, Gert-Jan; Boon, Louis; Lambrecht, Bart N.; Manganiello, Vince C.; Hendriks, Rudi W.

    2018-01-01

    Phosphodiesterase 3 (PDE3) and PDE4 regulate levels of cyclic AMP, which are critical in various cell types involved in allergic airway inflammation. Although PDE4 inhibition attenuates allergic airway inflammation, reported side effects preclude its application as an antiasthma drug in humans. Case reports showed that enoximone, which is a smooth muscle relaxant that inhibits PDE3, is beneficial and lifesaving in status asthmaticus and is well tolerated. However, clinical observations also showed antiinflammatory effects of PDE3 inhibition. In this study, we investigated the role of PDE3 in a house dust mite–driven (HDM-driven) allergic airway inflammation (AAI) model that is characterized by T helper 2 cell activation, eosinophilia, and reduced mucosal barrier function. Compared with wild-type (WT) littermates, mice with a targeted deletion of the PDE3A or PDE3B gene showed significantly reduced HDM-driven AAI. Therapeutic intervention in WT mice showed that all hallmarks of HDM-driven AAI were abrogated by the PDE3 inhibitors enoximone and milrinone. Importantly, we found that enoximone also reduced the upregulation of the CD11b integrin on mouse and human eosinophils in vitro, which is crucial for their recruitment during allergic inflammation. This study provides evidence for a hitherto unknown antiinflammatory role of PDE3 inhibition in allergic airway inflammation and offers a potentially novel treatment approach. PMID:29367458

  14. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro-Filho, Jaime; Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba; Calheiros, Andrea Surrage

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effectsmore » of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness.

  15. Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients.

    PubMed

    Pochard, Pierre; Gosset, Philippe; Grangette, Corinne; Andre, Claude; Tonnel, André-Bernard; Pestel, Joël; Mercenier, Annick

    2002-10-01

    Among factors potentially involved in the increased prevalence of allergic diseases, modification of the intestinal bacteria flora or lack of bacterial stimulation during childhood has been proposed. Lactic acid bacteria (LAB) present in fermented foods or belonging to the natural intestinal microflora were shown to exert beneficial effects on human health. Recent reports have indicated their capacity to reduce allergic symptoms. The purpose of this investigation was to determine the effect of LAB on the production of type 2 cytokines, which characterize allergic diseases. PBMCs from patients allergic to house dust mite versus those from healthy donors were stimulated for 48 hours with the related Dermatophagoides pteronyssinus allergen or with a staphylococcal superantigen. The effect of LAB preincubation was assessed by measuring the type 2 cytokine production by means of specific ELISA. The tested gram-positive LAB were shown to inhibit the secretion of T(H)2 cytokines (IL-4 and IL-5). This effect was dose dependent and was observed irrespective of the LAB strain used. No significant inhibition was induced by the control, gram-negative Escherichia coli TG1. Interestingly, LAB reduced the T(H)2 cytokine production from allergic PBMCs specifically restimulated with the related allergen. The inhibition mechanism was shown to be dependent on antigen-presenting cells (ie, monocytes) and on the involvement of IL-12 and IFN-gamma. The tested LAB strains were demonstrated to exhibit an anti-T(H)2 activity, and thus different strains of this family might be useful in the prevention of allergic diseases.

  16. Improved efficacy of allergen-specific immunotherapy by JAK inhibition in a murine model of allergic asthma

    PubMed Central

    Alessandrini, Francesca; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Russkamp, Dennis; Chaker, Adam; Ollert, Markus; Gutermuth, Jan; Schmidt-Weber, Carsten B.

    2017-01-01

    Background Allergen-specific immunotherapy (AIT) is the only curative treatment for type-1 allergies, but sometimes shows limited therapeutic response as well as local and systemic side effects. Limited control of local inflammation and patient symptoms hampers its widespread use in severe allergic asthma. Objective Our aim was to evaluate whether AIT is more effective in suppression of local inflammation if performed under the umbrella of short-term non-specific immunomodulation using a small molecule inhibitor of JAK pathways. Methods In C57BL/6J mice, a model of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific immunotherapy was combined with the administration of Tofacitinib (TOFA, a FDA-approved JAK inhibitor) from 48 hours prior to 48 hours after therapeutic OVA-injection. The effect of TOFA on human FOXP3+CD4+ T cells was studied in vitro. Results AIT combined with short-term TOFA administration was significantly more effective in suppressing total cell and eosinophil infiltration into the lung, local cytokine production including IL-1β and CXCL1 and showed a trend for the reduction of IL-4, IL-13, TNF-α and IL-6 compared to AIT alone. Furthermore, TOFA co-administration significantly reduced systemic IL-6, IL-1β and OVA-specific IgE levels and induced IgG1 to the same extent as AIT alone. Additionally, TOFA enhanced the induction of human FOXP3+CD4+ T cells. Conclusions This proof of concept study shows that JAK inhibition did not inhibit tolerance induction, but improved experimental AIT at the level of local inflammation. The improved control of local inflammation might extend the use of AIT in more severe conditions such as polyallergy, asthma and high-risk patients suffering from mastocytosis or anaphylaxis. PMID:28570653

  17. Improved efficacy of allergen-specific immunotherapy by JAK inhibition in a murine model of allergic asthma.

    PubMed

    Aguilar-Pimentel, Antonio; Graessel, Anke; Alessandrini, Francesca; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Russkamp, Dennis; Chaker, Adam; Ollert, Markus; Blank, Simon; Gutermuth, Jan; Schmidt-Weber, Carsten B

    2017-01-01

    Allergen-specific immunotherapy (AIT) is the only curative treatment for type-1 allergies, but sometimes shows limited therapeutic response as well as local and systemic side effects. Limited control of local inflammation and patient symptoms hampers its widespread use in severe allergic asthma. Our aim was to evaluate whether AIT is more effective in suppression of local inflammation if performed under the umbrella of short-term non-specific immunomodulation using a small molecule inhibitor of JAK pathways. In C57BL/6J mice, a model of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific immunotherapy was combined with the administration of Tofacitinib (TOFA, a FDA-approved JAK inhibitor) from 48 hours prior to 48 hours after therapeutic OVA-injection. The effect of TOFA on human FOXP3+CD4+ T cells was studied in vitro. AIT combined with short-term TOFA administration was significantly more effective in suppressing total cell and eosinophil infiltration into the lung, local cytokine production including IL-1β and CXCL1 and showed a trend for the reduction of IL-4, IL-13, TNF-α and IL-6 compared to AIT alone. Furthermore, TOFA co-administration significantly reduced systemic IL-6, IL-1β and OVA-specific IgE levels and induced IgG1 to the same extent as AIT alone. Additionally, TOFA enhanced the induction of human FOXP3+CD4+ T cells. This proof of concept study shows that JAK inhibition did not inhibit tolerance induction, but improved experimental AIT at the level of local inflammation. The improved control of local inflammation might extend the use of AIT in more severe conditions such as polyallergy, asthma and high-risk patients suffering from mastocytosis or anaphylaxis.

  18. Mosla dianthera inhibits mast cell-mediated allergic reactions through the inhibition of histamine release and inflammatory cytokine production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Hee; Kim, Sang-Hyun; Eun, Jae-Soon

    2006-11-01

    In this study, we investigated the effect of the aqueous extract of Mosla dianthera (Maxim.) (AEMD) on the mast cell-mediated allergy model and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases such as asthma, sinusitis and rheumatoid arthritis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. AEMD inhibited compound 48/80-induced systemic reactions in mice. AEMD decreased immunoglobulin E-mediated local allergic reactions, passive cutaneous anaphylaxis. AEMD attenuated intracellular calcium level and release of histamine from rat peritoneal mast cells activated by compound 48/80. Furthermore, AEMDmore » attenuated the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated TNF-{alpha}, IL-8 and IL-6 secretion in human mast cells. The inhibitory effect of AEMD on the pro-inflammatory cytokines was nuclear factor-{kappa}B (NF-{kappa}B) dependent. AEMD decreased PMA and A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B. Our findings provide evidence that AEMD inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines and NF-{kappa}B in these effects.« less

  19. Restoring conjunctival tolerance by topical nuclear factor-κB inhibitors reduces preservative-facilitated allergic conjunctivitis in mice.

    PubMed

    Guzmán, Mauricio; Sabbione, Florencia; Gabelloni, María Laura; Vanzulli, Silvia; Trevani, Analía Silvina; Giordano, Mirta Nilda; Galletti, Jeremías Gastón

    2014-09-04

    To evaluate the role of nuclear factor-κB (NF-κB) activation in eye drop preservative toxicity and the effect of topical NF-κB inhibitors on preservative-facilitated allergic conjunctivitis. Balb/c mice were instilled ovalbumin (OVA) combined with benzalkonium chloride (BAK) and/or NF-κB inhibitors in both eyes. After immunization, T-cell responses and antigen-induced ocular inflammation were evaluated. Nuclear factor-κB activation and associated inflammatory changes also were assessed in murine eyes and in an epithelial cell line after BAK exposure. Benzalkonium chloride promoted allergic inflammation and leukocyte infiltration of the conjunctiva. Topical NF-κB inhibitors blocked the disruptive effect of BAK on conjunctival immunological tolerance and ameliorated subsequent ocular allergic reactions. In line with these findings, BAK induced NF-κB activation and the secretion of IL-6 and granulocyte-monocyte colony-stimulating factor in an epithelial cell line and in the conjunctiva of instilled mice. In addition, BAK favored major histocompatibility complex (MHC) II expression in cultured epithelial cells in an NF-κB-dependent fashion after interaction with T cells. Benzalkonium chloride triggers conjunctival epithelial NF-κB activation, which seems to mediate some of its immune side effects, such as proinflammatory cytokine release and increased MHC II expression. Breakdown of conjunctival tolerance by BAK favors allergic inflammation, and this effect can be prevented in mice by topical NF-κB inhibitors. These results suggest a new pharmacological target for preservative toxicity and highlight the importance of conjunctival tolerance in ocular surface homeostasis. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  20. GARP inhibits allergic airway inflammation in a humanized mouse model.

    PubMed

    Meyer-Martin, H; Hahn, S A; Beckert, H; Belz, C; Heinz, A; Jonuleit, H; Becker, C; Taube, C; Korn, S; Buhl, R; Reuter, S; Tuettenberg, A

    2016-09-01

    Regulatory T cells (Treg) represent a promising target for novel treatment strategies in patients with inflammatory/allergic diseases. A soluble derivate of the Treg surface molecule glycoprotein A repetitions predominant (sGARP) has strong anti-inflammatory and regulatory effects on human cells in vitro as well as in vivo through de novo induction of peripheral Treg. The aim of this study was to investigate the immunomodulatory function of sGARP and its possible role as a new therapeutic option in allergic diseases using a humanized mouse model. To analyze the therapeutic effects of sGARP, adult NOD/Scidγc(-/-) (NSG) mice received peripheral blood mononuclear cells (PBMC) derived from allergic patients with sensitization against birch allergen. Subsequently, allergic inflammation was induced in the presence of Treg alone or in combination with sGARP. In comparison with mice that received Treg alone, additional treatment with sGARP reduced airway hyperresponsiveness (AHR), influx of neutrophils and macrophages into the bronchoalveolar lavage (BAL), and human CD45(+) cells in the lungs. Furthermore, the numbers of mucus-producing goblet cells and inflammatory cell infiltrates were reduced. To elucidate whether the mechanism of action of sGARP involves the TGF-β receptor pathway, mice additionally received anti-TGF-β receptor II (TGF-βRII) antibodies. Blocking the signaling of TGF-β through TGF-βRII abrogated the anti-inflammatory effects of sGARP, confirming its essential role in inhibiting the allergic inflammation. Induction of peripheral tolerance via sGARP is a promising potential approach to treat allergic airway diseases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Long-Acting Beta Agonists Enhance Allergic Airway Disease.

    PubMed

    Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.

  2. Oroxylin A Inhibits Allergic Airway Inflammation in Ovalbumin (OVA)-Induced Asthma Murine Model.

    PubMed

    Zhou, De-Gang; Diao, Bao-Zhong; Zhou, Wen; Feng, Jia-Long

    2016-04-01

    Oroxylin A, a natural flavonoid isolated from the medicinal herb Scutellaria baicalensis Georgi, has been reported to have anti-inflammatory property. In this study, we aimed to investigate the protective effects and mechanism of oroxylin A on allergic inflammation in OVA-induced asthma murine model. BABL/c mice were sensitized and airway-challenged with OVA to induce asthma. Oroxylin A (15, 30, and 60 mg/kg) was administered by oral gavage 1 h before the OVA treatment on day 21 to 23. The results showed that oroxylin A attenuated OVA-induced lung histopathologic changes, airway hyperresponsiveness, and the number of inflammatory cells. Oroxylin A also inhibited the levels of IL-4, IL-5, IL-13, and OVA-specific IgE in BALF. Furthermore, oroxylin A significantly inhibited OVA-induced NF-κB activation. In conclusion, these results suggested that oroxylin A inhibited airway inflammation in OVA-induced asthma murine model by inhibiting NF-κB activation. These results suggested that oroxylin A was a potential therapeutic drug for treating allergic asthma.

  3. Propofol inhibits NF-κB activation to ameliorate airway inflammation in ovalbumin (OVA)-induced allergic asthma mice.

    PubMed

    Zhang, Qiong; Wang, Liangrong; Chen, Baihui; Zhuo, Qian; Bao, Caiying; Lin, Lina

    2017-10-01

    Propofol, one of the most commonly used intravenous anesthetic agents, has been reported to have anti-inflammatory property. However, the anti-allergic inflammation effect of propofol and its underlying molecular mechanisms have not been elucidated. In the present study, we aim to investigate the roles of NF-kB activation in propofol anti-asthma effect on OVA-induced allergic airway inflammation in mice. In a standard experimental asthma model, Balb/c mice were sensitized with ovalbumin, treated with propofol (50,100,150mg/kg) or a vehicle control 1h before OVA challenge. Blood samples, bronchoalveolar lavage fluid (BALF) and lung tissues were harvested after measurement of airway hyperresponsiveness. Results revealed that propofol not only significantly inhibit airway hyperresponsiveness, but also inhibited the production of Th2 cytokines, NO, Ova-specific IgE and eotaxin. Histological studies indicated that propofol significantly attenuated OVA-induced inflammatory cell infiltration in the peribronchial areas and mucus hypersecretion. Meanwhile, our results indicated that propofol was found to inhibit NF-kB activation in OVA-Induced mice. Furthermore, propofol significantly reduced the TNF-α-induced NF-kB activation in A549 cells. In conclusion, our study suggested that propofol effectively reduced allergic airway inflammation by inhibiting NF-kB activation and could thus be used as a therapy for allergic asthma. Copyright © 2017. Published by Elsevier B.V.

  4. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses

    PubMed Central

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-01-01

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma. PMID:28775364

  5. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses.

    PubMed

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-08-04

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.

  6. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    PubMed

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  7. Accelerated dissociation of IgE:FcεRI complexes by disruptive inhibitors actively desensitizes allergic effector cells

    PubMed Central

    Eggel, Alexander; Baravalle, Günther; Hobi, Gabriel; Kim, Beomkyu; Buschor, Patrick; Forrer, Patrik; Shin, Jeoung-Sook; Vogel, Monique; Stadler, Beda M.; Dahinden, Clemens A.; Jardetzky, Theodore S.

    2014-01-01

    Background The remarkably stable interaction of immunoglobulin E (IgE) with its high-affinity receptor FcεRI on basophils and mast cells is critical for the induction of allergic hypersensitivity reactions. Due to the exceptionally slow dissociation rate of IgE:FcεRI complexes such allergic effector cells permanently display allergen-specific IgE on their surface and immediately respond to allergen challenge by releasing inflammatory mediators. We have recently described a novel macromolecular inhibitor that actively promotes the dissociation of IgE from FcεRI through a molecular mechanism termed facilitated dissociation. Objective Here, we assessed the therapeutic potential of this non-immunoglobulin based IgE inhibitor DARPin E2_79 as well as a novel engineered biparatopic DARPin bi53_79 and directly compared them to the established anti-IgE antibody omalizumab. Methods: IgE:FcεRI complex dissociation was analyzed in vitro using recombinant proteins in ELISA and surface plasmon resonance, ex vivo using human primary basophils with flow cytometry and in vivo using human FcεRI transgenic mice in a functional passive cutaneous anaphylaxis test. Results We show that E2_79 mediated removal of IgE from primary human basophils fully abrogates IgE-dependent cell activation and release of pro-inflammatory mediators ex vivo. Furthermore, we report that omalizumab also accelerates the dissociation of IgE from FcεRI albeit much less efficiently than E2_79. Using the biparatopic IgE targeting approach we further improved the disruptive potency of E2_79 by ~100 fold and show that disruptive IgE inhibitors efficiently prevent passive cutaneous anaphylaxis in mice expressing the human FcεRI alpha chain. Conclusion Our findings highlight the potential of such novel IgE inhibitors as important diagnostic and therapeutic tools to managing allergic diseases. PMID:24642143

  8. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    PubMed

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p < 0.05) inhibited by surface treatment with arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  9. IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators.

    PubMed

    Tezuka, Toshifumi; Ogawa, Hirohisa; Azuma, Masahiko; Goto, Hisatsugu; Uehara, Hisanori; Aono, Yoshinori; Hanibuchi, Masaki; Yamaguchi, Yoichi; Fujikawa, Tomoyuki; Itai, Akiko; Nishioka, Yasuhiko

    2015-01-01

    Plasminogen activator inhibitor (PAI)-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp). IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling.

  10. Flavonoids and related compounds as anti-allergic substances.

    PubMed

    Kawai, Mari; Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Maruta, Michiru; Kuwahara, Yusuke; Ohkawara, Tomoharu; Hagihara, Keisuke; Yamadori, Tomoki; Shima, Yoshihito; Ogata, Atsushi; Kawase, Ichiro; Tanaka, Toshio

    2007-06-01

    The prevalence of allergic diseases has increased all over the world during the last two decades. Dietary change is considered to be one of the environmental factors that cause this increase and worsen allergic symptoms. If this is the case, an appropriate intake of foods or beverages with anti-allergic activities is expected to prevent the onset of allergic diseases and ameliorate allergic symptoms. Flavonoids, ubiquitously present in vegetables, fruits or teas possess anti-allergic activities. Flavonoids inhibit histamine release, synthesis of IL-4 and IL-13 and CD40 ligand expression by basophils. Analyses of structure-activity relationships of 45 flavones, flavonols and their related compounds showed that luteolin, ayanin, apigenin and fisetin were the strongest inhibitors of IL-4 production with an IC(50) value of 2-5 microM and determined a fundamental structure for the inhibitory activity. The inhibitory activity of flavonoids on IL-4 and CD40 ligand expression was possibly mediated through their inhibitory action on activation of nuclear factors of activated T cells and AP-1. Administration of flavonoids into atopic dermatitis-prone mice showed a preventative and ameliorative effect. Recent epidemiological studies reported that a low incidence of asthma was significantly observed in a population with a high intake of flavonoids. Thus, this evidence will be helpful for the development of low molecular compounds for allergic diseases and it is expected that a dietary menu including an appropriate intake of flavonoids may provide a form of complementary and alternative medicine and a preventative strategy for allergic diseases. Clinical studies to verify these points are now in progress.

  11. Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jin Kyeong; Oh, Hyun-Mee; Lee, Soyoung

    2013-05-15

    Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are common allergic and inflammatory skin diseases caused by a combination of eczema, scratching, pruritus, and cutaneous sensitization with allergens. This paper examines whether oleanolic acid acetate (OAA) modulates AD and ACD symptoms by using an existing AD model based on the repeated local exposure of mite extract (Dermatophagoides farinae extract, DFE) and 2,4-dinitrochlorobenzene to the ears of BALB/c mice. In addition, the paper uses a 2,4-dinitrofluorobenzene-sensitized local lymph node assay (LLNA) for the ACD model. The oral administration of OAA over a four-week period attenuated AD symptoms in terms of decreasedmore » skin lesions, epidermal thickness, the infiltration of immune cells (CD4{sup +} cells, eosinophils, and mast cells), and serum IgE, IgG2a, and histamine levels. The gene expression of Th1, Th2, Th17, and Th22 cytokines was reduced by OAA in the lymph node and ear tissue, and the LLNA verified that OAA suppressed ACD. The oral administration of OAA over a three-day period attenuated ACD symptoms in terms of ear thickness, lymphocyte proliferation, and serum IgG2a levels. The gene expression of Th1, Th2, and Th17 cytokines was reduced by OAA in the thymus and ear tissue. Finally, to define the underlying mechanism, this paper uses a TNF-α/IFN-γ-activated human keratinocyte (HaCaT) model. OAA inhibited the expression of cytokines and chemokines through the downregulation of NF-κB and MAPKs in HaCaT cells. Taken together, the results indicate that OAA inhibited AD and ACD symptoms, suggesting that OAA may be effective in treating allergic skin disorders. - Highlights: • OAA reduced both acute and chronic AD symptoms. • OAA had a controlling effect on the immune reaction for ACD. • The effect of OAA on allergic skin disorders was comparable to the cyclosporine A. • OAA might be a candidate for the treatment of allergic skin disorders.« less

  12. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparablemore » to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.« less

  13. Difference in the breast milk proteome between allergic and non-allergic mothers.

    PubMed

    Hettinga, Kasper A; Reina, Fabiola M; Boeren, Sjef; Zhang, Lina; Koppelman, Gerard H; Postma, Dirkje S; Vervoort, Jacques J M; Wijga, Alet H

    2015-01-01

    Breastfeeding has been linked to a reduction in the prevalence of allergy and asthma. However, studies on this relationship vary in outcome, which may partly be related to differences in breast milk composition. In particular breast milk composition may differ between allergic and non-allergic mothers. Important components that may be involved are breast milk proteins, as these are known to regulate immune development in the newborn. The objective of this study was therefore to explore differences in the proteins of breast milk from 20 allergic and non-allergic mothers. The results from this comparison may then be used to generate hypotheses on proteins associated with allergy in their offspring. Milk samples from allergic and non-allergic mothers were obtained from the PIAMA project, a prospective birth cohort study on incidence, risk factors, and prevention of asthma and inhalant allergy. Non-targeted proteomics technology, based on liquid chromatography and mass spectrometry, was used to compare breast milk from allergic and non-allergic mothers. Nineteen proteins, out of a total of 364 proteins identified in both groups, differed significantly in concentration between the breast milk of allergic and non-allergic mothers. Protease inhibitors and apolipoproteins were present in much higher concentrations in breast milk of allergic than non-allergic mothers. These proteins have been suggested to be linked to allergy and asthma. The non-targeted milk proteomic analysis employed has provided new targets for future studies on the relation between breast milk composition and allergy.

  14. Accelerated Disassembly of IgE:Receptor Complexes by a Disruptive Macromolecular Inhibitor

    PubMed Central

    Kim, Beomkyu; Eggel, Alexander; Tarchevskaya, Svetlana S.; Vogel, Monique; Prinz, Heino; Jardetzky, Theodore S.

    2012-01-01

    IgE antibodies bind the high affinity IgE Fc receptor (FcεRI), found primarily on mast cells and basophils, and trigger inflammatory cascades of the allergic response1,2. Inhibitors of IgE:FcεRI binding have been identified and an anti-IgE therapeutic antibody (omalizumab) is used to treat severe allergic asthma3,4. However, preformed IgE:FcεRI complexes that prime cells prior to allergen exposure dissociate extremely slowly5 and cannot be disrupted by strictly competitive inhibitors. IgE-Fc conformational flexibility indicated that inhibition could be mediated by allosteric or other non-classical mechanisms6–8. Here we demonstrate that an engineered protein inhibitor, DARPin E2_799–11, acts through a non-classical inhibition mechanism, not only blocking IgE:FcεRI interactions, but actively stimulating the dissociation of preformed ligand-receptor complexes. The structure of the E2_79:IgE-Fc3-4 complex predicts the presence of two non-equivalent E2_79 sites in the asymmetric IgE:FcεRI complex, with Site 1 distant from the receptor and Site 2 exhibiting partial steric overlap. While the structure is suggestive of an allosteric inhibition mechanism, mutational studies and quantitative kinetic modeling indicate that E2_79 acts through a facilitated dissociation mechanism at Site 2 alone. These results demonstrate that high affinity IgE:FcεRI complexes can be actively dissociated to block the allergic response and suggest that protein:protein complexes may be more generally amenable to active disruption by macromolecular inhibitors. PMID:23103871

  15. Cornuside inhibits mast cell-mediated allergic response by down-regulating MAPK and NF-κB signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Liangchang; Jin, Guangyu; Jiang, Jingzhi

    Aims: The present study is to investigate the effect of cornuside on mast cell-mediated allergic response, as well as its possible mechanisms of action. Methods: To test the anti-allergic effects of cornuside in vivo, local extravasation was induced by local injection of anti-dinitrophenyl immunoglobulin E (IgE) followed by intravenous antigenic challenge in passive cutaneous anaphylaxis model rats. Mast cell viability was determined using MTT assay. Histamine content from rat peritoneal mast cells was measured by the radioenzymatic method. To investigate the mechanisms by which cornuside affects the reduction of histamine release, the levels of calcium uptake were measured. To examine whethermore » cornuside affects the expression of pro-inflammatory cytokines, Western blotting and ELISA were carried out. Results: Oral administration of cornuside inhibited passive cutaneous anaphylaxis in rats. Presence of cornuside attenuated IgE-induced histamine release from rat peritoneal mast cells. The inhibitory effect of cornuside on histamine release was mediated by the modulation of intracellular calcium. In addition, cornuside decreased phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated production and secretion of pro-inflammatory cytokines such as TNF-α and IL-6 in human mast cells. The inhibitory effect of cornuside on pro-inflammatory cytokines was dependent on nuclear factor-κB and p38 mitogen-activated protein kinase. Conclusions: The present study provides evidence that cornuside inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. Furthermore, in vivo and in vitro anti-allergic effects of cornuside suggest a possible therapeutic application of this agent in inflammatory allergic diseases.« less

  16. Piper nigrum extract ameliorated allergic inflammation through inhibiting Th2/Th17 responses and mast cells activation.

    PubMed

    Bui, Thi Tho; Piao, Chun Hua; Song, Chang Ho; Shin, Hee Soon; Shon, Dong-Hwa; Chai, Ok Hee

    2017-12-01

    Piper nigrum (Piperaceae) is commonly used as a spice and traditional medicine in many countries. P. nigrum has been reported to have anti-oxidant, anti-bacterial, anti-tumor, anti-mutagenic, anti-diabetic, and anti-inflammatory properties. However, the effect of P. nigrum on allergic asthma has not been known. This study investigated the effect of P. nigrum ethanol extracts (PNE) on airway inflammation in asthmatic mice model. In the ovalbumin (OVA)-induced allergic asthma model, we analysed the number of inflammatory cells and cytokines production in bronchoalveolar lavage fluid (BALF) and lung tissue; histological structure; as well as the total immunoglobulin (Ig)E, anti-OVA IgE, anti-OVA IgG 1 and histamine levels in serum. The oral administration (200 mg/kg) of PNE reduced the accumulation of inflammatory cells (eosinophils, neutrophils in BALF and mast cells in lung tissue); regulated the balance of the cytokines production of Th1, Th2, Th17 and Treg cells, specifically, inhibited the expressions of GATA3, IL-4, IL-6, IL-1β, RORγt, IL-17A, TNF-α and increased the secretions of IL-10, INF-γ in BALF and lung homogenate. Moreover, PNE suppressed the levels of total IgE, anti-OVA IgE, anti-OVA IgG 1 and histamine release in serum. The histological analysis showed that the fibrosis and infiltration of inflammatory cells were also ameliorated in PNE treated mice. On the other hand, PNE inhibited the allergic responses via inactivation of rat peritoneal mast cells degranulation. These results suggest that PNE has therapeutic potential for treating allergic asthma through inhibiting Th2/Th17 responses and mast cells activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Formononetin ameliorates mast cell-mediated allergic inflammation via inhibition of histamine release and production of pro-inflammatory cytokines

    PubMed Central

    Xu, Ning; An, Jun

    2017-01-01

    Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation. PMID:29250144

  18. Formononetin ameliorates mast cell-mediated allergic inflammation via inhibition of histamine release and production of pro-inflammatory cytokines.

    PubMed

    Xu, Ning; An, Jun

    2017-12-01

    Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation.

  19. Acinetobacter baumannii Infection Inhibits Airway Eosinophilia and Lung Pathology in a Mouse Model of Allergic Asthma

    PubMed Central

    Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Zhou, Hongyan; Miller, Harvey; Patel, Girishchandra B.; Chen, Wangxue

    2011-01-01

    Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen. PMID:21789200

  20. Houttuynia cordata water extract suppresses anaphylactic reaction and IgE-mediated allergic response by inhibiting multiple steps of FcepsilonRI signaling in mast cells.

    PubMed

    Han, Eun Hee; Park, Jin Hee; Kim, Ji Young; Jeong, Hye Gwang

    2009-07-01

    Houttuynia cordata has been used as a traditional medicine in Korea and is known to have antioxidant, anti-cancer and anti-allergic activities. The precise effect of H. cordata, however, remains unknown. In this study, we investigated the effects of H. cordata water extract (HCWE) on passive cutaneous anaphylaxis (PCA) in mice and on IgE-mediated allergic response in rat mast RBL-2H3 cells. Oral administration of HCWE inhibited IgE-mediated systemic PCA in mice. HCWE also reduced antigen (DNP-BSA)-induced release of beta-hexosaminidase, histamine, and reactive oxygen species in IgE-sensitized RBL-2H3 cells. In addition, HCWE inhibited antigen-induced IL-4 and TNF-alpha production and expression in IgE-sensitized RBL-2H3 cells. HCWE inhibited antigen-induced activation of NF-kappaB and degradation of IkappaB-alpha. To investigate the inhibitory mechanism of HCWE on degranulation and cytokine production, we examined the activation of intracellular FcepsilonRI signaling molecules. HCWE suppressed antigen-induced phosphorylation of Syk, Lyn, LAT, Gab2, and PLC gamma2. Further downstream, antigen-induced phosphorylation of Akt and MAP kinases (ERK1/2 and JNK1/2 but not p38 MAP kinase) were inhibited by HCWE. Taken together, the in vivo/in vitro anti-allergic effect of HCWE suggests possible therapeutic applications of this agent in inflammatory allergic diseases through inhibition of cytokines and multiple events of FcepsilonRI-dependent signaling cascades in mast cells.

  1. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    PubMed

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  2. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    PubMed

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  3. A novel arctigenin-containing latex glove prevents latex allergy by inhibiting type I/IV allergic reactions.

    PubMed

    Wang, Yong-Xin; Xue, Dan-Ting; Liu, Meng; Zhou, Zheng-Min; Shang, Jing

    2016-03-01

    The present study aimed at developing a natural compound with anti-allergic effect and stability under latex glove manufacturing conditions and investigating whether its anti-allergic effect is maintained after its addition into the latex. The effects of nine natural compounds on growth of the RBL-2H3 cells and mouse primary spleen lymphocytes were determined using MTT assay. The compounds included glycyrrhizin, osthole, tetrandrine, tea polyphenol, catechin, arctigenin, oleanolic acid, baicalin and oxymatrine. An ELISA assay was used for the in vitro anti-type I/IV allergy screening; in this process β-hexosaminidase, histamine, and IL-4 released from RBL-2H3 cell lines and IFN-γ and IL-2 released from mouse primary spleen lymphocytes were taken as screening indices. The physical stability of eight natural compounds and the dissolubility of arctigenin, selected based on the in vitro pharnacodynamaic screening and the stability evaluation, were detected by HPLC. The in vivo pharmacodynamic confirmation of arctigenin and final latex product was evaluated with a passive cutaneous anaphylaxis (PCA) model and an allergen-specific skin response model. Nine natural compounds showed minor growth inhibition on RBL-2H3 cells and mouse primary spleen lymphocytes. Baicalin and arctigenin had the best anti-type I and IV allergic effects among the natural compounds based on the in vitro pharmacodynamic screening. Arctigenin and catechin had the best physical stability under different manufacturing conditions. Arctigenin was the selected for further evaluation and proven to have anti-type I and IV allergic effects in vivo in a dose-dependent manner. The final product of the arctigenin-containing latex glove had anti-type I and IV allergic effects in vivo which were mainly attributed to arctigenin as proved from the dissolubility results. Arctigenin showed anti-type I and IV allergic effects in vitro and in vivo, with a good stability under latex glove manufacturing conditions

  4. New therapies for allergic rhinitis.

    PubMed

    Braido, Fulvio; Sclifò, Francesca; Ferrando, Matteo; Canonica, Giorgio Walter

    2014-04-01

    Because of its burden on patient's lives and its impact on asthma, allergic rhinitis must be treated properly with more effective and safer treatments. According to guidelines by Allergic Rhinitis and Its Impact on Asthma (ARIA), the classification, pathogenesis, and treatment of allergic rhinitis are well defined. Currently, second-generation antihistamines and inhaled steroids are considered the cornerstone of first-line therapy. However, new formulations of available drugs (e.g., loratadine and rupatadine oral solution, ebastine fast-dissolving tablets, and the combination of intranasal fluticasone propionate and azelastine hydrochloride), recently discovered molecules (e.g., ciclesonide, bilastine, and phosphodiesterase-4 inhibitors), immunologic targets (e.g., omalizumab), and unconventional treatments (e.g., homeopathic treatments) are currently under investigation and represent a new frontier in modern medicine and in allergic rhinitis management. The aim of this review is to provide an update on allergic rhinitis treatment, paying particular attention to clinical trials published within the past 20 months that assessed the efficacy and safety of new formulations of available drugs or new molecules.

  5. Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma

    PubMed Central

    Lee, Chen-Chen; Wang, Chien-Neng; Lai, Yu-Ting; Kang, Jaw-Jou; Liao, Jiunn-Wang; Chiang, Bor-Luen; Chen, Hui-Chen; Cheng, Yu-Wen

    2010-01-01

    BACKGROUND AND PURPOSE Shikonin exhibits a wide range of anti-inflammatory actions. Here, we assessed its effects on maturation of murine bone marrow-derived dendritic cells (BM-DCs) and on allergic reactions in a murine model of asthma. EXPERIMENTAL APPROACH Cultured murine BM-DCs were used to investigate the effects of shikonin on expression of cell surface markers and their stimulation of T-cell proliferation and cytokine production. The therapeutic potential of shikonin was evaluated in a model of allergic airway disease. KEY RESULTS Shikonin dose-dependently inhibited expression of major histocompatibility complex class II, CD80, CD86, CCR7 and OX40L on BM-DCs, induced by a mixture of ovalbumin (OVA; 100 µg·mL−1) and thymic stromal lymphopoietin (TSLP; 20 ng·mL−1). Shikonin-treated BM-DCs were poor stimulators of CD4+ T lymphocyte and induced lower levels of interleukin (IL)-4, IL-5, IL-13 and tumour necrosis factor (TNF)-α release by responding T-cells. After intratracheal instillation of shikonin in OVA-immunized mice, OVA challenge induced lower IL-4, IL-5, IL-13, TNF-α and eotaxin release in bronchial alveolar lavage fluid, lower IL-4 and IL-5 production in lung cells and mediastinal lymph node cells and attenuated OVA-induced lung eosinophilia and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS Shikonin effectively suppressed OVA + TSLP-induced BM-DC maturation in vitro and inhibited allergic inflammation and airway hyperresponsiveness in a murine model of asthma, showing good potential as a treatment for allergic asthma. Also, our model provides a novel platform for screening drugs for allergic diseases. PMID:20735407

  6. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    PubMed

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.

  7. Therapeutic strategies for allergic diseases

    NASA Astrophysics Data System (ADS)

    Barnes, Peter J.

    1999-11-01

    Many drugs are now in development for the treatment of atopic diseases, including asthma, allergic rhinitis and atopic dermatitis. These treatments are based on improvements in existing therapies or on a better understanding of the cellular and molecular mechanisms involved in atopic diseases. Although most attention has been focused on asthma, treatments that inhibit the atopic disease process would have application to all atopic diseases, as they often coincide. Most of the many new therapies in development are aimed at inhibiting components of the allergic inflammatory response, but in the future there are real possibilities for the development of preventative and even curative treatments.

  8. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.

    PubMed

    Mhlongo, Sizwe I; den Haan, Riaan; Viljoen-Bloom, Marinda; van Zyl, Willem H

    2015-12-01

    In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes. However, coniferyl aldehyde and syringaldehyde substantially decreased the activity of CBH1 and deactivated BGL1. Acetic and formic acids also showed strong inhibition of BGL1 but not CBH1 and EG2, whereas tannic, acetic and formic acid strongly inhibited a combination of CBH1 and EG2 during Avicel hydrolysis. Diminishing enzymatic hydrolysis is largely a function of inhibitor concentration and the enzyme-inhibitor relationship, rather than contact time during the hydrolysis process (i.e. deactivation). This suggests that decreased rates of hydrolysis during the enzymatic depolymerisation of lignocellulosic hydrolysates may be imparted by other factors related to substrate crystallinity and accessibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Immunomodulation: the future cure for allergic diseases.

    PubMed

    Tsitoura, Daphne C; Tassios, Yannis

    2006-11-01

    Allergies are the result of aberrant immune reactivity against common innocuous environmental proteins (allergens). A pivotal component of allergic pathogenesis is the generation of allergen-specific Th cells with an effector phenotype. These Th cells activate a complex immune cascade that triggers the release of potent mediators and enhances the mobilization of several inflammatory cells types, which in turn elicit the acute allergic reactions and promote the development of chronic inflammation. The current therapies for allergic diseases focus primarily on pharmacological control of symptoms and suppression of inflammation. This approach is beneficial, but not curative, since the underlying immune pathology is not inhibited. In an attempt to develop more effective therapeutic strategies, the scientific interest has been directed toward methods down-modulating the immune mechanisms that initiate and maintain the allergic cascade. Today, the only widely used disease-modifying form of allergy treatment is the specific immunotherapy with allergen extracts. More recently the use of anti-IgE has been approved for patients with allergic asthma. Other immunomodulatory methods being currently explored are the administration of microbial adjuvants that inhibit Th2 reactivity and the design of molecules that interrupt the activity of key allergic cytokines, chemokines, or other Th2 effector mediators.

  10. Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors

    PubMed Central

    Singh, Melissa M.; Manton, Christa A.; Bhat, Krishna P.; Tsai, Wen-Wei; Aldape, Kenneth; Barton, Michelle C.; Chandra, Joya

    2011-01-01

    Glioblastoma multiforme (GBM) is a particularly aggressive brain tumor and remains a clinically devastating disease. Despite innovative therapies for the treatment of GBM, there has been no significant increase in patient survival over the past decade. Enzymes that control epigenetic alterations are of considerable interest as targets for cancer therapy because of their critical roles in cellular processes that lead to oncogenesis. Several inhibitors of histone deacetylases (HDACs) have been developed and tested in GBM with moderate success. We found that treatment of GBM cells with HDAC inhibitors caused the accumulation of histone methylation, a modification removed by the lysine specific demethylase 1 (LSD1). This led us to examine the effects of simultaneously inhibiting HDACs and LSD1 as a potential combination therapy. We evaluated induction of apoptosis in GBM cell lines after combined inhibition of LSD1 and HDACs. LSD1 was inhibited by targeted short hairpin RNA or pharmacological means and inhibition of HDACs was achieved by treatment with either vorinostat or PCI-24781. Caspase-dependent apoptosis was significantly increased (>2-fold) in LSD1-knockdown GBM cells treated with HDAC inhibitors. Moreover, pharmacologically inhibiting LSD1 with the monoamine oxidase inhibitor tranylcypromine, in combination with HDAC inhibitors, led to synergistic apoptotic cell death in GBM cells; this did not occur in normal human astrocytes. Taken together, these results indicate that LSD1 and HDACs cooperate to regulate key pathways of cell death in GBM cell lines but not in normal counterparts, and they validate the combined use of LSD1 and HDAC inhibitors as a therapeutic approach for GBM. PMID:21653597

  11. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades.

    PubMed

    Chen, Meiling; Xu, Shuhong; Zhou, Peipei; He, Guangwei; Jie, Qiong; Wu, Yulin

    2015-11-15

    Chemokines have chemotactic properties on leukocyte subsets whose modulation plays a pivotal role in allergic inflammatory processes. Our present study was designed to investigate the anti-allergic and anti-inflammatory properties of desloratadine citrate disodium injection (DLC) and elucidate the molecular mechanisms of its anti-inflammatory properties. The anti-allergic effects of DLC were evaluated based on allergic symptoms, serological marker production and histological changes of the nasal mucosa in guinea pigs model of allergic rhinitis. The anti-inflammatory properties and molecular mechanisms of DLC were explored by studying the regulation of a set of chemokines and extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) pathways, after DLC treatment in guinea pigs model of allergic rhinitis in vivo and histamine-activated human nasal epithelial cells (HNECs) in vitro. In vivo model in guinea pigs, DLC alleviated the rhinitis symptoms, inhibited inflammatory cells infiltration in nasal lavage fluid (NLF) and histamine, monocyte chemotactic protein (MCP)-1, regulated on activation normal T cell expressed, and presumably secreted (RANTEs) and interleukin (IL)-8 release in sera and P-ERK1/2 and NF-κB activation in nasal mucosa. In vitro, DLC markedly inhibited histamine-induced production of MCP-1, RANTEs and IL-8 and suppressed c-Raf, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and ERK1/2 activation in HNECs. These results provide evidence that DLC possesses potent anti-allergic and anti-inflammatory properties. The mechanism of action underlying DLC in allergic inflammation appears to be inhibition of the phosphorylation of ERK1/2, in addition to blocking of the NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Involvement of Corneal Lymphangiogenesis in a Mouse Model of Allergic Eye Disease

    PubMed Central

    Lee, Hyun-Soo; Hos, Deniz; Blanco, Tomas; Bock, Felix; Reyes, Nancy J.; Mathew, Rose; Cursiefen, Claus; Dana, Reza; Saban, Daniel R.

    2015-01-01

    Purpose. The contribution of lymphangiogenesis (LA) to allergy has received considerable attention and therapeutic inhibition of this process via targeting VEGF has been considered. Likewise, certain inflammatory settings affecting the ocular mucosa can trigger pathogenic LA in the naturally avascular cornea. Chronic inflammation in allergic eye disease (AED) impacts the conjunctiva and cornea, leading to sight threatening conditions. However, whether corneal LA is involved is completely unknown. We addressed this using a validated mouse model of AED. Methods. Allergic eye disease was induced by ovalbumin (OVA) immunization and chronic OVA exposure. Confocal microscopy of LYVE-1–stained cornea allowed evaluation of corneal LA, and qRT-PCR was used to evaluate expression of VEGF-C, -D, and -R3 in these mice. Administration of VEGF receptor (R) inhibitor was incorporated to inhibit corneal LA in AED. Immune responses were evaluated by in vitro OVA recall responses of T cells, and IgE levels in the serum. Results. Confocal microscopy of LYVE-1–stained cornea revealed the distinct presence of corneal LA in AED, and corroborated by increased corneal expression of VEGF-C, -D, and -R3. Importantly, prevention of corneal LA in AED via VEGFR inhibition was associated with decreased T helper two responses and IgE production. Furthermore, VEGFR inhibition led a significant reduction in clinical signs of AED. Conclusions. Collectively, these data reveal that there is a distinct involvement of corneal LA in AED. Furthermore, VEGFR inhibition prevents corneal LA and consequent immune responses in AED. PMID:26024097

  13. Inhibition of Monometalated Methionine Aminopeptidase: Inhibitor Discovery and Crystallographic Analysis†

    PubMed Central

    Huang, Min; Xie, Sheng-Xue; Ma, Ze-Qiang; Huang, Qing-Qing; Nan, Fa-Jun; Ye, Qi-Zhuang

    2008-01-01

    Two divalent metal ions are commonly seen in the active site cavity of methionine aminopeptidase, and at least one of the metal ions is directly involved in catalysis. Although ample structural and functional information is available for dimetalated enzyme, methionine aminopeptidase likely functions as a monometalated enzyme under physiological conditions. Information on structure, as well as catalysis and inhibition, of the monometalated enzyme is lacking. By improving conditions of high throughput screening, we identified a unique inhibitor with specificity toward the monometalated enzyme. Kinetic characterization indicates a mutual exclusivity in binding between the inhibitor and the second metal ion at the active site. This is confirmed by X-ray structure, and this inhibitor coordinates with the first metal ion and occupies the space normally occupied by the second metal ion. Kinetic and structural analyses of the inhibition by this and other inhibitors provide insight in designing effective inhibitors of methionine aminopeptidase. PMID:17948983

  14. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper

  15. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    PubMed

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the

  16. Quercetin and Its Anti-Allergic Immune Response.

    PubMed

    Mlcek, Jiri; Jurikova, Tunde; Skrovankova, Sona; Sochor, Jiri

    2016-05-12

    Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate) and suppresses IL-6 and cytosolic calcium level increase.

  17. The synergistic interaction of MEK and PI3K inhibitors is modulated by mTOR inhibition.

    PubMed

    Haagensen, E J; Kyle, S; Beale, G S; Maxwell, R J; Newell, D R

    2012-04-10

    Combined targeting of MAPK and PI3K signalling pathways may be necessary for optimal therapeutic activity in cancer. This study evaluated the MEK inhibitors AZD6244 and PD0325901, alone and in combination with the dual mTOR/PI3K inhibitor NVP-BEZ235 or the PI3K inhibitor GDC-0941, in three colorectal cancer cell lines. Growth inhibition, survival and signal transduction were measured using the Sulforhodamine B assay, clonogenicity and western blotting, respectively, in HCT116, HT29 and DLD1 cell lines. All MEK/PI3K inhibitor combinations exhibited marked synergistic growth inhibition; however, GDC-0941 displayed greater synergy in combination with either MEK inhibitor. NVP-BEZ235 exhibited stronger inhibition of 4EBP1 phosphorylation, and similar inhibition of S6 and AKT phosphorylation, compared with GDC-0941. Both PD0325901 and AZD6244 inhibited ERK phosphorylation, and with MEK/PI3K inhibitor combinations inhibition of S6 phosphorylation was increased. The reduced synergy exhibited by NVP-BEZ235 in combination with MEK inhibitors, compared with GDC-0941, may be due to inhibition of mTOR, and the addition of the mTORC1/2 inhibitor KU0063794 compromised the synergy of GDC-0941:PD0325901 combinations. These studies confirm that dual targeting of PI3K and MEK can induce synergistic growth inhibition; however, the combination of specific PI3K inhibitors, rather than dual mTOR/PI3K inhibitors, with MEK inhibitors results in greater synergy.

  18. The synergistic interaction of MEK and PI3K inhibitors is modulated by mTOR inhibition

    PubMed Central

    Haagensen, E J; Kyle, S; Beale, G S; Maxwell, R J; Newell, D R

    2012-01-01

    Background: Combined targeting of MAPK and PI3K signalling pathways may be necessary for optimal therapeutic activity in cancer. This study evaluated the MEK inhibitors AZD6244 and PD0325901, alone and in combination with the dual mTOR/PI3K inhibitor NVP-BEZ235 or the PI3K inhibitor GDC-0941, in three colorectal cancer cell lines. Methods: Growth inhibition, survival and signal transduction were measured using the Sulforhodamine B assay, clonogenicity and western blotting, respectively, in HCT116, HT29 and DLD1 cell lines. Results: All MEK/PI3K inhibitor combinations exhibited marked synergistic growth inhibition; however, GDC-0941 displayed greater synergy in combination with either MEK inhibitor. NVP-BEZ235 exhibited stronger inhibition of 4EBP1 phosphorylation, and similar inhibition of S6 and AKT phosphorylation, compared with GDC-0941. Both PD0325901 and AZD6244 inhibited ERK phosphorylation, and with MEK/PI3K inhibitor combinations inhibition of S6 phosphorylation was increased. The reduced synergy exhibited by NVP-BEZ235 in combination with MEK inhibitors, compared with GDC-0941, may be due to inhibition of mTOR, and the addition of the mTORC1/2 inhibitor KU0063794 compromised the synergy of GDC-0941:PD0325901 combinations. Conclusion: These studies confirm that dual targeting of PI3K and MEK can induce synergistic growth inhibition; however, the combination of specific PI3K inhibitors, rather than dual mTOR/PI3K inhibitors, with MEK inhibitors results in greater synergy. PMID:22415236

  19. MicroRNA-21-Mediated Inhibition of Mast Cell Degranulation Involved in the Protective Effect of Berberine on 2,4-Dinitrofluorobenzene-Induced Allergic Contact Dermatitis in Rats via p38 Pathway.

    PubMed

    Li, Weihua; Liu, Fanxiu; Wang, Jun; Long, Man; Wang, Zhigang

    2018-03-01

    The study aimed to investigate the effect of berberine on allergic contact dermatitis (ACD) in rats and explore its underlying mechanisms. Firstly, ACD model was established by sensitizing and challenging with 2,4-dinitrofluorobenzene (DNFB) topically, and the rats were treated with berberine. Ear swelling was assessed, and cytokine, IgE, and histamine productions were measured. The ear biopsies were obtained for histology analysis. Additionally, rat peritoneal mast cells (RPMCs) were isolated for detection of microRNA-21 (miR-21) expression, mitogen-activated protein kinase (MAPK) signaling, and MC degranulation. Lastly, RPMCs were transfected with miR-21 mimic or miR-21 inhibitor to investigate the relationship between miR-21 and p38 pathway in MC. Our results showed that berberine significantly attenuated ear swelling in DNFB-induced ACD (ACD vs high dose of berberine 0.48 ± 0.03 vs. 0.33 ± 0.03 mm, P < 0.01), inhibited inflammatory cell infiltration (86 ± 5.16 vs. 58 ± 4.32 cells/mm 2 , P < 0.01), reduced MC recruitment (61 ± 4.07 vs. 39 ± 3.42 mast cells/mm 2 , P < 0.01), as well as decreased inflammatory cytokine, IgE, and histamine productions (all P < 0.05). Berberine treatment inhibited miR-21 expression, suppressed β-hexosaminidase and histamine release, and prevented p38 phosphorylation (all P < 0.05), which was abrogated by pretreatment with miR-21 overexpression. These findings indicate that miR-21-mediated inhibition of MC degranulation is involved in the anti-ACD effect of berberine via inhibiting p38 pathway, which provide a new insight into the immunopharmacological role of berberine and suggest its potential application for the treatment of allergic inflammation, such as ACD.

  20. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  1. Bromelain Inhibits Allergic Sensitization and Murine Asthma via Modulation of Dendritic Cells

    PubMed Central

    Secor, Eric R.; Szczepanek, Steven M.; Castater, Christine A.; Adami, Alexander J.; Matson, Adam P.; Rafti, Ektor T.; McNamara, Jeffrey T.; Schramm, Craig M.; Thrall, Roger S.; Silbart, Lawrence K.

    2013-01-01

    The incidence of atopic conditions has increased in industrialized countries. Persisting symptoms and concern for drug side-effects lead patients toward adjunctive treatments such as phytotherapy. Previously, we have shown that Bromelain (sBr), a mixture of cysteine proteases from pineapple, Ananas comosus, inhibits ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). However, sBr's effect on development of AAD when treatment is administered throughout OVA-alum sensitization was unknown and is the aim of the present study. C57BL/6J mice were sensitized with OVA/alum and challenged with 7 days OVA aerosol. sBr 6 mg/kg/0.5 ml or PBS vehicle were administered throughout sensitization. Lung, bronchoalveolar lavage (BAL), spleen, and lymph nodes were processed for flow cytometry and OVA-specific IgE was determined via ELISA. sBr treatment throughout OVA-alum sensitization significantly reduced the development of AAD (BAL eosinophils and lymphocytes). OVA-specific IgE and OVA TET+ cells were decreased. sBr reduced CD11c+ dendritic cell subsets, and in vitro treatment of DCs significantly reduced CD44, a key receptor in both cell trafficking and activation. sBr was shown to reduce allergic sensitization and the generation of AAD upon antigen challenge. These results provide additional insight into sBr's anti-inflammatory and antiallergic properties and rationale for translation into the clinical arena. PMID:24381635

  2. Inhibition of Mast Cell-Mediated Allergic Responses by Arctii Fructus Extracts and Its Main Compound Arctigenin.

    PubMed

    Kee, Ji-Ye; Hong, Seung-Heon

    2017-11-01

    The Arctium lappa seeds (Arctii Fructus) and its major active compound, arctigenin (ARC), are known to have anticancer, antiobesity, antiosteoporosis, and anti-inflammatory activities. However, the effect of Arctii Fructus and ARC on mast cell-mediated allergic inflammation and its associated mechanism have not been elucidated. Therefore, we attempted to investigate the antiallergic activity of Arctii Fructus and ARC on mast cells and experimental mouse models. Arctii Fructus water extract (AFW) or ethanol extract (AFE) and ARC reduced the production of histamine and pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and TNF-α in mast cells. AFW, AFE, and ARC inhibited phosphorylation of MAPKs and NF-κB in activated mast cells. Moreover, IgE-mediated passive cutaneous anaphylaxis and compound 48/80-induced anaphylactic shock were suppressed by AFW, AFE, and ARC administration. These results suggest that Arctii Fructus and ARC are potential therapeutic agents against allergic inflammatory diseases.

  3. Eosinophils as a novel cell source of prostaglandin D2: autocrine role in allergic inflammation

    PubMed Central

    Luna-Gomes, Tatiana; Magalhães, Kelly G; Mesquita-Santos, Fabio P.; Bakker-Abreu, Ilka; Samico, Rafaela F.; Molinaro, Raphael; Calheiros, Andrea S.; Diaz, Bruno L.; Bozza, Patrícia T.

    2011-01-01

    Prostaglandin (PG)D2 is a key mediator of allergic inflammatory diseases that is mainly synthesized by mast cells, which constitutively express high levels of the terminal enzyme involved in PGD2 synthesis, the hematopoietic PGD synthase (H-PGDS). Here, we investigated whether eosinophils are also able to synthesize, and therefore, supply biologically active PGD2. PGD2 synthesis was evaluated within human blood eosinophils, in vitro-differentiated mouse eosinophils, and eosinophils infiltrating inflammatory site of mouse allergic reaction. Biological function of eosinophil-derived PGD2 was studied by employing inhibitors of synthesis and activity. Constitutive expression of H-PGDS was found within non-stimulated human circulating eosinophils. Acute stimulation of human eosinophils with A23187 (0.1 – 5 μM) evoked PGD2 synthesis, which was located at the nuclear envelope and was inhibited by pre-treatment with HQL-79 (10 μM), a specific H-PGDS inhibitor. Pre-stimulation of human eosinophils with arachidonic acid (AA; 10 μM) or human eotaxin (6 nM) also enhanced HQL-79-sensitive PGD2 synthesis, which, by acting on membrane-expressed specific receptors (DP1 and DP2), displayed an autocrine/paracrine ability to trigger leukotriene (LT)C4 synthesis and lipid body biogenesis, hallmark events of eosinophil activation. In vitro-differentiated mouse eosinophils also synthesized paracrine/autocrine active PGD2 in response to AA stimulation. In vivo, at late time point of the allergic reaction, infiltrating eosinophils found at the inflammatory site appeared as an auxiliary PGD2-synthesizing cell population. Our findings reveal that eosinophils are indeed able to synthesize and secrete PGD2, hence representing during allergic inflammation an extra cell source of PGD2, which functions as an autocrine signal for eosinophil activation. PMID:22102725

  4. S-Nitrosoglutathione Reductase Inhibition Regulates Allergen-Induced Lung Inflammation and Airway Hyperreactivity

    PubMed Central

    Bassett, David J. P.; Bradley, Matthews O.; Jaffar, Zeina

    2013-01-01

    Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation. PMID:23936192

  5. Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by spirulina.

    PubMed

    Kim, H M; Lee, E H; Cho, H H; Moon, Y H

    1998-04-01

    We investigated the effect of spirulina on mast cell-mediated immediate-type allergic reactions. Spirulina dose-dependently inhibited the systemic allergic reaction induced by compound 48/80 in rats. Spirulina inhibited compound 48/80-induced allergic reaction 100% with doses of 100-1000 microg/g body weight, i.p. Spirulina (10-1000 microg/g body weight, i.p.) also significantly inhibited local allergic reaction activated by anti-dinitrophenyl (DNP) IgE. When rats were pretreated with spirulina at a concentration ranging from 0.01 to 1000 microg/g body weight, i.p., the serum histamine levels were reduced in a dose-dependent manner. Spirulina (0.001 to 10 microg/mL) dose-dependently inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP in RPMC, when spirulina (10 microg/mL) was added, transiently and significantly increased about 70-fold at 10 sec compared with that of control cells. Moreover, spirulina (10 microg/mL) had a significant inhibitory effect on anti-DNP IgE-induced tumor necrosis factor-alpha production. These results indicate that spirulina inhibits mast cell-mediated immediate-type allergic reactions in vivo and in vitro.

  6. Allergic conjunctivitis in Asia.

    PubMed

    Thong, Bernard Yu-Hor

    2017-04-01

    Allergic conjunctivitis (AC), which may be acute or chronic, is associated with rhinitis in 30%-70% of affected individuals, hence the term allergic rhinoconjunctivitis (AR/C). Seasonal and perennial AC is generally milder than the more chronic and persistent atopic and vernal keratoconjunctivitis. Natural allergens like house dust mites (HDM), temperate and subtropical grass and tree pollen are important triggers that drive allergic inflammation in AC in the Asia-Pacific region. Climate change, environmental tobacco smoke, pollutants derived from fuel combustion, Asian dust storms originating from central/north Asia and phthalates may also exacerbate AR/C. The Allergies in Asia Pacific study and International Study of Asthma and Allergies in Childhood provide epidemiological data on regional differences in AR/C within the region. AC significantly impacts the quality of life of both children and adults, and these can be measured by validated quality of life questionnaires on AR/C. Management guidelines for AC involve a stepped approach depending on the severity of disease, similar to that for allergic rhinitis and asthma. Topical calcineurin inhibitors are effective in certain types of persistent AC, and sublingual immunotherapy is emerging as an effective treatment option in AR/C to grass pollen and HDM. Translational research predominantly from Japan and Korea involving animal models are important for the potential development of targeted pharmacotherapies for AC.

  7. Inhibition of neuraminidase by Ganoderma triterpenoids and implications for neuraminidase inhibitor design

    PubMed Central

    Zhu, Qinchang; Bang, Tran Hai; Ohnuki, Koichiro; Sawai, Takashi; Sawai, Ken; Shimizu, Kuniyoshi

    2015-01-01

    Neuraminidase (NA) inhibitors are the dominant antiviral drugs for treating influenza in the clinic. Increasing prevalence of drug resistance makes the discovery of new NA inhibitors a high priority. Thirty-one triterpenoids from the medicinal mushroom Ganoderma lingzhi were analyzed in an in vitro NA inhibition assay, leading to the discovery of ganoderic acid T-Q and TR as two inhibitors of H5N1 and H1N1 NAs. Structure-activity relationship studies revealed that the corresponding triterpenoid structure is a potential scaffold for the design of NA inhibitors. Using these triterpenoids as probes we found, through further in silico docking and interaction analysis, that interactions with the amino-acid residues Arg292 and/or Glu119 of NA are critical for the inhibition of H5N1 and H1N1. These findings should prove valuable for the design and development of NA inhibitors. PMID:26307417

  8. Oligopeptidase B from Serratia proteamaculans. III. Inhibition analysis. Specific interactions with metalloproteinase inhibitors.

    PubMed

    Mikhailova, A G; Khairullin, R F; Kolomijtseva, G Ya; Rumsh, L D

    2012-03-01

    Inhibition of the novel oligopeptidase B from Serratia proteamaculans (PSP) by basic pancreatic trypsin inhibitor, Zn2+ ions, and o- and m-phenanthroline was investigated. A pronounced effect of calcium ions on the interaction of PSP with inhibitors was demonstrated. Inversion voltamperometry and atomic absorption spectrometry revealed no zinc ions in the PSP molecule. Hydrophobic nature of the enzyme inhibition by o- and m-phenanthroline was established.

  9. On the Error of the Dixon Plot for Estimating the Inhibition Constant between Enzyme and Inhibitor

    ERIC Educational Resources Information Center

    Fukushima, Yoshihiro; Ushimaru, Makoto; Takahara, Satoshi

    2002-01-01

    In textbook treatments of enzyme inhibition kinetics, adjustment of the initial inhibitor concentration for inhibitor bound to enzyme is often neglected. For example, in graphical plots such as the Dixon plot for estimation of an inhibition constant, the initial concentration of inhibitor is usually plotted instead of the true inhibitor…

  10. Role of endothelin-converting enzyme, chymase and neutral endopeptidase in the processing of big ET-1, ET-1(1-21) and ET-1(1-31) in the trachea of allergic mice.

    PubMed

    De Campo, Benjamin A; Goldie, Roy G; Jeng, Arco Y; Henry, Peter J

    2002-08-01

    The present study examined the roles of endothelin-converting enzyme (ECE), neutral endopeptidase (NEP) and mast cell chymase as processors of the endothelin (ET) analogues ET-1(1-21), ET-1(1-31) and big ET-1 in the trachea of allergic mice. Male CBA/CaH mice were sensitized with ovalbumin (10 microg) delivered intraperitoneal on days 1 and 14, and exposed to aerosolized ovalbumin on days 14, 25, 26 and 27 (OVA mice). Mice were killed and the trachea excised for histological analysis and contraction studies on day 28. Tracheae from OVA mice had 40% more mast cells than vehicle-sensitized mice (sham mice). Ovalbumin (10 microg/ml) induced transient contractions (15+/-3% of the C(max)) in tracheae from OVA mice. The ECE inhibitor CGS35066 (10 microM) inhibited contractions induced by big ET-1 (4.8-fold rightward shift of dose-response curve; P<0.05), but not those induced by either ET-1(1-21) or ET-1(1-31). The chymase inhibitors chymostatin (10 microM) and Bowman-Birk inhibitor (10 microM) had no effect on contractions induced by any of the ET analogues used. The NEP inhibitor CGS24592 (10 microM) inhibited contractions induced by ET-1(1-31) (6.2-fold rightward shift; P<0.05) but not ET-1(1-21) or big ET-1. These data suggest that big ET-1 is processed predominantly by a CGS35066-sensitive ECE within allergic airways rather than by mast cell-derived proteases such as chymase. If endogenous ET-1(1-31) is formed within allergic airways, it is likely to undergo further conversion by NEP to more active products.

  11. Mechanism of Inhibition of Cholesteryl Ester Transfer Protein by Small Molecule Inhibitors.

    PubMed

    Chirasani, Venkat R; Sankar, Revathi; Senapati, Sanjib

    2016-08-25

    Cholesteryl ester transfer protein (CETP) facilitates the bidirectional exchange of cholesteryl esters and triglycerides between high-density lipoproteins and low- or very low-density lipoproteins. Recent studies have shown that the impairment of lipid exchange processes of CETP can be an effective strategy for the treatment of cardiovascular diseases (CVDs). Understanding the molecular mechanism of CETP inhibition has, therefore, attracted tremendous attention in recent past. In this study, we explored the detailed mechanism of CETP inhibition by a series of recently reported small molecule inhibitors that are currently under preclinical testing. Our results from molecular dynamics simulations and protein-ligand docking studies suggest that the hydrophobic interactions between the CETP core tunnel residues and inhibitor moieties play a pivotal role, and physical occlusion of the CETP tunnel by these small molecules is the primary mechanism of CETP inhibition. Interestingly, bound inhibitors were found to increase the plasticity of CETP, which was explained by principal component analysis that showed a larger space of sampling of CETP C-domain due to inhibitor binding. The atomic-level details presented here could help accelerate the structure-based drug-discovery processes targeting CETP for CVD therapeutics.

  12. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics.

    PubMed

    Poduch, Ewa; Bello, Angelica M; Tang, Sishi; Fujihashi, Masahiro; Pai, Emil F; Kotra, Lakshmi P

    2006-08-10

    Inhibitors of orotidine monophosphate decarboxylase (ODCase) have applications in RNA viral, parasitic, and other infectious diseases. ODCase catalyzes the decarboxylation of orotidine monophosphate (OMP), producing uridine monophosphate (UMP). Novel inhibitors 6-amino-UMP and 6-cyano-UMP were designed on the basis of the substructure volumes in the substrate OMP and in an inhibitor of ODCase, barbituric acid monophosphate, BMP. A new enzyme assay method using isothermal titration calorimetry (ITC) was developed to investigate the inhibition kinetics of ODCase. The reaction rates were measured by monitoring the heat generated during the decarboxylation reaction of orotidine monophosphate. Kinetic parameters (k(cat) = 21 s(-1) and KM = 5 microM) and the molar enthalpy (DeltaH(app) = 5 kcal/mol) were determined for the decarboxylation of the substrate by ODCase. Competitive inhibition of the enzyme was observed and the inhibition constants (Ki) were determined to be 12.4 microM and 29 microM for 6-aza-UMP and 6-cyano-UMP, respectively. 6-Amino-UMP was found to be among the potent inhibitors of ODCase, having an inhibition constant of 840 nM. We reveal here the first inhibitors of ODCase designed by the principles of bioisosterism and a novel method of using isothermal calorimetry for enzyme inhibition studies.

  13. Shikonin, a constituent of Lithospermum erythrorhizon exhibits anti-allergic effects by suppressing orphan nuclear receptor Nr4a family gene expression as a new prototype of calcineurin inhibitors in mast cells.

    PubMed

    Wang, Xiaoyu; Hayashi, Shusaku; Umezaki, Masahito; Yamamoto, Takeshi; Kageyama-Yahara, Natsuko; Kondo, Takashi; Kadowaki, Makoto

    2014-12-05

    inhibition of calcineurin activity. Therefore, shikonin has therapeutic potential for the treatment of allergic diseases as a new calcineurin inhibitor. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Bilastine as a potential treatment in allergic rhinitis.

    PubMed

    Kowal, Krzysztof; DuBuske, Lawrence

    2014-01-01

    Allergic rhinitis is a very frequent disease. H1 antihistamines have been used for treatment of allergic rhinitis for more than 5 decades. They differ in chemical structure, pharmacokinetics, pharmacodynamics, clinical efficacy and adverse effects. We performed a detailed analysis of all available publications concerning the new H1-antihistamine bilasitine. Bilastine, a piperidine derivative, is a novel potent H1 antihistamine. It is at least as potent as cetirizine or fexofenadine in in vitro studies. In animal studies it demonstrates dose-dependent antihistaminic and antiallergic effects. In humans its metabolism is not affected by age, gender or renal function but may be affected by coadministration of P glycoprotein inhibitors. Efficacy of bilastine in therapy of allergic rhinitis patients has been documented in several large controlled clinical trials showing bilastine being at least as effective as cetirizine or desloratadine. No significant suppressive effect on central nervous system could be demonstrated when bilastine was used in the recommended doses. Bilastine is a novel H1 antihistamine with anti-allergic properties which is highly effective in the treatment of symptoms of allergic rhinitis. It has a favorable pharmacokinetic and pharmacodynamic profile and is generally well tolerated.

  15. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung

    2014-02-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited themore » expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H{sub 1} receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases.« less

  16. Effects of ZCR-2060 on allergic airway inflammation and cell activation in guinea-pigs.

    PubMed

    Abe, T; Yoshida, K; Omata, T; Segawa, Y; Matsuda, K; Nagai, H

    1994-11-01

    The effects of 2-(2-(4-(diphenylmethyl)-1-piperadinyl) ethoxy) benzoic acid malate (ZCR-2060) on allergic airway inflammation and inflammatory cell activation in guinea-pigs were studied. Allergic airway inflammation was induced by inhalation of antigen into actively-sensitized animals and the increase in inflammatory cells into bronchoalveolar lavage fluid (BALF) was measured. Aeroantigen-induced infiltration of inflammatory cells, especially eosinophils and neutrophils, in BALF gradually increased, and reached a peak at 6 or 9 h after the challenge. ZCR-2060 (1 mg kg-1 p.o.) clearly inhibited the increase of eosinophil numbers in BALF. Moreover, the effect of ZCR-2060 on inflammatory cell activation in terms of chemotaxis and superoxide generation in-vitro was studied. ZCR-2060 (10(-6)-10(-4) M) inhibited the platelet-activating factor (PAF)-induced chemotaxis of eosinophils and neutrophils, but did not inhibit the leukotriene B4-induced chemotaxis of eosinophils and the formyl-Met-Leu-Phe-induced chemotaxis of neutrophils. PAF-induced superoxide anion generation by eosinophils, neutrophils and alveolar macrophages was inhibited by ZCR-2060 (10(-6)-10(-4) M). However, ZCR-2060 did not affect phorbol myristate acetate-induced superoxide anion generation by eosinophils, neutrophils and alveolar macrophages. These results indicate that ZCR-2060 inhibits allergic airway inflammation, and PAF-induced inflammatory cell activation in guinea-pigs. ZCR-2060 may prove useful for the treatment of allergic airway inflammation or allergic disorders, especially inflammatory cell infiltration and activation.

  17. Emerging drugs for allergic conjunctivitis.

    PubMed

    Ridolo, Erminia; Montagni, Marcello; Caminati, Marco; Senna, Gianenrico; Incorvaia, Cristoforo; Canonica, Giorgio Walter

    2014-06-01

    Allergic conjunctivitis (AC) is a very common disease, especially in association with allergic rhinitis but may also occur in isolated presentation. The treatment of AC has long been based on antihistamines, cromones and topical corticosteroids, but none of these drugs completely abolishes the clinical expression of AC. The development of new drugs for AC is analyzed highlighting the recent insights into the pathophysiological mechanisms of the disease. The major aim of development of drugs for AC is to have agents able to prevent the inflammatory effects of the interaction between the allergen and the specific IgE antibodies on mast cell surface. This may be obtained by blocking the effects of histamine (the main mediator of early allergic response) by H1-receptor antagonists, inhibiting the release of soluble factors able to recruit inflammatory cells (that sustain prolonged inflammation) by mast-cell stabilizers, inhibiting the effects of single mediators, inducing tolerance to the allergen by specific immunotherapy or even acting on factors related to activation and differentiation of T lymphocytes such as the toll-like receptors. AC is an underestimated disease for which there is a search of more effective treatments. The availability of the drugs under current evaluation will allow more refined therapeutic strategies to apply according to the characteristics and the clinical severity of AC.

  18. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    PubMed

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  19. Anti-allergic activity of 2,4,6-trihydroxy-3-geranylacetophenone (tHGA) via attenuation of IgE-mediated mast cell activation and inhibition of passive systemic anaphylaxis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ji Wei; Israf, Daud Ahmad; Harith, Hanis Haze

    tHGA, a geranyl acetophenone compound originally isolated from a local shrub called Melicope ptelefolia, has been previously reported to prevent ovalbumin-induced allergic airway inflammation in a murine model of allergic asthma by targeting cysteinyl leukotriene synthesis. Mast cells are immune effector cells involved in the pathogenesis of allergic diseases including asthma by releasing cysteinyl leukotrienes. The anti-asthmatic properties of tHGA could be attributed to its inhibitory effect on mast cell degranulation. As mast cell degranulation is an important event in allergic responses, this study aimed to investigate the anti-allergic effects of tHGA in cellular and animal models of IgE-mediated mastmore » cell degranulation. For in vitro model of IgE-mediated mast cell degranulation, DNP-IgE-sensitized RBL-2H3 cells were pre-treated with tHGA before challenged with DNP-BSA to induce degranulation. For IgE-mediated passive systemic anaphylaxis, Sprague Dawley rats were sensitized by intraperitoneal injection of DNP-IgE before challenged with DNP-BSA. Both in vitro and in vivo models showed that tHGA significantly inhibited the release of preformed mediators (β-hexosaminidase and histamine) as well as de novo mediators (interleukin-4, tumour necrosis factor-α, prostaglandin D{sub 2} and leukotriene C{sub 4}). Pre-treatment of tHGA also prevented IgE-challenged RBL-2H3 cells and peritoneal mast cells from undergoing morphological changes associated with mast cell degranulation. These findings indicate that tHGA possesses potent anti-allergic activity via attenuation of IgE-mediated mast cell degranulation and inhibition of IgE-mediated passive systemic anaphylaxis. Thus, tHGA may have the potential to be developed as a mast cell stabilizer for the treatment of allergic diseases in the future. - Highlights: • The in vitro and in vivo mast cell stabilizing effects of tHGA were examined. • tHGA counteracts the plasma membrane deformation in degranulating

  20. The anti-allergic activity of polyphenol extracted from five marine algae

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Lin, Hong; Li, Zhenxing; Mou, Quangui

    2015-08-01

    Natural polyphenol has been widely believed to be effective in allergy remission. Currently, most of the natural polyphenol products come from terrestrial sources such as tea, grape seeds among others, and few polyphenols have been developed from algae for their anti-allergic activity. The aim of the study was to screen some commercial seaweed for natural extracts with anti-allergic activity. Five algae including Laminaria japonica, Porphyra sp., Spirulina platensis, Chlorella pyrenoidosa and Scytosiphon sp. were extracted with ethanol, and the extracts were evaluated for total polyphenol contents and anti-allergic activity with the hyaluronidase inhibition assay. Results showed that the total polyphenol contents in the ethanol extracts ranged from 1.67% to 8.47%, while the highest was found in the extract from Scytosiphon sp. Hyaluronidase inhibition assay showed that the extracts from Scytosiphon sp. had the lowest IC50, 0.67 mg mL-1, while Chlorella pyrenoidosa extract had the highest IC50, 15.07 mg mL-1. The anti-allergic activity of Scytosiphon sp. extract was even higher than the typical anti-allergic drug Disodium Cromoglycate (DSCG) (IC50 = 1.13 mg mL-1), and was similar with natural polyphenol from Epigallocatechin gallate (EGCG) (IC50 = 0.56 mg mL-1). These results indicated that the ethanol extract of Scytosiphon sp. contains a high concentration of polyphenol with high anti-allergic activity. Potentially Scytosiphon sp. can be developed to a natural anti-allergic compound for allergy remission.

  1. Histone deacetylase inhibitors: can we consider potent anti-neoplastic agents for the treatment of asthma?

    PubMed

    Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    Histone deacetylase inhibitors have emerged as a new class of anti-cancer therapeutics due to their potent anti-proliferative and apoptotic effects in malignant cells. Accumulating evidence is indicating that histone deacetylase inhibitors may also have potential clinical utility in non-oncological applications, including asthma. However, the potential of histone deacetylase inhibitors in asthma remains controversial. For example, the mechanisms of action of the broad-spectrum histone deacetylase inhibitor, Trichostatin A, in animal models of allergic airways disease are conflicting. Further, there is evidence suggesting potential problems associated with histone deacetylase 2 inhibition and conventional glucocorticosteroid therapy. Similarly, disparate findings are emerging following modulation of the class III, sirtuin 1 enzyme. Indeed, it is becoming apparent that the mechanism of action may not be related to histone deacetylase inhibition activity per se. Further, there is only limited evidence that these compounds possess anti-inflammatory effects in models of asthma. In this review, we provide an overview of the biology of the metal-dependent and sirtuin deacetylases in the context of asthma. The controversies surrounding the potential use of histone deacetylase inhibitors in asthma are discussed and future directions involving the investigation of more specific analogues are explored.

  2. Proton Pump Inhibitors Inhibit Metformin Uptake by Organic Cation Transporters (OCTs)

    PubMed Central

    Nies, Anne T.; Hofmann, Ute; Resch, Claudia; Schaeffeler, Elke; Rius, Maria; Schwab, Matthias

    2011-01-01

    Metformin, an oral insulin-sensitizing drug, is actively transported into cells by organic cation transporters (OCT) 1, 2, and 3 (encoded by SLC22A1, SLC22A2, or SLC22A3), which are tissue specifically expressed at significant levels in various organs such as liver, muscle, and kidney. Because metformin does not undergo hepatic metabolism, drug-drug interaction by inhibition of OCT transporters may be important. So far, comprehensive data on the interaction of proton pump inhibitors (PPIs) with OCTs are missing although PPIs are frequently used in metformin-treated patients. Using in silico modeling and computational analyses, we derived pharmacophore models indicating that PPIs (i.e. omeprazole, pantoprazole, lansoprazole, rabeprazole, and tenatoprazole) are potent OCT inhibitors. We then established stably transfected cell lines expressing the human uptake transporters OCT1, OCT2, or OCT3 and tested whether these PPIs inhibit OCT-mediated metformin uptake in vitro. All tested PPIs significantly inhibited metformin uptake by OCT1, OCT2, and OCT3 in a concentration-dependent manner. Half-maximal inhibitory concentration values (IC50) were in the low micromolar range (3–36 µM) and thereby in the range of IC50 values of other potent OCT drug inhibitors. Finally, we tested whether the PPIs are also transported by OCTs, but did not identify PPIs as OCT substrates. In conclusion, PPIs are potent inhibitors of the OCT-mediated metformin transport in vitro. Further studies are needed to elucidate the clinical relevance of this drug-drug interaction with potential consequences on metformin disposition and/or efficacy. PMID:21779389

  3. Modification of a promiscuous inhibitor shifts the inhibition from γ-secretase to FLT-3.

    PubMed

    Amombo, Ghislaine Marlyse Okala; Kramer, Thomas; Lo Monte, Fabio; Göring, Stefan; Fach, Matthias; Smith, Steven; Kolb, Stephanie; Schubenel, Robert; Baumann, Karlheinz; Schmidt, Boris

    2012-12-15

    The inhibition of FLT-3 activity is an interesting target for the treatment of acute myeloid leukemia (AML). The serendipitous identification of FLT-3 inhibitors from a CK1/γ-secretase programme provided compounds with dual inhibitory activity. We analyzed the structure-activity relationship of these inhibitors and derivatized them to arrive at compounds with reduced impact on γ-secretase activity and enhanced FLT-3 inhibition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Silibinin attenuates allergic airway inflammation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesismore » of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.« less

  5. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices.

    PubMed

    Kistemaker, Loes E M; Oenema, Tjitske A; Baarsma, Hoeke A; Bos, I Sophie T; Schmidt, Martina; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Gosens, Reinoud

    2017-09-01

    Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 μM) or TGF-β 1 (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-β release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-β 1 -induced remodeling, but rather, it inhibited methacholine-induced TGF-β release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-β release and bronchoconstriction. Copyright © 2017 the American Physiological Society.

  6. The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation

    PubMed Central

    Toki, Shinji; Goleniewska, Kasia; Reiss, Sara; Zhou, Weisong; Newcomb, Dawn C; Bloodworth, Melissa H; Stier, Matthew T; Boyd, Kelli L; Polosukhin, Vasiliy V; Subramaniam, Sriram; Peebles, R Stokes

    2016-01-01

    Background Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. Methods BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. Results We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). Conclusions These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen. PMID:27071418

  7. Inhibition of Sunn pest, Eurygaster integriceps, α-amylases by α-amylase inhibitors (T-αAI) from Triticale.

    PubMed

    Mehrabadi, Mohammad; Bandani, Ali R; Saadati, Fatemeh

    2010-01-01

    The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the K(m) remained constant (0.58%) but the maximum velocity (V(max)) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T(50)) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase.

  8. Inhibition of Sunn Pest, Eurygaster integriceps, α-Amylases by α-Amylase Inhibitors (T-αAI) from Triticale

    PubMed Central

    Mehrabadi, Mohammad; Bandani, Ali R.; Saadati, Fatemeh

    2010-01-01

    The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the Km remained constant (0.58%) but the maximum velocity (Vmax) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T50) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase. PMID:21062146

  9. Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients.

    PubMed

    Chacón, Pedro; Vega, Antonio; Monteseirín, Javier; El Bekay, Rajaa; Alba, Gonzalo; Pérez-Formoso, José Luis; Msartínez, Alberto; Asturias, Juan A; Pérez-Cano, Ramón; Sobrino, Francisco; Conde, José

    2005-08-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of COX-2 expression is responsible for increased PG release during inflammatory conditions and is thought to be also involved in allergic states. In this study, we demonstrate that in human T, B and natural killer lymphocytes from allergic patients, COX-2 expression became induced upon cell challenge with specific allergens and that this process is presumably IgE dependent and occurs after CD23 receptor ligation. This induction took place at both mRNA and protein levels and was accompanied by PGD2 release. IgE-dependent lymphocyte treatment elicited, in parallel, an activation of the MAPK p38 and extracellular signal-regulated kinase 1/2, an enhancement of calcineurin (CaN) activity, and an increase of the DNA-binding activity of the nuclear factor of activated T cells and of NF-kappaB, with a concomitant decrease in the levels of the cytosolic inhibitor of kappaB, IkappaB. In addition, specific chemical inhibitors of MAPK, such as PD098059 and SB203580, as well as MG-132, an inhibitor of proteasomal activity, abolished allergen-induced COX-2 up-regulation, suggesting that this process is mediated by MAPK and NF-kappaB. However, induction of COX-2 expression was not hampered by the CaN inhibitor cyclosporin A. We also examined the effect of a selective COX-2 inhibitor, NS-398, on cytokine production by human lymphocytes. Treatment with NS-398 severely diminished the IgE-dependently induced production of IL-8 and TNF-alpha. These results underscore the relevant role of lymphocyte COX-2 in allergy and suggest that COX-2 inhibitors may contribute to the improvement of allergic inflammation through the reduction of inflammatory mediator production by human lymphocytes.

  10. Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir.

    PubMed

    Toksoy, Atiye; Sennefelder, Helga; Adam, Christian; Hofmann, Sonja; Trautmann, Axel; Goebeler, Matthias; Schmidt, Marc

    2017-02-17

    There is experimental and clinical evidence that some exanthematous allergic drug hypersensitivity reactions are mediated by drug-specific T cells. We hypothesized that the capacity of certain drugs to directly stimulate the innate immune system may contribute to generate drug-specific T cells. Here we analyzed whether abacavir, an HIV-1 reverse transcriptase inhibitor often inducing severe delayed-type drug hypersensitivity, can trigger innate immune activation that may contribute to its allergic potential. We show that abacavir fails to generate direct innate immune activation in human monocytes but potently triggers IL-1β release upon pro-inflammatory priming with phorbol ester or Toll-like receptor stimulation. IL-1β processing and secretion were sensitive to Caspase-1 inhibition, NLRP3 knockdown, and K + efflux inhibition and were not observed with other non-allergenic nucleoside reverse transcriptase inhibitors, identifying abacavir as a specific inflammasome activator. It further correlated with dose-dependent mitochondrial reactive oxygen species production and cytotoxicity, indicating that inflammasome activation resulted from mitochondrial damage. However, both NLRP3 depletion and inhibition of K + efflux mitigated abacavir-induced mitochondrial reactive oxygen species production and cytotoxicity, suggesting that these processes were secondary to NLRP3 activation. Instead, depletion of cardiolipin synthase 1 abolished abacavir-induced IL-1β secretion, suggesting that mitochondrial cardiolipin release may trigger abacavir-induced inflammasome activation. Our data identify abacavir as a novel inflammasome-stimulating drug allergen. They implicate a potential contribution of innate immune activation to medication-induced delayed-type hypersensitivity, which may stimulate new concepts for treatment and prevention of drug allergies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. BTK inhibition is a potent approach to block IgE-mediated histamine release in human basophils.

    PubMed

    Smiljkovic, D; Blatt, K; Stefanzl, G; Dorofeeva, Y; Skrabs, C; Focke-Tejkl, M; Sperr, W R; Jaeger, U; Valenta, R; Valent, P

    2017-11-01

    Recent data suggest that Bruton's tyrosine kinase (BTK) is an emerging therapeutic target in IgE receptor (IgER)-cross-linked basophils. We examined the effects of four BTK inhibitors (ibrutinib, dasatinib, AVL-292, and CNX-774) on IgE-dependent activation and histamine release in blood basophils obtained from allergic patients (n=11) and nonallergic donors (n=5). In addition, we examined the effects of these drugs on the growth of the human basophil cell line KU812 and the human mast cell line HMC-1. All four BTK blockers were found to inhibit anti-IgE-induced histamine release from basophils in nonallergic subjects and allergen-induced histamine liberation from basophils in allergic donors. Drug effects on allergen-induced histamine release were dose dependent, with IC 50 values ranging between 0.001 and 0.5 μmol/L, and the following rank order of potency: ibrutinib>AVL-292>dasatinib>CNX-774. The basophil-targeting effect of ibrutinib was confirmed by demonstrating that IgE-dependent histamine release in ex vivo blood basophils is largely suppressed in a leukemia patient treated with ibrutinib. Dasatinib and ibrutinib were also found to counteract anti-IgE-induced and allergen-induced upregulation of CD13, CD63, CD164, and CD203c on basophils, whereas AVL-292 and CNX-774 showed no significant effects. Whereas dasatinib and CNX-774 were found to inhibit the growth of HMC-1 cells and KU812 cells, no substantial effects were seen with ibrutinib or AVL-292. BTK-targeting drugs are potent inhibitors of IgE-dependent histamine release in human basophils. The clinical value of BTK inhibition in the context of allergic diseases remains to be determined. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  12. Selective inhibition of influenza virus protein synthesis by inhibitors of DNA function. [UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minor, P.D.; Dimmock, N.J.

    1977-05-15

    Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and ..cap alpha..-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at highmore » concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent.« less

  13. Why Do SGLT2 inhibitors inhibit only 30-50% of renal glucose reabsorption in humans?

    PubMed

    Liu, Jiwen Jim; Lee, TaeWeon; DeFronzo, Ralph A

    2012-09-01

    Sodium glucose cotransporter 2 (SGLT2) inhibition is a novel and promising treatment for diabetes under late-stage clinical development. It generally is accepted that SGLT2 mediates 90% of renal glucose reabsorption. However, SGLT2 inhibitors in clinical development inhibit only 30-50% of the filtered glucose load. Why are they unable to inhibit 90% of glucose reabsorption in humans? We will try to provide an explanation to this puzzle in this perspective analysis of the unique pharmacokinetic and pharmacodynamic profiles of SGLT2 inhibitors in clinical trials and examine possible mechanisms and molecular properties that may be responsible.

  14. Antiallergic effects of ZCR-2060: effect on allergic cutaneous reactions and rhinitis models in mice and rats.

    PubMed

    Abe, T; Omata, T; Yoshida, K; Segawa, Y; Matsuda, K; Nagai, H

    1994-09-01

    The antiallergic action of 2-[2-[4-(diphenylmethyl)-1-piperadinyl] ethoxy] benzoic acid maleate (ZCR-2060) was investigated on allergic cutaneous reactions and nasal vascular permeability in mice and rats. ZCR-2060 markedly inhibited immediate allergic cutaneous reactions, including passive cutaneous anaphylaxis (PCA) in rats and mice; histamine-, compound 48/80- and calcium ionophore A 23187-induced cutaneous reactions in rats; and biphasic skin reactions mediated by monoclonal IgE antibody and epicutaneous challenge with antigen in mice, but did not affect 5-hydroxytryptamine-induced cutaneous reaction in rats. The antigen-induced nasal vascular permeability increase in actively and passively sensitized rats and histamine-induced nasal vascular permeability increase in rats (allergic rhinitis model) were clearly inhibited in a dose-dependent fashion by ZCR-2060. Moreover, ZCR-2060 significantly inhibited antigen-induced anaphylactic histamine release from rat peritoneal mast cells and carrageenin-induced paw edema in rats. These results suggest that ZCR-2060 has antiallergic effects on allergic cutaneous reactions and experimental rhinitis, probably due to histamine H1-receptor blockage and the inhibition of histamine release.

  15. Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plant-pathogenic fungi.

    PubMed

    Kumar Tripathy, Manas; Weeraratne, Gayani; Clark, Greg; Roux, Stanley J

    2017-09-01

    A previous study has demonstrated that the treatment of Arabidopsis plants with chemical inhibitors of apyrase enzymes increases their sensitivity to herbicides. In this study, we found that the addition of the same or related apyrase inhibitors could potentiate the ability of different fungicides to inhibit the growth of five different pathogenic fungi in plate growth assays. The growth of all five fungi was partially inhibited by three commonly used fungicides: copper octanoate, myclobutanil and propiconazole. However, when these fungicides were individually tested in combination with any one of four different apyrase inhibitors (AI.1, AI.10, AI.13 or AI.15), their potency to inhibit the growth of five fungal pathogens was increased significantly relative to their application alone. The apyrase inhibitors were most effective in potentiating the ability of copper octanoate to inhibit fungal growth, and least effective in combination with propiconazole. Among the five pathogens assayed, that most sensitive to the fungicide-potentiating effects of the inhibitors was Sclerotinia sclerotiorum. Overall, among the 60 treatment combinations tested (five pathogens, four apyrase inhibitors, three fungicides), the addition of apyrase inhibitors increased significantly the sensitivity of fungi to the fungicide treatments in 53 of the combinations. Consistent with their predicted mode of action, inhibitors AI.1, AI.10 and AI.13 each increased the level of propiconazole retained in one of the fungi, suggesting that they could partially block the ability of efflux transporters to remove propiconazole from these fungi. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  16. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  17. Polymorphism 4G/5G of the plasminogen activator inhibitor 1 gene as a risk factor for the development of allergic rhinitis symptoms in patients with asthma.

    PubMed

    Lampalo, Marina; Jukic, Irena; Bingulac-Popovic, Jasna; Marunica, Ivona; Petlevski, Roberta; Pavlisa, Gordana; Popovic-Grle, Sanja

    2017-06-01

    Plasminogen activator inhibitor-1 (PAI-1) is a glycoprotein which has a role in tissue remodelling after inflammatory processes. The objective is to investigate the frequency of PAI-1 gene polymorphism (4G/5G) in patients with a lung ventilation dysfunction in asthma and allergic rhinitis. Genomic DNA was isolated and genotypes of polymorphism of PAI-1 4G/5G and ABO were determined using the methods of RT-PCR and PCR-SSP. Study group includes 145 adult patients diagnosed with chronic asthma, with all clinically relevant parameters and the laboratory markers of pO 2 , IgE and eosinophils in sputum and nasal swab. In the processing of data, appropriate statistical tests (Kolmogorov-Smirnov test, median, interquartile ranges, χ 2 and Mann-Whitney U tests) were used. Patients with symptoms of allergic rhinitis were significantly younger and had an almost four time higher levels of IgE (P = 0.001), higher pO 2 (P = 0.002) and PEF (P = 0.036), compared to those who do not have these symptoms. Genotype PAI 4G/4G is significantly more common in patients with allergic rhinitis (28.1% vs. 16.1%; P = 0.017) compared to the genotype 5G/5G. Carriers of the genotype 4G/5G also have a borderline statistical significance. There were no statistically significant difference in the incidence of allergic rhinitis in the carriers of any ABO genotypes. The frequency of PAI genotype 4G/4G is significantly more common in patients with allergic rhinitis. The results suggest that the carriers of at least one 4G allele are at a higher risk for developing symptoms of allergic rhinitis in asthma.

  18. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Yunju; Lee, Soyoung; Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr

    A great number of people are suffering from allergic inflammatory diseases such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid contained in propolis, blue passion flower, and fruits. Several studies reported that chrysin has beneficial effects including anti-tumor and anti-oxidant activities. The aim of the present study was to elucidate whether chrysin modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. Chrysin inhibited immediate-type systemic hypersensitivitymore » and serum histamine release. Chrysin attenuated immunoglobulin E-mediated local anaphylaxis. These inhibitory effects of chrysin on the systemic and local allergic reaction were more potent than cromolyn, a known anti-allergic drug. Chrysin reduced histamine release from mast cells. The inhibitory effect of chrysin on the histamine release was mediated by the modulation of intracellular calcium. In addition, chrysin decreased gene expression of pro-inflammatory cytokines such as, tumor necrosis factor-{alpha}, IL (interleukin)-1{beta}, IL-4, and IL-6 in mast cells. The inhibitory effect of chrysin on the pro-inflammatory cytokine was nuclear factor-{kappa}B and caspase-1 dependent. Our findings provide evidence that chrysin inhibits mast cell-derived allergic inflammatory reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic inflammatory effect of chrysin suggests a possible therapeutic application of this agent in allergic inflammatory diseases. - Research Highlights: > Discovery of drugs for the allergic inflammation is important in human health. > Chrysin is a natural flavonoid contained in propolis, blue passion flower, and fruits

  19. Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease

    PubMed Central

    Siddesha, Jalahalli M.; Nakada, Emily M.; Mihavics, Bethany R.; Hoffman, Sidra M.; Rattu, Gurkiranjit K.; Chamberlain, Nicolas; Cahoon, Jonathon M.; Lahue, Karolyn G.; Daphtary, Nirav; Aliyeva, Minara; Chapman, David G.; Desai, Dhimant H.; Poynter, Matthew E.

    2016-01-01

    Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases. PMID:27154200

  20. Allergenicity of casein containing chalk in milk allergic schoolchildren.

    PubMed

    Larramendi, Carlos H; Marco, Francisco M; Llombart, Mónica; de la Vega, Ana; Chiner, Eusebi; García-Abujeta, José Luis; Sempere, José Miguel

    2013-05-01

    Nondietary exposure to milk proteins may be a risk for children who do not outgrow milk allergy by school age. To study the allergenicity of casein containing chalk. A 6-year-old, milk allergic child developed asthma and rhinoconjunctivitis while in school. The suspected cause was dust-free chalk containing casein. To study the relationship of dust-free chalk containing casein with asthma and rhinoconjunctivitis, 13 additional milk allergic patients were studied: 3 school-aged children, 8 preschool-aged infants, and 2 children with outgrown milk allergy. Skin tests and/or specific IgE with chalk and casein were performed. A chalk use test was performed in older children. Milk allergens contained in chalk were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblot, and IgE inhibition experiments. All school-aged, milk allergic children were exposed to chalk and reported symptoms attributed to chalk exposure. The skin test result to chalk was positive in 5 of 12 cases, and the specific IgE test result was positive in all 12 study participants in which it was performed. Casein strongly inhibited the binding of IgE to chalk. Chalk sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed proteins with molecular weight similar to caseins. Immunoblot demonstrated strong binding of IgE to chalk in a blurred pattern and a band at 30 kDa, inhibited by casein. The chalk challenge test result was positive in 2 school-age children who had a positive skin test result to chalk. Their symptoms improved after avoidance of chalk in the school. In 2 other cases in which the challenge test result was negative, chalk was reintroduced without problems. Inhalation of chalk dust containing casein can induce asthma symptoms in milk allergic patients. Hidden and nondietary sources of exposure should always be considered in food allergic patients. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights

  1. Exercise with latex sport bands represents a risk for latex allergic patients.

    PubMed

    Untersmayr, Eva; Lukschal, Anna; Hemmer, Wolfgang; Harwanegg, Christian; Breiteneder, Heimo; Jarisch, Reinhard; Scheiner, Otto; Jensen-Jarolim, Erika

    2008-01-29

    Based on two clinical observations of adverse reactions during exercise with latex sport bands, we aimed to assess the possible risk for allergic patients posed by this equipment by investigating allergen content and IgE binding potential. Protein extracts of three different latex sport bands were characterized with sera of latex allergic patients. The IgE recognition profile of the allergic patients was identified by component resolved diagnosis and the allergen composition of the extracts was characterized by inhibition assays with the recombinant latex allergens Hev b 1, 3, 5, 6.02, and 8. The sera showed pronounced IgE binding to all three blotted extracts, however with diverse patterns. Inhibition assays revealed the presence of Hev b 1, 3, 5, and 8 in latex sport band extracts. The clinical relevance of contained allergens was demonstrated by strong skin reactions when testing with latex sport bands. From our results we conclude that latex sport bands contain clinically relevant allergens and may cause latex allergic individuals to experience allergic symptoms, potentially amplified by exercise-induced mechanisms. Even though latex is labeled on products, it is important that patients as well as athletic trainers and physical therapists recognize the risk of adverse reactions with these bands.

  2. Coumarins from the roots of Angelica dahurica cause anti-allergic inflammation

    PubMed Central

    Li, Dong; Wu, Li

    2017-01-01

    Allergic inflammation is induced by allergens and leads to various allergic diseases, including rhinitis, asthma and conjunctivitis. Histamine is important in the pathogenesis of an immunoglobulin E-dependent allergic reaction and results in the secretion of cytokines associated with inflammation. Angelica dahurica (A. dahurica) is a medicinal plant widely used in China for the treatment of symptoms related to allergic inflammation. The present study investigated the chemical constituents from A. dahurica and evaluated their reductive effect on allergic inflammation. As a result, 15 compounds including 13 coumarins have been identified as isoimperatorin (1), imperatorin (2), oxypeucedanin (3), oxypeucedanin hydrate (4), bergapten (5), byakangelicin (6), phellopterin (7), byakangelicol (8), isopimpinellin (9), xanthotoxol (10), xanthotoxin (11), pimpinellin (12), scopoletin (13), β-sitosterol (14) and daucosterol (15). Compounds 1–13 were able to reduce the release of histamine, with compounds 4–6 exhibiting the most potent activity. Furthermore, compounds 1–12 were able to inhibit the secretion of tumor necrosis factor-α, interleukin (IL)-1β and IL-4, with compounds 5 and 7 exhibiting the strongest inhibitory effects. These compounds implemented the inhibitory effects on the expression of inflammatory cytokine genes through the inhibition of nuclear factor-κB activation. Virtual screening by a docking program indicated that compound 3 is a potent histamine H1 receptor antagonist. Additionally, the calculated physicochemical properties of these compounds support most furanocoumarins to be delivered to binding sites and permeate the cell membrane. The present findings contribute to understanding how A. dahurica attenuates allergic inflammation. PMID:28673013

  3. Effect of Gamiseunggal-Tang on immediate type allergic reaction in mice.

    PubMed

    Jeong, Hyun-Ja; Moon, Phil-Dong; Um, Jae-Young; Park, Jinhan; Leem, Kang-Hyun; Kim, Chang-Ju; Kim, Hyung-Min; Hong, Seung-Heon

    2007-04-01

    The herbal formulation, Gamiseunggal-Tang (G-Tang) has long been used for various allergic diseases. The mechanism of its action is largely unknown. We carried out this study to determine the effect of G-Tang on the mast cell-mediated anaphylactic reactions in vivo and in vitro murine models. In this study, the effects of G-Tang on the mast cell-mediated anaphylactic reactions were examined by using the ear swelling, histamine assay, and ELISA method in murine model. Anal administration of G-Tang showed dose-dependent inhibitory activity on the compound 48/80-induced ear swelling response (P<0.05) and histamine release (P<0.01). G-Tang (0.001-0.1 g/kg) significantly inhibited passive cutaneous anaphylaxis (P<0.05) in mice. The production of tumour necrosis factor-alpha (TNF-alpha) was also significantly inhibited (about 47.4%, at 0.1 mg/ml, P<0.01) by treatment of G-tang in anti-dinitrophenyl IgE antibodystimulated mast cells. Findings of our study showed that G-Tang inhibited immediate type allergic reaction in a murine model and may be beneficial in the treatment of allergic inflammatory diseases.

  4. Hyperoside attenuates OVA-induced allergic airway inflammation by activating Nrf2.

    PubMed

    Ye, Peng; Yang, Xi-Liang; Chen, Xing; Shi, Cai

    2017-03-01

    Allergic airways disease (AAD) is one of the most common medical illnesses that is associated with an increased allergic airway inflammation. Hyperoside, an active compound isolated from Rhododendron brachycarpum G. Don, has been reported to have anti-inflammatory effect. The aim of this study was to analyze the protective effect of hyperoside on OVA-induced allergic airway inflammation in mice. In the present study, the mouse asthma model was induced by given OVA and hyperoside was administrated 1h before OVA challenge. The levels of IL-4, IL-5, IL-13, and IgE were detected by ELISA. H&E staining was used to assess lung histopathological changes. The expression of NF-κB p65, IκB, HO-1, and Nf-E2 related factor 2 (Nrf2) were measured by western blot analysis. The results showed that hyperoside significantly reduced the inflammatory cells infiltration and the levels of IL-4, IL-5, IL-13, and IgE. Hyperoside significantly inhibited OVA-induced oxidative stress as demonstrated by decreased MDA, and increased GSH and SOD levels. Treatment of hyperoside also inhibited OVA-induced airway hyperresponsiveness (AHR). Furthermore, the results showed that treatment of hyperoside significantly inhibited LPS-induced NF-κB activation. In addition, hyperoside was found to activate Nrf2/HO-1 signaling pathway. In conclusion, these results suggest that hyperoside ameliorates OVA-induced allergic airway inflammation by activating Nrf2 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination.

    PubMed

    Nakatsuka, Erika; Sawada, Kenjiro; Nakamura, Koji; Yoshimura, Akihito; Kinose, Yasuto; Kodama, Michiko; Hashimoto, Kae; Mabuchi, Seiji; Makino, Hiroshi; Morii, Eiichi; Yamaguchi, Yoichi; Yanase, Takeshi; Itai, Akiko; Morishige, Ken-Ichirou; Kimura, Tadashi

    2017-10-27

    In the present study, the therapeutic potential of targeting plasminogen activator inhibitor-1 (PAI-1) in ovarian cancer was tested. Tissues samples from 154 cases of ovarian carcinoma were immunostained with anti-PAI-1 antibody, and the prognostic value was analyzed. Among the samples, 67% (104/154) showed strong PAI-1 expression; this was significantly associated with poor prognosis (progression-free survival: 20 vs. 31 months, P = 0.0033). In particular, among patients with stage II-IV serous adenocarcinoma, PAI-1 expression was an independent prognostic factor. The effect of a novel PAI-1 inhibitor, IMD-4482, on ovarian cancer cell lines was assessed and its therapeutic potential was examined using a xenograft mouse model of ovarian cancer. IMD-4482 inhibited in vitro cell adhesion to vitronectin in PAI-1-positive ovarian cancer cells, followed by the inhibition of extracellular signal-regulated kinase and focal adhesion kinase phosphorylation through dissociation of the PAI-urokinase receptor complex from integrin αVβ3. IMD-4482 caused G0/G1 cell arrest and inhibited the proliferation of PAI-1-positive ovarian cancer cells. In the xenograft model, IMD-4482 significantly inhibited peritoneal dissemination with the reduction of PAI-1 expression and the inhibition of focal adhesion kinase phosphorylation. Collectively, the functional inhibition of PAI-1 significantly inhibited ovarian cancer progression, and targeting PAI-1 may be a potential therapeutic strategy in ovarian cancer.

  6. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab.

    PubMed

    Perez-Soler, Roman; Zou, Yiyu; Li, Tianhong; Ling, Yi He

    2011-11-01

    Skin toxicity is the main side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Menadione (Vitamin K3) was used as the prototype compound to test our hypothesis. HaCat human skin keratinocyte cells and A431 human squamous carcinoma cells were used. EGFR inhibition was measured by Western blotting and immunofluorescence. Phosphatase inhibition and reactive oxygen species (ROS) generation were measured by standard ELISA and fluorescence assays. Menadione caused significant and reversible EGFR activation in a dose-dependent manner starting at nontoxic concentrations. EGFR activation by menadione was associated with reversible protein tyrosine phosphatase inhibition, which seemed to be mediated by ROS generation as exposure to antioxidants prevented both menadione-induced ROS generation and phosphatase inhibition. Short-term coincubation of cells with nontoxic concentrations of menadione and the EGFR inhibitors erlotinib or cetuximab prevented EGFR dephosphorylation. Seventy-two-hour coincubation of cells with the highest nontoxic concentration of menadione and erlotinib provided for a fourfold cell growth inhibitory protection in HaCat human keratinocyte cells. Menadione at nontoxic concentrations causes EGFR activation and prevents EGFR dephosphorylation by erlotinib and cetuximab. This effect seems to be mediated by ROS generation and secondary phosphatase inhibition. Mild oxidative stress in skin keratinocytes by topical menadione may protect the skin from the toxicity secondary to EGFR inhibitors without causing cytotoxicity. ©2011 AACR

  7. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    PubMed

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  8. Inhibition of oncogene-induced inflammatory chemokines using a farnesyltransferase inhibitor

    PubMed Central

    DeGeorge, Katharine C; DeGeorge, Brent R; Testa, James S; Rothstein, Jay L

    2008-01-01

    Background Farnesyltransferase inhibitors (FTI) are small molecule agents originally formulated to inhibit the oncogenic functions of Ras. Although subsequent analysis of FTI activity revealed wider effects on other pathways, the drug has been demonstrated to reduce Ras signaling by direct measurements. The purpose of the current study was to determine if FTI could be used to inhibit the inflammatory activities of a known Ras-activating human oncoprotein, RET/PTC3. RET/PTC3 is a fusion oncoprotein expressed in the thyroid epithelium of patients afflicted with thyroid autoimmune disease and/or differentiated thyroid carcinoma. Previous studies have demonstrated that RET/PTC3 signals through Ras and can provoke nuclear translocation of NFκB and the downstream release of pro-inflammatory mediators from thyroid follicular cells in vitro and in vivo, making it an ideal target for studies using FTI. Methods For the studies described here, an in vitro assay was developed to measure FTI inhibition of RET/PTC3 pro-inflammatory effects. Rat thyrocytes transfected with RET/PTC3 or vector control cDNA were co-cultured with FTI and examined for inhibition of chemokine expression and secretion measured by RT-PCR and ELISA. Immunoblot analysis was used to confirm the level at which FTI acts on RET/PTC3-expressing cells, and Annexin V/PI staining of cells was used to assess cell death in RET/PTC3-expressing cells co-cultured with FTI. Results These analyses revealed significant mRNA and protein inhibition of chemokines Ccl2 and Cxcl1 with nanomolar doses of FTI. Neither RET/PTC3 protein expression nor apoptosis were affected at any dose of FTI investigated. Conclusion These data suggest that FTI may be applied as an effective inhibitor for RET/PTC3-oncogene induced pro-inflammatory mediators. PMID:18304343

  9. Why Do SGLT2 Inhibitors Inhibit Only 30–50% of Renal Glucose Reabsorption in Humans?

    PubMed Central

    Liu, Jiwen (Jim); Lee, TaeWeon; DeFronzo, Ralph A.

    2012-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibition is a novel and promising treatment for diabetes under late-stage clinical development. It generally is accepted that SGLT2 mediates 90% of renal glucose reabsorption. However, SGLT2 inhibitors in clinical development inhibit only 30–50% of the filtered glucose load. Why are they unable to inhibit 90% of glucose reabsorption in humans? We will try to provide an explanation to this puzzle in this perspective analysis of the unique pharmacokinetic and pharmacodynamic profiles of SGLT2 inhibitors in clinical trials and examine possible mechanisms and molecular properties that may be responsible. PMID:22923645

  10. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zirong; Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610; Jin, Guorong

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer CDA-II inhibits myogenic differentiation in a dose-dependent manner. Black-Right-Pointing-Pointer CDA-II repressed expression of muscle transcription factors and structural proteins. Black-Right-Pointing-Pointer CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiationmore » of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.« less

  11. Allergic rhinitis

    MedlinePlus

    ... allergic to, such as dust, animal dander, or pollen. Symptoms can also occur when you eat a ... article focuses on allergic rhinitis due to plant pollens. This type of allergic rhinitis is commonly called ...

  12. Short-term exposure of platelets to glucose impairs inhibition of platelet aggregation by cyclooxygenase inhibitors.

    PubMed

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2011-01-01

    Aspirin treatment reduces cardiovascular events and deaths in high-risk non-diabetic patients, but not in patients suffering from diabetes. In these patients, hyperglycemia has been found to cause reduced platelet sensitivity to aspirin. It is supposed that long-term exposure of platelets to glucose leads to non-enzymatic glycosylation and impairs aspirin inhibition of platelet aggregation. On the other hand, short-term exposure of platelets to glucose also attenuates the effect of aspirin on platelets. The aim of the present work was to analyse the effect of short-term exposure of glucose on the inhibition of platelet aggregation by aspirin and other cyclooxygenase (COX) inhibitors. Already a 15 min exposure of platelets to glucose impaired aspirin inhibition of the platelet aggregation induced by collagen, thrombin, adenosine diphosphate (ADP), and arachidonic acid (AA). Aspirin inhibition of platelet aggregation in platelet-rich plasma (PRP) was attenuated by 5.6, 11.2, 16.8, and 22.4 mM of glucose in a concentration-dependent way. The same effect was observed with indomethacin and acetaminophen used as cyclooxygenase inhibitors instead of aspirin. N-methyl-L-arginine, an inhibitor of nitric oxide synthase, prevented the effect of glucose on aspirin, indomethacin and acetaminophen inhibition of platelet aggregation. Other monosaccharides, for example fructose and galactose, impaired aspirin inhibition as did glucose. Lactic acid (0.1, 0.2, 0.4, 0.8 mM), the end product of anaerobic glycolysis in platelets, impaired the inhibition of platelet aggregation with aspirin in a concentration-dependent way but did not affect indomethacin. It is suggested that lactic acid might be a mediator of the effect of glucose on aspirin inhibition in platelets.

  13. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  14. Angiotensin-converting enzyme inhibition studies by natural leech inhibitors by capillary electrophoresis and competition assay.

    PubMed

    Deloffre, Laurence; Sautiere, Pierre-Eric; Huybrechts, Roger; Hens, Korneel; Vieau, Didier; Salzet, Michel

    2004-06-01

    A protocol to follow the processing of angiotensin I into angiotensin II by rabbit angiotensin-converting enzyme (ACE) and its inhibition by a novel natural antagonist, the leech osmoregulator factor (LORF) using capillary zonal electrophoresis is described. The experiment was carried out using the Beckman PACE system and steps were taken to determine (a) the migration profiles of angiotensin and its yielded peptides, (b) the minimal amount of angiotensin II detected, (c) the use of different electrolytes and (d) the concentration of inhibitor. We demonstrated that LORF (IPEPYVWD), a neuropeptide previously found in leech brain, is able to inhibit rabbit ACE with an IC(50) of 19.8 micro m. Interestingly, its cleavage product, IPEP exhibits an IC(50) of 11.5 micro m. A competition assay using p-benzoylglycylglycylglycine and insect ACE established that LORF and IPEP fragments are natural inhibitors for invertebrate ACE. Fifty-four percent of insect ACE activity is inhibited with 50 micro m IPEP and 35% inhibition with LORF (25 mm). Extending the peptide at both N- and C-terminus (GWEIPEPYVWDES) and the cleavage of IPEP in IP abolished the inhibitory activity of both peptides. Immunocytochemical data obtained with antisera raised against LORF and leech ACE showed a colocalization between the enzyme and its inhibitor in the same neurons. These results showed that capillary zonal electrophoresis is a useful technique for following enzymatic processes with small amounts of products and constitutes the first evidence of a natural ACE inhibitor in invertebrates.

  15. Acute Mitochondrial Inhibition by Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK) 1/2 Inhibitors Regulates Proliferation*

    PubMed Central

    Ripple, Maureen O.; Kim, Namjoon; Springett, Roger

    2013-01-01

    The Ras-MEK1/2-ERK1/2 kinase signaling pathway regulates proliferation, survival, and differentiation and, because it is often aberrant in tumors, is a popular target for small molecule inhibition. A novel metabolic analysis that measures the real-time oxidation state of NAD(H) and the hemes of the electron transport chain and oxygen consumption within intact, living cells found that structurally distinct MEK1/2 inhibitors had an immediate, dose-dependent effect on mitochondrial metabolism. The inhibitors U0126, MIIC and PD98059 caused NAD(H) reduction, heme oxidation, and decreased oxygen consumption, characteristic of complex I inhibition. PD198306, an orally active MEK1/2 inhibitor, acted as an uncoupler. Each MEK1/2 inhibitor depleted phosphorylated ERK1/2 and inhibited proliferation, but the most robust antiproliferative effects always correlated with the metabolic failure which followed mitochondrial inhibition rather than inhibition of MEK1/2. This warrants rethinking the role of ERK1/2 in proliferation and emphasizes the importance of mitochondrial function in this process. PMID:23235157

  16. Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Tae-Yong; Kim, Sang-Hyun; Suk, Kyoungho

    2005-12-15

    The current study characterizes the mechanism by which the aqueous extract of Lycopus lucidus Turcz. (Labiatae) (LAE) decreases mast cell-mediated immediate-type allergic reaction. The immediate-type allergic reaction is involved in many allergic diseases such as asthma and allergic rhinitis. LAE has been used as a traditional medicine in Korea and is known to have an anti-inflammatory effect. However, its specific mechanism of action is still unknown. LAE was anally administered to mice for high and fast absorption. LAE inhibited compound 48/80-induced systemic reactions in mice. LAE decreased the local allergic reaction, passive cutaneous anaphylaxis, activated by anti-dinitrophenyl (DNP) IgE antibody.more » LAE dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Furthermore, LAE decreased the secretion of TNF-{alpha} and IL-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cells. The inhibitory effect of LAE on the pro-inflammatory cytokine was p38 mitogen-activated protein kinase (MAPK) and nuclear factor-{kappa}B (NF-{kappa}B) dependent. LAE attenuated PMA plus A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B, and specifically blocked activation of p38 MAPK, but not that of c-jun N-terminal kinase and extracellular signal-regulated kinase. Our findings provide evidence that LAE inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines, p38 MAPK, and NF-{kappa}B in these effects.« less

  17. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    PubMed

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  18. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination

    PubMed Central

    Nakatsuka, Erika; Sawada, Kenjiro; Nakamura, Koji; Yoshimura, Akihito; Kinose, Yasuto; Kodama, Michiko; Hashimoto, Kae; Mabuchi, Seiji; Makino, Hiroshi; Morii, Eiichi; Yamaguchi, Yoichi; Yanase, Takeshi; Itai, Akiko; Morishige, Ken-ichirou; Kimura, Tadashi

    2017-01-01

    In the present study, the therapeutic potential of targeting plasminogen activator inhibitor-1 (PAI-1) in ovarian cancer was tested. Tissues samples from 154 cases of ovarian carcinoma were immunostained with anti-PAI-1 antibody, and the prognostic value was analyzed. Among the samples, 67% (104/154) showed strong PAI-1 expression; this was significantly associated with poor prognosis (progression-free survival: 20 vs. 31 months, P = 0.0033). In particular, among patients with stage II-IV serous adenocarcinoma, PAI-1 expression was an independent prognostic factor. The effect of a novel PAI-1 inhibitor, IMD-4482, on ovarian cancer cell lines was assessed and its therapeutic potential was examined using a xenograft mouse model of ovarian cancer. IMD-4482 inhibited in vitro cell adhesion to vitronectin in PAI-1-positive ovarian cancer cells, followed by the inhibition of extracellular signal-regulated kinase and focal adhesion kinase phosphorylation through dissociation of the PAI-urokinase receptor complex from integrin αVβ3. IMD-4482 caused G0/G1 cell arrest and inhibited the proliferation of PAI-1-positive ovarian cancer cells. In the xenograft model, IMD-4482 significantly inhibited peritoneal dissemination with the reduction of PAI-1 expression and the inhibition of focal adhesion kinase phosphorylation. Collectively, the functional inhibition of PAI-1 significantly inhibited ovarian cancer progression, and targeting PAI-1 may be a potential therapeutic strategy in ovarian cancer. PMID:29163796

  19. Soybean-derived Bowman-Birk Inhibitor (BBI) Inhibits HIV Replication in Macrophages.

    PubMed

    Ma, Tong-Cui; Zhou, Run-Hong; Wang, Xu; Li, Jie-Liang; Sang, Ming; Zhou, Li; Zhuang, Ke; Hou, Wei; Guo, De-Yin; Ho, Wen-Zhe

    2016-10-13

    The Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, is known to have anti-inflammatory effect in both in vitro and in vivo systems. Macrophages play a key role in inflammation and immune activation, which is implicated in HIV disease progression. Here, we investigated the effect of BBI on HIV infection of peripheral blood monocyte-derived macrophages. We demonstrated that BBI could potently inhibit HIV replication in macrophages without cytotoxicity. Investigation of the mechanism(s) of BBI action on HIV showed that BBI induced the expression of IFN-β and multiple IFN stimulated genes (ISGs), including Myxovirus resistance protein 2 (Mx2), 2',5'-oligoadenylate synthetase (OAS-1), Virus inhibitory protein (viperin), ISG15 and ISG56. BBI treatment of macrophages also increased the expression of several known HIV restriction factors, including APOBEC3F, APOBEC3G and tetherin. Furthermore, BBI enhanced the phosphorylation of IRF3, a key regulator of IFN-β. The inhibition of IFN-β pathway by the neutralization antibody to type I IFN receptor (Anti-IFNAR) abolished BBI-mediated induction of the anti-HIV factors and inhibition of HIV in macrophages. These findings that BBI could activate IFN-β-mediated signaling pathway, initialize the intracellular innate immunity in macrophages and potently inhibit HIV at multiple steps of viral replication cycle indicate the necessity to further investigate BBI as an alternative and cost-effective anti-HIV natural product.

  20. Cephalosporin and penicillin cross-reactivity in patients allergic to penicillins.

    PubMed

    Liu, X-D; Gao, N; Qiao, H-L

    2011-03-01

    Bata-lactam antibiotics are the most commonly used antibiotics which usually cause serious IgE-mediated allergic reactions. Of all bata-lactam antibiotics, penicillins have so far been the best-studied, but the studies of cephalosporins and their cross-reactivity with penicillins are rare. We sought to evaluate the IgE response in vitro and estimate cross-reactivity between penicillins and cephalosporins in patients allergic to penicillins. We studied 87 control subjects and 420 subjects allergic to penicillins. Radioallergosorbent test (RAST) was performed to detect eight types of specific-penicillin IgE and eleven types of specific-cephalosporin IgE. The cross-reactivity and different molecules recognition by IgE were studied with a radioallergosorbent inhibition test. Of 420 patients allergic to penicillins, 95 patients (22.62%) showed specific-cephalosporin IgE positive, 73 patients (17.38%) showed IgEs positive to both penicillins and cephalosporins. In specific-penicillin IgE positive group, the positive rate of specific-cephalosporin IgE was significantly higher than in specific-penicillin IgE negative group (27.14% vs. 14.57%, p < 0.01). In urticaria group, the positive rate of specific-cephalosporin IgE was significantly higher than in other symptoms group (30.65% vs. 8.11%, p < 0.05). The analysis of drugs which have the same or similar side-chains showed that benzylpenicillanyl-IgE (BPA-IgE), ampicillanyl-IgE (APA-IgE), amoxicillanyl-IgE (AXA-IgE) were respectively related to cephalothanyl-IgE (CLA-IgE), cephalexanyl-IgE (CEXA-IgE), cephalexanyl-IgE (CEXA-IgE)in sera of penicillin-allergic patients we studied, and compared with patients who had negative amoxicillin-IgE, the positive rates of specific-ampicillin IgE and specific-cephalexin IgE were significantly higher in patients who had positive amoxicillin-IgE (14.43% vs. 3.72%, 14.00% vs. 2.96%, p < 0.01). Radioallergosorbent test and radioallergosorbent inhibition test confirmed that both nuclear

  1. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples weremore » obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic

  2. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3.

    PubMed

    Chanalaris, Anastasios; Doherty, Christine; Marsden, Brian D; Bambridge, Gabriel; Wren, Stephen P; Nagase, Hideaki; Troeberg, Linda

    2017-10-01

    Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C 51 H 40 N 6 O 23 S 6 ) bound to TIMP-3 with a K D value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonyl bis (imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)] bis -1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis. Copyright © 2017 by The Author(s).

  3. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibition of hsp90.

    PubMed

    Burlison, Joseph A; Neckers, Len; Smith, Andrew B; Maxwell, Anthony; Blagg, Brian S J

    2006-12-06

    Novobiocin is a member of the coumermycin family of antibiotics and is a well-established inhibitor of DNA gyrase. Recent studies have shown that novobiocin binds to a previously unrecognized ATP-binding site at the C-terminus of Hsp90 and induces degradation of Hsp90-dependent client proteins at approximately 700 microM. In an effort to develop more efficacious inhibitors of the C-terminal binding site, a library of novobiocin analogues was prepared and initial structure-activity relationships revealed. These data suggested that the 4-hydroxy moiety of the coumarin ring and the 3'-carbamate of the noviose appendage were detrimental to Hsp90 inhibitory activity. In an effort to confirm these findings, 4-deshydroxy novobiocin (DHN1) and 3'-descarbamoyl-4-deshydroxynovobiocin (DHN2) were prepared and evaluated against Hsp90. Both compounds were significantly more potent than the natural product, and DHN2 proved to be more active than DHN1. In an effort to determine whether these moieties are important for DNA gyrase inhibition, these compounds were tested for their ability to inhibit DNA gyrase and found to exhibit significant reduction in gyrase activity. Thus, we have established the first set of compounds that clearly differentiate between the C-terminus of Hsp90 and DNA gyrase, converted a well-established gyrase inhibitor into a selective Hsp90 inhibitor, and confirmed essential structure-activity relationships for the coumermycin family of antibiotics.

  5. A genetically engineered human Kunitz protease inhibitor with increased kallikrein inhibition in an ovine model of cardiopulmonary bypass.

    PubMed

    Ohri, S K; Parratt, R; White, T; Becket, J; Brannan, J J; Hunt, B J; Taylor, K M

    2001-05-01

    A recombinant human serine protease inhibitor known as Kunitz protease inhibitor (KPI) wild type has functional similarities to the bovine Kunitz inhibitor, aprotinin, and had shown a potential to reduce bleeding in an ovine model of cardiopulmonary bypass (CPB). The aim of this study was to assess KPI-185, a modification of KPI-wild type that differs from KPI-wild type in two amino acid residues and which enhances anti-kallikrein activity in a further double-blind, randomized study in an ovine model of CPB, and to compare with our previous study of KPI-wild type and aprotinin in the same ovine model. Post-operative drain losses and subjective assessment of wound 'dryness' showed no significant differences between KPI-185 and KPI-wild type, despite the significant enhancement of kallikrein inhibition using KPI-185 seen in serial kallikrein inhibition assays. These preliminary findings support the hypothesis that kallikrein inhibition is not the major mechanism by which Kunitz inhibitors such as aprotinin reduce perioperative bleeding.

  6. Inhibition of Growth by Combined Treatment with Inhibitors of Lactate Dehydrogenase and either Phenformin or Inhibitors of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 3.

    PubMed

    Lea, Michael A; Guzman, Yolanda; Desbordes, Charles

    2016-04-01

    Enhanced glycolysis in cancer cells presents a target for chemotherapy. Previous studies have indicated that proliferation of cancer cells can be inhibited by treatment with phenformin and with an inhibitor of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB) namely 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). In the present work, the action of two inhibitors that are effective at lower concentrations than 3PO, namely 1-(3-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PQP) and 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) were investigated. The inhibitors of lactate dehydrogenase (LDHA) studied in order of half-maximal inhibitory concentrations were methyl 1-hydroxy-6-phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (NHI-2) < isosafrole < oxamate. In colonic and bladder cancer cells, additive growth inhibitory effects were seen with the LDHA inhibitors, of which NHI-2 was effective at the lowest concentrations. Growth inhibition was generally greater with PFK15 than with PQP. The increased acidification of the culture medium and glucose uptake caused by phenformin was blocked by combined treatment with PFKFB3 or LDHA inhibitors. The results suggest that combined treatment with phenformin and inhibitors of glycolysis can cause additive inhibition of cell proliferation and may mitigate lactic acidosis caused by phenformin when used as a single agent. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. [Ala12]MCD peptide: a lead peptide to inhibitors of immunoglobulin E binding to mast cell receptors.

    PubMed

    Buku, A; Condie, B A; Price, J A; Mezei, M

    2005-09-01

    An effort was made to discover mast cell degranulating (MCD) peptide analogs that bind with high affinity to mast cell receptors without triggering secretion of histamine or other mediators of the allergic reaction initiated by immunoglobulin E (IgE) after mast cell activation. Such compounds could serve as inhibitors of IgE binding to mast cell receptors. An alanine scan of MCD peptide reported previously showed that the analog [Ala12]MCD was 120-fold less potent in histamine-releasing activity and fivefold more potent in binding affinity to mast cell receptors than the parent MCD peptide. Because this analog showed marginal intrinsic activity and good binding affinity it was subsequently tested in the present study as an IgE inhibitor. In contrast to MCD peptide, [Ala12]MCD showed a 50% inhibition of IgE binding to the Fc epsilon RI alpha mast cell receptor by using rat basophilic leukemia (RBL-2H3) mast cells and fluorescence polarization. Furthermore, in a beta-hexosaminidase secretory assay, the peptide also showed a 50% inhibition of the secretion of this enzyme caused by IgE. An attempt was made to relate structural changes and biologic differences between the [Ala12]MCD analog and the parent MCD peptide. The present results show that [Ala12]MCD may provide a base for designing agents to prevent IgE/Fc epsilon RI alpha interactions and, consequently, allergic conditions.

  8. Ex vivo inhibition of Clostridium botulinum neurotoxin types B, C, E, and F by small molecular weight inhibitors.

    PubMed

    Montgomery, Vicki A; Ahmed, S Ashraf; Olson, Mark A; Mizanur, Rahman M; Stafford, Robert G; Roxas-Duncan, Virginia I; Smith, Leonard A

    2015-05-01

    Two small molecular weight inhibitors, compounds CB7969312 and CB7967495, that displayed inhibition of botulinum neurotoxin serotype A in a previous study, were evaluated for inhibition of botulinum neurotoxin serotypes B, C, E, and F. The small molecular weight inhibitors were assessed by molecular modeling, UPLC-based peptide cleavage assay; and an ex vivo assay, the mouse phrenic nerve - hemidiaphragm assay (MPNHDA). While both compounds were inhibitors of botulinum neurotoxin (BoNT) serotypes B, C, and F in the MPNHDA, compound CB7969312 was effective at lower molar concentrations than compound CB7967495. However, compound CB7967495 was significantly more effective at preventing BoNTE intoxication than compound CB7969312. In the UPLC-based peptide cleavage assay, CB7969312 was also more effective against LcC. Both compounds inhibited BoNTE, but not BoNTF, LcE, or LcF in the UPLC-based peptide cleavage assay. Molecular modeling studies predicted that both compounds would be effective inhibitors of BoNTs B, C, E, and F. But CB7967495 was predicted to be a more effective inhibitor of the four serotypes (B, C, E, and F) than CB7969312. This is the first report of a small molecular weight compound that inhibits serotypes B, C, E, and F in the ex vivo assay. Published by Elsevier Ltd.

  9. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice

    PubMed Central

    Kozy, Heather M.; Lum, Jeremy A.; Sweetwood, Rosemary; Chu, Mabel; Cunningham, Cameron R.; Salamon, Hugh; Lloyd, Clare M.; Coffman, Robert L.; Hessel, Edith M.

    2015-01-01

    Background CpG-containing oligodeoxynucleotides (CpG-ODN) are potent inhibitors of Th2-mediated allergic airway disease in sensitized mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. Objective To optimize the treatment regimen and determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. Methods A limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were given to ragweed allergen-sensitized mice chronically exposed to allergen during and after the 1018 ISS treatment regimen. Treatment effects were evaluated by measuring effect on lung Th2 cytokines and eosinophilia as well as lung dendritic cell function and T cell responses. Results Twelve intranasal 1018 ISS treatments induced significant suppression of BAL eosinophilia and IL-4, IL-5, and IL-13 levels and suppression was maintained through 13 weekly ragweed exposures administered after treatment cessation. At least 5 treatments were required for lasting Th2 suppression. CpG-ODN induced moderate Th1 responses but Th2 suppression did not require IFN-γ. Th2 suppression was associated with induction of a regulatory T cell response. Conclusion A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen. PMID:24464743

  10. Enhancement of allergic responses in vivo and in vitro by butylated hydroxytoluene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaki, Kouya; Taneda, Shinji; Yanagisawa, Rie

    2007-09-01

    The effect of butylated hydroxytoluene (BHT), which is used widely as an antioxidant, on IgE-dependent allergic responses in vivo and in vitro was investigated. For in vivo study, passive cutaneous anaphylaxis (PCA) was elicited in rats by i.d. injection of anti-DNP IgE and 48 h later by i.v. injection of DNP-HSA. BHT was i.p. given immediately after anti-DNP IgE injection. For in vitro studies, the rat mast cell line RBL2H3 sensitized with monoclonal anti-dinitrophenol (DNP) IgE was challenged with the multivalent antigen DNP-human serum albumin (DNP-HSA) in the presence or absence of BHT. {beta}-Hexosaminidase and histamine released from RBL2H3 cells,more » as indicators of degranulation of the cells, the concentration of intracellular Ca{sup 2+}, the level of phosphorylated-Akt, and global tyrosine phosphorylation as indicators of mast cell activation, were measured. The results showed that BHT given to anti-DNP IgE-sensitized rats augmented DNP-specific PCA in a dose-dependent manner. In the presence of BHT, IgE-induced releases of {beta}-hexosaminidase and histamine from RBL2H3 cells were increased. BHT also further elevated IgE-mediated increased concentrations of intracellular Ca{sup 2+} and the levels of phosphorylated-Akt, but did not affect global tyrosine phosphorylation, in RBL2H3 cells. Moreover, the PI3K inhibitor LY294002 inhibited IgE-dependent degranulation and its enhancement by BHT. These findings indicate that BHT may upregulate PCA by enhancing mast cell degranulation associated with enhancements of intracellular Ca{sup 2+} concentration and PI3K activation, suggesting that BHT might affect allergic diseases such as allergic rhinitis and asthma.« less

  11. Curine inhibits mast cell-dependent responses in mice.

    PubMed

    Ribeiro-Filho, Jaime; Leite, Fagner Carvalho; Costa, Hermann Ferreira; Calheiros, Andrea Surrage; Torres, Rafael Carvalho; de Azevedo, Carolina Trindade; Martins, Marco Aurélio; Dias, Celidarque da Silva; Bozza, Patrícia T; Piuvezam, Márcia Regina

    2014-09-11

    Curine is a bisbenzylisoquinoline alkaloid and the major constituent isolated from Chondrodendron platyphyllum, a plant that is used to treat inflammatory diseases in Brazilian folk medicine. This study investigates the effectiveness of curine on mast cell-dependent responses in mice. To induce mast cell-dependent responses, Swiss mice were subcutaneously sensitized with ovalbumin (OVA-12 μg/mouse) and Al(OH)3 in a 0.9% NaCl solution. Fifteen days later, the animals were challenged with OVA through different pathways. Alternatively, the animals were injected with compound 48/80 or histamine, and several parameters, including anaphylaxis, itching, edema and inflammatory mediator production, were analyzed. Promethazine, cromoglycate, and verapamil were used as control drugs, and all of the treatments were performed 1h before the challenges. Curine pre-treatment significantly inhibited the scratching behavior and the paw edema induced by either compound 48/80 or OVA, and this protective effect was comparable in magnitude with those associated with treatment with either cromoglycate or verapamil. In contrast, curine was a weak inhibitor of histamine-induced paw edema, which was completely inhibited by promethazine. Curine and verapamil significantly inhibited pleural protein extravasations and prostaglandin D2 (PGD2) and cysteinyl leukotrienes (CysLTs) production following allergen-induced pleurisy. Furthermore, like verapamil, curine inhibited the anaphylactic shock caused by either compound 48/80 or an allergen. In in vitro settings, these treatments also inhibited degranulation as well as PGD2 and CysLT production through IgE-dependent activation of the mast cell lineage RBL-2H3. Curine significantly inhibited immediate allergic reactions through mechanisms more related to mast cell stabilization and activation inhibition than interference with the pro-inflammatory effects of mast cell products. These findings are in line with the hypothesis that the alkaloid

  12. Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities.

    PubMed

    Ghobadian, Roshanak; Mahdavi, Mohammad; Nadri, Hamid; Moradi, Alireza; Edraki, Najmeh; Akbarzadeh, Tahmineh; Sharifzadeh, Mohammad; Bukhari, Syed Nasir Abbas; Amini, Mohsen

    2018-05-23

    Butyrylcholinesterase (BuChE) inhibitors have become interesting target for treatment of Alzheimer's disease (AD). A series of dual binding site BuChE inhibitors were designed and synthesized based on 2,3,4,9-tetrahydro-1H-carbazole attached benzyl pyridine moieties. In-vitro assay revealed that all of the designed compounds were selective and potent BuChE inhibitors. The most potent BuChE inhibitor was compound 6i (IC 50  = 0.088 ± 0.0009 μM) with the mixed-type inhibition. Docking study revealed that 6i is a dual binding site BuChE inhibitor. Also, Pharmacokinetic properties for 6i were accurate to Lipinski's rule. In addition, compound 6i demonstrated neuroprotective and β-secretase (BACE1) inhibition activities. This compound could also inhibit AChE-induced and self-induced Aβ peptide aggregation at concentration of 100 μM and 10 μM respectively. Generally, the results are presented as new potent selective BuChE inhibitors with a therapeutic potential for the treatment of AD. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis

    PubMed Central

    Liu, Boyi; Escalera, Jasmine; Balakrishna, Shrilatha; Fan, Lu; Caceres, Ana I.; Robinson, Eve; Sui, Aiwei; McKay, M. Craig; McAlexander, M. Allen; Herrick, Christina A.; Jordt, Sven E.

    2013-01-01

    Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1−/− mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis.—Liu, B., Escalera, J., Balakrishna, S., Fan, L., Caceres, A. I., Robinson, E., Sui, A., McKay, M. C., McAlexander, M. A., Herrick, C. A., Jordt, S. E. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. PMID:23722916

  14. Biochemical characterization of the alpha-amylase inhibitor in mungbeans and its application in inhibiting the growth of Callosobruchus maculatus.

    PubMed

    Wisessing, Anussorn; Engkagul, Arunee; Wongpiyasatid, Arunee; Choowongkomon, Kiattawee

    2010-02-24

    The insect Callosobruchus maculatus causes considerable damage to harvested mungbean seeds every year, which leads to commercial losses. However, recent studies have revealed that mungbean seeds contain alpha-amylase inhibitors that can inhibit the protein C. maculatus, preventing growth and development of the insect larvae in the seed, thus preventing further damage. For this reason, the use of alpha-amylase inhibitors to interfere with the pest's digestion process has become an interesting alternative biocontrolling agent. In this study, we have isolated and purified the alpha-amylase inhibitor from mungbean seeds (KPS1) using ammonium sulfate precipitation, gel filtration chromatography and reversed phase HPLC. We found that the alpha-amylase inhibitor, isolated as a monomer, had a molecular weight of 27 kDa. The alpha-amylase inhibitor was purified 750-fold with a final yield of 0.4 mg of protein per 30 g of mungbean seeds. Its specific activity was determined at 14.5 U (mg of protein)(-1). Interestingly, we found that the isolated alpha-amylase inhibitor inhibits C. maculatus alpha-amylase but not human salivary alpha-amylase. After preincubation of the enzyme with the inhibitor, the mungbean alpha-amylase inhibitor inhibited C. maculatus alpha-amylase activity by decreasing V(max) while increasing the K(m) constant, indicating that the mungbean alpha-amylase is a mix noncompetitive inhibitor. The in vivo effect of alpha-amylase inhibitor on the mortality of C. maculatus shows that the alpha-amylase inhibitor acts on C. maculatus during the development stage, by reducing carbohydrate digestion necessary for growth and development, rather than during the end laying/hatching stage. Our results suggest that mungbean alpha-amylase inhibitor could be a useful future biocontrolling agent.

  15. Renoprotective Effects of SGLT2 Inhibitors: Beyond Glucose Reabsorption Inhibition.

    PubMed

    Tsimihodimos, V; Filippatos, T D; Filippas-Ntekouan, S; Elisaf, M

    2017-01-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that inhibit glucose and sodium reabsorption at proximal tubules. These drugs may exhibit renoprotective properties, since they prevent the deterioration of the glomerular filtration rate and reduce the degree of albuminuria in patients with diabetes-associated kidney disease. In this review we consider the pathophysiologic mechanisms that have been recently implicated in the renoprotective properties of SGLT2 inhibitors. The beneficial effects of SGLT2 inhibitors on the conventional risk factors for kidney disease (such as blood pressure, hyperglycaemia, body weight and serum uric acid levels) may explain, at least in part, the observed renal-protecting properties of these compounds. However, it has been hypothesized that the most important mechanisms for this phenomenon include the reduction in the intraglomerular pressure, the changes in the local and systemic degree of activation of the renin-aldosterone-angiotensin system and a shift in renal fuel consumption towards more efficient energy substrates such as ketone bodies. The beneficial effects of SGLT2 inhibitors on various aspects of renal function make them an attractive choice in patients with (and possibly without) diabetes-associated renal impairment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharmacophore-based virtual screening

    NASA Astrophysics Data System (ADS)

    Temml, Veronika; Garscha, Ulrike; Romp, Erik; Schubert, Gregor; Gerstmeier, Jana; Kutil, Zsofia; Matuszczak, Barbara; Waltenberger, Birgit; Stuppner, Hermann; Werz, Oliver; Schuster, Daniela

    2017-02-01

    Leukotrienes (LTs) are pro-inflammatory lipid mediators derived from arachidonic acid (AA) with roles in inflammatory and allergic diseases. The biosynthesis of LTs is initiated by transfer of AA via the 5-lipoxygenase-activating protein (FLAP) to 5-lipoxygenase (5-LO). FLAP inhibition abolishes LT formation exerting anti-inflammatory effects. The soluble epoxide hydrolase (sEH) converts AA-derived anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatetraenoic acids (di-HETEs). Its inhibition consequently also counteracts inflammation. Targeting both LT biosynthesis and the conversion of EETs with a dual inhibitor of FLAP and sEH may represent a novel, powerful anti-inflammatory strategy. We present a pharmacophore-based virtual screening campaign that led to 20 hit compounds of which 4 targeted FLAP and 4 were sEH inhibitors. Among them, the first dual inhibitor for sEH and FLAP was identified, N-[4-(benzothiazol-2-ylmethoxy)-2-methylphenyl]-N’-(3,4-dichlorophenyl)urea with IC50 values of 200 nM in a cell-based FLAP test system and 20 nM for sEH activity in a cell-free assay.

  17. Renin-angiotensin-aldosterone system inhibition: overview of the therapeutic use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and direct renin inhibitors.

    PubMed

    Mercier, Kelly; Smith, Holly; Biederman, Jason

    2014-12-01

    Angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) therapy in hypertensive diabetic patients with macroalbuminuria, microalbuminuria, or normoalbuminuria has been repeatedly shown to improve cardiovascular mortality and reduce the decline in glomerular filtration rate. Renin-angiotensin-aldosterone system (RAAS) blockade in normotensive diabetic patients with normoalbuminuria or microalbuminuria cannot be advocated at present. Dual RAAS inhibition with ACE inhibitors plus ARBs or ACE inhibitors plus direct renin inhibitors has failed to improve cardiovascular or renal outcomes but has predisposed patients to serious adverse events. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Risk factors associated with allergic and non-allergic asthma in adolescents.

    PubMed

    Janson, Christer; Kalm-Stephens, Pia; Foucard, Tony; Alving, Kjell; Nordvall, S Lennart

    2007-07-01

    Risk factors for asthma have been investigated in a large number of studies in adults and children, with little progress in the primary and secondary prevention of asthma. The aim of this investigation was to investigate risk factors associated with allergic and non-allergic asthma in adolescents. In this study, 959 schoolchildren (13-14 years old) answered a questionnaire and performed exhaled nitric oxide (NO) measurements. All children (n = 238) with reported asthma, asthma-related symptoms and/or increased NO levels were invited to a clinical follow-up which included a physician evaluation and skin-prick testing. Asthma was diagnosed in 96 adolescents, whereof half had allergic and half non-allergic asthma. Children with both allergic and non-allergic asthma had a significantly higher body mass index (BMI) (20.8 and 20.7 vs. 19.8 kg/m(2)) (p < 0.05) and a higher prevalence of parental asthma (30% and 32% vs. 16%) (p < 0.05). Early-life infection (otitis and croup) [adjusted odds ratio (OR) (95% confidence interval (CI)): 1.99 (1.02-3.88) and 2.80 (1.44-5.42), respectively], pets during the first year of life [2.17 (1.16-4.04)], window pane condensation [2.45 (1.11-5.40)] and unsatisfactory school cleaning [(2.50 (1.28-4.89)] was associated with non-allergic but not with allergic asthma. This study indicates the importance of distinguishing between subtypes of asthma when assessing the effect of different risk factors. While the risk of both allergic and non-allergic asthma increased with increasing BMI, associations between early-life and current environmental exposure were primarily found in relation to non-allergic asthma.

  19. RhoA orchestrates glycolysis for Th2 cell differentiation and allergic airway inflammation

    PubMed Central

    Yang, Jun-Qi; Kalim, Khalid W.; Li, Yuan; Zhang, Shuangmin; Hinge, Ashwini; Filippi, Marie-Dominique; Zheng, Yi; Guo, Fukun

    2015-01-01

    Background Mitochondrial metabolism is known to be important for T cell activation. However, its involvement in effector T cell differentiation has just begun to gain attention. Importantly, how metabolic pathways are integrated with T cell activation and effector cell differentiation and function remains largely unknown. Objective We sought to test our hypothesis that RhoA GTPase orchestrates glycolysis for Th2 cell differentiation and Th2-mediated allergic airway inflammation. Methods Conditional RhoA-deficient mice were generated by crossing RhoAflox/flox mice with CD2-Cre transgenic mice. Effects of RhoA on Th2 differentiation were evaluated by in vitro Th2-polarized culture conditions, and in vivo in ovalbumin (OVA)-induced allergic airway inflammation. Cytokines were measured by intracellular staining and ELISA. T cell metabolism was measured by Seahorse XF24 Analyzer and flow cytometry. Results Disruption of RhoA inhibited T cell activation and Th2 differentiation in vitro and prevented the development of allergic airway inflammation in vivo, with no effect on Th1 cells. RhoA deficiency in activated T cells led to multiple defects in metabolic pathways such as glycolysis and oxidative phosphorylation. Importantly, RhoA couples glycolysis to Th2 cell differentiation and allergic airway inflammation via regulating IL-4 receptor mRNA expression and Th2-specific signaling events. Finally, inhibition of Rho-associated protein kinase (ROCK), an immediate downstream effector of RhoA, blocked Th2 differentiation and allergic airway inflammation. Conclusion RhoA is a key component of the signaling cascades leading to Th2-differentiation and allergic airway inflammation, at least in part, through the control of T cell metabolism and via ROCK pathway. PMID:26100081

  20. A critical role of Gas6/Axl signal in allergic airway responses during RSV vaccine-enhanced disease.

    PubMed

    Shibata, Takehiko; Ato, Manabu

    2017-11-01

    Respiratory syncytial virus (RSV) is a common virus that causes lower respiratory infections across a wide range of ages. A licensed RSV vaccine is not available because vaccination with formalin-inactivated RSV (FI-RSV) and the subsequent RSV infection cause not only insufficient induction of neutralizing antibodies but also severe allergic airway responses, termed FI-RSV vaccine-enhanced disease (FI-RSV VED). However, the underlying mechanism has not been identified, although a Th2-biased immune response is known to be a hallmark of this disease. Our previous studies have shown that growth arrest-specific 6 (Gas6)/Axl signaling leads to Th2-biased immune responses during fungus-induced allergic airway inflammation. Here, we show that Gas6/Axl signaling also leads to FI-RSV VED and partially identify the mechanism in mice. Inhibiting Gas6/Axl signaling using Gas6-deficient mice, neutralizing antibodies, and a specific inhibitor of Axl attenuated allergic airway hyperresponsiveness, including airway inflammation, goblet cell hyperplasia, and Th2 cytokine production, in addition to increasing interferon-γ levels and the production of RSV-neutralizing IgG2a in FI-RSV VED. Gas6 was produced in lymph nodes during immunization with FI-RSV. Lymph node cells derived from immunized mice produced high levels of Gas6 and Th2 cytokines, but not IFN-γ, after restimulation with RSV. Finally, we found that dendritic cells stimulated with RSV-glycoprotein (G protein) produced Gas6 and that Axl signaling suppressed DC maturation and the induction of IL-12 production by the toll-like receptor 4 agonist RSV-fusion protein. Taken together, these results indicate that RSV-G protein-induced Gas6/Axl signaling causes allergic airway responses during FI-RSV VED.

  1. Anti-allergic activity of the Morinda citrifolia extract and its constituents

    PubMed Central

    Murata, Kazuya; Abe, Yumi; Shinohara, Kaito; Futamura-Masuda, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2014-01-01

    Background: Morinda citrifolia (Rubiaceae), commonly known as noni is distributed throughout tropical and sub-tropical regions of the world. Anti-allergic effects of noni have not been reported despite the clinical usage as an anti-allergic agent. Materials and Methods: To investigate the anti-allergic effects of the 50% ethanolic extract of M. citrifolia fruits and leaves (MCF-ext and MCL-ext), dinitrofluorobenzene (DNFB)-induced triphasic cutaneous reaction and picryl chloride-induced contact dermatitis (PC-CD) tests were performed. Results: In DNFB-induced triphasic cutaneous reaction, oral administration of MCF-ext and MCL-ext exhibited dose-dependent inhibition of cutaneous reaction at 1 h (immediate phase response) after the DNFB challenge. MCF-ext also inhibited ear swelling at 24 h (late phase response) and 8 days (very late phase response) after the DNFB challenge. The effect of MCL-ext on the immediate phase response was attributed to the anti-degranulation from RBL-2H3 cells, while MCF-ext had no significant effect on degranulation. The active components of anti-degranulation activity in MCL-ext were determined to be ursolic acid, rutin and kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside. In the PC-CD test, both MCF-ext and MCL-ext showed an anti-swelling effect but the potency of MCF-ext was stronger than MCL-ext. Conclusion: These data suggest that noni fruits and leaves can be a daily consumable material for the prevention of allergic symptoms. PMID:25002809

  2. Screening Active Components from Yu-Ping-Feng-San for Regulating Initiative Key Factors in Allergic Sensitization

    PubMed Central

    Zhu, Zhijie; Yu, Xi; Liu, Hailiang; Wang, Huizhu; Fan, Hongwei; Wang, Dawei; Jiang, Guorong; Hong, Min

    2014-01-01

    Yu-ping-feng-san (YPFS) is a Chinese medical formula that is used clinically for allergic diseases and characterized by reducing allergy relapse. Our previous studies demonstrated that YPFS efficiently inhibited T helper 2 cytokines in allergic inflammation. The underlying mechanisms of action of YPFS and its effective components remain unclear. In this study, it was shown that YPFS significantly inhibited production of thymic stromal lymphopoietin (TSLP), an epithelial cell-derived initiative factor in allergic inflammation, in vitro and in vivo. A method of human bronchial epithelial cell (16HBE) binding combined with HPLC-MS (named 16HBE-HPLC-MS) was established to explore potential active components of YPFS. The following five components bound to 16HBE cells: calycosin-7-glucoside, ononin, claycosin, sec-o-glucosylhamaudol and formononetin. Serum from YPFS-treated mice was analyzed and three major components were detected claycosin, formononetin and cimifugin. Among these, claycosin and formononetin were detected by 16HBE-HPLC-MS and in the serum of YPFS-treated mice. Claycosin and formononetin decreased the level of TSLP markedly at the initial stage of allergic inflammation in vivo. Nuclear factor (NF)-κB, a key transcription factor in TSLP production, was also inhibited by claycosin and formononetin, either in terms of transcriptional activation or its nuclear translocation in vitro. Allergic inflammation was reduced by claycosin and formononetin when they are administered only at the initial stage in a murine model of atopic contact dermatitis. Thus, epithelial cell binding combined with HPLC-MS is a valid method for screening active components from complex mixtures of Chinese medicine. It was demonstrated that the compounds screened from YPFS significantly attenuated allergic inflammation probably by reducing TSLP production via regulating NF-κB activation. PMID:25198676

  3. The evolving landscape of RAAS inhibition: from ACE inhibitors to ARBs, to DRIs and beyond.

    PubMed

    Epstein, Benjamin J; Leonard, Paul T; Shah, Niren K

    2012-06-01

    Chronic renin-angiotensin-aldosterone system (RAAS) activation has far-reaching effects on cardiometabolic risk and is a substantial contributor to cardiovascular (CV) disease and renal dysfunction. The vascular effects of sustained RAAS activation are associated with hemodynamic imbalances, as well as inflammatory stimulation and prothrombotic processes that lead to fibrosis, endothelial dysfunction and cellular remodeling. RAAS inhibition therapies, which include the use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and more recently, direct renin inhibitors, have been used in clinical practice for more than 30 years. Our understanding of how these drugs work, alone and in combination, has contributed to an expanding landscape of treatment options and established RAAS inhibition as essential for reducing the risk of CV and renal disease. This perspective provides a historical overview of how RAAS inhibitors have evolved to their present-day status and will discuss recently discovered functions for components of this complicated and powerful regulatory system.

  4. The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif.

    PubMed

    Williams, Leslie K; Zhang, Xiaohua; Caner, Sami; Tysoe, Christina; Nguyen, Nham T; Wicki, Jacqueline; Williams, David E; Coleman, John; McNeill, John H; Yuen, Violet; Andersen, Raymond J; Withers, Stephen G; Brayer, Gary D

    2015-09-01

    The complex plant flavonol glycoside montbretin A is a potent (Ki = 8 nM) and specific inhibitor of human pancreatic α-amylase with potential as a therapeutic for diabetes and obesity. Controlled degradation studies on montbretin A, coupled with inhibition analyses, identified an essential high-affinity core structure comprising the myricetin and caffeic acid moieties linked via a disaccharide. X-ray structural analyses of the montbretin A-human α-amylase complex confirmed the importance of this core structure and revealed a novel mode of glycosidase inhibition wherein internal π-stacking interactions between the myricetin and caffeic acid organize their ring hydroxyls for optimal hydrogen bonding to the α-amylase catalytic residues D197 and E233. This novel inhibitory motif can be reproduced in a greatly simplified analog, offering potential for new strategies for glycosidase inhibition and therapeutic development.

  5. Inhibition of allergic bronchial asthma by thrombomodulin is mediated by dendritic cells.

    PubMed

    Takagi, Takehiro; Taguchi, Osamu; Toda, Masaaki; Ruiz, Daniel Boveda; Bernabe, Paloma Gil; D'Alessandro-Gabazza, Corina N; Miyake, Yasushi; Kobayashi, Tetsu; Aoki, Shinya; Chiba, Fumiko; Yano, Yutaka; Conway, Edward M; Munesue, Seiichi; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Suzuki, Koji; Takei, Yoshiyuki; Morser, John; Gabazza, Esteban C

    2011-01-01

    bronchial asthma is caused by inappropriate acquired immune responses to environmental allergens. It is a major health problem, with a prevalence that is rapidly increasing. Curative therapy is not currently available. to test the hypothesis that thrombomodulin (TM) inhibits allergic bronchial asthma by inducing tolerogenic dendritic cells (DCs). the protective effect of TM was evaluated using a murine asthma model. Asthma was induced in mice by exposure to chicken egg ovalbumin, and the effects of inhaled TM or TM-treated DCs were assessed by administering before ovalbumin exposure. treatment with TM protects against bronchial asthma measured as improved lung function and reduced IgE and cells in alveolar lavage fluid by inducing tolerogenic dendritic dells. These are characterized by high expression of surface TM (CD141/TM(+)) and low expression of maturation markers and possess reduced T-cell costimulatory activity. The CD141/TM(+) DCs migrate less toward chemokines, and after TM treatment there are fewer DCs in the draining lymph node and more in the lungs. The TM effect is independent of its role in coagulation. Rather, it is mediated via the TM lectin domain directly interacting with the DCs. the results of this study show that TM is a modulator of DC immunostimulatory properties and a novel candidate drug for the prevention of bronchial asthma in atopic patients.

  6. Mast cell stabilization, lipoxygenase inhibition, hyaluronidase inhibition, antihistaminic and antispasmodic activities of Aller-7, a novel botanical formulation for allergic rhinitis.

    PubMed

    Amit, A; Saxena, V S; Pratibha, N; D'Souza, P; Bagchi, M; Bagchi, D; Stohs, S J

    2003-01-01

    Allergic rhinitis, also known as hay fever, rose fever or summer catarrh, is a major challenge to health professionals. A large number of the world's population, including approximately 40 million Americans, suffers from allergic rhinitis. A novel, botanical formulation (Aller-7) has been developed for the treatment of allergic rhinitis using a combination of extracts from seven medicinal plants, including Phyllanthus emblica, Terminalia chebula, T. bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and P. longum, which have a proven history of efficacy and health benefits. The clinical manifestations of allergy are due to a number of mediators that are released from mast cells. The effect of Aller-7 on rat mesenteric mast cell degranulation was studied by incubating different concentrations of Aller-7 and challenging them with a degranulating agent, compound 48/80. The inhibitory activity of Aller-7 was determined against lipoxygenase and hyaluronidase, the key enzymes involved in the initiation and maintenance of inflammatory responses. Furthermore, most of these manifestations are due to histamine, which causes vasodilatation, increasing capillary permeability and leading to bronchoconstriction. Hence, the antihistaminic activity of Aller-7 was determined is isolated guinea pig ileum substrate using cetirizine as a positive control. The antispasmodic effect of Aller-7 on contractions of guinea pig tracheal chain was determined using papaverine and cetirizine as controls. Aller-7 exhibited potent activity in all these in vitro models tested, thus demonstrating the novel anti-allergic potential of Aller-7.

  7. A review of phosphodiesterase-inhibition and the potential role for phosphodiesterase 4-inhibitors in clinical dermatology.

    PubMed

    Moustafa, Farah; Feldman, Steven R

    2014-05-16

    Phosphodiesterase inhibitors are commonly used drugs. Specific phosphodiesterase inhibitors with anti-inflammatory properties are being assessed as dermatological treatments. To describe important aspects of phosphodiesterase inhibition and the safety and efficacy of 2 phosphodiesterase- 4 inhibitors being studied for the treatment of dermatologic diseases We did a non-systematic analysis of literature on phosphodiesterase inhibition followed by a review of published information on apremilast and topical AN2728 and their use for psoriasis and atopic dermatitis. Apremilast and topical AN2728 have modest efficacy in treatment of psoriasis. Apremilast achieved PASI-75 scores ranging from 24-33%. In phase 2 studies, AN2728 had modest efficacy for psoriasis (40% of patients achieved a ≥ 2 grade improvement as assessed by the Overall target Plaque Severity Score). In phase 2 studies of AN2728 use in atopic dermatitis, subjects achieved a 71% improvement from baseline Atopic Dermatitis Severity Index. In all studies, most adverse effects were minimal. The limitations of this paper are the limited number of published studies, the lack of long-term data, and the lack of head -to - head trials directly comparing phosphodiesterase inhibitors with other treatments. Phosphodiesterase inhibitors constitute a widely used class of drugs that may see growing use for inflammatory dermatologic diseases.

  8. Allergic Reactions

    MedlinePlus

    ... is present. Severe Allergic Reactions Anaphylaxis (an-a-fi-LAK-sis) is a serious, life-threatening allergic ... Immunology 555 East Wells Street Suite 1100, Milwaukee , WI 53202-3823 (414) 272-6071 Additional Contact Information ...

  9. Combining Immune Checkpoint Inhibitors and Kinase-Inhibiting Supramolecular Therapeutics for Enhanced Anticancer Efficacy.

    PubMed

    Kulkarni, Ashish; Natarajan, Siva Kumar; Chandrasekar, Vineethkrishna; Pandey, Prithvi Raj; Sengupta, Shiladitya

    2016-09-29

    A major limitation of immune checkpoint inhibitors is that only a small subset of patients achieve durable clinical responses. This necessitates the development of combinatorial regimens with immunotherapy. However, some combinations, such as MEK- or PI3K-inhibitors with a PD1-PDL1 checkpoint inhibitor, are pharmacologically challenging to implement. We rationalized that such combinations can be enabled using nanoscale supramolecular targeted therapeutics, which spatially home into tumors and exert temporally sustained inhibition of the target. Here we describe two case studies where nanoscale MEK- and PI3K-targeting supramolecular therapeutics were engineered using a quantum mechanical all-atomistic simulation-based approach. The combinations of nanoscale MEK- and PI3K-targeting supramolecular therapeutics with checkpoint PDL1 and PD1 inhibitors exert enhanced antitumor outcome in melanoma and breast cancers in vivo, respectively. Additionally, the temporal sequence of administration impacts the outcome. The combination of supramolecular therapeutics and immunotherapy could emerge as a paradigm shift in the treatment of cancer.

  10. Pesticides are Associated with Allergic and Non-Allergic Wheeze among Male Farmers

    PubMed Central

    Hoppin, Jane A.; Umbach, David M.; Long, Stuart; London, Stephanie J.; Henneberger, Paul K.; Blair, Aaron; Alavanja, Michael; Freeman, Laura E. Beane; Sandler, Dale P.

    2016-01-01

    Background: Growing evidence suggests that pesticide use may contribute to respiratory symptoms. Objective: We evaluated the association of currently used pesticides with allergic and non-allergic wheeze among male farmers. Methods: Using the 2005–2010 interview data of the Agricultural Health Study, a prospective study of farmers in North Carolina and Iowa, we evaluated the association between allergic and non-allergic wheeze and self-reported use of 78 specific pesticides, reported by ≥ 1% of the 22,134 men interviewed. We used polytomous regression models adjusted for age, BMI, state, smoking, and current asthma, as well as for days applying pesticides and days driving diesel tractors. We defined allergic wheeze as reporting both wheeze and doctor-diagnosed hay fever (n = 1,310, 6%) and non-allergic wheeze as reporting wheeze but not hay fever (n = 3,939, 18%); men without wheeze were the referent. Results: In models evaluating current use of specific pesticides, 19 pesticides were significantly associated (p < 0.05) with allergic wheeze (18 positive, 1 negative) and 21 pesticides with non-allergic wheeze (19 positive, 2 negative); 11 pesticides were associated with both. Seven pesticides (herbicides: 2,4-D and simazine; insecticides: carbaryl, dimethoate, disulfoton, and zeta-cypermethrin; and fungicide pyraclostrobin) had significantly different associations for allergic and non-allergic wheeze. In exposure–response models with up to five exposure categories, we saw evidence of an exposure–response relationship for several pesticides including the commonly used herbicides 2,4-D and glyphosate, the insecticides permethrin and carbaryl, and the rodenticide warfarin. Conclusions: These results for farmers implicate several pesticides that are commonly used in agricultural and residential settings with adverse respiratory effects. Citation: Hoppin JA, Umbach DM, Long S, London SJ, Henneberger PK, Blair A, Alavanja M, Beane Freeman LE, Sandler DP. 2017

  11. Photosystem II-inhibitors play a limited role in sweet corn response to 4-hydroxyphenyl pyruvate dioxygenase-inhibiting herbicides

    USDA-ARS?s Scientific Manuscript database

    Postemergence (POST) application of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) inhibitors in combination with a photosystem II (PSII) inhibitor, such as atrazine, is common practice in sweet corn production. Given the sensitivity of sweet corn to HPPD-inhibiting herbicides, the objective of this wo...

  12. Inhibitory effect of 1,2,4,5-tetramethoxybenzene on mast cell-mediated allergic inflammation through suppression of IκB kinase complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Je, In-Gyu; Choi, Hyun Gyu; Kim, Hui-Hun

    As the importance of allergic disorders such as atopic dermatitis and allergic asthma, research on potential drug candidates becomes more necessary. Mast cells play an important role as initiators of allergic responses through the release of histamine; therefore, they should be the target of pharmaceutical development for the management of allergic inflammation. In our previous study, anti-allergic effect of extracts of Amomum xanthioides was demonstrated. To further investigate improved candidates, 1,2,4,5-tetramethoxybenzene (TMB) was isolated from methanol extracts of A. xanthioides. TMB dose-dependently attenuated the degranulation of mast cells without cytotoxicity by inhibiting calcium influx. TMB decreased the expression of pro-inflammatorymore » cytokines such as tumor necrosis factor-α and interleukin (IL)-4 at both the transcriptional and translational levels. Increased expression of these cytokines was caused by translocation of nuclear factor-κB into the nucleus, and it was hindered by suppressing activation of IκB kinase complex. To confirm the effect of TMB in vivo, the ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) and IgE-mediated passive cutaneous anaphylaxis (PCA) models were used. In the ASA model, hypothermia was decreased by oral administration of TMB, which attenuated serum histamine, OVA-specific IgE, and IL-4 levels. Increased pigmentation of Evans blue was reduced by TMB in a dose-dependent manner in the PCA model. Our results suggest that TMB is a possible therapeutic candidate for allergic inflammatory diseases that acts through the inhibition of mast cell degranulation and expression of pro-inflammatory cytokines. - Highlights: • TMB reduced the degranulation of mast cells. • TMB inhibited the production of pro-inflammatory cytokines. • TMB suppressed both active and passive anaphylaxis. • Anti-allergic inflammatory effects of TMB might be due to the blocking IKK complex. • TMB might be a candidate for the

  13. Inhibition of mTOR pathway sensitizes acute myeloid leukemia cells to aurora inhibitors by suppression of glycolytic metabolism.

    PubMed

    Liu, Ling-Ling; Long, Zi-Jie; Wang, Le-Xun; Zheng, Fei-Meng; Fang, Zhi-Gang; Yan, Min; Xu, Dong-Fan; Chen, Jia-Jie; Wang, Shao-Wu; Lin, Dong-Jun; Liu, Quentin

    2013-11-01

    Aurora kinases are overexpressed in large numbers of tumors and considered as potential therapeutic targets. In this study, we found that the Aurora kinases inhibitors MK-0457 (MK) and ZM447439 (ZM) induced polyploidization in acute myeloid leukemia (AML) cell lines. The level of glycolytic metabolism was significantly increased in the polyploidy cells, which were sensitive to glycolysis inhibitor 2-deoxy-D-glucose (2DG), suggesting that polyploidy cells might be eliminated by metabolism deprivation. Indeed, inhibition of mTOR pathway by mTOR inhibitors (rapamycin and PP242) or 2DG promoted not only apoptosis but also autophagy in the polyploidy cells induced by Aurora inhibitors. Mechanically, PP242 or2DGdecreased the level of glucose uptake and lactate production in polyploidy cells as well as the expression of p62/SQSTM1. Moreover, knockdown of p62/SQSTM1 sensitized cells to the Aurora inhibitor whereas overexpression of p62/SQSTM1 reduced drug efficacy. Thus, our results revealed that inhibition of mTOR pathway decreased the glycolytic metabolism of the polyploidy cells, and increased the efficacy of Aurora kinases inhibitors, providing a novel approach of combination treatment in AML. ©2013 AACR.

  14. Platelet-activating factor drives eotaxin production in an allergic pleurisy in mice

    PubMed Central

    Klein, André; Pinho, Vanessa; Alessandrini, Ana Letícia; Shimizu, Takao; Ishii, Satoshi; Teixeira, Mauro M

    2002-01-01

    The activation of eosinophils via G-protein-coupled seven transmembran receptors play a necessary role in the recruitment of these cells into tissue. The present study investigates a role for PAF in driving eotaxin production and eosinophil recruitment in an allergic pleurisy model in mice. The intrapleural injection of increasing doses of PAF (10−11 to 10−9 moles per cavity) induced a dose- and PAF receptor-dependent recruitment of eosinophils 48 h after stimulation. Intrapleural injection of PAF induced the rapid (within 1 h) release of eotaxin into the pleural cavity of mice and an anti-eotaxin antibody effectively inhibited PAF-induced recruitment of eosinophils. Eosinophil recruitment in the allergic pleurisy was markedly inhibited by the PAF receptor antagonist UK-74,505 (modipafant, 1 mg kg−1). Moreover, recruitment of eosinophils in sensitized and challenged PAF receptor-deficient animals was lower than that observed in wild-type animals. Blockade of PAF receptors with UK-74,505 suppressed by 85% the release of eotaxin in the allergic pleurisy. Finally, the injection of a sub-threshold dose of PAF and eotaxin cooperated to induce eosinophil recruitment in vivo. In conclusion, the production of PAF in an allergic reaction could function in multiple ways to facilitate the recruitment of eosinophils  –  by facilitating eotaxin release and by cooperating with eotaxin to induce greater recruitment of eosinophils. PMID:11877329

  15. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    PubMed

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  16. Switch in Site of Inhibition: A Strategy for Structure-Based Discovery of Human Topoisomerase IIα Catalytic Inhibitors

    PubMed Central

    2015-01-01

    A study of structure-based modulation of known ligands of hTopoIIα, an important enzyme involved in DNA processes, coupled with synthesis and in vitro assays led to the establishment of a strategy of rational switch in mode of inhibition of the enzyme’s catalytic cycle. 6-Arylated derivatives of known imidazopyridine ligands were found to be selective inhibitors of hTopoIIα, while not showing TopoI inhibition and DNA binding. Interestingly, while the parent imidazopyridines acted as ATP-competitive inhibitors, arylated derivatives inhibited DNA cleavage similar to merbarone, indicating a switch in mode of inhibition from ATP-hydrolysis to the DNA-cleavage stage of catalytic cycle of the enzyme. The 6-aryl-imidazopyridines were relatively more cytotoxic than etoposide in cancer cells and less toxic to normal cells. Such unprecedented strategy will encourage research on “choice-based change” in target-specific mode of action for rapid drug discovery. PMID:25941559

  17. Pesticides are Associated with Allergic and Non-Allergic Wheeze among Male Farmers.

    PubMed

    Hoppin, Jane A; Umbach, David M; Long, Stuart; London, Stephanie J; Henneberger, Paul K; Blair, Aaron; Alavanja, Michael; Freeman, Laura E Beane; Sandler, Dale P

    2017-04-01

    Growing evidence suggests that pesticide use may contribute to respiratory symptoms. We evaluated the association of currently used pesticides with allergic and non-allergic wheeze among male farmers. Using the 2005-2010 interview data of the Agricultural Health Study, a prospective study of farmers in North Carolina and Iowa, we evaluated the association between allergic and non-allergic wheeze and self-reported use of 78 specific pesticides, reported by ≥ 1% of the 22,134 men interviewed. We used polytomous regression models adjusted for age, BMI, state, smoking, and current asthma, as well as for days applying pesticides and days driving diesel tractors. We defined allergic wheeze as reporting both wheeze and doctor-diagnosed hay fever ( n = 1,310, 6%) and non-allergic wheeze as reporting wheeze but not hay fever ( n = 3,939, 18%); men without wheeze were the referent. In models evaluating current use of specific pesticides, 19 pesticides were significantly associated ( p < 0.05) with allergic wheeze (18 positive, 1 negative) and 21 pesticides with non-allergic wheeze (19 positive, 2 negative); 11 pesticides were associated with both. Seven pesticides (herbicides: 2,4-D and simazine; insecticides: carbaryl, dimethoate, disulfoton, and zeta-cypermethrin; and fungicide pyraclostrobin) had significantly different associations for allergic and non-allergic wheeze. In exposure-response models with up to five exposure categories, we saw evidence of an exposure-response relationship for several pesticides including the commonly used herbicides 2,4-D and glyphosate, the insecticides permethrin and carbaryl, and the rodenticide warfarin. These results for farmers implicate several pesticides that are commonly used in agricultural and residential settings with adverse respiratory effects.

  18. Intracellular Serine Protease Inhibitor SERPINB4 Inhibits Granzyme M-Induced Cell Death

    PubMed Central

    de Koning, Pieter J. A.; Kummer, J. Alain; de Poot, Stefanie A. H.; Quadir, Razi; Broekhuizen, Roel; McGettrick, Anne F.; Higgins, Wayne J.; Devreese, Bart; Worrall, D. Margaret; Bovenschen, Niels

    2011-01-01

    Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM) are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins) is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1′ triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×104 M−1s−1. SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death. PMID:21857942

  19. Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin.

    PubMed

    Rivera, Dagmar García; Balmaseda, Ivones Hernández; León, Alina Alvarez; Hernández, Belkis Cancio; Montiel, Lucía Márquez; Garrido, Gabino Garrido; Cuzzocrea, Salvatore; Hernández, René Delgado

    2006-03-01

    Vimang is the brand name of formulations containing an extract of Mangifera indica L., ethnopharmacologically used in Cuba for the treatment of some immunopathological disorders, including bronchial asthma, atopic dermatitis and other allergic diseases. However, the effects of Vimang on allergic response have not been reported until now. In this study, the effects of Vimang and mangiferin, a C-glucosylxanthone isolated from the extract, on different parameters of allergic response are reported. Vimang and mangiferin showed a significant dose-dependent inhibition of IgE production in mice and anaphylaxis reaction in rats, histamine-induced vascular permeability and the histamine release induced by compound 48/80 from rat mast cells, and of lymphocyte proliferative response as evidence of the reduction of the amount of B and T lymphocytes able to contribute to allergic response. In these experiments, ketotifen, promethazine and disodium cromoglicate were used as reference drugs. Furthermore, we demonstrated that Vimang had an effect on an in-vivo model of inflammatory allergy mediated by mast cells. These results constitute the first report of the anti-allergic properties of Vimang on allergic models, as well as suggesting that this natural extract could be successfully used in the treatment of allergic disorders. Mangiferin, the major compound of Vimang, contributes to the anti-allergic effects of the extract.

  20. Immunopathogenesis of fish allergy: identification of fish-allergic adults by skin test and radioallergosorbent test.

    PubMed

    Helbling, A; McCants, M L; Musmand, J J; Schwartz, H J; Lehrer, S B

    1996-07-01

    As the consumption of fish increases in the United States, the importance of allergic reactions to fish has become clear. Since most previous studies on fish allergy have focused on children reacting mainly to codfish, there is a need to investigate allergic reactions to other fish in adults. To identify fish-allergic adults, and to assess cross-reactivity among different species of fish by RAST inhibition. Thirty-nine individuals who reported fish allergy were selected for study; 32 (82%) were atopic as defined by two or more positive skin tests to common inhalant allergens and a history of allergic reactions and 33 (85%) experienced allergic symptoms within 30 minutes after ingesting fish. The most frequently reported symptoms were hives (69%), itching (69%), and wheezing/chest tightness (54%). Study subjects were skin tested with fish extracts and their sera assayed for IgE antibodies to different fish species. Thirty-six (92%) of the subjects tested had a positive skin test to at least one of 17 fish extracts tested; 9/35 (26%) reacted to all 17 extracts. Of the atopic (two or more positive skin tests to common inhalant allergens plus a personal and/or family history of allergy) and nonatopic fish-tolerant controls, 20/26 (77%) reacted by skin test to one or more fish extracts tested; the most prevalent positive reaction was to anchovy (73%). A significant correlation (P < .01) was observed between skin test reactivity of fish-allergic subjects to most fish extracts and fish RAST reactions. Radioallergosorbent inhibition testing demonstrated significant cross-reactivity among pollack, salmon, trout, and tuna; and between mackerel and anchovy. These results suggest that fish-allergic subjects may be clinically sensitive to more than one species of fish. Skin test reactivity to fish by itself is not an adequate criterion for the confirmation of clinically relevant fish allergy; consequently, fish-allergic subjects with positive skin tests to several fish species

  1. Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39.

    PubMed

    Kong, Dexin; Dan, Shingo; Yamazaki, Kanami; Yamori, Takao

    2010-04-01

    As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in various diseases particularly cancer, considerable competition occurs in development of PI3K inhibitors. Consequently, novel PI3K inhibitors such as ZSTK474, GDC-0941 and NVP-BEZ235 have been developed. Even though all these inhibitors were reported to inhibit class I PI3K but not dozens of protein kinases, whether they have different molecular targets remained unknown. To investigate such molecular target specificity, we have determined the inhibitory effects of these novel inhibitors together with classical PI3K inhibitor LY294002 on PI3K superfamily (including classes I, II, and III PI3Ks, PI4K and PI3K-related kinases) by using several novel non-radioactive biochemical assays. As a result, ZSTK474 and GDC-0941 indicated highly similar inhibition profiles for PI3K superfamily, with class I PI3K specificity much higher than NVP-BEZ235 and LY294002. We further investigated their growth inhibition effects on JFCR39, a human cancer cell line panel which we established for molecular target identification, and analysed their cell growth inhibition profiles (fingerprints) by using COMPARE analysis programme. Interestingly, we found ZSTK474 exhibited a highly similar fingerprint with GDC-0941 (r=0.863), more similar than with that of either NVP-BEZ235 or LY294002, suggesting that ZSTK474 shares more in molecular targets with GDC-0941 than with either of the other two PI3K inhibitors, consistent with the biochemical assay result. The biological implication of the difference in molecular target specificity of these PI3K inhibitors is under investigation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Uncovering the Molecular Mechanism of Anti-Allergic Activity of Silkworm Pupa-Grown Cordyceps militaris Fruit Body.

    PubMed

    Wu, Ting-Feng; Chan, Yu-Yi; Shi, Wan-Yin; Jhong, Meng-Ting

    2017-01-01

    Cordyceps militaris has been widely used as an herbal drug and tonic food in East Asia and has also been recently studied in the West because of its various pharmacological activities such as antitumoral, anti-inflammatory and immunomodulatory effects. In this study, we examined the molecular mechanism underlying the anti-allergic activity of ethanol extract prepared from silkworm pupa-cultivated Cordyceps militaris fruit bodies in activated mast cells. Our results showed that ethanol extract treatment significantly inhibited the release of [Formula: see text]-hexosaminidase (a degranulation marker) and mRNA levels of tumor necrosis factor-[Formula: see text] as well as interleukin-4 in RBL-2H3 cells. The cells were sensitized with 2,4-dinitrophenol specific IgE and then stimulated with human serum albumin conjugated with 2,4-dinitrophenol. Oral administration of 300[Formula: see text]mg/kg ethanol extract significantly ameliorated IgE-induced allergic reaction in mice with passive cutaneous anaphylaxis. Western immunoblotting results demonstrated that ethanol extract incubation significantly inhibited Syk/PI3K/MEKK4/JNK/c-jun biochemical cascade in activated RBL-2H3 cells, which activated the expression of various allergic cytokines. In addition, it suppressed Erk activation and PLC[Formula: see text] evocation, which would respectively evoke the synthesis of lipid mediators and Ca[Formula: see text] mobilization to induce degranulation in stimulated RBL-2H3 cells. A compound, identified as [Formula: see text]-sitostenone, was shown to inhibit [Formula: see text]-hexosaminidase secretion from activated mast cells. Our study demonstrated that ethanol extract contained the ingredients, which could inhibit immediate degranulation and de novo synthesis of allergic lipid mediators and cytokines in activated mast cells.

  3. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant tomore » the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.« less

  4. Anti-inflammatory activities of Aller-7, a novel polyherbal formulation for allergic rhinitis.

    PubMed

    Pratibha, N; Saxena, V S; Amit, A; D'Souza, P; Bagchi, M; Bagchi, D

    2004-01-01

    Allergic rhinitis is an immunological disorder and an inflammatory response of nasal mucosal membranes. Allergic rhinitis, a state of hypersensitivity, occurs when the body overreacts to a substance such as pollens or dust. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. Since inflammation is an integral mechanistic component of allergy, the present study aimed to determine the anti-inflammatory activity of Aller-7 in various in vivo models. The efficacy of Aller-7 was investigated in compound 48/80-induced paw edema both in Balb/c mice and Swiss Albino mice, carrageenan-induced paw edema in Wistar Albino rats and Freund's adjuvant-induced arthritis in Wistar Albino rats. The trypsin inhibitory activity of Aller-7 was also determined and compared with ovomucoid. At a dose of 250 mg/kg, Aller-7 demonstrated 62.55% inhibition against compound 48/80-induced paw edema in Balb/c mice, while under the same conditions prednisolone at an oral dose of 14 mg/kg exhibited 44.7% inhibition. Aller-7 significantly inhibited compound 48/80-induced paw edema at all three doses of 175, 225 or 275 mg/kg in Swiss Albino mice, while the most potent effect was observed at 225 mg/kg. Aller-7 (120 mg/kg, p.o.) demonstrated 31.3% inhibition against carrageenan-induced acute inflammation in Wistar Albino rats, while ibuprofen (50 mg/kg, p.o.) exerted 68.1% inhibition. Aller-7 also exhibited a dose-dependent (150-350 mg/kg) anti-inflammatory effect against Freund's adjuvant-induced arthritis in Wistar Albino rats and an approximately 63% inhibitory effect was observed at a dose of 350 mg/kg. The trypsin inhibitory activity of Aller-7 was determined, using ovomucoid as a positive control. Ovomucoid and Aller-7 demonstrated

  5. Anti-allergic action of aged black garlic extract in RBL-2H3 cells and passive cutaneous anaphylaxis reaction in mice.

    PubMed

    Yoo, Jae-Myung; Sok, Dai-Eun; Kim, Mee Ree

    2014-01-01

    Garlic (Allium sativum) has been used as a food as well as a component of traditional medicine. Aged black garlic (ABG) is known to have various bioactivities. However, the effect of ABG on allergic response is almost unknown. In the present study, we investigated whether ABG can inhibit immunoglobulin E-mediated allergic response in RBL-2H3 cells as well as in vivo passive cutaneous anaphylaxis (PCA). In in vitro tests, ethyl acetate extract (EBG) of ABG significantly inhibited the release of β-hexosaminidase (IC₅₀, 1.53 mg/mL) and TNF-α (IC₅₀, 0.98 mg/mL). Moreover, BG10, an active fraction of EBG, dramatically suppressed the release of β-hexosaminidase (IC₅₀, 53.60 μg/mL) and TNF-α (IC₅₀, 27.80 μg/mL). In addition, BG10 completely blocked the formation of prostaglandin E₂ and leukotriene B₄ at ≥25 μg/mL. When the effect of BG10 on FcɛRI receptor cascade was investigated, BG10 significantly inhibited the phosphorylation of Syk, but not Lyn. Furthermore, BG10 dose dependently decreased the phosphorylation of cytosolic phospholipase A₂ (cPLA₂) and 5-lipoxygenase (5-LO) as well as the expression of cyclooxygenase-2 (COX-2). Consistent with what has been mentioned earlier, BG10 also significantly inhibited the PCA reaction in mice. In conclusion, these results indicate that ABG suppresses the allergic response, and the mechanism for its anti-allergic action may involve suppressions of Syk, cPLA₂, 5-LO, and COX-2. The anti-allergic actions of ABG, EBG, or BG10 suggest that they may be useful as functional foods for allergic diseases.

  6. Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis.

    PubMed

    Ge, Y; Cai, Y-M; Bonneau, L; Rotari, V; Danon, A; McKenzie, E A; McLellan, H; Mach, L; Gallois, P

    2016-09-01

    Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation.

  7. Inhibition of CHK1 sensitizes Ewing sarcoma cells to the ribonucleotide reductase inhibitor gemcitabine

    PubMed Central

    Goss, Kelli L; Koppenhafer, Stacia L; Harmoney, Kathryn M; Terry, William W; Gordon, David J

    2017-01-01

    Ewing sarcoma is a bone and soft tissue sarcoma that occurs in children and young adults. The EWS-FLI1 gene fusion is the driver mutation in most Ewing sarcoma tumors and functions, in part, as an aberrant transcription factor. We recently identified that Ewing sarcoma cells are sensitive to inhibition of ribonucleotide reductase (RNR), which catalyzes the formation of deoxyribonucleotides from ribonucleotides. In this report, we show that Ewing sarcoma cells are sensitive to treatment with clofarabine, which is a nucleoside analogue and allosteric inhibitor of RNR. However, clofarabine is a reversible inhibitor of RNR and we found that the effect of clofarabine is limited when using a short (6-hour) drug treatment. Gemcitabine, on the other hand, is an irreversible inhibitor of the RRM1 subunit of RNR and this drug induces apoptosis in Ewing sarcoma cells when used in both 6-hour and longer drug treatments. Treatment of Ewing sarcoma cells with gemcitabine also results in activation of checkpoint kinase 1 (CHK1), which is a critical mediator of cell survival in the setting of impaired DNA replication. Notably, inhibition of CHK1 function in Ewing sarcoma cells using a small-molecule CHK1 inhibitor, or siRNA knockdown, in combination with gemcitabine results in increased toxicity both in vitro and in vivo in a mouse xenograft experiment. Overall, our results provide insight into Ewing sarcoma biology and identify a candidate therapeutic target, and drug combination, in Ewing sarcoma. PMID:29152060

  8. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Kai; College of Life Science and Technology, Jinan University, Guangzhou; Chen, Maoyun

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoicmore » acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.« less

  9. Expression of proteinase-activated receptor (PAR)-2 in monocytes from allergic patients and potential molecular mechanism.

    PubMed

    Ge, Shuqing; Li, Tao; Yao, Qijian; Yan, Hongling; Huiyun, Zhang; Zheng, Yanshan; Zhang, Bin; He, Shaoheng

    2016-12-01

    Serine proteases play an important role in inflammation via PARs. However, little is known of expression levels of PARs on monocytes of allergic patients, and influence of serine proteases and PARs on TNF-α secretion from monocytes. Using quantitative real-time PCR (qPCR) and flowcytometry techniques, we observed that the expression level of PAR-2 in monocytes of patients with allergic rhinitis and asthma was increased by 42.9 and 38.2 %. It was found that trypsin, thrombin, and tryptase induced up to 200, 320, and 310 % increase in TNF-α release from monocytes at 16 h, respectively. PAR-1 agonist peptide, SFLLR-NH 2 , and PAR-2 agonist peptide tc-LIGRLO-NH 2 provoked up to 210 and 240 % increase in release of TNF-α. Since SCH 79797, a PAR-1 antagonist, and PD98059, an inhibitor of ERK inhibited thrombin- and SFLLR-NH 2 -induced TNF-α release, the action of thrombin is most likely through a PAR-1- and ERK-mediated signaling mechanism. Similarly, because FSLLRN-NH 2 , an inhibitor of PAR-2 diminished tryptase- and tc-LIGRLO-NH 2 -induced TNF-α release, the action of tryptase appears PAR-2 dependent. Moreover, in vivo study showed that both recombinant cockroach major allergens Per a 1 and Per a 7 provoked upregulation of PAR-2 and PAR-1 expression on CD14+ cells in OVA-sensitized mouse peritoneum. In conclusion, increased expression of PAR-2 in monocytes of AR and asthma implicates that PAR-2 likely play a role in allergy. PAR-2- and PAR-1-mediated TNF-α release from monocytes suggests that these unique protease receptors are involved in the pathogenesis of inflammation.

  10. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors

    PubMed Central

    Kehn-Hall, Kylene; Guendel, Irene; Carpio, Lawrence; Skaltsounis, Leandros; Meijer, Laurent; Al-Harthi, Lena; Steiner, Joseph P.; Nath, Avindra; Kutsch, Olaf; Kashanchi, Fatah

    2013-01-01

    The HIV-1 protein Tat is a critical regulator of viral transcription and has also been implicated as a mediator of HIV-1 induced neurotoxicity. Here using a high throughput screening assay, we identified the GSK-3 inhibitor 6BIO, as a Tat-dependent HIV-1 transcriptional inhibitor. Its ability to inhibit HIV-1 transcription was confirmed in TZM-bl cells, with an IC50 of 40 nM. Through screening 6BIO derivatives, we identified 6BIOder, which has a lower IC50 of 4 nM in primary macrophages and 0.5 nM in astrocytes infected with HIV-1. 6BIOder displayed an IC50 value of 0.03 nM through in vitro GSK-3β kinase inhibition assays. Finally, we demonstrated 6BIO and 6BIOder have neuroprotective effects on Tat induced cell death in rat mixed hippocampal cultures. Therefore 6BIO and its derivatives are unique compounds which, due to their complex mechanisms of action, are able to inhibit HIV-1 transcription as well as to protect against Tat induced neurotoxicity. PMID:21514616

  11. [Syk inhibitors].

    PubMed

    Kimura, Yukihiro; Chihara, Kazuyasu; Takeuchi, Kenji; Sada, Kiyonao

    2013-07-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in the University of Fukui in 1991. Syk is known to be essential for the various physiological functions, especially in hematopoietic lineage cells. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Recently, novel Syk inhibitors were developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis, and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure, and function of Syk, and then describe the novel Syk inhibitors and their current status. Furthermore, we will introduce our findings of the adaptor protein 3BP2 (c-Abl SH3 domain-binding protein-2), as a novel target of Syk.

  12. Differential regulation of eotaxin-1/CCL11 and eotaxin-3/CCL26 production by the TNF-alpha and IL-4 stimulated human lung fibroblast.

    PubMed

    Rokudai, Akiko; Terui, Yasuhito; Kuniyoshi, Ryoko; Mishima, Yuji; Mishima, Yuko; Aizu-Yokota, Eriko; Sonoda, Yoshiko; Kasahara, Tadashi; Hatake, Kiyohiko

    2006-06-01

    Allergic asthma and allergic dermatitis are chronic inflammatory diseases and are characterized by an accumulation of eosinophils at sites of inflammation. Eotaxin-1/CCL11 and eotaxin-3/CCL26 are members of the CC chemokine family, which are known to be potent chemoattractants for eosinophils. We observed that a human lung fibroblast, HFL-1 produces eotaxin-1 and -3 in response to TNF-alpha plus IL-4 stimulation, accompanied with NF-kappaB and STAT6 activation. We explored which signaling pathways are operative in the production of eotaxin-1 and -3 using several inhibitors. Eotaxin-1/CCL11 production was inhibited by a p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, but not by the MEK (MAPK/ERK kinase) inhibitors, PD98059 and U0126. In contrast, eotaxin-3/CCL26 production was inhibited similarly by PD98059 as well as U0126 and SB203580. In addition, two proteasome inhibitors, N-acetyl-leucyl-leucyl-norleucinal (ALLN) and bortezomib with significant inhibitory activity on NF-kappaB activation, inhibited eotaxin-1/CCL11 production with IC50 8 microM for ALLN and IC50 16 nM for bortezomib. In contrast, eotaxin-3/CCL26 production was not inhibited significantly up to 10 microM of ALLN (IC50 16 microM) and up to 10 nM of bortezomib (IC50 11 nM), giving inhibition of eotaxin-3/CCL26 less sensitive than eotaxin-1/CCL11 production by the proteasome inhibitors. Synergistic inhibition was observed among lower doses of SB203580 and proteasome inhibitors, particularly in the eotaxin-1/CCL11 production. No such prominent synergism was found on the eotaxin-3/CCL26 production. The suppression of eotaxin family production by these inhibitors may be efficacious against allergic diseases.

  13. [Growth inhibition of combined pathway inhibitors on KRAS mutated non-small cell lung cancer cell line].

    PubMed

    Li, Zhan-wen; Yang, Zhen-li; Feng, Hai-liang; Bian, Xiao-cui; Liu, Yan-yan; Liu, Yu-qin

    2013-05-01

    To investigate the effect of the selective PI3K inhibitor and MEK inhibitor on KRAS and PTEN co-mutated non-small cell lung cancer cell line NCI-H157 and the relevant mechanisms. NCI-H157 was cultured routinely and treated with different concentrations of the two inhibitors. Cell proliferation was detected by MTT cell cycle assay. Based on the MTT results the cells were divided into four groups: the control group, PI3K inhibitor group (GDC-0941, 0.5 and 5.0 µmol/L), combination group I (0.5 µmol/L AZD6244 + 0.5 µmol/L GDC-0941) and combination group II (5.0 µmol/L AZD6244 + 5.0 µmol/L GDC-0941). Colony formation assay was performed to detect colony formation efficiency. The cell cycle and apoptosis were analyzed by flow cytometry. The expression of protein related to apoptosis was tested with Western blot. Cell growth was inhibited by the two inhibitors. Combination groups led to stronger cell proliferation inhibition: combination group Ishowed synergistic effect of their actions and combination group II showed an additive effect; in both groups, there were decreased colony number [(77.2 ± 1.54)/well vs (61.50 ± 2.12)/well, P < 0.01] and [(51.00 ± 4.00)/ well vs (22.50 ± 3.53)/well, P < 0.01]; and enhanced apoptotic ratios [(18.30 ± 0.82)% vs (21.32 ± 0.56)%, P < 0.01] and [(27.14 ± 1.58)% vs (42.45 ± 4.42)%, P < 0.01]. In addition, compared to the PI3K inhibitor alone group, the NCI-H157 cells in the combination groups showed increased G0/G1 phase and decreased S phase (P < 0.01). Western blotting showed that the combination groups demonstrated significantly decreased expression of cyclin D1 and cyclin B1, increased p21 and cleaved PARP and decreased bcl-2/bax ratio, compared to the PI3K inhibitor only group. The combined inhibition of PI3K (AZD6244) and MEK (GDC-0941) has synergistic effects on the proliferation of NCI-H157 cells, but such effects appear to be in a dose-dependent manner.

  14. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans.

    PubMed

    Abdul-Ghani, Muhammad A; DeFronzo, Ralph A; Norton, Luke

    2013-10-01

    Inhibitors of sodium-glucose cotransporter 2 (SGLT2) are a novel class of antidiabetes drugs, and members of this class are under various stages of clinical development for the management of type 2 diabetes mellitus (T2DM). It is widely accepted that SGLT2 is responsible for >80% of the reabsorption of the renal filtered glucose load. However, maximal doses of SGLT2 inhibitors fail to inhibit >50% of the filtered glucose load. Because the clinical efficacy of this group of drugs is entirely dependent on the amount of glucosuria produced, it is important to understand why SGLT2 inhibitors inhibit <50% of the filtered glucose load. In this Perspective, we provide a novel hypothesis that explains this apparent puzzle and discuss some of the clinical implications inherent in this hypothesis.

  15. Allergic sensitization enhances anion current responsiveness of murine trachea to PAR-2 activation.

    PubMed

    Rievaj, Juraj; Davidson, Courtney; Nadeem, Ahmed; Hollenberg, Morley; Duszyk, Marek; Vliagoftis, Harissios

    2012-03-01

    Protease-activated receptor 2 (PAR-2) is a G protein-coupled receptor possibly involved in the pathogenesis of asthma. PAR-2 also modulates ion transport in cultured epithelial cells, but these effects in native airways are controversial. The influence of allergic inflammation on PAR-2-induced changes in ion transport has received little attention. Here, we studied immediate changes in transepithelial short circuit current (I (sc)) induced by PAR-2 activation in the tracheas of naive and allergic mice. Activation of PAR-2 with an apically added activation peptide (AP) induced a small increase in I (sc), while a much larger increase was observed following basolateral AP addition. In ovalbumin-sensitized and -challenged animals used as a model of allergic airway inflammation, the effect of basolateral AP addition was enhanced. Responses to basolateral AP in both naive and allergic mice were not decreased by blocking sodium absorption with amiloride or CFTR function with CFTR(inh)172 but were reduced by the cyclooxygenase inhibitor indomethacin and largely blocked (>80%) by niflumic acid, a calcium-activated chloride channels' (CaCC) blocker. Allergic mice also showed an enhanced response to ATP and thapsigargin. There was no change in mRNA expression of Par-2 or of the chloride channels Ano1 (Tmem16a) and Bestrophin 2 in tracheas from allergic mice, while mRNA levels of Bestrophin 1 were increased. In conclusion, basolateral PAR-2 activation in the mouse airways led to increased anion secretion through apical CaCC, which was more pronounced in allergic animals. This could be a protective mechanism aimed at clearing allergens and defending against mucus plugging.

  16. Human Immunodeficiency Virus Type 1 cDNA Integration: New Aromatic Hydroxylated Inhibitors and Studies of the Inhibition Mechanism

    PubMed Central

    Farnet, C. M.; Wang, B.; Hansen, M.; Lipford, J. R.; Zalkow, L.; Robinson, W. E.; Siegel, J.; Bushman, F.

    1998-01-01

    Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA is a required step for viral replication. Integrase, the virus-encoded enzyme important for integration, has not yet been exploited as a target for clinically useful inhibitors. Here we report on the identification of new polyhydroxylated aromatic inhibitors of integrase including ellagic acid, purpurogallin, 4,8,12-trioxatricornan, and hypericin, the last of which is known to inhibit viral replication. These compounds and others were characterized in assays with subviral preintegration complexes (PICs) isolated from HIV-1-infected cells. Hypericin was found to inhibit PIC assays, while the other compounds tested were inactive. Counterscreening of these and other integrase inhibitors against additional DNA-modifying enzymes revealed that none of the polyhydroxylated aromatic compounds are active against enzymes that do not require metals (methylases, a pox virus topoisomerase). However, all were cross-reactive with metal-requiring enzymes (restriction enzymes, a reverse transcriptase), implicating metal atoms in the inhibitory mechanism. In mechanistic studies, we localized binding of some inhibitors to the catalytic domain of integrase by assaying competition of binding by labeled nucleotides. These findings help elucidate the mechanism of action of the polyhydroxylated aromatic inhibitors and provide practical guidance for further inhibitor development. PMID:9736543

  17. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors.

    PubMed

    Tsurkan, Lyudmila G; Hatfield, M Jason; Edwards, Carol C; Hyatt, Janice L; Potter, Philip M

    2013-03-25

    Carboxylesterases (CEs) are ubiquitously expressed proteins that are responsible for the detoxification of xenobiotics. They tend to be expressed in tissues likely to be exposed to such agents (e.g., lung and gut epithelia, liver) and can hydrolyze numerous agents, including many clinically used drugs. Due to the considerable structural similarity between cholinesterases (ChE) and CEs, we have assessed the ability of a series of ChE inhibitors to modulate the activity of the human liver (hCE1) and the human intestinal CE (hiCE) isoforms. We observed inhibition of hCE1 and hiCE by carbamate-containing small molecules, including those used for the treatment of Alzheimer's disease. For example, rivastigmine resulted in greater than 95% inhibition of hiCE that was irreversible under the conditions used. Hence, the administration of esterified drugs, in combination with these carbamates, may inadvertently result in decreased hydrolysis of the former, thereby limiting their efficacy. Therefore drug:drug interactions should be carefully evaluated in individuals receiving ChE inhibitors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors

    PubMed Central

    Tsurkan, Lyudmila G.; Hatfield, M. Jason; Edwards, Carol C.; Hyatt, Janice L.; Potter, Philip M.

    2012-01-01

    Carboxylesterases (CEs) are ubiquitously expressed proteins that are responsible for the detoxification of xenobiotics. They tend to be expressed in tissues likely to be exposed to such agents (e.g., lung and gut epithelia, liver) and can hydrolyze numerous agents, including many clinically used drugs. Due to the considerable structural similarity between cholinesterases (ChE) and CEs, we have assessed the ability of a series of ChE inhibitors to modulate the activity of the human liver (hCE1) and the human intestinal CE (hiCE) isoforms, We observed inhibition of hCE1 and hiCE by carbamate-containing small molecules, including those used for the treatment of Alzheimer’s disease. For example, rivastigmine resulted in greater than 95% inhibition of hiCE that was irreversible under the conditions used. Hence, the administration of esterified drugs, in combination with these carbamates, may inadvertently result in decreased hydrolysis of the former, thereby limiting their efficacy. Therefore drug:drug interactions should be carefully evaluated in individuals receiving ChE inhibitors. PMID:23123248

  19. Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells: Characterization of a Selective Allosteric Kinase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagashima, Kumiko; Shumway, Stuart D.; Sathyanarayanan, Sriram

    2013-11-20

    Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitivemore » kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.« less

  20. PDK1 inhibitor GSK2334470 synergizes with proteasome inhibitor MG‑132 in multiple myeloma cells by inhibiting full AKT activity and increasing nuclear accumulation of the PTEN protein.

    PubMed

    Zhang, Jin; Yang, Chunmei; Zhou, Fengping; Chen, Xiaohui

    2018-06-01

    Phosphoinositide‑dependent kinase 1 (PDK1) is generally active in multiple myeloma (MM) and higher expression than other hematopoietic cells, which is associated with the drug resistance and the disease progression. Previous studies have demonstrated that PDK1 can be targeted therapeutically in MM. In the present study, we examined the combination effect of GSK2334470 (GSK‑470), a novel and highly specific inhibitor of PDK1, with proteasome inhibitor MG‑132 in MM cell lines. GSK‑470 monotherapy significantly inhibited growth of MM cell lines and induced apoptosis that was associated with the activation of both the intrinsic mitochondrial pathway and the extrinsic death receptor pathway. Moreover, GSK‑470 demonstrated synergistic growth inhibitory effects with MG‑132. Notably, treatment with these inhibitors resulted in an almost complete inhibition of phosphorylation of mammalian target of rapamycin on Ser2448 and Ser2481 and full activation of AKT. The combination therapy also caused an upregulation of PTEN and an increased nuclear accumulation of PTEN protein. Collectively, our results provide the rationale for novel combination treatment with PDK1 inhibitor and proteasome inhibitors to improve outcomes in patients with MM.

  1. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors.

    PubMed

    Hassan, Refat M; Zaafarany, Ishaq A

    2013-06-17

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  2. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, andmore » concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.« less

  3. OPC-13013, a cyclic nucleotide phosphodiesterase type III, inhibitor, inhibits cell proliferation and transdifferentiation of cultured rat hepatic stellate cells.

    PubMed

    Shimizu, E; Kobayashi, Y; Oki, Y; Kawasaki, T; Yoshimi, T; Nakamura, H

    1999-01-01

    Activated hepatic stellate cells (HSC; lipocytes; Ito cells) proliferate and are responsible for extracellular matrix synthesis during hepatic fibrogenesis. During activation, HSC undergo transdifferentiation into myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA). Adenosine 3', 5'-cyclic monophosphate (cyclic AMP) is an ubiquitous intracellular signaling molecule, and is upregulated by the activation of adenylate cyclase and downregulated via hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). Recently, increased intracellular cyclic AMP has been shown to inhibit HSC activation. The aim of the current study was to determine the effects of inhibition of PDEs on cell proliferation and transdifferentiation in cultured rat HSC. Cell proliferation was determined by [3H]thymidine incorporation, and Western blot analysis was performed for detection of alpha-SMA, a phenotypic marker of transdifferentiation into myofibroblast. When the cells were exposed to 3-isobutyl-1-methylxanthine (IBMX; 50-1000 microM), a nonselective PDE inhibitor, serum-stimulated [3H]thymidine incorporation was suppressed in a dose-dependent manner with a maximum inhibition of 66% at a concentration of 500 microM OPC-13013 (1-60 microM), a selective PDE III isoenzyme inhibitor, induced a dose-dependent inhibitory effect on serum-stimulated DNA synthesis that reached a maximum inhibition of 95% at a concentration of 60 microM, while neither 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MMX), a PDE I isoenzyme inhibitor, nor Ro-20-1724, a PDE IV isoenzyme inhibitor, had an inhibitory effect. Western blot analysis revealed that IBMX or OPC-13013 decreased alpha-SMA expression, while other selective PDE isoenzyme inhibitors did not have a suppressive effect. IBMX, OPC-13013 or Ro-20-1724, but not 8-MMX augmented forskolin-induced increase in intracellular cyclic AMP levels although cyclic AMP levels were not affected by treatment with any of these PDE inhibitors alone. These data

  4. The Anti-Allergic Rhinitis Effect of Traditional Chinese Medicine of Shenqi by Regulating Mast Cell Degranulation and Th1/Th2 Cytokine Balance.

    PubMed

    Shao, Yang-Yang; Zhou, Yi-Ming; Hu, Min; Li, Jin-Ze; Chen, Cheng-Juan; Wang, Yong-Jiang; Shi, Xiao-Yun; Wang, Wen-Jie; Zhang, Tian-Tai

    2017-03-22

    Shenqi is a traditional Chinese polyherbal medicine has been widely used for the treatment of allergic rhinitis (AR). The aim of this study was to investigate the anti-allergic rhinitis activity of Shenqi and explore its underlying molecular mechanism. Ovalbumin (OVA)-induced allergic rhinitis rat model was used to evaluate the anti-allergic rhinitis effect of Shenqi. The effect of Shenqi on IgE-mediated degranulation was measured using rat basophilic leukemia (RBL-2H3) cells. Primary spleen lymphocytes were isolated to investigate the anti-allergic mechanism of Shenqi by detecting the expression of transcription factors via Western blot and the level of cytokines (IL-4 and IFN-γ) via ELISA. In OVA-induced AR rat models, Shenqi relieved the allergic rhinitis symptoms, inhibited the histopathological changes of nasal mucosa, and reduced the levels of IL-4 and IgE. The results from the in vitro study certified that Shenqi inhibited mast cell degranulation. Furthermore, the results of GATA3, T-bet, p-STAT6, and SOCS1 expression and production of IFN-γ and IL-4 demonstrated that Shenqi balanced the ratio of Th1/Th2 (IFN-γ/IL-4) in OVA-stimulated spleen lymphocytes. In conclusion, these results suggest that Shenqi exhibits an obvious anti-allergic effect by suppressing the mast cell-mediated allergic response and by improving the imbalance of Th1/Th2 ratio in allergic rhinitis.

  5. PDZ1 inhibitor peptide protects neurons against ischemia via inhibiting GluK2-PSD-95-module-mediated Fas signaling pathway.

    PubMed

    Yin, Xiao-Hui; Yan, Jing-Zhi; Yang, Guo; Chen, Li; Xu, Xiao-Feng; Hong, Xi-Ping; Wu, Shi-Liang; Hou, Xiao-Yu; Zhang, GuangYi

    2016-04-15

    Respecting the selective inhibition of peptides on protein-protein interactions, they might become potent methods in ischemic stroke therapy. In this study, we investigated the effect of PDZ1 inhibitor peptide on ischemic neuron apoptosis and the relative mechanism. Results showed that PDZ1 inhibitor peptide, which significantly disrupted GluK2-PSD-95 interaction, efficiently protected neuron from ischemia/reperfusion-induced apoptosis. Further, PDZ1 inhibited FasL expression, DISC assembly and activation of Caspase 8, Bid, Caspase 9 and Caspase 3 after global brain ischemia. Based on our previous report that GluK2-PSD-95 pathway increased FasL expression after global brain ischemia, the neuron protection effect of PDZ1 inhibitor peptide was considered to be achieved by disrupting GluK2-PSD-95 interaction and subsequently inhibiting FasL expression and Fas apoptosis pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Multi-Walled Carbon Nanotubes Augment Allergic Airway Eosinophilic Inflammation by Promoting Cysteinyl Leukotriene Production.

    PubMed

    Carvalho, Sophia; Ferrini, Maria; Herritt, Lou; Holian, Andrij; Jaffar, Zeina; Roberts, Kevan

    2018-01-01

    Multi-walled carbon nanotubes (MWCNT) have been reported to promote lung inflammation and fibrosis. The commercial demand for nanoparticle-based materials has expanded rapidly and as demand for nanomaterials grows, so does the urgency of establishing an appreciation of the degree of health risk associated with their increased production and exposure. In this study, we examined whether MWCNT inhalation elicited pulmonary eosinophilic inflammation and influenced the development of allergic airway inflammatory responses. Our data revealed that instillation of FA21 MWCNT into the airways of mice resulted in a rapid increase, within 24 h, in the number of eosinophils present in the lungs. The inflammatory response elicited was also associated with an increase in the level of cysteinyl leukotrienes (cysLTs) present in the bronchoalveolar lavage fluid. CysLTs were implicated in the airway inflammatory response since pharmacological inhibition of their biosynthesis using the 5-lipoxygenase inhibitor Zileuton resulted in a marked reduction in the severity of inflammation observed. Moreover, FA21 MWCNT entering the airways of mice suffering from house dust mite (HDM)-elicited allergic lung inflammation markedly exacerbated the intensity of the airway inflammation. This response was characterized by a pulmonary eosinophilia, lymphocyte infiltration, and raised cysLT levels. The severity of pulmonary inflammation caused by either inhalation of MWCNT alone or in conjunction with HDM allergen correlated with the level of nickel present in the material, since preparations that contained higher levels of nickel (FA21, 5.54% Ni by weight) were extremely effective at eliciting or exacerbating inflammatory or allergic responses while preparations containing lower amounts of nickel (FA04, 2.54% Ni by weight) failed to initiate or exacerbate pulmonary inflammation. In summary, instillation of high nickel MWCNT into the lungs promoted eosinophilic inflammation and caused an intense

  7. Selective Inhibition of HER2-Positive Breast Cancer Cells by the HIV Protease Inhibitor Nelfinavir

    PubMed Central

    2012-01-01

    Background Human epidermal growth factor receptor 2 (HER2)–positive breast cancer is highly aggressive and has higher risk of recurrence than HER2-negative cancer. With few treatment options available, new drug targets specific for HER2-positive breast cancer are needed. Methods We conducted a pharmacological profiling of seven genotypically distinct breast cancer cell lines using a subset of inhibitors of breast cancer cells from a screen of the Johns Hopkins Drug Library. To identify molecular targets of nelfinavir, identified in the screen as a selective inhibitor of HER2-positive cells, we conducted a genome-wide screen of a haploinsufficiency yeast mutant collection. We evaluated antitumor activity of nelfinavir with xenografts in athymic nude mouse models (n = 4–6 per group) of human breast cancer and repeated mixed-effects regression analysis. All statistical tests were two-sided. Results Pharmacological profiling showed that nelfinavir, an anti-HIV drug, selectively inhibited the growth of HER2-positive breast cancer cells in vitro. A genome-wide screening of haploinsufficiency yeast mutants revealed that nelfinavir inhibited heat shock protein 90 (HSP90) function. Further characterization using proteolytic footprinting experiments indicated that nelfinavir inhibited HSP90 in breast cancer cells through a novel mechanism. In vivo, nelfinavir selectively inhibited the growth of HER2-positive breast cancer cells (tumor volume index of HCC1954 cells on day 29, vehicle vs nelfinavir, mean = 14.42 vs 5.16, difference = 9.25, 95% confidence interval [CI] = 5.93 to 12.56, P < .001; tumor volume index of BT474 cells on day 26, vehicle vs nelfinavir, mean = 2.21 vs 0.90, difference = 1.31, 95% CI = 0.83 to 1.78, P < .001). Moreover, nelfinavir inhibited the growth of trastuzumab- and/or lapatinib-resistant, HER2-positive breast cancer cells in vitro at clinically achievable concentrations. Conclusion Nelfinavir was found to be a new class of HSP90 inhibitor and

  8. Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition.

    PubMed

    Hoeflich, Klaus P; Merchant, Mark; Orr, Christine; Chan, Jocelyn; Den Otter, Doug; Berry, Leanne; Kasman, Ian; Koeppen, Hartmut; Rice, Ken; Yang, Nai-Ying; Engst, Stefan; Johnston, Stuart; Friedman, Lori S; Belvin, Marcia

    2012-01-01

    Combinations of MAP/ERK kinase (MEK) and phosphoinositide 3-kinase (PI3K) inhibitors have shown promise in preclinical cancer models, leading to the initiation of clinical trials cotargeting these two key cancer signaling pathways. GDC-0973, a novel selective MEK inhibitor, and GDC-0941, a class I PI3K inhibitor, are in early stage clinical trials as both single agents and in combination. The discovery of these selective inhibitors has allowed investigation into the precise effects of combining inhibitors of two major signaling branches downstream of RAS. Here, we investigated multiple biomarkers in the mitogen-activated protein kinase (MAPK) and PI3K pathway to search for points of convergence that explain the increased apoptosis seen in combination. Using washout studies in vitro and alternate dosing schedules in mice, we showed that intermittent inhibition of the PI3K and MAPK pathway is sufficient for efficacy in BRAF and KRAS mutant cancer cells. The combination of GDC-0973 with the PI3K inhibitor GDC-0941 resulted in combination efficacy in vitro and in vivo via induction of biomarkers associated with apoptosis, including Bcl-2 family proapoptotic regulators. Therefore, these data suggest that continuous exposure of MEK and PI3K inhibitors in combination is not required for efficacy in preclinical cancer models and that sustained effects on downstream apoptosis biomarkers can be observed in response to intermittent dosing. ©2011 AACR.

  9. Anti-inflammatory and anti-allergic effect of Agaricus blazei extract in bone marrow-derived mast cells.

    PubMed

    Song, Hyuk-Hwan; Chae, Hee-Sung; Oh, Sei-Ryang; Lee, Hyeong-Kyu; Chin, Young-Won

    2012-01-01

    In this study, the anti-inflammatory and anti-allergic effects of the chloroform-soluble extract of Agaricus blazei in mouse bone marrow-derived mast cells (BMMCs) were investigated. The chloroform-soluble extract inhibited IL-6 production in PMA plus A23187-stimulated BMMCs, and down-regulated the phosphorylation of Akt. In addition, this extract demonstrated inhibition of the degranulation of β-hexosaminidase and the production of IL-6, prostaglandin D(2) and leukotriene C(4) in PMA plus A23187-induced BMMCs. In conclusion, the chloroform-soluble extract of Agaricus blazei exerted anti-inflammatory and anti-allergic activities mediated by influencing IL-6, prostaglandin D(2), leukotriene C(4), and the phosphorylation of Akt.

  10. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling

    PubMed Central

    Vin, Harina; Ojeda, Sandra S; Ching, Grace; Leung, Marco L; Chitsazzadeh, Vida; Dwyer, David W; Adelmann, Charles H; Restrepo, Monica; Richards, Kristen N; Stewart, Larissa R; Du, Lili; Ferguson, Scarlett B; Chakravarti, Deepavali; Ehrenreiter, Karin; Baccarini, Manuela; Ruggieri, Rosamaria; Curry, Jonathan L; Kim, Kevin B; Ciurea, Ana M; Duvic, Madeleine; Prieto, Victor G; Ullrich, Stephen E; Dalby, Kevin N; Flores, Elsa R; Tsai, Kenneth Y

    2013-01-01

    Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001 PMID:24192036

  11. Epigenomics and allergic disease

    PubMed Central

    Lockett, Gabrielle A; Patil, Veeresh K; Soto-Ramírez, Nelís; Ziyab, Ali H; Holloway, John W; Karmaus, Wilfried

    2014-01-01

    Allergic disease development is affected by both genes and the environment, and epigenetic mechanisms are hypothesized to mediate these environmental effects. In this article, we discuss the link between the environment, DNA methylation and allergic disease, as well as questions of causality inherent to analyses of DNA methylation. From the practical side, we describe characteristics of allergic phenotypes and contrast different epidemiologic study designs used in epigenetic research. We examine methodological considerations, how best to conduct preprocessing and analysis of DNA methylation data sets, and the latest methods, technologies and discoveries in this rapidly advancing field. DNA methylation and other epigenetic marks are firmly entwined with allergic disease, a link that may hold the basis for future allergic disease diagnosis and treatment. PMID:24283882

  12. Epigenomics and allergic disease.

    PubMed

    Lockett, Gabrielle A; Patil, Veeresh K; Soto-Ramírez, Nelís; Ziyab, Ali H; Holloway, John W; Karmaus, Wilfried

    2013-12-01

    Allergic disease development is affected by both genes and the environment, and epigenetic mechanisms are hypothesized to mediate these environmental effects. In this article, we discuss the link between the environment, DNA methylation and allergic disease, as well as questions of causality inherent to analyses of DNA methylation. From the practical side, we describe characteristics of allergic phenotypes and contrast different epidemiologic study designs used in epigenetic research. We examine methodological considerations, how best to conduct preprocessing and analysis of DNA methylation data sets, and the latest methods, technologies and discoveries in this rapidly advancing field. DNA methylation and other epigenetic marks are firmly entwined with allergic disease, a link that may hold the basis for future allergic disease diagnosis and treatment.

  13. 1,8-Dihydroxynaphthalene (DHN)-Melanin Biosynthesis Inhibitors Increase Erythritol Production in Torula corallina, and DHN-Melanin Inhibits Erythrose Reductase

    PubMed Central

    Lee, Jung-Kul; Jung, Hyung-Moo; Kim, Sang-Yong

    2003-01-01

    The yeast Torula corallina is a strong erythritol producer that is used in the industrial production of erythritol. However, melanin accumulation during culture represents a serious problem for the purification of erythritol from the fermentation broth. Melanin biosynthesis inhibitors such as 3,4-dihydroxyphenylalanine and 1,8-dihydroxynaphthalene (DHN)-melanin inhibitors were added to the T. corallina cultures. Only the DHN-melanin inhibitors showed an effect on melanin production, which suggests that the melanin formed during the culturing of T. corallina is derived from DHN. This finding was confirmed by the detection of a shunt product of the pentaketide pathway, flaviolin, and elemental analysis. Among the DHN-melanin inhibitors, tricyclazole was the most effective. Supplementation with tricyclazole enhanced the production of erythritol while significantly inhibiting the production of DHN-melanin and DHN-melanin biosynthetic enzymes, such as trihydroxynaphthalene reductase. The erythrose reductase from T. corallina was purified to homogeneity by ion-exchange and affinity chromatography. Purified erythrose reductase was significantly inhibited in vitro in a noncompetitive manner by elevated levels of DHN-melanin. In contrast, the level of erythrose reductase activity was unaffected by increasing concentrations of tricyclazole. These results suggest that supplemental tricyclazole reduces the production of DHN-melanin, which may lead to a reduction in the inhibition of erythrose reductase and a higher yield of erythritol. This is the first report to demonstrate that melanin biosynthesis inhibitors increase the production of a sugar alcohol in T. corallina. PMID:12788746

  14. In vitro and in vivo anti-allergic effects of Arctium lappa L.

    PubMed

    Knipping, Karen; van Esch, Elisabeth C A M; Wijering, Selva C; van der Heide, Sicco; Dubois, Anthony E; Garssen, Johan

    2008-11-01

    The discovery of drugs that can be used for the treatment of allergic disease is important in human health. Arctium lappa Linne (Compositae) (AL) has been used as a traditional medicine in Brazil and throughout Asia and is known to have an anti-inflammatory effect. In this study, the inhibitory effects of AL on degranulation and the release of mediators as well as on inhibition of cys-leukotriene biosynthesis by basophils were investigated. AL was selected out of 10,000 herbal extracts in a set-up for high throughput screening in which the degree of degranulation was monitored by the release of beta-hexosaminidase from rat basophil leukemia (RBL-2H3) cells. The AL extract significantly reduced degranulation and biosynthesis of cys-leukotrienes of human basophils in peripheral blood mono-nuclear cells (PBMCs) (50% inhibitory concentration [IC(50)] = 8.3 and 11.4 microg/ml, respectively). Viability and metabolic activity of the PBMCs were not affected. Although arctiin, the active component of AL that has been described in the literature, was not able to reduce degranulation in RBL-2H3 cells, a single high-performance liquid chromatography (HPLC) fraction from the AL extract inhibited beta-hexosaminidase release (IC(50) = 22.2 microg/ml). Topical administration of an aqueous extract of AL (5 mg/ear) on the ear of whey-sensitized mice 4 hrs before challenge with whey in the ear inhibited acute ear swelling by 50% in an in vivo cow's milk allergic model. The extract had no effect in this model when administered orally. In conclusion, the active component present in the active HPLC fraction of the AL extract was able to significantly reduce the release of inflammatory mediators through inhibition of degranulation and cys-leukotriene release in vitro. In addition, this active component was able to inhibit acute skin response in mice in vivo, indicating that AL is a very promising natural component for use in anti-allergic treatment.

  15. Allergic rhinitis

    PubMed Central

    2011-01-01

    Allergic rhinitis is a common disorder that is strongly linked to asthma and conjunctivitis. It is usually a long-standing condition that often goes undetected in the primary-care setting. The classic symptoms of the disorder are nasal congestion, nasal itch, rhinorrhea and sneezing. A thorough history, physical examination and allergen skin testing are important for establishing the diagnosis of allergic rhinitis. Second-generation oral antihistamines and intranasal corticosteroids are the mainstay of treatment. Allergen immunotherapy is an effective immune-modulating treatment that should be recommended if pharmacologic therapy for allergic rhinitis is not effective or is not tolerated. This article provides an overview of the pathophysiology, diagnosis, and appropriate management of this disorder. PMID:22166009

  16. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    PubMed Central

    Hassan, Refat M.; Zaafarany, Ishaq A.

    2013-01-01

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper. PMID:28809282

  17. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth

    PubMed Central

    Koo, Junghui; Yue, Ping; Gal, Anthony A.; Khuri, Fadlo R.; Sun, Shi-Yong

    2014-01-01

    mTOR kinase inhibitors which target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacological inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. PMID:24626091

  18. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

    PubMed

    Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

    2014-05-01

    mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. ©2014 AACR.

  19. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease.

    PubMed Central

    Wright, C I; Guela, C; Mesulam, M M

    1993-01-01

    Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706

  20. Novel Hypothesis to Explain Why SGLT2 Inhibitors Inhibit Only 30–50% of Filtered Glucose Load in Humans

    PubMed Central

    Abdul-Ghani, Muhammad A.; DeFronzo, Ralph A.; Norton, Luke

    2013-01-01

    Inhibitors of sodium-glucose cotransporter 2 (SGLT2) are a novel class of antidiabetes drugs, and members of this class are under various stages of clinical development for the management of type 2 diabetes mellitus (T2DM). It is widely accepted that SGLT2 is responsible for >80% of the reabsorption of the renal filtered glucose load. However, maximal doses of SGLT2 inhibitors fail to inhibit >50% of the filtered glucose load. Because the clinical efficacy of this group of drugs is entirely dependent on the amount of glucosuria produced, it is important to understand why SGLT2 inhibitors inhibit <50% of the filtered glucose load. In this Perspective, we provide a novel hypothesis that explains this apparent puzzle and discuss some of the clinical implications inherent in this hypothesis. PMID:24065789

  1. Corrosion inhibition by inorganic cationic inhibitors on the high strength alumunium alloy, 2024-T3

    NASA Astrophysics Data System (ADS)

    Chilukuri, Anusha

    The toxicity and carcinogenic nature of chromates has led to the investigation of environmentally friendly compounds that offer good corrosion resistance to AA 2024-T3. Among the candidate inhibitors are rare earth metal cationic (REM) and zinc compounds, which have received much of attention over the past two decades. A comparative study on the corrosion inhibition caused by rare earth metal cations, Ce3+, Pr3+, La3+ and Zn2+ cations on the alloy was done. Cathodic polarization showed that these inhibitor ions suppress the oxygen reduction reaction (ORR) to varying extents with Zn2+ providing the best inhibition. Pr3+ exhibited windows of concentration (100-300 ppm) in which the corrosion rate is minimum; similar to the Ce3+ cation. Scanning Electron Microscopy (SEM) studies showed that the mechanism of inhibition of the Pr3+ ion is also similar to that of the Ce3+ ion. Potentiodynamic polarization experiments after 30 min immersion time showed greatest suppression of oxygen reduction reaction in neutral chloride solutions (pH 7), which reached a maximum at a Zn2+ ion concentration of 5 mM. Anodic polarization experiments after 30 min immersion time, showed no anodic inhibition by the inhibitor in any concentration (0.1 mM - 10 mM) and at any pH. However, anodic polarization of samples immersed after longer immersion times (upto 4 days) in mildly acidic Zn2+ (pH 4) solutions showed significant reduction in anodic kinetics indicating that zinc also acts as a “slow anodic inhibitor”. In contrast to the polarization experiments, coupons exposed to inhibited acidic solutions at pH 4 showed complete suppression of dissolution of Al2CuMg particles compared to zinc-free solutions in the SEM studies. Samples exposed in pH 4 Zn2+-bearing solution exhibited highest polarization resistance which was also observed to increase with time. In deaerated solutions, the inhibition by Zn2+ at pH 4 is not observed as strongly. The ability to make the interfacial electrolyte

  2. HDAC inhibitors TSA and sodium butyrate enhanced the human IL-5 expression by altering histone acetylation status at its promoter region.

    PubMed

    Han, Songyan; Lu, Jun; Zhang, Yu; Cheng, Cao; Li, Lin; Han, Liping; Huang, Baiqu

    2007-02-15

    The expression of IL-5 correlated tightly with the maturation and differentiation of eosinophils, and is considered as a cytokine responsible for allergic inflammation. We report here that inhibition of HDAC activity by Trichostatin A (TSA) and sodium butyrate (NaBu), the two specific HDAC inhibitors, resulted in the elevation of both endogenous and exogenous activity of IL-5 promoter. We demonstrated that both the mRNA expression and protein production of IL-5 were stimulated by TSA and NaBu treatments. ChIP assays showed that treatments of TSA and NaBu caused hyperacetylation of histones H3 and H4 on IL-5 promoter in Jurkat cells, which consequently promoted the exogenous luciferase activity driven by this promoter. Moreover, site-directed mutagenesis studies showed that the binding sites for transcription factors NFAT, GATA3 and YY1 on IL-5 promoter were critical for the effects of TSA and NaBu, suggesting that the transcriptional activation of IL-5 gene by these inhibitors was achieved by affecting HDAC function on IL-5 promoter via transcription factors. These data will contribute to elucidating the unique mechanism of IL-5 transcriptional control and to the therapy of allergic disorders related to IL-5.

  3. Allergy and allergic mediators in tears.

    PubMed

    Leonardi, Andrea

    2013-12-01

    The identification of inflammatory mediators in the tear fluid have been extensively used in ocular allergy to find either a 'disease marker', to better understand the immune mechanisms involved in the ocular surface inflammation, or to identify potential targets for therapeutic interventions. While the clinical characteristics allow a relatively convincing diagnosis of ocular allergic diseases, in the initial, non active phases, or in the chronic stages, the diagnosis may not be clear. Although not highly specific, total tear IgE can be measured with local tests by inserting a paper strip in the lower meniscus. The measurement of tear specific inflammatory markers, such as histamine, tryptase, ECP, IL-4, IL-5 and eotaxin, may be useful for the diagnosis or monitoring ocular allergy. New technologies such as multiplex bead assays, membrane-bound antibody array and proteomic techniques can characterize the distribution of a wide range of bioactive trace proteins in tears. Dozens of mediators, cytokines, chemokines, growth factors, angiogenic modulators, enzymes and inhibitors were thus identified in small tear samples using these techniques, providing the possible identification of specific biomarker for either specific disease or disease activity. However, to date, there is no a single specific laboratory test suitable for the diagnosis and monitoring of allergic conjunctivitis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells.

    PubMed

    Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon

    2017-02-04

    Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel

  5. Potential of the bean alpha-amylase inhibitor alpha-AI-1 to inhibit alpha-amylase activity in true bugs(Hemiptera)

    USDA-ARS?s Scientific Manuscript database

    True bugs (Hemiptera) are an important pest complex not controlled by Bt crops. An alternative source of resistance includes inhibitors of digestive enzymes. aAI-1, an a-amylase inhibitor from the common bean, has been shown to inhibit a-amylases of bruchid pests of grain legumes. Here we quantify t...

  6. Subtropical grass pollen allergens are important for allergic respiratory diseases in subtropical regions

    PubMed Central

    2012-01-01

    Background Grass pollen allergens are a major cause of allergic respiratory disease but traditionally prescribing practice for grass pollen allergen-specific immunotherapy has favoured pollen extracts of temperate grasses. Here we aim to compare allergy to subtropical and temperate grass pollens in patients with allergic rhinitis from a subtropical region of Australia. Methods Sensitization to pollen extracts of the subtropical Bahia grass (Paspalum notatum), Johnson grass (Sorghum halepense) and Bermuda grass (Cynodon dactylon) as well as the temperate Ryegrass (Lolium perenne) were measured by skin prick in 233 subjects from Brisbane. Grass pollen-specific IgE reactivity was tested by ELISA and cross-inhibition ELISA. Results Patients with grass pollen allergy from a subtropical region showed higher skin prick diameters with subtropical Bahia grass and Bermuda grass pollens than with Johnson grass and Ryegrass pollens. IgE reactivity was higher with pollen of Bahia grass than Bermuda grass, Johnson grass and Ryegrass. Patients showed asymmetric cross-inhibition of IgE reactivity with subtropical grass pollens that was not blocked by temperate grass pollen allergens indicating the presence of species-specific IgE binding sites of subtropical grass pollen allergens that are not represented in temperate grass pollens. Conclusions Subtropical grass pollens are more important allergen sources than temperate grass pollens for patients from a subtropical region. Targeting allergen-specific immunotherapy to subtropical grass pollen allergens in patients with allergic rhinitis in subtropical regions could improve treatment efficacy thereby reducing the burden of allergic rhinitis and asthma. PMID:22409901

  7. Suppressive effects of ginsan on the development of allergic reaction in murine asthmatic model.

    PubMed

    Lim, You-Jin; Na, Hee-Sam; Yun, Yeon-Sook; Choi, Inseon S; Oh, Jong-Suk; Rhee, Joon-Haeng; Cho, Bok-Hee; Lee, Hyun-Chul

    2009-01-01

    Asthma is a major health problem worldwide, and the morbidity and mortality caused by asthma are on the rise. Corticosteroid therapies for asthma treatment frequently induce many side effects. Therefore, the development of new medicines that have both high efficacy and fewer side effects has been a scientific challenge. Here we tested the effect of ginsan, a polysaccharide derived from Panax ginseng, against allergic reaction in an ovalbumin (OVA)-induced murine asthmatic model in comparison with dexamethasone, and investigated its underlying mechanism. To induce murine asthma, mice were sensitized and challenged with OVA. Ginsan or dexamethasone was administered by injection 3 times a week. Airway hyperresponsiveness, airway inflammation and lung pathology were assessed in order to evaluate the effect of ginsan against asthma. Ginsan treatment reduced airway hyperresponsiveness, remodeling and eosinophilia. These effects of ginsan were equivalent to those of dexamethasone. Ginsan treatment decreased the IL-5 level in the supernatant of cultured splenocytes, while IFN-gamma and serum IgE were not altered. To elucidate the mechanism of ginsan, expression of inflammation-related genes were screened. Interestingly, ginsan treatment upregulated cyclooxygenase (COX)-1 and COX-2 mRNA, and expression of their proteins in the lung were also increased. PGE(2) in the bronchoalveolar lavage fluid was also increased by the ginsan treatment. Lastly, ginsan inhibited the allergic reaction aggravated by COX inhibitor (indomethacin). Ginsan has anti-asthmatic effects, which seem to be partially mediated by enhancing the synthesis of COX gene products. Copyright 2009 S. Karger AG, Basel.

  8. A Novel Trypsin Inhibitor-Like Cysteine-Rich Peptide from the Frog Lepidobatrachus laevis Containing Proteinase-Inhibiting Activity.

    PubMed

    Wang, Yu-Wei; Tan, Ji-Min; Du, Can-Wei; Luan, Ning; Yan, Xiu-Wen; Lai, Ren; Lu, Qiu-Min

    2015-08-01

    Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.

  9. Epirubicin, Identified Using a Novel Luciferase Reporter Assay for Foxp3 Inhibitors, Inhibits Regulatory T Cell Activity.

    PubMed

    Kashima, Hajime; Momose, Fumiyasu; Umehara, Hiroshi; Miyoshi, Nao; Ogo, Naohisa; Muraoka, Daisuke; Shiku, Hiroshi; Harada, Naozumi; Asai, Akira

    2016-01-01

    Forkhead box protein p3 (Foxp3) is crucial to the development and suppressor function of regulatory T cells (Tregs) that have a significant role in tumor-associated immune suppression. Development of small molecule inhibitors of Foxp3 function is therefore considered a promising strategy to enhance anti-tumor immunity. In this study, we developed a novel cell-based assay system in which the NF-κB luciferase reporter signal is suppressed by the co-expressed Foxp3 protein. Using this system, we screened our chemical library consisting of approximately 2,100 compounds and discovered that a cancer chemotherapeutic drug epirubicin restored the Foxp3-inhibited NF-κB activity in a concentration-dependent manner without influencing cell viability. Using immunoprecipitation assay in a Treg-like cell line Karpas-299, we found that epirubicin inhibited the interaction between Foxp3 and p65. In addition, epirubicin inhibited the suppressor function of murine Tregs and thereby improved effector T cell stimulation in vitro. Administration of low dose epirubicin into tumor-bearing mice modulated the function of immune cells at the tumor site and promoted their IFN-γ production without direct cytotoxicity. In summary, we identified the novel action of epirubicin as a Foxp3 inhibitor using a newly established luciferase-based cellular screen. Our work also demonstrated our screen system is useful in accelerating discovery of Foxp3 inhibitors.

  10. IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG

    PubMed Central

    Amniai, L.; Biet, F.; Marquillies, P.; Locht, C.; Pestel, J.; Tonnel, A.-B.; Duez, C.

    2007-01-01

    Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects depending on its environment. We therefore constructed a BCG strain producing murine IL-18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of ovalbumin (OVA)-alum and primary (D20–22) and secondary (D62, 63) challenged with OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1 hour before each immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the development of AHR, mucus production, eosinophil influx, and local Th2 cytokine production in BAL, both after the primary and secondary challenge. These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation. PMID:18299704

  11. Structural basis of trypsin inhibition and entomotoxicity of cospin, serine protease inhibitor involved in defense of Coprinopsis cinerea fruiting bodies.

    PubMed

    Sabotič, Jerica; Bleuler-Martinez, Silvia; Renko, Miha; Avanzo Caglič, Petra; Kallert, Sandra; Štrukelj, Borut; Turk, Dušan; Aebi, Markus; Kos, Janko; Künzler, Markus

    2012-02-03

    Cospin (PIC1) from Coprinopsis cinerea is a serine protease inhibitor with biochemical properties similar to those of the previously characterized fungal serine protease inhibitors, cnispin from Clitocybe nebularis and LeSPI from Lentinus edodes, classified in the family I66 of the MEROPS protease inhibitor classification. In particular, it exhibits a highly specific inhibitory profile as a very strong inhibitor of trypsin with K(i) in the picomolar range. Determination of the crystal structure revealed that the protein has a β-trefoil fold. Site-directed mutagenesis and mass spectrometry results have confirmed Arg-27 as the reactive binding site for trypsin inhibition. The loop containing Arg-27 is positioned between the β2 and β3 strands, distinguishing cospin from other β-trefoil-fold serine protease inhibitors in which β4-β5 or β5-β6 loops are involved in protease inhibition. Biotoxicity assays of cospin on various model organisms revealed a strong and specific entomotoxic activity against Drosophila melanogaster. The inhibitory inactive R27N mutant was not entomotoxic, associating toxicity with inhibitory activity. Along with the abundance of cospin in fruiting bodies of C. cinerea and the lack of trypsin-like proteases in the C. cinerea genome, these results suggest that cospin and its homologs are effectors of a fungal defense mechanism against fungivorous insects that function by specific inhibition of serine proteases in the insect gut.

  12. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    PubMed

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4 + /FoxP3 + regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  13. The protein kinase C inhibitor, bisindolylmaleimide (I), inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells.

    PubMed

    Park, Won Sun; Son, Youn Kyoung; Ko, Eun A; Ko, Jae-Hong; Lee, Hyang Ae; Park, Kyoung Sun; Earm, Yung E

    2005-06-17

    We examined the effects of the protein kinase C (PKC) inhibitor, bisindolylmaleimide (BIM) (I), on voltage-dependent K+ (K(V)) channels in rabbit coronary arterial smooth muscle cells using whole-cell patch clamp technique. BIM (I) reversibly and dose-dependently inhibited the K(V) currents with an apparent Kd value of 0.27 microM. The inhibition of the K(V) current by BIM (I) was highly voltage-dependent between -30 and +10 mV (voltage range of channel activation), and the additive inhibition of the K(V) current by BIM (I) was voltage-dependence in the full activation voltage range. The rate constants of association and dissociation for BIM (I) were 18.4 microM(-1) s(-1) and 4.7 s(-1), respectively. BIM (I) had no effect on the steady-state activation and inactivation of K(V) channels. BIM (I) caused use-dependent inhibition of K(V) current, which was consistent with the slow recovery from inactivation in the presence of BIM (I) (recovery time constants were 856.95 +/- 282.6 ms for control, and 1806.38 +/- 110.0 ms for 300 nM BIM (I)). ATP-sensitive K+ (K(ATP)), inward rectifier K+ (K(IR)), Ca2+-activated K+ (BK(Ca)) channels, which regulate the membrane potential and arterial tone, were not affected by BIM (I). The PKC inhibitor, chelerythrine, and protein kinase A (PKA) inhibitor, PKA-IP, had little effect on the K(V) current and did not significantly alter the inhibitory effects of BIM (I) on the K(V) current. These results suggest that BIM (I) inhibits K(V) channels in a phosphorylation-independent, and voltage-, time- and use-dependent manner.

  14. Syk inhibitors.

    PubMed

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjo, Chisato; Takeuchi, Kenji; Sada, Kiyonao

    2013-01-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in University of Fukui in 1991. Syk is most highly expressed by haemopoietic cells and known to play crucial roles in the signal transduction through various immunoreceptors of the adaptive immune response. However, recent reports demonstrate that Syk also mediates other biological functions, such as innate immune response, osteoclast maturation, platelet activation and cellular adhesion. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Because of its critical roles on the cellular functions, the development of Syk inhibitors for clinical use has been desired. Although many candidate compounds were produced, none of them had progressed to clinical trials. However, novel Syk inhibitors were finally developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure and function of Syk, and then the novel Syk inhibitors and their current status. In addition, we will introduce our research focused on the functions of Syk on Dectin-1-mediated mast cell activation.

  15. Discovery of a potent nanoparticle P-selectin antagonist with anti-inflammatory effects in allergic airway disease

    PubMed Central

    John, Alison E.; Lukacs, Nicholas W.; Berlin, Aaron A.; Palecanda, Aiyappa; Bargatze, Robert F.; Stoolman, Lloyd M.; Nagy, Jon O.

    2010-01-01

    The severity of allergic asthma is dependent, in part, on the intensity of peribronchial inflammation. P-selectin is known to play a role in the development of allergen-induced peribronchial inflammation and airway hyperreactivity. Selective inhibitors of P-selectin-mediated leukocyte endothelial-cell interactions may therefore attenuate the inflammatory processes associated with allergic airway disease. Novel P-selectin inhibitors were created using a polyvalent polymer nanoparticle capable of displaying multiple synthetic, low molecular weight ligands. By assembling a particle that presents an array of groups, which as monomers interact with only low affinity, we created a construct that binds extremely efficiently to P-selectin. The ligands acted as mimetics of the key binding elements responsible for the high-avidity adhesion of P-selectin to the physiologic ligand, PSGL-1. The inhibitors were initially evaluated using an in vitro shear assay system in which interactions between circulating cells and P-selectin-coated capillary tubes were measured. The nanoparticles were shown to preferentially bind to selectins expressed on activated endothelial cells. We subsequently demonstrated that nanoparticles displaying P-selectin blocking arrays were functionally active in vivo, significantly reducing allergen-induced airway hyperreactivity and peribronchial eosinophilic inflammation in a murine model of asthma. PMID:14563683

  16. Management of Allergic Rhinitis

    PubMed Central

    Sausen, Verra O.; Marks, Katherine E.; Sausen, Kenneth P.; Self, Timothy H.

    2005-01-01

    Allergic rhinitis is the most common chronic childhood disease. Reduced quality of life is frequently caused by this IgE-mediated disease, including sleep disturbance with subsequent decreased school performance. Asthma and exercise-induced bronchospasm are commonly seen concurrently with allergic rhinitis, and poorly controlled allergic rhinitis negatively affects asthma outcomes. Nonsedating antihistamines or intranasal azelastine are effective agents to manage allergic rhinitis, often in combination with oral decongestants. For moderate to severe persistent disease, intranasal corticosteroids are the most effiective agents. Some patients require concomitant intranasal corticosteroids and nonsedating antihistamines for optimal management. Other available agents include leukotriene receptor antagonists, intranasal cromolyn, intranasal ipratropium, specific immunotherapy, and anti-IgE therapy. PMID:23118635

  17. Respiratory syncytial virus (RSV) entry is inhibited by serine protease inhibitor AEBSF when present during an early stage of infection.

    PubMed

    Van der Gucht, Winke; Leemans, Annelies; De Schryver, Marjorie; Heykers, Annick; Caljon, Guy; Maes, Louis; Cos, Paul; Delputte, Peter L

    2017-08-17

    Host proteases have been shown to play important roles in many viral activities such as entry, uncoating, viral protein production and disease induction. Therefore, these cellular proteases are putative targets for the development of antivirals that inhibit their activity. Host proteases have been described to play essential roles in Ebola, HCV, HIV and influenza, such that specific protease inhibitors are able to reduce infection. RSV utilizes a host protease in its replication cycle but its potential as antiviral target is unknown. Therefore, we evaluated the effect of protease inhibitors on RSV infection. To measure the sensitivity of RSV infection to protease inhibitors, cells were infected with RSV and incubated for 18 h in the presence or absence of the inhibitors. Cells were fixed, stained and studied using fluorescence microscopy. Several protease inhibitors, representing different classes of proteases (AEBSF, Pepstatin A, E-64, TPCK, PMSF and aprotinin), were tested for inhibitory effects on an RSV A2 infection of HEp-2 cells. Different treatment durations, ranging from 1 h prior to inoculation and continuing for 18 h during the assay, were evaluated. Of all the inhibitors tested, AEBSF and TPCK significantly decreased RSV infection. To ascertain that the observed effect of AEBSF was not a specific feature related to HEp-2 cells, A549 and BEAS-2B cells were also used. Similar to HEp-2, an almost complete block in the number of RSV infected cells after 18 h of incubation was observed and the effect was dose-dependent. To gain insight into the mechanism of this inhibition, AEBSF treatment was applied during different phases of an infection cycle (pre-, peri- and post-inoculation treatment). The results from these experiments indicate that AEBSF is mainly active during the early entry phase of RSV. The inhibitory effect was also observed with other RSV isolates A1998/3-2 and A2000/3-4, suggesting that this is a general feature of RSV. RSV infection can be

  18. Inhibition of mutant BRAF splice variant signaling by next-generation, selective RAF inhibitors.

    PubMed

    Basile, Kevin J; Le, Kaitlyn; Hartsough, Edward J; Aplin, Andrew E

    2014-05-01

    Vemurafenib and dabrafenib block MEK-ERK1/2 signaling and cause tumor regression in the majority of advanced-stage BRAF(V600E) melanoma patients; however, acquired resistance and paradoxical signaling have driven efforts for more potent and selective RAF inhibitors. Next-generation RAF inhibitors, such as PLX7904 (PB04), effectively inhibit RAF signaling in BRAF(V600E) melanoma cells without paradoxical effects in wild-type cells. Furthermore, PLX7904 blocks the growth of vemurafenib-resistant BRAF(V600E) cells that express mutant NRAS. Acquired resistance to vemurafenib and dabrafenib is also frequently driven by expression of mutation BRAF splice variants; thus, we tested the effects of PLX7904 and its clinical analog, PLX8394 (PB03), in BRAF(V600E) splice variant-mediated vemurafenib-resistant cells. We show that paradox-breaker RAF inhibitors potently block MEK-ERK1/2 signaling, G1/S cell cycle events, survival and growth of vemurafenib/PLX4720-resistant cells harboring distinct BRAF(V600E) splice variants. These data support the further investigation of paradox-breaker RAF inhibitors as a second-line treatment option for patients failing on vemurafenib or dabrafenib. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Enfuvirtide (T20)-Based Lipopeptide Is a Potent HIV-1 Cell Fusion Inhibitor: Implications for Viral Entry and Inhibition.

    PubMed

    Ding, Xiaohui; Zhang, Xiujuan; Chong, Huihui; Zhu, Yuanmei; Wei, Huamian; Wu, Xiyuan; He, Jinsheng; Wang, Xinquan; He, Yuxian

    2017-09-15

    The peptide drug enfuvirtide (T20) is the only viral fusion inhibitor used in combination therapy for HIV-1 infection, but it has relatively low antiviral activity and easily induces drug resistance. Emerging studies demonstrate that lipopeptide-based fusion inhibitors, such as LP-11 and LP-19, which mainly target the gp41 pocket site, have greatly improved antiviral potency and in vivo stability. In this study, we focused on developing a T20-based lipopeptide inhibitor that lacks pocket-binding sequence and targets a different site. First, the C-terminal tryptophan-rich motif (TRM) of T20 was verified to be essential for its target binding and inhibition; then, a novel lipopeptide, termed LP-40, was created by replacing the TRM with a fatty acid group. LP-40 showed markedly enhanced binding affinity for the target site and dramatically increased inhibitory activity on HIV-1 membrane fusion, entry, and infection. Unlike LP-11 and LP-19, which required a flexible linker between the peptide sequence and the lipid moiety, addition of a linker to LP-40 sharply reduced its potency, implying different binding modes with the extended N-terminal helices of gp41. Also, interestingly, LP-40 showed more potent activity than LP-11 in inhibiting HIV-1 Env-mediated cell-cell fusion while it was less active than LP-11 in inhibiting pseudovirus entry, and the two inhibitors displayed synergistic antiviral effects. The crystal structure of LP-40 in complex with a target peptide revealed their key binding residues and motifs. Combined, our studies have not only provided a potent HIV-1 fusion inhibitor, but also revealed new insights into the mechanisms of viral inhibition. IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection; however, T20 requires high doses and has a low genetic barrier for resistance, and its inhibitory mechanism and structural basis remain unclear. Here, we report the design of LP-40, a T20-based lipopeptide inhibitor

  20. The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition.

    PubMed

    Giommarelli, Chiara; Zuco, Valentina; Favini, Enrica; Pisano, Claudio; Dal Piaz, Fabrizio; De Tommasi, Nunziatina; Zunino, Franco

    2010-03-01

    Curcumin, a natural polyphenol, has been described to exhibit effects on signaling pathways, leading to induction of apoptosis. In this study, we observed that curcumin inhibited Hsp90 activity causing depletion of client proteins implicated in survival pathways. Based on this observation, this study was designed to investigate the cellular effects of curcumin combination with the pan-HDAC inhibitors, vorinostat and panobinostat, which induce hyperacetylation of Hsp90, resulting in inhibition of its chaperone function. The results showed that, at subtoxic concentrations, curcumin markedly sensitized tumor cells to vorinostat- and panobinostat-induced growth inhibition and apoptosis. The sensitization was associated with persistent depletion of Hsp90 client proteins (EGFR, Raf-1, Akt, and survivin). In conclusion, our findings document a novel mechanism of action of curcumin and support the therapeutic potential of curcumin/HDAC inhibitors combination, because the synergistic interaction was observed at pharmacologically achievable concentrations, which were ineffective when each drug was used alone.

  1. Effect of Ganoderma lucidum on pollen-induced biphasic nasal blockage in a guinea pig model of allergic rhinitis.

    PubMed

    Mizutani, Nobuaki; Nabe, Takeshi; Shimazu, Masaji; Yoshino, Shin; Kohno, Shigekatsu

    2012-03-01

    Ganoderma lucidum (GL), an oriental medical mushroom, has been used in Asia for the prevention and treatment of a variety of diseases. However, the effect of GL on allergic rhinitis has not been well defined. The current study describes the inhibitory effect of GL on the biphasic nasal blockage and nasal hyperresponsiveness induced by repeated antigen challenge in a guinea pig model of allergic rhinitis. Intranasally sensitized guinea pigs were repeatedly challenged by inhalation of Japanese cedar pollen once every week. Ganoderma lucidum was orally administered once daily for 8 weeks from the time before the first challenge. The treatment with GL dose-dependently inhibited the early and late phase nasal blockage at the fifth to ninth antigen challenges. Furthermore, nasal hyperresponsiveness to intranasally applied leukotriene D₄ on 2 days after the eighth antigen challenge was also inhibited by the treatment with GL. However, Cry j 1-specific IgE antibody production was not affected by the treatment. In conclusion, we demonstrated that the pollen-induced biphasic nasal blockage and nasal hyperresponsiveness were suppressed by the daily treatment with GL in the guinea pig model of allergic rhinitis. These results suggest that GL may be a useful therapeutic drug for treating patients with allergic rhinitis. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Pan-Pim Kinase Inhibitor AZD1208 Suppresses Tumor Growth and Synergistically Interacts with Akt Inhibition in Gastric Cancer Cells.

    PubMed

    Lee, Miso; Lee, Kyung-Hun; Min, Ahrum; Kim, Jeongeun; Kim, Seongyeong; Jang, Hyemin; Lim, Jee Min; Kim, So Hyeon; Ha, Dong-Hyeon; Jeong, Won Jae; Suh, Koung Jin; Yang, Yae-Won; Kim, Tae Yong; Oh, Do-Youn; Bang, Yung-Jue; Im, Seock-Ah

    2018-06-06

    Pim kinases are highly conserved serine/threonine kinases, and different expression patterns of each isoform (Pim-1, Pim-2, and Pim-3) have been observed in various types of human cancers, including gastric cancer. AZD1208 is a potent and selective inhibitor that affects all three isoforms of Pim. We investigated the effects of AZD1208 as a single agent and in combination with an Akt inhibitor in gastric cancer cells. The antitumor activity of AZD1208 with/without an Akt inhibitor was evaluated in a large panel of gastric cancer cell lines through growth inhibition assays. The underlying mechanism was also examined by western blotting, immunofluorescence assay, and cell cycle analysis. AZD1208 treatment decreased gastric cancer cell proliferation rates and induced autophagy only in long-term culture systems. Light chain 3B (LC3B), a marker of autophagy, was increased in sensitive cells in a dose-dependent manner with AZD1208 treatment, which suggested that the growth inhibition effect of AZD1208 was achieved through autophagy, not apoptosis. Moreover, we found that cells damaged by Pim inhibition were repaired by activation of the DNA damage repair pathway, which promoted cell survival and led the cells to become resistant to AZD1208. We also confirmed that the combination of an Akt inhibitor with AZD1208 produced a highly synergistic effect in gastric cancer cell lines. Treatment with AZD1208 alone induced considerable cell death through autophagy in gastric cancer cells. Moreover, the combination of AZD1208 with an Akt inhibitor showed synergistic antitumor effects through regulation of the DNA damage repair pathway.

  3. The M358R variant of α{sub 1}-proteinase inhibitor inhibits coagulation factor VIIa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, William P., E-mail: sheffiel@mcmaster.ca; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario; Bhakta, Varsha

    The naturally occurring M358R mutation of the plasma serpin α{sub 1}-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assaysmore » of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10{sup 2} M{sup −1}sec{sup −1}. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.« less

  4. Inhibitors of p38 suppress cytokine production in rheumatoid arthritis synovial membranes: does variable inhibition of interleukin-6 production limit effectiveness in vivo?

    PubMed

    Page, Theresa H; Brown, Anthony; Timms, Emma M; Foxwell, Brian M J; Ray, Keith P

    2010-11-01

    The activity of p38 MAPK regulates lipopolysaccharide (LPS)-stimulated production of key proinflammatory cytokines such as tumor necrosis factor α (TNFα). Consequently, p38 MAPK inhibitors have attracted considerable interest as potential treatments of rheumatoid arthritis (RA), and studies in murine models of arthritis have yielded promising results. However, the performance of several compounds in human clinical trials has been disappointing. At present, the reason for this poor performance is unclear. The aim of this study was to examine the effects of p38 inhibitors on both diseased and normal human tissue and cells, in order to test whether this kinase still plays a critical role in cytokine production under conditions of chronic inflammation. Proinflammatory and antiinflammatory cytokine production was monitored after treatment of primary human monocytes, macrophages, and RA synovial membrane cultures with p38 MAPK inhibitor compounds. The following 3 inhibitors were used in these studies: SB-203580 (inhibits the α and β isoforms), BIRB-796 (inhibits the α, β, γ, and δ isoforms), and a novel, structurally distinct p38 MAPK inhibitor, SB-731445 (inhibits the α and β isoforms). SB-731445 and SB-203580 produced profound inhibition of spontaneous production of proinflammatory cytokines (TNFα and interleukin-1 [IL-1]) in both RA membrane cultures and LPS-stimulated primary human monocytes. However, this and other p38 MAPK inhibitors produced a significant increase in IL-6 production by LPS-stimulated primary human macrophages and a decrease in IL-10 production by all cell types examined. The potentially proinflammatory consequences of these activities (decreased IL-10 production and increased IL-6 production) may offer some explanation for the inability of p38 MAPK inhibitors to provide the therapeutic benefit that had been hoped for in RA. Copyright © 2010 by the American College of Rheumatology.

  5. Chapter 5: Allergic rhinitis.

    PubMed

    Uzzaman, Ashraf; Story, Rachel

    2012-01-01

    Rhinitis is a symptomatic inflammatory disorder of the nose with different causes such as allergic, nonallergic, infectious, hormonal, drug induced, and occupational and from conditions such as sarcoidosis and necrotizing antineutrophil cytoplasmic antibodies positive (Wegener's) granulomatosis. Allergic rhinitis affects up to 40% of the population and results in nasal (ocular, soft palate, and inner ear) itching, congestion, sneezing, and clear rhinorrhea. Allergic rhinitis causes extranasal untoward effects including decreased quality of life, decreased sleep quality, obstructive sleep apnea, absenteeism from work and school, and impaired performance at work and school termed "presenteeism." The nasal mucosa is extremely vascular and changes in blood supply can lead to obstruction. Parasympathetic stimulation promotes an increase in nasal cavity resistance and nasal gland secretion. Sympathetic stimulation leads to vasoconstriction and consequent decrease in nasal cavity resistance. The nasal mucosa also contains noradrenergic noncholinergic system, but the contribution to clinical symptoms of neuropeptides such as substance P remains unclear. Management of allergic rhinitis combines allergen avoidance measures with pharmacotherapy, allergen immunotherapy, and education. Medications used for the treatment of allergic rhinitis can be administered intranasally or orally and include oral and intranasal H(1)-receptor antagonists (antihistamines), intranasal and systemic corticosteroids, intranasal anticholinergic agents, and leukotriene receptor antagonists. For intermittent mild allergic rhinitis, an oral or intranasal antihistamine is recommended. In individuals with persistent moderate/severe allergic rhinitis, an intranasal corticosteroid is preferred. When used in combination, an intranasal H(1)-receptor antagonist and a nasal steroid provide greater symptomatic relief than monotherapy. Allergen immunotherapy is the only disease-modifying intervention available.

  6. TGF-Beta Gene Polymorphisms in Food Allergic versus Non-Food Allergic Eosinophilic Esophagitis

    DTIC Science & Technology

    2014-12-01

    past reports, the majority of our EE subjects are male, Caucasian, and have another atopic disorder (asthma, allergy, eczema and/or food allergy...or skin prick testing positive Table 2: Co-existent Allergic Characteristics of Pediatric EoE Population Asthma (%) Allergic Rhinitis (%) Eczema ...Consistent with high rates of atopy in the EoE population, 36% had asthma, 53% had allergic rhinitis, 43% had eczema , and 42% had a an immediate

  7. Inhibition of xyloglucanase from an alkalothermophilic Thermomonospora sp. by a peptidic aspartic protease inhibitor from Penicillium sp. VM24.

    PubMed

    Menon, Vishnu; Rao, Mala

    2012-11-01

    A bifunctional inhibitor from Penicillium sp VM24 causing inactivation of xyloglucanase from Thermomonospora sp and an aspartic protease from Aspergillus saitoi was identified. Steady state kinetics studies of xyloglucanase and the inhibitor revealed an irreversible, non-competitive, two-step inhibition mechanism with IC(50) and K(i) values of 780 and 500nM respectively. The interaction of o-phthalaldehyde (OPTA)-labeled xyloglucanase with the inhibitor revealed that the inhibitor binds to the active site of the enzyme. Far- and near-UV spectrophotometric analysis suggests that the conformational changes induced in xyloglucanase by the inhibitor may be due to irreversible denaturation of enzyme. The bifunctional inhibitor may have potential as a biocontrol agent for the protection of plants against phytopathogenic fungi. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Anti-allergic and anti-inflammatory effects of butanol extract from Arctium Lappa L.

    PubMed

    Sohn, Eun-Hwa; Jang, Seon-A; Joo, Haemi; Park, Sulkyoung; Kang, Se-Chan; Lee, Chul-Hoon; Kim, Sun-Young

    2011-02-08

    Atopic dermatitis is a chronic, allergic inflammatory skin disease that is accompanied by markedly increased levels of inflammatory cells, including eosinophils, mast cells, and T cells. Arctium lappa L. is a traditional medicine in Asia. This study examined whether a butanol extract of A. lappa (ALBE) had previously unreported anti-allergic or anti-inflammatory effects. This study examined the effect of ALBE on the release of β-hexosaminidase in antigen-stimulated-RBL-2H3 cells. We also evaluated the ConA-induced expression of IL-4, IL-5, mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-κB using RT-PCR, Western blotting, and ELISA in mouse splenocytes after ALBE treatment. We observed significant inhibition of β-hexosaminidase release in RBL-2H3 cells and suppressed mRNA expression and protein secretion of IL-4 and IL-5 induced by ConA-treated primary murine splenocytes after ALBE treatment. Additionally, ALBE (100 μg/mL) suppressed not only the transcriptional activation of NF-κB, but also the phosphorylation of MAPKs in ConA-treated primary splenocytes. These results suggest that ALBE inhibits the expression of IL-4 and IL-5 by downregulating MAPKs and NF-κB activation in ConA-treated splenocytes and supports the hypothesis that ALBE may have beneficial effects in the treatment of allergic diseases, including atopic dermatitis.

  9. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway.

    PubMed

    Park, Gunhyuk; Oh, Dal-Seok; Lee, Mi Gi; Lee, Chang Eon; Kim, Yong-Ung

    2016-11-01

    Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α)+IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-like skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells.

    PubMed

    Pasquier, Benoit

    2015-04-03

    Autophagy plays an important role in cancer and it has been suggested that it functions not only as a tumor suppressor pathway to prevent tumor initiation, but also as a prosurvival pathway that helps tumor cells endure metabolic stress and resist death triggered by chemotherapeutic agents. We recently described the discovery of inhibitors of PIK3C3/Vps34 (phosphatidylinositol 3-kinase, catalytic subunit type 3), the lipid kinase component of the class III phosphatidylinositol 3-kinase (PtdIns3K). This PtdIns3K isoform has attracted significant attention in recent years because of its role in autophagy. Following chemical optimization we identified SAR405, a low molecular mass kinase inhibitor of PIK3C3, highly potent and selective with regard to other lipid and protein kinases. We demonstrated that inhibiting the catalytic activity of PIK3C3 disrupts vesicle trafficking from late endosomes to lysosomes. SAR405 treatment also inhibits autophagy induced either by starvation or by MTOR (mechanistic target of rapamycin) inhibition. Finally our results show that combining SAR405 with everolimus, the FDA-approved MTOR inhibitor, results in a significant synergy on the reduction of cell proliferation using renal tumor cells. This result indicates a potential therapeutic application for PIK3C3 inhibitors in cancer.

  11. Human melanoma cells resistant to MAPK inhibitors can be effectively targeted by inhibition of the p90 ribosomal S6 kinase

    PubMed Central

    Kosnopfel, Corinna; Sinnberg, Tobias; Sauer, Birgit; Niessner, Heike; Schmitt, Anja; Makino, Elena; Forschner, Andrea; Hailfinger, Stephan; Garbe, Claus; Schittek, Birgit

    2017-01-01

    The clinical availability of small molecule inhibitors specifically targeting mutated BRAF marked a significant breakthrough in melanoma therapy. Despite a dramatic anti-tumour activity and improved patient survival, rapidly emerging resistance, however, greatly limits the clinical benefit. The majority of the already described resistance mechanisms involve a reactivation of the MAPK signalling pathway. The p90 ribosomal S6 kinase (RSK), a downstream effector of the MAPK signalling cascade, has been reported to enhance survival of melanoma cells in response to chemotherapy. Here, we can show that RSK activity is significantly increased in human melanoma cells with acquired resistance to the BRAFV600E/K inhibitor vemurafenib. Interestingly, inhibition of RSK signalling markedly impairs the viability of vemurafenib resistant melanoma cells and is effective both in two-dimensional and in three-dimensional culture systems, especially in a chronic, long-term application. The effect of RSK inhibition can be partly replicated by downregulation of the well-known RSK target, Y-box binding protein 1 (YB-1). Intriguingly, RSK inhibition also retains its efficacy in melanoma cells with combined resistance to vemurafenib and the MEK inhibitor trametinib. These data suggest that active RSK signalling might be an attractive novel therapeutic target in melanoma with acquired resistance to MAPK pathway inhibitors. PMID:28415756

  12. Cysteine based novel noncompetitive inhibitors of urease(s)--distinctive inhibition susceptibility of microbial and plant ureases.

    PubMed

    Amtul, Zareen; Kausar, Naheed; Follmer, Cristian; Rozmahel, Richard F; Atta-Ur-Rahman; Kazmi, Syed Arif; Shekhani, Mohammed Saleh; Eriksen, Jason L; Khan, Khalid M; Choudhary, Mohammad Iqbal

    2006-10-01

    Based on the catalysis mechanism of urease, a homologous series of 10 cysteine derivatives (CysDs) was designed and synthesized, and their inhibitory activities were evaluated for microbial ureases (Bacillus pasteurii, BPU, and Proteus mirabilis, PMU) and for a plant urease [jack bean (Cavavalia ensiformis), JBU]. As already described, thiol-compounds might inhibit urease activity by chelating the nickel atoms involved in the catalysis process. In contrast to cysteine, which has been reported to be a very weak urease inhibitor, we verified a potential inhibitory activity of these CysDs. The kinetic data demonstrate that thiol derivatives are more effective than the respective thioether derivatives. Besides, thiol-CysDs had a reduced activity in acidic pH (5.0). Lineweaver-Burk plots indicated that the nature of inhibition was of noncompetitive type for all 10 compounds, with the minimum Ki value of 2 microM for N,N-dimethyl L-cysteine. It is proposed that these classes of compounds are more potent inhibitors of the bacterial ureases, compared with the plant-originated urease. Since microbial urease is directly involved in the infection process of many pathological organisms, this work demonstrates that thiol-CysDs represent a class of new potential urease inhibitors.

  13. Lithospermi radix extract inhibits histamine release and production of inflammatory cytokine in mast cells.

    PubMed

    Kim, Eun Kyoung; Kim, Eun-Young; Moon, Phil-Dong; Um, Jae-Young; Kim, Hyung-Min; Lee, Hyun-Sam; Sohn, Youngjoo; Park, Seong Kyu; Jung, Hyuk-Sang; Sohn, Nak-Won

    2007-12-01

    Lithospermi radix (LR, Borraginaceae, the root of Lithospermum erythrorhizon Siebold. et Zuccarinii) is used in herbal medicine to treat such conditions as eczema, skin burns and frostbite. This study investigates the effects of LR on the anti-allergy mechanism. LR inhibited the release of histamine from rat peritoneal mast cells by compound 48/80 in a dose-dependent manner. LR orally administered at 6.59 mg/100 g also inhibited the anti-DNP IgE-induced passive cutaneous anaphylaxis reaction. LR inhibited the PMA plus A23187-induced increase in IL-6, IL-8, and TNF-alpha expression in HMC-1 cells. In addition, LR also inhibited nuclear factor-kappa B (NF-kappaB) activation and I kappaB-alpha degradation. These results show that LR had an inhibitory effect on the atopic allergic reaction. Furthermore, the in vivo and in vitro anti-allergic effect of LR suggests possible therapeutic applications of this agent for inflammatory allergic diseases.

  14. Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor.

    PubMed

    Hassan, Refat M; Ibrahim, Samia M; Takagi, Hideo D; Sayed, Suzan A

    2018-07-15

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyelectrolyte chondroitin-4-sulfate (CS) polysaccharide has been studied using both gasometrical and weight-loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing the inhibitor concentration and decreased with increasing temperature. The inhibition action of CS on Al metal surface was found to obey both of Langmuir and Freundlich isotherms. The factors affecting the corrosion rates such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and the temperature were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the results obtained is discussed. Copyright © 2018. Published by Elsevier Ltd.

  15. Host DNA released by NETosis promotes rhinovirus-induced type 2 allergic asthma exacerbation

    PubMed Central

    Toussaint, Marie; Jackson, David J; Swieboda, Dawid; Guedán, Anabel; Tsourouktsoglou, Theodora-Dorita; Ching, Yee Man; Radermecker, Coraline; Makrinioti, Heidi; Aniscenko, Julia; Edwards, Michael R; Solari, Roberto; Farnir, Frédéric; Papayannopoulos, Venizelos; Bureau, Fabrice; Marichal, Thomas; Johnston, Sebastian L

    2018-01-01

    Respiratory viral infections represent the most common cause of allergic asthma exacerbations. Amplification of type 2 immune response is strongly implicated in asthma exacerbation, but how virus infection boosts type 2 responses is poorly understood. We report a significant correlation between release of host double stranded DNA (dsDNA) following rhinovirus infection and exacerbation of type 2 allergic inflammation in humans. In a mouse model of allergic airway hypersensitivity, we show that rhinovirus infection triggers dsDNA release associated with neutrophil extracellular traps (NETs) formation (NETosis). We further demonstrate that inhibiting NETosis by blocking neutrophil elastase, or degrading NETs with DNase protects mice from type 2 immunopathology. Furthermore, injection of mouse genomic DNA alone is sufficient to recapitulate many features of rhinovirus-induced type 2 immune responses and asthma pathology. Thus, NETosis and its associated extracellular dsDNA contribute to the pathogenesis and may represent potential therapeutic targets of rhinovirus-induced asthma exacerbations. PMID:28459437

  16. Japanese Guideline for Allergic Rhinitis 2014.

    PubMed

    Okubo, Kimihiro; Kurono, Yuichi; Fujieda, Shigeharu; Ogino, Satoshi; Uchio, Eiichi; Odajima, Hiroshi; Takenaka, Hiroshi

    2014-09-01

    Like asthma and atopic dermatitis, allergic rhinitis is an allergic disease, but of the three, it is the only type I allergic disease. Allergic rhinitis includes pollinosis, which is intractable and reduces quality of life (QOL) when it becomes severe. A guideline is needed to understand allergic rhinitis and to use this knowledge to develop a treatment plan. In Japan, the first guideline was prepared after a symposium held by the Japanese Society of Allergology in 1993. The current 7th edition was published in 2013, and is widely used today. To incorporate evidence based medicine (EBM) introduced from abroad, the most recent collection of evidence/literature was supplemented to the Practical Guideline for the Management of Allergic Rhinitis in Japan 2013. The revised guideline includes assessment of diagnosis/treatment and prescriptions for children and pregnant women, for broad clinical applications. An evidence-based step-by-step strategy for treatment is also described. In addition, the QOL concept and cost benefit analyses are also addressed. Along with Allergic Rhinitis and its Impact of Asthma (ARIA), this guideline is widely used for various clinical purposes, such as measures for patients with sinusitis, childhood allergic rhinitis, oral allergy syndrome, and anaphylaxis and for pregnant women. A Q&A section regarding allergic rhinitis in Japan was added to the end of this guideline.

  17. Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors.

    PubMed

    Lockhart, B; Closier, M; Howard, K; Steward, C; Lestage, P

    2001-04-01

    The potential interaction of acetylcholinesterase inhibitors with cholinergic receptors may play a significant role in the therapeutic and/or side-effects associated with this class of compound. In the present study, the capacity of acetylcholinesterase inhibitors to interact with muscarinic receptors was assessed by their ability to displace both [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding in rat brain membranes. The [3H]-quinuclinidyl benzilate/[3H]-oxotremorine-M affinity ratios permitted predictions to be made of either the antagonist or agonist properties of the different compounds. A series of compounds, representative of the principal classes of acetylcholinesterase inhibitors, displaced [3H]-oxotremorine-M binding with high-to-moderate potency (ambenonium>neostigmine=pyridostigmine=tacrine>physostigmine> edrophonium=galanthamine>desoxypeganine) whereas only ambenonium and tacrine displaced [3H]-quinuclinidyl benzilate binding. Inhibitors such as desoxypeganine, parathion and gramine demonstrated negligible inhibition of the binding of both radioligands. Scatchard plots constructed from the inhibition of [3H]-oxotremorine-M binding in the absence and presence of different inhibitors showed an unaltered Bmax and a reduced affinity constant, indicative of potential competitive or allosteric mechanisms. The capacity of acetylcholinesterase inhibitors, with the exception of tacrine and ambenonium, to displace bound [3H]-oxotremorine-M in preference to [3H]quinuclinidyl benzilate predicts that the former compounds could act as potential agonists at muscarinic receptors. Moreover, the rank order for potency in inhibiting acetylcholinesterase (ambenonium>neostigmine=physostigmine =tacrine>pyridostigmine=edrophonium=galanthamine >desoxypeganine>parathion>gramine) indicated that the most effective inhibitors of acetylcholinesterase also displaced [3H]-oxotremorine-M to the greatest extent. The capacity of these inhibitors to displace [3H

  18. Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kδ/Akt and NFκB induction in a murine asthma model.

    PubMed

    El-Hashim, Ahmed Z; Khajah, Maitham A; Renno, Waleed M; Babyson, Rhema S; Uddin, Mohib; Benter, Ibrahim F; Ezeamuzie, Charles; Akhtar, Saghir

    2017-08-30

    The molecular mechanisms underlying asthma pathogenesis are poorly characterized. In this study, we investigated (1) whether Src mediates epidermal growth factor receptor (EGFR) transactivation; (2) if ERK1/2, PI3Kδ/Akt and NF-κB are signaling effectors downstream of Src/EGFR activation; and (3) if upstream inhibition of Src/EGFR is more effective in downregulating the allergic inflammation than selective inhibition of downstream signaling pathways. Allergic inflammation resulted in increased phosphorylation of EGFR, Akt, ERK1/2 and IκB in the lung tissues from ovalbumin (OVA)-challenged BALB/c mice. Treatment with inhibitors of Src (SU6656) or EGFR (AG1478) reduced EGFR phosphorylation and downstream signaling which resulted in the inhibition of the OVA-induced inflammatory cell influx in bronchoalveolar lavage fluid (BALF), perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyper-responsiveness. Treatment with pathway-selective inhibitors for ERK1/2 (PD89059) and PI3Kδ/Akt (IC-87114) respectively, or an inhibitor of NF-κB (BAY11-7085) also reduced the OVA-induced asthmatic phenotype but to a lesser extent compared to Src/EGFR inhibition. Thus, Src via EGFR transactivation and subsequent downstream activation of multiple pathways regulates the allergic airway inflammatory response. Furthermore, a broader upstream inhibition of Src/EGFR offers an attractive therapeutic alternative in the treatment of asthma relative to selectively targeting the individual downstream signaling effectors.

  19. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  20. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Gunhyuk, E-mail: uranos5@kiom.re.kr

    Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α) + IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-likemore » skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. - Highlights: • 6-Shogaol inhibited Th2/1-mediated inflammatory mediators in vitro and in vivo. • 6-Shogaol regulated ROS/MAPKs/Nrf2 signaling pathway. • 6-Shogaol can protect against the development of AD-like skin lesions.« less

  1. Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice.

    PubMed

    Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H

    2006-06-01

    Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.

  2. Ulinastatin activates haem oxygenase 1 antioxidant pathway and attenuates allergic inflammation

    PubMed Central

    Song, Dongmei; Song, Geng; Niu, Yinghao; Song, Wei; Wang, Jiantao; Yu, Lei; Yang, Jianwang; Lv, Xin; Steinberg, Harry; Liu, Shu Fang; Wang, Baoshan

    2014-01-01

    Background and Purpose Ulinastatin (UTI), a serine protease inhibitor, was recently found to have an anti-inflammatory action. However, the mechanisms mediating this anti-inflammatory effect are not well understood. This study tested the hypothesis that UTI suppresses allergic inflammation by inducing the expression of haem oxygenase 1 (HO1). Experimental Approach Control mice and mice sensitized (on days 1, 9 and 14) and challenged (on days 21 to 27) with ovalbumin (OVA) were treated with UTI. The effects of UTI on basal expression of HO1 and that induced by OVA challenge were examined. The involvement of UTI-induced HO1 expression in anti-inflammatory and antioxidant effects of UTI was also evaluated. Key Results UTI markedly increased basal HO1 protein expression in lungs of control mice in a time- and dose-dependent manner, and augmented HO1 protein expression induced by OVA. The up-regulation of HO1 mediated by UTI in sensitized and OVA-challenged mice was associated with reduced airway inflammation, alleviated tissue injury, reduced oxidant stress and enhanced antioxidant enzyme activities. Inhibition of HO1 activity using HO1 inhibitor, zinc protoporphyrin, attenuated inhibitory effects of UTI on inflammation and oxidant stress, and its stimulant effects on antioxidant enzyme activities. Mechanistic analysis showed that UTI increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), stimulated Nrf2 DNA binding activity and concomitantly up-regulated HO1 mRNA expression. Conclusions and Implications UTI is a potent and naturally occurring inducer of HO1 expression. HO1 up-regulation contributes significantly to the anti-inflammatory and organ-protective effects of UTI, which has important research and therapeutic implications. PMID:24835359

  3. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice

    PubMed Central

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-01-01

    Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420

  4. Topical ocular treatment with monoclonal antibody Fab fragments targeting Japanese cedar pollen Cry j 1 inhibits Japanese cedar pollen-induced allergic conjunctivitis in mice.

    PubMed

    Mizutani, Nobuaki; Nabe, Takeshi; Yoshino, Shin

    2017-03-05

    Fab fragments (Fabs) of antibodies having the ability only to bind to specific allergens lack effector functions due to the absence of the Fc portion. In the present study, we examined whether IgG1 monoclonal antibody (mAb) Fabs targeting Japanese cedar pollen (JCP) Cry j 1 were able to regulate JCP-induced allergic conjunctivitis in mice. BALB/c mice actively sensitized with JCP were repeatedly challenged by topical administration of JCP eye drops. Fabs prepared by the digestion of anti-JCP IgG1 mAbs (P1-3 and P1-8) with papain were applied to the eye 15min before the JCP challenges followed by measurement of the clinical conjunctivitis score. In the in vitro experiments, P1-3 and P1-8 showed specific binding to JCP Cry j 1. Furthermore, intact P1-3 binding to Cry j 1 was inhibited by P1-3 Fabs, but not P1-8 Fabs; additionally, P1-8 Fabs, but not P1-3 Fabs, suppressed the intact P1-8 binding, suggesting that the epitopes of Cry j 1 recognized by P1-3 and P1-8 were different. Topical ocular treatment with P1-3 Fabs or P1-8 Fabs was followed by marked suppression of JCP-induced conjunctivitis (P<0.01). In histological evaluation, P1-8 Fabs showed a reduction in eosinophil infiltration in the conjunctiva (P<0.01). These results demonstrated that topical ocular treatment with IgG1 mAb Fabs to Cry j 1 was effective in suppressing JCP-induced allergic conjunctivitis in mice. Furthermore, it suggests the possibility that some epitopes recognized by Fabs could be used as a tool to regulate allergic conjunctivitis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A novel dual inhibitor of microtubule and Bruton's tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis.

    PubMed

    Pandey, Manoj K; Gowda, Krishne; Sung, Shen-Shu; Abraham, Thomas; Budak-Alpdogan, Tulin; Talamo, Giampolo; Dovat, Sinisa; Amin, Shantu

    2017-09-01

    Bruton's tyrosine kinase (BTK) regulates many vital signaling pathways and plays a critical role in cell proliferation, survival, migration, and resistance. Previously, we reported that a small molecule, KS99, is an inhibitor of tubulin polymerization. In the present study, we explored whether KS99 is a dual inhibitor of BTK and tubulin polymerization. Although it is known that BTK is required for clonogenic growth and resistance, and microtubules are essential for cancer cell growth, dual targeting of these two components has not been explored previously. Through docking studies, we predicted that KS99 interacts directly with the catalytic domain of BTK and inhibits phosphorylation at the Y223 residue and kinase activities. Treatment of KS99 reduces the cell viability of multiple myeloma (MM) and CD138 + cells, with an IC 50 of between 0.5 and 1.0 μmol/L. We found that KS99 is able to induce apoptosis in MM cells in a caspase-dependent manner. KS99 suppressed the receptor activator of NF-κB ligand (RANKL)-induced differentiation of macrophages to osteoclasts in a dose-dependent manner and, importantly, inhibited the expression of cytokines associated with bone loss. Finally, we found that KS99 inhibits the in vivo tumor growth of MM cells through the inhibition of BTK and tubulin. Overall, our results show that dual inhibition of BTK and tubulin polymerization by KS99 is a viable option in MM treatment, particularly in the inhibition of refraction and relapse. Copyright © 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  6. Fullerene carbon-70 derivatives dampen anaphylaxis and allergic asthma pathogenesis in mice

    NASA Astrophysics Data System (ADS)

    Norton, Sarah Brooke

    C70-TGA inhibition. Further experiments utilizing an inhibitor of 11,12-EET formation (6-(2-Propargyloxyphenyl)hexanoic acid) and a structural analog of 14,15-EET (14,15-EE-5(Z)-E) in vivo indicate that these mediators are closely associated with C70-TGA mediated inhibition as their inhibition reverses the anti-inflammatory effects of C70-TGA. Importantly, mice did not exhibit any acute toxicity following C70-TGA treatment and liver and kidney function were normal. Collectively, these results show that the fullerene C70 derivative C70-TGA is capable of dampening severe allergic responses including systemic anaphylaxis, airway inflammation, and bronchoconstriction. The mechanism of inhibition is through the upregulation of the anti-inflammatory EETs, which may dampen mast cell degranulation in vivo, thus contributing to the inhibitory effect of C70-TGA on allergic disease

  7. Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells

    PubMed Central

    Vasilatos, Shauna N.; Boric, Lamia; Shaw, Patrick G.; Davidson, Nancy E.

    2013-01-01

    Abnormal activities of histone lysine demethylases (KDMs) and lysine deacetylases (HDACs) are associated with aberrant gene expression in breast cancer development. However, the precise molecular mechanisms underlying the crosstalk between KDMs and HDACs in chromatin remodeling and regulation of gene transcription are still elusive. In this study, we showed that treatment of human breast cancer cells with inhibitors targeting the zinc cofactor dependent class I/II HDAC, but not NAD+ dependent class III HDAC, led to significant increase of H3K4me2 which is a specific substrate of histone lysine-specific demethylase 1 (LSD1) and a key chromatin mark promoting transcriptional activation. We also demonstrated that inhibition of LSD1 activity by a pharmacological inhibitor, pargyline, or siRNA resulted in increased acetylation of H3K9 (AcH3K9). However, siRNA knockdown of LSD2, a homolog of LSD1, failed to alter the level of AcH3K9, suggesting that LSD2 activity may not be functionally connected with HDAC activity. Combined treatment with LSD1 and HDAC inhibitors resulted in enhanced levels of H3K4me2 and AcH3K9, and exhibited synergistic growth inhibition of breast cancer cells. Finally, microarray screening identified a unique subset of genes whose expression was significantly changed by combination treatment with inhibitors of LSD1 and HDAC. Our study suggests that LSD1 intimately interacts with histone deacetylases in human breast cancer cells. Inhibition of histone demethylation and deacetylation exhibits cooperation and synergy in regulating gene expression and growth inhibition, and may represent a promising and novel approach for epigenetic therapy of breast cancer. PMID:21452019

  8. Proteasome inhibitor PS-341 limits macrophage necroptosis by promoting cIAPs-mediated inhibition of RIP1 and RIP3 activation.

    PubMed

    Zhang, Yuchen; Cheng, Junjun; Zhang, Junmeng; Wu, Xiaofan; Chen, Fang; Ren, Xuejun; Wang, Yunlong; Li, Quan; Li, Yu

    2016-09-02

    Apoptotic and necrotic macrophages have long been known for their existence in atherosclerotic lesions. However, the mechanisms underlying the choice of their death pattern have not been fully elucidated. Here, we report the effects of PS-341, a potent and specific proteasome inhibitor, on the cell death of primary bone marrow-derived macrophages (BMDMs) in vitro. The results showed that PS-341 could not induce macrophage apoptosis or promote TNF-induced macrophage apoptosis, on the other hand, PS-341 could significantly inhibit macrophage necroptosis induced by TNF and pan-caspase inhibitor z-VAD treatment. Remarkably, high-dose of PS-341 showed similar inhibitory effects on macrophage necroptosis comparable to that of kinase inhibition of RIP1 through specific inhibitor Nec-1 or inhibition of RIP3 via specific genetical ablation. Furthermore, the degradation of cellular inhibitor of apoptosis proteins (cIAPs) was suppressed by PS-341, which could antagonize the activation of RIP1 kinase via post-translational mechanism. Further evidences demonstrated reduced levels of both RIP1 and RIP 3 upon PS-341 treatment, concomitantly, a more strong association of RIP1 with cIAPs and less with RIP3 was found following PS-341 treatment, these findings suggested that PS-341 may disrupt the formation of RIP1-RIP3 complex (necrosome) through stabilizing cIAPs. Collectively, our results indicated that the proteasome-mediated degradation of cIAPs could be inhibited by PS-341 and followed by limited RIP1 and RIP3 kinase activities, which were indispensable for necroptosis, thus eliciting a significant necroptosis rescue in BMDMs in vitro. Overall, our study has identified a new role of PS-341 in the cell death of BMDMs and provided a novel insight into the atherosclerotic inflammation caused by proteasome-mediated macrophage necroptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Anti-allergic and anti-inflammatory effects of butanol extract from Arctium Lappa L

    PubMed Central

    2011-01-01

    Background Atopic dermatitis is a chronic, allergic inflammatory skin disease that is accompanied by markedly increased levels of inflammatory cells, including eosinophils, mast cells, and T cells. Arctium lappa L. is a traditional medicine in Asia. This study examined whether a butanol extract of A. lappa (ALBE) had previously unreported anti-allergic or anti-inflammatory effects. Methods This study examined the effect of ALBE on the release of β-hexosaminidase in antigen-stimulated-RBL-2H3 cells. We also evaluated the ConA-induced expression of IL-4, IL-5, mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-κB using RT-PCR, Western blotting, and ELISA in mouse splenocytes after ALBE treatment. Results We observed significant inhibition of β-hexosaminidase release in RBL-2H3 cells and suppressed mRNA expression and protein secretion of IL-4 and IL-5 induced by ConA-treated primary murine splenocytes after ALBE treatment. Additionally, ALBE (100 μg/mL) suppressed not only the transcriptional activation of NF-κB, but also the phosphorylation of MAPKs in ConA-treated primary splenocytes. Conclusions These results suggest that ALBE inhibits the expression of IL-4 and IL-5 by downregulating MAPKs and NF-κB activation in ConA-treated splenocytes and supports the hypothesis that ALBE may have beneficial effects in the treatment of allergic diseases, including atopic dermatitis. PMID:21303540

  10. Inhibitory effects of bee venom on mast cell-mediated allergic inflammatory responses.

    PubMed

    Kang, Yun-Mi; Chung, Kyung-Sook; Kook, In-Hoon; Kook, Yoon-Bum; Bae, Hyunsu; Lee, Minho; An, Hyo-Jin

    2018-06-01

    Although bee venom (BV) is a toxin that causes bee stings to be painful, it has been widely used clinically for the treatment of certain immune‑associated diseases. BV has been used traditionally for the treatment of chronic inflammatory diseases. In this regard, the present study analyzed the effect of BV on the regulation of inflammatory mediator production by mast cells and their allergic inflammatory responses in an animal model. HMC‑1 cells were treated with BV prior to stimulation with phorbol‑12‑myristate 13‑acetate plus calcium ionophore A23187 (PMACI). The production of allergy‑associated pro‑inflammatory mediators was examined, and the underlying mechanisms were investigated. Furthermore, to investigate whether BV exhibits anti‑inflammatory effects associated with anti‑allergic effects in vivo, a compound 48/80‑induced anaphylaxis model was used. BV inhibited histamine release, mRNA expression and production of cytokines in the PMACI‑stimulated HMC‑1 cells. Furthermore, the inhibitory effects of BV on mitogen‑activated protein kinase (MAPK), MAPK kinase, signal transducer and activator of transcription 3 (STAT3) and Akt were demonstrated. The present study also investigated the ability of BV to inhibit compound 48/80‑induced systemic anaphylaxis in vivo. BV protected the mice against compound 48/80‑induced anaphylactic‑associated mortality. Furthermore, BV suppressed the mRNA expression levels of pro‑inflammatory cytokines, and suppressed the activation of MAPK and STAT3 in this model. These results provide novel insights into the possible role of BV as a modulator for mast cell‑mediated allergic inflammatory disorders.

  11. Allergic reaction to latex: a risk factor for unsuspected anaphylaxis.

    PubMed

    Warpinski, J R; Folgert, J; Cohen, M; Bush, R K

    1991-01-01

    Allergic reactions to latex, including anaphylaxis may be a problem in certain individuals exposed to latex. Four atopic patients with symptoms of rhinitis, asthma, anaphylaxis, and/or urticaria upon contact with latex products were studied. The patients showed IgE binding to latex RAST disks ranging from 1.0 to 27.3 times the negative control. Latex products (gloves, balloons, and condoms) directly bound IgE from all four patients. Eluted proteins from the latex products inhibited IgE binding to commercial latex RAST disks. SDS-PAGE demonstrated multiple latex protein bands by Coomassie Blue staining between 14 and 66 kD. Immunoblotting showed specific IgE binding to latex proteins at 30 and 66 kD. These results indicate that latex-allergic patients have IgE directed against specific latex proteins. Allergy to latex can pose a substantial health risk to susceptible individuals.

  12. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-κB inhibitor DTCM-glutarimide.

    PubMed

    Koide, Naoki; Kaneda, Ayumi; Yokochi, Takashi; Umezawa, Kazuo

    2015-03-01

    We have isolated 9-methylstreptimidone from microorganism as a new NF-κB inhibitor. Later, we designed 3-[(dodecylthiocarbonyl) methyl]-glutarimide (DTCM-glutarimide) as an analog of this compound, which shows anti-inflammatory activity in vivo. In the present research, we found that DTCM-glutarimide inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation of mouse bone marrow-derived macrophages and RANKL- or lipopolysaccharide (LPS)-induced osteoclast differentiation of RAW 264.7 cells without any toxicity. It also inhibited the RANKL-induced NFATc1 expression. Upstream signaling involving phosphorylation of Akt and GSK-3β was induced by RANKL, of which the signaling was inhibited by DTCM-glutarimide. Then DTCM-glutarimide was confirmed to inhibit RANKL-induced NF-κB activity, possibly by inhibiting the Akt-mediated activation of IKK. Thus, DTCM-glutarimide inhibited osteoclastogenesis by blocking both the Akt-GSK3β-NFATc1 and NF-κB-NFATc1 pathways. DTCM-glutarimide may be a candidate as a chemotherapeutic agent for severe bone resorption diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Inhibition of gamma-secretase by the CK1 inhibitor IC261 does not depend on CK1delta.

    PubMed

    Höttecke, Nicole; Liebeck, Miriam; Baumann, Karlheinz; Schubenel, Robert; Winkler, Edith; Steiner, Harald; Schmidt, Boris

    2010-05-01

    CK1 and gamma-secretase are interesting targets for therapeutic intervention in the treatment of cancer and Alzheimer's disease. The CK1 inhibitor IC261 was reported to inhibit gamma-secretase activity. The question is: Does CK1 inhibition directly influence gamma-secretase activity? Therefore we analyzed the SAR of 15 analogues and their impact on gamma-secretase activity. The most active compounds were investigated on CK1delta activity. These findings exclude a direct influence of CK1delta on gamma-secretase, because any change in the substitution pattern of IC261 diminished CK1 inhibition, whereas gamma-secretase inhibition is still exerted by several analogues. 2010 Elsevier Ltd. All rights reserved.

  14. Inhibitors of COP-mediated Transport and Cholera Toxin Action Inhibit Simian Virus 40 Infection

    PubMed Central

    Richards, Ayanthi A.; Stang, Espen; Pepperkok, Rainer; Parton, Robert G.

    2002-01-01

    Simian virus 40 (SV40) is a nonenveloped virus that has been shown to pass from surface caveolae to the endoplasmic reticulum in an apparently novel infectious entry pathway. We now show that the initial entry step is blocked by brefeldin A and by incubation at 20°C. Subsequent to the entry step, the virus reaches a domain of the rough endoplasmic reticulum by an unknown pathway. This intracellular trafficking pathway is also brefeldin A sensitive. Infection is strongly inhibited by expression of GTP-restricted ADP-ribosylation factor 1 (Arf1) and Sar1 mutants and by microinjection of antibodies to βCOP. In addition, we demonstrate a potent inhibition of SV40 infection by the dipeptide N-benzoyl-oxycarbonyl-Gly-Phe-amide, which also inhibits late events in cholera toxin action. Our results identify novel inhibitors of SV40 infection and show that SV40 requires COPI- and COPII-dependent transport steps for successful infection. PMID:12006667

  15. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis.

    PubMed

    Oakley, Fiona; Meso, Muriel; Iredale, John P; Green, Karen; Marek, Carylyn J; Zhou, Xiaoying; May, Michael J; Millward-Sadler, Harry; Wright, Matthew C; Mann, Derek A

    2005-01-01

    Resolution of liver fibrosis is associated with clearance of hepatic myofibroblasts by apoptosis; development of strategies that promote this process in a selective way is therefore important. The aim of this study was to determine whether the inhibitor of kappaB kinase suppressor sulfasalazine stimulates hepatic myofibroblast apoptosis and recovery from fibrosis. Hepatic myofibroblasts were generated by culture activation of rat and human hepatic stellate cells. Fibrosis was established in rat livers by chronic injury with carbon tetrachloride followed by recovery with or without sulfasalazine (150 mg/kg) treatment. Treatment of hepatic stellate cells with sulfasalazine (0.5-2.0 mmol/L) induced apoptosis of activated rat and human hepatic stellate cells. A single in vivo administration of sulfasalazine promoted accelerated recovery from fibrosis as assessed by improved fibrosis score, selective clearance of smooth muscle alpha-actin-positive myofibroblasts, reduced hepatic procollagen I and tissue inhibitor of metalloproteinase 1 messenger RNA expression, and increased matrix metalloproteinase 2 activity. Mechanistic studies showed that sulfasalazine selectively blocks nuclear factor-kappaB-dependent gene transcription, inhibits hepatic stellate cell expression of Gadd45beta, stimulates phosphorylation of Jun N-terminal kinase 2, and promotes apoptosis by a mechanism that is prevented by the Jun N-terminal kinase inhibitor SP600125. As further evidence for a survival role for the inhibitor of kappaB kinase/nuclear factor-kappaB pathway in activated hepatic stellate cells, a highly selective cell-permeable peptide inhibitor of kappaB kinase activation also stimulated hepatic stellate cell apoptosis via a Jun N-terminal kinase-dependent mechanism. Inhibition of the inhibitor of kappaB kinase/nuclear factor-kappaB pathway is sufficient to increase the rate at which activated hepatic stellate cells undergo apoptosis both in vitro and in vivo, and drugs that

  16. TOPK inhibitor induces complete tumor regression in xenograft models of human cancer through inhibition of cytokinesis.

    PubMed

    Matsuo, Yo; Park, Jae-Hyun; Miyamoto, Takashi; Yamamoto, Shinji; Hisada, Shoji; Alachkar, Houda; Nakamura, Yusuke

    2014-10-22

    TOPK (T-lymphokine-activated killer cell-originated protein kinase) is highly and frequently transactivated in various cancer tissues, including lung and triple-negative breast cancers, and plays an indispensable role in the mitosis of cancer cells. We report the development of a potent TOPK inhibitor, OTS964 {(R)-9-(4-(1-(dimethylamino)propan-2-yl)phenyl)-8-hydroxy-6-methylthieno[2,3-c]quinolin-4(5H)-one}, which inhibits TOPK kinase activity with high affinity and selectivity. Similar to the knockdown effect of TOPK small interfering RNAs (siRNAs), this inhibitor causes a cytokinesis defect and the subsequent apoptosis of cancer cells in vitro as well as in xenograft models of human lung cancer. Although administration of the free compound induced hematopoietic adverse reactions (leukocytopenia associated with thrombocytosis), the drug delivered in a liposomal formulation effectively caused complete regression of transplanted tumors without showing any adverse reactions in mice. Our results suggest that the inhibition of TOPK activity may be a viable therapeutic option for the treatment of various human cancers. Copyright © 2014, American Association for the Advancement of Science.

  17. Inhibition of Chlorine-Induced Lung Injury by the Type 4 Phosphodiesterase Inhibitor Rolipram

    PubMed Central

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.; Rando, Roy J.; Pathak, Yashwant V.; Hoyle, Gary W.

    2012-01-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. PMID:22763362

  18. Enzyme inhibition studies by integrated Michaelis-Menten equation considering simultaneous presence of two inhibitors when one of them is a reaction product.

    PubMed

    Bezerra, Rui M F; Pinto, Paula A; Fraga, Irene; Dias, Albino A

    2016-03-01

    To determine initial velocities of enzyme catalyzed reactions without theoretical errors it is necessary to consider the use of the integrated Michaelis-Menten equation. When the reaction product is an inhibitor, this approach is particularly important. Nevertheless, kinetic studies usually involved the evaluation of other inhibitors beyond the reaction product. The occurrence of these situations emphasizes the importance of extending the integrated Michaelis-Menten equation, assuming the simultaneous presence of more than one inhibitor because reaction product is always present. This methodology is illustrated with the reaction catalyzed by alkaline phosphatase inhibited by phosphate (reaction product, inhibitor 1) and urea (inhibitor 2). The approach is explained in a step by step manner using an Excel spreadsheet (available as a template in Appendix). Curve fitting by nonlinear regression was performed with the Solver add-in (Microsoft Office Excel). Discrimination of the kinetic models was carried out based on Akaike information criterion. This work presents a methodology that can be used to develop an automated process, to discriminate in real time the inhibition type and kinetic constants as data (product vs. time) are achieved by the spectrophotometer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Sodium Cromoglycate Prevents Exacerbation of IgE-Mediated Food-Allergic Reaction Induced by Aspirin in a Rat Model of Egg Allergy.

    PubMed

    Yokooji, Tomoharu; Matsuo, Hiroaki

    2015-01-01

    Aspirin (ASP)-facilitated absorption of ingested allergens is considered an exacerbating factor in the development of food allergy. Sodium cromoglycate (SCG) is used for the treatment of atopic dermatitis with food allergy, but the efficacy of SCG in ASP-exacerbated food-allergy reactions is unclear. In this study, we evaluated the effect of SCG on ASP-exacerbated food-allergic reactions, as well as allergen absorption, in egg-allergic model rats. Plasma concentrations of ovalbumin (OVA) and fluorescein isothiocyanate-labeled dextran (FD-40), a marker for nonspecific-absorption pathways, were measured after oral administration of mixtures of OVA and FD-40 in OVA-unsensitized and OVA-sensitized rats. IgE-mediated allergic reactions were evaluated by measuring changes in rectal temperature and Evans blue dye (EBD) extravasation in the intestine and liver after oral challenge with OVA. The effects of ASP and SCG on such absorption and allergic reactions were also evaluated kinetically. In OVA-sensitized rats, plasma concentrations of OVA and FD-40 were significantly higher than those in unsensitized rats after oral administration. ASP increased the intestinal absorption of OVA and FD-40 via the paracellular pathway, and a lower rectal temperature and higher EBD extravasation were detected in the intestine and liver of OVA-sensitized rats. SCG ameliorated these ASP-facilitated absorptions and allergic reactions in a dose-dependent manner. In particular, high-dose SCG (195.2 μmol/kg) completely inhibited these absorptions and reactions. SCG can prevent ASP-exacerbated allergic reactions in patients with food allergy resulting from inhibition of increases in allergen absorption. © 2015 S. Karger AG, Basel.

  20. Allergic Diseases and Internalizing Behaviors in Early Childhood

    PubMed Central

    LeMasters, Grace K.; Levin, Linda; Rothenberg, Marc E.; Assa'ad, Amal H.; Newman, Nicholas; Bernstein, David; Khurana-Hershey, Gurjit; Lockey, James E.; Ryan, Patrick H.

    2016-01-01

    BACKGROUND AND OBJECTIVES: The relationship between allergic diseases and internalizing disorders has not been well characterized with regard to multiple allergic diseases or longitudinal study. The objective of this study was to examine the association between multiple allergic diseases in early childhood with validated measures of internalizing disorders in the school-age years. METHODS: Children enrolled in the Cincinnati Childhood Allergy and Air Pollution Study underwent skin testing and examinations at ages 1, 2, 3, 4, and 7 years. At age 7, parents completed the Behavior Assessment System for Children, Second Edition (BASC-2), a validated measure of childhood behavior and emotion. The association between allergic diseases at age 4, including allergic rhinitis, allergic persistent wheezing, atopic dermatitis, and allergic sensitization, and BASC-2 internalizing, anxiety, and depression T scores at age 7 was examined by logistic and linear regression, adjusting for covariates. RESULTS: The cohort included 546 children with complete information on allergic disease and BASC-2 outcomes. Allergic rhinitis at age 4 was significantly associated with elevated internalizing (adjusted odds ratio [aOR]: 3.2; 95% confidence interval [CI]: 1.8–5.8), anxiety (aOR: 2.0; 95% CI: 1.2–3.6), and depressive scores (aOR: 3.2; 95% CI: 1.7–6.5) at age 7. Allergic persistent wheezing was significantly associated with elevated internalizing scores (aOR: 2.7; 95% CI: 1.2–6.3). The presence of >1 allergic disease (aOR: 3.6; 95% CI: 1.7–7.6) and allergic rhinitis with comorbid allergic disease(s) (aOR: 4.3; 95% CI: 2.0–9.2) at age 4 had dose-dependent associations with internalizing scores. CONCLUSIONS: Children with allergic rhinitis and allergic persistent wheezing at age 4 are at increased risk of internalizing behaviors at age 7. Furthermore, multiple allergic diseases had a dose-dependent association with elevated internalizing scores. PMID:26715608

  1. Allergic Diseases and Internalizing Behaviors in Early Childhood.

    PubMed

    Nanda, Maya K; LeMasters, Grace K; Levin, Linda; Rothenberg, Marc E; Assa'ad, Amal H; Newman, Nicholas; Bernstein, David; Khurana-Hershey, Gurjit; Lockey, James E; Ryan, Patrick H

    2016-01-01

    The relationship between allergic diseases and internalizing disorders has not been well characterized with regard to multiple allergic diseases or longitudinal study. The objective of this study was to examine the association between multiple allergic diseases in early childhood with validated measures of internalizing disorders in the school-age years. Children enrolled in the Cincinnati Childhood Allergy and Air Pollution Study underwent skin testing and examinations at ages 1, 2, 3, 4, and 7 years. At age 7, parents completed the Behavior Assessment System for Children, Second Edition (BASC-2), a validated measure of childhood behavior and emotion. The association between allergic diseases at age 4, including allergic rhinitis, allergic persistent wheezing, atopic dermatitis, and allergic sensitization, and BASC-2 internalizing, anxiety, and depression T scores at age 7 was examined by logistic and linear regression, adjusting for covariates. The cohort included 546 children with complete information on allergic disease and BASC-2 outcomes. Allergic rhinitis at age 4 was significantly associated with elevated internalizing (adjusted odds ratio [aOR]: 3.2; 95% confidence interval [CI]: 1.8-5.8), anxiety (aOR: 2.0; 95% CI: 1.2-3.6), and depressive scores (aOR: 3.2; 95% CI: 1.7-6.5) at age 7. Allergic persistent wheezing was significantly associated with elevated internalizing scores (aOR: 2.7; 95% CI: 1.2-6.3). The presence of >1 allergic disease (aOR: 3.6; 95% CI: 1.7-7.6) and allergic rhinitis with comorbid allergic disease(s) (aOR: 4.3; 95% CI: 2.0-9.2) at age 4 had dose-dependent associations with internalizing scores. Children with allergic rhinitis and allergic persistent wheezing at age 4 are at increased risk of internalizing behaviors at age 7. Furthermore, multiple allergic diseases had a dose-dependent association with elevated internalizing scores. Copyright © 2016 by the American Academy of Pediatrics.

  2. [Effect of tea extracts, catechin and caffeine against type-I allergic reaction].

    PubMed

    Shiozaki, T; Sugiyama, K; Nakazato, K; Takeo, T

    1997-07-01

    The antiallergic effects of green tea, oolong tea, and black tea extracts by hot water were examined. These extracts inhibited the passive cutaneous anaphylaxis (PCA) reaction of rat after oral administration. Three tea catechins, (--)-epigallocatechin (EGC), (--)-epicatechin gallate (ECg), and (--)-epigallocatechin gallate (EGCg) isolated from green tea showed stronger inhibitory effects than that of a green tea extract on the PCA reaction. The inhibitory effects of EGC and EGCg on the PCA reaction were greater than that of ECg. Caffeine also showed a inhibitory effect on the PCA reaction. These results indicate that tea could provide a significant protection against the type-I allergic reaction. These findings also suggest that tea catechins and caffeine play an important role in having an inhibitory effect on the type-I allergic reaction.

  3. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    PubMed

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  4. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation.

    PubMed

    Jurado, Kellie A; Wang, Hao; Slaughter, Alison; Feng, Lei; Kessl, Jacques J; Koh, Yasuhiro; Wang, Weifeng; Ballandras-Colas, Allison; Patel, Pratiq A; Fuchs, James R; Kvaratskhelia, Mamuka; Engelman, Alan

    2013-05-21

    Integration is essential for HIV-1 replication, and the viral integrase (IN) protein is an important therapeutic target. Allosteric IN inhibitors (ALLINIs) that engage the IN dimer interface at the binding site for the host protein lens epithelium-derived growth factor (LEDGF)/transcriptional coactivator p75 are an emerging class of small molecule antagonists. Consistent with the inhibition of a multivalent drug target, ALLINIs display steep antiviral dose-response curves ex vivo. ALLINIs multimerize IN protein and concordantly block its assembly with viral DNA in vitro, indicating that the disruption of two integration-associated functions, IN catalysis and the IN-LEDGF/p75 interaction, determines the multimode mechanism of ALLINI action. We now demonstrate that ALLINI potency is unexpectedly accounted for during the late phase of HIV-1 replication. The compounds promote virion IN multimerization and, reminiscent of class II IN mutations, block the formation of the electron-dense viral core and inhibit reverse transcription and integration in subsequently infected target cells. Mature virions are recalcitrant to ALLINI treatment, and compound potency during virus production is independent of the level of LEDGF/p75 expression. We conclude that cooperative multimerization of IN by ALLINIs together with the inability for LEDGF/p75 to effectively engage the virus during its egress from cells underscores the multimodal mechanism of ALLINI action. Our results highlight the versatile nature of allosteric inhibitors to primarily inhibit viral replication at a step that is distinct from the catalytic requirement for the target enzyme. The vulnerability of IN to small molecules during the late phase of HIV-1 replication unveils a pharmacological Achilles' heel for exploitation in clinical ALLINI development.

  5. Allergic contact dermatitis from a paper mill slimicide containing 2-bromo-4'-hydroxyacetophenone.

    PubMed

    Jensen, Charlotte D; Andersen, Klaus E

    2003-03-01

    Slimicides are biocidal products used in paper mills to inhibit the proliferation of slime-forming microorganisms that would otherwise spoil the paper products. A laboratory technician working at a paper mill had recurring dermatitis related to contact with the slimicide Busan 1130. We report the first case of allergic contact dermatitis from the slimicide Busan 1130. Diagnostic patch testing was performed with solutions of Busan 1130 and its active ingredient, 2-bromo-4'-hydroxyacetophenone (BHAP). Twenty-five controls were also tested. The patient showed a ++ reaction to 0.1% Busan 1130 aqueous solution and 0.01% BHAP in ethanol. All controls were negative. The patient had recurrent allergic contact dermatitis from exposure to BHAP contained in the slimicide Busan 1130.

  6. Development of scale inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, J.S.

    1996-12-01

    During the last fifty years, scale inhibition has gone from an art to a science. Scale inhibition has changed from simple pH adjustment to the use of optimized dose of designer polymers from multiple monomers. The water-treatment industry faces many challenges due to the need to conserve water, availability of only low quality water, increasing environmental regulations of the water discharge, and concern for human safety when using acid. Natural materials such as starch, lignin, tannin, etc., have been replaced with hydrolytically stable organic phosphates and synthetic polymers. Most progress in scale inhibition has come from the use of synergisticmore » mixtures and copolymerizing different functionalities to achieve specific goals. Development of scale inhibitors requires an understanding of the mechanism of crystal growth and its inhibition. This paper discusses the historic perspective of scale inhibition and the development of new inhibitors based on the understanding of the mechanism of crystal growth and the use of powerful tools like molecular modeling to visualize crystal-inhibitor interactions.« less

  7. Inhibitors of serine proteases decrease sperm penetration during porcine fertilization in vitro by inhibiting sperm binding to the zona pellucida and acrosome reaction.

    PubMed

    Beek, J; Nauwynck, H; Appeltant, R; Maes, D; Van Soom, A

    2015-11-01

    Serine proteases are involved in mammalian fertilization. Inhibitors of serine proteases can be applied to investigate at which point these enzymes exert their action. We selected two serine protease inhibitors, 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF, 100 μM) and soybean trypsin inhibitor (STI, 5 μM) from Glycine max, via previous dose-response IVF experiments and sperm toxicity tests. In the present study, we evaluated how these inhibitors affect porcine fertilization in vitro as calculated on total fertilization rate, polyspermy rate, and the sperm number per fertilized oocyte of cumulus-intact, cumulus-free, and zona-free oocytes. In the control group (no inhibitor), these parameters were 86%, 49%, and 2.2 for cumulus-intact oocytes and 77%, 43%, and 2.2 for cumulus-free oocytes (6-hour gamete incubation period, 1.25 × 10(5) spermatozoa/mL). 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride and STI significantly reduced total fertilization and polyspermy rate in cumulus-intact and cumulus-free oocytes (P < 0.05). Total fertilization rates were respectively 65% and 53% (AEBSF) and 36% and 17% (STI). Inhibition rates were higher in cumulus-free oocytes than in cumulus-intact oocytes, indicating that inhibitors exerted their action after sperm passage through the cumulus. 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride but not STI reduced sperm binding to the ZP. The acrosome reaction was significantly inhibited by both inhibitors. Only 40.4% (AEBSF) and 11.4% (STI) of spermatozoa completed a calcium-induced acrosome reaction compared to 86.7% of spermatozoa in the control group. There was no effect on sperm binding or fertilization parameters in zona-free oocytes. In conclusion, sperm-zona binding and acrosome reaction were inhibited by serine protease inhibitors during porcine IVF. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Antioxidant properties of Aller-7, a novel polyherbal formulation for allergic rhinitis.

    PubMed

    D'Souza, P; Amit, A; Saxena, V S; Bagchi, D; Bagchi, M; Stohs, S J

    2004-01-01

    Allergic rhinitis, a frequently occurring immunological disorder affecting men, women and children worldwide, is a state of hypersensitivity that occurs when the body overreacts to a substance such as pollen, mold, mites or dust. Allergic rhinitis exerts inflammatory response and irritation of the nasal mucosal membranes leading to sneezing; stuffy/runny nose; nasal congestion; and itchy, watery and swollen eyes. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. In this study, the antioxidant efficacy of Aller-7 was investigated by various assays including hydroxyl radical scavenging assay, superoxide anion scavenging assay, 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical scavenging assays. The protective effect of Aller-7 on free radical-induced lysis of red blood cells and inhibition of nitric oxide release by Aller-7 in lipopolysaccharide-stimulated murine macrophages were determined. Aller-7 exhibited concentration-dependent scavenging activities toward biochemically generated hydroxyl radicals (IC50 741.73 microg/ml); superoxide anion (IC50 24.65 microg/ml by phenazine methosulfate-nicotinamide adenine dinucleotide [PMS-NADH] assay and IC50 4.27 microg/ml by riboflavin/nitroblue tetrazolium [NBT] light assay), nitric oxide (IC50 16.34 microg/ml); 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical (IC50 5.62 microg/ml); and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical (IC50 7.35 microg/ml). Aller-7 inhibited free radical-induced hemolysis in the concentration range of 20-80 microg/ml. Aller-7 also significantly inhibited nitric oxide release from lipopolysaccharide-stimulated murine

  9. Combination of Mitochondrial and Plasma Membrane Citrate Transporter Inhibitors Inhibits De Novo Lipogenesis Pathway and Triggers Apoptosis in Hepatocellular Carcinoma Cells

    PubMed Central

    Phokrai, Phornpun; Suwankulanan, Somrudee; Phakdeeto, Narinthorn; Phunsomboon, Pattamaphorn; Pekthong, Dumrongsak; Richert, Lysiane; Pongcharoen, Sutatip

    2018-01-01

    Increased expression levels of both mitochondrial citrate transporter (CTP) and plasma membrane citrate transporter (PMCT) proteins have been found in various cancers. The transported citrates by these two transporter proteins provide acetyl-CoA precursors for the de novo lipogenesis (DNL) pathway to support a high rate of cancer cell viability and development. Inhibition of the DNL pathway promotes cancer cell apoptosis without apparent cytotoxic to normal cells, leading to the representation of selective and powerful targets for cancer therapy. The present study demonstrates that treatments with CTP inhibitor (CTPi), PMCT inhibitor (PMCTi), and the combination of CTPi and PMCTi resulted in decreased cell viability in two hepatocellular carcinoma cell lines (HepG2 and HuH-7). Treatment with citrate transporter inhibitors caused a greater cytotoxic effect in HepG2 cells than in HuH-7 cells. A lower concentration of combined CTPi and PMCTi promotes cytotoxic effect compared with either of a single compound. An increased cell apoptosis and an induced cell cycle arrest in both cell lines were reported after administration of the combined inhibitors. A combination treatment exhibits an enhanced apoptosis through decreased intracellular citrate levels, which consequently cause inhibition of fatty acid production in HepG2 cells. Apoptosis induction through the mitochondrial-dependent pathway was found as a consequence of suppressed carnitine palmitoyl transferase-1 (CPT-1) activity and enhanced ROS generation by combined CTPi and PMCTi treatment. We showed that accumulation of malonyl-CoA did not correlate with decreasing CPT-1 activity. The present study showed that elevated ROS levels served as an inhibition on Bcl-2 activity that is at least in part responsible for apoptosis. Moreover, inhibition of the citrate transporter is selectively cytotoxic to HepG2 cells but not in primary human hepatocytes, supporting citrate-mediating fatty acid synthesis as a promising

  10. Aurora B kinase inhibition in mitosis: strategies for optimising the use of aurora kinase inhibitors such as AT9283.

    PubMed

    Curry, Jayne; Angove, Hayley; Fazal, Lynsey; Lyons, John; Reule, Matthias; Thompson, Neil; Wallis, Nicola

    2009-06-15

    Aurora kinases play a key role in regulating mitotic division and are attractive oncology targets. AT9283, a multi-targeted kinase inhibitor with potent activity against Aurora A and B kinases, inhibited growth and survival of multiple solid tumor cell lines and was efficacious in mouse xenograft models. AT9283-treatment resulted in endoreduplication and ablation of serine-10 histone H3 phosphorylation in both cells and tumor samples, confirming that in these models it acts as an Aurora B kinase inhibitor. In vitro studies demonstrated that exposure to AT9283 for one complete cell cycle committed an entire population of p53 checkpoint-compromised cells (HCT116) to multinucleation and death whereas treatment of p53 checkpoint-competent cells (HMEC, A549) for a similar length of time led to a reversible arrest of cells with 4N DNA. Further studies in synchronized cell populations suggested that exposure to AT9283 during mitosis was critical for optimal cytotoxicity. We therefore investigated ways in which these properties might be exploited to optimize the efficacy and therapeutic index of Aurora kinase inhibitors for p53 checkpoint compromised tumors in vivo. Combining Aurora B kinase inhibition with paclitaxel, which arrests cells in mitosis, in a xenograft model resulted in promising efficacy without additional toxicity. These findings have implications for optimizing the efficacy of Aurora kinase inhibitors in clinical practice.

  11. Allergic diseases and air pollution.

    PubMed

    Lee, Suh-Young; Chang, Yoon-Seok; Cho, Sang-Heon

    2013-07-01

    The prevalence of allergic diseases has been increasing rapidly, especially in developing countries. Various adverse health outcomes such as allergic disease can be attributed to rapidly increasing air pollution levels. Rapid urbanization and increased energy consumption worldwide have exposed the human body to not only increased quantities of ambient air pollution, but also a greater variety of pollutants. Many studies clearly demonstrate that air pollutants potently trigger asthma exacerbation. Evidence that transportation-related pollutants contribute to the development of allergies is also emerging. Moreover, exposure to particulate matter, ozone, and nitrogen dioxide contributes to the increased susceptibility to respiratory infections. This article focuses on the current understanding of the detrimental effects of air pollutants on allergic disease including exacerbation to the development of asthma, allergic rhinitis, and eczema as well as epigenetic regulation.

  12. Birth by Cesarean Section, Allergic Rhinitis, and Allergic Sensitization among Children with Parental History of Atopy

    PubMed Central

    Pistiner, Michael; Gold, Diane R.; Abdulkerim, Hassen; Hoffman, Ellaine; Celedón, Juan C.

    2016-01-01

    Background Cesarean delivery may alter neonatal immune responses and increase the risk of atopy. Studies of the relation between cesarean delivery and allergic diseases in children not selected on the basis of a family history of atopy have yielded inconsistent findings. Objective To examine the relation between birth by cesarean delivery and atopy and allergic diseases in children at risk for atopy. Methods We examined the relation between mode of delivery and the development of atopy and allergic diseases among 432 children with parental history of atopy followed from birth to age 9 years. Asthma was defined as physician-diagnosed asthma and wheeze in the previous year and allergic rhinitis as physician-diagnosed allergic rhinitis and naso-ocular symptoms apart from colds in the previous year. Atopy was considered present at school age if there was >=1 positive skin test or specific IgE to common allergens. Stepwise logistic regression was used to study the relation between cesarean delivery and the outcomes of interest. Results After adjustment for other covariates, children born by cesarean section had twofold higher odds of atopy than those born by vaginal delivery (OR=2.1, 95% CI=1.1–3.9). In multivariate analyses, birth by cesarean section was significantly associated with increased odds of allergic rhinitis (OR=1.8, 95% CI=1.0–3.1) but not with asthma. Conclusions Our findings suggest that cesarean delivery is associated with allergic rhinitis and atopy among children with parental history of asthma or allergies. This could be explained by lack of contact with the maternal vaginal/fecal flora or reduced/absent labor during cesarean delivery. Clinical Implications Potential development of allergic diseases should be considered as a potential risk of cesarean delivery among children with parental history of atopy. Capsule Summary Cesarean delivery may lead to an increased risk of allergic rhinitis and atopy in children with parental history of atopy. PMID

  13. Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils.

    PubMed

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Shima, Yoshihito; Ohshima, Shiro; Fujimoto, Minoru; Yamadori, Tomoki; Kawase, Ichiro; Tanaka, Toshio

    2004-06-01

    We have previously shown that fisetin, a flavonol, inhibits IL-4 and IL-13 synthesis by allergen- or anti-IgE-antibody-stimulated basophils. This time, we investigated the inhibition of IL-4 and IL-13 production by basophils by other flavonoids and attempted to determine the fundamental structure of flavonoids related to inhibition. We additionally investigated whether flavonoids suppress leukotriene C4 synthesis by basophils and IL-4 synthesis by T cells in response to anti-CD3 antibody. Highly purified peripheral basophils were stimulated for 12 h with anti-IgE antibody alone or anti-IgE antibody plus IL-3 in the presence of various concentrations of 18 different kinds of flavones and flavonols. IL-4 and IL-13 concentrations in the supernatants were then measured. Leukotriene C4 synthesis was also measured after basophils were stimulated for 1 h in the presence of flavonoids. Regarding the inhibitory activity of flavonoids on IL-4 synthesis by T cells, peripheral blood mononuclear cells were cultured with flavonoids in anti-CD3-antibody-bound plates for 2 days. Luteolin, fisetin and apigenin were found to be the strongest inhibitors of both IL-4 and IL-13 production by basophils but did not affect leukotriene C4 synthesis. At higher concentrations, these flavonoids suppressed IL-4 production by T cells. Based on a hierarchy of inhibitory activity, the basic structure for IL-4 inhibition by basophils was determined. Due to the inhibitory activity of flavonoids on IL-4 and IL-13 synthesis, it can be expected that the intake of flavonoids, depending on the quantity and quality, may ameliorate allergic symptoms or prevent the onset of allergic diseases. Copyright 2004 S. Karger AG, Basel

  14. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  15. Which immunotherapy product is better for patients allergic to Polistes venom? A laboratory and clinical study

    PubMed Central

    Savi, Eleonora; Incorvaia, Cristoforo; Boni, Elisa; Mauro, Marina; Peveri, Silvia; Pravettoni, Valerio; Quercia, Oliviero; Reccardini, Federico; Montagni, Marcello; Pessina, Laura

    2017-01-01

    Background Venom immunotherapy (VIT) is highly effective in preventing allergic reactions to insect stings, but the appropriate venom must be used to achieve clinical protection. In patients with multiple positive results to venoms, molecular allergy diagnostics or CAP-inhibition may identify the causative venom. Concerning allergy to venom from Polistes spp. it has been proposed that only the European species P. dominulus should be used for VIT. However, this recommendation is not present in any international guideline. Using both laboratory and clinical data, we aimed to evaluate the reliability of this proposal. Methods We performed an in vitro study using CAP-inhibition to determine sensitization of 19 patients allergic to Polistes venom. The clinical study included 191 patients with positive tests to Polistes treated with VIT, 102 were treated with P. dominulus and 89 were treated with a mix of American Polistes (mAP). Results The difference in % of inhibition was significant concerning inhibition of P. dominulus sIgE by P. dominulus venom (79.8%) compared with inhibition by mAP venom (64.2%) and not significant concerning the inhibition of mAP sIgE by P. dominulus venom (80.1%) and by mAP venom (73.6%). Instead, the clinical protection from stings was not statistically different between the two kinds of venom. Conclusion The data from CAP inhibition would suggest that the choice of either P. dominulus venom or mAP venom for VIT is appropriate in patients with CAP inhibition higher than 70%, but the clinical data show the same odds of protection from stings using for VIT P. dominulus or mAP venom. PMID:28686638

  16. Which immunotherapy product is better for patients allergic to Polistes venom? A laboratory and clinical study.

    PubMed

    Savi, Eleonora; Incorvaia, Cristoforo; Boni, Elisa; Mauro, Marina; Peveri, Silvia; Pravettoni, Valerio; Quercia, Oliviero; Reccardini, Federico; Montagni, Marcello; Pessina, Laura; Ridolo, Erminia

    2017-01-01

    Venom immunotherapy (VIT) is highly effective in preventing allergic reactions to insect stings, but the appropriate venom must be used to achieve clinical protection. In patients with multiple positive results to venoms, molecular allergy diagnostics or CAP-inhibition may identify the causative venom. Concerning allergy to venom from Polistes spp. it has been proposed that only the European species P. dominulus should be used for VIT. However, this recommendation is not present in any international guideline. Using both laboratory and clinical data, we aimed to evaluate the reliability of this proposal. We performed an in vitro study using CAP-inhibition to determine sensitization of 19 patients allergic to Polistes venom. The clinical study included 191 patients with positive tests to Polistes treated with VIT, 102 were treated with P. dominulus and 89 were treated with a mix of American Polistes (mAP). The difference in % of inhibition was significant concerning inhibition of P. dominulus sIgE by P. dominulus venom (79.8%) compared with inhibition by mAP venom (64.2%) and not significant concerning the inhibition of mAP sIgE by P. dominulus venom (80.1%) and by mAP venom (73.6%). Instead, the clinical protection from stings was not statistically different between the two kinds of venom. The data from CAP inhibition would suggest that the choice of either P. dominulus venom or mAP venom for VIT is appropriate in patients with CAP inhibition higher than 70%, but the clinical data show the same odds of protection from stings using for VIT P. dominulus or mAP venom.

  17. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honma, Yuichi; Harada, Masaru, E-mail: msrharada@med.uoeh-u.ac.jp

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects onmore » protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.« less

  18. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis

    PubMed Central

    Srivastava, Ritesh K.; Kaylani, Samer Zaid; Edrees, Nayf; Li, Changzhao; Talwelkar, Sarang S.; Xu, Jianmin; Palle, Komaraiah; Pressey, Joseph G.; Athar, Mohammad

    2014-01-01

    Rhabdomyosarcoma (RMS) typically arises from skeletal muscle. Currently, RMS in patients with recurrent and metastatic disease have no successful treatment. The molecular pathogenesis of RMS varies based on cancer sub-types. Some embryonal RMS but not other sub-types are driven by sonic hedgehog (Shh) signaling pathway. However, Shh pathway inhibitors particularly smoothened inhibitors are not highly effective in animals. Here, we show that Shh pathway effectors GLI1 and/or GLI2 are over-expressed in the majority of RMS cells and that GANT-61, a specific GLI1/2 inhibitor dampens the proliferation of both embryonal and alveolar RMS cells-derived xenograft tumors thereby blocking their growth. As compared to vehicle-treated control, about 50% tumor growth inhibition occurs in mice receiving GANT-61 treatment. The proliferation inhibition was associated with slowing of cell cycle progression which was mediated by the reduced expression of cyclins D1/2/3 & E and the concomitant induction of p21. GANT-61 not only reduced expression of GLI1/2 in these RMS but also significantly diminished AKT/mTOR signaling. The therapeutic action of GANT-61 was significantly augmented when combined with chemotherapeutic agents employed for RMS therapy such as temsirolimus or vincristine. Finally, reduced expression of proteins driving epithelial mesenchymal transition (EMT) characterized the residual tumors. PMID:25432075

  19. Inga laurina trypsin inhibitor (ILTI) obstructs Spodoptera frugiperda trypsins expressed during adaptive mechanisms against plant protease inhibitors.

    PubMed

    Machado, Suzy Wider; de Oliveira, Caio Fernando Ramalho; Zério, Neide Graciano; Parra, José Roberto Postali; Macedo, Maria Lígia Rodrigues

    2017-08-01

    Plant protease inhibitors (PIs) are elements of a common plant defense mechanism induced in response to herbivores. The fall armyworm, Spodoptera frugiperda, a highly polyphagous lepidopteran pest, responds to various PIs in its diet by expressing genes encoding trypsins. This raises the question of whether the PI-induced trypsins are also inhibited by other PIs, which we posed as the hypothesis that Inga laurina trypsin inhibitor (ILTI) inhibits PI-induced trypsins in S. frugiperda. In the process of testing our hypothesis, we compared its properties with those of selected PIs, soybean Kunitz trypsin inhibitor (SKTI), Inga vera trypsin inhibitor (IVTI), Adenanthera pavonina trypsin inhibitor (ApTI), and Entada acaciifolia trypsin inhibitor (EATI). We report that ILTI is more effective in inhibiting the induced S. frugiperda trypsins than SKTI and the other PIs, which supports our hypothesis. ILTI may be more appropriate than SKTI for studies regarding adaptive mechanisms to dietary PIs. © 2017 Wiley Periodicals, Inc.

  20. A new method to evaluate anti-allergic effect of food component by measuring leukotriene B4 from a mouse mast cell line.

    PubMed

    Takasugi, Mikako; Muta, Emi; Yamada, Koji; Arai, Hirofumi

    2018-02-01

    Leukotrienes (LTs), chemical mediators produced by mast cells, play an important role in allergic symptoms such as food allergies and hay fever. We tried to construct an evaluation method for the anti-LTB 4 activity of chemical substances using a mast cell line, PB-3c. PB-3c pre-cultured with or without arachidonic acid (AA) was stimulated by calcium ionophore (A23187) for 20 min, and LTB 4 production by the cells was determined by HPLC with UV detection. LTB 4 was not detected when PB-3c was pre-cultured without AA. On the other hand, LTB 4 production by PB-3c pre-cultured with AA was detectable by HPLC, and the optimal conditions of PB-3c for LTB 4 detection were to utilize the cells pre-cultured with 50 µM AA for 48 h. MK-886 (5-lipoxygenase inhibitor) completely inhibited LTB 4 production, but AACOCF 3 (phospholipase A 2 inhibitor) slightly increased LTB 4 production, suggesting that LTB 4 was generated from exogenous free AA through 5-lipoxygenase pathway. We applied this technique to the evaluation of the anti-LTB 4 activity of food components. PB-3c pre-cultured with 50 µM AA for 48 h was stimulated with A23187 in the presence of 50 µM soybean isoflavones (daidzin, genistin, daidzein, and genistein), equol, quercetin, or kaempferol. Genistein, equol, quercetin, and kaempferol strongly inhibited LTB 4 production without cytotoxicity. These results suggest that a new assay system using PB-3c is convenient to evaluate LTB 4 inhibition activity by food components. This method could be utilized for elucidation of the mechanisms of LTB 4 release suppression by food components such as flavonoids and the structure-activity relationship.

  1. Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway.

    PubMed

    Li, Hong-Yi; Meng, Jing-Xia; Liu, Zhen; Liu, Xiao-Wen; Huang, Yu-Guang; Zhao, Jing

    2018-06-01

    Propofol, an intravenous anesthetic agent widely used in clinical practice, is the preferred anesthetic for asthmatic patients. This study was designed to determine the protective effect and underlying mechanisms of propofol on airway inflammation in a mast cell-dependent mouse model of allergic asthma. Mice were sensitized by ovalbumin (OVA) without alum and challenged with OVA three times. Propofol was given intraperitoneally 0.5 h prior to OVA challenge. The inflammatory cell count and production of cytokines in the bronchoalveolar lavage fluid (BALF) were detected. The changes of lung histology and key molecules of the toll-like receptor 4 (TLR4)/reactive oxygen species (ROS)/NF-κB signaling pathway were also measured. The results showed that propofol significantly decreased the number of eosinophils and the levels of IL-4, IL-5, IL-6, IL-13, and TNF-α in BALF. Furthermore, propofol significantly attenuated airway inflammation, as characterized by fewer infiltrating inflammatory cells and decreased mucus production and goblet cell hyperplasia. Meanwhile, the expression of TLR4, and its downstream signaling adaptor molecules--myeloid differentiation factor 88 (MyD88) and NF-κB, were inhibited by propofol. The hydrogen peroxide and methane dicarboxylic aldehyde levels were decreased by propofol, and the superoxide dismutase activity was increased in propofol treatment group. These findings indicate that propofol may attenuate airway inflammation by inhibiting the TLR4/MyD88/ROS/NF-κB signaling pathway in a mast cell-dependent mouse model of allergic asthma.

  2. Inhibition of spicule elongation in sea urchin embryos by the acetylcholinesterase inhibitor eserine.

    PubMed

    Ohta, Kazumasa; Takahashi, Chifumi; Tosuji, Hiroaki

    2009-08-01

    The activity of acetylcholinesterase (AchE) increases rapidly after the gastrula stage of sea urchin development. In this report, changes in activity and in the molecular differentiation of AchE were investigated. AchE activity increased slightly during gastrulation and rose sharply thereafter, and was dependent on new RNA synthesis. No activity of butyrylcholinesterase was found. Morphogenesis in sea urchin embryos was inhibited by the AchE inhibitor eserine, which specifically inhibited arm rod formation but not body rod formation. Spicule formation and enzyme activity in cultured micromeres were inhibited by eserine in a dose-dependent manner. During gastrulation, two molecular forms of AchE were detected with polyacrylamide gel electrophoresis. The appearance of an additional band on the gel was consistent with the occurrence of a remarkable increase in the enzyme activity. This additional band appeared as a larger molecular form in Anthocidaris crassispina, Hemicentrotus pulcherrimus, Stomopneustes variolaris, and Strongylocentrotus nudus, and as a smaller form in Clypeaster japonicus and Temnopleurus hardwicki. These results suggest that the change in the molecular form of AchE induced a change in enzymatic activity that in turn may play a role in spicule elongation in sea urchin embryos.

  3. Allergic rhinitis and inflammatory airway disease: interactions within the unified airspace.

    PubMed

    Marple, Bradley F

    2010-01-01

    Allergic rhinitis (AR), the most common chronic allergic condition in outpatient medicine, is associated with immense health care costs and socioeconomic consequences. AR's impact may be partly from interacting of respiratory conditions via allergic inflammation. This study was designed to review potential interactive mechanisms of AR and associated conditions and consider the relevance of a bidirectional "unified airway" respiratory inflammation model on diagnosis and treatment of inflammatory airway disease. MEDLINE was searched for pathophysiology and pathophysiological and epidemiologic links between AR and diseases of the sinuses, lungs, middle ear, and nasopharynx. Allergic-related inflammatory responses or neural and systemic processes fostering inflammatory changes distant from initial allergen provocation may link AR and comorbidities. Treating AR may benefit associated respiratory tract comorbidities. Besides improving AR outcomes, treatment inhibiting eosinophil recruitment and migration, normalizing cytokine profiles, and reducing asthma-associated health care use in atopic subjects would likely ameliorate other upper airway diseases such as acute rhinosinusitis, chronic rhinosinusitis (CRS) with nasal polyposis (NP), adenoidal hypertrophy, and otitis media with effusion. Epidemiological concordance of AR with several airway diseases conforms to a bidirectional "unified airway" respiratory inflammation model based on anatomic and histological upper and lower airway connections. Epidemiology and current understanding of inflammatory, humoral, and neural processes make links between AR and disorders including asthma, otitis media, NP, and CRS plausible. Combining AR with associated conditions increases disease burden; worsened associated illness may accompany worsened AR. AR pharmacotherapies include antihistamines, leukotriene antagonists, intranasal corticosteroids, and immunotherapy; treatments attenuating proinflammatory responses may also benefit

  4. Importance of multi-P450 inhibition in drug-drug interactions: evaluation of incidence, inhibition magnitude and prediction from in vitro data

    PubMed Central

    Isoherranen, Nina; Lutz, Justin D; Chung, Sophie P; Hachad, Houda; Levy, Rene H; Ragueneau-Majlessi, Isabelle

    2012-01-01

    Drugs that are mainly cleared by a single enzyme are considered more sensitive to drug-drug interactions (DDIs) than drugs cleared by multiple pathways. However, whether this is true when a drug cleared by multiple pathways is co-administered with an inhibitor of multiple P450 enzymes (multi-P450 inhibition) is not known. Mathematically, simultaneous equipotent inhibition of two elimination pathways that each contributes half of the drug clearance is equal to equipotent inhibition of a single pathway that clears the drug. However, simultaneous strong or moderate inhibition of two pathways by a single inhibitor is perceived as an unlikely scenario. The aim of this study was (i) to identify P450 inhibitors currently in clinical use that can inhibit more than one clearance pathway of an object drug in vivo, and (ii) to evaluate the magnitude and predictability of DDIs caused by these multi-P450 inhibitors. Multi-P450 inhibitors were identified using the Metabolism and Transport Drug Interaction Database™. A total of 38 multi-P450 inhibitors, defined as inhibitors that increased the AUC or decreased the clearance of probes of two or more P450’s, were identified. Seventeen (45 %) multi-P450 inhibitors were strong inhibitors of at least one P450 and an additional 12 (32 %) were moderate inhibitors of one or more P450s. Only one inhibitor (fluvoxamine) was a strong inhibitor of more than one enzyme. Fifteen of the multi-P450 inhibitors also inhibit drug transporters in vivo, but such data are lacking on many of the inhibitors. Inhibition of multiple P450 enzymes by a single inhibitor resulted in significant (>2-fold) clinical DDIs with drugs that are cleared by multiple pathways such as imipramine and diazepam while strong P450 inhibitors resulted in only weak DDIs with these object drugs. The magnitude of the DDIs between multi-P450 inhibitors and diazepam, imipramine and omeprazole could be predicted using in vitro data with similar accuracy as probe substrate

  5. Chk1 inhibition potentiates the therapeutic efficacy of PARP inhibitor BMN673 in gastric cancer

    PubMed Central

    Yin, Yuping; Shen, Qian; Zhang, Peng; Tao, Ruikang; Chang, Weilong; Li, Ruidong; Xie, Gengchen; Liu, Weizhen; Zhang, Lihong; Kapoor, Prabodh; Song, Shumei; Ajani, Jaffer; Mills, Gordon B; Chen, Jianying; Tao, Kaixiong; Peng, Guang

    2017-01-01

    Globally, gastric cancer is the second leading cause of cancer deaths because of the lack of effective treatments for patients with advanced tumors when curative surgery is not possible. Thus, there is an urgent need to identify molecular targets in gastric cancer that can be used for developing novel therapies and prolonging patient survival. Checkpoint kinase 1 (Chk1) is a crucial regulator of cell cycle transition in DNA damage response (DDR). In our study, we report that Chk1 plays an important role in promoting gastric cancer cell survival and growth, which serves as an effective therapeutic target in gastric cancer. First, Chk1 ablation by small interfering RNA could significantly inhibit cell proliferation and sensitize the effects of ionizing radiation (IR) treatment in both p53 wild type gastric cancer cell line AGS, and p53 mutant cell line MKN1. Secondly, we tested the anticancer effects of Chk1 chemical inhibitor LY2606368, which is a novel Chk1/2 targeted drug undergoing clinical trials in many malignant diseases. We found that LY2606368 can induce DNA damage, and remarkably suppress cancer proliferation and induce apoptosis in AGS and MKN1 cells. Moreover, we identified that LY2606368 can significantly inhibit homologous recombination (HR) mediated DNA repair and thus showed marked synergistic anticancer effect in combination with poly (ADP-ribose) polymerase 1 (PARP1) inhibitor BMN673 in both in vitro studies and in vivo experiments using a gastric cancer PDx model. The synergy between LY2606368 and PARP1 was likely caused by impaired the G2M checkpoint due to LY2606368 treatment, which forced mitotic entry and cell death in the presence of BMN673. In conclusion, we propose that Chk1 is a valued target for gastric cancer treatment, especially Chk1 inhibitor combined with PARP inhibitor may be a more effective therapeutic strategy in gastric cancer. PMID:28401005

  6. Effects of the phosphodiesterase type 4 inhibitor roflumilast on early and late allergic response and airway hyperresponsiveness in Aspergillus-fumigatus-sensitized mice.

    PubMed

    Hoymann, Heinz-Gerd; Wollin, Lutz; Muller, Meike; Korolewitz, Regina; Krug, Norbert; Braun, Armin; Beume, Rolf

    2009-01-01

    Inhibitory effects of roflumilast on responses characteristic of allergic asthma were investigated in a fungal asthma model in BALB/c mice. Mice were sensitized with Aspergillus antigen (Afu) and exposed to Afu or vehicle, and given roflumilast 1 or 5 mg/kg. Early airway response (EAR) and late airway hyperresponsiveness (AHR) to methacholine were measured via plethysmography. Bronchoalveolar lavage (BAL) was used to assess inflammatory cell count. In Afu-exposed mice, roflumilast dose-dependently reduced the EAR [26% at 1 mg/kg (NS) and 94% at 5 mg/kg (p < 0.01)] and AHR [46% at 1 mg/kg (NS) and 128% at 5 mg/kg (p < 0.05)]. Roflumilast 5 mg/kg reduced neutrophil, eosinophil and lymphocyte counts [87% (p < 0.01), 40% (NS) and 67% (p < 0.01), respectively] in BAL fluid versus controls. In this model, roflumilast inhibited the EAR, suppressed AHR and reduced inflammatory cell infiltration. 2009 S. Karger AG, Basel.

  7. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram.

    PubMed

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F; Rando, Roy J; Pathak, Yashwant V; Hoyle, Gary W

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228-270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Metal-dependent inhibition of HIV-1 integrase by 5CITEP inhibitor: A theoretical QM/MM approach

    NASA Astrophysics Data System (ADS)

    do Nascimento, Josenaide P.; Araújo Silva, José Rogério; Lameira, Jerônimo; Alves, Cláudio N.

    2013-09-01

    HIV-1 integrase (IN) is a potential target for developing drugs against AIDS. In this letter, QM/MM approach was used to study the inhibition of IN by 5CITEP inhibitor in presence of divalent cations (Mg2+ or Mn2+). In addition, the main interactions occurring in 5CITEP-IN complex and the influence of divalent cations (Mg2+ or Mn2+) in enzymatic inhibition were investigated using B3LYP/6-31+G(d,p)/MM. The results suggest that the Asp64, Asp116 and four crystal water molecules plays a crucial role in cation (Mg2+ or Mn2+) coordination sphere.

  9. Electrophilic nitro-fatty acids suppress allergic contact dermatitis in mice.

    PubMed

    Mathers, A R; Carey, C D; Killeen, M E; Diaz-Perez, J A; Salvatore, S R; Schopfer, F J; Freeman, B A; Falo, L D

    2017-04-01

    Reactions between nitric oxide (NO), nitrite (NO2-), and unsaturated fatty acids give rise to electrophilic nitro-fatty acids (NO 2 -FAs), such as nitro oleic acid (OA-NO 2 ) and nitro linoleic acid (LNO 2 ). Endogenous electrophilic fatty acids (EFAs) mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction reactions. Hence, there is considerable interest in employing NO 2 -FAs and other EFAs for the prevention and treatment of inflammatory disorders. Thus, we sought to determine whether OA-NO 2 , an exemplary nitro-fatty acid, has the capacity to inhibit cutaneous inflammation. We evaluated the effect of OA-NO 2 on allergic contact dermatitis (ACD) using an established model of contact hypersensitivity in C57Bl/6 mice utilizing 2,4-dinitrofluorobenzene as the hapten. We found that subcutaneous (SC) OA-NO 2 injections administered 18 h prior to sensitization and elicitation suppresses ACD in both preventative and therapeutic models. In vivo SC OA-NO 2 significantly inhibits pathways that lead to inflammatory cell infiltration and the production of inflammatory cytokines in the skin. Moreover, OA-NO 2 is capable of enhancing regulatory T-cell activity. Thus, OA-NO 2 treatment results in anti-inflammatory effects capable of inhibiting ACD by inducing immunosuppressive responses. Overall, these results support the development of OA-NO 2 as a promising therapeutic for ACD and provides new insights into the role of electrophilic fatty acids in the control of cutaneous immune responses potentially relevant to a broad range of allergic and inflammatory skin diseases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Structural Basis for Reversible and Irreversible Inhibition of Human Cathepsin L by their Respective dipeptidyl glyoxal and diazomethylketone Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R Shenoy; J Sivaraman

    Cathepsin L plays a key role in many pathophysiological conditions including rheumatoid arthritis, tumor invasion and metastasis, bone resorption and remodeling. Here we report the crystal structures of two analogous dipeptidyl inhibitor complexes which inhibit human cathepsin L in reversible and irreversible modes, respectively. To-date, there are no crystal structure reports of complexes of proteases with their glyoxal inhibitors or complexes of cathepsin L and their diazomethylketone inhibitors. These two inhibitors - inhibitor 1, an {alpha}-keto-{beta}-aldehyde and inhibitor 2, a diazomethylketone, have different groups in the S1 subsite. Inhibitor 1 [Z-Phe-Tyr (OBut)-COCHO], with a Ki of 0.6 nM, is themore » most potent, reversible, synthetic peptidyl inhibitor of cathepsin L reported to-date. The structure of the inhibitor 1 complex was refined up to 2.2 {angstrom} resolution. The structure of the complex of the inhibitor 2 [Z-Phe-Tyr (t-Bu)-diazomethylketone], an irreversible inhibitor that can inactivate cathepsin L at {micro}M concentrations, was refined up to 1.76 {angstrom} resolution. These two inhibitors have substrate-like interactions with the active site cysteine (Cys25). Inhibitor 1 forms a tetrahedral hemithioacetal adduct, whereas the inhibitor 2 forms a thioester with Cys25. The inhibitor 1 {beta}-aldehyde group is shown to make a hydrogen bond with catalytic His163, whereas the ketone carbonyl oxygen of the inhibitor 2 interacts with the oxyanion hole. tert-Butyl groups of both inhibitors are found to make several non-polar contacts with S' subsite residues of cathepsin L. These studies, combined with other complex structures of cathepsin L, reveal the structural basis for their potency and selectivity.« less

  11. INHIBITION OF PAN NEUROTROPHIN RECEPTOR P75 ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAY RESPONSES IN C57/BL6J MICE

    EPA Science Inventory

    Recent investigations have linked neurotrophins including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle...

  12. 38 CFR 3.380 - Diseases of allergic etiology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Diseases of allergic... Specific Diseases § 3.380 Diseases of allergic etiology. Diseases of allergic etiology, including bronchial... progress nor as due to the inherent nature of the disease. Seasonal and other acute allergic manifestations...

  13. 38 CFR 3.380 - Diseases of allergic etiology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Diseases of allergic... Specific Diseases § 3.380 Diseases of allergic etiology. Diseases of allergic etiology, including bronchial... progress nor as due to the inherent nature of the disease. Seasonal and other acute allergic manifestations...

  14. 38 CFR 3.380 - Diseases of allergic etiology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Diseases of allergic... Specific Diseases § 3.380 Diseases of allergic etiology. Diseases of allergic etiology, including bronchial... progress nor as due to the inherent nature of the disease. Seasonal and other acute allergic manifestations...

  15. 38 CFR 3.380 - Diseases of allergic etiology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Diseases of allergic... Specific Diseases § 3.380 Diseases of allergic etiology. Diseases of allergic etiology, including bronchial... progress nor as due to the inherent nature of the disease. Seasonal and other acute allergic manifestations...

  16. 38 CFR 3.380 - Diseases of allergic etiology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Diseases of allergic... Specific Diseases § 3.380 Diseases of allergic etiology. Diseases of allergic etiology, including bronchial... progress nor as due to the inherent nature of the disease. Seasonal and other acute allergic manifestations...

  17. Quercetin Is More Effective than Cromolyn in Blocking Human Mast Cell Cytokine Release and Inhibits Contact Dermatitis and Photosensitivity in Humans

    PubMed Central

    Asadi, Shahrzad; Sismanopoulos, Nikolaos; Butcher, Alan; Fu, Xueyan; Katsarou-Katsari, Alexandra; Antoniou, Christina; Theoharides, Theoharis C.

    2012-01-01

    Mast cells are immune cells critical in the pathogenesis of allergic, but also inflammatory and autoimmune diseases through release of many pro-inflammatory cytokines such as IL-8 and TNF. Contact dermatitis and photosensitivity are skin conditions that involve non-immune triggers such as substance P (SP), and do not respond to conventional treatment. Inhibition of mast cell cytokine release could be effective therapy for such diseases. Unfortunately, disodium cromoglycate (cromolyn), the only compound marketed as a mast cell “stabilizer”, is not particularly effective in blocking human mast cells. Instead, flavonoids are potent anti-oxidant and anti-inflammatory compounds with mast cell inhibitory actions. Here, we first compared the flavonoid quercetin (Que) and cromolyn on cultured human mast cells. Que and cromolyn (100 µM) can effectively inhibit secretion of histamine and PGD2. Que and cromolyn also inhibit histamine, leukotrienes and PGD2 from primary human cord blood-derived cultured mast cells (hCBMCs) stimulated by IgE/Anti-IgE. However, Que is more effective than cromolyn in inhibiting IL-8 and TNF release from LAD2 mast cells stimulated by SP. Moreover, Que reduces IL-6 release from hCBMCs in a dose-dependent manner. Que inhibits cytosolic calcium level increase and NF-kappa B activation. Interestingly, Que is effective prophylactically, while cromolyn must be added together with the trigger or it rapidly loses its effect. In two pilot, open-label, clinical trials, Que significantly decreased contact dermatitis and photosensitivity, skin conditions that do not respond to conventional treatment. In summary, Que is a promising candidate as an effective mast cell inhibitor for allergic and inflammatory diseases, especially in formulations that permit more sufficient oral absorption. PMID:22470478

  18. Regulatory T cells in Allergic Diseases

    PubMed Central

    Rivas, Magali Noval; Chatila, Talal A.

    2016-01-01

    The pathogenesis of allergic diseases entails an ineffective tolerogenic immune response towards allergens. Regulatory T cells (TReg) cells play a key role in sustaining immune tolerance to allergens, yet mechanisms by which TReg cells fail to maintain tolerance in allergic diseases are not well understood. We review current concepts and established mechanisms regarding how TReg cells regulate different components of allergen-triggered immune responses to promote and maintain tolerance. We will also discuss more recent advances that emphasize the “dual” functionality of TReg cells in allergic diseases: how TReg cells are essential in promoting tolerance to allergens but also how a pro-allergic inflammatory environment can skew TReg cells towards a pathogenic phenotype that aggravates and perpetuates disease. These advances highlight opportunities for novel therapeutic strategies that aim to re-establish tolerance in chronic allergic diseases by promoting TReg cell and stability function. PMID:27596705

  19. Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids.

    PubMed

    Ekinci, Derya; Karagoz, Lutfi; Ekinci, Deniz; Senturk, Murat; Supuran, Claudiu T

    2013-04-01

    A series of flavonoids, such as quercetin, catechin, apigenin, luteolin, morin, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA). The compounds were tested against four α-CA isozymes purified from human and bovine (hCA I, hCA II, bCA III, hCA IV) tissues. The four isozymes showed quite diverse inhibition profiles with these compounds. The flavonoids inhibited hCA I with K(I)-s in the range of 2.2-12.8 μM, hCA II with K(I)-s in the range of 0.74-6.2 μM, bCA III with K(I)-s in the range of 2.2-21.3 μM, and hCA IV with inhibition constants in the range of 4.4-15.7, with an esterase assay using 4-nitrophenyl acetate as substrate. Some simple phenols/sulfonamides were also investigated as standard inhibitors. The flavonoids incorporate phenol moieties which inhibit these CAs through a diverse, not yet determined inhibition mechanism, compared to classic inhibitors such as the sulfonamide/sulfamate ones.

  20. Treatment of Allergic Rhinitis Is Associated with Improved Attention Performance in Children: The Allergic Rhinitis Cohort Study for Kids (ARCO-Kids)

    PubMed Central

    Han, Doo Hee; Won, Tae-Bin; Kim, Dong-Young; Kim, Jeong-Whun

    2014-01-01

    Background It has been well known that pediatric allergic rhinitis was associated with poor performance at school due to attention deficit. However, there were no cohort studies for the effect of treatment of allergic rhinitis on attention performance in pediatric population. Thus, the aim of this study was to investigate whether attention performance was improved after treatment in children with allergic rhinitis. Methods In this ARCO-Kids (Allergic Rhinitis Cohort Study for Kids), consecutive pediatric patients with rhinitis symptoms underwent a skin prick test and computerized comprehensive attention test. According to the skin prick test results, the children were diagnosed as allergic rhinitis or non- allergic rhinitis. All of the patients were regularly followed up and treated with oral medication or intranasal corticosteroid sprays. The comprehensive attention tests consisted of sustained and divided attention tasks. Each of the tasks was assessed by the attention score which was calculated by the number of omission and commission errors. The comprehension attention test was repeated after 1 year. Results A total of 797 children with allergic rhinitis and 239 children with non-allergic rhinitis were included. Initially, the attention scores of omission and commission errors on divided attention task were significantly lower in children with allergic rhinitis than in children with non-allergic rhinitis. After 1 year of treatment, children with allergic rhinitis showed improvement in attention: commission error of sustained (95.6±17.0 vs 97.0±16.6) and divided attention task (99.1±15.8 vs 91.8±23.5). Meanwhile, there was no significant difference of attention scores in children with non-allergic rhinitis. Conclusions Our study showed that management of allergic rhinitis might be associated with improvement of attention. PMID:25330316

  1. Sulphonamides as corrosion inhibitor: Experimental and DFT studies

    NASA Astrophysics Data System (ADS)

    Obayes, Hasan R.; Al-Amiery, Ahmed A.; Alwan, Ghadah H.; Abdullah, Thamer Adnan; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2017-06-01

    Inhibitors are synthetic and natural molecules have various functional groups like double or triple bonds and heteroatoms; N, O or S, which permit adsorption onto the MS (metal surface). These inhibitors have the ability to adsorb onto the MS and block the active site that was reducing the corrosion rate. Inhibition efficiencies of the investigated compounds: Sulfacetamide (SAM), Sulfamerazine (SMR), Sulfapyridine (SPY) and Sulfathiazole (STI), as inhibitors in corrosive solution were evaluated based on weight loss technique. Nitro and Amino groups were chosen for the study of the substituted reaction of four corrosion inhibitor compounds: SAM, SMR, SPY and STI, theoretically utilizing the thickness capacities hypothesis DFT (density functions theory) method with the level [rB3LYP/6-311G(d,p)]. Our research demonstrated that the nitration of studied molecules lead to a diminishing in inhibition efficiencies, group lead to an increase in inhibition efficiency. Compared with corrosion inhibitor molecules these results gave a significant improvement in inhibition efficiency for corrosion inhibitor molecules.

  2. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor.

    PubMed

    Fang, Pengfei; Han, Hongyan; Wang, Jing; Chen, Kaige; Chen, Xin; Guo, Min

    2015-06-18

    Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The anti-allergic activity of the acetate fraction of Schinus terebinthifolius leaves in IgE induced mice paw edema and pleurisy.

    PubMed

    Cavalher-Machado, Simone Campos; Rosas, Elaine Cruz; Brito, Fabiola de Almeida; Heringe, Alan Patrick; de Oliveira, Rodrigo Rodrigues; Kaplan, Maria Auxiliadora Coelho; Figueiredo, Maria Raquel; Henriques, Maria das Graças Müller de Oliveira

    2008-11-01

    Schinus is a genus of the Anacardiaceae family and contains Schinus terebinthifolius, the Brazilian pepper tree that is widely used in folk medicine. We investigate the anti-allergic activity of the ethyl acetate fraction of S. terebinthifolius Raddi (ST fraction). HPLC analysis reveled that gallic acid, methyl gallate and 1,2,3,4,6-pentagalloylglucose are the major aromatic components of the fraction. Oral pre-treatment with the ST fraction (100 mg/kg) significantly inhibited paw edema induced by compound 48/80 (100 ng/paw) and to a lesser extent, the allergic paw edema (OVA, 3 microg/paw). The ST fraction (100 and 200 mg/kg) also inhibited the edema induced by histamine (100 microg/paw), preventing mast cell degranulation and, consequently, histamine release in Wistar rat peritoneal mast cells induced by C 48/80 (5 microg/mL). This histamine inhibition was also observed after mast cell pre-treatment with both methyl gallate and 1,2,3,4,6-pentagalloylglucose (100 microg/mL), the isolated compounds from the ethyl acetate fraction. Pre-treatment with the ST fraction (100 mg/kg) significantly inhibited total leukocyte and eosinophil accumulation in pleural cavities 24 h after the intrathoracic injection of OVA (12.5 microg/cavity). This effect was related to the inhibition of CCL11/eotaxin and CCL5/RANTES in pleural lavage fluid. Pre-treatment with this fraction (100 mg/kg) failed to reduce the cell influx that was observed after LPS-injection into pleural cavity (250 ng/cavity). These findings demonstrate the anti-allergic effect of the ST fraction, which includes the inhibition of edema formation and histamine release caused by mast cell degranulation and eosinophil influx into the pleural cavity probably reflected by the decreased levels of chemokines in recovered pleural lavage fluid.

  4. Alkylphenols--potential modulators of the allergic response.

    PubMed

    Suen, Jau-Ling; Hung, Chih-Hsin; Yu, Hsin-Su; Huang, Shau-Ku

    2012-07-01

    The prevalence of allergic diseases has increased in recent decades. Allergic diseases, particularly asthma, are complex diseases with strong gene-environment interactions. Epidemiological studies have identified a variety of risk factors for the development of allergic diseases. Among them, endocrine-disrupting chemicals (EDCs) play an important role in triggering or exacerbating these diseases. 4-Nonylphenol (NP) and 4-octylphenol (OP)--two major alkylphenols--have been recognized as common toxic and xenobiotic endocrine disrupters. Due to their low solubility, high hydrophobicity, and low estrogenic activity, they tend to accumulate in the human body and may be associated with the adverse effects of allergic diseases. Recently, new evidence has supported the importance of alkylphenols in the in vitro allergic response. This review focuses on the effects of alkylphenols on several key cell types in the context of allergic inflammation. Copyright © 2012. Published by Elsevier B.V.

  5. Carbonic anhydrase inhibitors: guaiacol and catechol derivatives effectively inhibit certain human carbonic anhydrase isoenzymes (hCA I, II, IX and XII).

    PubMed

    Scozzafava, Andrea; Passaponti, Maurizio; Supuran, Claudiu T; Gülçin, İlhami

    2015-01-01

    Carbonic anhydrases (CAs) are widespread metalloenzymes in higher vertebrates including humans. A series of phenolic compounds, including guaiacol, 4-methylguaiacol, 4-propylguaiacol, eugenol, isoeugenol, vanillin, syringaldehyde, catechol, 3-methyl catechol, 4-methyl catechol and 3-methoxy catechol were investigated for their inhibition of all the catalytically active mammalian isozymes of the Zn(2+)-containing CA (EC 4.2.1.1). All the phenolic compounds effectively inhibited human carbonic anhydrase isoenzymes (hCA I, II, IX and XII), with Kis in the range of 2.20-515.98 μM. The various isozymes showed diverse inhibition profiles. Among the tested phenolic derivatives, compounds 4-methyl catechol and 3-methoxy catechol showed potent activity as inhibitors of the tumour-associated transmembrane isoforms (hCA IX and XII) in the submicromolar range, with high selectivity. The results obtained from this research may lead to the design of more effective carbonic anhydrase isoenzyme inhibitors (CAIs) based on such phenolic compound scaffolds.

  6. Polyphenol oxidase inhibitor(s) from German cockroach (Blattella germanica) extract

    USDA-ARS?s Scientific Manuscript database

    An extract from German cockroach appears effective in inhibiting browning on apples and potatoes. Successful identification of inhibitor(s) of PPO from German cockroach would be useful to the fruit and vegetable segments of the food industry, due to the losses they incur from enzymatic browning. Ide...

  7. Thrombomodulin inhibits the activation of eosinophils and mast cells.

    PubMed

    Roeen, Ziaurahman; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Onishi, Masahiro; Kobayashi, Tetsu; Yasuma, Taro; Urawa, Masahito; Taguchi, Osamu; Gabazza, Esteban C

    2015-01-01

    Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Allergic reactions to measles-mumps-rubella vaccination.

    PubMed

    Patja, A; Mäkinen-Kiljunen, S; Davidkin, I; Paunio, M; Peltola, H

    2001-02-01

    Immunization of egg-allergic children against measles, mumps, and rubella (MMR) is often deferred or even denied, although the safety of this vaccination has been clearly shown. Moreover, the majority of severe allergic reactions have occurred in egg-tolerant vaccinees. Other allergenic vaccine components have been sought, and gelatin has been suggested as one cause of allergic adverse events. The aim of this study was to further characterize the actual allergenic vaccine components. Serum samples from 36 recipients of MMR vaccine with anaphylaxis, urticaria with or without angioedema, asthmatic symptoms, or Henoch-Schönlein purpura were analyzed by CAP System radioallergosorbent test (RAST) and immunospot methods to detect the allergenic vaccine component. To evaluate the correspondence between the findings in the CAP System RAST or the immunospot and clinical symptoms, histories of allergies and present hypersensitivity symptoms were assessed. Of the 36 participants, 10 were demonstrated to be allergic to gelatin. Seven of them had persistent allergic symptoms, possibly attributable to foods containing gelatin or cross-reactive allergens. The results of the immunospot suggested concomitant allergy to gelatin and egg, chicken, and feathers, as well as cow's milk, or they reflected allergen cross-reactivity. Although severe allergic adverse events attributable to MMR vaccination are extremely rare, all serious allergic reactions should be further assessed to detect the likely causative vaccine component, including gelatin. The current recommendation for immunization of egg-allergic persons according to standard MMR vaccination schedules is reinforced. measles, mumps, and rubella vaccine, immunization, adverse effects, allergic reactions, gelatin allergy, CAP System, radioallergosorbent test, immunospot, immunoglobulin E.

  9. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in themore » cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.« less

  10. Circulating CXCR5+CD4+ T cells participate in the IgE accumulation in allergic asthma.

    PubMed

    Gong, Fang; Zhu, Hua-Yan; Zhu, Jie; Dong, Qiao-Jing; Huang, Xuan; Jiang, Dong-Jin

    2018-05-01

    The pathogenesis of allergic asthma is primarily characterized by abnormality in immunoglobin(Ig)E pathway, suggesting a possible role for follicular helper T cells (Tfh) in the genesis of excessive IgE accumulation. The blood chemokine (C-X-C motif) receptor 5 (CXCR)5 + CD4 + T cells, known as "circulating" Tfh, share common functional characteristics with Tfh cells from germinal centers. The aim of this study was to determine the phenotypes and functions of circulating CXCR5 + CD4 + T cells in allergic asthmatics. Here we found the frequency of the circulating CXCR5 + CD4 + T cells was raised in allergic asthma compared with healthy control (HC). Phenotypic assays showed that activated circulating CXCR5 + CD4 + T cells display the key features of Tfh cells, including invariably coexpressed programmed cell death (PD)-1 and inducible costimulator (ICOS). The frequency of interleukin IL-4 + -, IL-21 + -producing CXCR5 + CD4 + T cells was increased in allergic asthma patients compared with HC. Furthermore, sorted circulating CXCR5 + CD4 + T cells from allergic asthma patients boosted IgE production in coculture assay which could be inhibited by IL-4 or IL-21 blockage. Interestingly, IL-4 + -, IL-21 + -CXCR5 + CD4 + T cells positively correlated with total IgE in the blood. Our data indicated that circulating CXCR5 + CD4 + T cells may have a significant role in facilitating IgE production in allergic asthma patients. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  11. Betalactam antibiotics affect human dendritic cells maturation through MAPK/NF-kB systems. Role in allergic reactions to drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Soledad; Department of Medical Biochemistry, Molecular Biology and Immunology, The University of Seville Medical School, Seville; Gomez, Enrique

    The mechanisms leading to drug allergy in predisposed patients, especially those related to T-cell-mediated drug hypersensitivity, are not well understood. A key event in allergic reactions to drugs is the maturation process undergone by dendritic cells (DCs). Although amoxicillin (AX) has been reported to interact and maturate DCs from patients with AX-induced delayed-type hypersensitivity, the cell signaling pathways related to AX-mediated DC maturation have not been elucidated. We sought to determine the role of the MAPK and NF-κΒ pathways on AX-induced DC maturation and functional status. For that purpose, in monocyte-derived-DCs from AX-delayed allergic patients and tolerant subjects, we analyzedmore » the activation pattern of p38MAPK, JNK, and ERK signaling and the NF-κB, maturation markers as well as endocytosis and allostimulatory capacities driven by AX-stimulated-DCs. Our data reveal that AX induces an increase in the phosphorylation levels of the three MAPKsand activated NF-κB in DCs from allergic patients. Moreover, the inhibition of these pathways prevents the up-regulation of surface molecules induced by AX. Additionally, we observed that the allostimulatory capacity and the endocytosis down-regulation in AX-stimulated-DCs from allergic patients depend on JNK and NF-κB activities. Taken together, our data shed light for the first time on the main signaling pathways involved in DC maturation from AX-delayed allergic patient. - Highlights: • The cell signaling pathways related to drug-mediated DC maturation were tested. • Amoxicillin induces activation of MAPK and NF-κB in DCs from allergic patients. • The inhibition of these pathways prevents the up-regulation of DC surface molecules. • Their allostimulatory and endocytosis capacities depend on JNK and NF-κB activities. • The low involvement of p38-MAPK could be the cause of an incomplete DC maturation.« less

  12. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation.

    PubMed

    Scannevin, Robert H; Alexander, Richard; Haarlander, Tara Mezzasalma; Burke, Sharon L; Singer, Monica; Huo, Cuifen; Zhang, Yue-Mei; Maguire, Diane; Spurlino, John; Deckman, Ingrid; Carroll, Karen I; Lewandowski, Frank; Devine, Eric; Dzordzorme, Keli; Tounge, Brett; Milligan, Cindy; Bayoumy, Shariff; Williams, Robyn; Schalk-Hihi, Celine; Leonard, Kristi; Jackson, Paul; Todd, Matthew; Kuo, Lawrence C; Rhodes, Kenneth J

    2017-10-27

    Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Inhibition of protease-inhibitor resistant hepatitis C virus replicons and infectious virus by intracellular intrabodies

    PubMed Central

    Gal-Tanamy, Meital; Zemel, Romy; Bachmatov, Larissa; Jangra, Rohit K.; Shapira, Assaf; Villanueva, Rodrigo; Yi, MinKyung; Lemon, Stanley M.; Benhar, Itai; Tur-Kaspa, Ran

    2015-01-01

    Hepatitis C virus (HCV) infection is a common cause of chronic liver disease and a serious threat to human health. The HCV NS3/4A serine protease is necessary for viral replication and innate immune evasion, and represents a well-validated target for specific antiviral therapy. We previously reported the isolation of single-chain antibodies (scFvs) that inhibit NS3/4A protease activity in vitro. Expressed intracellularly (intrabodies), these scFvs blocked NS3-mediated proliferation of NS3-transfected cells. Here we show that anti-NS3 scFvs suppress HCV RNA replication when expressed intracellularly in Huh7 hepatoma cells bearing either subgenomic or genome-length HCV RNA replicons. The expression of intrabodies directed against NS3 inhibited the autonomous amplification of HCV replicons resistant to small molecule inhibitors of the NS3/4A protease, and replicons derived from different HCV genotypes. The combination of intrabodies and interferon-α had an additive inhibitory effect on RNA replication in the replicon model. Intrabody expression also inhibited production of infectious HCV in a cell culture system. The NS3 protease activity was inhibited by the intrabodies in NS3-expressing cells. In contrast, cell-free synthesis of HCV RNA by preformed replicase complexes was not inhibited by intrabodies, suggesting that the major mode of inhibition of viral replication is inhibition of NS3/4A protease activity and subsequent suppression of viral polyprotein processing. PMID:20705106

  14. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    disease would modulate the innate immune response to MWCNTs. We hypothesized that Th2 cytokines and the allergic asthmatic microenvironment would alter MWCNT-induced inflammasome activation and IL- 1beta secretion both in vitro and in vivo. In vitro, THP-1 cells, a human monocytic cell line, were differentiated into macrophages and exposed to MWCNTs and or recombinant Th2 cytokines, specifically IL-4 and/or IL-13. Exposure of THP-1 cells to MWCNTs alone caused dose-dependent secretion of IL-1beta, while co-exposure to IL-4 and/or IL-13 suppressed MWCNT-induced IL-1beta. Further analysis determined that IL-4 and IL-13 were phosphorylating the protein signal transducer and activator of transcription 6 (STAT6) and subsequently inhibiting inflammasome activation and function through suppression of caspase-1, a cysteine protease responsible for cleavage of pro-IL-1beta into an active, secretable form. In vivo, wild-type C57BL6 mice were sensitized intranasally with HDM allergen and exposed to MWCNTs via oropharyngeal aspiration. Treatment with MWCNTs alone induced secretion of IL-1beta in the bronchoalveolar lavage fluid (BALF) one day post-exposure, while sensitization with HDM prior to MWCNT exposure suppressed MWCNT-induced IL-1beta. Immunohistochemical (IHC) analysis of lung sections from exposed animals showed that HDM sensitization inhibited MWCNT-induced pro-casapse-1 protein expression, responsible for inflammasome activation, in the airway epithelium and macrophages. MWCNT exposure combined with HDM sensitization increased inflammatory cell infiltration and subsequent acute lung inflammation and chronic fibrosis. Analysis of the systemic effects of MWCNT exposure during allergic airway sensitization showed that MWCNTs and/or HDM allergen upregulated STAT3 mRNA expression in the lungs, liver, and spleen of exposed animals, and at the same induced mixed T helper (Th) responses in the different tissues. Collectively, these data suggest that the allergic microenvironment

  15. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors

    PubMed Central

    Mulcahy Levy, Jean M; Zahedi, Shadi; Griesinger, Andrea M; Morin, Andrew; Davies, Kurtis D; Aisner, Dara L; Kleinschmidt-DeMasters, BK; Fitzwalter, Brent E; Goodall, Megan L; Thorburn, Jacqueline; Amani, Vladimir; Donson, Andrew M; Birks, Diane K; Mirsky, David M; Hankinson, Todd C; Handler, Michael H; Green, Adam L; Vibhakar, Rajeev; Foreman, Nicholas K; Thorburn, Andrew

    2017-01-01

    Kinase inhibitors are effective cancer therapies, but tumors frequently develop resistance. Current strategies to circumvent resistance target the same or parallel pathways. We report here that targeting a completely different process, autophagy, can overcome multiple BRAF inhibitor resistance mechanisms in brain tumors. BRAFV600Emutations occur in many pediatric brain tumors. We previously reported that these tumors are autophagy-dependent and a patient was successfully treated with the autophagy inhibitor chloroquine after failure of the BRAFV600E inhibitor vemurafenib, suggesting autophagy inhibition overcame the kinase inhibitor resistance. We tested this hypothesis in vemurafenib-resistant brain tumors. Genetic and pharmacological autophagy inhibition overcame molecularly distinct resistance mechanisms, inhibited tumor cell growth, and increased cell death. Patients with resistance had favorable clinical responses when chloroquine was added to vemurafenib. This provides a fundamentally different strategy to circumvent multiple mechanisms of kinase inhibitor resistance that could be rapidly tested in clinical trials in patients with BRAFV600E brain tumors. DOI: http://dx.doi.org/10.7554/eLife.19671.001 PMID:28094001

  16. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed Central

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes. PMID:8611143

  17. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-02-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.

  18. Superacid synthesized tertiary benzenesulfonamides and benzofuzed sultams act as selective hCA IX inhibitors: toward understanding a new mode of inhibition by tertiary sulfonamides.

    PubMed

    Métayer, Benoît; Martin-Mingot, Agnès; Vullo, Daniella; Supuran, Claudiu T; Thibaudeau, Sébastien

    2013-11-21

    A series of tertiary (fluorinated) benzenesulfonamides was synthesized in superacid HF-SbF5. To circumvent the problem of the in situ iminium ion formation, proved by low temperature NMR experiments, a tandem superacid catalysed cross-coupling reaction was employed to synthesize the benzofuzed sultams analogues. These tertiary benzenesulfonamides were tested as inhibitors of human carbonic anhydrases (hCAs, EC 4.2.1.1). These compounds did not inhibit the widespread off target hCA II isoform and showed strong selectivity toward tumor-associated carbonic anhydrase isoform IX. A dramatic effect of the electronic and structural shape of the inhibitors on selectivity was demonstrated, confirming the non-zinc-bonding mode of inhibition of this class of sulfonamides. This work allowed identifying a highly selective hCA IX inhibitor lead in this series.

  19. The calmodulin inhibitor CGS 9343B inhibits voltage-dependent K{sup +} channels in rabbit coronary arterial smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongliang; Hong, Da Hye; Kim, Han Sol

    We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivationmore » curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.« less

  20. Inhibition of in vivo histamine metabolism in rats by foodborne and pharmacologic inhibitors of diamine oxidase, histamine N-methyltransferase, and monoamine oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, J.Y.; Taylor, S.L.

    When (/sup 14/C)histamine was administered orally to rats, an average of 80% of the administered radioactivity was recovered in the urine at the end of 24 hr. About 10% of the total dose was excreted via the feces. Analysis of 4-hr urine samples found imidazoleacetic acid to be the predominant metabolite (60.6%), with N tau-methylimidazoleacetic acid (8.6%), N tau-methylhistamine (7.3%), and N-acetylhistamine (4.5%) to be the minor metabolites. Histamine metabolism was inhibited by simultaneous oral administration of aminoguanidine, isoniazid, quinacrine, cadaverine, putrescine, tyramine, and beta-phenylethylamine. The administration of inhibitors resulted in an increased amount of unmetabolized histamine and a decreasedmore » amount of metabolites reaching the urine. Pharmacologic inhibitors were found to be more potent and have a longer duration of action than foodborne ones. The inhibitors could potentiate food poisoning caused by histamine by inhibiting its metabolism.« less

  1. SP600125 promotes resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model.

    PubMed

    Wu, Hui-Mei; Fang, Lei; Shen, Qi-Ying; Liu, Rong-Yu

    2015-10-01

    c-Jun N-terminal kinase (JNK) relays extracellular stimuli through phosphorylation cascades that lead to various cell responses. In the present study, we aimed to investigate the effect of the JNK inhibitor SP600125 on the resolution of airway inflammation, and the underlying mechanism using a murine acute asthma model. Female C57BL/6 mice were sensitized with saline or ovalbumin (OVA) on day 0, and challenged with OVA on day 14-20. Meanwhile, some of the mice were treated with SP600125 (30 mg/kg) intraperitoneally 2 h before each challenge. The airway inflammation was evaluated by counting the numbers of various types of inflammatory cells in bronchoalveolar lavage fluid (BALF), histopathology, cytokines production and mucus secretion in individual mouse. In addition, we analyzed the protein levels of phosphorylated JNK and TLR9 in the lung tissues. SP600125 markedly reduced the invasion of inflammatory cells into the peribronchial regions, and decreased the numbers of eosinophils, monocytes, neutrophils and lymphocytes in BALF. SP600125 also reduced the level of plasma OVA-specific IgE, lowered the production of pro-inflammatory cytokines in BALF and alleviated mucus secretion. Meanwhile, SP600125 inhibited OVA-induced, increased expression of p-JNK and TLR9 in the lung tissues. Collectively, our data demonstrated that SP600125 promoted resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model. The JNK-TLR9 pathway may be a new therapeutic target in the treatment for the allergic asthma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. PKCλ/ι regulates Th17 differentiation and house dust mite-induced allergic airway inflammation.

    PubMed

    Yang, Yingying; Dong, Panpan; Zhao, Jing; Zhou, Wei; Zhou, Yonghua; Xu, Yongliang; Mei, Congjin; Guo, Fukun; Zheng, Yi; Yang, Jun-Qi

    2018-03-01

    Asthma is a chronic airway inflammation in which Th2 and Th17 cells play critical roles in its pathogenesis. We have reported that atypical protein kinase (PKC) λ/ι is a new regulator for Th2 differentiation and function. However, the role of PKCλ/ι for Th17 cells remains elusive. In this study, we explored the effect of PKCλ/ι on Th17 cells in the context of ex vivo cell culture systems and an in vivo murine model of allergic airway inflammation with the use of activated T cell-specific conditional PKCλ/ι-deficient mice. Our findings indicate that PKCλ/ι regulates Th17 cells. The secretion of Th17 effector cytokines, including IL-17, IL-21 and IL-22, were inhibited from PKCλ/ι-deficient T cells under non-skewing or Th17-skewing culture conditions. Moreover, the impaired Th17 differentiation and function by the PKCλ/ι-deficiency was associated with the downregulation of Stat3 and Rorγt, key Th17 transcription factors. We developed a model of Th17 and neutrophil-involved allergic airway inflammation by intratracheal inoculation of house dust mites. PKCλ/ι-deficiency significantly inhibited airway inflammations. The infiltrating cells in the lungs and bronchoalveolar lavage fluids were significantly reduced in conditional PKCλ/ι-deficient mice. Th17 effector cytokines were reduced in the bronchoalveolar lavage fluids and lungs at protein and mRNA levels. Thus, PKCλ/ι emerges as a critical regulator of Th17 differentiation and allergic airway hyperresponsiveness. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Otopolyposis With Middle Ear Allergic Mucin in a Patient With Allergic Fungal Rhinosinusitis.

    PubMed

    Kumar, Manvinder S; Panella, Nicholas J; Magliocca, Kelly R; Vivas, Esther X

    2016-10-01

    The purpose of this study is to report a case of otopolyposis and middle ear allergic mucin in a patient with allergic fungal rhinosinusitis (AFRS) and no history of middle ear disease and introduce these as possible otologic manifestations of the AFRS. A case of a 31-year-old female with the aforementioned findings is reported. A review of the pertinent literature was performed. We report a case of a 31-year-old female with a history of AFRS but no history of middle ear disease or hearing loss who presented to our institution complaining of aural fullness. Physical exam was significant for middle ear masses of unknown etiology. Surgical exploration revealed the presence of allergic mucin and middle ear polyposis histologically identical to tissue sampled during prior sinonasal surgeries at the same institution. Aspiration of the middle ear space did not resolve the otologic symptoms. Otopolyposis and middle ear allergic mucin are extremely rare but possible otologic manifestations of AFRS. We encourage otolaryngologists to consider this in the clinical differential diagnosis of patients with a history of AFRS with new onset otologic symptoms. © The Author(s) 2016.

  4. Polyphenol oxidase inhibitor from blue mussel (Mytilus edulis) extract.

    PubMed

    Schulbach, Kurt F; Johnson, Jodie V; Simonne, Amarat H; Kim, Jeong-Mok; Jeong, Yoonhwa; Yagiz, Yavuz; Marshall, Maurice R

    2013-03-01

    Enzymatic browning remains a problem for the fruit and vegetable industry, especially new emerging markets like pre-cuts. A crude inhibitor from blue mussel (Mytilus edulis) showed broad inhibition for apple (58%), mushroom (32%), and potato (44%) polyphenol oxidase (PPO) and was further characterized. Inhibition increased as the concentration of inhibitor increased in the reaction mixture eventually leveling off at a maximum inhibition of 92% for apple PPO. The inhibitor was capable of bleaching the brown color formed in the reaction mixture with apple PPO. Identification of the inhibitor by mass spectrometry and high-performance liquid chromatography revealed it to be hypotaurine (C2 H7 NO2 S). Hypotaurine and other sulfinic acid analogs (methane and benzene sulfinic acids) showed very good inhibition for apple PPO at various concentrations with the highest inhibition occurring at 500 μM for hypotaurine (89%), methane sulfinic acid (100%), and benzene sulfinic acid (100%). An inhibitor found in the expressed liquid from blue mussel shows very good inhibition on enzymatic browning. Since this enzyme is responsible for losses to the fruit and vegetable industry, natural inhibitors that prevent browning would be valuable. Finding alternative chemistries that inhibit browning and understanding their mode of action would be beneficial to the fruit and vegetable industries and their segments such as pre-cuts, juices, and so on. Inhibitors from products ingested by consumers are more acceptable as natural ingredients. © 2013 Institute of Food Technologists®

  5. Inhibitors of Proton Pumping

    PubMed Central

    Bisson, Mary A.

    1986-01-01

    Reported inhibitors of the Characean plasmalemma proton pump were tested for their ability to inhibit the passive H+ conductance which develops in Chara corallina Klein ex Willd. at high pH. Diethylstilbestrol inhibits the proton pump and the passive H+ conductance with about the same time course, at concentrations that have no effect on cytoplasmic streaming. N-Ethylmaleimide, a sulfhydryl reagent which is small and relatively nonpolar, also inhibits both pumping and passive conductance of H+. However, it also inhibits cytoplasmic streaming with about the same time course, and therefore could not be considered a specific ATPase inhibitor. p-Chloromercuribenzene sulfonate (PCMBS), a sulfhydryl reagent which is large and charged and hence less able to penetrate the membrane, does not inhibit pumping or conductance at low concentration. At high concentration, PCMBS sometimes inhibits pumping without affecting H+ conductance, but since streaming is also inhibited, the effect on the pump cannot be said to be specific. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, a water soluble carbodiimide, weakly inhibits both pump and conductance, apparently specifically. PMID:16664807

  6. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajah, T.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2014-07-15

    The caspase inhibitor benzyloxycarbony (Cbz)-L-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletionmore » of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.« less

  7. Antitumor effect of the novel sphingosine kinase 2 inhibitor ABC294640 is enhanced by inhibition of autophagy and by sorafenib in human cholangiocarcinoma cells.

    PubMed

    Ding, Xiwei; Chaiteerakij, Roongruedee; Moser, Catherine D; Shaleh, Hassan; Boakye, Jeffrey; Chen, Gang; Ndzengue, Albert; Li, Ying; Zhou, Yanling; Huang, Shengbing; Sinicrope, Frank A; Zou, Xiaoping; Thomas, Melanie B; Smith, Charles D; Roberts, Lewis R

    2016-04-12

    Sphingosine kinase 2 (Sphk2) has an oncogenic role in cancer. A recently developed first-in-class Sphk2 specific inhibitor ABC294640 displays antitumor activity in many cancer models. However, the role of Sphk2 and the antitumor activity of its inhibitor ABC294640 are not known in cholangiocarcinoma. We investigated the potential of targeting Sphk2 for the treatment of cholangiocarcinoma. We found that Sphk2 is overexpressed in five established human cholangiocarcinoma cell lines (WITT, HuCCT1, EGI-1, OZ and HuH28) and a new patient-derived cholangiocarcinoma cell line (LIV27) compared to H69 normal cholangiocytes. Inhibition of Sphk2 by ABC294640 inhibited proliferation and induced caspase-dependent apoptosis. Furthermore, we found that ABC294640 inhibited STAT3 phosphorylation, one of the key signaling pathways regulating cholangiocarcinoma cell proliferation and survival. ABC294640 also induced autophagy. Inhibition of autophagy by bafilomycin A1 or chloroquine potentiated ABC294640-induced cytotoxicity and apoptosis. In addition, ABC294640 in combination with sorafenib synergistically inhibited cell proliferation of cholangiocarcinoma cells. Strong decreases in STAT3 phosphorylation were observed in WITT and HuCCT1 cells exposed to the ABC294640 and sorafenib combination. These findings provide novel evidence that Sphk2 may be a rational therapeutic target in cholangiocarcinoma. Combinations of ABC294640 with sorafenib and/or autophagy inhibitors may provide novel strategies for the treatment of cholangiocarcinoma.

  8. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    PubMed Central

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian; Eide, Christopher A.; Rivera, Victor M.; Wang, Frank; Adrian, Lauren T.; Zhou, Tianjun; Huang, Wei-Sheng; Xu, Qihong; Metcalf, Chester A.; Tyner, Jeffrey W.; Loriaux, Marc M.; Corbin, Amie S.; Wardwell, Scott; Ning, Yaoyu; Keats, Jeffrey A.; Wang, Yihan; Sundaramoorthi, Raji; Thomas, Mathew; Zhou, Dong; Snodgrass, Joseph; Commodore, Lois; Sawyer, Tomi K.; Dalgarno, David C.; Deininger, Michael W.N.; Druker, Brian J.; Clackson, Tim

    2009-01-01

    SUMMARY Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABLT315I mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and pre-clinical evaluation of AP24534, a potent, orally available multi-targeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABLT315I-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML. PMID:19878872

  9. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian

    2010-09-07

    Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABL{sup T315I} mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and preclinical evaluation of AP24534, a potent, orally available multitargeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABL{sup T315I}-driven tumor growth in mice, andmore » completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML.« less

  10. Fluorescence-based Neuraminidase Inhibition Assay to Assess the Susceptibility of Influenza Viruses to The Neuraminidase Inhibitor Class of Antivirals.

    PubMed

    Leang, Sook-Kwan; Hurt, Aeron C

    2017-04-15

    The neuraminidase (NA) inhibitors are the only class of antivirals approved for the treatment and prophylaxis of influenza that are effective against currently circulating strains. In addition to their use in treating seasonal influenza, the NA inhibitors have been stockpiled by a number of countries for use in the event of a pandemic. It is therefore important to monitor the susceptibility of circulating influenza viruses to this class of antivirals. There are different types of assays that can be used to assess the susceptibility of influenza viruses to the NA inhibitors, but the enzyme inhibition assays using either a fluorescent substrate or a chemiluminescent substrate are the most widely used and recommended. This protocol describes the use of a fluorescence-based assay to assess influenza virus susceptibility to NA inhibitors. The assay is based on the NA enzyme cleaving the 2'-(4-Methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUNANA) substrate to release the fluorescent product 4-methylumbelliferone (4-MU). Therefore, the inhibitory effect of an NA inhibitor on the influenza virus NA is determined based on the concentration of the NA inhibitor that is required to reduce 50% of the NA activity, given as an IC50 value.

  11. Complementary and alternative medicine for allergic rhinitis.

    PubMed

    Man, Li-Xing

    2009-06-01

    Otolaryngologists and other physicians who diagnose and treat allergic rhinitis encounter patients who use complementary medicine and alternative remedies. This article reviews the recent literature regarding complementary and alternative therapies for the treatment of allergic rhinitis. There are a myriad of modalities for treating allergic rhinitis. Few are studied with rigorous randomized, double-blind, placebo-controlled trials for clinical efficacy. Often, the biological mechanisms and adverse effects are even less well understood. A few therapies, including spirulina, butterbur, and phototherapy hold some promise. Thus far, complementary and alternative therapies have not been integrated into the general treatment armamentarium of allergic rhinitis. Several studies report beneficial effects of certain alternative treatments for allergic rhinitis. Additional insight into the mechanisms of action, short-term and long-term effects, and adverse events is needed.

  12. Alternative products to treat allergic rhinitis and alternative routes for allergy immunotherapy.

    PubMed

    Ipci, Kagan; Oktemer, Tugba; Muluk, Nuray Bayar; Şahin, Ethem; Altıntoprak, Niyazi; Bafaqeeh, Sameer Ali; Kurt, Yasemin; Mladina, Ranko; Šubarić, Marin; Cingi, Cemal

    2016-09-01

    Some alternative products instead of immunotherapy are used in patients with allergic rhinitis (AR). In this paper, alternative products to treat allergic rhinitis and alternative routes for allergy immunotherapy are reviewed. Alternative products and methods used instead of immunotherapy are tea therapy, acupuncture, Nigella sativa, cinnamon bark, Spanish needle, acerola, capsaicin (Capsicum annum), allergen-absorbing ointment, and cellulose powder. N. sativa has been used in AR treatment due to its anti-inflammatory effects. N. sativa oil also inhibits the cyclooxygenase and 5-lipoxygenase pathways of arachidonic acid metabolism. The beneficial effects of N. sativa seed supplementation on the symptoms of AR may be due to its antihistaminic properties. To improve the efficacy of immunotherapy, some measures are taken regarding known immunotherapy applications and alternative routes of intralymphatic immunotherapy and epicutaneous immunotherapy are used. There are alternative routes and products to improve the efficacy of immunotherapy.

  13. Newer treatments of psoriasis regarding IL-23 inhibitors, phosphodiesterase 4 inhibitors, and Janus kinase inhibitors.

    PubMed

    Wcisło-Dziadecka, Dominika; Zbiciak-Nylec, Martyna; Brzezińska-Wcisło, Ligia; Bebenek, Katarzyna; Kaźmierczak, Agata

    2017-11-01

    The rapid progress of genetic engineering furthermore opens up new prospects in the therapy of this difficult-to-treat disease. IL-23 inhibitors, phosphodiesterase 4 (PDE4) inhibitors, and Janus kinase (JAK) inhibitors are currently encouraging further research. Two drugs which are IL-23 inhibitors are now in phase III of clinical trials. The aim of the action of both drugs is selective IL-23 inhibition by targeting the p19 subunit. Guselkumab is a fully human monoclonal antibody. Tildrakizumab is a humanized monoclonal antibody, which also belongs to IgG class and is targeted to subunit p19 of interleukin 23 (IL-23). Phosphodiesterase inhibitors exert an anti-inflammatory action and their most common group is the PDE4 family. PDE4 inhibits cAMP, which reduces the inflammatory response of the pathway of Th helper lymphocytes, Th17, and type 1 interferon which modulates the production of anti-inflammatory cytokines such as IL-10 interleukins. The Janus kinase (JAK) signaling pathway plays an important role in the immunopathogenesis of psoriasis. Tofacitinib suppresses the expression of IL-23, IL-17A, IL-17F, and IL-22 receptors during the stimulation of lymphocytes. Ruxolitinib is a selective inhibitor of JAK1 and JAK2 kinases and the JAK-STAT signaling pathway. This article is a review of the aforementioned drugs as described in the latest available literature. © 2017 Wiley Periodicals, Inc.

  14. Reducing Environmental Allergic Triggers: Policy Issues.

    PubMed

    Abramson, Stuart L

    The implementation of policies to reduce environmental allergic triggers can be an important adjunct to optimal patient care for allergic rhinitis and allergic asthma. Policies at the local level in schools and other public as well as private buildings can make an impact on disease morbidity. Occupational exposures for allergens have not yet been met with the same rigorous policy standards applied for exposures to toxicants by Occupational Safety and Health Administration. Further benefit may be obtained through policies by local, county, state, and national governments, and possibly through international cooperative agreements. The reduction of allergenic exposures can and should be affected by policies with strong scientific, evidence-based derivation. However, a judicious application of the precautionary principle may be needed in circumstances where the health effect of inaction could lead to more serious threats to vulnerable populations with allergic disease. This commentary covers the scientific basis, current implementation, knowledge gaps, and pro/con views on policy issues in reducing environmental allergic triggers. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Climate change, aeroallergens, and pediatric allergic disease.

    PubMed

    Sheffield, Perry E; Weinberger, Kate R; Kinney, Patrick L

    2011-01-01

    The degree to which aeroallergens are contributing to the global increase in pediatric allergic disease is incompletely understood. We review the evidence that links climate change to changes in aeroallergens such as pollen and outdoor mold concentrations and, subsequently, aeroallergen association with pediatric allergic disease. We specifically explore the evidence on both the exacerbation and the development of allergic disease in children related to outdoor pollen and mold concentrations. Pediatric allergic diseases include atopic dermatitis or eczema, allergic rhinitis or hay fever, and some types of asthma in children, typically defined as < 18 years of age. We discuss how the timing of aeroallergen exposure both in utero and in childhood could be associated with allergies. We conclude that the magnitude and type of health impacts due to climate change will depend on improved understanding of the relationship between climatic variables, multiple allergen factors, and allergic disease. Improved public-health strategies such as adequate humidity control, optimum air filtration and ventilation, and improved anticipatory public-health messaging will be critical to adaptation. © 2011 Mount Sinai School of Medicine.

  16. Inhibitory effect of fermented Arctium lappa fruit extract on the IgE-mediated allergic response in RBL‑2H3 cells.

    PubMed

    Yoo, Jae-Myung; Yang, Ju Hye; Yang, Hye Jin; Cho, Won-Kyung; Ma, Jin Yeul

    2016-02-01

    Arctium lappa fruit has been used in traditional medicine, and it is known to exert beneficial effects, such as antioxidant, anti-inflammatory and anticancer effects. However, the effects of the Arctium lappa fruit on the allergic response remain unknown. In this study, we evaluated the anti-allergic effects of Arctium lappa fruit extract (AFE) and its fermented form (F-AFE) using immunoglobulin E (IgE)-activated RBL‑2H3 cells. To investigate the anti-allergic effects of AFE or F-AFE, we examined the release of β-hexosaminidase, a key biomarker of degranulation during an allergic reaction, and the production of pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) in the cells treated with or without the above-mentioned extracts. AFE weakly inhibited the release of β-hexosaminidase, whereas F-AFE significantly suppressed the release of β-hexosaminidase in a dose-dependent manner. Consistently, F-AFE suppressed the production of TNF-α and PGE2 in a dose-dependent manner. F-AFE exerted an inhibitory effect on the production of β-hexosaminidase, TNF-α and PGE2 with an IC50 value of 30.73, 46.96 and 36.27 µg/ml, respectively. Furthermore, F-AFE inhibited the phosphorylation of Lyn, Fyn and Syk, which are involved in the FcεRI signaling pathway, that of phosphoinositide phospholipase C (PLC)γ1/2 and protein kinase C (PKC)δ, which are associated with the degranulation process, as well as that of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK), p38 and Akt, which are associated with cytokine expression. In the late phase, F-AFE partially suppressed the phosphorylation of cytosolic phospholipase A2 (cPLA2), but not the expression of cyclooxygenase (COX)-2. To compare and identify the major components of the two extracts, we used high-performance liquid chromatography. The levels of arctigenin, one of the major compounds, were elevated 6-fold in F-AFE compared with AFE, whereas the

  17. [Allergic inflammation in respiratory system].

    PubMed

    An, Lifeng; Wang, Yanshu; Li, Lin

    2015-02-01

    The pathophysiology of allergic disease such as asthma and allergic rhinitis tell the similar story: when the endogenous and exogenous inflammatory mechanisms occur disorder, the body may begin with inflammatory cell activation, namely through the release of cytokine and inflammatory mediator role in the corresponding target cells, activate the sensory nerve fiber, acting on the cell organ specificity effect, clinical symptoms. This article is divided into the following five parts focused on the research progress of allergic inflammatory diseases: (1) inflammatory cells; (2) staphylococcus aureus superantigen; (3) small molecules (cytokines, inflammatory mediators, lipid classes medium); (4) nerve fibers and effect cells; (5) genetic and epigenetic factors.

  18. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole bodymore » exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.« less

  19. The Broad Spectrum Receptor Tyrosine Kinase Inhibitor Dovitinib Suppresses Growth of BRAF Mutant Melanoma Cells in Combination with Other Signaling Pathway Inhibitors

    PubMed Central

    Langdon, Casey G.; Held, Matthew A.; Platt, James T.; Meeth, Katrina; Iyidogan, Pinar; Mamillapalli, Ramanaiah; Koo, Andrew B.; Klein, Michael; Liu, Zongzhi; Bosenberg, Marcus W.; Stern, David F.

    2016-01-01

    Summary BRAF inhibitors have revolutionized treatment of mutant BRAF metastatic melanomas. However, resistance develops rapidly following BRAF inhibitor treatment. We have found that BRAF-mutant melanoma cell lines are more sensitive than wild-type BRAF cells to the small molecule tyrosine kinase inhibitor dovitinib. Sensitivity is associated with inhibition of a series of known dovitinib targets. Dovitinib in combination with several agents inhibits growth more effectively than either agent alone. These combinations inhibit BRAF-mutant melanoma and colorectal carcinoma cell lines, including cell lines with intrinsic or selected BRAF inhibitor resistance. Hence, combinations of dovitinib with second agents are potentially effective therapies for BRAF-mutant melanomas, regardless of their sensitivity to BRAF inhibitors. PMID:25854919

  20. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.

    PubMed

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.

  1. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  2. The nuclear factor κB inhibitor (E)-2-fluoro-4'-methoxystilbene inhibits firefly luciferase.

    PubMed

    Braeuning, Albert; Vetter, Silvia

    2012-12-01

    Photinus pyralis (firefly) luciferase is widely used as a reporter system to monitor alterations in gene promoter and/or signalling pathway activities in vitro. The enzyme catalyses the formation of oxyluciferin from D-luciferin in an ATP-consuming reaction involving photon emission. The purpose of the present study was to characterize the luciferase-inhibiting potential of (E)-2-fluoro-4'-methoxystilbene, which is known as a potent inhibitor of the NF-κB (nuclear factor κB) signalling pathway that is used to modulate the NF-κB signalling pathway in vitro. Results show that (E)-2-fluoro-4'-methoxystilbene effectively inhibits firefly luciferase activity in cell lysates and living cells in a non-competitive manner with respect to the luciferase substrates D-luciferin and ATP. By contrast, the compound has no effect on Renilla and Gaussia luciferases. The mechanism of firefly luciferase inhibition by (E)-2-fluoro-4'-methoxystilbene, as well as its potency is comparable to its structure analogue resveratrol. The in vitro use of trans-stilbenes such as (E)-2-fluoro-4'-methoxystilbene or resveratrol compromises firefly luciferase reporter assays as well as ATP/luciferase-based cell viability assays.

  3. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy

    PubMed Central

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2017-01-01

    Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. Methods C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1–specific basophil degranulation, and Cyp c 1–induced allergic symptoms in the mouse model. Results A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1–induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Conclusions Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. PMID:27876628

  4. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy.

    PubMed

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2017-06-01

    Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1-specific basophil degranulation, and Cyp c 1-induced allergic symptoms in the mouse model. A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1-induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Orally administered conjugated linoleic acid ameliorates allergic dermatitis induced by repeated applications of oxazolone in mice.

    PubMed

    Nakanishi, Tomonori; Tokunaga, Yuzo; Yamasaki, Masao; Erickson, Laurie; Kawahara, Satoshi

    2016-12-01

    Conjugated linoleic acid (CLA) is one of the constituents of animal products with possible health benefits such as anti-carcinogenic and anti-obesity effects. In this study, we investigated the immunomodulatory effects of CLA using a mouse model of allergic dermatitis. Mice were orally administered either a CLA mixture containing equal amounts of 9c, 11 t-CLA and 10 t, 12c-CLA, or high linoleic acid safflower oil, and allergic dermatitis was induced on the ear by repeated topical applications of oxazolone. Oral administration of the CLA mixture but not the high linoleic safflower oil attenuated the symptoms of allergic dermatitis in both ear weights and clinical scores. This effect was associated with decreased levels of ear interleukin-4 (IL-4) and plasma immunoglobulin E. The immunomodulatory effects of the CLA isomers were compared by an in vitro cytokine production assay. The results showed that 9c, 11 t-CLA, the most predominant isomer in animal products, significantly inhibited IL-4 and interferon-γ production from mouse splenocytes with similar potency to 10 t, 12c-CLA. These findings suggest that CLA, a constituent of animal products, has a potentially beneficial effect for amelioration of allergic dermatitis. © 2016 Japanese Society of Animal Science.

  6. Selective Effects of PDE10A Inhibitors on Striatopallidal Neurons Require Phosphatase Inhibition by DARPP-321,2,3

    PubMed Central

    Polito, Marina; Guiot, Elvire; Gangarossa, Giuseppe; Longueville, Sophie; Doulazmi, Mohamed; Valjent, Emmanuel; Hervé, Denis; Girault, Jean-Antoine

    2015-01-01

    Abstract Type 10A phosphodiesterase (PDE10A) is highly expressed in the striatum, in striatonigral and striatopallidal medium-sized spiny neurons (MSNs), which express D1 and D2 dopamine receptors, respectively. PDE10A inhibitors have pharmacological and behavioral effects suggesting an antipsychotic profile, but the cellular bases of these effects are unclear. We analyzed the effects of PDE10A inhibition in vivo by immunohistochemistry, and imaged cAMP, cAMP-dependent protein kinase A (PKA), and cGMP signals with biosensors in mouse brain slices. PDE10A inhibition in mouse striatal slices produced a steady-state increase in intracellular cAMP concentration in D1 and D2 MSNs, demonstrating that PDE10A regulates basal cAMP levels. Surprisingly, the PKA-dependent AKAR3 phosphorylation signal was strong in D2 MSNs, whereas D1 MSNs remained unresponsive. This effect was also observed in adult mice in vivo since PDE10A inhibition increased phospho-histone H3 immunoreactivity selectively in D2 MSNs in the dorsomedial striatum. The PKA-dependent effects in D2 MSNs were prevented in brain slices and in vivo by mutation of the PKA-regulated phosphorylation site of 32 kDa dopamine- and cAMP-regulated phosphoprotein (DARPP-32), which is required for protein phosphatase-1 inhibition. These data highlight differences in the integration of the cAMP signal in D1 and D2 MSNs, resulting from stronger inhibition of protein phosphatase-1 by DARPP-32 in D2 MSNs than in D1 MSNs. This study shows that PDE10A inhibitors share with antipsychotic medications the property of activating preferentially PKA-dependent signaling in D2 MSNs. PMID:26465004

  7. Allergic reactions to insect secretions.

    PubMed

    Pecquet, Catherine

    2013-01-01

    Some products derived from insects can induce allergic reactions. The main characteristics of some products from honeybees, cochineal and silkworms are summarised here. We review allergic reactions from honey-derived products (propolis, wax, royal jelly), from cochineal products (shellac and carmine) and from silk : clinical features, allergological investigations and allergens if they are known.

  8. Inhibition of Adrenergic and Non-Adrenergic Smooth Muscle Contraction in the Human Prostate by the Phosphodiesterase 10-Selective Inhibitor TC-E 5005.

    PubMed

    Hennenberg, Martin; Schott, Melanie; Kan, Aysenur; Keller, Patrick; Tamalunas, Alexander; Ciotkowska, Anna; Rutz, Beata; Wang, Yiming; Strittmatter, Frank; Herlemann, Annika; Yu, Qingfeng; Stief, Christian G; Gratzke, Christian

    2016-11-01

    The phosphodiesterase (PDE) 5 inhibitor tadalafil is available for treatment of male lower urinary tract symptoms (LUTS), while the role of other PDE isoforms for prostate smooth muscle tone is still unknown. Here, we examined effects of the PDE10-selective inhibitor TC-E 5005 on smooth muscle contraction in human prostate tissue. Prostate samples were obtained from patients undergoing radical prostatectomy. Expression of PDE10 was addressed by RT-PCR, Western blot, and fluorescence staining with different markers. Effects of TC-E 5005 and tadalafil on contraction, and relaxation of prostate strips were studied via organ bath. PDE10A was detectable by RT-PCR, Western blot, and fluorescence staining in prostate tissues. Colocalization with markers suggested expression of PDE10A in smooth muscle cells and catecholaminergic nerves. Norepinephrine, the α1 -adrenergic agonist phenylephrine, the thromboxane A2 analogue U46619, and endothelins 1-3 induced concentration-dependent contractions of prostate strips, while electric field stimulation (EFS) induced frequence-dependent contractions. Application of TC-E 5005 (500 nM) caused significant inhibition of norepinephrine-, phenylephrine-, and endothelin-3-induced contractions. Inhibition of EFS-induced contractions by TC-E 5005 ranged around 50%, resembling inhibition of EFS-induced contractions by tadalafil (10 μM). The prostacyclin analog treprostinil and the nitric oxide donor DEA NONOate induced relaxations of precontracted prostate strips, which were significantly amplified by TCE 5005. The PDE10-selective inhibitor TC-E 5005 inhibits adrenergic and neurogenic smooth muscle contractions in the human prostate. TC-E 5005 inhibits neurogenic contractions with similar efficacy than tadalafil, so that urodynamic effects in vivo appear possible. Prostate 76:1364-1374, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Contact-Allergic Reactions to Cosmetics

    PubMed Central

    Goossens, An

    2011-01-01

    Contact-allergic reactions to cosmetics may be delayed-type reactions such as allergic and photo-allergic contact dermatitis, and more exceptionally also immediate-type reactions, that is, contact urticaria. Fragrances and preservative agents are the most important contact allergens, but reactions also occur to category-specific products such as hair dyes and other hair-care products, nail cosmetics, sunscreens, as well as to antioxidants, vehicles, emulsifiers, and, in fact, any possible cosmetic ingredient. Patch and prick testing to detect the respective culprits remains the golden standard for diagnosis, although additional tests might be useful as well. Once the specific allergens are identified, the patients should be informed of which products can be safely used in the future. PMID:21461388

  10. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease

    PubMed Central

    Smith, R. E.; Reyes, N. J.; Khandelwal, P.; Schlereth, S. L.; Lee, H. S.; Masli, S.; Saban, D. R.

    2016-01-01

    Allergic eye disease, as in most forms of atopy, ranges in severity among individuals from immediate hypersensitivity to a severe and debilitating chronic disease. Dendritic cells play a key role in stimulating pathogenic T cells in allergen re-exposure, or secondary responses. However, molecular cues by dendritic cells underpinning allergic T cell response levels and the impact that this control has on consequent severity of allergic disease are poorly understood. Here, we show that a deficiency in thrombospondin-1, a matricellular protein known to affect immune function, has subsequent effects on downstream T cell responses during allergy, as revealed in an established mouse model of allergic eye disease. More specifically, we demonstrate that a thrombospondin-1 deficiency specific to dendritic cells leads to heightened secondary T cell responses and consequent clinical disease. Interestingly, whereas thrombospondin-1-deficient dendritic cells augmented activity of allergen-primed T cells, this increase was not recapitulated with naïve T cells in vitro. The role of dendritic cell-derived thrombospondin-1 in regulating secondary allergic T cell responses was confirmed in vivo, as local transfer of thrombospondin-1-sufficient dendritic cells to the ocular mucosa of thrombospondin-1 null hosts prevented the development of augmented secondary T cell responses and heightened allergic eye disease clinical responses. Finally, we demonstrate that topical instillation of thrombospondin-1-derived peptide reduces T cell activity and clinical progression of allergic eye disease. Taken together, this study reveals an important modulatory role of dendritic cell-derived thrombospondin-1 on secondary allergic T cell responses and suggests the possible dysregulation of dendritic cell-derived thrombospondin-1 expression as a factor in allergic eye disease severity. PMID:26856994

  11. DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES TO PENICILLIUM CHRYSOGENUM

    EPA Science Inventory

    ABSTRACT
    Indoor mold has been associated with development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and its viable conidia can induce allergic responses in a mouse model of allergic penicilliosis. The hypothesis o...

  12. Identification of Novel Compounds Inhibiting Chikungunya Virus-Induced Cell Death by High Throughput Screening of a Kinase Inhibitor Library

    PubMed Central

    Gomes, Rafael G. B.; da Silva, Camila T.; Taniguchi, Juliana B.; No, Joo Hwan; Lombardot, Benoit; Schwartz, Olivier; Hansen, Michael A. E.; Freitas-Junior, Lucio H.

    2013-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing ≥50% inhibition property against CHIKV at 10 µM were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415), one pyrrolopyridine (CND0545) and one thiazol-carboxamide (CND3514) inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 µM and 7.1 µM. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against CHIKV having a novel

  13. Screening anti-allergic components of Astragali Radix using LAD2 cell membrane chromatography coupled online with UHPLC-ESI-MS/MS method.

    PubMed

    Lv, Yanni; Sun, Yueming; Fu, Jia; Kong, Liyun; Han, Shengli

    2017-02-01

    Huangqi (Astragali Radix), a traditional Chinese herb, is widely used in clinical therapy in China. In addition, an anti-allergic effect of constituents in Huangqi has been reported in the scientific literature. In the present study, cell membrane chromatography coupled online with UHPLC-ESI-MS/MS method was developed to screen, analyze and identify the anti-allergic components of Huangqi. The Laboratory of Allergic Disease 2 (LAD2) cell was used to establish cell membrane chromatography, which was combined with UHPLC-ESI-MS/MS. The coupled system was then used to screen anti-allergic components from Huangqi. Effects of active components were verified by histamine release assay. A component retained on the LAD2 cell membrane chromatography was identified as formononetin. Bioactivity of formononetin was investigated by histamine release assay in LAD2 cells, and it was found that formononetin could inhibit histamine release in a dose-dependent manner from 1 to 100 μm. The LAD2 cell membrane chromatography online with UHPLC-ESI-MS/MS method is an effective technique for screening the anti-allergic components of Huangqi. Copyright © 2016 John Wiley & Sons, Ltd.

  14. γ-Tocopherol supplementation of allergic female mice augments development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates

    PubMed Central

    Abdala-Valencia, Hiam; Soveg, Frank

    2016-01-01

    γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b+ subsets of CD11c+ dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b− dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b+CD11c+ dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins. PMID:26801566

  15. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor.

    PubMed

    Witters, Lois; Scherle, Peggy; Friedman, Steven; Fridman, Jordan; Caulder, Eian; Newton, Robert; Lipton, Allan

    2008-09-01

    The ErbB family of receptors is overexpressed in numerous human tumors. Overexpression correlates with poor prognosis and resistance to therapy. Use of ErbB-specific antibodies to the receptors (Herceptin or Erbitux) or ErbB-specific small-molecule inhibitors of the receptor tyrosine kinase activity (Iressa or Tarceva) has shown clinical efficacy in several solid tumors. An alternative method of affecting ErbB-initiated tumor growth and survival is to block sheddase activity. Sheddase activity is responsible for cleavage of multiple ErbB ligands and receptors, a necessary step in availability of the soluble, active form of the ligand and a constitutively activated ligand-independent receptor. This sheddase activity is attributed to the ADAM (a disintegrin and metalloprotease) family of proteins. ADAM 10 is the main sheddase of epidermal growth factor (EGF) and HER-2/neu cleavage, whereas ADAM17 is required for cleavage of additional EGF receptor (EGFR) ligands (transforming growth factor-alpha, amphiregulin, heregulin, heparin binding EGF-like ligand). This study has shown that addition of INCB3619, a potent inhibitor of ADAM10 and ADAM17, reduces in vitro HER-2/neu and amphiregulin shedding, confirming that it interferes with both HER-2/neu and EGFR ligand cleavage. Combining INCB3619 with a lapatinib-like dual inhibitor of EGFR and HER-2/neu kinases resulted in synergistic growth inhibition in MCF-7 and HER-2/neu-transfected MCF-7 human breast cancer cells. Combining the INCB7839 second-generation sheddase inhibitor with lapatinib prevented the growth of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo. These results suggest that there may be an additional clinical benefit of combining agents that target the ErbB pathways at multiple points.

  16. Combining Src inhibitors and aromatase inhibitors: a novel strategy for overcoming endocrine resistance and bone loss.

    PubMed

    Hiscox, Stephen; Barrett-Lee, Peter; Borley, Annabel C; Nicholson, Robert I

    2010-08-01

    Aromatase inhibitors have largely replaced tamoxifen as the first-line treatment for postmenopausal women with metastatic, hormone receptor-positive (HR+) breast cancer. However, many patients develop clinical resistance with prolonged treatment, and oestrogen deprivation following aromatase inhibition can result in loss of bone mineral density. Furthermore, most patients with metastatic breast cancer develop bone metastases, and the resulting adverse skeletal-related events are a significant cause of patient morbidity. Src, a non-receptor tyrosine kinase, is a component of signalling pathways that regulate breast cancer cell proliferation, invasion and metastasis as well as osteoclast-mediated bone turnover. Preclinical evidence also suggests a role for Src in acquired endocrine resistance. As such, Src inhibition represents a logical strategy for the treatment of metastatic breast cancer. In vitro, combination therapy with Src inhibitors and endocrine agents, including aromatase inhibitors, has been shown to inhibit the proliferation and metastasis of both endocrine-responsive and endocrine-resistant breast cancer cell lines more effectively than either of the therapy alone. Src inhibition has also been shown to suppress osteoclast formation and activity. Combination therapy with aromatase inhibitors and Src inhibitors therefore represents a novel approach through which the development of both acquired resistance and bone pathology could be delayed. Data from clinical trials utilising such combinations will reveal if this strategy has the potential to improve patient outcomes. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Early life exposure to antibiotics and the risk of childhood allergic diseases: an update from the perspective of the hygiene hypothesis.

    PubMed

    Kuo, Chang-Hung; Kuo, Hsuan-Fu; Huang, Ching-Hua; Yang, San-Nan; Lee, Min-Sheng; Hung, Chih-Hsing

    2013-10-01

    The prevalence of allergic diseases has been growing rapidly in industrial countries during recent decades. It is postulated that growing up with less microbial exposure may render the immune system susceptible to a T helper type 2 (Th2)-predominant allergic response-also known as the hygiene hypothesis. This review delineates recent epidemiological and experimental evidence for the hygiene hypothesis, and integrates this hypothesis into the association between early life exposure to antibiotics and the development of allergic diseases and asthma. Several retrospective or prospective epidemiological studies reveal that early exposure to antibiotics may be positively associated with the development of allergic diseases and asthma. However, the conclusion is inconsistent. Experimental studies show that antibiotics may induce the Th2-skewed response by suppressing the T helper type 1 (Th1) response through inhibition of Th1 cytokines and disruption of the natural course of infection, or by disturbing the microflora of the gastrointestinal (GI) tract and therefore jeopardizing the establishment of oral tolerance and regulatory T cell immune responses. The hygiene hypothesis may not be the only explanation for the rapid increase in the prevalence of allergic diseases and asthma. Further epidemiological and experimental studies addressing the issue of the impact of environmental factors on the development of allergic diseases and the underlying mechanisms may unveil novel strategies for the prevention and treatment of allergic diseases in the future. Copyright © 2013. Published by Elsevier B.V.

  18. A glycoprotein α-amylase inhibitor from Withania somnifera differentially inhibits various α-amylases and affects the growth and development of Tribolium castaneum.

    PubMed

    Kasar, Sainath S; Marathe, Kiran R; Bhide, Amey J; Herwade, Abhijeet P; Giri, Ashok P; Maheshwari, Vijay L; Pawar, Pankaj K

    2017-07-01

    Identification and characterisation of plant defensive molecules enrich our resources to design crop protection strategies. In particular, plant-derived proteinaceous inhibitor(s) of insect digestive enzymes appear to be a safe, sustainable and attractive option. A glycoprotein having non-competitive α-amylase inhibitory activity with a molecular weight of 8.3 kDa was isolated and purified from seeds of Withania somnifera α-amylase inhibitor (WSAI). Its mass spectrometry analysis revealed 59% sequence coverage with Wrightide II-type α-amylase inhibitor from Wrightia religiosa. A dose-dependent inhibition of α-amylases from Aspergillus oryzae, Bacillus subtilis, Helicoverpa armigera and Tribolium castaneum was recorded. Interestingly, WSAI did not inhibit human salivary α-amylase significantly. When adults of T. castaneum were fed with WSAI (1.6 mg g -1 ), decrease in consumption, growth and efficiency of conversion of ingested food was evident, along with over fourfold increases in feeding deterrence index. A decline in larval residual α-amylase activity after feeding of WSAI resulted in a reduction in longevity of T. castaneum. The study reflects the significance of WSAI in affecting the overall growth and development of T. castaneum. Pre- and post-harvest pest resistive capability makes WSAI a potential candidate for insect pest management. Further, the effectiveness of this inhibitor could be explored either in formulations or through a transgenic approach. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Immunomodulation of allergic autocytotoxicity in bronchial asthma by a bacterial lysate--Broncho-Vaxom.

    PubMed

    Podleski, W K

    1985-01-01

    The direct and antibody-dependent allergic autocytotoxicity (ACT) response, mediated by food antigens and its immunoregulation with bacterial lysate of the eight most common pathogens of the upper respiratory tract--Broncho-Vaxom (BX), was investigated in fifteen bronchial asthma patients and eight normal control individuals. Under the described experimental conditions, the BX inhibits ACT response in vitro. In analyzing the mechanism of this effect, the enhancement of T suppressor cells by BX was under consideration.

  20. Kinetics and mechanisms of crystal growth inhibition of indomethacin by model precipitation inhibitors

    NASA Astrophysics Data System (ADS)

    Patel, Dhaval

    Supersaturating Drug Delivery Systems (SDDS) could enhance oral bioavailability of poorly water soluble drugs (PWSD). Precipitation inhibitors (PIs) in SDDS could maintain supersaturation by inhibiting nucleation, crystal growth, or both. The mechanisms by which these effects are realized are generally unknown. The goal of this dissertation was to explore the mechanisms underpinning the effects of model PIs including hydroxypropyl beta-cyclodextrins (HP-beta-CD), hydroxypropyl methylcellulose (HPMC), and polyvinylpyrrolidone (PVP) on the crystal growth of indomethacin, a model PWSD. At high degrees of supersaturation (S), the crystal growth kinetics of indomethacin was bulk diffusion-controlled, which was attributed to a high energy form deposited on the seed crystals. At lower S, indomethacin growth kinetics was surface integration-controlled. The effect of HP-beta-CD at high S was successfully modeled using the reactive diffusion layer theory. The superior effects of PVP and HPMC as compared to HP-beta-CD at high S were attributed to a change in the rate limiting step from bulk diffusion to surface integration largely due to prevention of the high energy form formation. The effects of PIs at low S were attributed to significant retardation of the surface integration rate, a phenomenon that may reflect the adsorption of PIs onto the growing surface. PVP was selected to further understand the relationship between adsorption and crystal growth inhibition. The Langmuir adsorption isotherm model fit the adsorption isotherms of PVP and N-vinylpyrrolidone well. The affinity and extent of adsorption of PVP were significantly higher than those of N-vinylpyrrolidone, which was attributed to cooperative interactions between PVP and indomethacin. The extent of PVP adsorption on a weight-basis was greater for higher molecular weight PVP but less on a molar-basis indicating an increased percentage of loops and tails for higher molecular weight PVPs. PVP significantly inhibited

  1. Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients.

    PubMed

    Mao, T K; Van de Water, J; Gershwin, M E

    2005-01-01

    Spirulina represents a blue-green alga that is widely produced and commercialized as a dietary supplement for modulating immune functions, as well as ameliorating a variety of diseases. We have previously shown that the in vitro culture of Spirulina with human peripheral blood mononuclear cells (PBMCs) modulated the production of cytokines. In the present study, we evaluated the impact of a Spirulina-based dietary supplement (Earthrise Nutritionals, Inc., Irvine, CA) on patients with allergic rhinitis by assessing the production of cytokines [interleukin (IL)-4, interferon (IFN)-gamma, and IL-2] critical in regulating immunoglobulin E-mediated allergy. In a randomized double-blinded crossover study versus placebo, allergic individuals were fed daily with either placebo or Spirulina, at 1,000 mg or 2,000 mg, for 12 weeks. PBMCs isolated before and after the Spirulina feeding were stimulated with phytohemagglutinin (PHA) prior to determining the levels of cytokine from cell culture supernatants. Although Spirulina seemed to be ineffective at modulating the secretion of Th1 cytokines (IFN-gamma and IL-2), we discovered that Spirulina, administered at 2,000 mg/day, significantly reduced IL-4 levels by 32% from PHA-stimulated cells. These results indicate that Spirulina can modulate the Th profile in patients with allergic rhinitis by suppressing the differentiation of Th2 cells mediated, in part, by inhibiting the production of IL-4. To our knowledge, this is the first human feeding study that demonstrates the protective effects of Spirulina towards allergic rhinitis.

  2. The plant extract Isatis tinctoria L. extract (ITE) inhibits allergen-induced airway inflammation and hyperreactivity in mice.

    PubMed

    Brattström, A; Schapowal, A; Kamal, M A; Maillet, I; Ryffel, B; Moser, R

    2010-07-01

    The herbal Isatis tinctoria extract (ITE) inhibits the inducible isoform of cyclooxygenase (COX-2) as well as lipoxygenase (5-LOX) and therefore possesses anti-inflammatory properties. The extract might also be useful in allergic airway diseases which are characterized by chronic inflammation. ITE obtained from leaves by supercritical carbon dioxide extraction was investigated in ovalbumin (OVA) immunised BALB/c mice given intranasally together with antigen challenge in the murine model of allergic airway disease (asthma) with the analysis of the inflammatory and immune parameters in the lung. ITE given with the antigen challenge inhibited in a dose related manner the allergic response. ITE diminished airway hyperresponsiveness (AHR) and eosinophil recruitment into the bronchoalveolar lavage (BAL) fluid upon allergen challenge, but had no effect in the saline control mice. Eosinophil recruitment was further assessed in the lung by eosinophil peroxidase (EPO) activity at a dose of 30 microg ITE per mouse. Microscopic investigations revealed less inflammation, eosinophil recruitment and mucus hyperproduction in the lung in a dose related manner. Diminution of AHR and inflammation was associated with reduced IL-4, IL-5, and RANTES production in the BAL fluid at the 30 microg ITE dose, while OVA specific IgE and eotaxin serum levels remained unchanged. ITE, which has been reported inhibiting COX-2 and 5-LOX, reduced allergic airway inflammation and AHR by inhibiting the production of the Th2 cytokines IL-4 and IL-5, and RANTES. (c) 2009 Elsevier GmbH. All rights reserved.

  3. Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors.

    PubMed

    Hubálek, Frantisek; Binda, Claudia; Khalil, Ashraf; Li, Min; Mattevi, Andrea; Castagnoli, Neal; Edmondson, Dale E

    2005-04-22

    Several reversible inhibitors selective for human monoamine oxidase B (MAO B) that do not inhibit MAO A have been described in the literature. The following compounds: 8-(3-chlorostyryl)caffeine, 1,4-diphenyl-2-butene, and trans,trans-farnesol are shown to inhibit competitively human, horse, rat, and mouse MAO B with K(i) values in the low micromolar range but are without effect on either bovine or sheep MAO B or human MAO A. In contrast, the reversible competitive inhibitor isatin binds to all known MAO B and MAO A with similar affinities. Sequence alignments and the crystal structures of human MAO B in complex with 1,4-diphenyl-2-butene or with trans,trans-farnesol provide molecular insights into these specificities. These inhibitors span the substrate and entrance cavities with the side chain of Ile-199 rotated out of its normal conformation suggesting that Ile-199 is gating the substrate cavity. Ile-199 is conserved in all known MAO B sequences except bovine MAO B, which has Phe in this position (the sequence of sheep MAO B is unknown). Phe is conserved in the analogous position in MAO A sequences. The human MAO B I199F mutant protein of MAO B binds to isatin (K(i) = 3 microM) but not to the three inhibitors listed above. The crystal structure of this mutant demonstrates that the side chain of Phe-199 interferes with the binding of those compounds. This suggests that the Ile-199 "gate" is a determinant for the specificity of these MAO B inhibitors and provides a molecular basis for the development of MAO B-specific reversible inhibitors without interference with MAO A function in neurotransmitter metabolism.

  4. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease.

    PubMed

    Smith, R E; Reyes, N J; Khandelwal, P; Schlereth, S L; Lee, H S; Masli, S; Saban, D R

    2016-08-01

    Allergic eye disease, as in most forms of atopy, ranges in severity among individuals from immediate hypersensitivity to a severe and debilitating chronic disease. Dendritic cells play a key role in stimulating pathogenic T cells in allergen re-exposure, or secondary responses. However, molecular cues by dendritic cells underpinning allergic T cell response levels and the impact that this control has on consequent severity of allergic disease are poorly understood. Here, we show that a deficiency in thrombospondin-1, a matricellular protein known to affect immune function, has subsequent effects on downstream T cell responses during allergy, as revealed in an established mouse model of allergic eye disease. More specifically, we demonstrate that a thrombospondin-1 deficiency specific to dendritic cells leads to heightened secondary T cell responses and consequent clinical disease. Interestingly, whereas thrombospondin-1-deficient dendritic cells augmented activity of allergen-primed T cells, this increase was not recapitulated with naïve T cells in vitro. The role of dendritic cell-derived thrombospondin-1 in regulating secondary allergic T cell responses was confirmed in vivo, as local transfer of thrombospondin-1-sufficient dendritic cells to the ocular mucosa of thrombospondin-1 null hosts prevented the development of augmented secondary T cell responses and heightened allergic eye disease clinical responses. Finally, we demonstrate that topical instillation of thrombospondin-1-derived peptide reduces T cell activity and clinical progression of allergic eye disease. Taken together, this study reveals an important modulatory role of dendritic cell-derived thrombospondin-1 on secondary allergic T cell responses and suggests the possible dysregulation of dendritic cell-derived thrombospondin-1 expression as a factor in allergic eye disease severity. © Society for Leukocyte Biology.

  5. Characterization of two coleopteran α-amylases and molecular insights into their differential inhibition by synthetic α-amylase inhibitor, acarbose.

    PubMed

    Channale, Sonal M; Bhide, Amey J; Yadav, Yashpal; Kashyap, Garima; Pawar, Pankaj K; Maheshwari, V L; Ramasamy, Sureshkumar; Giri, Ashok P

    2016-07-01

    Post-harvest insect infestation of stored grains makes them unfit for human consumption and leads to severe economic loss. Here, we report functional and structural characterization of two coleopteran α-amylases viz. Callosobruchus chinensis α-amylase (CcAmy) and Tribolium castaneum α-amylase (TcAmy) along with their interactions with proteinaceous and non-proteinaceous α-amylase inhibitors. Secondary structural alignment of CcAmy and TcAmy with other coleopteran α-amylases revealed conserved motifs, active sites, di-sulfide bonds and two point mutations at spatially conserved substrate or inhibitor-binding sites. Homology modeling and molecular docking showed structural differences between these two enzymes. Both the enzymes had similar optimum pH values but differed in their optimum temperature. Overall, pattern of enzyme stabilities were similar under various temperature and pH conditions. Further, CcAmy and TcAmy differed in their substrate affinity and catalytic efficiency towards starch and amylopectin. HPLC analysis detected common amylolytic products like maltose and malto-triose while glucose and malto-tetrose were unique in CcAmy and TcAmy catalyzed reactions respectively. At very low concentrations, wheat α-amylase inhibitor was found to be superior over the acarbose as far as complete inhibition of amylolytic activities of CcAmy and TcAmy was concerned. Mechanism underlying differential amylolytic reaction inhibition by acarbose was discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. THE INHIBITION OF PLASMIN, PLASMA KALLIKREIN, PLASMA PERMEABILITY FACTOR, AND THE C'1r SUBCOMPONENT OF THE FIRST COMPONENT OF COMPLEMENT BY SERUM C'1 ESTERASE INHIBITOR

    PubMed Central

    Ratnoff, Oscar D.; Pensky, Jack; Ogston, Derek; Naff, George B.

    1969-01-01

    The fraction of human serum designated as C'1 esterase inhibitor is known to inhibit the action of C'1 esterase, a plasma kallikrein, and PF/Dil, an enzyme in plasma enhancing cutaneous vascular permeability. In the present study, C'1 esterase inhibitor has been found to block the actions of plasmin and the C'1r subcomponent of the first component of complement, and to retard the generation of PF/Dil. No inhibition of blood clotting or of the generation of plasmin was demonstrable. PMID:4178758

  7. Environmental contributions to allergic disease.

    PubMed

    Levetin, E; Van de Water, P

    2001-11-01

    The environment is a major contributor to allergic disease, and great effort is being expended to identify the chemical pollutants and allergens that make a significant impact. Exposure to high levels of ozone, sulfur dioxide, nitrogen dioxide, and diesel exhaust particles is known to reduce lung function. Studies continue to delineate the role of these particles as adjuvants and carriers of allergens into the respiratory system. Current studies also show the exacerbation of allergic disease through fungal spore inhalation and continue to document the role of pollen in allergic rhinitis. Pollen also was recently associated with asthma epidemics, especially after thunderstorms. Forecasting models currently are being developed that predict the trajectories of pollen dispersal and may allow increased avoidance of dangerous outdoor conditions.

  8. Allergic rhinitis and arterial blood pressure: a population-based study.

    PubMed

    Sakallioglu, O; Polat, C; Akyigit, A; Cetiner, H; Duzer, S

    2018-05-01

    To investigate the likelihood of allergic rhinitis and potential co-morbidities, and to assess whether allergic rhinitis is associated with arterial blood pressure and hypertension. In this population-based study, 369 adults with allergic rhinitis and asthma were assessed via a questionnaire and immunoglobulin E levels. There were four groups: control (n = 90), allergic rhinitis (n = 99), asthma (n = 87) and hypertension (n = 93). Arterial blood pressure was measured in all groups. There were no significant differences in systolic or diastolic blood pressure between males and females in any group. Pairwise comparisons revealed no significant differences between: the control and allergic rhinitis groups, the control and asthma groups, or the allergic rhinitis and asthma groups. The systolic and diastolic blood pressure values of males and females were significantly higher in the hypertension group than the allergic rhinitis group. There were no significant differences in systolic blood pressure or diastolic blood pressure for seasonal and perennial allergic rhinitis patients. Rhinitis was not associated with increased blood pressure. Allergic rhinitis can coincide with asthma and hypertension. The findings do not support the need for blood pressure follow up in allergic rhinitis patients.

  9. Clinical practice guideline: allergic rhinitis executive summary.

    PubMed

    Seidman, Michael D; Gurgel, Richard K; Lin, Sandra Y; Schwartz, Seth R; Baroody, Fuad M; Bonner, James R; Dawson, Douglas E; Dykewicz, Mark S; Hackell, Jesse M; Han, Joseph K; Ishman, Stacey L; Krouse, Helene J; Malekzadeh, Sonya; Mims, James Whit W; Omole, Folashade S; Reddy, William D; Wallace, Dana V; Walsh, Sandra A; Warren, Barbara E; Wilson, Meghan N; Nnacheta, Lorraine C

    2015-02-01

    The American Academy of Otolaryngology-Head and Neck Surgery Foundation (AAO-HNSF) has published a supplement to this issue featuring the new Clinical Practice Guideline: Allergic Rhinitis. To assist in implementing the guideline recommendations, this article summarizes the rationale, purpose, and key action statements. The 14 recommendations developed address the evaluation of patients with allergic rhinitis, including performing and interpretation of diagnostic testing and assessment and documentation of chronic conditions and comorbidities. It will then focus on the recommendations to guide the evaluation and treatment of patients with allergic rhinitis, to determine the most appropriate interventions to improve symptoms and quality of life for patients with allergic rhinitis. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  10. Thiopurine Drugs Repositioned as Tyrosinase Inhibitors

    PubMed Central

    Choi, Joonhyeok; Lee, You-Mie; Jee, Jun-Goo

    2017-01-01

    Drug repositioning is the application of the existing drugs to new uses and has the potential to reduce the time and cost required for the typical drug discovery process. In this study, we repositioned thiopurine drugs used for the treatment of acute leukaemia as new tyrosinase inhibitors. Tyrosinase catalyses two successive oxidations in melanin biosynthesis: the conversions of tyrosine to dihydroxyphenylalanine (DOPA) and DOPA to dopaquinone. Continuous efforts are underway to discover small molecule inhibitors of tyrosinase for therapeutic and cosmetic purposes. Structure-based virtual screening predicted inhibitor candidates from the US Food and Drug Administration (FDA)-approved drugs. Enzyme assays confirmed the thiopurine leukaemia drug, thioguanine, as a tyrosinase inhibitor with the inhibitory constant of 52 μM. Two other thiopurine drugs, mercaptopurine and azathioprine, were also evaluated for their tyrosinase inhibition; mercaptopurine caused stronger inhibition than thioguanine did, whereas azathioprine was a poor inhibitor. The inhibitory constant of mercaptopurine (16 μM) was comparable to that of the well-known inhibitor kojic acid (13 μM). The cell-based assay using B16F10 melanoma cells confirmed that the compounds inhibit mammalian tyrosinase. Particularly, 50 μM thioguanine reduced the melanin content by 57%, without apparent cytotoxicity. Cheminformatics showed that the thiopurine drugs shared little chemical similarity with the known tyrosinase inhibitors. PMID:29283382

  11. Allergenic components of a novel food, Micronesian nut Nangai (Canarium indicum), shows IgE cross-reactivity in pollen allergic patients.

    PubMed

    Sten, Eva; Stahl Skov, P; Andersen, S B; Torp, A M; Olesen, A; Bindslev-Jensen, U; Poulsen, L K; Bindslev-Jensen, C

    2002-05-01

    New foods may present a risk for food hypersensitive patients. Several examples exist of allergic reactions caused by cross-reactive plant-derived foods, and new foods should be scrutinised before introducing them to the market. We have evaluated the clinical and serological relevance of cross-reactivity between Nangai and pollen allergens. Cross-reactivity was examined with Maxisorp RAST (radioallergosorbent test), RAST inhibition and Western blot, using sera from patients allergic to grass, birch and mugwort pollen. None of the patients reported having seen or eaten Nangai previously. To determine the biological and clinical relevance of the cross-reactivity, histamine release (HR) test, skin prick test (SPT) and food challenge were used. There was prevalence for reactivity against Nangai in the group of pollen allergic patients. This cross-reactivity seems to be related--at least in part--to carbohydrate epitopes. Three out of 12 patients tested with Nangai were positive upon open challenge, but using double blind placebo controlled food challenge (DBPCFC) this could not be confirmed in two patients. The biological effects of Nangai on allergic patients were confirmed using HR and SPT. The Nangai specific IgE found among pollen allergic patients addresses the need for control of new or changed foods before introduction to the market.

  12. Arginine methyltransferase inhibitor 1 inhibits gastric cancer by downregulating eIF4E and targeting PRMT5.

    PubMed

    Zhang, Baolai; Zhang, Su; Zhu, Lijuan; Chen, Xue; Zhao, Yunfeng; Chao, Li; Zhou, Juanping; Wang, Xing; Zhang, Xinyang; Ma, Nengqian

    2017-12-01

    Arginine methylation is carried out by protein arginine methyltransferase (PRMTs) family. Arginine methyltransferase inhibitor 1 (AMI-1) is mainly used to inhibit type I PRMT activity in vitro. However, the effects of AMI-1 on type II PRMT5 activity and gastric cancer (GC) remain unclear. In this study, we provided the first evidence that AMI-1 significantly inhibited GC cell proliferation and migration while induced GC cell apoptosis, and reduced the expression of PRMT5, eukaryotic translation initiation factor 4E (eIF4E), symmetric dimethylation of histone 3 (H3R8me2s) and histone 4 (H4R3me2s). In addition, AMI-1 inhibited tumor growth, downregulated eIF4E, H4R3me2s and H3R8me2s expression in mice xenografts model of GC. Collectively, our results suggest that AMI-1 inhibits GC by downregulating eIF4E and targeting type II PRMT5. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Inhibitory effect of phloretin and biochanin A on IgE-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells.

    PubMed

    Chung, Mi Ja; Sohng, Jae Kyung; Choi, Doo Jin; Park, Yong Il

    2013-09-17

    Anti-allergic effects and action mechanism of phloretin (Phl) and biochanin A (BioA) on the IgE-antigen complex-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells were investigated. Cell viability, formation of reactive oxygen species (ROS), DPPH radical-scavenging activity, β-hexosaminidase release, production of interleukin (IL)-4, IL-13, and tumor necrosis factor-alpha (TNF-α) and phosphorylation of Akt and mitogen-activated protein kinase (MAPK) were determined by MTT assay, 2,7-dichlorofluorescein diacetate (DCF-DA) assay, DPPH radical-scavenging assay, reverse transcriptase polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and western blot analysis, respectively. Ph1 and BioA dose-dependently inhibited the formation of ROS and the release of β-hexosaminidase from the RBL-2H3 cells and also showed DPPH radical-scavenging activity. Ph1 and BioA suppressed the antigen-induced phosphorylation of the downstream signaling intermediates, including MAPK and Akt, which are critical for the production of pro-inflammatory cytokines, and also significantly attenuated the production of IgE-mediated pro-inflammatory cytokines, such as IL-4, IL-13, and TNF-α. Phloretin and biochanin A attenuate the degranulation and allergic cytokine production through inhibition of intracellular ROS production and the phosphorylation of Akt and the MAPKs, such as ERK1/2, p38, and JNK. The results of this study suggested that these two plant flavonoids may have potent anti-allergic activity in vitro. © 2013.

  14. Solution Structure of the Squash Aspartic Acid Proteinase Inhibitor (SQAPI) and Mutational Analysis of Pepsin Inhibition

    PubMed Central

    Headey, Stephen J.; MacAskill, Ursula K.; Wright, Michele A.; Claridge, Jolyon K.; Edwards, Patrick J. B.; Farley, Peter C.; Christeller, John T.; Laing, William A.; Pascal, Steven M.

    2010-01-01

    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel β-sheet gripping an α-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting β-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S′ side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp32–Asp215 diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin. PMID:20538608

  15. Discovery of novel PDE9 inhibitors capable of inhibiting Aβ aggregation as potential candidates for the treatment of Alzheimer's disease.

    PubMed

    Su, Tao; Zhang, Tianhua; Xie, Shishun; Yan, Jun; Wu, Yinuo; Li, Xingshu; Huang, Ling; Luo, Hai-Bin

    2016-02-25

    Recently, phosphodiesterase-9 (PDE9) inhibitors and biometal-chelators have received much attention as potential therapeutics for the treatment of Alzheimer's disease (AD). Here, we designed, synthesized, and evaluated a novel series of PDE9 inhibitors with the ability to chelate metal ions. The bioassay results showed that most of these molecules strongly inhibited PDE9 activity. Compound 16 showed an IC50 of 34 nM against PDE9 and more than 55-fold selectivity against other PDEs. In addition, this compound displayed remarkable metal-chelating capacity and a considerable ability to halt copper redox cycling. Notably, in comparison to the reference compound clioquinol, it inhibited metal-induced Aβ(1-42) aggregation more effectively and promoted greater disassembly of the highly structured Aβ fibrils generated through Cu(2+)-induced Aβ aggregation. These activities of 16, together with its favorable blood-brain barrier permeability, suggest that 16 may be a promising compound for treatment of AD.

  16. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all ofmore » which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice

  17. Tofacitinib regulates synovial inflammation in psoriatic arthritis, inhibiting STAT activation and induction of negative feedback inhibitors

    PubMed Central

    Gao, W; McGarry, T; Orr, C; McCormick, J; Veale, D J; Fearon, U

    2016-01-01

    Background Psoriatic arthritis (PsA) is a chronic inflammatory disease, characterised by synovitis and destruction of articular cartilage/bone. Janus-kinase and signal transducer and activator of transcription (JAK-STAT) signalling pathway is implicated in the pathogenesis of PsA. Objectives To examine the effect of tofacitinib (JAK inhibitor) on proinflammatory mechanisms in PsA. Methods Primary PsA synovial fibroblasts (PsAFLS) and ex vivo PsA synovial explants were cultured with tofacitinib (1 µM). PhosphoSTAT3 (pSTAT3), phosphoSTAT1 (pSTAT1), suppressor of cytokine signaling-3 (SOCS3), protein inhibitor of activated Stat3 (PIAS3) and nuclear factor kappa B cells (NFκBp65) were quantified by western blot. The effect of tofacitinib on PsAFLS migration, invasion, Matrigel network formation and matrix metallopeptidase (MMP)2/9 was quantified by invasion/migration assays and zymography. Interleukin (IL)-6, IL-8, IFN-gamma-inducible protein 10 (IP-10) monocyte chemoattractant protein (MCP)-1, IL-17, IL-10, MMP3 and tissue inhibitor of metalloproteinases 3 (TIMP3) were assessed by ELISA. Results Tofacitinib significantly decreased pSTAT3, pSTAT1, NFκBp65 and induced SOCS3 and PIAS3 expression in PsAFLS and synovial explant cultures (p<0.05). Functionally, PsAFLS invasion, network formation and migration were inhibited by tofacitinib (all p<0.05). In PsA explant, tofacitinib significantly decreased spontaneous secretion of IL-6, IL-8, MCP-1, MMP9/MMP2, MMP3 (all p<0.05) and decreased the MMP3/TIMP3 ratio (p<0.05), with no effect observed for IP-10 or IL-10. Conclusions This study further supports JAK-STAT inhibition as a therapeutic target for the treatment of PsA. PMID:26353790

  18. [Biological pollution and allergic diseases].

    PubMed

    Carrer, P; Moscato, G

    2004-01-01

    House dust mites, pets, microorganisms such as fungi and bacteria are the main causes of indoor allergens. The diseases correlated to the presence of these allergens are of increasing importance in public health as well as in occupational medicine. Indoor allergens are widespread in residential buildings as well as in public and in office buildings. Surveys conducted in Italian office buildings demonstrated detectable allergen concentrations in most of these buildings. In some cases, the concentrations were higher than the proposed risk threshold for allergenic sensitisation or for the elicitation of symptoms in allergic individuals. The health effects of exposure to indoor allergens mainly include allergic asthma and rhinoconjunctivitis caused by IgE reactions in predisposed subjects. Moreover, exposure to indoor biological agents can cause extrinsic allergic alveolitis or other effects such as the so-called "humidifier fever" due to contaminated humidifiers. Standardized methods for the measurement of indoor allergen levels are available, and may be useful for the diagnosis and treatment of individual allergic patients or for group studies in order to evaluate the relationship between allergen indoor levels and health effects or to assess indoor allergen levels in private or public buildings for preventative purposes.

  19. Allergen-stimulated T lymphocytes from allergic patients induce vascular cell adhesion molecule-1 (VCAM-1) expression and IL-6 production by endothelial cells.

    PubMed Central

    Delneste, Y; Jeannin, P; Gosset, P; Lassalle, P; Cardot, E; Tillie-Leblond, I; Joseph, M; Pestel, J; Tonnel, A B

    1995-01-01

    Adhesion of inflammatory cells to endothelium is a critical step for their transvascular migration to inflammatory sites. To evaluate the relationship between T lymphocytes (TL) and vascular endothelium, supernatants from allergen-stimulated TL obtained from patients sensitive to Dermatophagoides pteronyssinus (Dpt) versus healthy subjects were added to endothelial cell (EC) cultures. TL were stimulated by autologous-activated antigen-presenting cells (APC) previously fixed in paraformaldehyde to prevent monokine secretion. Two parameters were measured: the expression of adhesion molecule and the production of IL-6. Related allergen-stimulated TL supernatants from allergic patients induced an increase of VCAM-1 and intercellular adhesion molecule-1 (ICAM-1) expression when supernatants of the control groups (TL exposed to an unrelated allergen or not stimulated or TL obtained from healthy subjects) did not. E-selectin expression was not modulated whatever the supernatant added to EC culture. IL-6 production by EC was significantly enhanced after activation with related allergen-stimulated TL supernatants from allergics compared with control supernatants. Induction of VCAM-1 expression was inhibited by adding neutralizing antibodies against IL-4, whereas IL-6 production and ICAM-1 expression were inhibited by anti-interferon-gamma (IFN-gamma) antibodies. Enhanced production of IL-4 and IFN-gamma was detected in related allergen-stimulated TL supernatants from allergic subjects compared with the different supernatants. These data suggest that allergen-specific TL present in the peripheral blood of allergic patients are of Th1 and Th2 subtypes. Their stimulation in allergic patients may lead to the activation of endothelial cells and thereby participate in leucocyte recruitment towards the inflammatory site. PMID:7542574

  20. International Consensus (ICON): allergic reactions to vaccines.

    PubMed

    Dreskin, Stephen C; Halsey, Neal A; Kelso, John M; Wood, Robert A; Hummell, Donna S; Edwards, Kathryn M; Caubet, Jean-Christoph; Engler, Renata J M; Gold, Michael S; Ponvert, Claude; Demoly, Pascal; Sanchez-Borges, Mario; Muraro, Antonella; Li, James T; Rottem, Menachem; Rosenwasser, Lanny J

    2016-01-01

    Routine immunization, one of the most effective public health interventions, has effectively reduced death and morbidity due to a variety of infectious diseases. However, allergic reactions to vaccines occur very rarely and can be life threatening. Given the large numbers of vaccines administered worldwide, there is a need for an international consensus regarding the evaluation and management of allergic reactions to vaccines. Following a review of the literature, and with the active participation of representatives from the World Allergy Organization (WAO), the European Academy of Allergy and Clinical Immunology (EAACI), the American Academy of Allergy, Asthma, and Immunology (AAAAI), and the American College of Allergy, Asthma, and Immunology (ACAAI), the final committee was formed with the purpose of having members who represented a wide-range of countries, had previously worked on vaccine safety, and included both allergist/immunologists as well as vaccinologists. Consensus was reached on a variety of topics, including: definition of immediate allergic reactions, including anaphylaxis, approaches to distinguish association from causality, approaches to patients with a history of an allergic reaction to a previous vaccine, and approaches to patients with a history of an allergic reaction to components of vaccines. This document provides comprehensive and internationally accepted guidelines and access to on-line documents to help practitioners around the world identify allergic reactions following immunization. It also provides a framework for the evaluation and further management of patients who present either following an allergic reaction to a vaccine or with a history of allergy to a component of vaccines.

  1. Pectin as an Extraordinary Natural Kinetic Hydrate Inhibitor

    PubMed Central

    Xu, Shurui; Fan, Shuanshi; Fang, Songtian; Lang, Xuemei; Wang, Yanhong; Chen, Jun

    2016-01-01

    Pectin as a novel natural kinetic hydrate inhibitor, expected to be eco-friendly and sufficiently biodegradable, was studied in this paper. The novel crystal growth inhibition (CGI) and standard induction time methods were used to evaluate its effect as hydrate inhibitor. It could successfully inhibit methane hydrate formation at subcooling temperature up to 12.5 °C and dramatically slowed the hydrate crystal growth. The dosage of pectin decreased by 66% and effective time extended 10 times than typical kinetic inhibitor. Besides, its maximum growth rate was no more than 2.0%/h, which was far less than 5.5%/h of growth rate for PVCap at the same dosage. The most prominent feature was that it totally inhibited methane hydrate crystal rapid growth when hydrate crystalline occurred. Moreover, in terms of typical natural inhibitors, the inhibition activity of pectin increased 10.0-fold in induction time and 2.5-fold in subcooling temperature. The extraordinary inhibition activity is closely related to its hydrogen bonding interaction with water molecules and the hydrophilic structure. Finally, the biodegradability and economical efficiency of pectin were also taken into consideration. The results showed the biodegradability improved 75.0% and the cost reduced by more than 73.3% compared to typical commercial kinetic inhibitors. PMID:26996773

  2. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    PubMed Central

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy. PMID:27699226

  3. PI-273, a Substrate-Competitive, Specific Small-Molecule Inhibitor of PI4KIIα, Inhibits the Growth of Breast Cancer Cells.

    PubMed

    Li, Jiangmei; Gao, Zhen; Zhao, Dan; Zhang, Lunfeng; Qiao, Xinhua; Zhao, Yingying; Ding, Hong; Zhang, Panpan; Lu, Junyan; Liu, Jia; Jiang, Hualiang; Luo, Cheng; Chen, Chang

    2017-11-15

    While phosphatidylinositol 4-kinase (PI4KIIα) has been identified as a potential target for antitumor therapy, the clinical applications of PI4KIIα are limited by a lack of specific inhibitors. Here we report the first small-molecule inhibitor (SMI) of human PI4KIIα. Docking-based and ligand-based virtual screening strategies were first employed to identify promising hits, followed by two rounds of kinase activity inhibition validation. 2-(3-(4-Chlorobenzoyl)thioureido)-4-ethyl-5-methylthiophene-3-carboxamide (PI-273) exhibited the greatest inhibitory effect on PI4KIIα kinase activity (IC 50 = 0.47 μmol/L) and suppressed cell proliferation. Surface plasmon resonance and thermal shift assays indicated that PI-273 interacted directly with PI4KIIα. Kinetic analysis identified PI-273 as a reversible competitive inhibitor with respect to the substrate phosphatidylinositol (PI), which contrasted with most other PI kinase inhibitors that bind the ATP binding site. PI-273 reduced PI4P content, cell viability, and AKT signaling in wild-type MCF-7 cells, but not in PI4KIIα knockout MCF-7 cells, indicating that PI-273 is highly selective for PI4KIIα. Mutant analysis revealed a role of palmitoylation insertion in the selectivity of PI-273 for PI4KIIα. In addition, PI-273 treatment retarded cell proliferation by blocking cells in G 2 -M, inducing cell apoptosis and suppressing colony-forming ability. Importantly, PI-273 significantly inhibited MCF-7 cell-induced breast tumor growth without toxicity. PI-273 is the first substrate-competitive, subtype-specific inhibitor of PI4KIIα, the use of which will facilitate evaluations of PI4KIIα as a cancer therapeutic target. Cancer Res; 77(22); 6253-66. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    PubMed

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  5. Experimental and theoretical studies of Schiff bases as corrosion inhibitors.

    PubMed

    Jamil, Dalia M; Al-Okbi, Ahmed K; Al-Baghdadi, Shaimaa B; Al-Amiery, Ahmed A; Kadhim, Abdulhadi; Gaaz, Tayser Sumer; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2018-02-05

    Relatively inexpensive, stable Schiff bases, namely 3-((4-hydroxybenzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ3) and 3-((4-(dimethylamino)benzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ4), were employed as highly efficient inhibitors of mild steel corrosion by corrosive acid. The inhibition efficiencies were estimated based on weight loss method. Moreover, scanning electron microscopy was used to investigate the inhibition mechanism. The synthesized Schiff bases were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and micro-elemental analysis. The inhibition efficiency depends on three factors: the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight. Inhibition efficiencies of 96 and 92% were achieved with BZ4 and BZ3, respectively, at the maximum tested concentration. Density functional theory calculations of BZ3 and BZ4 were performed to compare the effects of hydroxyl and N,N-dimethylamino substituents on the inhibition efficiency, providing insight for designing new molecular structures that exhibit enhanced inhibition efficiencies.

  6. Inhibition of Heat-Stable Toxin-Induced Intestinal Salt and Water Secretion by a Novel Class of Guanylyl Cyclase C Inhibitors.

    PubMed

    Bijvelds, Marcel J C; Loos, Michaela; Bronsveld, Inez; Hellemans, Ann; Bongartz, Jean-Pierre; Ver Donck, Luc; Cox, Eric; de Jonge, Hugo R; Schuurkes, Jan A J; De Maeyer, Joris H

    2015-12-01

    Many enterotoxigenic Escherichia coli strains produce the heat-stable toxin, STa, which, by activation of the intestinal receptor-enzyme guanylyl cyclase (GC) C, triggers an acute, watery diarrhea. We set out to identify GCC inhibitors that may be of benefit for the treatment of infectious diarrheal disease. Compounds that inhibit STa-induced cyclic guanosine 3',5'-monophosphate (cGMP) production were selected by performing cyclase assays on cells and membranes containing GCC, or the related GCA. The effect of leads on STa/GCC-dependent activation of the cystic fibrosis transmembrane conductance regulator anion channel was investigated in T84 cells, and in porcine and human intestinal tissue. Their effect on STa-provoked fluid transport was assessed in ligated intestinal loops in piglets. Four N-2-(propylamino)-6-phenylpyrimidin-4-one-substituted piperidines were shown to inhibit GCC-mediated cellular cGMP production. The half maximal inhibitory concentrations were ≤ 5 × 10(-7) mol/L, whereas they were >10 times higher for GCA. In T84 monolayers, these leads blocked STa/GCC-dependent, but not forskolin/adenylyl cyclase-dependent, cystic fibrosis transmembrane conductance regulator activity. GCC inhibition reduced STa-provoked anion secretion in pig jejunal tissue, and fluid retention and cGMP levels in STa-exposed loops. These GCC inhibitors blocked STa-provoked anion secretion in rectal biopsy specimens. We have identified a novel class of GCC inhibitors that may form the basis for development of future therapeutics for (infectious) diarrheal disease. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    PubMed

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL -1 levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL -1 ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL -1 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Histone deacetylases inhibitor Trichostatin A ameliorates DNFB-induced allergic contact dermatitis and reduces epidermal Langerhans cells in mice

    PubMed Central

    Shi, Yu-Ling; Gu, Jun; Park, Jun-Yang; Xu, Ying-Ping; Yu, Fu-Shin; Zhou, Li; Mi, Qing-Sheng

    2012-01-01

    Background Histone deacetylases (HDACs) influence chromatin organization, representing a key epigenetic regulatory mechanism in cells. Trichostatin A (TSA), a potent HDAC inhibitor, has anti-tumor and anti-inflammatory effects. Allergic contact dermatitis (ACD) is a T-cell-mediated inflammatory reaction in skin and is regulated by epidermal Langerhans cells (LCs). Objective The aim of this study was to investigate if TSA treatment prevents 2,4-dinitrofluorobenzene (DNFB)-induced ACD in mice and regulates epidermal LCs and other immune cells during ACD development. Methods ACD was induced by sensitizing and challenging with DNFB topically. Mice were treated intraperitoneally with TSA or vehicle DMSO as a control every other day before and during induction of ACD. The ear swelling response was measured and skin biopsies from sensitized skin areas were obtained for histology. Epidermal cells, thymus, spleens and skin draining lymph nodes were collected for immune staining. Results TSA treatment ameliorated skin lesion severity of DNFB-induced ACD. The percentages of epidermal LCs and splenic DCs as well as LC maturation were significantly reduced in TSA-treated mice. However, TSA treatment did not significantly affect the homeostasis of conventional CD4+ and CD8+ T cells, Foxp3+CD4+ regulatory T cells, iNKT cells, and γδ T cells in thymus, spleen and draining lymph nodes (dLNs). Furthermore, there were no significant differences in IL-4 and IFN-γ-producing T cells and iNKT cells between TSA- and DMSO-treated mice. Conclusion Our findings suggest that TSA may ameliorate ACD through the regulation of epidermal LCs and HDACs could serve as potential therapeutic targets for ACD and other LCs-related skin diseases. PMID:22999682

  9. Proanthocyanidins from the bark of Metasequoia glyptostroboides ameliorate allergic contact dermatitis through directly inhibiting T cells activation and Th1/Th17 responses.

    PubMed

    Chen, Fengyang; Ye, Xiaodi; Yang, Yadong; Teng, Tianli; Li, Xiaoyu; Xu, Shifang; Ye, Yiping

    2015-04-15

    The leaves and bark of Metasequoia glyptostroboides are used as anti-microbic, analgesic and anti-inflammatory drug for dermatic diseases in Chinese folk medicine. However, the pharmacological effects and material basis responsible for the therapeutic use of this herb have not yet been well studied. The objectives of this study were to evaluate the anti-inflammatory effects of the proanthocyanidin fraction from the bark of M. glyptostroboides (MGEB) and to elucidate its immunological mechanisms. The anti-inflammatory activity of MGEB was evaluated using 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in mice. Its potential mechanisms were further investigated by determining its effects on Con A-induced T cell activation and Th1/Th17 responses in vitro. Both intraperitoneal injection and oral administration of MGEB significantly reduced the ear swelling in DNFB-induced ACD mice. MGEB inhibited Con A-induced proliferation and the expression levels of cell surface molecules CD69 and CD25 of T cells in vitro. MGEB also significantly decreased the production of Th1/Th17 specific cytokines (IL-2, IFN-γ and IL-17) and down-regulated their mRNA expression levels in activated T-cells. MGEB could ameliorate ACD, at least in part, through directly inhibiting T cells activation and Th1/Th17 responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Small Quaternary Inhibitors K298 and K524: Cholinesterases Inhibition, Absorption, Brain Distribution, and Toxicity.

    PubMed

    Karasova, Jana Zdarova; Hroch, Milos; Musilek, Kamil; Kuca, Kamil

    2016-02-01

    Inhibitors of acetylcholinesterase (AChE) may be used in the treatment of various cholinergic deficits, among them being myasthenia gravis (MG). This paper describes the first in vivo data for promising small quaternary inhibitors (K298 and K524): acute toxicity study, cholinesterase inhibition, absorption, and blood-brain barrier penetration. The newly prepared AChE inhibitors (bis-quinolinium and quinolinium compounds) possess a positive charge in the molecule which ensures that anti-AChE action is restricted to peripheral effect. HPLC-MS was used for determination of real plasma and brain concentration in the pharmacokinetic part of the study, and standard non-compartmental analysis was performed. The maximum plasma concentrations were attained at 30 min (K298; 928.76 ± 115.20 ng/ml) and 39 min (K524; 812.40 ± 54.96 ng/ml) after i.m. Both compounds are in fact able to target the central nervous system. It seems that the difference in the CNS distribution profile depends on an active efflux system. The K524 brain concentration was actively decreased to below an effective level; in contrast, K298 progressively accumulated in brain tissue. Peripheral AChE inhibitors are still first-line treatment in the mild forms of MG. Commonly prescribed carbamates have many severe side effects related to AChE carbamylation. The search for new treatment strategies is still important. Unlike carbamates, these new compounds target AChE via apparent π-π or π-cationic interaction aside at the AChE catalytic site.

  11. The effects of spirulina on allergic rhinitis.

    PubMed

    Cingi, Cemal; Conk-Dalay, Meltem; Cakli, Hamdi; Bal, Cengiz

    2008-10-01

    The prevalence of allergic rhinitis is increasing globally due to various causes. It affects the quality life of a large group of people in all around the world. Allergic rhinitis still remains inadequately controlled with present medical means. The need of continuous medical therapy makes individuals anxious about the side effects of the drugs. So there is a need for an alternative strategy. Effects of spirulina, tinospora cordifolia and butterbur were investigated recently on allergic rhinitis in just very few investigations. Spirulina represents a blue-green alga that is produced and commercialized as a dietary supplement for modulating immune functions, as well as ameliorating a variety of diseases. This double blind, placebo controlled study, evaluated the effectiveness and tolerability of spirulina for treating patients with allergic rhinitis. Spirulina consumption significantly improved the symptoms and physical findings compared with placebo (P < 0.001***) including nasal discharge, sneezing, nasal congestion and itching. Spirulina is clinically effective on allergic rhinitis when compared with placebo. Further studies should be performed in order to clarify the mechanism of this effect.

  12. Patterns of allergen sensitization and self-reported allergic disease in parents of food allergic children.

    PubMed

    Makhija, Melanie M; Robison, Rachel G; Caruso, Deanna; Cai, Miao; Wang, Xiaobin; Pongracic, Jacqueline A

    2016-10-01

    Sensitization in adults has not been extensively studied. To investigate patterns of allergen sensitization in parents of food allergic children and to compare self-report of allergic disease with specific IgE (sIgE) measurements. A total of 1,252 mothers and 1,225 fathers of food allergic children answered standardized questionnaires about demographics, home environment, history of atopic diseases, and food allergy. Skin prick testing and sIgE serum tests were performed to 9 foods and 5 aeroallergens. A total of 66.1% of parents were sensitized to either a food or aeroallergen. Mean sIgE levels were low for all foods tested. A total of 14.5% of mothers and 12.7% of fathers reported current food allergy. Only 28.4% had sensitization to their reported allergen. Fathers had significantly higher rates of sensitization to both foods and aeroallergens (P < .01) than mothers. Logistic regression evaluating predictors of self-reported food allergy revealed statistically significant positive associations in fathers with self-reported asthma, environmental allergy, and eczema. For mothers, significant positive associations were found with environmental allergy and having more than 1 food allergic child. This cohort of parents of food allergic children found higher rates of sensitization to foods and aeroallergens compared with the general population. However, food sIgE levels were low and correlated poorly with self-reported food allergy. Sex differences in sensitization to foods and aeroallergens were seen. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. The nuclear factor κB inhibitor (E)-2-fluoro-4′-methoxystilbene inhibits firefly luciferase

    PubMed Central

    Braeuning, Albert; Vetter, Silvia

    2012-01-01

    Photinus pyralis (firefly) luciferase is widely used as a reporter system to monitor alterations in gene promoter and/or signalling pathway activities in vitro. The enzyme catalyses the formation of oxyluciferin from D-luciferin in an ATP-consuming reaction involving photon emission. The purpose of the present study was to characterize the luciferase-inhibiting potential of (E)-2-fluoro-4′-methoxystilbene, which is known as a potent inhibitor of the NF-κB (nuclear factor κB) signalling pathway that is used to modulate the NF-κB signalling pathway in vitro. Results show that (E)-2-fluoro-4′-methoxystilbene effectively inhibits firefly luciferase activity in cell lysates and living cells in a non-competitive manner with respect to the luciferase substrates D-luciferin and ATP. By contrast, the compound has no effect on Renilla and Gaussia luciferases. The mechanism of firefly luciferase inhibition by (E)-2-fluoro-4′-methoxystilbene, as well as its potency is comparable to its structure analogue resveratrol. The in vitro use of trans-stilbenes such as (E)-2-fluoro-4′-methoxystilbene or resveratrol compromises firefly luciferase reporter assays as well as ATP/luciferase-based cell viability assays. PMID:22789175

  14. Impacts of heavy rain and typhoon on allergic disease.

    PubMed

    Park, Kwan Jun; Moon, Jong Youn; Ha, Jong Sik; Kim, Sun Duk; Pyun, Bok Yang; Min, Taek Ki; Park, Yoon Hyung

    2013-06-01

    Allergic disease may be increased by climate change. Recent reports have shown that typhoon and heavy rain increase allergic disease locally by concentration of airborne allergens of pollen, ozone, and fungus, which are causes of allergic disease. The objective of this study was to determine whether typhoon and heavy rain increase allergic disease in Korea. This study included allergic disease patients of the area declared as a special disaster zone due to storms and heavy rains from 2003 to 2009. The study used information from the Korea Meteorological Administration, and from the National Health Insurance Service for allergic diseases (asthma, allergic rhinitis, and atopic dermatitis). During a storm period, the numbers of allergy rhinitis and atopic dermatitis outpatients increased [rate ratio (RR) = 1.191; range, 1.150-1.232] on the sixth lag day. However, the number of asthma outpatients decreased (RR = 0.900; range, 0.862-0.937) on the sixth lag day after a disaster period. During a storm period, the numbers of allergic rhinitis outpatients (RR = 1.075; range, 1.018-1.132) and atopy outpatients increased (RR = 1.134; range, 1.113-1.155) on the seventh lag day. However, the number of asthma outpatients decreased to RR value of 0.968 (range, 0.902-1.035) on the fifth lag day. This study suggests that typhoon and heavy rain increase allergic disease apart from asthma. More study is needed to explain the decrease in asthma.

  15. Potency, selectivity and prolonged binding of saxagliptin to DPP4: maintenance of DPP4 inhibition by saxagliptin in vitro and ex vivo when compared to a rapidly-dissociating DPP4 inhibitor

    PubMed Central

    2012-01-01

    Background Dipeptidylpeptidase 4 (DPP4) inhibitors have clinical benefit in patients with type 2 diabetes mellitus by increasing levels of glucose-lowering incretin hormones, such as glucagon-like peptide -1 (GLP-1), a peptide with a short half life that is secreted for approximately 1 hour following a meal. Since drugs with prolonged binding to their target have been shown to maximize pharmacodynamic effects while minimizing drug levels, we developed a time-dependent inhibitor that has a half-life for dissociation from DPP4 close to the duration of the first phase of GLP-1 release. Results Saxagliptin and its active metabolite (5-hydroxysaxagliptin) are potent inhibitors of human DPP4 with prolonged dissociation from its active site (Ki = 1.3 nM and 2.6 nM, t1/2 = 50 and 23 minutes respectively at 37°C). In comparison, both vildagliptin (3.5 minutes) and sitagliptin ( < 2 minutes) rapidly dissociated from DPP4 at 37°C. Saxagliptin and 5-hydroxysaxagliptin are selective for inhibition of DPP4 versus other DPP family members and a large panel of other proteases, and have similar potency and efficacy across multiple species. Inhibition of plasma DPP activity is used as a biomarker in animal models and clinical trials. However, most DPP4 inhibitors are competitive with substrate and rapidly dissociate from DPP4; therefore, the type of substrate, volume of addition and final concentration of substrate in these assays can change measured inhibition. We show that unlike a rapidly dissociating DPP4 inhibitor, inhibition of plasma DPP activity by saxagliptin and 5-hydroxysaxagliptin in an ex vivo assay was not dependent on substrate concentration when substrate was added rapidly because saxagliptin and 5-hydroxysaxagliptin dissociate slowly from DPP4, once bound. We also show that substrate concentration was important for rapidly dissociating DPP4 inhibitors. Conclusions Saxagliptin and its active metabolite are potent, selective inhibitors of DPP4, with prolonged

  16. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models.

    PubMed

    Wu, Xiao Yu; Xu, Hao; Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-12-29

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis.

  17. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models

    PubMed Central

    Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis. PMID:26575424

  18. Molecular insights into human monoamine oxidase (MAO) inhibition by 1,4-naphthoquinone: evidences for menadione (vitamin K3) acting as a competitive and reversible inhibitor of MAO.

    PubMed

    Coelho Cerqueira, Eduardo; Netz, Paulo Augusto; Diniz, Cristiane; Petry do Canto, Vanessa; Follmer, Cristian

    2011-12-15

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurodegenerative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonselective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that MAO-B was inhibited competitively by 1,4-NQ (K(i)=1.4 μM) whereas MAO-A was inhibited by non-competitive mechanism (K(i)=7.7 μM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold selectivity for MAO-B (K(i)=0.4 μM) in comparison with MAO-A (K(i)=26 μM), which makes it as selective as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for menadione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by 1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor of human MAO. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Disruption of Heat Shock Protein 90 (Hsp90)-Protein Kinase Cδ (PKCδ) Interaction by (−)-Maackiain Suppresses Histamine H1 Receptor Gene Transcription in HeLa Cells*

    PubMed Central

    Nariai, Yuki; Mizuguchi, Hiroyuki; Ogasawara, Takeyasu; Nagai, Hiroaki; Sasaki, Yohei; Okamoto, Yasunobu; Yoshimura, Yoshiyuki; Kitamura, Yoshiaki; Nemoto, Hisao; Takeda, Noriaki; Fukui, Hiroyuki

    2015-01-01

    The histamine H1 receptor (H1R) gene is an allergic disease sensitive gene, and its expression level is strongly correlated with the severity of allergic symptoms. (−)-Maackiain was identified as a Kujin-derived anti-allergic compound that suppresses the up-regulation of the H1R gene. However, the underlying mechanism of H1R gene suppression remains unknown. Here, we sought to identify a target protein of (−)-maackiain and investigate its mechanism of action. A fluorescence quenching assay and immunoblot analysis identified heat shock protein 90 (Hsp90) as a target protein of (−)-maackiain. A pull-down assay revealed that (−)-maackiain disrupted the interaction of Hsp90 with PKCδ, resulting in the suppression of phorbol 12-myristate 13-acetate (PMA)-induced up-regulation of H1R gene expression in HeLa cells. Additional Hsp90 inhibitors, including 17-(allylamino)-17-demethoxygeldanamycin, celastrol, and novobiocin also suppressed PMA-induced H1R gene up-regulation. 17-(Allylamino)-17-demethoxygeldanamycin inhibited PKCδ translocation to the Golgi and phosphorylation of Tyr311 on PKCδ. These data suggest that (−)-maackiain is a novel Hsp90 pathway inhibitor. The underlying mechanism of the suppression of PMA-induced up-regulation of H1R gene expression by (−)-maackiain and Hsp90 inhibitors is the inhibition of PKCδ activation through the disruption of Hsp90-PKCδ interaction. Involvement of Hsp90 in H1R gene up-regulation suggests that suppression of the Hsp90 pathway could be a novel therapeutic strategy for allergic rhinitis. PMID:26391399

  20. Phospholipase A2 in experimental allergic bronchitis: a lesson from mouse and rat models.

    PubMed

    Mruwat, Rufayda; Yedgar, Saul; Lavon, Iris; Ariel, Amiram; Krimsky, Miron; Shoseyov, David

    2013-01-01

    Phospholipases A2 (PLA2) hydrolyzes phospholipids, initiating the production of inflammatory lipid mediators. We have previously shown that in rats, sPLA2 and cPLA2 play opposing roles in the pathophysiology of ovalbumin (OVA)-induced experimental allergic bronchitis (OVA-EAB), an asthma model: Upon disease induction sPLA2 expression and production of the broncho-constricting CysLTs are elevated, whereas cPLA2 expression and the broncho-dilating PGE2 production are suppressed. These were reversed upon disease amelioration by treatment with an sPLA2 inhibitor. However, studies in mice reported the involvement of both sPLA2 and cPLA2 in EAB induction. To examine the relevance of mouse and rat models to understanding asthma pathophysiology. OVA-EAB was induced in mice using the same methodology applied in rats. Disease and biochemical markers in mice were compared with those in rats. As in rats, EAB in mice was associated with increased mRNA of sPLA2, specifically sPLA2gX, in the lungs, and production of the broncho-constricting eicosanoids CysLTs, PGD2 and TBX2 in bronchoalveolar lavage (BAL). In contrast, EAB in mice was associated also with elevated cPLA2 mRNA and PGE2 production. Yet, treatment with an sPLA2 inhibitor ameliorated the EAB concomitantly with reverting the expression of both cPLA2 and sPLA2, and eicosanoid production. In both mice and rats sPLA2 is pivotal in OVA-induced EAB. Yet, amelioration of asthma markers in mouse models, and human tissues, was observed also upon cPLA2 inhibition. It is plausible that airway conditions, involving multiple cell types and organs, require the combined action of more than one, essential, PLA2s.

  1. Rhinophototherapy in persistent allergic rhinitis.

    PubMed

    Bella, Zsolt; Kiricsi, Ágnes; Viharosné, Éva Dósa-Rácz; Dallos, Attila; Perényi, Ádám; Kiss, Mária; Koreck, Andrea; Kemény, Lajos; Jóri, József; Rovó, László; Kadocsa, Edit

    2017-03-01

    Previous published results have revealed that Rhinolight ® intranasal phototherapy is safe and effective in intermittent allergic rhinitis. The present objective was to assess whether phototherapy is also safe and effective in persistent allergic rhinitis. Thirty-four patients with persistent allergic rhinitis were randomized into two groups; twenty-five subjects completed the study. The Rhinolight ® group was treated with a combination of UV-B, UV-A, and high-intensity visible light, while the placebo group received low-intensity visible white light intranasal phototherapy on a total of 13 occasions in 6 weeks. The assessment was based on the diary of symptoms, nasal inspiratory peak flow, quantitative smell threshold, mucociliary transport function, and ICAM-1 expression of the epithelial cells. All nasal symptom scores and nasal inspiratory peak flow measurements improved significantly in the Rhinolight ® group relative to the placebo group and this finding persisted after 4 weeks of follow-up. The smell and mucociliary functions did not change significantly in either group. The number of ICAM-1 positive cells decreased non-significantly in the Rhinolight ® group. No severe side-effects were reported during the treatment period. These results suggest that Rhinolight ® treatment is safe and effective in persistent allergic rhinitis.

  2. Climate change and allergic disease.

    PubMed

    Shea, Katherine M; Truckner, Robert T; Weber, Richard W; Peden, David B

    2008-09-01

    Climate change is potentially the largest global threat to human health ever encountered. The earth is warming, the warming is accelerating, and human actions are largely responsible. If current emissions and land use trends continue unchecked, the next generations will face more injury, disease, and death related to natural disasters and heat waves, higher rates of climate-related infections, and wide-spread malnutrition, as well as more allergic and air pollution-related morbidity and mortality. This review highlights links between global climate change and anticipated increases in prevalence and severity of asthma and related allergic disease mediated through worsening ambient air pollution and altered local and regional pollen production. The pattern of change will vary regionally depending on latitude, altitude, rainfall and storms, land-use patterns, urbanization, transportation, and energy production. The magnitude of climate change and related increases in allergic disease will be affected by how aggressively greenhouse gas mitigation strategies are pursued, but at best an average warming of 1 to 2 degrees C is certain this century. Thus, anticipation of a higher allergic disease burden will affect clinical practice as well as public health planning. A number of practical primary and secondary prevention strategies are suggested at the end of the review to assist in meeting this unprecedented public health challenge.

  3. Complementary therapies in allergic rhinitis.

    PubMed

    Sayin, Ibrahim; Cingi, Cemal; Oghan, Fatih; Baykal, Bahadir; Ulusoy, Seckin

    2013-01-01

    Objective. To determine the prevalence of herbal treatment of allergic rhinitis. Methods. In this prospective study, patients who were diagnosed with perennial allergic rhinitis were questioned about their use of natural products/herbal therapies for their symptoms. Results. In total, 230 patients were enrolled. Overall, 37.3% of the patients stated that they had used natural products/herbal therapies at least once. Women were more likely than men to use herbal supplements (38.3% versus 32.4%). Ten different types of herbal supplements were identified, with stinging nettle (Urtica dioicath), black elderberry (Sambucus nigra), and Spirulina being the most common (12.6%, 6.1%, and 5.7%, resp.). Conclusion. This study found a high prevalence of herbal treatment usage for the relief of allergic rhinitis symptoms in Turkey. The herbal products identified in this study and in the literature are discussed.

  4. Complementary Therapies in Allergic Rhinitis

    PubMed Central

    Sayin, Ibrahim; Cingi, Cemal; Baykal, Bahadir

    2013-01-01

    Objective. To determine the prevalence of herbal treatment of allergic rhinitis. Methods. In this prospective study, patients who were diagnosed with perennial allergic rhinitis were questioned about their use of natural products/herbal therapies for their symptoms. Results. In total, 230 patients were enrolled. Overall, 37.3% of the patients stated that they had used natural products/herbal therapies at least once. Women were more likely than men to use herbal supplements (38.3% versus 32.4%). Ten different types of herbal supplements were identified, with stinging nettle (Urtica dioicath), black elderberry (Sambucus nigra), and Spirulina being the most common (12.6%, 6.1%, and 5.7%, resp.). Conclusion. This study found a high prevalence of herbal treatment usage for the relief of allergic rhinitis symptoms in Turkey. The herbal products identified in this study and in the literature are discussed. PMID:24324897

  5. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes

    PubMed Central

    Fernie-King, Barbara A; Seilly, David J; Willers, Christine; Würzner, Reinhard; Davies, Alexandra; Lachmann, Peter J

    2001-01-01

    Streptococcal inhibitor of complement (SIC) was first described in 1996 as a putative inhibitor of the membrane attack complex of complement (MAC). SIC is a 31 000 MW protein secreted in large quantities by the virulent Streptococcus pyogenes strains M1 and M57, and is encoded by a gene which is extremely variable. In order to study further the interactions of SIC with the MAC, we have made a recombinant form of SIC (rSIC) in Escherichia coli and purified native M1 SIC which was used to raise a polyclonal antibody. SIC prevented reactive lysis of guinea pig erythrocytes by the MAC at a stage prior to C5b67 complexes binding to cell membranes, presumably by blocking the transiently expressed membrane insertion site on C7. The ability of SIC and clusterin (another putative fluid phase complement inhibitor) to inhibit complement lysis was compared, and found to be equally efficient. In parallel, by enzyme-linked immunosorbent assay both SIC and rSIC bound strongly to C5b67 and C5b678 complexes and to a lesser extent C5b-9, but only weakly to individual complement components. The implications of these data for virulence of SIC-positive streptococci are discussed, in light of the fact that Gram-positive organisms are already protected against complement lysis by the presence of their peptidoglycan cell walls. We speculate that MAC inhibition may not be the sole function of SIC. PMID:11454069

  6. Impacts of Heavy Rain and Typhoon on Allergic Disease

    PubMed Central

    Park, Kwan Jun; Moon, Jong Youn; Ha, Jong Sik; Kim, Sun Duk; Pyun, Bok Yang; Min, Taek Ki; Park, Yoon Hyung

    2013-01-01

    Objectives Allergic disease may be increased by climate change. Recent reports have shown that typhoon and heavy rain increase allergic disease locally by concentration of airborne allergens of pollen, ozone, and fungus, which are causes of allergic disease. The objective of this study was to determine whether typhoon and heavy rain increase allergic disease in Korea. Methods This study included allergic disease patients of the area declared as a special disaster zone due to storms and heavy rains from 2003 to 2009. The study used information from the Korea Meteorological Administration, and from the National Health Insurance Service for allergic diseases (asthma, allergic rhinitis, and atopic dermatitis). Results During a storm period, the numbers of allergy rhinitis and atopic dermatitis outpatients increased [rate ratio (RR) = 1.191; range, 1.150–1.232] on the sixth lag day. However, the number of asthma outpatients decreased (RR = 0.900; range, 0.862–0.937) on the sixth lag day after a disaster period. During a storm period, the numbers of allergic rhinitis outpatients (RR = 1.075; range, 1.018–1.132) and atopy outpatients increased (RR = 1.134; range, 1.113–1.155) on the seventh lag day. However, the number of asthma outpatients decreased to RR value of 0.968 (range, 0.902–1.035) on the fifth lag day. Conclusion This study suggests that typhoon and heavy rain increase allergic disease apart from asthma. More study is needed to explain the decrease in asthma. PMID:24159545

  7. [Definition and clinic of the allergic rhinitis].

    PubMed

    Spielhaupter, Magdalena

    2016-03-01

    The allergic rhinitis is the most common immune disorder with a lifetime prevalence of 24% and one of the most common chronic diseases at all--with tendency to rise. It occurs in childhood and influences the patients' social life, school performance and labour productivity. Furthermore the allergic rhinitis is accompanied by a lot of comorbidities, including conjunctivitis, asthma bronchiale, food allergy, neurodermatitis and sinusitis. For example the risk for asthma is 3.2-fold higher for adults with allergic rhinitis than for healthy people.

  8. Ankyrin Repeat Domain Protein 2 and Inhibitor of DNA Binding 3 Cooperatively Inhibit Myoblast Differentiation by Physical Interaction*

    PubMed Central

    Mohamed, Junaith S.; Lopez, Michael A.; Cox, Gregory A.; Boriek, Aladin M.

    2013-01-01

    Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program. PMID:23824195

  9. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    PubMed Central

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  10. Bee moth (Galleria mellonella) allergic reactions are caused by several thermolabile antigens.

    PubMed

    Villalta, D; Martelli, P; Mistrello, G; Roncarolo, D; Zanoni, D

    2004-09-01

    Exposure and contact with bee moth (Galleria mellonella) larvae (Gm) can cause an allergic reaction both in anglers and breeders. We described the case of an amateur fisherman who experienced an allergic reaction using Gm but not using heat-treated Gm (h-Gm) (mummies). The aim of this study was to demonstrate by immunoblotting and radioallergosorbent test (RAST)-inhibition experiments the loss of allergenic epitopes in h-Gm extracts. Galleria mellonella larvae and h-Gm were homogenized and extracted at 10% (w/v) in 0.5 M phosphate-buffered saline, pH 7.4 containing 0.5% NaN(3) for 16 h at 4 degrees C. Gm and h-Gm extracts were electrophoresed in a 10% polyacrylamide precast Nupage Bis-Tris gel at 180 mA for 1 h and the resolved proteins stained with 0.1% Coomassie brilliant blue and the molecular weight calculated. For the immunoblotting detection of allergenic components the resolved extracts were transferred onto a nitrocellulose membrane and incubated with the patient's serum. Bound specific-IgE was detected by peroxidase-conjugated anti-human IgE. RAST inhibition experiments were performed according to the Ceska method. The protein profile of Gm and h-Gm extracts resulted markedly different in number, intensity and the position of bands, indicating that heat-treatment modifies the chemical-physical characteristics of the protein contents. The Gm extract showed a strong-coloured band at 73 kDa and more than 20 components ranging from 12 to 133 kDa; h-Gm showed two main band at 77 and 38 kDa and about 15 faint bands between 20 and 133 kDa apparently without any correspondence to the bands present in the Gm extract. Immunoblotting with the patient's serum demonstrated several bands of reactivity with the Gm extract ranging from 20 to 100 kDa and no recognizable bands, but only a diffuse smear with h-Gm. When used in a RAST inhibition experiment the h-Gm extract demonstrated an inability to compete with the Gm one for the binding to patient's IgE serum. The h

  11. [Allergic rhinitis and ashtma: 2 illnesses. The same disease?].

    PubMed

    González Díaz, Sandra N; Arias Cruz, Alfredo

    2002-01-01

    Disturbances of the upper and lower airways frequently coexist, and the association between allergic rhinitis and asthma is an example of that. The relationship between allergic rhinitis and asthma probably occurs because both, nasal and bronchial mucosas are elements of a "united airway", and on the other hand, allergic rhinitis and asthma are manifestations of a common allergic disease. Allergic rhinitis and asthma are not only statistically associated, but have pathophysiological and clinical similarities. Allergic rhinitis is itself a risk factor for the development of asthma, but additionally may confound the diagnosis of asthma and may exacerbate coexisting asthma. The management of allergic rhinitis, mainly with the use of intranasal corticosteroids, improve asthma symptoms and lung function in asthmatic patients. Several mechanisms have been proposed to link the nose and bronchi, which include: postnasal drip of inflammatory cells and pro-inflammatory molecules; a possible nasobronchial neural reflex; an increased exposure of the lower airways to dry and cold air as well as aeroallergens because the mouth breathing secondary to nasal obstruction; and an increased susceptibility to rhinovirus infection secondary to an increased ICAM-1 expression in the nasal mucosa of patients with allergic rhinitis. A better understanding of the rhinitis-asthma relationship nature might allow the creation of better strategies for the integral treatment of patients with these diseases.

  12. Inhibition of untransformed prostaglandin H(2) production and stretch-induced contraction of rabbit pulmonary arteries by indoxam, a selective secretory phospholipase A(2) inhibitor.

    PubMed

    Tanabe, Yoshiyuki; Saito, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Hirose, Masamichi; Nakayama, Koichi

    2011-01-01

    Involvement of secretory phospholipase A(2) (sPLA(2)) in the stretch-induced production of untransformed prostaglandin H(2) (PGH(2)) in the endothelium of rabbit pulmonary arteries was investigated. The stretch-induced contraction was significantly inhibited by indoxam, a selective inhibitor for sPLA(2), and NS-398, a selective inhibitor for cyclooxygenase-2 (COX-2). Indoxam inhibited the RGD-sensitive-integrin-independent production of untransformed PGH(2), but did not affect the RGD-sensitive-integrin-dependent production of thromboxane A(2) (TXA(2)). These results suggest that the stretch-induced contraction and untransformed PGH(2) production was mediated by sPLA(2)-COX-2 pathway, making it a new possible target for pharmacological intervention of pulmonary artery contractility.

  13. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance.

    PubMed

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-30

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future.

  14. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance

    PubMed Central

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-01

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future. PMID:28134290

  15. Cytokine-targeting biologics for allergic diseases.

    PubMed

    Lawrence, Monica G; Steinke, John W; Borish, Larry

    2018-04-01

    Asthma and allergic diseases continue to increase in prevalence, creating a financial burden on the health care system and affecting the quality of life for those who have these diseases. Many intrinsic and extrinsic factors are involved in the initiation and maintenance of the allergic response. Cytokines are proteins with growth, differentiation, and activation functions that regulate and direct the nature of immune responses. clinicaltrials.gov and PubMed. Relevant clinical trials and recent basic science studies were chosen for discussion. Many cytokines have been implicated in the development and perpetuation of the allergic response. Biologics have been and are continuing to be developed that target these molecules for use in patients with asthma and atopic dermatitis where standard treatment options fail. The current state of cytokine-targeting therapies is discussed. This review focused on cytokines involved in the allergic response with an emphasis on those for which therapies are being or have been developed. Copyright © 2018 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. TANKYRASE Inhibition Enhances the Antiproliferative Effect of PI3K and EGFR Inhibition, Mutually Affecting β-CATENIN and AKT Signaling in Colorectal Cancer.

    PubMed

    Solberg, Nina T; Waaler, Jo; Lund, Kaja; Mygland, Line; Olsen, Petter A; Krauss, Stefan

    2018-03-01

    Overactivation of the WNT/β-CATENIN signaling axis is a common denominator in colorectal cancer. Currently, there is no available WNT inhibitor in clinical practice. Although TANKYRASE (TNKS) inhibitors have been proposed as promising candidates, there are many colorectal cancer models that do not respond positively to TNKS inhibition in vitro and in vivo Therefore, a combinatorial therapeutic approach combining a TNKS inhibitor (G007-LK) with PI3K (BKM120) and EGFR (erlotinib) inhibitors in colorectal cancer was investigated. The data demonstrate that TNKS inhibition enhances the effect of PI3K and EGFR inhibition in the TNKS inhibitor-sensitive COLO320DM, and in the nonsensitive HCT-15 cell line. In both cell lines, combined TNKS/PI3K/EGFR inhibition is more effective at reducing growth than a dual TNKS/MEK inhibition. TNKS/PI3K/EGFR inhibition affected in a context-dependent manner components of the WNT/β-CATENIN, AKT/mTOR, EGFR, and RAS signaling pathways. TNKS/PI3K/EGFR inhibition also efficiently reduced growth of both COLO320DM and HCT-15 tumor xenografts in vivo At the highest doses, tumor xenograft growth was halted without affecting the body weight of the tested animals. Implications: Combining TNKS inhibitors with PI3K and EGFR inhibition may expand the therapeutic arsenal against colorectal cancers. Mol Cancer Res; 16(3); 543-53. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Emerging roles of basophils in allergic inflammation.

    PubMed

    Miyake, Kensuke; Karasuyama, Hajime

    2017-07-01

    Basophils have long been neglected in immunological studies because they were regarded as only minor relatives of mast cells. However, recent advances in analytical tools for basophils have clarified the non-redundant roles of basophils in allergic inflammation. Basophils play crucial roles in both IgE-dependent and -independent allergic inflammation, through their migration to the site of inflammation and secretion of various mediators, including cytokines, chemokines, and proteases. Basophils are known to produce large amounts of IL-4 in response to various stimuli. Basophil-derived IL-4 has recently been shown to play versatile roles in allergic inflammation by acting on various cell types, including macrophages, innate lymphoid cells, fibroblasts, and endothelial cells. Basophil-derived serine proteases are also crucial for the aggravation of allergic inflammation. Moreover, recent reports suggest the roles of basophils in modulating adaptive immune responses, particularly in the induction of Th2 differentiation and enhancement of humoral memory responses. In this review, we will discuss recent advances in understanding the roles of basophils in allergic inflammation. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  18. NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1{beta}-stimulated vascular smooth muscle cells by induction of {eta}{omicron}-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyoung Chul; Kim, Hee Sun; Lee, Kwang Youn

    2008-11-28

    We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1{beta}-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE{sub 2} without modulation of expression of COX-2 in IL-1{beta}-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1{beta}-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE{sub 2} production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE{sub 2} and proliferation of IL-1{beta}-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1{beta}-stimulatedmore » VSMC. NS-398 inhibited proliferation of IL-1{beta}-stimulated VSMC in a HbO{sub 2}-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1{beta}-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.« less

  19. Airway Fibrinogenolysis and the Initiation of Allergic Inflammation

    PubMed Central

    Millien, Valentine Ongeri; Lu, Wen; Mak, Garbo; Yuan, Xiaoyi; Knight, J. Morgan; Porter, Paul; Kheradmand, Farrah

    2014-01-01

    The past 15 years of allergic disease research have produced extraordinary improvements in our understanding of the pathogenesis of airway allergic diseases such as asthma. Whereas it was previously viewed as largely an immunoglobulin E-mediated process, the gradual recognition that T cells, especially Type 2 T helper (Th2) cells and Th17 cells, play a major role in asthma and related afflictions has inspired clinical trials targeting cytokine-based inflammatory pathways that show great promise. What has yet to be clarified about the pathogenesis of allergic inflammatory disorders, however, are the fundamental initiating factors, both exogenous and endogenous, that drive and sustain B- and T-cell responses that underlie the expression of chronic disease. Here we review how proteinases derived from diverse sources drive allergic responses. A central discovery supporting the proteinase hypothesis of allergic disease pathophysiology is the role played by airway fibrinogen, which in part appears to serve as a sensor of unregulated proteinase activity and which, when cleaved, both participates in a novel allergic signaling pathway through Toll-like receptor 4 and forms fibrin clots that contribute to airway obstruction. Unresolved at present is the ultimate source of airway allergenic proteinases. From among many potential candidates, perhaps the most intriguing is the possibility such enzymes derive from airway fungi. Together, these new findings expand both our knowledge of allergic disease pathophysiology and options for therapeutic intervention. PMID:25525732

  20. Administration of PDE4 Inhibitors Suppressed the Pannus-Like Inflammation by Inhibition of Cytokine Production by Macrophages and Synovial Fibroblast Proliferation

    PubMed Central

    Kobayashi, Katsuya; Suda, Toshio; Manabe, Haruhiko; Miki, Ichiro

    2007-01-01

    A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA). Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4) inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA) were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1β, TNF-α, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-α and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation. PMID:18274640

  1. Administration of PDE4 inhibitors suppressed the pannus-like inflammation by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

    PubMed

    Kobayashi, Katsuya; Suda, Toshio; Manabe, Haruhiko; Miki, Ichiro

    2007-01-01

    A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA). Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4) inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA) were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1beta, TNF-alpha, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-alpha and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  2. Establishing the place in therapy of bilastine in the treatment of allergic rhinitis according to ARIA: evidence review.

    PubMed

    Bousquet, Jean; Ansótegui, Ignacio; Canonica, G Walter; Zuberbier, Torsten; Baena-Cagnani, Carlos E; Bachert, Claus; Cruz, Alvaro A; González, Sandra N; Kuna, Piotr; Morais-Almeida, Mario; Mullol, Joaquim; Ryan, Dermot P; Sánchez-Borges, Mario; Valiente, Román; Church, Martin K

    2012-01-01

    The ARIA (Allergic Rhinitis and its Impact on Asthma) guidelines development group examined the properties of oral H(1)-antihistamines and made proposals about an 'optimal' drug. Several criteria should be met by oral H(1)-antihistamines in terms of their pharmacological, and clinical efficacy and safety profiles. Bilastine, a new H(1)-antihistamine, has been approved in 28 European countries for the symptomatic treatment of allergic rhinoconjunctivitis and urticaria in adults and children older than 12 years. To determine its potential place in therapy in the treatment of allergic rhinitis, this manuscript examines whether bilastine meets the criteria defined in the European Academy of Allergy and Clinical Immunology (EAACI)/ARIA proposals for oral H(1)-antihistamines. The optimal properties of oral H(1)-antihistamines and current ARIA recommendations for their use in allergic rhinitis are presented, as well as relevant pharmacological and clinical data for bilastine obtained from the published literature that specifically address the defined criteria. Bilastine is a potent inhibitor of the histamine H(1) receptor. Data from preclinical studies have confirmed its selectivity for the histamine H(1) receptor over other receptors, and demonstrated antihistaminic properties in vitro and in vivo. Bilastine does not interfere with the cytochrome P450 system and is devoid of cardiac side effects. Studies in healthy volunteers and patients have shown that bilastine does not affect driving ability, cardiac conduction or alertness. In large pivotal randomized, placebo-controlled trials (RCTs), bilastine had a favourable safety profile. Bilastine 20 mg once daily improved all nasal and ocular symptoms of allergic rhinitis with greater efficacy than placebo and comparable to that of cetirizine and desloratadine. Moreover, bilastine was shown to improve quality of life, an important outcome of RCTs in allergic diseases. There were no significant changes in laboratory tests

  3. The selectivity of protein kinase inhibitors: a further update

    PubMed Central

    Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

    2007-01-01

    The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

  4. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    PubMed

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  5. Optimization of cell-based assays to quantify the anti-inflammatory/allergic potential of test substances in 96-well format.

    PubMed

    Chandrasekaran, C V; Edwin Jothie, R; Kapoor, Preeti; Gupta, Anumita; Agarwal, Amit

    2011-06-01

    There is an insistent need for robust, reliable, and optimized assays for screening novel drugs targeting the inflammatory/allergic markers. The present study describes about the optimization of eight cell-based assays utilizing mammalian cell lines in 96-well format for quantifying anti-inflammatory/allergic drug candidates. We estimated the inhibitory response of reference compounds: 1400 W dihydrochloride on LPS-induced NO release, celecoxib on LPS-induced PGE(2) production and dexamethasone on LPS-induced pro-inflammatory cytokines IL-1 beta, IL-6, and TNF-alpha production by J774A.1 murine macrophages. Response of acetylsalicylic acid and celecoxib was studied on A23187-induced TXB(2) production; captopril on A23187-stimulated LTB(4) production by HL-60 cells. Effect of ketotifen fumarate was evaluated on A23187-elicited histamine release by RBL-2H3 cells. Each experiment was repeated twice to assess the reproducibility and suitability of the assays by determining appropriate statistical tools viz. %CV, S/B and Z' factor. 1400 W dihydrochloride was capable of inhibiting LPS-induced NO levels (IC(50) = 10.7 μM). Dexamethasone attenuated LPS-induced IL-1 beta (IC(50) = 70 nM), IL-6 (IC(50) = 58 nM) and TNF-alpha (IC(50) = 44 nM) release, whereas celecoxib, a specific COX-2 inhibitor showed marked reduction in LPS-induced PGE(2) (IC(50) = 23 nM) production. Captopril (IC(50) = 48 μM) and ketotifen fumarate (IC(50) = 36.4 μM) demonstrated potent inhibitory effect against A23187-stimulated LTB(4) and histamine levels, respectively. Both acetylsalicylic acid (IC(50) = 5.5 μM) and celecoxib (IC(50) = 7.9 nM) exhibited concentration-dependent decrease in TXB(2) production. Results for all the cell assays from two experiments showed a Z' factor varying from 0.30 to 0.99; the S/B ratio ranged from 2.39 to 24.92; %CV ranged between 1.52 and 20.14. The results proclaim that these cell-based assays can act as ideal tools for screening new anti-inflammatory/anti-allergic

  6. Difluoromethane, a new and improved inhibitor of methanotrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, L.G.; Sasson, C.; Oremland, R.S.

    1998-11-01

    Difluoromethane (HFC-32; DFM) is compared to acetylene and methyl fluoride as an inhibitor of methanotrophy in cultures and soils. DFM was found to be a reversible inhibitor of CH{sub 4} oxidation by Methylococcus capsulatus (Bath). Consumption of CH{sub 4} in soil was blocked by additions of low levels of DFM (0.03 kPa), and this inhibition was reversed by DFM removal. Although a small quantity of DFM was consumed during these incubations, its remaining concentration was sufficiently elevated to sustain inhibition. Methanogenesis in anaerobic soil slurries, including acetoclastic methanogenesis, was unaffected by levels of DFM which inhibit methanotrophy. Low levels ofmore » DFM (0.03 kPa) also inhibited nitrification and N{sub 2}O production by soils. DFM is proposed as an improved inhibitor of CH{sub 4} oxidation over acetylene and/or methyl fluoride on the basis of its reversibility, its efficacy at low concentrations, its lack of inhibition of methanogenesis, and its low cost.« less

  7. Ability of Bruton's Tyrosine Kinase Inhibitors to Sequester Y551 and Prevent Phosphorylation Determines Potency for Inhibition of Fc Receptor but not B-Cell Receptor Signaling.

    PubMed

    Bender, Andrew T; Gardberg, Anna; Pereira, Albertina; Johnson, Theresa; Wu, Yin; Grenningloh, Roland; Head, Jared; Morandi, Federica; Haselmayer, Philipp; Liu-Bujalski, Lesley

    2017-03-01

    Bruton's tyrosine kinase (Btk) is expressed in a variety of hematopoietic cells. Btk has been demonstrated to regulate signaling downstream of the B-cell receptor (BCR), Fc receptors (FcRs), and toll-like receptors. It has become an attractive drug target because its inhibition may provide significant efficacy by simultaneously blocking multiple disease mechanisms. Consequently, a large number of Btk inhibitors have been developed. These compounds have diverse binding modes, and both reversible and irreversible inhibitors have been developed. Reported herein, we have tested nine Btk inhibitors and characterized on a molecular level how their interactions with Btk define their ability to block different signaling pathways. By solving the crystal structures of Btk inhibitors bound to the enzyme, we discovered that the compounds can be classified by their ability to trigger sequestration of Btk residue Y551. In cells, we found that sequestration of Y551 renders it inaccessible for phosphorylation. The ability to sequester Y551 was an important determinant of potency against FcεR signaling as Y551 sequestering compounds were more potent for inhibiting basophils and mast cells. This result was true for the inhibition of FcγR signaling as well. In contrast, Y551 sequestration was less a factor in determining potency against BCR signaling. We also found that Btk activity is regulated differentially in basophils and B cells. These results elucidate important determinants for Btk inhibitor potency against different signaling pathways and provide insight for designing new compounds with a broader inhibitory profile that will likely result in greater efficacy. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Fortanet, Jorge; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealedmore » the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.« less

  9. Psoriatic inflammation enhances allergic airway inflammation through IL-23/STAT3 signaling in a murine model.

    PubMed

    Nadeem, Ahmed; Al-Harbi, Naif O; Ansari, Mushtaq A; Al-Harbi, Mohammed M; El-Sherbeeny, Ahmed M; Zoheir, Khairy M A; Attia, Sabry M; Hafez, Mohamed M; Al-Shabanah, Othman A; Ahmad, Sheikh F

    2017-01-15

    Psoriasis is an autoimmune inflammatory skin disease characterized by activated IL-23/STAT3/Th17 axis. Recently psoriatic inflammation has been shown to be associated with asthma. However, no study has previously explored how psoriatic inflammation affects airway inflammation. Therefore, this study investigated the effect of imiquimod (IMQ)-induced psoriatic inflammation on cockroach extract (CE)-induced airway inflammation in murine models. Mice were subjected to topical and intranasal administration of IMQ and CE to develop psoriatic and airway inflammation respectively. Various analyses in lung/spleen related to inflammation, Th17/Th2/Th1 cell immune responses, and their signature cytokines/transcription factors were carried out. Psoriatic inflammation in allergic mice was associated with increased airway inflammation with concurrent increase in Th2/Th17 cells/signature cytokines/transcription factors. Splenic CD4+ T and CD11c+ dendritic cells in psoriatic mice had increased STAT3/RORC and IL-23 mRNA expression respectively. This led us to explore the effect of systemic IL-23/STAT3 signaling on airway inflammation. Topical application of STA-21, a small molecule STAT3 inhibitor significantly reduced airway inflammation in allergic mice having psoriatic inflammation. On the other hand, adoptive transfer of IL-23-treated splenic CD4+ T cells from allergic mice into naive recipient mice produced mixed neutrophilic/eosinophilic airway inflammation similar to allergic mice with psoriatic inflammation. Our data suggest that systemic IL-23/STAT3 axis is responsible for enhanced airway inflammation during psoriasis. The current study also suggests that only anti-asthma therapy may not be sufficient to alleviate airway inflammatory burden in asthmatics with psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Inhibiting cancer cell hallmark features through nuclear export inhibition.

    PubMed

    Sun, Qingxiang; Chen, Xueqin; Zhou, Qiao; Burstein, Ezra; Yang, Shengyong; Jia, Da

    2016-01-01

    Treating cancer through inhibition of nuclear export is one of the best examples of basic research translation into clinical application. Nuclear export factor chromosomal region maintenance 1 (CRM1; Xpo1 and exportin-1) controls cellular localization and function of numerous proteins that are critical for the development of many cancer hallmarks. The diverse actions of CRM1 are likely to explain the broad ranging anti-cancer potency of CRM1 inhibitors observed in pre-clinical studies and/or clinical trials (phase I-III) on both advanced-stage solid and hematological tumors. In this review, we compare and contrast the mechanisms of action of different CRM1 inhibitors, and discuss the potential benefit of unexplored non-covalent CRM1 inhibitors. This emerging field has uncovered that nuclear export inhibition is well poised as an attractive target towards low-toxicity broad-spectrum potent anti-cancer therapy.

  11. The histone deacetylase inhibitor, trichostatin A, inhibits the development of 2,4-dinitrofluorobenzene-induced dermatitis in NC/Nga mice.

    PubMed

    Kim, Tae-Ho; Jung, Jung-A; Kim, Gun-Dong; Jang, An-Hee; Cho, Jeong-Je; Park, Yong Seek; Park, Cheung-Seog

    2010-10-01

    Repetitive skin contact with a chemical hapten like 2,4-dinitrofluorobenzene (DNFB) evokes an atopic dermatitis (AD)-like dermatitis reaction in NC/Nga mice maintained under specific pathogen-free (SPF) conditions. The histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), modulates the expression of several genes by inhibiting the activity of HDACs. Furthermore, TSA has been reported to suppress inflammatory cytokine expression and to induce T cell-suppression by increasing regulatory T cell (T reg cell) numbers. In addition, histone deacetylase inhibitors (HDACi) are currently undergoing clinical trials for the treatment of inflammatory disorders. In the present study, we examined whether treatment with TSA suppresses AD-like skin lesions in NC/Nga mice treated with DNFB under SPF conditions. Intraperitoneal (i.p.) administration of TSA to DNFB-treated NC/Nga mice was found to inhibit ear thickness increases and the skin lesions induced by DNFB. Furthermore, IL-4 production by CD4+ T cells from the lymph nodes of DNFB-treated NC/Nga mice was significantly inhibited by TSA, although levels of IFN-γ were not. Flow cytometric analysis of lymphocytes showed an increase in CD4+ CD25+ T cell proportions in mice given TSA-i.p. These findings suggest that TSA suppresses the development of AD-like dermatitis in DNFB-treated NC/Nga mice by reducing IL-4 production and increasing the T reg cell population. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia.

    PubMed

    Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N

    2012-12-01

    Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.

  13. Inhibition of calcium carbonate deposition on stainless steel using olive leaf extract as a green inhibitor.

    PubMed

    Aidoud, Roumaissa; Kahoul, Abdelkrim; Naamoune, Farid

    2017-01-01

    The antiscale properties of the aqueous extract of olive (Olea europaea L.) leaves as a natural scale inhibitor for stainless steel surface in Hammam raw water were investigated using chronoamperometry (CA) and electrochemical impedance spectroscopy techniques in conjunction with a microscopic examination. The X-ray diffraction analysis reveals that the scale deposited over the pipe walls consists of pure CaCO 3 calcite. The CA, in accordance with electrochemical impedance spectra and scanning electron microscopy, shows that the inhibition efficiency increases with increasing extract concentration. This efficiency is considerably reduced as the temperature is increased.

  14. Inhibition of PI3K-AKT-mTOR pathway sensitizes endometrial cancer cell lines to PARP inhibitors.

    PubMed

    Philip, Charles-André; Laskov, Ido; Beauchamp, Marie-Claude; Marques, Maud; Amin, Oreekha; Bitharas, Joanna; Kessous, Roy; Kogan, Liron; Baloch, Tahira; Gotlieb, Walter H; Yasmeen, Amber

    2017-09-08

    Phosphatase and Tensin homolog (PTEN) is a tumor suppressor gene. Loss of its function is the most frequent genetic alteration in endometrioid endometrial cancers (70-80%) and high grade tumors (90%). We assessed the sensitivity of endometrial cancer cell lines to PARP inhibitors (olaparib and BMN-673) and a PI3K inhibitor (BKM-120), alone or in combination, in the context of their PTEN mutation status. We also highlighted a direct pathway linking PTEN to DNA repair. Using endometrial cancer cellular models with known PTEN status, we evaluated their homologous recombination (HR) functionality by RAD51 foci formation assay. The 50% Inhibitory concentration (IC50) of PI3K and PARP inhibitors in these cells was assessed, and western blotting was performed to determine the expression of proteins involved in the PI3K/mTOR pathway. Moreover, we explored the interaction between RAD51 and PI3K/mTOR by immunofluorescence. Next, the combination effect of PI3K and PARP inhibitors on cell proliferation was evaluated by a clonogenic assay. Cells with mutated PTEN showed over-activation of the PI3K/mTOR pathway. These cells were more sensitive to PARP inhibition compared to PTEN wild-type cells. In addition, PI3K inhibitor treatment reduced RAD51 foci formation in PTEN mutated cells, and sensitized these cells to PARP inhibitor. Targeting both PARP and PI3K might lead to improved personalized therapeutic approaches in endometrial cancer patients with PTEN mutations. Understanding the complex interaction of PTEN mutations with DNA repair in endometrial cancer will help to better select patients that are likely to respond to some of the new and costly targeted therapies.

  15. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar G.; Swaminathan S.; Kumaran, D.

    Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} ofmore » 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.« less

  16. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling.

    PubMed

    Kumar, Gyanendra; Kumaran, Desigan; Ahmed, S Ashraf; Swaminathan, Subramanyam

    2012-05-01

    Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC(50) of 0.9 µM and a K(i) of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features. © 2012 International Union of Crystallography

  17. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

    PubMed

    de Sousa, Lorena Ramos Freitas; Wu, Hongmei; Nebo, Liliane; Fernandes, João Batista; da Silva, Maria Fátima das Graças Fernandes; Kiefer, Werner; Kanitz, Manuel; Bodem, Jochen; Diederich, Wibke E; Schirmeister, Tanja; Vieira, Paulo Cezar

    2015-02-01

    NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Combination Kinase Inhibitor Treatment Suppresses Rift Valley Fever Virus Replication.

    PubMed

    Bell, Todd M; Espina, Virginia; Lundberg, Lindsay; Pinkham, Chelsea; Brahms, Ashwini; Carey, Brian D; Lin, Shih-Chao; Dahal, Bibha; Woodson, Caitlin; de la Fuente, Cynthia; Liotta, Lance A; Bailey, Charles L; Kehn-Hall, Kylene

    2018-04-13

    Viruses must parasitize host cell translational machinery in order to make proteins for viral progeny. In this study, we sought to use this signal transduction conduit against them by inhibiting multiple kinases that influence translation. Previous work indicated that several kinases involved in translation, including p70 S6K, p90RSK, ERK, and p38 MAPK, are phosphorylated following Rift Valley fever virus (RVFV) infection. Furthermore, inhibiting p70 S6K through treatment with the FDA approved drug rapamycin prevents RVFV pathogenesis in a mouse model of infection. We hypothesized that inhibiting either p70 S6K, p90RSK, or p90RSK’s upstream kinases, ERK and p38 MAPK, would decrease translation and subsequent viral replication. Treatment with the p70 S6K inhibitor PF-4708671 resulted in decreased phosphorylation of translational proteins and reduced RVFV titers. In contrast, treatment with the p90RSK inhibitor BI-D1870, p38MAPK inhibitor SB203580, or the ERK inhibitor PD0325901 alone had minimal influence on RVFV titers. The combination of PF-4708671 and BI-D1870 treatment resulted in robust inhibition of RVFV replication. Likewise, a synergistic inhibition of RVFV replication was observed with p38MAPK inhibitor SB203580 or the ERK inhibitor PD0325901 combined with rapamycin treatment. These findings serve as a proof of concept regarding combination kinase inhibitor treatment for RVFV infection.

  19. Combination Kinase Inhibitor Treatment Suppresses Rift Valley Fever Virus Replication

    PubMed Central

    Bell, Todd M.; Espina, Virginia; Lundberg, Lindsay; Pinkham, Chelsea; Brahms, Ashwini; Dahal, Bibha; Woodson, Caitlin; de la Fuente, Cynthia; Liotta, Lance A.; Bailey, Charles L.

    2018-01-01

    Viruses must parasitize host cell translational machinery in order to make proteins for viral progeny. In this study, we sought to use this signal transduction conduit against them by inhibiting multiple kinases that influence translation. Previous work indicated that several kinases involved in translation, including p70 S6K, p90RSK, ERK, and p38 MAPK, are phosphorylated following Rift Valley fever virus (RVFV) infection. Furthermore, inhibiting p70 S6K through treatment with the FDA approved drug rapamycin prevents RVFV pathogenesis in a mouse model of infection. We hypothesized that inhibiting either p70 S6K, p90RSK, or p90RSK’s upstream kinases, ERK and p38 MAPK, would decrease translation and subsequent viral replication. Treatment with the p70 S6K inhibitor PF-4708671 resulted in decreased phosphorylation of translational proteins and reduced RVFV titers. In contrast, treatment with the p90RSK inhibitor BI-D1870, p38MAPK inhibitor SB203580, or the ERK inhibitor PD0325901 alone had minimal influence on RVFV titers. The combination of PF-4708671 and BI-D1870 treatment resulted in robust inhibition of RVFV replication. Likewise, a synergistic inhibition of RVFV replication was observed with p38MAPK inhibitor SB203580 or the ERK inhibitor PD0325901 combined with rapamycin treatment. These findings serve as a proof of concept regarding combination kinase inhibitor treatment for RVFV infection. PMID:29652799

  20. Bovine milk fat enriched in conjugated linoleic and vaccenic acids attenuates allergic airway disease in mice.

    PubMed

    Kanwar, R K; Macgibbon, A K; Black, P N; Kanwar, J R; Rowan, A; Vale, M; Krissansen, G W

    2008-01-01

    It has been argued that a reduction in the Western diet of anti-inflammatory unsaturated lipids, such as n-3 polyunsaturated fatty acids, has contributed to the increase in the frequency and severity of allergic diseases. We investigated whether feeding milk fat enriched in conjugated linoleic acid and vaccenic acids (VAs) ('enriched' milk fat), produced by supplementing the diet of pasture-fed cows with fish and sunflower oil, will prevent development of allergic airway responses. C57BL/6 mice were fed a control diet containing soybean oil and diets supplemented with milk lipids. They were sensitized by intraperitoneal injection of ovalbumin (OVA) on days 14 and 28, and challenged intranasally with OVA on day 42. Bronchoalveolar lavage fluid, lung tissues and serum samples were collected 6 days after the intranasal challenge. Feeding of enriched milk fat led to marked suppression of airway inflammation as evidenced by reductions in eosinophilia and lymphocytosis in the airways, compared with feeding of normal milk fat and control diet. Enriched milk fat significantly reduced circulating allergen-specific IgE and IgG1 levels, together with reductions in bronchoalveolar lavage fluid of IL-5 and CCL11. Treatment significantly inhibited changes in the airway including airway epithelial cell hypertrophy, goblet cell metaplasia and mucus hypersecretion. The two major components of enriched milk fat, cis-9, trans-11 conjugated linoleic acid and VA, inhibited airway inflammation when fed together to mice, whereas alone they were not effective. Milk fat enriched in conjugated linoleic and VAs suppresses inflammation and changes to the airways in an animal model of allergic airway disease.

  1. Reversal of Acetylcholinesterase Inhibitor Toxicity In Vivo by Inhibitors of Choline Transport.

    DTIC Science & Technology

    1983-10-31

    the increased interaction of acetylcholine with the receptor resulting from the inhibition of the enzyme acetylcholinesterase. . Acetylcholinesterase...competitive inhibitors of acetylcholine at the enzyme receptor. The second category, "reversible" cholinesterase inhibitors, form covalent bonds with the...method of Ellman et al. (46) was used to determine the acetyicholinesterase activity in mouse brain homogenates. Briefly, the enzyme activity was

  2. Effect of heat-inactivated kefir-isolated Lactobacillus kefiranofaciens M1 on preventing an allergic airway response in mice.

    PubMed

    Hong, Wei-Sheng; Chen, Yen-Po; Dai, Ting-Yeu; Huang, I-Nung; Chen, Ming-Ju

    2011-08-24

    In this study, we assessed the anti-asthmatic effects of heat-inactivated Lactobacillus kefiranofaciens M1 (HI-M1) and its fermented milk using different feeding procedures and at various dosage levels. The possible mechanisms whereby HI-M1 has anti-allergic asthmatic effects were also evaluated. Ovalbumin (OVA)-allergic asthma mice that have been orally administrated the HI-M1 samples showed strong inhibition of production of T helper cell (Th) 2 cytokines, pro-inflammatory cytokines, and Th17 cytokines in splenocytes and bronchoalveolar fluid compared to control mice. An increase in regulatory T cell population in splenocytes in the allergic asthma mice after oral administration of H1-M1 was also observed. In addition, all of the features of the asthmatic phenotype, including specific IgE production, airway inflammation, and development of airway hyperresponsiveness, were depressed in a dose-dependent manner by treatment. These findings support the possibility that oral feeding of H1-M1 may be an effective way of alleviating asthmatic symptoms in humans.

  3. Mutational analysis of the ability of resveratrol to inhibit amyloid formation by islet amyloid polypeptide: critical evaluation of the importance of aromatic-inhibitor and histidine-inhibitor interactions.

    PubMed

    Tu, Ling-Hsien; Young, Lydia M; Wong, Amy G; Ashcroft, Alison E; Radford, Sheena E; Raleigh, Daniel P

    2015-01-27

    The process of amyloid formation by the normally soluble hormone islet amyloid polypeptide (IAPP) contributes to β-cell death in type 2 diabetes and in islet transplants. There are no clinically approved inhibitors of islet amyloidosis, and the mode of action of existing inhibitors is not well-understood. Resveratrol, a natural polyphenol, has been reported to inhibit amyloid formation by IAPP and by the Alzheimer's disease Aβ peptide. The mechanism of action of this compound is not known, nor is its mode of interaction with IAPP. In this study, we use a series of IAPP variants to examine possible interactions between resveratrol and IAPP. Fluorescence assays, transmission electron microscopy, and mass spectrometry demonstrate that resveratrol is much less effective as an inhibitor of IAPP amyloid formation than the polyphenol (-)-epigallocatechin 3-gallate (EGCG) and, unlike EGCG, does not significantly disaggregate preformed IAPP amyloid fibrils. Resveratrol is also shown to interfere with thioflavin-T assays. His-18 mutants, a truncation mutant, mutants of each of the aromatic residues, and mutants of Arg-11 of IAPP were examined. Mutation of His to Gln or Leu weakens the ability of resveratrol to inhibit amyloid formation by IAPP, as do mutations of Arg-11, Phe-15, or Tyr-37 to Leu, and truncation to form the variant Ac 8-37-IAPP, which removes the first seven residues to eliminate Lys-1 and the N-terminal amino group. In contrast, replacement of Phe-23 with Leu has a smaller effect. The data highlight Phe-15, His-18, and Tyr-37 as being important for IAPP-resveratrol interactions and are consistent with a potential role of the N-terminus and Arg-11 in polypeptide-resveratrol interactions.

  4. Selective matrix metalloproteinase inhibitor, N-biphenyl sulfonyl phenylalanine hydroxamic acid, inhibits the migration of CD4+ T lymphocytes in patients with HTLV-I-associated myelopathy.

    PubMed

    Ikegami, Mayumi; Umehara, Fujio; Ikegami, Naohito; Maekawa, Ryuji; Osame, Mitsuhiro

    2002-06-01

    Matrix metalloproteinases (MMPs) have been reported to be involved in various inflammatory disorders. Previous studies revealed that MMP-2 and MMP-9 might play important roles in the breakdown of the blood-brain barrier (BBB) in the central nervous system (CNS) of patients with HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). N-Biphenyl sulfonyl-phenylalanine hydroxamic acid (BPHA) selectively inhibits MMP-2, -9 and -14, but not MMP-1, -3 and -7. In the present study, we examined whether or not the selective MMP inhibitor BPHA could inhibit the heightened migrating activity of CD4+ T cells in HAM/TSP patients. The migration assay using an invasion chamber showed that migration of CD4+ T cells in HAM/TSP patients was inhibited by 25 microM BPHA. In addition, the inhibitory ratio of migrating CD4+ lymphocytes was higher in HAM patients compared to normal controls. These results suggest that the selective MMP inhibitor BPHA has therapeutic potential for HAM/TSP.

  5. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells.

    PubMed

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura

    2015-06-01

    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.

  6. The putative serine protease inhibitor Api m 6 from Apis mellifera venom: recombinant and structural evaluation.

    PubMed

    Michel, Y; McIntyre, M; Ginglinger, H; Ollert, M; Cifuentes, L; Blank, S; Spillner, E

    2012-01-01

    Immunoglobulin (Ig) E-mediated reactions to honeybee venom can cause severe anaphylaxis, sometimes with fatal consequences. Detailed knowledge of the allergic potential of all venom components is necessary to ensure proper diagnosis and treatment of allergy and to gain a better understanding of the allergological mechanisms of insect venoms. Our objective was to undertake an immunochemical and structural evaluation of the putative low-molecular-weight serine protease inhibitor Api m 6, a component of honeybee venom. We recombinantly produced Api m 6 as a soluble protein in Escherichia coli and in Spodoptera frugiperda (Sf9) insect cells.We also assessed specific IgE reactivity of venom-sensitized patients with 2 prokaryotically produced Api m 6 variants using enzyme-linked immunosorbent assay. Moreover, we built a structural model ofApi m 6 and compared it with other protease inhibitor structures to gain insights into the function of Api m 6. In a population of 31 honeybee venom-allergic patients, 26% showed specific IgE reactivity with prokaryotically produced Api m 6, showing it to be a minor but relevant allergen. Molecular modeling of Api m 6 revealed a typical fold of canonical protease inhibitors, supporting the putative function of this venom allergen. Although Api m 6 has a highly variant surface charge, its epitope distribution appears to be similar to that of related proteins. Api m 6 is a honeybee venom component with IgE-sensitizing potential in a fraction of venom-allergic patients. Recombinant Api m 6 can help elucidate individual component-resolved reactivity profiles and increase our understanding of immune responses to low-molecular-weight allergens

  7. Basophils and allergic inflammation

    PubMed Central

    Siracusa, Mark C.; Kim, Brian S.; Spergel, Jonathan M.; Artis, David

    2013-01-01

    Basophils were discovered by Paul Ehrlich in 1879 and represent the least abundant granulocyte population in mammals. The relative rarity of basophils and their phenotypic similarities with mast cells resulted in this cell lineage being historically overlooked, both clinically and experimentally. However, recent studies in humans and murine systems have shown that basophils perform non-redundant effector functions and significantly contribute to the development and progression of TH2 cytokine-mediated inflammation. Although the potential functions of murine and human basophils have provoked some controversy, recent genetic approaches indicate that basophils can migrate into lymphoid tissues and, in some circumstances, cooperate with other immune cells to promote optimal TH2 cytokine responses in vivo. This article provides a brief historical perspective on basophil-related research and discusses recent studies that have identified previously unappreciated molecules and pathways that regulate basophil development, activation and function in the context of allergic inflammation. Further, we highlight the unique effector functions of basophils and discuss their contributions to the development and pathogenesis of allergic inflammation in human disease. Finally, we discuss the therapeutic potential of targeting basophils in preventing or alleviating the development and progression of allergic inflammation. PMID:24075190

  8. Long-term neprilysin inhibition - implications for ARNIs.

    PubMed

    Campbell, Duncan J

    2017-03-01

    Neprilysin has a major role in both the generation and degradation of bioactive peptides. LCZ696 (valsartan/sacubitril, Entresto), the first of the new ARNI (dual-acting angiotensin-receptor-neprilysin inhibitor) drug class, contains equimolar amounts of valsartan, an angiotensin-receptor blocker, and sacubitril, a prodrug for the neprilysin inhibitor LBQ657. LCZ696 reduced blood pressure more than valsartan alone in patients with hypertension. In the PARADIGM-HF study, LCZ696 was superior to the angiotensin-converting enzyme inhibitor enalapril for the treatment of heart failure with reduced ejection fraction, and LCZ696 was approved by the FDA for this purpose in 2015. This approval was the first for chronic neprilysin inhibition. The many peptides metabolized by neprilysin suggest many potential consequences of chronic neprilysin inhibitor therapy, both beneficial and adverse. Moreover, LBQ657 might inhibit enzymes other than neprilysin. Chronic neprilysin inhibition might have an effect on angio-oedema, bronchial reactivity, inflammation, and cancer, and might predispose to polyneuropathy. Additionally, inhibition of neprilysin metabolism of amyloid-β peptides might have an effect on Alzheimer disease, age-related macular degeneration, and cerebral amyloid angiopathy. Much of the evidence for possible adverse consequences of chronic neprilysin inhibition comes from studies in animal models, and the relevance of this evidence to humans is unknown. This Review summarizes current knowledge of neprilysin function and possible consequences of chronic neprilysin inhibition that indicate a need for vigilance in the use of neprilysin inhibitor therapy.

  9. [Impact off treatment with intranasal electrophoresis of vanadium on the allergic reactivity and immunological indices of patients with allergic rhinitis].

    PubMed

    Tsiclauri, Sh

    2010-02-01

    67 patients were investigated. From these patients, 35 had been persistent form of Allergic Rhinitis and 32 - intermittent form of pathology. It has been established, that in patients with Allergic Rhinitis the treatment with intranasal electrophoresis of vanadium strenghthens T-cellulal immunity, has a desensitization action, increases non-specific resistance of the organism and has a normalizing influence on the indices of humoral immunity. The above shown positive shift were more pronounced in patients with intermittent form of Allergic Rhinitis.

  10. The role of bradykinin receptor type 2 in spontaneous extravasation in mice skin: implications for non-allergic angio-oedema.

    PubMed

    Bisha, Marion; Dao, Vu Thao-Vi; Gholamreza-Fahimi, Ehsan; Vogt, Michael; van Zandvoort, Marc; Weber, Sarah; Bas, Murat; Khosravani, Farbod; Kojda, Georg; Suvorava, Tatsiana

    2018-05-01

    Non-allergic angio-oedema is a life-threatening disease mediated by activation of bradykinin type 2 receptors (B 2 receptors). The aim of this study was to investigate whether activation of B 2 receptors by endogenous bradykinin contributes to physiological extravasation. This may shed new light on the assumption that treatment with an angiotensin converting enzyme inhibitor (ACEi) results in an alteration in the vascular barrier function predisposing to non-allergic angio-oedema. We generated a new transgenic mouse model characterized by endothelium-specific overexpression of the B 2 receptor (B2 tg ) and established a non-invasive two-photon laser microscopy approach to measure the kinetics of spontaneous extravasation in vivo. The B2 tg mice showed normal morphology and litter size as compared with their transgene-negative littermates (B2 n ). Overexpression of B 2 receptors was functional in conductance vessels and resistance vessels as evidenced by B 2 receptor-mediated aortic dilation to bradykinin in presence of non-specific COX inhibitor diclofenac and by significant hypotension in B2 tg respectively. Measurement of dermal extravasation by Miles assay showed that bradykinin induced extravasation was significantly increased in B2 tg as compared with B2 n . However, neither endothelial overexpression of B 2 receptors nor treatment with the ACEi moexipril or B 2 antagonist icatibant had any effect on spontaneous extravasation measured by two-photon laser microscopy. Activation of B 2 receptors does not appear to be involved in spontaneous extravasation. Therefore, the assumption that treatment with an ACEi results in an alteration in the physiological vascular barrier function predisposing to non-allergic angio-oedema is not supported by our findings. © 2018 The British Pharmacological Society.

  11. Clinical verification in homeopathy and allergic conditions.

    PubMed

    Van Wassenhoven, Michel

    2013-01-01

    The literature on clinical research in allergic conditions treated with homeopathy includes a meta-analysis of randomised controlled trials (RCT) for hay fever with positive conclusions and two positive RCTs in asthma. Cohort surveys using validated Quality of Life questionnaires have shown improvement in asthma in children, general allergic conditions and skin diseases. Economic surveys have shown positive results in eczema, allergy, seasonal allergic rhinitis, asthma, food allergy and chronic allergic rhinitis. This paper reports clinical verification of homeopathic symptoms in all patients and especially in various allergic conditions in my own primary care practice. For preventive treatments in hay fever patients, Arsenicum album was the most effective homeopathic medicine followed by Nux vomica, Pulsatilla pratensis, Gelsemium, Sarsaparilla, Silicea and Natrum muriaticum. For asthma patients, Arsenicum iodatum appeared most effective, followed by Lachesis, Calcarea arsenicosa, Carbo vegetabilis and Silicea. For eczema and urticaria, Mezereum was most effective, followed by Lycopodium, Sepia, Arsenicum iodatum, Calcarea carbonica and Psorinum. The choice of homeopathic medicine depends on the presence of other associated symptoms and 'constitutional' features. Repertories should be updated by including results of such clinical verifications of homeopathic prescribing symptoms. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  12. Comparative immunology of allergic responses.

    PubMed

    Gershwin, Laurel J

    2015-01-01

    Allergic responses occur in humans, rodents, non-human primates, avian species, and all of the domestic animals. These responses are mediated by immunoglobulin E (IgE) antibodies that bind to mast cells and cause release/synthesis of potent mediators. Clinical syndromes include naturally occurring asthma in humans and cats; atopic dermatitis in humans, dogs, horses, and several other species; food allergies; and anaphylactic shock. Experimental induction of asthma in mice, rats, monkeys, sheep, and cats has helped to reveal mechanisms of pathogenesis of asthma in humans. All of these species share the ability to develop a rapid and often fatal response to systemic administration of an allergen--anaphylactic shock. Genetic predisposition to development of allergic disease (atopy) has been demonstrated in humans, dogs, and horses. Application of mouse models of IgE-mediated allergic asthma has provided evidence for a role of air pollutants (ozone, diesel exhaust, environmental tobacco smoke) in enhanced sensitization to allergens.

  13. Stressors of School-age Children With Allergic Diseases: A Qualitative Study.

    PubMed

    Iio, Misa; Hamaguchi, Mana; Nagata, Mayumi; Yoshida, Koichi

    2018-05-08

    Most studies of stress in children with chronic diseases have been geared toward parents and caregivers have not considered allergic diseases together. This study aimed to identify the stressors associated with allergic diseases in Japanese school-age children. Stressors associated with allergic diseases of 11 school-age children (seven boys and four girls; age range: 9-12 years) were investigated using semi-structured interviews. In the qualitative thematic analysis of stressors about allergic diseases, two themes: allergic disease-specific stressors and common stressors in chronic diseases, and 12 categories were identified. A thematic map was applied to four domains of stressor: physiological factors, psychological factors, social factors, and environmental factors. The results showed that school-age children with allergic diseases have a variety of stressors. Future studies should aim to develop an allergic disease-specific stress management program with school-age children. In children with allergic diseases, not only is stress management in daily life important, but also stress management for disease-specific matters to control the symptoms and maintain mental health. Stress management should be supported for school-age children with allergic diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Invertase proteinaceous inhibitor of Cyphomandra betacea Sendt fruits.

    PubMed

    Ordóñez, R M; Isla, M I; Vattuone, M A; Sampietro, A R

    2000-01-01

    This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.

  15. Discovery of potent α-glucosidase inhibitor flavonols: Insights into mechanism of action through inhibition kinetics and docking simulations.

    PubMed

    Şöhretoğlu, Didem; Sari, Suat; Barut, Burak; Özel, Arzu

    2018-05-17

    Beside other pharmaceutical benefits, flavonoids are known for their potent α-glucosidase inhibition. In the present study, we investigated α-glucosidase inhibitory effects of structurally related 11 flavonols, among which quercetin-3-O-(3″-O-galloyl)-β-galactopyranoside (8) and quercetin 3-O-(6″-O-galloyl)-β-glucopyranoside (9) showed significant inhibition compared to the positive control, acarbose, with IC 50 values of 0.97 ± 0.02 and 1.35 ± 0.06 µM, respectively. It was found that while sugar substitution to C3-OH of C ring reduced the α-glucosidase inhibitory effect, galloyl substitution to these sugar units increased it. An enzyme kinetics analysis revealed that 7 was competitive, whereas 1, 2, 8, and 9 were uncompetitive inhibitors. In the light of these findings, we performed molecular docking studies to predict their inhibition mechanisms at atomic level. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. 2-(4-(Biphenyl-4-ylamino)-6-chloropyrimidin-2-ylthio)octanoic acid (HZ52) – a novel type of 5-lipoxygenase inhibitor with favourable molecular pharmacology and efficacy in vivo

    PubMed Central

    Greiner, C; Hörnig, C; Rossi, A; Pergola, C; Zettl, H; Schubert-Zsilavecz, M; Steinhilber, D; Sautebin, L; Werz, O

    2011-01-01

    BACKGROUND AND PURPOSE 5-Lipoxygenase (5-LO) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes (LTs) representing a potential target for pharmacological intervention with inflammation and allergic disorders. Although many LT synthesis inhibitors are effective in simple in vitro test systems, they frequently fail in vivo due to lack of efficacy. Here, we attempted to assess the pharmacological potential of the previously identified 5-LO inhibitor 2-(4-(biphenyl-4-ylamino)-6-chloropyrimidin-2-ylthio)octanoic acid (HZ52). EXPERIMENTAL APPROACH We evaluated the efficacy of HZ52 in vivo using carrageenan-induced pleurisy in rats and platelet-activating factor (PAF)-induced lethal shock in mice. We also characterized 5-LO inhibition by HZ52 at the cellular and molecular level in comparison with other types of 5-LO inhibitor, that is, BWA4C, ZM230487 and hyperforin. KEY RESULTS HZ52, 1.5 mg·kg−1 i.p., prevented carrageenan-induced pleurisy accompanied by reduced LTB4 levels and protected mice (10 mg·kg−1, i.p.) against PAF-induced shock. Detailed analysis in cell-based and cell-free assays revealed that inhibition of 5-LO by HZ52 (i) does not depend on radical scavenging properties and is reversible; (ii) is not impaired by an increased peroxide tone or by elevated substrate concentrations; and (iii) is little affected by the cell stimulus or by phospholipids, glycerides, membranes or Ca2+. CONCLUSIONS AND IMPLICATIONS HZ52 is a promising new type of 5-LO inhibitor with efficacy in vivo and with a favourable pharmacological profile. It possesses a unique 5-LO inhibitory mechanism different from classical 5-LO inhibitors and seemingly lacks the typical disadvantages of former classes of LT synthesis blockers. PMID:21506958

  17. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  18. Efficacy and safety of oclacitinib for the control of pruritus and associated skin lesions in dogs with canine allergic dermatitis

    PubMed Central

    Cosgrove, Sallie B; Wren, Jody A; Cleaver, Dawn M; Martin, David D; Walsh, Kelly F; Harfst, Jessica A; Follis, Stacey L; King, Vickie L; Boucher, Joseph F; Stegemann, Michael R

    2013-01-01

    Background Oclacitinib (Apoquel®) inhibits the function of a variety of pro-inflammatory, pro-allergic and pruritogenic cytokines that are dependent on Janus kinase enzyme activity. Oclacitinib selectively inhibits Janus kinase 1. Hypothesis/Objectives We aimed to evaluate the safety and efficacy of oclacitinib for the control of pruritus associated with allergic dermatitis in a randomized, double-blinded, placebo-controlled trial. Methods Client-owned dogs (n = 436) with moderate to severe owner-assessed pruritus and a presumptive diagnosis of allergic dermatitis were enrolled. Dogs were randomized to either oclacitinib at 0.4–0.6 mg/kg orally twice daily or an excipient-matched placebo. An enhanced 10 cm visual analog scale (VAS) was used by the owners to assess the severity of pruritus from day 0 to 7 and by veterinarians to assess the severity of dermatitis on days 0 and 7. Dogs could remain on the study for 28 days. Results Pretreatment owner and veterinary VAS scores were similar for the two treatment groups. Oclacitinib produced a rapid onset of efficacy within 24 h. Mean oclacitinib Owner Pruritus VAS scores were significantly better than placebo scores (P < 0.0001) on each assessment day. Pruritus scores decreased from 7.58 to 2.59 cm following oclacitinib treatment. The day 7 mean oclacitinib Veterinarian Dermatitis VAS scores were also significantly better (P < 0.0001) than placebo scores. Diarrhoea and vomiting were reported with similar frequency in both groups. Conclusions and clinical importance In this study, oclacitinib provided rapid, effective and safe control of pruritus associated with allergic dermatitis, with owners and veterinarians noting substantial improvements in pruritus and dermatitis VAS scores. PMID:23829933

  19. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie

    2009-07-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1{sup -/-} knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited themore » radiation-induced gene expression of transforming growth factor {beta}1 (TGF-{beta}1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1{sup -/-} mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.« less

  20. Interaction between allergic asthma and atherosclerosis

    PubMed Central

    Liu, Conglin; Zhang, Jingying; Shi, Guo-Ping

    2015-01-01

    Prior studies have established an essential role of mast cells in allergic asthma and atherosclerosis. Mast cell deficiency or inactivation protects mice from allergen-induced airway hyper-responsiveness and diet-induced atherosclerosis, suggesting that mast cells share pathologic activities in both diseases. Allergic asthma and atherosclerosis are inflammatory diseases that contain similar sets of elevated numbers of inflammatory cells in addition to mast cells in the airway and arterial wall, such as macrophages, monocytes, T cells, eosinophils, and smooth muscle cells. Emerging evidence from experimental models and human studies points to a potential interaction between the two seemingly unrelated diseases. Patients or mice with allergic asthma have a high risk of developing atherosclerosis or vice versa, despite the fact that asthma is a Th2-oriented disease, whereas Th1 immunity promotes atherosclerosis. In addition to the preferred Th1/Th2 responses that may differentiate the two diseases, mast cells and many other inflammatory cells also contribute to their pathogenesis by much more than just T cell immunity. Here we summarize the different roles of airway and arterial wall inflammatory cells and vascular cells in asthma and atherosclerosis, and propose an interaction between the two diseases, although limited investigations are available to delineate the molecular and cellular mechanisms by which one disease increases the risk of the other. Results from mouse allergic asthma and atherosclerosis models and from human population studies lead to the hypothesis that patients with atherosclerosis may benefit from anti-asthmatic medications, or that the therapeutic regimens targeting atherosclerosis may also alleviate allergic asthma. PMID:26608212

  1. A novel and selective inhibitor of PKC ζ potently inhibits human breast cancer metastasis in vitro and in mice.

    PubMed

    Wu, Jing; Liu, Shuye; Fan, Zhijuan; Zhang, Lei; Tian, Yaqiong; Yang, Rui

    2016-06-01

    Cell motility and chemotaxis play pivotal roles in the process of tumor development and metastasis. Protein kinase C ζ (PKC ζ) mediates epidermal growth factor (EGF)-stimulated chemotactic signaling pathway through regulating cytoskeleton rearrangement and cell adhesion. The purpose of this study was to develop anti-PKC ζ therapeutics for breast cancer metastasis. In this study, a novel and high-efficient PKC ζ inhibitor named PKCZI195.17 was screened out through a substrate-specific strategy. MTT assay was used to determine the cell viability of human breast cancer MDA-MB-231, MDA-MB-435, and MCF-7 cells while under PKCZI195.17 treatment. Wound-healing, chemotaxis, and Matrigel invasion assays were performed to detect the effects of PKCZI195.17 on breast cancer cells migration and invasion. Adhesion, actin polymerization, and Western blotting were performed to detect the effects of PKCZI195.17 on cells adhesion and actin polymerization, and explore the downsteam signaling mechanisms involved in PKC ζ inhibition. MDA-MB-231 xenograft was used to measure the in vivo anti-metastasis efficacy of PKCZI195.17. The compound PKCZI195.17 selectively inhibited PKC ζ kinase activity since it failed to inhibit PKC α, PKC β, PKC δ, PKC η, AKT2, as well as FGFR2 activity. PKCZI195.17 significantly impaired spontaneous migration, chemotaxis, and invasion of human breast cancer MDA-MB-231, MDA-MB-435, and MCF-7 cells, while PKCZI195.17 did not obviously inhibited cells viability. PKCZI195.17 also inhibited cells adhesion and actin polymerization through attenuating the phosphorylations of integrin β1, LIMK, and cofilin, which might be the downstream effectors of PKC ζ-mediated chemotaxis in MDA-MB-231 cells. Furthermore, PKCZI195.17 suppressed the breast cancer metastasis and increased the survival time of breast tumor-bearing mice. In summary, PKCZI195.17 was a PKC ζ-specific inhibitor which dampened cancer cell migration and metastasis and may serve as a novel

  2. Mechanism of Growth Inhibition of Human Cancer Cells by Conjugated Eicosapentaenoic Acid, an Inhibitor of DNA Polymerase and Topoisomerase

    PubMed Central

    Yonezawa, Yuko; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2007-01-01

    DNA topoisomerases (topos) and DNA polymerases (pols) are involved in many aspects of DNA metabolism such as replication reactions. We found that long chain unsaturated fatty acids such as polyunsaturated fatty acids (PUFA) (i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) inhibited the activities of eukaryotic pols and topos in vitro, and the inhibitory effect of conjugated fatty acids converted from EPA and DHA (cEPA and cDHA) on pols and topos was stronger than that of normal EPA and DHA. cEPA and cDHA did not affect the activities of plant and prokaryotic pols or other DNA metabolic enzymes tested. cEPA was a stronger inhibitor than cDHA with IC50 values for mammalian pols and human topos of 11.0 – 31.8 and 0.5 – 2.5 μM, respectively. cEPA inhibited the proliferation of two human leukemia cell lines, NALM-6, which is a p53-wild type, and HL-60, which is a p53-null mutant, and the inhibitory effect was stronger than that of normal EPA. In both cell lines, cEPA arrested in the G1 phase, and increased cyclin E protein levels, indicating that it blocks the primary step of in vivo DNA replication by inhibiting the activity of replicative pols rather than topos. DNA replication-related proteins, such as RPA70, ATR and phosphorylated-Chk1/2, were increased by cEPA treatment in the cell lines, suggesting that cEPA led to DNA replication fork stress inhibiting the activities of pols and topos, and the ATR-dependent DNA damage response pathway could respond to the inhibitor of DNA replication. The compound induced cell apoptosis through both p53-dependent and p53-independent pathways in cell lines NALM-6 and HL-60, respectively. These results suggested the therapeutic potential of conjugated PUFA, such as cEPA, as a leading anti-cancer compound that inhibited pols and topos activities.

  3. MK-2206, an AKT Inhibitor, Promotes Caspase-Independent Cell Death and Inhibits Leiomyoma Growth

    PubMed Central

    Sefton, Elizabeth C.; Qiang, Wenan; Serna, Vanida; Kurita, Takeshi; Wei, Jian-Jun; Chakravarti, Debabrata

    2013-01-01

    Uterine leiomyomas (ULs), benign tumors of the myometrium, are the number one indication for hysterectomies in the United States due to a lack of an effective alternative therapy. ULs show activation of the pro-survival AKT pathway compared with normal myometrium; however, substantial data directly linking AKT to UL cell survival are lacking. We hypothesized that AKT promotes UL cell survival and that it is a viable target for inhibiting UL growth. We used the investigational AKT inhibitor MK-2206, currently in phase II trials, on cultured primary human UL and myometrial cells, immortalized leiomyoma cells, and in leiomyoma grafts grown under the kidney capsule in mice. MK-2206 inhibited AKT and PRAS40 phosphorylation but did not regulate serum- and glucocorticoid-induced kinase and ERK1/2, demonstrating its specificity for AKT. MK-2206 reduced UL cell viability and decreased UL tumor volumes. UL cells exhibited disruption of mitochondrial structures and underwent cell death that was independent of caspases. Additionally, mammalian target of rapamycin and p70S6K phosphorylation were reduced, indicating that mammalian target of rapamycin complex 1 signaling was compromised by AKT inhibition in UL cells. MK-2206 also induced autophagy in UL cells. Pretreatment of primary UL cells with 3-methyladenine enhanced MK-2206-mediated UL cell death, whereas knockdown of ATG5 and/or ATG7 did not significantly influence UL cell viability in the presence of MK-2206. Our data provide molecular evidence for the involvement of AKT in UL cell survival and suggest that AKT inhibition by MK-2206 may be a viable option to consider for the treatment of ULs. PMID:24002033

  4. Occupational allergic contact dermatitis to nitromethane.

    PubMed

    Webb, Kelli G; Fowler, Joseph F

    2002-12-01

    Nitromethane has wide industrial and commercial application as a polar solvent for adhesives and acrylics as well as explosive fuel. Allergic contact dermatitis to this chemical has not been described previously. The authors documented allergic contact hand dermatitis in 4 coworkers who similarly handled an adhesive solvent containing nitromethane. All 4 cases were confirmed by patch testing and resolved after allergen avoidance. Copyright 2002, Elsevier Science (USA)

  5. Capsiate Inhibits DNFB-Induced Atopic Dermatitis in NC/Nga Mice through Mast Cell and CD4+ T-Cell Inactivation.

    PubMed

    Lee, Ji H; Lee, Yun S; Lee, Eun-Jung; Lee, Ji H; Kim, Tae-Yoon

    2015-08-01

    Capsaicin has many biological effects, such as antioxidant, anticancer, and antiangiogenic effects, but it is rarely used because of its high pungency. Capsiate, a nonpungent capsaicin analog, also has multiple biological effects, similar to those of capsaicin, but does not cause irritation. However, the effect of capsiate on allergic responses and immune cells has not been well studied. In this study, we investigated the effect of capsiate on atopic dermatitis, mouse CD4+ T cells, and mast cell activation. Capsiate inhibited DNFB-induced atopic dermatitis in NC/Nga mice. Topical treatment with capsiate suppressed serum IgE levels and cytokine and chemokine expression in the skin of DNFB-treated NC/Nga mice. In addition, it suppressed the activation of CD4+ T cells and mast cells, which are implicated in allergic diseases. Capsiate inhibited the differentiation of naïve CD4+ T cells into T helper type 1 (Th1), Th2, and Th17 cells. Treatment with capsiate inhibited the expression of pro-inflammatory cytokines and degranulation from activated bone marrow-derived mast cells through the inhibition of extracellular signal-regulated kinase signal pathways. Consistent with these results, treatment with capsiate inhibited passive cutaneous anaphylaxis. Taken together, our results suggest that capsiate might be a good candidate molecule for the treatment of allergic diseases such as atopic dermatitis.

  6. Cytokine expression in the colostral cells of healthy and allergic mothers.

    PubMed

    Hrdý, Jiří; Novotná, Olga; Kocourková, Ingrid; Prokešová, Ludmila

    2012-05-01

    There is no doubt about the beneficial effect of breastfeeding on the newborn's immune system. It is not fully elucidated what the differences are between the colostrum/milk of healthy and allergic mothers and how beneficial breastfeeding by an allergic mother is. The gene expression of selected cytokines was tested in cells isolated from colostra of healthy and allergic mothers using quantitative real-time PCR. Allergic phenotype was evident in colostral cells of allergic mothers: gene expressions of IL-4, IL-13 and EGF were increased and those of IFN-gamma decreased in comparison with colostral cells of healthy mothers. The allergic phenotype of the colostral cells of allergic mothers supporting the bias to a Th2 type response was found. It remains a question if a small number of these cells could influence the immature newborn immune system.

  7. Alveolar macrophages from allergic lungs are not committed to a pro-allergic response and can reduce airway hyperresponsiveness following ex vivo culture

    PubMed Central

    Pouliot, P.; Spahr, A.; Careau, É.; Turmel, V.; Bissonnette, E. Y.

    2016-01-01

    Summary Background We already demonstrated that adoptive transfer of alveolar macrophages (AMs) from non-allergic rats into AM-depleted allergic rats prevents airway hyperresponsiveness (AHR). We also showed that AMs from non-sensitized, but not from sensitized, allergy-prone rats can prevent AHR following allergen challenge in sensitized allergic animals, establishing the importance of rat immunological status on the modulation of AM functions and suggesting that an allergic lung environment alters AM functions. Objective We investigated how the activation of allergic AMs can be modulated to reinstitute them with their capacity to reduce AHR. Methods AMs from sensitized Brown Norway rats were cultured ex vivo for up to 18 h in culture media to deprogram them from the influence of the allergic lung before being reintroduced into the lung of AM-depleted sensitized recipient. AHR and cytokines in bronchoalveolar lavage (BAL) were measured following allergen challenge. AMs stimulated ex vivo with Bacillus Calmette-Guerin(BCG) were used as positive controls as BCG induces a T-helper type 1 activation in AMs. Results AMs ex vivo cultured for 4–18 h reduced AHR to normal level. Interestingly, pro-allergic functions of AMs were dampened by 18 h culture and they reduced AHR even after spending 48 h in an allergic lung microenvironment. Furthermore, transfer of cultured AMs caused an increase in the levels of IFN-γ and IL-12 in BAL when compared with their ovalbumin control. After 18 h of ex vivo culture, AMs expressed reduced levels of TNF, IL-1α, IL-6, and Arginase-2 mRNAs compared with freshly isolated AMs, suggesting that ex vivo culture exempted AMs from lung stimuli that affected their functions. Conclusions There is a significant crosstalk between lung microenvironment and AMs, affecting their functions. It is also the first report showing that sensitized AMs can be modulated ex vivo to reduce lung pro-allergic environment, opening the way to therapies targetting

  8. Vulnerability to Allergic Disorder in Families of Children of Behavioral Inhibition

    DTIC Science & Technology

    1990-10-07

    third years of life. The temperamentally inhibited child consistently displays an initial timidity, shyness, and emotional restraint when exposed to...with the uninhibited, children, reported a higher prevalence of atopic allergies, especially hayfever and eczema . Although the exact mechanisms...As Table 1 reveals, more relatives of inhibited, compared with uninhibited, children reported having hayfever, eczema , and frequent stomach cramps

  9. Inhibition of Breast Cancer Metastasis by Presurgical Treatment with an Oral Matrix Metalloproteinase Inhibitor: A Preclinical Proof-of-Principle Study.

    PubMed

    Winer, Arthur; Janosky, Maxwell; Harrison, Beth; Zhong, Judy; Moussai, Dariush; Siyah, Pinar; Schatz-Siemers, Nina; Zeng, Jennifer; Adams, Sylvia; Mignatti, Paolo

    2016-10-01

    Breast cancer has the second highest death toll in women worldwide, despite significant progress in early diagnosis and treatments. The main cause of death is metastatic disease. Matrix metalloproteinases (MMP) are required for the initial steps of metastasis, and have therefore been considered as ideal pharmacologic targets for antimetastatic therapy. However, clinical trials of MMP inhibitors were unsuccessful. These trials were conducted in patients with advanced disease, beyond the stage when these compounds could have been effective. We hypothesized that early treatment with a selective MMP inhibitor between the time of diagnosis and definitive surgery, the so-called "window-of-opportunity," can inhibit metastasis and thereby improve survival. To investigate our hypothesis, we used the 4T1 mouse model of aggressive mammary carcinoma. We treated the animals with SD-7300, an oral inhibitor of MMP-2, -9, and -13, starting after the initial detection of the primary tumor. Seven days later, the primary tumors were excised and analyzed for MMP activity, and the SD-7300 treatment was discontinued. After 4 weeks, the animals were sacrificed and their lungs analyzed histologically for number of metastases and metastatic burden (metastases' area/lung section area). SD-7300 treatment inhibited 70% to 80% of tumor-associated MMP activity (P = 0.0003), reduced metastasis number and metastatic burden by 50% to 60% (P = 0.002 and P = 0.0082, respectively), and increased survival (92% vs. 66.7%; P = 0.0409), relative to control vehicle. These results show that treatment of early invasive breast cancer with selective MMP inhibitors can lower the risk of recurrence and increase long-term disease-free survival. Mol Cancer Ther; 15(10); 2370-7. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Do allergic families avoid keeping furry pets?

    PubMed

    Bertelsen, R J; Carlsen, K C L; Granum, B; Carlsen, K-H; Håland, G; Devulapalli, C S; Munthe-Kaas, M C; Mowinckel, P; Løvik, M

    2010-06-01

    Studies addressing the relationship between pet keeping and development of asthma and allergies may be influenced by pet avoidance in families with a history of allergic disease. Following a cohort of 1019 children in Oslo till 10 years of age, we studied the association of pet keeping with socio-economic factors and allergic disease in the family. A family history of asthma and rhinoconjunctivitis was not significantly associated with pet ownership at birth or with pet removal by 10 years. Acquiring cats and dogs was less likely if the child had allergic rhinoconjunctivitis, whereas no association was seen with asthma (in any family member). Single parenthood increased the likelihood of acquiring a cat, smoking parents more often had cats or dogs, and having older siblings was associated with keeping dogs and other furry pets. Among 319 families reporting pet avoidance, 70% never had pets, 8% had given up pets, and 22% avoided a particular type of pet only. Twenty-four per cent of the parents failed to retrospectively report pet keeping during the child's first year of life. Overall, allergic rhinitis, but not asthma was associated with actual pet avoidance, whereas the strongest predictors for keeping pets were found to be socio-economic factors. Allergic disease in a child most often does not lead to the removal of the family's furry pet. Pet avoidance is associated with allergic symptoms, but not asthma. Socio-economic factors like parental education, single parenthood and smoking affects the families' decisions on pet keeping, including the type of pets the families will avoid or acquire. The large recall error demonstrated points to the need for prospective data regarding pet keeping.

  11. Role of histamine in the inhibitory effects of phycocyanin in experimental models of allergic inflammatory response.

    PubMed Central

    Remirez, D; Ledón, N; González, R

    2002-01-01

    It has recently been reported that phycocyanin, a biliprotein found in the blue-green microalgae Spirulina, exerts anti-inflammatory effects in some animal models of inflammation. Taking into account these findings, we decided to elucidate whether phycocyanin might exert also inhibitory effects in the induced allergic inflammatory response and on histamine release from isolated rat mast cells. In in vivo experiments, phycocyanin (100, 200 and 300mg/kg post-orally (p.o.)) was administered 1 h before the challenge with 1 microg of ovalbumin (OA) in the ear of mice previously sensitized with OA. One hour later, myeloperoxidase activity and ear edema were assessed. Phycocyanin significantly reduced both parameters. In separate experiments, phycocyanin (100 and 200 mg/kg p.o.) also reduced the blue spot area induced by intradermal injections of histamine, and the histamine releaser compound 48/80 in rat skin. In concordance with the former results, phycocyanin also significantly reduced histamine release induced by compound 48/80 from isolated peritoneal rat mast cells. The inhibitory effects of phycocyanin were dose dependent. Taken together, our results suggest that inhibition of allergic inflammatory response by phycocyanin is mediated, at least in part, by inhibition of histamine release from mast cells. PMID:12061428

  12. Anorectic activities of serotonin uptake inhibitors: correlation with their potencies at inhibiting serotonin uptake in vivo and /sup 3/H-mazindol binding in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, I.; Taranger, M.A.; Claustre, Y.

    1988-01-01

    The mechanism of anorectic action of several serotonin uptake inhibitors was investigated by comparing their anorectic potencies with several biochemical and pharmacological properties and in reference to the novel compound SL 81.0385. The anorectic effect of the potent serotonin uptake inhibitor SL 81.0385 was potentiated by pretreatment with 5-hydroxytryptophan and blocked by the serotonin receptor antagonist metergoline. A good correlation was obtained between the ED/sub 50/ values of anorectic action and the ED/sub 50/ values of serotonin uptake inhibition in vivo (but not in vitro) for several specific serotonin uptake inhibitors. Most of the drugs tested displaced (/sup 3/H)-mazindol frommore » its binding to the anorectic recognition site in the hypothalamus, except the pro-drug zimelidine which was inactive. Excluding zimelidine, a good correlation was obtained between the affinities of these drugs for (/sup 3/H)-mazindol binding and their anorectic action indicating that their anorectic activity may be associated with an effect mediated through this site. Taken together these results suggest that the anorectic action of serotonin uptake inhibitors is directly associated to their ability to inhibit serotonin uptake and thus increasing the synaptic levels of serotonin. The interactions of these drugs with the anorectic recognition site labelled with (/sup 3/H)-mazindol is discussed in connection with the serotonergic regulation of carbohydrate intake.« less

  13. Asthma and Atopic Dermatitis: A Review of Targeted Inhibition of Interleukin-4 and Interleukin-13 As Therapy for Atopic Disease.

    PubMed

    Buzney, Catherine D; Gottlieb, Alice B; Rosmarin, David

    2016-02-01

    Type 2 helper T cell (Th2)-mediated inflammation plays a critical role in the pathogenesis of allergic asthma and atopic dermatitis (AD). Recent research focusing on the suppression of the Th2 axis with targeted inhibitors in atopic disease is showing promising early results. In particular, the simultaneous blockage of interleukin (IL)-4 and IL-13 has successfully mitigated symptoms of allergic asthma and AD in preliminary clinical trials. Given the current therapeutic challenges of treating these chronic and severe diseases, this review brings to light new data demonstrating that agents targeting IL-4 and IL-13 are relatively safe and effective medications in blocking the inflammatory cascade responsible for allergic asthma and atopic dermatitis.

  14. Association between exposure to antimicrobial household products and allergic symptoms

    PubMed Central

    Hong, Soyoung; Kwon, Ho-Jang; Choi, Won-Jun; Lim, Wan Ryung; Kim, Jeonghoon; Kim, KyooSang

    2014-01-01

    Objectives Antimicrobial chemicals are used in a variety of household and personal care products. Exposure to antimicrobial household products has been hypothesized to lead to allergic diseases in children. Methods We investigated antimicrobial household product exposure and allergic symptoms in Korean children. An antimicrobial exposure (AE) score was derived. To examine the symptoms of allergic diseases (current wheeze, current rhinitis, and current eczema) in the past 12 months, we used a questionnaire based on the core module of the International Study of Asthma and Allergies in Children. Complete data for the analysis were available for 25,805 of the 35,590 (72.5%) children. Results The prevalence of current allergic diseases was as follows: wheeze, 5.6%; allergic rhinitis, 32.6%; and eczema, 17.7%. The mean (standard deviation) AE score was 14.3 (9.3) (range: 0-40). Compared with subjects with a low AE score (reference), subjects with a high AE score (fourth quartile) were more likely to have symptoms of wheezing and allergic rhinitis (adjusted odds ratio [aOR] for wheezing 1.24, 95% confidence interval [CI], 1.05-1.45, p for trend=0.24; aOR for allergic rhinitis 1.30, 95% CI, 1.20-1.40, p<0.01). Conclusions These findings suggest that frequent use of antimicrobial household products was associated with current wheeze and current allergic rhinitis. PMID:25420879

  15. Association between exposure to antimicrobial household products and allergic symptoms.

    PubMed

    Hong, Soyoung; Kwon, Ho-Jang; Choi, Won-Jun; Lim, Wan Ryung; Kim, Jeonghoon; Kim, KyooSang

    2014-01-01

    Antimicrobial chemicals are used in a variety of household and personal care products. Exposure to antimicrobial household products has been hypothesized to lead to allergic diseases in children. We investigated antimicrobial household product exposure and allergic symptoms in Korean children. An antimicrobial exposure (AE) score was derived. To examine the symptoms of allergic diseases (current wheeze, current rhinitis, and current eczema) in the past 12 months, we used a questionnaire based on the core module of the International Study of Asthma and Allergies in Children. Complete data for the analysis were available for 25,805 of the 35,590 (72.5%) children. The prevalence of current allergic diseases was as follows: wheeze, 5.6%; allergic rhinitis, 32.6%; and eczema, 17.7%. The mean (standard deviation) AE score was 14.3 (9.3) (range: 0-40). Compared with subjects with a low AE score (reference), subjects with a high AE score (fourth quartile) were more likely to have symptoms of wheezing and allergic rhinitis (adjusted odds ratio [aOR] for wheezing 1.24, 95% confidence interval [CI], 1.05-1.45, p for trend=0.24; aOR for allergic rhinitis 1.30, 95% CI, 1.20-1.40, p<0.01). These findings suggest that frequent use of antimicrobial household products was associated with current wheeze and current allergic rhinitis.

  16. Rho kinase inhibitors: a patent review (2012 - 2013).

    PubMed

    Feng, Yangbo; LoGrasso, Philip V

    2014-03-01

    The Rho kinase/ROCK is critical in vital signal transduction pathways central to many essential cellular activities. Since ROCK possess multiple substrates, modulation of ROCK activity is useful for treatment of many diseases. Significant progress has been made in the development of ROCK inhibitors over the past two years (Jan 2012 to Aug 2013). Patent search in this review was based on FPO IP Research and Communities and Espacenet Patent Search. In this review, patent applications will be classified into four groups for discussions. The grouping is mainly based on structures or scaffolds (groups 1 and 2) and biological functions of ROCK inhibitors (groups 3 and 4). These four groups are i) ROCK inhibitors based on classical structural elements for ROCK inhibition; ii) ROCK inhibitors based on new scaffolds; iii) bis-functional ROCK inhibitors; and iv) novel applications of ROCK inhibitors. Although currently only one ROCK inhibitor (fasudil) is used as a drug, more drugs based on ROCK inhibition are expected to be advanced into market in the near future. Several directions should be considered for future development of ROCK inhibitors, such as soft ROCK inhibitors, bis-functional ROCK inhibitors, ROCK2 isoform-selective inhibitors, and ROCK inhibitors as antiproliferation agents.

  17. New in vitro model for proarrhythmia safety screening: IKs inhibition potentiates the QTc prolonging effect of IKr inhibitors in isolated guinea pig hearts.

    PubMed

    Kui, Péter; Orosz, Szabolcs; Takács, Hedvig; Sarusi, Annamária; Csík, Norbert; Rárosi, Ferenc; Csekő, Csongor; Varró, András; Papp, Julius Gy; Forster, Tamás; Farkas, Attila S; Farkas, András

    2016-01-01

    Preclinical in vivo QT measurement as a proarrhythmia essay is expensive and not reliable enough. The aim of the present study was to develop a sensitive, cost-effective, Langendorff perfused guinea pig heart model for proarrhythmia safety screening. Low concentrations of dofetilide and cisapride (inhibitors of the rapid delayed rectifier potassium current, IKr) were tested alone and co-perfused with HMR-1556 (inhibitor of the slow delayed rectifier potassium current, IKs) in Langendorff perfused guinea pig hearts. The electrocardiographic rate corrected QT (QTc) interval, the Tpeak-Tend interval and the beat-to-beat variability and instability (BVI) of the QT interval were determined in sinus rhythm. Dofetilide and HMR-1556 alone or co-perfused, prolonged the QTc interval by 20±2%, 10±1% and 55±10%, respectively. Similarly, cisapride and HMR-1556 alone or co-perfused, prolonged the QTc interval by 11±3%, 11±4% and 38±6%, respectively. Catecholamine-induced fast heart rate abolished the QTc prolonging effects of the IKr inhibitors, but augmented the QTc prolongation during IKs inhibition. None of the drug perfusions increased significantly the Tpeak-Tend interval and the sinus BVI of the QT interval. IKs inhibition increased the QTc prolonging effect of IKr inhibitors in a super-additive (synergistic) manner, and the QTc interval was superior to other proarrhythmia biomarkers measured in sinus rhythm in isolated guinea pig hearts. The effect of catecholamines on the QTc facilitated differentiation between IKr and IKs inhibitors. Thus, QTc measurement in Langendorff perfused guinea pig hearts with pharmacologically attenuated repolarization reserve and periodic catecholamine perfusion seems to be suitable for preclinical proarrhythmia screening. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Anti-food allergic activity of sulfated polysaccharide from gracilaria lemaneiformis is dependent on immunosuppression and inhibition of p38 mapk

    USDA-ARS?s Scientific Manuscript database

    Polysaccharides from marine sources offer diverse therapeutic functions due to their multifarious biological nature. Polysaccharide from Gracilaria lemaneiformis possesses various bioactive functions, but its anti-allergic activity remains incompletely defined. Objective: This study aimed to extract...

  19. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  20. Bee pollen: a dangerous food for allergic children. Identification of responsible allergens.

    PubMed

    Martín-Muñoz, M F; Bartolome, B; Caminoa, M; Bobolea, I; Ara, M C Garcia; Quirce, S

    2010-01-01

    Bee pollen has been proposed as a food supplement, but it can be a dangerous food for people with allergy. We study an allergic reaction after ingestion of bee pollen in a 4-year-old boy who had developed rhinitis in the last spring and autumn. We performed a prick-by-prick test with bee pollen and skin prick tests with the most important local pollens, house dust mites, common fungi, and animal danders. The levels of serum tryptase, serum total IgE and specific IgE against bee venom and local pollen extracts were determined. The composition of the bee pollen was analysed and SDS-PAGE immunoblotting and blotting-inhibition were carried out. Prick tests were positive to bee pollen and all local pollens extracts and negative to any other allergen sources. The bee pollen sample contained pollens from Quercus genus, and Asteraceae (Compositae) and Rosaceae families. Total IgE was 435 kU/l. Serum specific IgE to bee pollen was 6 kU/l and greater than 0.35 kU/L against pollens from Artemisia vulgaris, Taraxacum officinalis, Cupressus arizonica, Olea europaea, Platanus acerifolia and Lolium perenne as well as to n Art v 1 and other pollen marker allergens. Tryptase level was 3.5 mcg/mL. SDS-PAGE immunoblotting-inhibition points to Asteraceae pollen as the possible cause of the allergic reaction. Foods derived from bees can be dangerous to people with allergy to pollen. Copyright © 2009 SEICAP. Published by Elsevier Espana. All rights reserved.

  1. Aurintricarboxylic acid is a potent inhibitor of phosphofructokinase.

    PubMed Central

    McCune, S A; Foe, L G; Kemp, R G; Jurin, R R

    1989-01-01

    Aurintricarboxylic acid (ATA) was found to be a very potent inhibitor of purified rabbit liver phosphofructokinase (PFK), giving 50% inhibition at 0.2 microM. The inhibition was in a manner consistent with interaction at the citrate-inhibitory site of the enzyme. The data suggest that inhibition of PFK by ATA was not due to denaturation of the enzyme or the irreversible binding of inhibitor, since the inhibition could be reversed by addition of allosteric activators of PFK, i.e. fructose 2,6-bisphosphate or AMP. Two other tricarboxylic acids, agaric acid and (-)-hydroxycitrate, were found to inhibit PFK. ATA at much higher concentrations (500 microM) was shown to inhibit fatty acid synthesis from endogenous glycogen in rat hepatocytes; however, protein synthesis was not altered. PMID:2525029

  2. Leptin inhibits neutrophil apoptosis in children via ERK/NF-κB-dependent pathways.

    PubMed

    Sun, Zhizhi; Dragon, Stéphane; Becker, Allan; Gounni, Abdelilah S

    2013-01-01

    Previous studies have shown that delayed neutrophil apoptosis is associated with chronic airway diseases. Leptin is an adipocyte-derived hormone that acts as a regulator of energy homeostasis and food intake. Emerging evidence suggests that leptin can regulate immune responses including the release of proinflammatory cytokines and protection of inflammatory cells from apoptosis. Serum leptin is increased during allergic reactions in the airways. However, the expression and function of leptin receptor in neutrophils isolated from children is not known. Flow cytometry was used to detect leptin receptor expression in neutrophils isolated from allergic asthmatic (n = 14), allergic non asthmatic (n = 21), non allergic asthmatic (n = 7) and healthy children (n = 23); confocal laser scanning microscopy combined with immunofluorescence was performed to detect intracellular pool of leptin receptor; Annexin-V/PI staining and caspase 3 activity was used to determine neutrophil survival. Pharmacological inhibitors were utilized to understand the role of MAPK and NF-κB pathway in leptin-induced neutrophil survival. A heterogeneous leptin receptor expression was observed on neutrophils isolated from children. Neutrophils isolated from healthy children expressed more leptin receptor than those from allergic asthmatic (P<0.05) but not allergic non-asthmatic (P>0.05) or non-allergic asthmatic children (n = 7, P>0.05). Neutrophils isolated from children express an intracellular pool of leptin receptor that was mobilized to the cell surface upon GM-CSF stimulation. Finally, leptin exhibited anti-apoptotic properties on neutrophils via NF-κB and MEK1/2 MAPK pathway. Collectively, our data suggest that leptin may enhance airway inflammation by promoting neutrophil survival.

  3. Leptin Inhibits Neutrophil Apoptosis in Children via ERK/NF-κB-Dependent Pathways

    PubMed Central

    Sun, Zhizhi; Dragon, Stéphane; Becker, Allan; Gounni, Abdelilah S.

    2013-01-01

    Introduction and Rationale Previous studies have shown that delayed neutrophil apoptosis is associated with chronic airway diseases. Leptin is an adipocyte-derived hormone that acts as a regulator of energy homeostasis and food intake. Emerging evidence suggests that leptin can regulate immune responses including the release of proinflammatory cytokines and protection of inflammatory cells from apoptosis. Serum leptin is increased during allergic reactions in the airways. However, the expression and function of leptin receptor in neutrophils isolated from children is not known. Methods Flow cytometry was used to detect leptin receptor expression in neutrophils isolated from allergic asthmatic (n = 14), allergic non asthmatic (n = 21), non allergic asthmatic (n = 7) and healthy children (n = 23); confocal laser scanning microscopy combined with immunofluorescence was performed to detect intracellular pool of leptin receptor; Annexin-V/PI staining and caspase 3 activity was used to determine neutrophil survival. Pharmacological inhibitors were utilized to understand the role of MAPK and NF-κB pathway in leptin-induced neutrophil survival. Results and Conclusion A heterogeneous leptin receptor expression was observed on neutrophils isolated from children. Neutrophils isolated from healthy children expressed more leptin receptor than those from allergic asthmatic (P<0.05) but not allergic non-asthmatic (P>0.05) or non-allergic asthmatic children (n = 7, P>0.05). Neutrophils isolated from children express an intracellular pool of leptin receptor that was mobilized to the cell surface upon GM-CSF stimulation. Finally, leptin exhibited anti-apoptotic properties on neutrophils via NF-κB and MEK1/2 MAPK pathway. Collectively, our data suggest that leptin may enhance airway inflammation by promoting neutrophil survival. PMID:23383125

  4. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.

    PubMed

    Fenoy, Ignacio M; Chiurazzi, Romina; Sánchez, Vanesa R; Argenziano, Mariana A; Soto, Ariadna; Picchio, Mariano S; Martin, Valentina; Goldman, Alejandra

    2012-01-01

    Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+)FoxP3(+) cells.

  5. Anti-Interleukin-9 Antibody Increases the Effect of Allergen-Specific Immunotherapy in Murine Allergic Rhinitis.

    PubMed

    Shin, Ji Hyeon; Kim, Do Hyun; Kim, Boo Young; Kim, Sung Won; Hwang, Se Hwan; Lee, Joohyung; Kim, Soo Whan

    2017-05-01

    Interleukin (IL)-9 induces allergic responses; however, the roles of anti-IL-9 antibody in the induction of tolerance remain unclear. This study investigated the effects of anti-IL-9 antibody on oral tolerance (OT) in a mouse model of allergic rhinitis (AR). BALB/c mice were divided into 4 groups: the control, AR, OT, and OT with anti-IL-9 antibody (OT+IL9AB) groups. Ovalbumin (OVA) was used for sensitization and challenge. Mice in the OT and OT+IL9AB groups were fed OVA for immunotherapy. During immunotherapy, OT+IL9AB mice were injected with anti-IL-9 antibody. Allergic symptoms, tissue eosinophil counts, and serum OVA-specific immunoglobulin E (IgE) were measured. The mRNA expressions of cytokines and transcription factors of T cells of nasal mucosa were determined by real-time polymerase chain reaction (PCR). The protein levels of GATA3, ROR-γt, and Foxp3 in nasal mucosa were determined by Western blot. CD4⁺CD25⁺Foxp3⁺ T cells in the spleen were analyzed by flow cytometry. Administration of anti-IL-9 antibody decreased allergic symptoms, OVA-specific IgE levels, and eosinophil counts. In addition, it inhibited T-helper (Th) 2 responses, but had no effect on Th1 responses. Protein levels of ROR-γt and mRNA levels of PU.1 and ROR-γt were reduced by anti-IL-9 antibody. Anti-IL-9 antibody increased Foxp3 and IL-10 mRNA expression, Foxp3 protein, and induction of CD4⁺CD25⁺Foxp3⁺ T cells. Anti-IL-9 antibody decreased allergic inflammation through suppression of Th2 and Th17 cells. Anti-IL-9 antibody enhanced the tolerogenic effects of regulatory T cells. These results suggest that anti-IL-9 antibody might represent a potential therapeutic agent for allergen immunotherapy in patients with uncontrolled allergic airway disease. Copyright © 2017 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease

  6. Novel Midkine Inhibitor iMDK Inhibits Tumor Growth and Angiogenesis in Oral Squamous Cell Carcinoma.

    PubMed

    Masui, Masanori; Okui, Tatsuo; Shimo, Tsuyoshi; Takabatake, Kiyofumi; Fukazawa, Takuya; Matsumoto, Kenichi; Kurio, Naito; Ibaragi, Soichiro; Naomoto, Yoshio; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-06-01

    Midkine is a heparin-binding growth factor highly expressed in various human malignant tumors. However, its role in the growth of oral squamous cell carcinoma is not well understood. In this study, we analyzed the antitumor effect of a novel midkine inhibitor (iMDK) against oral squamous cell carcinoma. Administration of iMDK induced a robust antitumor response and suppressed cluster of differentiation 31 (CD31) expression in oral squamous cell carcinoma HSC-2 cells and SAS cells xenograft models. iMDK inhibited the proliferation of these cells dose-dependently, as well as the expression of midkine and phospho-extracellular signal-regulated kinase in HSC-2 and SAS cells. Moreover, iMDK significantly inhibited vascular endothelial growth factor and induced tube growth of human umbilical vein endothelial cells in a dose-dependent fashion. These findings suggest that midkine is critically involved in oral squamous cell carcinoma and iMDK can be effectively used for the treatment of oral squamous cell carcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential.

    PubMed

    Laev, Sergey S; Salakhutdinov, Nariman F; Lavrik, Olga I

    2016-11-01

    DNA topoisomerases are essential during transcription and replication. The therapeutic mechanism of action of topoisomerase inhibitors is enzyme poisoning rather than catalytic inhibition. Tyrosyl-DNA phosphodiesterases 1 or 2 were found as DNA repair enzymes hydrolyzing the covalent bond between the tyrosyl residue of topoisomerases I or II and the 3'- or 5'-phosphate groups in DNA, respectively. Tyrosyl-DNA phosphodiesterase 1 is a key enzyme in DNA repair machinery and a promising target for antitumor and neurodegenerative therapy. Inhibitors of tyrosyl-DNA phosphodiesterase 1 could act synergistically with topoisomerase I inhibitors and thereby potentiate the effects of topoisomerase I poisons. Tyrosyl-DNA phosphodiesterase 2 is an enzyme that specifically repairs DNA damages induced by topoisomerase II poisons and causes resistance to these drugs. Selective inhibition of tyrosyl-DNA phosphodiesterase 2 may be a novel approach to overcome intrinsic or acquired resistance to topoisomerase II-targeted drug therapy. Thus, agents that inhibit tyrosyl-DNA phosphodiesterases 1 and 2 have many applications in biochemical and physiological research and they have the potential to become anticancer and antiviral drugs. The structures, mechanism of action and therapeutic rationale of tyrosyl-DNA phosphodiesterase inhibitors and their development for combinations with topoisomerase inhibitors and DNA damaging agents are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, G.; Li, D; Sorio de Carvalho, L

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-onemore » compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.« less

  9. The IgE-dependent pathway in allergic transfusion reactions: involvement of donor blood allergens other than plasma proteins.

    PubMed

    Matsuyama, Nobuki; Yasui, Kazuta; Amakishi, Etsuko; Hayashi, Tomoya; Kuroishi, Ayumu; Ishii, Hiroyuki; Matsukura, Harumichi; Tani, Yoshihiko; Furuta, Rika A; Hirayama, Fumiya

    2015-07-01

    On transfusion, several plasma proteins can cause anaphylaxis in patients deficient in the corresponding plasma proteins. However, little is known about other allergens, which are encountered much more infrequently. Although it has been speculated that an allergen-independent pathway underlying allergic transfusion reactions (ATRs) is elicited by biological response modifiers accumulated in blood components during storage, the exact mechanisms remain unresolved. Furthermore, it is difficult even to determine whether ATRs are induced via allergen-dependent or allergen-independent pathways. To distinguish these two pathways in ATR cases, we established a basophil activation test, in which the basophil-activating ability of supernatants of residual transfused blood of ATR cases to whole blood basophils was assessed in the presence or absence of dasatinib, an inhibitor of IgE-mediated basophil activation. Three of 37 supernatants from the platelet concentrates with ATRs activated panel blood basophils in the absence, but not in the presence, of dasatinib. The basophil activation was inhibited by treatment of anti-fish collagen I MoAb in one case, suggesting that the involvement of fish allergens may have been present in donor plasma. We concluded that unknown non-plasma proteins, some of which had epitopes similar to fish antigens, in blood component may be involved in ATRs via an allergen/IgE-dependent pathway.

  10. [Enhanced growth inhibition by combined two pathway inhibitors on K-ras mutated non-small cell lung cancer cells].

    PubMed

    Yang, Zhenli; Li, Zhanwen; Feng, Hailiang; Bian, Xiaocui; Liu, Yanyan; Liu, Yuqin

    2014-09-01

    To evaluate the effect of combined targeting of MEK and PI3K signaling pathways on K-ras mutated non-small cell lung cancer cell line A549 cells and the relevant mechanisms. A549 cells were treated with different concentrations of two inhibitors. Growth inhibition was determined by MTT assay. According to the results of MTT test, the cells were divided into four groups: the control group, PI3K inhibitor group (GDC-0941,0.5 and 5.0 µmol/L), combination group I (0.5 µmol/L AZD6244+0.5 µmol/L GDC-0941) and combination group II (5.0 µmol/L AZD6244+5.0 µmol/L GDC-0941). The cell cycle and apoptosis were analyzed by flow cytometry. The expression of proteins related to apoptosis was tested with Western blot. Both GDC-0941 and AZD6244 inhibited the cell proliferation. The combination group II led to a stronger growth inhibition. The combination group I showed an antagonistic effect and combination group II showed an additive or synergistic effect. Compared with the control group, the combination group I led to reduced apoptotic rate [(20.70 ± 0.99)% vs. (18.65 ± 0.92 )%, P > 0.05]; Combination group II exhibited enhanced apoptotic rate [(37.85 ± 3.18)% vs. (52.27 ± 4.36)%, P < 0.01]. In addition, in the combination group II, more A549 cells were arrested in G0/G1 phase and decreased S phase (P < 0.01), due to the reduced expressions of CyclinD1 and Cyclin B1, the increased cleaved PARP and the diminished ratio of Bcl-2/Bax. For single K-ras mutated NSCLC cell line A549 cells, combination of RAS/MEK/ERK and PI3K/AKT/mTOR inhibition showed synergistic effects depending on the drug doses. Double pathways targeted therapy may be beneficial for these patients.

  11. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  12. KF19514, a phosphodieterase 4 and 1 inhibitor, inhibits PAF-induced lung inflammatory responses by inhaled administration in guinea pigs.

    PubMed

    Manabe, H; Akuta, K; Okamura, K; Ohmori, K

    1997-12-01

    Phosphodiesterase (PDE) 4 inhibitors are well known for their inhibitory effect on bronchoconstriction and inflammation and may be promising anti-asthma drugs. Platelet-activating factor (PAF) has been proposed as an inflammatory mediator to be relevant to asthma. It causes bronchoconstriction, airway microvascular leakage, inflammatory cell accumulation in the lung and hyperresponsiveness. In this study, we therefore have investigated the anti-asthmatic effects of the inhaled KF19514 [5-phenyl-3'-(3-pyridyl)methyl-3H-imidazo(4,5-c)(1,8) naphthyridin-4(5H)-one], a PDE 4 and 1 inhibitor, on PAF-induced lung inflammatory responses in guinea pigs. The inhaled KF19514 (0.0001-0.01%) significantly inhibited PAF-induced eosinophil and neutrophil accumulation into the airway and hyperresponsiveness in guinea pigs. The IC50 value of KF19514 against eosinophil accumulation was 14.8 microM (0.00063%). Moreover, the effect of KF19514 on the electrical field stimulation-induced bronchial contraction was examined using the main bronchi of guinea pigs in vitro. KF19514 inhibited both cholinergic and tachykininergic contraction and, in particular, produced a potent inhibitory effect on tachykininergic contraction (IC50 = 0.49 microM). The mechanism by which KF19514 inhibited the PAF-induced hyperresponsiveness may in part be the suppression of the tachykinin release. Based on these results, it was demonstrated that the inhaled KF19514 might have a significant potential effect on the inflammatory cell accumulation and hyperresponsiveness induced by PAF.

  13. The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis

    PubMed Central

    Wu, Wenman; Li, Hongbo; Navaneetham, Duraiswamy; Reichenbach, Zachary W.; Tuma, Ronald F.

    2012-01-01

    Coagulation factor XI (FXI) plays an important part in both venous and arterial thrombosis, rendering FXIa a potential target for the development of antithrombotic therapy. The kunitz protease inhibitor (KPI) domain of protease nexin-2 (PN2) is a potent, highly specific inhibitor of FXIa, suggesting its possible role in the inhibition of FXI-dependent thrombosis in vivo. Therefore, we examined the effect of PN2KPI on thrombosis in the murine carotid artery and the middle cerebral artery. Intravenous administration of PN2KPI prolonged the clotting time of both human and murine plasma, and PN2KPI inhibited FXIa activity in both human and murine plasma in vitro. The intravenous administration of PN2KPI into WT mice dramatically decreased the progress of FeCl3-induced thrombus formation in the carotid artery. After a similar initial rate of thrombus formation with and without PN2KPI treatment, the propagation of thrombus formation after 10 minutes and the amount of thrombus formed were significantly decreased in mice treated with PN2KPI injection compared with untreated mice. In the middle cerebral artery occlusion model, the volume and fraction of ischemic brain tissue were significantly decreased in PN2KPI-treated compared with untreated mice. Thus, inhibition of FXIa by PN2KPI is a promising approach to antithrombotic therapy. PMID:22674803

  14. Recent Patents and Emerging Therapeutics in the Treatment of Allergic Conjunctivitis

    PubMed Central

    Mishra, Gyan P.; Tamboli, Viral; Jwala, Jwala; Mitra, Ashim K.

    2011-01-01

    Ocular allergy is an inflammatory response of the conjunctival mucosa that also affects the cornea and eyelids. Allergic conjunctivitis includes seasonal allergic conjunctivitis (SAC), perennial allergic conjunctivitis (PAC), vernal keratoconjunctivitis (VKC), atopic keratoconjunctivitis (AKC) and giant papillary conjunctivitis (GPC). In general, allergic conditions involve mast cell degranulation that leads to release of inflammatory mediators and activation of enzymatic cascades generating pro-inflammatory mediators. In chronic ocular inflammatory disorders associated with mast cell activation such as VKC and AKC constant inflammatory response is observed due to predominance of inflammatory mediators such as eosinophils and Th2-generated cytokines. Antihistamines, mast-cell stabilizers, non-steroidal anti-inflammatory agents, corticosteroids and immunomodulatory agents are commonly indicated for the treatment of acute and chronic allergic conjunctivitis. In recent years newer drug molecules have been introduced in the treatment of allergic conjunctivitis. This article reviews recent patents and emerging therapeutics in the treatment of allergic conjunctivitis. PMID:21171952

  15. Allergic-like reactions to asparaginase: Atypical allergies without asparaginase inactivation.

    PubMed

    Kloos, Robin Q H; Pieters, Rob; Escherich, Gabriele; van der Sluis, Inge M

    2016-11-01

    Asparaginase is an important component of pediatric acute lymphoblastic leukemia (ALL) therapy. Unfortunately, this treatment is hampered by hypersensitivity reactions. In general, allergies - regardless of severity - cause complete inactivation of the drug. However, we report atypical allergic reactions without inactivation of asparaginase, here called allergic-like reactions. Patients with an allergic-like reaction, who were treated according to the Dutch Childhood Oncology Group ALL-11 or the CoALL 08-09 protocol, were described. The reactions were identified by continual measurement of asparaginase activity levels. Characteristics, including timing of occurrence, symptoms, grade, and the presence of antiasparaginase antibodies, were compared to those of real allergies. Fourteen allergic-like reactions occurred in nine patients. Five reactions were to PEGasparaginase and nine to Erwinia asparaginase. Allergic-like reactions occurred relatively late after the start of infusion compared to real allergies. Antibodies were absent in all but one patient with an allergic-like reaction, while they were detected in all patients with a real allergy. Symptoms and grade did not differ between the groups. Asparaginase was continued with the same formulation in six patients of whom four finished treatment with adequate activity levels. In conclusion, allergic-like reactions occur relatively late after the start of infusion and without antibodies. Despite these clinical differences, allergic-like reactions can only be distinguished from real allergies by continually measuring asparaginase activity levels. If clinically tolerated, formulations should not be switched in case of allergic-like reactions. Moreover, failure to recognize these reactions may lead to a less favorable prognosis if asparaginase therapy is terminated unnecessarily. © 2016 Wiley Periodicals, Inc.

  16. Associations between maternal antioxidant intakes in pregnancy and infant allergic outcomes.

    PubMed

    West, Christina E; Dunstan, Janet; McCarthy, Suzi; Metcalfe, Jessica; D'Vaz, Nina; Meldrum, Suzanne; Oddy, Wendy H; Tulic, Meri K; Prescott, Susan L

    2012-11-14

    Antioxidant intakes in pregnancy may influence fetal immune programming and the risk of allergic disease. We investigated associations between maternal intakes of β-carotene, vitamin C, vitamin E, copper and zinc, and infant allergic outcomes. Antioxidant intakes of pregnant women (n = 420) assessed prospectively by a food frequency questionnaire, were examined in relation to allergic outcomes at 1 year of age (n = 300). The main relationships with allergic outcomes were seen with dietary vitamin C and copper. Specifically, higher maternal dietary vitamin C intake was associated with a reduced risk of any diagnosed infant allergic disease and wheeze. After adjustment for potential confounders the relationship with wheeze remained statistically significant. There was also an inverse linear relationship between vitamin C and food allergy. Higher dietary copper intake was associated with reduced risk of eczema, wheeze and any allergic disease. The relationship with wheeze and any allergic disease remained statistically significant in multivariate analysis, and there was also an inverse linear relationship between copper and food allergy. However, these relationships were only seen for nutrients present in food. There were no relationships between β-carotene, vitamin E or zinc and any allergic outcomes. In summary, this study suggests that maternal diet of fresh foods rich in vitamin C is associated with reduced risk of infant wheeze, and that copper intake is associated with reduced risk of several allergic outcomes.

  17. Allergic rhinitis: more than just a stuffy nose.

    PubMed

    Borres, Magnus P

    2009-07-01

    Allergic rhinitis is more than just sneezing and an itchy nose. Complications of this disease are numerous and can have a significant impact, both mentally and physically. That is why it is important not only to detect, investigate and treat allergic rhinitis but also to actively identify potential complications. Mental functions such as learning, sleep and activity levels can deteriorate, and the eustachian tubes, sinuses and airway functions can be affected. Otitis, sinusitis and asthma are overrepresented among individuals who suffer from allergic rhinitis. This article highlights how allergic rhinitis can affect cognitive functions, and what consequences this can have on school performance, work and quality of life. Health professionals and school personnel need to increase their awareness of the ramifications of this disease and actively work to prevent deterioration in both academic achievement and workplace productivity.

  18. Allergen Avoidance in Allergic Asthma

    PubMed Central

    Cipriani, Francesca; Calamelli, Elisabetta; Ricci, Giampaolo

    2017-01-01

    Allergic asthma is the most frequent disease among the chronic respiratory disorders in pediatric age with an important social impact. In the last years, many efforts have been made to identify effective preventive approaches to get a better control of symptoms and to obtain the best future outcomes for the patients. In patients with allergic asthma triggered by the exposure to indoor allergens, the avoidance is the first intervention to prevent the appearance or the worsening of bronchial symptoms. This review article summarized the most recent evidence from literature about the efficacy of specific control interventions for the most important allergens. Even if a wide spectrum of interventions has been suggested and may help to reduce exposure to trigger allergy for sensitized patients suffering from respiratory allergy, evidence supporting the efficacy of these approaches is still weak and subject of controversy. However, the exposure control to specific airborne allergens is still widely recommended and may be effective as part of a holistic approach to reduce the severity of allergic respiratory symptoms in sensitized individuals. PMID:28540285

  19. The Treatment of Allergic Respiratory Disease During Pregnancy.

    PubMed

    Namazy, Jai; Schatz, M

    2016-01-01

    Pregnancy may be complicated by new-onset or preexisting asthma and allergic rhinitis.This article reviews the recognition and management of asthma and allergic rhinitis during pregnancy, paying close attention to the general principles of allergy and use of asthma medication during pregnancy. Both allergic rhinitis and asthma can adversely affect both maternal quality of life and, in the case of maternal asthma, perinatal outcomes. Optimal management is thus important for both mother and baby. This article reviews the safety of asthma and allergy medications commonly used during pregnancy.

  20. Dietary primary prevention of allergic diseases in children: the Philippine guidelines

    PubMed Central

    Recto, Marysia Stella T.; Genuino, Maria Lourdes G.; Casis-Hao, Roxanne J.; Tamondong-Lachica, Diana R.; Sales, Maria Imelda V.; Tan, Marilou G.; Mondonedo, Karen S.; Dionisio-Capulong, Regina C.

    2017-01-01

    Allergic diseases, such as asthma, allergic rhinitis, eczema, and food allergy, are preventable diseases. Primary prevention strategies of allergic diseases have been in scrutiny. Effective prevention strategies maybe started prenatally, postnatally, during infancy, and even during childhood. These guidelines have been prepared by the Philippine Society of Allergy, Asthma and Immunology and the Philippine Society for Pediatric Gastroenterology, Hepatology and Nutrition. They aim to provide evidence-based recommendations for the dietary primary prevention of allergic diseases in children. The primary audience of these guidelines is all healthcare practitioners who manage patients with potential allergic conditions. These guidelines are based on an exhaustive review of evidences, mostly systematic reviews, randomized controlled trials, and cohort studies. However, there are still many gaps in the evidence of dietary primary prevention of allergic diseases. PMID:28487842