Science.gov

Sample records for inhibitor protein capmei1

  1. Selective Inhibitors of Protein Methyltransferases

    PubMed Central

    2015-01-01

    Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs’ physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery. PMID:25406853

  2. Protein farnesyltransferase inhibitors and progeria.

    PubMed

    Meta, Margarita; Yang, Shao H; Bergo, Martin O; Fong, Loren G; Young, Stephen G

    2006-10-01

    Genetic mutations that lead to an accumulation of farnesyl-prelamin A cause progeroid syndromes, including Hutchinson-Gilford progeria syndrome. It seemed possible that the farnesylated form of prelamin A might be toxic to mammalian cells, accounting for all the disease phenotypes that are characteristic of progeria. This concept led to the hypothesis that protein farnesyltransferase inhibitors (FTIs) might ameliorate the disease phenotypes of progeria in mouse models. Thus far, two different mouse models of progeria have been examined. In both models, FTIs improved progeria-like disease phenotypes. Here, prelamin A post-translational processing is discussed and several mutations underlying human progeroid syndromes are described. In addition, recent data showing that FTIs ameliorate disease phenotypes in a pair of mouse models of progeria are discussed.

  3. Diphenylpyrazoles as Replication Protein A inhibitors

    DOE PAGES

    Waterson, Alex G.; Kennedy, J. Phillip; Patrone, James D.; ...

    2014-11-11

    Replication Protein A is the primary eukaryotic ssDNA binding protein that has a central role in initiating the cellular response to DNA damage. RPA recruits multiple proteins to sites of DNA damage via the N-terminal domain of the 70 kDa subunit (RPA70N). Here we describe the optimization of a diphenylpyrazole carboxylic acid series of inhibitors of these RPA–protein interactions. Lastly, we evaluated substituents on the aromatic rings as well as the type and geometry of the linkers used to combine fragments, ultimately leading to submicromolar inhibitors of RPA70N protein–protein interactions.

  4. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  5. Subtilisin protein inhibitor from potato tubers.

    PubMed

    Revina, T A; Speranskaya, A S; Kladnitskaya, G V; Shevelev, A B; Valueva, T A

    2004-10-01

    A protein with molecular weight of 21 kD denoted as PKSI has been isolated from potato tubers (Solanum tuberosum L., cv. Istrinskii). The isolation procedure includes precipitation with (NH4)2SO4, gel chromatography on Sephadex G-75, and ion-exchange chromatography on CM-Sepharose CL-6B. The protein effectively inhibits the activity of subtilisin Carlsberg (Ki = 1.67 +/- 0.2 nM) by stoichiometric complexing with the enzyme at the molar ratio of 1 : 1. The inhibitor has no effect on trypsin, chymotrypsin, and the cysteine proteinase papain. The N-terminal sequence of the protein consists of 19 amino acid residues and is highly homologous to sequences of the known inhibitors from group C of the subfamily of potato Kunitz-type proteinase inhibitors (PKPIs-C). By cloning PCR products from the genomic DNA of potato, a gene denoted as PKPI-C2 was isolated and sequenced. The N-terminal sequence (residues from 15 to 33) of the protein encoded by the PKPI-C2 gene is identical to the N-terminal sequence (residues from 1 to 19) of the isolated protein PKSI. Thus, the inhibitor PKSI is very likely encoded by this gene.

  6. Protein synthesis inhibitor from potato tuber

    SciTech Connect

    Romaen, R. )

    1989-04-01

    A protein fraction capable of inhibit in vitro protein synthesis was found in potato tubers in fresh and wounded tissue. Inhibitor activity from fresh tissue decays with wounding. Inhibition activity was detected absorbed to ribsomal fraction and cytosol of potato tuber tissue by a partially reconstituted in vitro system from potato tuber and wheat germ. Adsorbed ribosomal fraction was more suitable of purification. This fraction was washed from ribosomes with 0.3M KCl, concentrated with ammonium sulfate precipitation and purified through sephadex G100 and sephadex G-75 columns chromatography. After 61 fold purification adsorbed protein fraction can inhibit germination of maize, wheat and sesame seeds, as well as {sup 3}H-leucine incorporation into protein by imbibed maize embryos. Inhibition activity was lost by temperature, alkali and protease-K hydrolysis. Preliminar analysis could not show presence of reductor sugars. Physiological role of this inhibitor in relation to rest and active tissue remains to be studied.

  7. Small Molecule Inhibitors of Protein Arginine Methyltransferases

    PubMed Central

    Hu, Hao; Qian, Kun; Ho, Meng-Chiao; Zheng, Y. George

    2016-01-01

    Introduction Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. Areas covered The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. Expert opinion Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead. PMID:26789238

  8. Tau protein and tau aggregation inhibitors.

    PubMed

    Bulic, Bruno; Pickhardt, Marcus; Mandelkow, Eva-Maria; Mandelkow, Eckhard

    2010-01-01

    Alzheimer disease is characterized by pathological aggregation of two proteins, tau and Abeta-amyloid, both of which are considered to be toxic to neurons. In this review we summarize recent advances on small molecule inhibitors of protein aggregation with emphasis on tau, with activities mediated by the direct interference of self-assembly. The inhibitors can be clustered in several compound classes according to their chemical structure, with subsequent description of the structure-activity relationships, showing that hydrophobic interactions are prevailing. The description is extended to the pharmacological profile of the compounds in order to evaluate their drug-likeness, with special attention to toxicity and bioavailability. The collected data indicate that following the improvements of the in vitro inhibitory potencies, the consideration of the in vivo pharmacokinetics is an absolute prerequisite for the development of compounds suitable for a transfer from bench to bedside.

  9. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  10. Structural investigation of protein kinase C inhibitors.

    PubMed

    Barak, D; Shibata, M; Rein, R

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  11. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  12. Regulation of the activity of protein kinases by endogenous heat stable protein inhibitors.

    PubMed

    Szmigielski, A

    1985-01-01

    Protein kinase activities are regulated by endogenous thermostable protein inhibitors. Type I inhibitor is a protein of MW 22,000-24,000 which inhibits specifically cyclic AMP-(cAMP) dependent protein kinase (APK) as a competitive inhibitor of catalytic subunits of the enzyme. Type I inhibitor activity changes inversely according to the activation of adenylate cyclase and the changes in cAMP content in tissues. It seems that type I inhibitor serves as a factor preventing spontaneous cAMP-dependent phosphorylation in unstimulated cell. The other thermostable protein which inhibits APK activity has been found in Sertoli cell-enriched testis (testis inhibitor). Physiological role of the testis inhibitor is unknown. Type II inhibitor is a protein of MW 15,000 which blocks phosphorylation mediated by cAMP and cyclic GMP (cGMP) dependent (APK and GPK) and cyclic nucleotide independent protein kinases as a competitive inhibitor of substrate proteins. Activity of this inhibitor specifically changes in reciprocal manner to the changes in cGMP content. It seems that type II inhibitor serves as a factor preventing the phosphorylation catalyzed by GPK when cGMP content is low. Stimulation of guanylate cyclase and activation of GPK is followed by a decrease of type II inhibitor activity. This change in relationship between activities of GPK and type II inhibitor allows for effective phosphorylation catalyzed by this enzyme when cGMP content is increased.

  13. Novel protein kinase C inhibitors: alpha-terthiophene derivatives.

    PubMed

    Kim, D S; Ashendel, C L; Zhou, Q; Chang, C T; Lee, E S; Chang, C J

    1998-10-06

    A series of alpha-terthiophene derivatives were prepared and their protein kinase C inhibitory activity were evaluated. The aldehyde derivatives were most potent inhibitors (IC50 < 1 microM). alpha-Terthiophene monoaldehyde was inactive in the inhibitions of protein kinase A, mitogen activated protein kinase and protein tyrosine kinase.

  14. Interfacial inhibitors of protein-nucleic acid interactions.

    PubMed

    Pommier, Yves; Marchand, Christophe

    2005-07-01

    This essay develops the paradigm of "Interfacial Inhibitors" (Pommier and Cherfils, TiPS, 2005, 28: 136) for inhibitory drugs beside orthosteric (competitive or non-competitive) and allosteric inhibitors. Interfacial inhibitors bind with high selectivity to a binding site involving two or more macromolecules within macromolecular complexes undergoing conformational changes. Interfacial binding traps (generally reversibly) a transition state of the complex, resulting in kinetic inactivation. The exemplary case of interfacial inhibitor of protein-DNA interface is camptothecin and its clinical derivatives. We will also provide examples generalizing the interfacial inhibitor concept to inhibitors of topoisomerase II (anthracyclines, ellipticines, epipodophyllotoxins), gyrase (quinolones, ciprofloxacin, norfloxacin), RNA polymerases (alpha-amanitin and actinomycin D), and ribosomes (antibiotics such as streptomycin, hygromycin B, tetracycline, kirromycin, fusidic acid, thiostrepton, and possibly cycloheximide). We discuss the implications of the interfacial inhibitor concept for drug discovery.

  15. Stimulation of cleavage of membrane proteins by calmodulin inhibitors.

    PubMed Central

    Díaz-Rodríguez, E; Esparís-Ogando, A; Montero, J C; Yuste, L; Pandiella, A

    2000-01-01

    The ectodomain of several membrane-bound proteins can be shed by proteolytic cleavage. The activity of the proteases involved in shedding is highly regulated by several intracellular second messenger pathways, such as protein kinase C (PKC) and intracellular Ca(2+). Recently, the shedding of the adhesion molecule L-selectin has been shown to be regulated by the interaction of calmodulin (CaM) with the cytosolic tail of L-selectin. Prevention of CaM-L-selectin interaction by CaM inhibitors or mutation of a CaM binding site in L-selectin induced L-selectin ectodomain shedding. Whether this action of CaM inhibitors also affects other membrane-bound proteins is not known. In the present paper we show that CaM inhibitors also stimulate the cleavage of several other transmembrane proteins, such as the membrane-bound growth factor precursors pro-transforming growth factor-alpha and pro-neuregulin-alpha2c, the receptor tyrosine kinase, TrkA, and the beta-amyloid precursor protein. Cleavage induced by CaM inhibitors was a rapid event, and resulted from the activation of a mechanism that was independent of PKC or intracellular Ca(2+) increases, but was highly sensitive to hydroxamic acid-based metalloprotease inhibitors. Mutational analysis of the intracellular domain of the TrkA receptor indicated that CaM inhibitors may stimulate membrane-protein ectodomain cleavage by mechanisms independent of CaM-substrate interaction. PMID:10677354

  16. Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates.

    PubMed

    Gordienko, Raimond; Ohno, Hiroshi; Singh, Vinay K; Jia, Zongchao; Ripmeester, John A; Walker, Virginia K

    2010-02-11

    The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs) possess the ability to modify structure II (sII) tetrahydrofuran (THF) hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP). The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors.

  17. Towards a Green Hydrate Inhibitor: Imaging Antifreeze Proteins on Clathrates

    PubMed Central

    Gordienko, Raimond; Ohno, Hiroshi; Singh, Vinay K.; Jia, Zongchao; Ripmeester, John A.; Walker, Virginia K.

    2010-01-01

    The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs) possess the ability to modify structure II (sII) tetrahydrofuran (THF) hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP). The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors. PMID:20161789

  18. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    DTIC Science & Technology

    2014-10-01

    kinase . This grant proposal will explore the resistance to small molecule AKT protein kinase inhibitors mediated by the... molecule AKT protein kinase inhibitors is potentially mediated by the Pim-1 protein kinase , and that unique Pim protein kinase inhibitors that can in...application is essential for the development of this combined chemotherapeutic strategy. 15. SUBJECT TERMS Small Molecule AKT Inhibitors ,

  19. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    PubMed Central

    2011-01-01

    Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions. PMID:21569443

  20. Detailed Structural Characterization of Unbound Protein Phosphatase 1 Inhibitors

    PubMed Central

    Dancheck, Barbara; Nairn, Angus C.; Peti, Wolfgang

    2009-01-01

    Protein Phosphatase 1 (PP1) is an essential and ubiquitous serine/threonine protein phosphatase that is regulated by more than 100 known inhibitor and targeting proteins. It is currently unclear how protein inhibitors distinctly and specifically regulate PP1 to enable rapid responses to cellular alterations. We demonstrate that two PP1 inhibitors, I-2 and DARPP-32, belong to the class of intrinsically unstructured proteins (IUPs). We show that both inhibitors have distinct preferences for transient local and long range structure. These preferences are likely their structural signature for their interaction with PP1. Furthermore, we show that upon phosphorylation of Thr34 in DARPP-32, which turns DARPP-32 into a potent inhibitor of PP1, neither local nor long range structure of DARPP-32 is altered. Therefore, our data suggests a role for these transient 3-dimensional topologies in binding mechanisms that enable extensive contacts with PP1's invariant surfaces. Together, these interactions enable potent and selective inhibition of PP1. PMID:18954090

  1. Comparing protein VEGF inhibitors: In vitro biological studies

    SciTech Connect

    Yu, Lanlan; Liang, Xiao Huan; Ferrara, Napoleone

    2011-05-06

    Highlights: {yields} VEGF is a mediator of angiogenesis. {yields} VEGF inhibitors have clinical applications in cancer and eye disorders. {yields} Five protein VEGF inhibitors were compared for their ability to inhibit. {yields} VEGF-induced activities in cultured endothelial cells. -- Abstract: VEGF inhibitors are widely used as a therapy for tumors and intravascular neovascular disorders, but limited and conflicting data regarding their relative biological potencies are available. The purpose of the study is to compare different protein VEGF inhibitors for their ability to inhibit VEGF-stimulated activities. We tested ranibizumab, the full-length variant of ranibizumab (Mab Y0317), bevacizumab, the VEGF-TrapR1R2 and Flt(1-3)-IgG in bioassays measuring VEGF-stimulated proliferation of bovine retinal microvascular endothelial cells or chemotaxis of human umbilical vein endothelial cells (HUVEC). The inhibitors were also compared for their ability to inhibit MAP kinase activation in HUVECs following VEGF addition. Ranibizumab, VEGF-TrapR1R2 and Flt(1-3)-IgG had very similar potencies in the bioassays tested. Bevacizumab was over 10-fold less potent than these molecules. Mab Y0317 was over 30-fold more potent than bevacizumab. The findings reported in this manuscript describe important intrinsic characteristics of several VEGF inhibitors that may be useful to design and interpret preclinical or clinical studies.

  2. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  3. Visible-Light-Triggered Activation of a Protein Kinase Inhibitor.

    PubMed

    Wilson, Danielle; Li, Jason W; Branda, Neil R

    2017-02-20

    A photoresponsive small molecule undergoes a ring-opening reaction when exposed to visible light and becomes an active inhibitor of the enzyme protein kinase C. This "turning on" of enzyme inhibition with light puts control into the hands of the user, creating the opportunity to regulate when and where enzyme catalysis takes place.

  4. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  5. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  6. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  7. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  8. A Novel Inhibitor of the Obesity-Related Protein FTO.

    PubMed

    Qiao, Yan; Zhou, Bin; Zhang, Meizi; Liu, Weijia; Han, Zhifu; Song, Chuanjun; Yu, Wenquan; Yang, Qinghua; Wang, Ruiyong; Wang, Shaomin; Shi, Shuai; Zhao, Renbin; Chai, Jijie; Chang, Junbiao

    2016-03-15

    Fe(II) and α-ketoglutarate-dependent fat mass and obesity associated protein (FTO)-dependent demethylation of m⁶A is important for regulation of mRNA splicing and adipogenesis. Developing FTO-specific inhibitors can help probe the biology of FTO and unravel novel therapeutic targets for treatment of obesity or obesity-associated diseases. In the present paper, we have identified that 4-chloro-6-(6'-chloro-7'-hydroxy-2',4',4'-trimethyl-chroman-2'-yl)benzene-1,3-diol (CHTB) is an inhibitor of FTO. The crystal structure of CHTB complexed with human FTO reveals that the novel small molecule binds to FTO in a specific manner. The identification of the novel small molecule offers opportunities for further development of more selective and potent FTO inhibitors.

  9. Small molecule inhibitors targeting activator protein 1 (AP-1).

    PubMed

    Ye, Na; Ding, Ye; Wild, Christopher; Shen, Qiang; Zhou, Jia

    2014-08-28

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases.

  10. Hypervalent Organochalcogenanes as Inhibitors of Protein Tyrosine Phosphatases

    PubMed Central

    Piovan, Leandro; Wu, Li; Zhang, Zhong-Yin; Andrade, Leandro H.

    2011-01-01

    A series of organochalcogenanes was synthesized and evaluated as protein tyrosine phosphatases (PTPs) inhibitors. The results indicate that organochalcogenanes inactivate the PTPs in a time- and concentration-dependent fashion, most likely through covalent modification of the active site sulfur-moiety by the chalcogen atom. Consequently, organochalcogenanes represent a new class of mechanism-based probes to modulate the PTP-mediated cellular processes. PMID:21240419

  11. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity

    PubMed Central

    Alsamarah, Abdelaziz; LaCuran, Alecander E.; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  12. Interaction of Protein Inhibitor of Activated STAT (PIAS) Proteins with the TATA-binding Protein, TBP*

    PubMed Central

    Prigge, Justin R.; Schmidt, Edward E.

    2007-01-01

    Transcription activators often recruit promoter-targeted assembly of a pre-initiation complex; many repressors antagonize recruitment. These activities can involve direct interactions with proteins in the pre-initiation complex. We used an optimized yeast two-hybrid system to screen mouse pregnancy-associated libraries for proteins that interact with TATA-binding protein (TBP). Screens revealed an interaction between TBP and a single member of the zinc finger family of transcription factors, ZFP523. Two members of the protein inhibitor of activated STAT (PIAS) family, PIAS1 and PIAS3, also interacted with TBP in screens. Endogenous PIAS1 and TBP co-immunoprecipitated from nuclear extracts, suggesting the interaction occurred in vivo. In vitro-translated PIAS1 and TBP coimmunopreciptated, which indicated that other nuclear proteins were not required for the interaction. Deletion analysis mapped the PIAS-interacting domain of TBP to the conserved TBPCORE and the TBP-interacting domain on PIAS1 to a 39-amino acid C-terminal region. Mammals issue seven known PIAS proteins from four pias genes, pias1, pias3, piasx, and piasy, each with different cell type-specific expression patterns; the TBP-interacting domain reported here is the only part of the PIAS C-terminal region shared by all seven PIAS proteins. Direct analyses indicated that PIASx and PIASy also interacted with TBP. Our results suggest that all PIAS proteins might mediate situation-specific regulatory signaling at the TBP interface and that previously unknown levels of complexity could exist in the gene regulatory interplay between TBP, PIAS proteins, ZFP523, and other transcription factors. PMID:16522640

  13. Potent triazolothione inhibitor of heat-shock protein-90.

    PubMed

    Feldman, Richard I; Mintzer, Bob; Zhu, Daguang; Wu, James M; Biroc, Sandra L; Yuan, Shendong; Emayan, Kumar; Chang, Zheng; Chen, Deborah; Arnaiz, Damian O; Bryant, Judi; Ge, Xue Snow; Whitlow, Marc; Adler, Marc; Polokoff, Mark A; Li, Wei-Wei; Ferrer, Mike; Sato, Takashi; Gu, Jian-Ming; Shen, Jun; Tseng, Jih-Lie; Dinter, Harald; Buckman, Brad

    2009-07-01

    Heat-shock protein-90 is an attractive target for anticancer drugs, as heat-shock protein-90 blockers such as the ansamycin 17-(allylamino)-17-demethoxygeldanamycin greatly reduce the expression of many signaling molecules that are disregulated in cancer cells and are key drivers of tumor growth and metastasis. While 17-(allylamino)-17-demethoxygeldanamycin has shown promise in clinical trials, this compound class has significant template-related drawbacks. In this paper, we describe a new, potent non-ansamycin small-molecule inhibitor of heat-shock protein-90, BX-2819, containing resorcinol and triazolothione rings. Structural studies demonstrate binding of BX-2819 to the ADP/ATP-binding pocket of heat-shock protein-90. The compound blocked expression of heat-shock protein-90 client proteins in cancer cell lines and inhibited cell growth with a potency similar to 17-(allylamino)-17-demethoxygeldanamycin. In a panel of four cancer cell lines, BX-2819 blocked growth with an average IC(50) value of 32 nM (range of 7-72 nM). Efficacy studies demonstrated that treatment with BX-2819 significantly inhibited the growth of NCI-N87 and HT-29 tumors in nude mice, consistent with pharmacodynamic studies showing inhibition of heat-shock protein-90 client protein expression in tumors for greater than 16 h after dosing. These data support further studies to assess the potential of BX-2819 and related analogs for the treatment of cancer.

  14. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.

    PubMed

    Jenwitheesuk, Ekachai; Samudrala, Ram

    2005-01-01

    Emergence of drug resistance remains one of the most challenging issues in the treatment of HIV-1 infection. Here we focus on resistance to HIV-1 protease inhibitors (PIs) at a molecular level, which can be analysed genotypically or phenotypically. Genotypic assays are based on the analysis of mutations associated with reduced drug susceptibility, but are problematic because of the numerous mutations and mutational patterns that confer drug resistance. Phenotypic resistance or susceptibility can be experimentally evaluated by measuring the amount of free drug bound to HIV-1 protease molecules, but this procedure is expensive and time-consuming. To overcome these problems, we have developed a docking protocol that takes protein-inhibitor flexibility into account to predict phenotypic drug resistance. For six FDA-approved Pls and a total of 1792 HIV-1 protease sequence mutants, we used a combination of inhibitor flexible docking and molecular dynamics (MD) simulations to calculate protein-inhibitor binding energies. Prediction results were expressed as fold changes of the calculated inhibitory constant (Ki), and the samples predicted to have fold-increase in calculated Ki above the fixed cut-off were defined as drug resistant. Our combined docking and MD protocol achieved accuracies ranging from 72-83% in predicting resistance/susceptibility for five of the six drugs evaluated. Evaluating the method only on samples where our predictions concurred with established knowledge-based methods resulted in increased accuracies of 83-94% for the six drugs. The results suggest that a physics-based approach, which is readily applicable to any novel PI and/or mutant, can be used judiciously with knowledge-based approaches that require experimental training data to devise accurate models of HIV-1 Pl resistance prediction.

  15. Protein-Protein Interaction Inhibitors of BRCA1 Discovered Using Small Molecule Microarrays.

    PubMed

    Na, Zhenkun; Pan, Sijun; Uttamchandani, Mahesh; Yao, Shao Q

    2017-01-01

    Microarray screening technology has transformed the life sciences arena over the last decade. The platform is widely used in the area of mapping interaction networks, to molecular fingerprinting and small molecular inhibitor discovery. The technique has significantly impacted both basic and applied research. The microarray platform can likewise enable high-throughput screening and discovery of protein-protein interaction (PPI) inhibitors. Herein we demonstrate the application of microarray-guided PPI inhibitor discovery, using human BRCA1 as an example. Mutations in BRCA1 have been implicated in ~50 % of hereditary breast cancers. By targeting the (BRCT)2 domain, we showed compound 15a and its prodrug 15b inhibited BRCA1 activities in tumor cells. Unlike previously reported peptide-based PPI inhibitors of BRCA1, the compounds identified could be directly administered to tumor cells, thus making them useful in targeting BRCA1/PARP-related pathways involved in DNA damage and repair response, for cancer therapy.

  16. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    PubMed

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  17. Effects of a new microbial α-amylase inhibitor protein on Helicoverpa armigera larvae.

    PubMed

    Zeng, Fanrong; Wang, Xiaojing; Cui, Jinjie; Ma, Yan; Li, Qiannan

    2013-03-06

    A new microbial α-amylase inhibitor gene was cloned and characterized. The encoded, recombinant, α-amylase inhibitor protein was induced and expressed by isopropyl β-d-1-thiogalactopyranoside (IPTG) in Escherichia coli M15 cells. The effects of the α-amylase inhibitor protein on Helicoverpa armigera larvae were studied. Compared to the control, the weight of H. armigera larvae fed the diet with recombinant α-amylase inhibitor protein added at a concentration of 20 μg/g was reduced by 49.8%. The total soluble protein of H. armigera larvae fed the diet with the α-amylase inhibitor protein added was also reduced by 36.8% compared to the control. The recombinant α-amylase inhibitor protein showed inhibition activity against α-amylase of H. armigera. These results suggested that this α-amylase inhibitor protein may be a promising bioinsecticide candidate for controlling H. armigera.

  18. Optimization of rhodanine scaffold for the development of protein-protein interaction inhibitors.

    PubMed

    Ferro, Stefania; De Luca, Laura; Agharbaoui, Fatima Ezzahra; Christ, Frauke; Debyser, Zeger; Gitto, Rosaria

    2015-07-01

    Searching for novel protein-protein interactions inhibitors (PPIs) herein we describe the identification of a new series of rhodanine derivatives. The selection was performed by means virtual-screening, docking studies, Molecular Dynamic (MD) simulations and synthetic approaches. All the new obtained compounds were tested in order to evaluate their ability to inhibit the interaction between the HIV-1 integrase (IN) enzyme and the nuclear protein lens epithelium growth factor LEDGF/p75.

  19. Protease-inhibitor interaction predictions: Lessons on the complexity of protein-protein interactions.

    PubMed

    Fortelny, Nikolaus; Butler, Georgina S; Overall, Christopher Mark; Pavlidis, Paul

    2017-04-06

    Protein interactions shape proteome function and thus biology. Identification of protein interactions is a major goal in molecular biology, but biochemical methods, although improving, remain limited in coverage and accuracy. Whereas computational predictions can guide biochemical experiments, low validation rates of predictions remain a major limitation. Here, we investigated computational methods in the prediction of a specific type of interaction, the inhibitory interactions between proteases and their inhibitors. Proteases generate thousands of proteoforms that dynamically shape the functional state of proteomes. Despite the important regulatory role of proteases, knowledge of their inhibitors remains largely incomplete with the vast majority of proteases lacking an annotated inhibitor. To link inhibitors to their target proteases on a large scale, we applied computational methods to predict inhibitory interactions between proteases and their inhibitors based on complementary data including coexpression, phylogenetic similarity, structural information, co-annotation, and colocalization, and also surveyed general protein interaction networks for potential inhibitory interactions. In testing nine predicted interactions biochemically, we validated the inhibition of kallikrein 5 by serpin B12. Despite the use of a wide array of complementary data, we found a high false positive rate of computational predictions in biochemical follow-up. Based on a protease-specific definition of true negatives derived from the biochemical classification of proteases and inhibitors, we analyzed prediction accuracy of individual features. Thereby we identified feature-specific limitations, which also affected general protein interaction prediction methods. Interestingly, proteases were often not coexpressed with most of their functional inhibitors, contrary to what is commonly assumed and extrapolated predominantly from cell culture experiments. Predictions of inhibitory interactions

  20. INHIBITOR OF APOPTOSIS PROTEINS AS INTRACELLULAR SIGNALING INTERMEDIATES

    PubMed Central

    Kocab, Andrew J.; Duckett, Colin S.

    2015-01-01

    The inhibitor of apoptosis (IAP) proteins have often been considered inhibitors of cell death due to early studies describing their ability to directly bind and inhibit caspases, the primary factors that implement apoptosis. However, a greater understanding is evolving for the vital roles played by the IAPs as transduction intermediates in a diverse set of signaling cascades that have been associated with functions ranging from the innate immune response to cell migration to cell cycle regulation. In this review, we discuss the functions of the IAPs in signaling, focusing primarily on the cellular IAP (c-IAP) proteins. The c-IAPs are important components in the TNF receptor superfamily signaling cascades, which include the activation of the NF-κB transcription factor family. Since these receptors can modulate cell proliferation and cell death, the roles of the c-IAPs in these pathways provide additional means of controlling cellular fate beyond simply inhibiting caspase activity. Additionally, IAP binding proteins, such as Smac and caspases, which have been described as having cell death-independent roles, may impact c-IAP activity in intracellular signaling. Collectively, the multifaceted functions and complex regulation of the c-IAPs illustrate the importance of the c-IAPs as intracellular signaling intermediates. PMID:26462035

  1. An in vivo platform for identifying inhibitors of protein aggregation

    PubMed Central

    Mahood, Rachel A.; Jackson, Matthew P.; Revill, Charlotte H.; Foster, Richard J.; Smith, D. Alastair; Ashcroft, Alison E.; Brockwell, David J.; Radford, Sheena E.

    2015-01-01

    Protein aggregation underlies an array of human diseases, yet only one small molecule therapeutic has been successfully developed to date. Here, we introduce an in vivo system, based on a β-lactamase tripartite fusion construct, capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid β) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split β-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of IAPP aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation. PMID:26656088

  2. Inhibitor of apoptosis proteins as intracellular signaling intermediates.

    PubMed

    Kocab, Andrew J; Duckett, Colin S

    2016-01-01

    Inhibitor of apoptosis (IAP) proteins have often been considered inhibitors of cell death due to early reports that described their ability to directly bind and inhibit caspases, the primary factors that implement apoptosis. However, a greater understanding is evolving regarding the vital roles played by IAPs as transduction intermediates in a diverse set of signaling cascades associated with functions ranging from the innate immune response to cell migration to cell-cycle regulation. In this review, we discuss the functions of IAPs in signaling, focusing primarily on the cellular IAP (c-IAP) proteins. The c-IAPs are important components in tumor necrosis factor receptor superfamily signaling cascades, which include activation of the NF-κB transcription factor family. As these receptors modulate cell proliferation and cell death, the involvement of the c-IAPs in these pathways provides an additional means of controlling cellular fate beyond simply inhibiting caspase activity. Additionally, IAP-binding proteins, such as Smac and caspases, which have been described as having cell death-independent roles, may affect c-IAP activity in intracellular signaling. Collectively, the multi-faceted functions and complex regulation of the c-IAPs illustrate their importance as intracellular signaling intermediates.

  3. Peptidomimetics as protein arginine deiminase 4 (PAD4) inhibitors.

    PubMed

    Trabocchi, Andrea; Pala, Nicolino; Krimmelbein, Ilga; Menchi, Gloria; Guarna, Antonio; Sechi, Mario; Dreker, Tobias; Scozzafava, Andrea; Supuran, Claudiu T; Carta, Fabrizio

    2015-06-01

    The protein arginine deiminase 4 (PAD4) is a calcium-dependent enzyme, which catalyses the irreversible conversion of peptidyl-arginines into peptidyl-citrullines and plays an important role in several diseases such as in the rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, Creutzfeldt-Jacob's disease and cancer. In this study, we report the inhibition profiles and computational docking toward the PAD4 enzyme of a series of 1,2,3-triazole peptidomimetic-based derivatives incorporating the β-phenylalanine and guanidine scaffolds. Several effective, low micromolar PAD4 inhibitors are reported in this study.

  4. Protein flexibility oriented virtual screening strategy for JAK2 inhibitors

    NASA Astrophysics Data System (ADS)

    Xiong, Xiao; Yuan, Haoliang; Zhang, Yanmin; Xu, Jinxing; Ran, Ting; Liu, Haichun; Lu, Shuai; Xu, Anyang; Li, Hongmei; Jiang, Yulei; Lu, Tao; Chen, Yadong

    2015-10-01

    JAK2 has been considered as an important target for the development of anti-cancer agents. In this study, considering the flexibility of its binding site, an integrated strategy combining Bayesian categorization modeling and ensemble docking was established. Four representative crystal structures were selected for ensemble docking by the hierarchical clustering of 34 crystal structures according to the volume overlaps of each structure. A retrospective virtual screening was performed to validate this integrated strategy. As the preliminary filtration, the Bayesian model enhanced the ratio of actives by reducing the large amount of decoys. After docking the remaining compounds, the comparison between the ensemble and individual results showed that the enrichment of ensemble docking improved significantly. The results of analysis on conformational changes of two top ranked active inhibitors when docking into different proteins indicated that compounds with flexible conformations well fitted the different binding site shapes were more likely to be potential JAK2 inhibitors. This high efficient strategy will facilitate virtual screening for novel JAK2 inhibitors and could be even applied in drug discovery against other targets.

  5. Plant Protein Inhibitors of Enzymes: Their Role in Animal Nutrition and Plant Defence.

    ERIC Educational Resources Information Center

    Richardson, Michael

    1981-01-01

    Current information and research related to plant protein inhibitors of enzymes are reviewed, including potential uses of the inhibitors for medical treatment and for breeding plant varieties with greater resistance to insects. (DC)

  6. The specificities of protein kinase inhibitors: an update.

    PubMed Central

    Bain, Jenny; McLauchlan, Hilary; Elliott, Matthew; Cohen, Philip

    2003-01-01

    We have previously examined the specificities of 28 commercially available compounds, reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases [Davies, Reddy, Caivano and Cohen (2000) Biochem. J. 351, 95-105]. In the present study, we have extended this analysis to a further 14 compounds. Of these, indirubin-3'-monoxime, SP 600125, KT 5823 and ML-9 were found to inhibit a number of protein kinases and conclusions drawn from their use in cell-based assays are likely to be erroneous. Kenpaullone, Alsterpaullone, Purvalanol, Roscovitine, pyrazolopyrimidine 1 (PP1), PP2 and ML-7 were more specific, but still inhibited two or more protein kinases with similar potency. Our results suggest that the combined use of Roscovitine and Kenpaullone may be useful for identifying substrates and physiological roles of cyclin-dependent protein kinases, whereas the combined use of Kenpaullone and LiCl may be useful for identifying substrates and physiological roles of glycogen synthase kinase 3. The combined use of SU 6656 and either PP1 or PP2 may be useful for identifying substrates of Src family members. Epigallocatechin 3-gallate, one of the main polyphenolic constituents of tea, inhibited two of the 28 protein kinases in the panel, dual-specificity, tyrosine-phosphorylated and regulated kinase 1A (DYRK1A; IC(50)=0.33 microM) and p38-regulated/activated kinase (PRAK; IC(50)=1.0 microM). PMID:12534346

  7. Carcinogenic Aspects of Protein Phosphatase 1 and 2A Inhibitors

    NASA Astrophysics Data System (ADS)

    Fujiki, Hirota; Suganuma, Masami

    Okadaic acid is functionally a potent tumor promoter working through inhibition of protein phosphatases 1 and 2A (PP1 and PP2A), resulting in sustained phosphorylation of proteins in cells. The mechanism of tumor promotion with oka-daic acid is thus completely different from that of the classic tumor promoter phorbol ester. Other potent inhibitors of PP1 and PP2A - such as dinophysistoxin-1, calyculins A-H, microcystin-LR and its derivatives, and nodularin - were isolated from marine organisms, and their structural features including the crystal structure of the PP1-inhibitor complex, tumor promoting activities, and biochemical and biological effects, are here reviewed. The compounds induced tumor promoting activity in three different organs, including mouse skin, rat glandular stomach and rat liver, initiated with three different carcinogens. The results indicate that inhibition of PP1 and PP2A is a general mechanism of tumor promotion applicable to various organs. This study supports the concept of endogenous tumor promoters in human cancer development.

  8. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions

    PubMed Central

    Laraia, Luca; McKenzie, Grahame; Spring, David R.; Venkitaraman, Ashok R.; Huggins, David J.

    2015-01-01

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs. PMID:26091166

  9. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions.

    PubMed

    Laraia, Luca; McKenzie, Grahame; Spring, David R; Venkitaraman, Ashok R; Huggins, David J

    2015-06-18

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs.

  10. Development of a Capillary Electrophoresis Platform for Identifying Inhibitors of Protein-Protein Interactions

    PubMed Central

    Rauch, Jennifer N.; Nie, Jing; Buchholz, Tonia J.; Gestwicki, Jason E.; Kennedy, Robert T.

    2013-01-01

    Methods for identifying chemical inhibitors of protein-protein interactions (PPIs) are often prone to discovery of false positives, particularly those caused by molecules that induce protein aggregation. Thus, there is interest in developing new platforms that might allow earlier identification of these problematic compounds. Capillary electrophoresis (CE) has been evaluated as a method to screen for PPI inhibitors using the challenging system of Hsp70 interacting with its co-chaperone Bag3. In the method, Hsp70 is labeled with a fluorophore, mixed with Bag3, and the resulting bound and free Hsp70 separated and detected by CE with laser-induced fluorescence detection. The method used a chemically modified CE capillary to prevent protein adsorption. Inhibitors of the Hsp70-Bag3 interaction were detected by observing a reduction in the bound to free ratio. The method was used to screen a library of 3,443 compounds and results compared to those from a flow cytometry protein interaction assay. CE was found to produce a lower hit rate with more compounds that reconfirmed in subsequent testing suggesting greater specificity. This finding was attributed to use of electropherograms to detect artifacts such as aggregators and to differences in protein modifications required to perform the different assays. Increases in throughput are required to make the CE method suitable for primary screens but at the current stage of development it is attractive as a secondary screen to test hits found by higher throughput methods. PMID:24060167

  11. Development of a capillary electrophoresis platform for identifying inhibitors of protein-protein interactions.

    PubMed

    Rauch, Jennifer N; Nie, Jing; Buchholz, Tonia J; Gestwicki, Jason E; Kennedy, Robert T

    2013-10-15

    Methods for identifying chemical inhibitors of protein-protein interactions (PPIs) are often prone to discovery of false positives, particularly those caused by molecules that induce protein aggregation. Thus, there is interest in developing new platforms that might allow earlier identification of these problematic compounds. Capillary electrophoresis (CE) has been evaluated as a method to screen for PPI inhibitors using the challenging system of Hsp70 interacting with its co-chaperone Bag3. In the method, Hsp70 is labeled with a fluorophore, mixed with Bag3, and the resulting bound and free Hsp70 are separated and detected by CE with laser-induced fluorescence detection. The method used a chemically modified CE capillary to prevent protein adsorption. Inhibitors of the Hsp70-Bag3 interaction were detected by observing a reduction in the bound-to-free ratio. The method was used to screen a library of 3443 compounds, and the results were compared to those from a flow cytometry protein interaction assay. CE was found to produce a lower hit rate with more compounds that were reconfirmed in subsequent testing, suggesting greater specificity. This finding was attributed to the use of electropherograms to detect artifacts such as aggregators and to differences in protein modifications required to perform the different assays. Increases in throughput are required to make the CE method suitable for primary screens, but at the current stage of development it is attractive as a secondary screen to test hits found by higher-throughput methods.

  12. Development of a selective inhibitor of Protein Arginine Deiminase 2.

    PubMed

    Muth, Aaron; Subramanian, Venkataraman; Beaumont, Edward; Nagar, Mitesh; Kerry, Philip; McEwan, Paul; Srinath, Hema; Clancy, Kathleen Wanda; Parelkar, Sangram S; Thompson, Paul R

    2017-03-22

    Protein arginine deiminase 2 (PAD2) plays a key role in the onset and progression of multiple sclerosis, rheumatoid arthritis and breast cancer. To date, no PAD2-selective inhibitor has been developed. Such a compound will be critical for elucidating the biological roles of this isozyme and may ultimately be useful for treating specific diseases in which PAD2 activity is dysregulated. To achieve this goal, we synthesized a series of benzimidazole-based derivatives of Cl-amidine, hypothesizing that this scaffold would allow access to a series of PAD2-selective inhibitors with enhanced cellular efficacy. Herein, we demonstrate that substitutions at both the N-terminus and C-terminus of Cl-amidine result in >100-fold increases in PAD2 potency and selectivity (30a, 41a, and 49a) as well as cellular efficacy 30a. Notably, these compounds use the far less reactive fluoroacetamidine warhead. In total, we predict that 30a will be a critical tool for understanding cellular PAD2 function and sets the stage for treating diseases in which PAD2 activity is dysregulated.

  13. Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor.

    PubMed

    Dounay, A B; Forsyth, C J

    2002-11-01

    As the first recognized member of the "okadaic acid class" of phosphatase inhibitors, the marine natural product okadaic acid is perhaps the most well-known member of a diverse array of secondary metabolites that have emerged as valuable probes for studying the roles of various cellular protein serine/threonine phosphatases. This review provides a historical perspective on the role that okadaic acid has played in stimulating a broad spectrum of modern scientific research as a result of the natural product's ability to bind to and inhibit important classes of protein serine / threonine phosphatases. The relationships between the structure and biological activities of okadaic acid are briefly reviewed, as well as the structural information regarding the particular cellular receptors protein phosphatases 1 (PP1) and 2A. Laboratory syntheses of okadaic acid and its analogs are thoroughly reviewed. Finally, an interpretation of the critical contacts observed between okadaic acid and PP1 by X-ray crystallography is provided, and specific molecular recognition hypotheses that are testable via the synthesis and assay of non-natural analogs of okadaic acid are suggested.

  14. Cell death in leukemia: passenger protein regulation by topoisomerase inhibitors.

    PubMed

    Jahnke, Ulrike; Higginbottom, Karen; Newland, Adrian C; Cotter, Finbarr E; Allen, Paul D

    2007-10-05

    Etoposide is a potent inducer of mitotic catastrophe; a type of cell death resulting from aberrant mitosis. It is important in p53 negative cells where p53 dependent apoptosis and events at the G1 and G2 cell cycle checkpoints are compromised. Passenger proteins regulate many aspects of mitosis and siRNA interference or direct inhibition of Aurora B kinase results in mitotic catastrophe. However, there is little available data of clinical relevance in leukaemia models. Here, in p53 negative K562 myeloid leukemia cells, etoposide-induced mitotic catastrophe is shown to be time and/or concentration dependent. Survivin and Aurora remained bound to chromosomes. Survivin and Aurora were also associated with Cdk1 and were shown to form complexes, which in pull down experiments, included INCENP. There was no evidence of Aurora B kinase suppression. These data suggests etoposide will complement Aurora B kinase inhibitors currently in clinical trials for cancer.

  15. Diarylthiophenes as inhibitors of the pore-forming protein perforin

    PubMed Central

    Miller, Christian K.; Huttunen, Kristiina M.; Denny, William A.; Jaiswal, Jagdish K.; Ciccone, Annette; Browne, Kylie A.; Trapani, Joseph A.; Spicer, Julie A.

    2016-01-01

    Evolution from a furan-containing high-throughput screen (HTS) hit (1) resulted in isobenzofuran-1(3H)-one (2) as a potent inhibitor of the function of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 NK cells. In the current study, structure–activity relationship (SAR) development towards a novel series of diarylthiophene analogues has continued through the use of substituted-benzene and -pyridyl moieties as bioisosteres for 2-thioxoimidazolidin-4-one (A) on a thiophene (B) -isobenzofuranone (C) scaffold. The resulting compounds were tested for their ability to inhibit perforin lytic activity in vitro. Carboxamide (23) shows a 4-fold increase over (2) in lytic activity against isolated perforin and provides good rationale for continued development within this class. PMID:26711151

  16. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer

    PubMed Central

    Berger, Stephanie; Procko, Erik; Margineantu, Daciana; Lee, Erinna F; Shen, Betty W; Zelter, Alex; Silva, Daniel-Adriano; Chawla, Kusum; Herold, Marco J; Garnier, Jean-Marc; Johnson, Richard; MacCoss, Michael J; Lessene, Guillaume; Davis, Trisha N; Stayton, Patrick S; Stoddard, Barry L; Fairlie, W Douglas; Hockenbery, David M; Baker, David

    2016-01-01

    Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes. DOI: http://dx.doi.org/10.7554/eLife.20352.001 PMID:27805565

  17. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer.

    PubMed

    Berger, Stephanie; Procko, Erik; Margineantu, Daciana; Lee, Erinna F; Shen, Betty W; Zelter, Alex; Silva, Daniel-Adriano; Chawla, Kusum; Herold, Marco J; Garnier, Jean-Marc; Johnson, Richard; MacCoss, Michael J; Lessene, Guillaume; Davis, Trisha N; Stayton, Patrick S; Stoddard, Barry L; Fairlie, W Douglas; Hockenbery, David M; Baker, David

    2016-11-02

    Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.

  18. Protein-Directed Dynamic Combinatorial Chemistry: A Guide to Protein Ligand and Inhibitor Discovery.

    PubMed

    Huang, Renjie; Leung, Ivanhoe K H

    2016-07-16

    Protein-directed dynamic combinatorial chemistry is an emerging technique for efficient discovery of novel chemical structures for binding to a target protein. Typically, this method relies on a library of small molecules that react reversibly with each other to generate a combinatorial library. The components in the combinatorial library are at equilibrium with each other under thermodynamic control. When a protein is added to the equilibrium mixture, and if the protein interacts with any components of the combinatorial library, the position of the equilibrium will shift and those components that interact with the protein will be amplified, which can then be identified by a suitable biophysical technique. Such information is useful as a starting point to guide further organic synthesis of novel protein ligands and enzyme inhibitors. This review uses literature examples to discuss the practicalities of applying this method to inhibitor discovery, in particular, the set-up of the combinatorial library, the reversible reactions that may be employed, and the choice of detection methods to screen protein ligands from a mixture of reversibly forming molecules.

  19. Designing Focused Chemical Libraries Enriched in Protein-Protein Interaction Inhibitors using Machine-Learning Methods

    PubMed Central

    Reynès, Christelle; Host, Hélène; Camproux, Anne-Claude; Laconde, Guillaume; Leroux, Florence; Mazars, Anne; Deprez, Benoit; Fahraeus, Robin; Villoutreix, Bruno O.; Sperandio, Olivier

    2010-01-01

    Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is

  20. Hydroxyindole Carboxylic Acid-Based Inhibitors for Receptor-Type Protein Tyrosine Protein Phosphatase Beta

    PubMed Central

    Zeng, Li-Fan; Zhang, Ruo-Yu; Bai, Yunpeng; Wu, Li; Gunawan, Andrea M.

    2014-01-01

    Abstract Aims: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue. Results: We describe a facile method that uses an appropriate hydroxyindole carboxylic acid to anchor the inhibitor to the PTP active site and relies on the secondary binding elements introduced through an amide-focused library to enhance binding affinity for the target PTP and to impart selectivity against off-target phosphatases. Here, we disclose a novel series of hydroxyindole carboxylic acid-based inhibitors for receptor-type tyrosine protein phosphatase beta (RPTPβ), a potential target that is implicated in blood vessel development. The representative RPTPβ inhibitor 8b-1 (L87B44) has an IC50 of 0.38 μM and at least 14-fold selectivity for RPTPβ over a large panel of PTPs. Moreover, 8b-1 also exhibits excellent cellular activity and augments growth factor signaling in HEK293, MDA-MB-468, and human umbilical vein endothelial cells. Innovation: The bicyclic salicylic acid pharmacophore-based focused library approach may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Conclusion: A novel method is described for the development of bioavailable PTP inhibitors that utilizes bicyclic salicylic acid to anchor the inhibitors to the active site and peripheral site interactions to enhance binding affinity and selectivity. Antioxid. Redox Signal. 20, 2130–2140. PMID:24180557

  1. Involvement of histone phosphorylation in thymocyte apoptosis by protein phosphatase inhibitors.

    PubMed

    Lee, E; Nakatsuma, A; Hiraoka, R; Ishikawa, E; Enomoto, R; Yamauchi, A

    1999-07-01

    Incubation of rat thymocytes with the inhibitors of protein phosphatase such as calyculin A and okadaic acid resulted in an increase in DNA fragmentation. These effects were dependent on the concentration of the inhibitors and the incubation time. Analyses of the fragmented DNA revealed the production of approximately 50 kbp of DNA and a 180 bp DNA ladder. In addition, a laser scanning-microscopic analysis showed that these compounds caused nuclear condensation. Thus, these results demonstrated that protein phosphatase inhibitors induced thymocyte apoptosis. The inhibitors of protein phosphatase increased the phosphorylation of proteins of approximately 15 kDa. The phosphorylation of proteins preceded the DNA fragmentation induced by these inhibitors. Judging from acetic acid-urea-Triton X-100 gel electrophoresis, the phosphorylated proteins were histone H1 and H2A/H3. Therefore, these results suggest that phosphorylation of histones triggers the DNA fragmentation of thymocytes undergoing apoptosis.

  2. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  3. Fluorescent biosensors for high throughput screening of protein kinase inhibitors.

    PubMed

    Prével, Camille; Pellerano, Morgan; Van, Thi Nhu Ngoc; Morris, May C

    2014-02-01

    High throughput screening assays aim to identify small molecules that interfere with protein function, activity, or conformation, which can serve as effective tools for chemical biology studies of targets involved in physiological processes or pathways of interest or disease models, as well as templates for development of therapeutics in medicinal chemistry. Fluorescent biosensors constitute attractive and powerful tools for drug discovery programs, from high throughput screening assays, to postscreen characterization of hits, optimization of lead compounds, and preclinical evaluation of candidate drugs. They provide a means of screening for inhibitors that selectively target enzymatic activity, conformation, and/or function in vitro. Moreover, fluorescent biosensors constitute useful tools for cell- and image-based, multiplex and multiparametric, high-content screening. Application of fluorescence-based sensors to screen large and complex libraries of compounds in vitro, in cell-based formats or whole organisms requires several levels of optimization to establish robust and reproducible assays. In this review, we describe the different fluorescent biosensor technologies which have been applied to high throughput screens, and discuss the prerequisite criteria underlying their successful application. Special emphasis is placed on protein kinase biosensors, since these enzymes constitute one of the most important classes of therapeutic targets in drug discovery.

  4. Anti-Inflammatory Effects of Protein Kinase Inhibitor Pyrrol Derivate

    PubMed Central

    Yena, Maryna S.; Kotlyar, Iryna P.; Ogloblya, Olexandr V.; Rybalchenko, Volodymyr K.

    2016-01-01

    In our previous studies we showed antitumor and anti-inflammatory activities of protein kinases inhibitor pyrrol derivate 1-(4-Cl-benzyl)-3-Cl-4-(CF3-fenylamino)-1H-pyrrol-2,5-dione (MI-1) on rat colon cancer model. Therefore anti-inflammatory effect of MI-1 on rat acetic acid induced ulcerative colitis (UC) model was aimed to be discovered. The anti-inflammatory effects of MI-1 (2.7 mg/kg daily) compared to reference drug Prednisolone (0.7 mg/kg daily) after 14-day usage were evaluated on macro- and light microscopy levels and expressed in 21-grade scale. Redox status of bowel mucosa was also estimated. It was shown that in UC group the grade of total injury (GTI) was equal to 9.6 (GTIcontrol = 0). Increase of malonic dialdehyde (MDA) by 89% and protein carbonyl groups (PCG) by 60% and decrease of superoxide dismutase (SOD) by 40% were also observed. Prednisolone decreased GTI to 3 and leveled SOD activity, but MDA and PCG remained higher than control ones by 52% and 42%, respectively. MI-1 restored colon mucosa integrity and decreased mucosa inflammation down to GTI = 0.5 and leveled PCG and SOD. Thus, MI-1 possessed anti-inflammatory properties, which were more expressed that Prednisolone ones, as well as normalized mucosa redox balance, and so has a prospect for correction of inflammatory processes. PMID:28101521

  5. Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants.

    PubMed

    Robert, Stéphanie; Jutras, Philippe V; Khalf, Moustafa; D'Aoust, Marc-André; Goulet, Marie-Claire; Sainsbury, Frank; Michaud, Dominique

    2016-01-01

    We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.

  6. Discovery of Protein–Protein Interaction Inhibitors of Replication Protein A

    PubMed Central

    2013-01-01

    Replication protein A (RPA) is a ssDNA binding protein that is essential for DNA replication and repair. The initiation of the DNA damage response by RPA is mediated by protein–protein interactions involving the N-terminal domain of the 70 kDa subunit with partner proteins. Inhibition of these interactions increases sensitivity toward DNA damage and replication stress and may therefore be a potential strategy for cancer drug discovery. Toward this end, we have discovered two lead series of compounds, derived from hits obtained from a fragment-based screen, that bind to RPA70N with low micromolar affinity and inhibit the binding of an ATRIP-derived peptide to RPA. These compounds may offer a promising starting point for the discovery of clinically useful RPA inhibitors. PMID:23914285

  7. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    PubMed

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds.

  8. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex.

    PubMed

    He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L; Jakob, Clarissa G; Zhu, Haizhong; Comess, Kenneth M; Shaw, Bailin; The, Juliana; Lima-Fernandes, Evelyne; Szewczyk, Magdalena M; Cheng, Dong; Klinge, Kelly L; Li, Huan-Qiu; Pliushchev, Marina; Algire, Mikkel A; Maag, David; Guo, Jun; Dietrich, Justin; Panchal, Sanjay C; Petros, Andrew M; Sweis, Ramzi F; Torrent, Maricel; Bigelow, Lance J; Senisterra, Guillermo; Li, Fengling; Kennedy, Steven; Wu, Qin; Osterling, Donald J; Lindley, David J; Gao, Wenqing; Galasinski, Scott; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Buchanan, Fritz G; Arrowsmith, Cheryl H; Chiang, Gary G; Sun, Chaohong; Pappano, William N

    2017-04-01

    Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.

  9. Small molecule inhibitors of PSD95-nNOS protein-protein interactions as novel analgesics

    PubMed Central

    Lee, Wan-Hung; Xu, Zhili; Ashpole, Nicole M.; Hudmon, Andy; Kulkarni, Pushkar M.; Thakur, Ganesh A.; Lai, Yvonne Y.; Hohmann, Andrea G.

    2015-01-01

    Aberrant increases in NMDA receptor (NMDAR) signaling contributes to central nervous system sensitization and chronic pain by activating neuronal nitric oxide synthase (nNOS) and generating nitric oxide (NO). Because the scaffolding protein postsynaptic density 95kDA (PSD95) tethers nNOS to NMDARs, the PSD95-nNOS complex represents a therapeutic target. Small molecule inhibitors IC87201 (EC5O: 23.94 µM) and ZL006 (EC50: 12.88 µM) directly inhibited binding of purified PSD95 and nNOS proteins in AlphaScreen without altering binding of PSD95 to ErbB4. Both PSD95-nNOS inhibitors suppressed glutamate-induced cell death with efficacy comparable to MK-801. IC87201 and ZL006 preferentially suppressed phase 2A pain behavior in the formalin test and suppressed allodynia induced by intraplantar complete Freund’s adjuvant administration. IC87201 and ZL006 suppressed mechanical and cold allodynia induced by the chemotherapeutic agent paclitaxel (ED50s: 2.47 and 0.93 mg/kg i.p. for IC87201 and ZL006, respectively). Efficacy of PSD95-nNOS disruptors was similar to MK-801. Motor ataxic effects were induced by MK-801 but not by ZL006 or IC87201. Finally, MK-801 produced hyperalgesia in the tail-flick test whereas IC87201 and ZL006 did not alter basal nociceptive thresholds. Our studies establish the utility of using AlphaScreen and purified protein pairs to establish and quantify disruption of protein-protein interactions. Our results demonstrate previously unrecognized antinociceptive efficacy of ZL006 and establish, using two small molecules, a broad application for PSD95-nNOS inhibitors in treating neuropathic and inflammatory pain. Collectively, our results demonstrate that disrupting PSD95-nNOS protein-protein interactions is effective in attenuating pathological pain without producing unwanted side effects (i.e. motor ataxia) associated with NMDAR antagonists. PMID:26071110

  10. Constrained Cyclic Peptides as Immunomodulatory Inhibitors of the CD2:CD58 Protein-Protein Interaction.

    PubMed

    Sable, Rushikesh; Durek, Thomas; Taneja, Veena; Craik, David J; Pallerla, Sandeep; Gauthier, Ted; Jois, Seetharama

    2016-08-19

    The interaction between the cell-cell adhesion proteins CD2 and CD58 plays a crucial role in lymphocyte recruitment to inflammatory sites, and inhibitors of this interaction have potential as immunomodulatory drugs in autoimmune diseases. Peptides from the CD2 adhesion domain were designed to inhibit CD2:CD58 interactions. To improve the stability of the peptides, β-sheet epitopes from the CD2 region implicated in CD58 recognition were grafted into the cyclic peptide frameworks of sunflower trypsin inhibitor and rhesus theta defensin. The designed multicyclic peptides were evaluated for their ability to modulate cell-cell interactions in three different cell adhesion assays, with one candidate, SFTI-a, showing potent activity in the nanomolar range (IC50: 51 nM). This peptide also suppresses the immune responses in T cells obtained from mice that exhibit the autoimmune disease rheumatoid arthritis. SFTI-a was resistant to thermal denaturation, as judged by circular dichroism spectroscopy and mass spectrometry, and had a half-life of ∼24 h in human serum. Binding of this peptide to CD58 was predicted by molecular docking studies and experimentally confirmed by surface plasmon resonance experiments. Our results suggest that cyclic peptides from natural sources are promising scaffolds for modulating protein-protein interactions that are typically difficult to target with small-molecule compounds.

  11. Phosphonate derivatives of tetraazamacrocycles as new inhibitors of protein tyrosine phosphatases.

    PubMed

    Kobzar, Oleksandr L; Shevchuk, Michael V; Lyashenko, Alesya N; Tanchuk, Vsevolod Yu; Romanenko, Vadim D; Kobelev, Sergei M; Averin, Alexei D; Beletskaya, Irina P; Vovk, Andriy I; Kukhar, Valery P

    2015-07-21

    α,α-Difluoro-β-ketophosphonated derivatives of tetraazamacrocycles were synthesized and found to be potential inhibitors of protein tyrosine phosphatases. N-Substituted conjugates of cyclam and cyclen with bioisosteric phosphonate groups displayed good activities toward T-cell protein tyrosine phosphatase with IC50 values in the micromolar to nanomolar range and showed selectivity over PTP1B, CD45, SHP2, and PTPβ. Kinetic studies indicated that the inhibitors can occupy the region of the active site of TC-PTP. This study demonstrates a new approach which employs tetraazamacrocycles as a molecular platform for designing inhibitors of protein tyrosine phosphatases.

  12. Structure-based design of isoquinoline-5-sulfonamide inhibitors of protein kinase B.

    PubMed

    Collins, Ian; Caldwell, John; Fonseca, Tatiana; Donald, Alastair; Bavetsias, Vassilios; Hunter, Lisa-Jane K; Garrett, Michelle D; Rowlands, Martin G; Aherne, G Wynne; Davies, Thomas G; Berdini, Valerio; Woodhead, Steven J; Davis, Deborah; Seavers, Lisa C A; Wyatt, Paul G; Workman, Paul; McDonald, Edward

    2006-02-15

    Structure-based drug design of novel isoquinoline-5-sulfonamide inhibitors of PKB as potential antitumour agents was investigated. Constrained pyrrolidine analogues that mimicked the bound conformation of linear prototypes were identified and investigated by co-crystal structure determinations with the related protein PKA. Detailed variation in the binding modes between inhibitors with similar overall conformations was observed. Potent PKB inhibitors from this series inhibited GSK3beta phosphorylation in cellular assays, consistent with inhibition of PKB kinase activity in cells.

  13. Surfing the Protein-Protein Interaction Surface Using Docking Methods: Application to the Design of PPI Inhibitors.

    PubMed

    Sable, Rushikesh; Jois, Seetharama

    2015-06-23

    Blocking protein-protein interactions (PPI) using small molecules or peptides modulates biochemical pathways and has therapeutic significance. PPI inhibition for designing drug-like molecules is a new area that has been explored extensively during the last decade. Considering the number of available PPI inhibitor databases and the limited number of 3D structures available for proteins, docking and scoring methods play a major role in designing PPI inhibitors as well as stabilizers. Docking methods are used in the design of PPI inhibitors at several stages of finding a lead compound, including modeling the protein complex, screening for hot spots on the protein-protein interaction interface and screening small molecules or peptides that bind to the PPI interface. There are three major challenges to the use of docking on the relatively flat surfaces of PPI. In this review we will provide some examples of the use of docking in PPI inhibitor design as well as its limitations. The combination of experimental and docking methods with improved scoring function has thus far resulted in few success stories of PPI inhibitors for therapeutic purposes. Docking algorithms used for PPI are in the early stages, however, and as more data are available docking will become a highly promising area in the design of PPI inhibitors or stabilizers.

  14. Resistance of human glioblastoma multiforme cells to growth factor inhibitors is overcome by blockade of inhibitor of apoptosis proteins

    PubMed Central

    Ziegler, David S.; Wright, Renee D.; Kesari, Santosh; Lemieux, Madeleine E.; Tran, Mary A.; Jain, Monish; Zawel, Leigh; Kung, Andrew L.

    2008-01-01

    Multiple receptor tyrosine kinases (RTKs), including PDGFR, have been validated as therapeutic targets in glioblastoma multiforme (GBM), yet inhibitors of RTKs have had limited clinical success. As various antiapoptotic mechanisms render GBM cells resistant to chemo- and radiotherapy, we hypothesized that these antiapoptotic mechanisms also confer resistance to RTK inhibition. We found that in vitro inhibition of PDGFR in human GBM cells initiated the intrinsic pathway of apoptosis, as evidenced by mitochondrial outer membrane permeabilization, but downstream caspase activation was blocked by inhibitor of apoptosis proteins (IAPs). Consistent with this, inhibition of PDGFR combined with small molecule inactivation of IAPs induced apoptosis in human GBM cells in vitro and had synergistic antitumor effects in orthotopic mouse models of GBM and in primary human GBM neurospheres. These results demonstrate that concomitant inhibition of IAPs can overcome resistance to RTK inhibitors in human malignant GBM cells, and suggest that blockade of IAPs has the potential to improve treatment outcomes in patients with GBM. PMID:18677408

  15. The food colorant erythrosine is a promiscuous protein-protein interaction inhibitor.

    PubMed

    Ganesan, Lakshmi; Margolles-Clark, Emilio; Song, Yun; Buchwald, Peter

    2011-03-15

    Following our observation that erythrosine B (FD&C Red No. 3) is a relatively potent inhibitor of the TNF-R-TNFα and CD40-CD154 protein-protein interactions, we investigated whether this inhibitory activity extends to any other protein-protein interactions (PPI) as well as whether any other approved food colors possess such inhibitory activity. We found erythrosine, a poly-iodinated xanthene dye, to be a non-specific promiscuous inhibitor of a number of PPIs within the tumor necrosis factor superfamily (TNF-R-TNFα, CD40-CD154, BAFF-R-BAFF, RANK-RANKL, OX40-OX40L, 4-1BB-4-1BBL) as well as outside of it (EGF-R-EGF) with a remarkably consistent median inhibitory concentration (IC(50)) in the 2-20 μM (approximately 2-20mg/L) range. In agreement with this, erythrosine also showed cellular effects including clear cytotoxic effects around this concentration range (IC₅₀≈50 μM). Among the seven FDA-approved food colorants, only erythrosine showed consistent PPI inhibitory activity in the sub-100 μM range, which might also explain (at least partially) why it also has the lowest approved acceptable daily intake (ADI) (0.1 mg/kg body weight/day). Among a number of xanthene structural analogs of erythrosine tested for activity, rose Bengal, a food colorant approved in Japan, showed similar, maybe even more pronounced, promiscuous inhibitory activity, whereas fluorescein was inactive and gallein, phloxine, and eosin were somewhat active in some of the assays.

  16. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction

    PubMed Central

    Yang, Chao; Wang, Wanhe; Li, Guo-Dong; Zhong, Hai-Jing; Dong, Zhen-Zhen; Wong, Chun-Yuen; Kwong, Daniel W. J.; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-01

    The hypoxia inducible factor (HIF) pathway has been considered to be an attractive anti-cancer target. One strategy to inhibit HIF activity is through the disruption of the HIF-1α–p300 protein-protein interaction. We report herein the identification of an osmium(II) complex as the first metal-based inhibitor of the HIF-1α–p300 interaction. We evaluated the effect of complex 1 on HIF-1α signaling pathway in vitro and in cellulo by using the dual luciferase reporter assay, co-immunoprecipitation assay, and immunoblot assay. Complex 1 exhibited a dose-dependent inhibition of HRE-driven luciferase activity, with an IC50 value of 1.22 μM. Complex 1 interfered with the HIF-1α–p300 interaction as revealed by a dose-dependent reduction of p300 co-precipitated with HIF-1α as the concentration of complex 1 was increased. Complex 1 repressed the phosphorylation of SRC, AKT and STAT3, and had no discernible effect on the activity of NF-κB. We anticipate that complex 1 could be utilized as a promising scaffold for the further development of more potent HIF-1α inhibitors for anti-cancer treatment. PMID:28225008

  17. A Cell-Permeable Inhibitor to Trap Gαq Proteins in the Empty Pocket Conformation

    PubMed Central

    Schmitz, Anna-Lena; Schrage, Ramona; Gaffal, Evelyn; Charpentier, Thomas H.; Wiest, Johannes; Hiltensperger, Georg; Morschel, Julia; Hennen, Stephanie; Häußler, Daniela; Horn, Velten; Wenzel, Daniela; Grundmann, Manuel; Büllesbach, Katrin M.; Schröder, Ralf; Brewitz, H. Henning; Schmidt, Johannes; Gomeza, Jesús; Galés, Céline; Fleischmann, Bernd K.; Tüting, Thomas; Imhof, Diana; Tietze, Daniel; Gütschow, Michael; Holzgrabe, Ulrike; Sondek, John; Harden, T. Kendall; Mohr, Klaus; Kostenis, Evi

    2015-01-01

    SUMMARY In spite of the crucial role of heterotrimeric G proteins as molecular switches transmitting signals from G protein-coupled receptors, their selective manipulation with small molecule, cell-permeable inhibitors still remains an unmet challenge. Here, we report that the small molecule BIM-46187, previously classified as pan-G protein inhibitor, preferentially silences Gαq signaling in a cellular context-dependent manner. Investigations into its mode of action reveal that BIM traps Gαq in the empty pocket conformation by permitting GDP exit but interdicting GTP entry, a molecular mechanism not yet assigned to any other small molecule Gα inhibitor to date. Our data show that Gα proteins may be “frozen” pharmacologically in an intermediate conformation along their activation pathway and propose a pharmacological strategy to specifically silence Gα subclasses with cell-permeable inhibitors. PMID:25036778

  18. Synthesis and evaluation of potential inhibitors of human and Escherichia coli histidine triad nucleotide binding proteins.

    PubMed

    Bardaweel, Sanaa K; Ghosh, Brahma; Wagner, Carston R

    2012-01-01

    Based on recent substrate specificity studies, a series of ribonucleotide based esters and carbamates were synthesized and screened as inhibitors of the phosphoramidases and acyl-AMP hydrolases, Escherichia coli Histidine Triad Nucleotide Binding Protein (ecHinT) and human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Using our established phosphoramidase assay, K(i) values were determined. All compounds exhibited non-competitive inhibition profiles. The carbamate based inhibitors were shown to successfully suppress the Hint1-associated phenotype in E. coli, suggesting that they are permeable intracellular inhibitors of ecHinT.

  19. Novel pyridazinone inhibitors for vascular adhesion protein-1 (VAP-1): old target-new inhibition mode.

    PubMed

    Bligt-Lindén, Eva; Pihlavisto, Marjo; Szatmári, István; Otwinowski, Zbyszek; Smith, David J; Lázár, László; Fülöp, Ferenc; Salminen, Tiina A

    2013-12-27

    Vascular adhesion protein-1 (VAP-1) is a primary amine oxidase and a drug target for inflammatory and vascular diseases. Despite extensive attempts to develop potent, specific, and reversible inhibitors of its enzyme activity, the task has proven challenging. Here we report the synthesis, inhibitory activity, and molecular binding mode of novel pyridazinone inhibitors, which show specificity for VAP-1 over monoamine and diamine oxidases. The crystal structures of three inhibitor-VAP-1 complexes show that these compounds bind reversibly into a unique binding site in the active site channel. Although they are good inhibitors of human VAP-1, they do not inhibit rodent VAP-1 well. To investigate this further, we used homology modeling and structural comparison to identify amino acid differences, which explain the species-specific binding properties. Our results prove the potency and specificity of these new inhibitors, and the detailed characterization of their binding mode is of importance for further development of VAP-1 inhibitors.

  20. Purification and partial characterization of a protein proteinanse inhibitor isolated from eggplant exocarp.

    PubMed

    Kanamori, M; Ibuki, F; Tashiro, M; Yamada, M; Miyoshi, M

    1976-08-09

    A protein proteinase inhibitor was isolated and purified from eggplant exocarp by heat treatment, ammomium sulfate fractionation, column chromatography on DEAE-cellulose, and gel filtration on Sephadex G-25 and G-50. The final purified preparation of the inhibitor was found homogeneous by electrophoretic analysis. The inhibitor showed strong and stoichiometric inhibition on trypsin whereas it showed weak inhibition on alpha-chymotrypsin. It displayed no inhibiting characteristics on pepsin. The molecular weight of the inhibitor was estimated to be approximately 6000. This finding, with the trypsin inhibition data, suggested that the inhibitor combined trypsin in the molar ratio of 1:1. The amino acid analysis indicated that the inhibitor is rich in half-cystine, glycine and aspartic acid, and contains no tryptophan, histidine, methionine or valine.

  1. Novel Pyridazinone Inhibitors for Vascular Adhesion Protein-1 (VAP-1): Old target – New Inhibition Mode

    PubMed Central

    Bligt-Lindén, Eva; Pihlavisto, Marjo; Szatmári, István; Otwinowski, Zbyszek; Smith, David J.; Lázár, László; Fülöp, Ferenc; Salminen, Tiina A.

    2014-01-01

    Vascular adhesion protein-1 (VAP-1) is a primary amine oxidase and a drug target for inflammatory and vascular diseases. Despite extensive attempts to develop potent, specific and reversible inhibitors of its enzyme activity, the task has proven challenging. Here we report the synthesis, inhibitory activity and molecular binding mode of novel pyridazinone inhibitors, which show specificity for VAP-1 over monoamine and diamine oxidases. The crystal structures of three inhibitor-VAP-1 complexes show that these compounds bind reversibly into a unique binding site in the active site channel. Though they are good inhibitors of human VAP-1, they do not inhibit rodent VAP-1 well. To investigate this further, we used homology modeling and structural comparison to identify amino acid differences, which explain the species-specific binding properties. Our results prove the potency and specificity of these new inhibitors and the detailed characterization of their binding mode is of importance for further development of VAP-1 inhibitors. PMID:24304424

  2. Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

    PubMed Central

    Jun, Kyu-Yeon; Kwon, Youngjoo

    2016-01-01

    There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed. PMID:27582553

  3. Structural basis for the inhibition of mammalian and insect alpha-amylases by plant protein inhibitors.

    PubMed

    Payan, Françoise

    2004-02-12

    Alpha-amylases are ubiquitous proteins which play an important role in the carbohydrate metabolism of microorganisms, animals and plants. Living organisms use protein inhibitors as a major tool to regulate the glycolytic activity of alpha-amylases. Most of the inhibitors for which three-dimensional (3-D) structures are available are directed against mammalian and insect alpha-amylases, interacting with the active sites in a substrate-like manner. In this review, we discuss the detailed inhibitory mechanism of these enzymes in light of the recent determination of the 3-D structures of pig pancreatic, human pancreatic, and yellow mealworm alpha-amylases in complex with plant protein inhibitors. In most cases, the mechanism of inhibition occurs through the direct blockage of the active center at several subsites of the enzyme. Inhibitors exhibiting "dual" activity against mammalian and insect alpha-amylases establish contacts of the same type in alternative ways.

  4. Bisubstrate fluorescent probes and biosensors in binding assays for HTS of protein kinase inhibitors.

    PubMed

    Uri, Asko; Lust, Marje; Vaasa, Angela; Lavogina, Darja; Viht, Kaido; Enkvist, Erki

    2010-03-01

    Conjugates of adenosine mimics and d-arginine-rich peptides (ARCs) are potent inhibitors of protein kinases (PKs) from the AGC group. Labeling ARCs with fluorescent dyes or immobilizing on chip surfaces gives fluorescent probes (ARC-Photo) and biosensors that can be used for high-throughput screening (HTS) of inhibitors of protein kinases. The bisubstrate character (simultaneous association with both binding sites of the kinase) and high affinity of ARCs allow ARC-based probes and sensors to be used for characterization of inhibitors targeted to either binding site of the kinase with affinities in whole nanomolar to micromolar range. The ability to penetrate cell plasma membrane and bind to the target kinase fused with a fluorescent protein leads to the possibility to use ARC-Photo probes for high content screening (HCS) of inhibitors in cellular milieu with detection of intensity of Förster resonance energy transfer (FRET) between two fluorophores.

  5. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  6. Peptide inhibitors of the Keap1-Nrf2 protein-protein interaction.

    PubMed

    Hancock, Rowena; Bertrand, Hélène C; Tsujita, Tadayuki; Naz, Shama; El-Bakry, Ayman; Laoruchupong, Jitnueng; Hayes, John D; Wells, Geoff

    2012-01-15

    Disruption of the interaction between the ubiquitination facilitator protein Keap1 and the cap'n'collar basic-region leucine-zipper transcription factor Nrf2 is a potential strategy to enhance expression of antioxidant and free radical detoxification gene products regulated by Nrf2. Agents that disrupt this protein-protein interaction may be useful pharmacological probes and future cancer-chemopreventive agents. We describe the structure-activity relationships for a series of peptides based upon regions of the Nrf2 Neh2 domain, of varying length and sequence, that interact with the Keap1 Kelch domain and disrupt the interaction with Nrf2. We have also investigated sequestosome-1 (p62) and prothymosin-α sequences that have been reported to interact with Keap1. To achieve this we have developed a high-throughput fluorescence polarization (FP) assay to screen inhibitors. In addition to screening synthetic peptides, we have used a phage display library approach to identify putative peptide ligands with non-native sequence motifs. Candidate peptides from the phage display library screening protocol were evaluated in the FP assay to quantify their binding activity. Hybrid peptides based upon the Nrf2 "ETGE" motif and the sequestosome-1 "Keap1-interaction region" have superior binding activity compared to either native peptide alone.

  7. Discovery of 14-3-3 protein-protein interaction inhibitors that sensitize multidrug-resistant cancer cells to doxorubicin and the Akt inhibitor GSK690693.

    PubMed

    Mori, Mattia; Vignaroli, Giulia; Cau, Ylenia; Dinić, Jelena; Hill, Richard; Rossi, Matteo; Colecchia, David; Pešić, Milica; Link, Wolfgang; Chiariello, Mario; Ottmann, Christian; Botta, Maurizio

    2014-05-01

    14-3-3 is a family of highly conserved adapter proteins that is attracting much interest among medicinal chemists. Small-molecule inhibitors of 14-3-3 protein-protein interactions (PPIs) are in high demand, both as tools to increase our understanding of 14-3-3 actions in human diseases and as leads to develop innovative therapeutic agents. Herein we present the discovery of novel 14-3-3 PPI inhibitors through a multidisciplinary strategy combining molecular modeling, organic synthesis, image-based high-content analysis of reporter cells, and in vitro assays using cancer cells. Notably, the two most active compounds promoted the translocation of c-Abl and FOXO pro-apoptotic factors into the nucleus and sensitized multidrug-resistant cancer cells to apoptotic inducers such as doxorubicin and the pan-Akt inhibitor GSK690693, thus becoming valuable lead candidates for further optimization. Our results emphasize the possible role of 14-3-3 PPI inhibitors in anticancer combination therapies.

  8. Prokaryote-derived protein inhibitors of peptidases: a sketchy occurrence and mostly unknown function

    PubMed Central

    Kantyka, Tomasz; Rawlings, Neil D.; Potempa, Jan

    2010-01-01

    In metazoan organisms protein inhibitors of peptidases are important factors essential for regulation of proteolytic activity. In vertebrates genes encoding peptidase inhibitors constitute up to 1% of genes reflecting a need for tight and specific control of proteolysis especially in extracellular body fluids. In stark contrast unicellular organisms, both prokaryotic and eukaryotic consistently contain only few, if any, genes coding for putative peptidase inhibitors. This may seem perplexing in the light of the fact that these organisms produce large numbers of proteases of different catalytic classes with the genes constituting up to 6% of the total gene count with the average being about 3%. Apparently, however, a unicellular life-style is fully compatible with other mechanisms of regulation of proteolysis and does not require protein inhibitors to control their intracellular and extracellular proteolytic activity. So in prokaryotes occurrence of genes encoding different types of peptidase inhibitors is infrequent and often scattered among phylogenetically distinct orders or even phyla of microbiota. Genes encoding proteins homologous to alpha-2-macroglobulin (family I39), serine carboxypeptidase Y inhibitor (family I51), alpha-1-peptidase inhibitor (family I4) and ecotin (family I11) are the most frequently represented in Bacteria. Although several of these gene products were shown to possess inhibitory activity, with an exception of ecotin and staphostatins, the biological function of microbial inhibitors is unclear. In this review we present distribution of protein inhibitors from different families among prokaryotes, describe their mode of action and hypothesize on their role in microbial physiology and interactions with hosts and environment. PMID:20558234

  9. HIV proteinase inhibitors target the Ddi1-like protein of Leishmania parasites

    PubMed Central

    White, Rhian E.; Powell, David J.; Berry, Colin

    2011-01-01

    HIV proteinase inhibitors reduce the levels of Leishmania parasites in vivo and in vitro, but their biochemical target is unknown. We have identified an ortholog of the yeast Ddi1 protein as the only member of the aspartic proteinase family in Leishmania parasites, and in this study we investigate this protein as a potential target for the drugs. To date, no enzyme assay has been developed for the Ddi1 proteins, but Saccharomyces cerevisiae lacking the DDI1 gene secrete high levels of protein into the medium. We developed an assay in which these knockout yeast were functionally complemented to low secretion by introduction of genes encoding Ddi1 orthologs from Leishmania major or humans. Plasmid alone controls gave no complementation. Treatment of the Ddi1 transformants with HIV proteinase inhibitors showed differential effects dependent on the origin of the Ddi1. Dose responses allowed calculation of IC50 values; e.g., for nelfinavir, of 3.4 μM (human Ddi1) and 0.44 μM (Leishmania Ddi1). IC50 values with Leishmania constructs mirror the potency of inhibitors against parasites. Our results show that Ddi1 proteins are targets of HIV proteinase inhibitors and indicates the Leishmania Ddi1 as the likely target for these drugs and a potential target for antiparasitic therapy.—White, R. E., Powell, D. J., Berry, C. HIV proteinase inhibitors target the Ddi1-Like protein of Leishmania parasites. PMID:21266539

  10. Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70

    PubMed Central

    2016-01-01

    HSP70 is a molecular chaperone and a key component of the heat-shock response. Because of its proposed importance in oncology, this protein has become a popular target for drug discovery, efforts which have as yet brought little success. This study demonstrates that adenosine-derived HSP70 inhibitors potentially bind to the protein with a novel mechanism of action, the stabilization by desolvation of an intramolecular salt-bridge which induces a conformational change in the protein, leading to high affinity ligands. We also demonstrate that through the application of this mechanism, adenosine-derived HSP70 inhibitors can be optimized in a rational manner. PMID:27119979

  11. Computational design of a protein-based enzyme inhibitor

    PubMed Central

    Procko, Erik; Hedman, Rickard; Hamilton, Keith; Seetharaman, Jayaraman; Fleishman, Sarel J.; Su, Min; Aramini, James; Kornhaber, Gregory; Hunt, John F.; Tong, Liang; Montelione, Gaetano T.; Baker, David

    2013-01-01

    While there has been considerable progress in designing protein-protein interactions, the design of proteins that bind polar surfaces is an unmet challenge. We describe the computational design of a protein that binds the acidic active site of hen egg lysozyme and inhibits the enzyme. The design process starts with two polar amino acids that fit deep into the enzyme active site, identifies a protein scaffold that supports these residues and is complementary in shape to the lysozyme active site region, and finally optimizes the surrounding contact surface for high affinity binding. Following affinity maturation, a protein designed using this method bound lysozyme with low nanomolar affinity, and a combination of NMR studies, crystallography and knockout mutagenesis confirmed the designed binding surface and orientation. Saturation mutagenesis with selection and deep sequencing demonstrated that specific designed interactions extending well beyond the centrally grafted polar residues are critical for high affinity binding. PMID:23827138

  12. Computational design of a protein-based enzyme inhibitor.

    PubMed

    Procko, Erik; Hedman, Rickard; Hamilton, Keith; Seetharaman, Jayaraman; Fleishman, Sarel J; Su, Min; Aramini, James; Kornhaber, Gregory; Hunt, John F; Tong, Liang; Montelione, Gaetano T; Baker, David

    2013-09-23

    While there has been considerable progress in designing protein-protein interactions, the design of proteins that bind polar surfaces is an unmet challenge. We describe the computational design of a protein that binds the acidic active site of hen egg lysozyme and inhibits the enzyme. The design process starts with two polar amino acids that fit deep into the enzyme active site, identifies a protein scaffold that supports these residues and is complementary in shape to the lysozyme active-site region, and finally optimizes the surrounding contact surface for high-affinity binding. Following affinity maturation, a protein designed using this method bound lysozyme with low nanomolar affinity, and a combination of NMR studies, crystallography, and knockout mutagenesis confirmed the designed binding surface and orientation. Saturation mutagenesis with selection and deep sequencing demonstrated that specific designed interactions extending well beyond the centrally grafted polar residues are critical for high-affinity binding.

  13. Chemoproteomics-Enabled Discovery of a Potent and Selective Inhibitor of the DNA Repair Protein MGMT.

    PubMed

    Wang, Chao; Abegg, Daniel; Hoch, Dominic G; Adibekian, Alexander

    2016-02-18

    We present a novel chemical scaffold for cysteine-reactive covalent inhibitors. Chloromethyl triazoles (CMTs) are readily accessed in only two chemical steps, thus enabling the rapid optimization of the pharmacological properties of these inhibitors. We demonstrate the tunability of the CMTs towards a specific biological target by synthesizing AA-CW236 as the first potent non-pseudosubstrate inhibitor of the O(6) -alkylguanine DNA methyltransferase (MGMT), a protein of major clinical significance for the treatment of several severe cancer forms. Using quantitative proteomics profiling techniques, we show that AA-CW236 exhibits a high degree of selectivity towards MGMT. Finally, we validate the effectiveness of our MGMT inhibitor in combination with the DNA alkylating drug temozolomide in breast and colon cancer cells by fluorescence imaging and a cell-viability assay. Our results may open a new avenue towards the development of a clinically approved MGMT inhibitor.

  14. Inhibition of the 20S proteosome by a protein proteinase inhibitor: evidence that a natural serine proteinase inhibitor can inhibit a threonine proteinase.

    PubMed

    Yabe, Kimihiko; Koide, Takehiko

    2009-02-01

    The 20S proteasome (20S) is an intracellular threonine proteinase (Mr 750,000) that plays important roles in many cellular regulations. Several synthetic peptide inhibitors and bacteria-derived inhibitors such as lactacystin and epoxomicin have been identified as potent proteasome inhibitors. However, essentially no protein proteinase inhibitor has been characterized. By examining several small size protein proteinase inhibitors, we found that a well-known serine proteinase inhibitor from bovine pancreas, basic pancreatic trypsin inhibitor (BPTI), inhibits the 20S in vitro and ex vivo. Inhibition of the 20S by BPTI was time- and concentration-dependent, and stoichiometric. To inhibit the 20S activity, BPTI needs to enter into the interior of the 20S molecule. The molar ratio of BPTI to the 20S in the complex was estimated as approximately six BPTI to one 20S, thereby two sets of three peptidase activities (trypsin-like, chymotrypsin-like and caspase-like) of the 20S were all inhibited. These results indicate that an entrance hole to the 20S formed by seven alpha-subunits is sufficiently large for BPTI to enter. This report is essentially the initial description of the inhibition of a threonine proteinase by a protein serine proteinase inhibitor, suggesting a common mechanism of inhibition between serine and threonine proteinases by a natural protein proteinase inhibitor.

  15. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  16. Discovery of a Potent Inhibitor of Replication Protein A Protein-Protein Interactions Using a Fragment-Linking Approach

    SciTech Connect

    Frank, Andreas O.; Feldkamp, Michael D.; Kennedy, J. Phillip; Waterson, Alex G.; Pelz, Nicholas F.; Patrone, James D.; Vangamudi, Bhavatarini; Camper, DeMarco V.; Rossanese, Olivia W.; Chazin, Walter J.; Fesik, Stephen W.

    2013-10-22

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA)-binding protein, is involved in nearly all cellular DNA transactions. The RPA N-terminal domain (RPA70N) is a recruitment site for proteins involved in DNA-damage response and repair. Selective inhibition of these protein–protein interactions has the potential to inhibit the DNA-damage response and to sensitize cancer cells to DNA-damaging agents without affecting other functions of RPA. To discover a potent, selective inhibitor of the RPA70N protein–protein interactions to test this hypothesis, we used NMR spectroscopy to identify fragment hits that bind to two adjacent sites in the basic cleft of RPA70N. High-resolution X-ray crystal structures of RPA70N–ligand complexes revealed how these fragments bind to RPA and guided the design of linked compounds that simultaneously occupy both sites. We have synthesized linked molecules that bind to RPA70N with submicromolar affinity and minimal disruption of RPA’s interaction with ssDNA.

  17. Structural Basis for Binding and Selectivity of Antimalarial and Anticancer Ethylenediamine Inhibitors to Protein Farnesyltransferase

    SciTech Connect

    Hast, Michael A.; Fletcher, Steven; Cummings, Christopher G.; Pusateri, Erin E.; Blaskovich, Michelle A.; Rivas, Kasey; Gelb, Michael H.; Voorhis, Wesley C.Van; Sebti, Said M.; Hamilton, Andrew D.; Beese, Lorena S. ); ); ); )

    2009-03-20

    Protein farnesyltransferase (FTase) catalyzes an essential posttranslational lipid modification of more than 60 proteins involved in intracellular signal transduction networks. FTase inhibitors have emerged as a significant target for development of anticancer therapeutics and, more recently, for the treatment of parasitic diseases caused by protozoan pathogens, including malaria (Plasmodium falciparum). We present the X-ray crystallographic structures of complexes of mammalian FTase with five inhibitors based on an ethylenediamine scaffold, two of which exhibit over 1000-fold selective inhibition of P. falciparum FTase. These structures reveal the dominant determinants in both the inhibitor and enzyme that control binding and selectivity. Comparison to a homology model constructed for the P. falciparum FTase suggests opportunities for further improving selectivity of a new generation of antimalarial inhibitors.

  18. Imbalance in chemical space: How to facilitate the identification of protein-protein interaction inhibitors

    NASA Astrophysics Data System (ADS)

    Kuenemann, Mélaine A.; Labbé, Céline M.; Cerdan, Adrien H.; Sperandio, Olivier

    2016-04-01

    Protein-protein interactions (PPIs) play vital roles in life and provide new opportunities for therapeutic interventions. In this large data analysis, 3,300 inhibitors of PPIs (iPPIs) were compared to 17 reference datasets of collectively ~566,000 compounds (including natural compounds, existing drugs, active compounds on conventional targets, etc.) using a chemoinformatics approach. Using this procedure, we showed that comparable classes of PPI targets can be formed using either the similarity of their ligands or the shared properties of their binding cavities, constituting a proof-of-concept that not only can binding pockets be used to group PPI targets, but that these pockets certainly condition the properties of their corresponding ligands. These results demonstrate that matching regions in both chemical space and target space can be found. Such identified classes of targets could lead to the design of PPI-class-specific chemical libraries and therefore facilitate the development of iPPIs to the stage of drug candidates.

  19. Senescence in isolated carnation petals : effects of indoleacetic Acid and inhibitors of protein synthesis.

    PubMed

    Wulster, G; Sacalis, J; Janes, H W

    1982-10-01

    Indoleacetic acid induces senescence in isolated carnation (Dianthus caryophyllus, cv. White Sim) petals, increasing the duration and amount of ethylene production. This effect is inhibited by Actinomycin D, an inhibitor of RNA synthesis, and cycloheximide, a translational inhibitor of protein synthesis. The ability of petals to respond to indoleacetic acid appears to be a function of physiological age. Indoleacetic acid is capable of enhancing ethylene evolution and senescence only in specific portions of the petal.

  20. Targeting inhibitors of apoptosis proteins (IAPs) for new breast cancer therapeutics.

    PubMed

    Wang, Shaomeng; Bai, Longchuan; Lu, Jianfeng; Liu, Liu; Yang, Chao-Yie; Sun, Haiying

    2012-12-01

    Apoptosis resistance is a hallmark of human cancer. Research in the last two decades has identified key regulators of apoptosis, including inhibitor of apoptosis proteins (IAPs). These critical apoptosis regulators have been targeted for the development of new cancer therapeutics. In this article, we will discuss three members of IAP proteins, namely XIAP, cIAP1 and cIAP2, as cancer therapeutic targets and the progress made in developing new cancer therapeutic agents to target these IAP proteins.

  1. Effects of selected sulfhydryl inhibitors on nonhistone chromosomal proteins of HeLa cells.

    PubMed

    Knock, F E; Stein, G S; Davis, J; Galt, R M; Oester, Y T; Sylvester, R

    1975-01-01

    Effects of the SH inhibitor sodium iodoacetate, alone and with adjuncts menadiol diphosphate, sodium malonate, sodium fluoride and heparin, on incorporation of tryptophane-3 H into nonhistone chromosomal proteins of HeLa cells were examined. The drugs block incorporation of tryptophane-3 H into nonhistone chromosomal proteins far more than incorporation of leucine-3 H into total cellular proteins. Drug effects on thymidine phosphorylation and DNA synthesis in HeLa cells exceed corresponding effects on fibroblasts from normal healing wounds.

  2. Role of inter-alpha-inhibitor and its related proteins in urolithiasis. Purification of an inter-alpha-inhibitor related protein from the bovine kidney.

    PubMed

    Atmani, F; Khan, S R

    1999-01-01

    Urine contains several macromolecules that inhibit calcium oxalate (CaOx) crystallization. Among them is bikunin, the light chain of most of the inter-alpha-inhibitor (IalphaI) family of glycoproteins. This study aimed to verify whether bikunin and other members of the IalphaI family are synthesized in the kidneys or derived exclusively from the plasma. Proteins extracted from homogenized bovine kidney were applied successively to three chromatographic steps on DEAE-Sephacel, Sephacryl S-300, and Mono Q column. The inhibitory activity was assayed using a CaOx crystallization system. The presence of IalphaI-related proteins was determined by electrophoresis and Western blotting. The results showed that kidney extract contained a 125-kDa protein that cross-reacted with anti-IalphaI antibodies. This protein inhibited CaOx crystallization efficiently. According to its molecular weight and immunoreaction with anti-IalphaI antibody, the 125-kDa protein could be pre-alpha-inhibitor. The latter is known to encompass a heavy chain and bikunin, which may explain its inhibitory activity against CaOx crystallization. Consequently, we hypothesize that kidneys may produce some IalphaI-related proteins that are involved in the inhibition of stone formation.

  3. Eliminating anti-nutritional plant food proteins: the case of seed protease inhibitors in pea.

    PubMed

    Clemente, Alfonso; Arques, Maria C; Dalmais, Marion; Le Signor, Christine; Chinoy, Catherine; Olias, Raquel; Rayner, Tracey; Isaac, Peter G; Lawson, David M; Bendahmane, Abdelhafid; Domoney, Claire

    2015-01-01

    Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving

  4. Eliminating Anti-Nutritional Plant Food Proteins: The Case of Seed Protease Inhibitors in Pea

    PubMed Central

    Clemente, Alfonso; Arques, Maria C.; Dalmais, Marion; Le Signor, Christine; Chinoy, Catherine; Olias, Raquel; Rayner, Tracey; Isaac, Peter G.; Lawson, David M.; Bendahmane, Abdelhafid; Domoney, Claire

    2015-01-01

    Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving

  5. Hemin as a generic and potent protein misfolding inhibitor

    SciTech Connect

    Liu, Yanqin; Carver, John A.; Ho, Lam H.; Elias, Abigail K.; Musgrave, Ian F.; Pukala, Tara L.

    2014-11-14

    Highlights: • Hemin prevents Aβ42, α-synuclein and RCM-κ-casein forming amyloid fibrils. • Hemin inhibits the β-sheet structure formation of Aβ42. • Hemin reduces the cell toxicity caused by fibrillar Aβ42. • Hemin dissociates partially formed Aβ42 fibrils. • Hemin prevents amorphous aggregation by ADH, catalase and γs-crystallin. - Abstract: Protein misfolding causes serious biological malfunction, resulting in diseases including Alzheimer’s disease, Parkinson’s disease and cataract. Molecules which inhibit protein misfolding are a promising avenue to explore as therapeutics for the treatment of these diseases. In the present study, thioflavin T fluorescence and transmission electron microscopy experiments demonstrated that hemin prevents amyloid fibril formation of kappa-casein, amyloid beta peptide and α-synuclein by blocking β-sheet structure assembly which is essential in fibril aggregation. Further, inhibition of fibril formation by hemin significantly reduces the cytotoxicity caused by fibrillar amyloid beta peptide in vitro. Interestingly, hemin degrades partially formed amyloid fibrils and prevents further aggregation to mature fibrils. Light scattering assay results revealed that hemin also prevents protein amorphous aggregation of alcohol dehydrogenase, catalase and γs-crystallin. In summary, hemin is a potent agent which generically stabilises proteins against aggregation, and has potential as a key molecule for the development of therapeutics for protein misfolding diseases.

  6. Angiogenic inhibitor protein fractions derived from shark cartilage.

    PubMed

    Bargahi, Afshar; Rabbani-Chadegani, Azra

    2008-02-01

    Development of therapies based on the growth inhibition of new blood vessels is among the most intensively studied approaches to the treatment of cancer and other angiogenesis-related diseases. Shark cartilage has been proven to have inhibitory effects on the endothelial cell angiogenesis, metastasis, cell adhesion and MMP (matrix metalloprotease) activity. In the present study, we have used a chromatography-based procedure for the isolation and partial purification of a shark cartilage protein fraction containing anti-angiogenesis activity. Proteins were extracted in 4 M guanidinium chloride, followed by sequential anion- and cation-exchange column chromatography. Angiogenesis assays were performed using the rat aortic ring and chick CAM (chorioallantoic membrane) assay models. The results show that the final fraction contains two proteins with molecular masses of 14.7 and 16 kDa. The protein fraction is able to block microvessel sprouting in the collagen-embedded rat aortic ring assay in vitro and inhibition of capillary sprouting in the CAM assay in vivo. It is suggested that these are partially purified anti-angiogenesis proteins, which have further biotechnological or biomedical applications.

  7. Natural phospholipase A(2) myotoxin inhibitor proteins from snakes, mammals and plants.

    PubMed

    Lizano, Sergio; Domont, Gilberto; Perales, Jonas

    2003-12-15

    A renewed interest in the phenomenon of inter- and intra-species resistance towards the toxicity of snake venoms, coupled with the search for new strategies for treatment of snake envenomations, has prompted the discovery of proteins which neutralize the major toxic components of these venoms. Among these emerging groups of proteins are inhibitors of toxic phospholipases A2 (PLA2s), many of which exhibit a wide range of toxic effects including muscle-tissue damage, neurotoxicity, and inflammation. These proteins have been isolated from both venomous and non-venomous snakes, mammals, and most recently from medicinal plant extracts. The snake blood-derived inhibitors have been grouped into three major classes, alpha, beta, and gamma, based on common structural motifs found in other proteins with diverse physiological properties. In mammals, DM64, an anti-myotoxic protein isolated from opossum serum, belongs to the immunoglobulin super gene family and is homologous to human alpha1B-glycoprotein and DM43, a metalloproteinase inhibitor from the same organism. In plants, a short note is made of WSG, a newly described anti-toxic-PLA2 glycoprotein isolated from Withania somnifera (Ashwaganda), a medicinal plant whose aqueous extracts neutralize the PLA2 activity of the Naja naja venom. The implications of these new groups of PLA2 toxin inhibitors in the context of our current understanding of snake biology as well as in the development of novel therapeutic reagents in the treatment of snake envenomations worldwide are discussed.

  8. Inhibitors of cholesterol biosynthesis increase hepatic low-density lipoprotein receptor protein degradation.

    PubMed

    Ness, G C; Zhao, Z; Lopez, D

    1996-01-15

    Inhibitors of cholesterol biosynthesis are believed to lower serum cholesterol levels by enhancing the removal of serum low-density lipoprotein (LDL) by increasing hepatic LDL receptor function. Thus, the effects of several different inhibitors of cholesterol biosynthesis were examined for their effects on the expression of the hepatic LDL receptor in rats. We found that administration of inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase such as lovastatin, pravastatin, fluvastatin, and rivastatin resulted in increased hepatic LDL receptor mRNA levels. Surprisingly, these agents failed to increase levels of immunoreactive LDL receptor protein in rat liver even when the dose and length of treatment were increased. Treatment of rats with zaragozic acid A, an inhibitor of squalene synthase, caused even greater increases in hepatic LDL receptor mRNA levels, but did not increase levels of immunoreactive protein. Further investigation revealed that the rate of degradation of the hepatic LDL receptor was increased in rats given inhibitors of cholesterol biosynthesis. The greatest increase in the rate of degradation was seen in animals treated with zaragozic acid A which caused the largest increase in hepatic LDL receptor mRNA levels. In contrast, hepatic LDL receptor protein was stabilized in cholesterol-fed rats. It appears that increased potential for LDL receptor protein synthesis, reflected in increased mRNA levels, is offset by a corresponding increase in the rate of receptor protein degradation resulting in constant steady-state levels of hepatic LDL receptor protein. These findings are suggestive of increased cycling of the hepatic LDL receptor. This postulated mechanism can provide for enhanced hepatic uptake of lipoproteins without increasing steady-state levels of LDL receptor protein.

  9. Identification and characterization of alpha-I-proteinase inhibitor from common carp sarcoplasmic proteins.

    PubMed

    Siriangkanakun, Siriphon; Li-Chan, Eunice C Y; Yongsawadigul, Jirawat

    2016-02-01

    Purification of proteinase inhibitor from common carp (Cyprinus carpio) sarcoplasmic proteins resulted in 2.8% yield with purification fold of 111. Two inhibitors, namely inhibitor I and II, exhibited molecular mass of 47 and 52 kDa, respectively, based on non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both inhibitors I and II were identified to be alpha-1-proteinase inhibitor (α1-PI) based on LC-MS/MS. They were glycoproteins and molecular mass after peptide-N-glycosidase F treatment was 38 and 45 kDa, respectively. The N-glycosylation sites of both inhibitors were determined to be at N214 and N226. The inhibitors specifically inhibited trypsin. The common carp α1-PI showed high thermal stability with denaturation temperatures of 65.43 and 73.31 °C, which were slightly less than those of ovomucoid. High stability toward NaCl was also evident up to 3M. The common carp α1-PI effectively reduced autolytic degradation of bigeye snapper surimi at the concentration as low as 0.025%.

  10. Heavy metal ions are potent inhibitors of protein folding

    SciTech Connect

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-07-25

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd{sup 2+}, Hg{sup 2+} and Pb{sup 2+} proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC{sub 50} in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.

  11. Structure-Based Design of Inhibitors of Protein–Protein Interactions: Mimicking Peptide Binding Epitopes

    PubMed Central

    Pelay-Gimeno, Marta; Glas, Adrian; Koch, Oliver; Grossmann, Tom N

    2015-01-01

    Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices. PMID:26119925

  12. Molecular dynamics of protein kinase-inhibitor complexes: a valid structural information.

    PubMed

    Caballero, Julio; Alzate-Morales, Jans H

    2012-01-01

    Protein kinases (PKs) are key components of protein phosphorylation based signaling networks in eukaryotic cells. They have been identified as being implicated in many diseases. High-resolution X-ray crystallographic data exist for many PKs and, in many cases, these structures are co-complexed with inhibitors. Although this valuable information confirms the precise structure of PKs and their complexes, it ignores the dynamic movements of the structures which are relevant to explain the affinities and selectivity of the ligands, to characterize the thermodynamics of the solvated complexes, and to derive predictive models. Atomistic molecular dynamics (MD) simulations present a convenient way to study PK-inhibitor complexes and have been increasingly used in recent years in structure-based drug design. MD is a very useful computational method and a great counterpart for experimentalists, which helps them to derive important additional molecular information. That enables them to follow and understand structure and dynamics of protein-ligand systems with extreme molecular detail on scales where motion of individual atoms can be tracked. MD can be used to sample dynamic molecular processes, and can be complemented with more advanced computational methods (e.g., free energy calculations, structure-activity relationship analysis). This review focuses on the most commonly applications to study PK-inhibitor complexes using MD simulations. Our aim is that researchers working in the design of PK inhibitors be aware of the benefits of this powerful tool in the design of potent and selective PK inhibitors.

  13. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    SciTech Connect

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G.

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  14. Synthetic silvestrol analogues as potent and selective protein synthesis inhibitors.

    PubMed

    Liu, Tao; Nair, Somarajan J; Lescarbeau, André; Belani, Jitendra; Peluso, Stéphane; Conley, James; Tillotson, Bonnie; O'Hearn, Patrick; Smith, Sherri; Slocum, Kelly; West, Kip; Helble, Joseph; Douglas, Mark; Bahadoor, Adilah; Ali, Janid; McGovern, Karen; Fritz, Christian; Palombella, Vito J; Wylie, Andrew; Castro, Alfredo C; Tremblay, Martin R

    2012-10-25

    Misregulation of protein translation plays a critical role in human cancer pathogenesis at many levels. Silvestrol, a cyclopenta[b]benzofuran natural product, blocks translation at the initiation step by interfering with assembly of the eIF4F translation complex. Silvestrol has a complex chemical structure whose functional group requirements have not been systematically investigated. Moreover, silvestrol has limited development potential due to poor druglike properties. Herein, we sought to develop a practical synthesis of key intermediates of silvestrol and explore structure-activity relationships around the C6 position. The ability of silvestrol and analogues to selectively inhibit the translation of proteins with high requirement on the translation-initiation machinery (i.e., complex 5'-untranslated region UTR) relative to simple 5'UTR was determined by a cellular reporter assay. Simplified analogues of silvestrol such as compounds 74 and 76 were shown to have similar cytotoxic potency and better ADME characteristics relative to those of silvestrol.

  15. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.

    PubMed

    Petros, Andrew M; Swann, Steven L; Song, Danying; Swinger, Kerren; Park, Chang; Zhang, Haichao; Wendt, Michael D; Kunzer, Aaron R; Souers, Andrew J; Sun, Chaohong

    2014-03-15

    Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts.

  16. Neurite outgrowth of NG108-15 cells induced by heat shock protein 90 inhibitors.

    PubMed

    Jin, Erika; Sano, Mamoru

    2008-12-01

    We previously reported that radicicol (Rad) and geldanamycin (Geld), heat shock protein 90 (Hsp90) inhibitors, potentiate neurite growth of cultured sensory neurons from chick embryo. We now show that the antibiotics induce neurite growth in NG108-15 cells. Treatment of the cells with these drugs caused transient decrease in protein levels of Raf1, ERK1/2, phosphorylated ERK1/2, Akt1, and CDK4. The neurite growth of NG108-15 induced by the inhibitors was blocked by actynomycin D, but the neurite growth stimulated by dbcAMP in the cells was not affected. The neurite growth could be due to a change in the synthesis of some specific protein(s) and is speculated to be due to the transient downregulation of particular-signaling molecules stabilized by Hsp90.

  17. Secretory leukocyte protease inhibitor (SLPI) might contaminate murine monoclonal antibodies after purification on protein G.

    PubMed

    Schenk, Jörg A; Fettke, Joerg; Lenz, Christine; Albers, Katharina; Mallwitz, Frank; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Kusch, Emely; Sellrie, Frank

    2012-03-31

    The large scale production of a monoclonal anti-progesterone antibody in serum free medium followed by affinity chromatography on protein G lead to a contamination of the antibody sample with a protein of about 14 kDa. This protein was identified by mass spectrometry as secretory leukocyte protease inhibitor (SLPI). This SLPI contamination lead to a failure of the fiber-optic based competitive fluorescence assay to detect progesterone in milk. Purification of the monoclonal antibody using protein A columns circumvented this problem.

  18. Protein synthesis inhibitors prevent both spontaneous and hormone-dependent maturation of isolated mouse oocytes

    SciTech Connect

    Downs, S.M. )

    1990-11-01

    The present study was carried out to examine the role of protein synthesis in mouse oocyte maturation in vitro. In the first part of this study, the effects of cycloheximide (CX) were tested on spontaneous meiotic maturation when oocytes were cultured in inhibitor-free medium. CX reversibly suppressed maturation of oocytes as long as maturation was either initially prevented by the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine (IBMX), or delayed by follicle-stimulating hormone (FSH). In the second part of this study, the actions of protein synthesis inhibitors were tested on hormone-induced maturation. CEO were maintained in meiotic arrest for 21-22 h with hypoxanthine, and germinal vesicle breakdown (GVB) was induced with follicle-stimulating hormone (FSH). Three different protein synthesis inhibitors (CX, emetine (EM), and puromycin (PUR)) each prevented the stimulatory action of FSH on GVB in a dose-dependent fashion. This was accompanied by a dose-dependent suppression of 3H-leucine incorporation by oocyte-cumulus cell complexes. The action of these inhibitors on FSH- and epidermal growth factor (EGF)-induced GVB was next compared. All three drugs lowered the frequency of GVB in the FSH-treated groups, below even that of the controls (drug + hypoxanthine); the drugs maintained meiotic arrest at the control frequencies in the EGF-treated groups. Puromycin aminonucleoside, an analog of PUR with no inhibitory action on protein synthesis, had no effect. The three inhibitors also suppressed the stimulatory action of FSH on oocyte maturation when meiotic arrest was maintained with the cAMP analog, dbcAMP.

  19. Discovery of Benzisoxazoles as Potent Inhibitors of Chaperone Heat Shock Protein 90

    SciTech Connect

    Gopalsamy, Ariamala; Shi, Mengxiao; Golas, Jennifer; Vogan, Erik; Jacob, Jaison; Johnson, Mark; Lee, Frederick; Nilakantan, Ramaswamy; Petersen, Roseann; Svenson, Kristin; Chopra, Rajiv; Tam, May S.; Wen, Yingxia; Ellingboe, John; Arndt, Kim; Boschelli, Frank

    2008-08-11

    Heat shock protein 90 (Hsp90) is a molecular chaperone that is responsible for activating many signaling proteins and is a promising target in tumor biology. We have identified small-molecule benzisoxazole derivatives as Hsp90 inhibitors. Crystallographic studies show that these compounds bind in the ATP binding pocket interacting with the Asp93. Structure based optimization led to the identification of potent analogues, such as 13, with good biochemical profiles.

  20. Novel protein kinase C inhibitors: synthesis and PKC inhibition of beta-substituted polythiophene derivatives.

    PubMed

    Xu, W C; Zhou, Q; Ashendel, C L; Chang, C T; Chang, C J

    1999-08-02

    A series of beta-substituted polythiophene derivatives was synthesized through palladium-catalyzed coupling reaction. Their structure-protein kinase C (PKC) inhibitory activity relationship was studied. The carboxaldehyde and hydroxymethyl derivatives of alpha-terthiophene were potent PKC inhibitors (IC50 = 10(-7) M).

  1. COMPARATIVE PATHOGENESIS OF HALOACETIC ACID AND PROTEIN KINASE INHIBITOR EMBRYOTOXICITY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    Comparative pathogenesis of haloacetic acid and protein kinase inhibitor embryotoxicity in mouse whole embryo culture.

    Ward KW, Rogers EH, Hunter ES 3rd.

    Curriculum in Toxicology, University of North Carolina at Chapel Hill, 27599-7270, USA.

    Haloacetic acids ...

  2. The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite.

    PubMed

    Rogers, M J; Cundliffe, E; McCutchan, T F

    1998-03-01

    The antibiotic micrococcin is a potent growth inhibitor of the human malaria parasite Plasmodium falciparum, with a 50% inhibitory concentration of 35 nM. This is comparable to or less than the corresponding levels of commonly used antimalarial drugs. Micrococcin, like thiostrepton, putatively targets protein synthesis in the plastid-like organelle of the parasite.

  3. Dual roles of F123 in protein homodimerization and inhibitor binding to biotin protein ligase from Staphylococcus aureus.

    PubMed

    Soares da Costa, Tatiana P; Yap, Min Y; Perugini, Matthew A; Wallace, John C; Abell, Andrew D; Wilce, Matthew C J; Polyak, Steven W; Booker, Grant W

    2014-01-01

    Protein biotinylation is catalysed by biotin protein ligase (BPL). The most characterized BPL is from Escherichia coli where it functions as both a biotin ligase and a homodimeric transcriptional repressor. Here we investigated another bifunctional BPL from the clinically important Staphylococcus aureus (SaBPL). Unliganded SaBPL (apo) exists in a dimer-monomer equilibrium at low micromolar concentrations - a stark contrast to E. coli BPL (EcBPL) that is monomeric under the same conditions. EMSA and SAXS analysis demonstrated that dimeric apo SaBPL adopted a conformation that was competent to bind DNA and necessary for it to function as a transcription factor. The SaBPL dimer-monomer dissociation constant was 5.8-fold tighter when binding the inhibitor biotin acetylene, but unchanged with biotin. F123, located in the dimer interface, was critical for homodimerization. Inhibition studies together with surface plasmon resonance analyses revealed a strong correlation between inhibitor potency and slow dissociation kinetics. A 24-fold difference in Ki values for these two enzymes was explained by differences in enzyme:inhibitor dissociation rates. Substitution of F123 in SaBPL and its equivalent in EcBPL altered both inhibitor potency and dissociation. Hence, F123 in SaBPL has novel roles in both protein dimerization and ligand-binding that have not been reported in EcBPL.

  4. AutoGrow: A Novel Algorithm for Protein Inhibitor Design

    PubMed Central

    Durrant, Jacob; Amaro, Rommie E.; McCammon, J. Andrew

    2009-01-01

    Due in part to the increasing availability of crystallographic protein structures as well as rapid improvements in computing power, the past few decades have seen an explosion in the field of computer-based rational drug design. Several algorithms have been developed to identify or generate potential ligands in silico by optimizing the ligand-receptor hydrogen bond, electrostatic, and hydrophobic interactions. We here present AutoGrow, a novel computer-aided drug design algorithm that combines the strengths of both fragment-based growing and docking algorithms. To validate AutoGrow, we recreate three crystallographically resolved ligands from their constituent fragments. PMID:19207419

  5. Marine Natural Products as Breast Cancer Resistance Protein Inhibitors

    PubMed Central

    Cherigo, Lilia; Lopez, Dioxelis; Martinez-Luis, Sergio

    2015-01-01

    Breast cancer resistance protein (BCRP) is a protein belonging to the ATP-binding cassette (ABC) transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute lymphocytic leukemias. The overexpression of BCRP contributes to the resistance of several chemotherapeutic drugs, such as topotecan, methotrexate, mitoxantrone, doxorubicin and daunorubicin. The Food and Drugs Administration has already recognized that BCRP is clinically one of the most important drug transporters, mainly because it leads to a reduction of clinical efficacy of various anticancer drugs through its ATP-dependent drug efflux pump function as well as its apparent participation in drug resistance. This review article aims to summarize the different research findings on marine natural products with BCRP inhibiting activity. In this sense, the potential modulation of physiological targets of BCRP by natural or synthetic compounds offers a great possibility for the discovery of new drugs and valuable research tools to recognize the function of the complex ABC-transporters. PMID:25854646

  6. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore.

    PubMed

    Miller, J Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H James; Huband, Michael D; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y; Mehrens, Shawn; Mueller, W Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J V N Vara; Shelly, John A; Skerlos, Laura; Sulavik, Mark; Thomas, V Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C Kendall

    2009-02-10

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.

  7. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    SciTech Connect

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H. James; Huband, Michael D.; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y.; Mehrens, Shawn; Mueller, W. Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J.V.N. Vara; Shelly, John A.; Skerlos, Laura; Sulavik, Mark; Thomas, V. Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C. Kendall

    2009-06-25

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.

  8. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers

    PubMed Central

    Jhaveri, Komal; Taldone, Tony; Modi, Shanu; Chiosis, Gabriela

    2011-01-01

    Hsp90 is an ATP dependent molecular chaperone protein which integrates multiple oncogenic pathways. As such, Hsp90 inhibition is a promising anti-cancer strategy. Several inhibitors that act on Hsp90 by binding to its N-terminal ATP pocket have entered clinical evaluation. Robust pre-clinical data suggested anti-tumor activity in multiple cancer types. Clinically, encouraging results have been demonstrated in melanoma, acute myeloid leukemia, castrate refractory prostate cancer, non-small cell lung carcinoma and multiple myeloma. In breast cancer, proof-of-concept was demonstrated by first generation Hsp90 inhibitors in combination with trastuzumab mainly in human epidermal growth factor receptor 2 (HER2) + metastatic breast cancer. There are a multitude of second generation Hsp90 inhibitors currently under investigation. To date, however, there is no FDA approved Hsp90 inhibitor nor standardized assay to ascertain Hsp90 inhibition. This review summarizes the current status of both first and second generation Hsp90 inhibitors based on their chemical classification and stage of clinical development. It also discusses the pharmacodynamic assays currently implemented in clinic as well as other novel strategies aimed at enhancing the effectiveness of Hsp90 inhibitors. Ultimately, these efforts will aid in maximizing the full potential of this class of agents. PMID:22062686

  9. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B.

    PubMed

    Zhi, Ying; Gao, Li-Xin; Jin, Yi; Tang, Chun-Lan; Li, Jing-Ya; Li, Jia; Long, Ya-Qiu

    2014-07-15

    Protein tyrosine phosphatase 1B is a negative regulator in the insulin and leptin signaling pathways, and has emerged as an attractive target for the treatment of type 2 diabetes and obesity. However, the essential pharmacophore of charged phosphotyrosine or its mimetic confer low selectivity and poor cell permeability. Starting from our previously reported aryl diketoacid-based PTP1B inhibitors, a drug-like scaffold of 4-quinolone-3-carboxylic acid was introduced for the first time as a novel surrogate of phosphotyrosine. An optimal combination of hydrophobic groups installed at C-6, N-1 and C-3 positions of the quinolone motif afforded potent PTP1B inhibitors with low micromolar IC50 values. These 4-quinolone-3-carboxylate based PTP1B inhibitors displayed a 2-10 fold selectivity over a panel of PTP's. Furthermore, the bidentate inhibitors of 4-quinolone-3-carboxylic acids conjugated with aryl diketoacid or salicylic acid were cell permeable and enhanced insulin signaling in CHO/hIR cells. The kinetic studies and molecular modeling suggest that the 4-quinolone-3-carboxylates act as competitive inhibitors by binding to the PTP1B active site in the WPD loop closed conformation. Taken together, our study shows that the 4-quinolone-3-carboxylic acid derivatives exhibit improved pharmacological properties over previously described PTB1B inhibitors and warrant further preclinical studies.

  10. Peptiderive server: derive peptide inhibitors from protein–protein interactions

    PubMed Central

    Sedan, Yuval; Marcu, Orly; Lyskov, Sergey; Schueler-Furman, Ora

    2016-01-01

    The Rosetta Peptiderive protocol identifies, in a given structure of a protein–protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a ‘hot segment’, a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive. PMID:27141963

  11. Rational tailoring of substrate and inhibitor affinity via ATRP polymer-based protein engineering.

    PubMed

    Murata, Hironobu; Cummings, Chad S; Koepsel, Richard R; Russell, Alan J

    2014-07-14

    Atom transfer radical polymerization (ATRP)-based protein engineering of chymotrypsin with a cationic polymer was used to tune the substrate specificity and inhibitor binding. Poly(quaternary ammonium) was grown from the surface of the enzyme using ATRP after covalent attachment of a protein reactive, water-soluble ATRP-initiator. This "grafting from" conjugation approach generated a high density of cationic ammonium ions around the biocatalytic core. Modification increased the surface area of the protein over 40-fold, and the density of modification on the protein surface was approximately one chain per 4 nm(2). After modification, bioactivity was increased at low pH relative to the activity of the native enzyme. In addition, the affinity of the enzyme for a peptide substrate was increased over a wide pH range. The massively cationic chymotrypsin, which included up to 2000 additional positive charges per molecule of enzyme, was also more stable at extremes of temperature and pH. Most interestingly, we were able to rationally control the binding of two oppositely charged polypeptide protease inhibitors, aprotinin and the Bowman-Birk trypsin-chymotrypsin inhibitor from Glycine max, to the cationic derivative of chymotrypsin. This study expands upon our efforts to use polymer-based protein engineering to predictably engineer enzyme properties without the need for molecular biology.

  12. Binding of natural and synthetic inhibitors to human heat shock protein 90 and their clinical application.

    PubMed

    Petrikaitė, Vilma; Matulis, Daumantas

    2011-01-01

    This review describes the recent progress in the field of heat shock protein 90 (Hsp90) inhibitor design. Hsp90 is a heat shock protein with a molecular weight of approximately 90 kDa. Hsp90 is considered a good anticancer target because its inhibition leads to inactivation of its numerous client proteins participating in various signaling and other processes involved in cancer progression. Numerous Hsp90 inhibitors-leads currently tested in clinical trials are presented in this review. Furthermore, this review emphasizes the application of biophysical binding assays in the development of Hsp90 inhibitors. The binding of designed lead compounds to various Hsp90 constructs is measured by isothermal titration calorimetry and thermal shift assay. These assays provide a detailed energetic insight of the binding reaction, including the enthalpy, entropy, heat capacity, and the Gibbs free energy. A detailed description of the binding energetics helps to extend our knowledge of structure-activity relationships in the design of more potent inhibitors. The most active compounds are then tested for their absorption, distribution, metabolism, elimination, toxicity, and activity against cancer cell lines.

  13. Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV.

    PubMed

    Sun, Qi; Wu, Runzhi; Cai, Sutang; Lin, Yuan; Sellers, Llewlyn; Sakamoto, Kaori; He, Biao; Peterson, Blake R

    2011-03-10

    Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl(4)-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold.

  14. Distinct folding pathways of two homologous disulfide proteins: bovine pancreatic trypsin inhibitor and tick anticoagulant peptide.

    PubMed

    Chang, Jui-Yoa

    2011-01-01

    The folding pathways of disulfide proteins vary substantially (Arolas et al., Trends Biochem Sci 31: 292-301, 2006). The diversity is mainly manifested by (a) the extent of heterogeneity of folding intermediates, (b) the extent of presence of native-like intermediates, and (c) the variation of folding kinetics. Even among structurally similar proteins, the difference can be enormous. This is demonstrated in this concise review with two structurally homologous kunitz-type protease inhibitors, bovine pancreatic trypsin inhibitor and tick anticoagulant peptide, as well as a group of cystine knot proteins. The diversity of their folding mechanisms is illustrated with two different folding techniques: (a) the conventional method of disulfide oxidation (oxidative folding), and (b) the novel method of disulfide scrambling (Chang, J Biol Chem 277: 120-126, 2002). This review also highlights the convergence of folding models concluded form the conventional conformational folding and those obtained by oxidative folding.

  15. Cellular Activity of New Small Molecule Protein Arginine Deiminase 3 (PAD3) Inhibitors.

    PubMed

    Jamali, Haya; Khan, Hasan A; Tjin, Caroline C; Ellman, Jonathan A

    2016-09-08

    The protein arginine deiminases (PADs) catalyze the post-translational deimination of arginine side chains. Multiple PAD isozymes have been characterized, and abnormal PAD activity has been associated with several human disease states. PAD3 has been characterized as a modulator of cell growth via apoptosis inducing factor and has been implicated in the neurodegenerative response to spinal cord injury. Here, we describe the design, synthesis, and evaluation of conformationally constrained versions of the potent and selective PAD3 inhibitor 2. The cell activity of representative inhibitors in this series was also demonstrated for the first time by rescue of thapsigargin-induced cell death in PAD3-expressing HEK293T cells.

  16. Key Structures and Interactions for Binding of Mycobacterium tuberculosis Protein Kinase B Inhibitors from Molecular Dynamics Simulation.

    PubMed

    Punkvang, Auradee; Kamsri, Pharit; Saparpakorn, Patchreenart; Hannongbua, Supa; Wolschann, Peter; Irle, Stephan; Pungpo, Pornpan

    2015-07-01

    Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity.

  17. Amyloid precursor protein selective gamma-secretase inhibitors for treatment of Alzheimer's disease

    PubMed Central

    2010-01-01

    Introduction Inhibition of gamma-secretase presents a direct target for lowering Aβ production in the brain as a therapy for Alzheimer's disease (AD). However, gamma-secretase is known to process multiple substrates in addition to amyloid precursor protein (APP), most notably Notch, which has limited clinical development of inhibitors targeting this enzyme. It has been postulated that APP substrate selective inhibitors of gamma-secretase would be preferable to non-selective inhibitors from a safety perspective for AD therapy. Methods In vitro assays monitoring inhibitor potencies at APP γ-site cleavage (equivalent to Aβ40), and Notch ε-site cleavage, in conjunction with a single cell assay to simultaneously monitor selectivity for inhibition of Aβ production vs. Notch signaling were developed to discover APP selective gamma-secretase inhibitors. In vivo efficacy for acute reduction of brain Aβ was determined in the PDAPP transgene model of AD, as well as in wild-type FVB strain mice. In vivo selectivity was determined following seven days x twice per day (b.i.d.) treatment with 15 mg/kg/dose to 1,000 mg/kg/dose ELN475516, and monitoring brain Aβ reduction vs. Notch signaling endpoints in periphery. Results The APP selective gamma-secretase inhibitors ELN318463 and ELN475516 reported here behave as classic gamma-secretase inhibitors, demonstrate 75- to 120-fold selectivity for inhibiting Aβ production compared with Notch signaling in cells, and displace an active site directed inhibitor at very high concentrations only in the presence of substrate. ELN318463 demonstrated discordant efficacy for reduction of brain Aβ in the PDAPP compared with wild-type FVB, not observed with ELN475516. Improved in vivo safety of ELN475516 was demonstrated in the 7d repeat dose study in wild-type mice, where a 33% reduction of brain Aβ was observed in mice terminated three hours post last dose at the lowest dose of inhibitor tested. No overt in-life or post

  18. Bovine Pancreatic Trypsin Inhibitor-Trypsin Complex as a Detection System for Recombinant Proteins

    NASA Astrophysics Data System (ADS)

    Borjigin, Jimo; Nathans, Jeremy

    1993-01-01

    Bovine pancreatic trypsin inhibitor (BPTI) binds to trypsin and anhydrotrypsin (an enzymatically inactive derivative of trypsin) with affinities of 6 x 10-14 and 1.1 x 10-13 M, respectively. We have taken advantage of the high affinity and specificity of this binding reaction to develop a protein tagging system in which biotinylated trypsin or biotinylated anhydrotrypsin is used as the reagent to detect recombinant fusion proteins into which BPTI has been inserted. Two proteins, opsin and growth hormone, were used as targets for insertional mutagenesis with BPTI. In each case, both domains of the fusion protein appear to be correctly folded. The fusion proteins can be specifically and efficiently detected by biotinylated trypsin or biotinylated anhydrotrypsin, as demonstrated by staining of transfected cells, protein blotting, affinity purification, and a mobility shift assay in SDS/polyacrylamide gels.

  19. Effect of a cyclooxygenase-2 inhibitor on postexercise muscle protein synthesis in humans

    PubMed Central

    Burd, Nicholas A.; Dickinson, Jared M.; LeMoine, Jennifer K.; Carroll, Chad C.; Sullivan, Bridget E.; Haus, Jacob M.; Jemiolo, Bozena; Trappe, Scott W.; Hughes, Gordon M.; Sanders, Charles E.

    2010-01-01

    Nonselective blockade of the cyclooxygenase (COX) enzymes in skeletal muscle eliminates the normal increase in muscle protein synthesis following resistance exercise. The current study tested the hypothesis that this COX-mediated increase in postexercise muscle protein synthesis is regulated specifically by the COX-2 isoform. Sixteen males (23 ± 1 yr) were randomly assigned to one of two groups that received three doses of either a selective COX-2 inhibitor (celecoxib; 200 mg/dose, 600 mg total) or a placebo in double-blind fashion during the 24 h following a single bout of knee extensor resistance exercise. At rest and 24 h postexercise, skeletal muscle protein fractional synthesis rate (FSR) was measured using a primed constant infusion of [2H5]phenylalanine coupled with muscle biopsies of the vastus lateralis, and measurements were made of mRNA and protein expression of COX-1 and COX-2. Mixed muscle protein FSR in response to exercise (P < 0.05) was not suppressed by the COX-2 inhibitor (0.056 ± 0.004 to 0.108 ± 0.014%/h) compared with placebo (0.074 ± 0.004 to 0.091 ± 0.005%/h), nor was there any difference (P > 0.05) between the placebo and COX-2 inhibitor postexercise when controlling for resting FSR. The COX-2 inhibitor did not influence COX-1 mRNA, COX-1 protein, or COX-2 protein levels, whereas it did increase (P < 0.05) COX-2 mRNA (3.0 ± 0.9-fold) compared with placebo (1.3 ± 0.3-fold). It appears that the elimination of the postexercise muscle protein synthesis response by nonselective COX inhibitors is not solely due to COX-2 isoform blockade. Furthermore, the current data suggest that the COX-1 enzyme is likely the main isoform responsible for the COX-mediated increase in muscle protein synthesis following resistance exercise in humans. PMID:19934404

  20. Studies on pyrrolopyrimidines as selective inhibitors of multidrug-resistance-associated protein in multidrug resistance.

    PubMed

    Wang, Shouming; Folkes, Adrian; Chuckowree, Irina; Cockcroft, Xiaoling; Sohal, Sukhjit; Miller, Warren; Milton, John; Wren, Stephen P; Vicker, Nigel; Depledge, Paul; Scott, John; Smith, Lyndsay; Jones, Hazel; Mistry, Prakash; Faint, Richard; Thompson, Deanne; Cocks, Simon

    2004-03-11

    Multidrug resistance mediated by P-glycoprotein (Pgp) or multidrug-resistance-associated protein (MRP) remains a major obstacle for successful treatment of cancer. Inhibition of Pgp and MRP transport is important for high efficacy of anticancer drugs. While several Pgp inhibitors have entered clinical trials, the development of specific MRP1 inhibitors is still in its infancy. In our screening program, we have identified a pyrrolopyrimidine (4) as a novel and selective MRP1 inhibitor. Subsequent SAR work on the 4-position of the template revealed the phenethylpiperazine side chain as a potent replacement of the benzylthio group of the lead molecule. Introduction of groups at the 2-position seems to have no detrimental effect on activity. Modifications to the nitrile group at the 7-position resulted in the identification of analogues with groups, such as amides, with superior pharmacokinetic profiles. In vivo efficacy has been demonstrated by xenograft studies on selected compounds.

  1. Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors

    PubMed Central

    Ojo, Kayode K; Larson, Eric T; Keyloun, Katelyn R; Castaneda, Lisa J; DeRocher, Amy E; Inampudi, Krishna K; Kim, Jessica E; Arakaki, Tracy L; Murphy, Ryan C; Zhang, Li; Napuli, Alberto J; Maly, Dustin J; Verlinde, Christophe LMJ; Buckner, Frederick S; Parsons, Marilyn; Hol, Wim GJ; Merritt, Ethan A; Van Voorhis, Wesley C

    2010-01-01

    New drugs are needed to treat toxoplasmosis. Toxoplasma gondii calcium-dependent protein kinases (TgCDPKs) are attractive targets because they are absent in mammals. We show that TgCDPK1 is inhibited by low nanomolar levels of bumped kinase inhibitors (BKIs), compounds designed to be inactive against mammalian kinases. Cocrystal structures of TgCDPK1 with BKIs confirm that the structural basis for selectivity is due to the unique glycine gatekeeper residue in the ATP-binding site at residue 128. We show that BKIs interfere with an early step in T. gondii infection of human cells in culture. Furthermore, we show that TgCDPK1 is the in vivo target of BKIs because T. gondii cells expressing a glycine to methionine gatekeeper mutant enzyme show significantly decreased sensitivity to this class of selective kinase inhibitors. Thus, design of selective TgCDPK1 inhibitors with low host toxicity may be achievable. PMID:20436472

  2. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    SciTech Connect

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  3. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.

    PubMed

    Wang, Hong; Brautigan, David L

    2002-12-20

    Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.

  4. Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent.

    PubMed

    Hanson, Britt Erika; Vesole, David H

    2009-09-01

    Heat shock proteins are vital to cell survival under conditions of stress. They bind client proteins to assist in protein stabilization, translocation of polypeptides across cell membranes and recovery of proteins from aggregates. Heat shock protein inhibitors are a diverse group of novel agents that have been demonstrated to have pro-apoptotic effects on malignant cells through inhibition of ATP binding on the ATP/ADP-binding pocket of the heat shock protein. Initial development of heat shock protein 90 inhibitors, geldanamycin and 17-AAG, were limited by hepatotoxicity and the need for solvent carrying agents. In contrast, retaspimycin, or IPI-504, a derivative of geldanamycin and 17-AAG, is highly soluble in water and generally well tolerated. In Phase I/II trials, retaspimycin has shown activity in NSCLC and gastrointestinal stromal tumor. The most promising activity was observed in gastrointestinal stromal tumors. Phase I/II trials are currently underway to evaluate the dosing schedules and activity of IPI-504 in breast cancer. Given the in vitro activity in diffuse large B-cell lymphoma, mantle cell lymphoma, melanoma, leukemia and pancreatic cancer, current and future trials are of clinical interest. This article reviews IPI-504 and its utility in a wide variety of cancer phenotypes.

  5. Transcriptional upregulation of the human MRP2 gene expression by serine/threonine protein kinase inhibitors.

    PubMed

    Pułaski, L; Szemraj, J; Uchiumi, T; Kuwano, M; Bartosz, G

    2005-01-01

    Transcriptional regulation by cellular signalling pathways of multidrug resistance proteins that pump anticancer drugs out of cells is one of key issues in the development of the multidrug resistance phenotype. In our study, we have used the reporter gene approach as well as determination of mRNA levels in two cancer cell lines of human origin, MCF-7 and A549, to study the regulation of multidrug resistance proteins 2 and 3 (MRP2 AND MRP3) by serine/threonine protein kinases. Since a prototypic PKC inducer, PMA, caused a marked upregulation of transcription from both human MRP2 and MRP3 promoters, a role for PKC isoforms in positive control of expression of these proteins could be postulated. Interestingly, broad-spectrum serine-threonine protein kinase inhibitors which also inhibit PKC, staurosporine and H-7, stimulated expression from the MRP2 promoter instead of inhibiting it. This effect was not seen for MRP3. MRP2 induction by staurosporine and H-7 was shown to have phenotypic consequences in whole cells, rendering them more resistant to etoposide and increasing their ability to export calcein through the plasma membrane. These results point to the involvement of serine/threonine protein kinases in negative regulation of the human MRP2 gene and to the necessity of testing novel anti-cancer drugs acting as protein kinase inhibitors with regard to their potential ability to induce multidrug resistance.

  6. Anticancer activity of BIM-46174, a new inhibitor of the heterotrimeric Galpha/Gbetagamma protein complex.

    PubMed

    Prévost, Grégoire P; Lonchampt, Marie O; Holbeck, Susan; Attoub, Samir; Zaharevitz, Daniel; Alley, Mike; Wright, John; Brezak, Marie C; Coulomb, Hélène; Savola, Ann; Huchet, Marion; Chaumeron, Sophie; Nguyen, Quang-Dé; Forgez, Patricia; Bruyneel, Erik; Bracke, Mark; Ferrandis, Eric; Roubert, Pierre; Demarquay, Danièle; Gespach, Christian; Kasprzyk, Philip G

    2006-09-15

    A large number of hormones and local agonists activating guanine-binding protein-coupled receptors (GPCR) play a major role in cancer progression. Here, we characterize the new imidazo-pyrazine derivative BIM-46174, which acts as a selective inhibitor of heterotrimeric G-protein complex. BIM-46174 prevents the heterotrimeric G-protein signaling linked to several GPCRs mediating (a) cyclic AMP generation (Galphas), (b) calcium release (Galphaq), and (c) cancer cell invasion by Wnt-2 frizzled receptors and high-affinity neurotensin receptors (Galphao/i and Galphaq). BIM-46174 inhibits the growth of a large panel of human cancer cell lines, including anticancer drug-resistant cells. Exposure of cancer cells to BIM-46174 leads to caspase-3-dependent apoptosis and poly(ADP-ribose) polymerase cleavage. National Cancer Institute COMPARE analysis for BIM-46174 supports its novel pharmacologic profile compared with 12,000 anticancer agents. The growth rate of human tumor xenografts in athymic mice is significantly reduced after administration of BIM-46174 combined with either cisplatin, farnesyltransferase inhibitor, or topoisomerase inhibitors. Our data validate the feasibility of targeting heterotrimeric G-protein functions downstream the GPCRs to improve anticancer chemotherapy.

  7. Enhanced detection of lipid transfer inhibitor protein activity by an assay involving only low density lipoprotein.

    PubMed

    Morton, R E; Greene, D J

    1994-11-01

    Lipid transfer inhibitor protein (LTIP) activity has been typically quantitated by its ability to suppress lipid transfer protein-mediated lipid movement between low density lipoprotein (LDL) and high density lipoprotein (HDL). In an attempt to establish an LTIP activity assay that is more sensitive, we have exploited the reported preference of the inhibitor protein to interact with LDL. A lipid transfer assay was established that involves LDL as both the donor and the acceptor; LDL in one of these two pools was biotinylated to facilitate its removal with immobilized avidin. Compared to the standard LDL to HDL assay, LTIP inhibited lipid transfer from radiolabeled LDL to biotin-LDL 7-fold more. In the absence of LTIP, lipid transfer activity was the same in both assays. An added benefit of this assay was the near linearity (up to 85%) of the inhibitory response, in contrast to the highly curvilinear response of LTIP in LDL to HDL transfer assays. The high sensitivity of the LDL to biotin-LDL transfer assay in measuring LTIP activity could not be duplicated by other transfer assays including assays containing only HDL (HDL to biotin-HDL), assays between liposomes and LDL, or assays between LDL and HDL where the concentration of lipoproteins was reduced 10-fold. Thus, LTIP activity is most effectively measured in homologous lipid transfer assays involving only LDL (and its biotin derivative). This increased sensitivity to LTIP suggests that the inhibitor binds more avidly to the LDL surface than does lipid transfer protein.

  8. Characterization of a Serine Hydrolase Targeted by Acyl-protein Thioesterase Inhibitors in Toxoplasma gondii

    PubMed Central

    Kemp, Louise E.; Rusch, Marion; Adibekian, Alexander; Bullen, Hayley E.; Graindorge, Arnault; Freymond, Céline; Rottmann, Matthias; Braun-Breton, Catherine; Baumeister, Stefan; Porfetye, Arthur T.; Vetter, Ingrid R.; Hedberg, Christian; Soldati-Favre, Dominique

    2013-01-01

    In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein. PMID:23913689

  9. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    SciTech Connect

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-08-12

    Highlights: {yields} Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. {yields} BAI2 interaction with GIP was revealed by yeast two-hybrid assay. {yields} Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. {yields} BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, {beta}-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  10. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    SciTech Connect

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G.

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  11. Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens.

    PubMed

    Hast, Michael A; Nichols, Connie B; Armstrong, Stephanie M; Kelly, Shannon M; Hellinga, Homme W; Alspaugh, J Andrew; Beese, Lorena S

    2011-10-07

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.

  12. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.

  13. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens

    SciTech Connect

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.; Kelly, Shannon M.; Hellinga, Homme W.; Alspaugh, J. Andrew; Beese, Lorena S.

    2012-09-17

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.

  14. On-Chip Peptide Mass Spectrometry Imaging for Protein Kinase Inhibitor Screening.

    PubMed

    Cho, Young-Lai; Kim, Young-Pil; Son, Jin Gyeong; Son, Miyoung; Lee, Tae Geol

    2017-01-03

    Protein kinases are enzymes that are important targets for drug discovery because of their involvement in regulating the essential cellular processes. For this reason, the changes in protein kinase activity induced by each drug candidate (the inhibitor in this case) need to be accurately determined. Here, an on-chip secondary ion mass spectrometry (SIMS) imaging technique of the peptides was developed for determining protein kinase activity and inhibitor screening without a matrix. In our method, cysteine-tethered peptides adsorbed onto a gold surface produced changes in the relative peak intensities of the phosphorylated and unphosphorylated substrate peptides, which were quantitatively dependent on protein kinase activity. Using mass spectrometry imaging of multiple compartments on the gold surface in the presence of a peptide substrate, we screened 13,727 inhibitors, of which seven were initially found to have inhibitor efficiencies that surpassed 50%. Of these, we were able to identify a new breakpoint cluster region-abelson (BCR-ABL)(T315I) kinase inhibitor, henceforth referred to as KR135861. KR135861 showed no cytotoxicity and was subsequently confirmed to be superior to imatinib, a commercial drug marketed as Gleevec. Moreover, KR135861 exhibited a greater inhibitory effect on the BCR-ABL(T315I) tyrosine kinase, with an IC50 value as low as 1.3 μM. In in vitro experiments, KR135861 reduced the viability of both Ba/F3 cells expressing wild-type BCR-ABL and BCR-ABL(T315I), in contrast to imatinib's inhibitory effects only on Ba/F3 cells expressing wild-type BCR-ABL. Due to the surface sensitivity and selectivity of SIMS imaging, it is anticipated that our approach will make it easier to validate the small modifications of a substrate in relation to enzyme activity as well as for drug discovery. This mass spectrometry imaging analysis enables efficient screening for protein kinase inhibitors, thus permitting high-throughput drug screening with high accuracy

  15. Inhibition of formation of filopodia after axotomy by inhibitors of protein tyrosine kinases.

    PubMed

    Goldberg, D J; Wu, D Y

    1995-08-01

    The activity of motile protrusions of the growth cone--filopodia, veils, and lamellipodia--is essential for directed growth of a neuronal process. The regulation of the formation of these protrusions is not well understood. Numerous filopodia and veils or lamellipodia form within minutes of transection of an Aplysia axon in culture, as the initial components of growth cones of regenerating neurites. Axotomy, therefore, provides a robust and reliable protocol for analyzing the formation of these protrusions. We evaluated the involvement of protein phosphorylation in the regulation of protrusive activity. Of the inhibitors of protein kinases assayed, only the inhibitors of protein tyrosine kinases--genistein, lavendustin A, herbimycin A, and erbstatin analogue--suppressed the formation of protrusions, as assessed by high magnification video microscopy. These drugs did not work by preventing resealing of the axon, as evident from visual inspection and by the unimpaired effectiveness of genistein or lavendustin in preventing formation of filopodia when applied after resealing. Inhibition of protein tyrosine kinases not only prevented the formation of actin-based protrusions, but also caused deterioration of the actin network underlying the protrusive area of preexisting growth cones. Consistent with an involvement of protein tyrosine phosphorylation in the generation of protrusive structures, immunocytochemistry revealed that aggregates of phosphotyrosine appeared at the margins of the axon, from which protrusions emerge shortly after axotomy. These results suggest a role for protein tyrosine phosphorylation in the formation and maintenance of actin-based protrusive structures.

  16. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ.

    PubMed

    Nepomuceno, Gabriella M; Chan, Katie M; Huynh, Valerie; Martin, Kevin S; Moore, Jared T; O'Brien, Terrence E; Pollo, Luiz A E; Sarabia, Francisco J; Tadeus, Clarissa; Yao, Zi; Anderson, David E; Ames, James B; Shaw, Jared T

    2015-03-12

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ's GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3.

  17. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ

    PubMed Central

    2015-01-01

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ’s GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3. PMID:25815151

  18. Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family

    PubMed Central

    Filippakopoulos, Panagis; Picaud, Sarah; Fedorov, Oleg; Keller, Marco; Wrobel, Matthias; Morgenstern, Olaf; Bracher, Franz; Knapp, Stefan

    2012-01-01

    Benzodiazepines are psychoactive drugs with anxiolytic, sedative, skeletal muscle relaxant and amnestic properties. Recently triazolo-benzodiazepines have been also described as potent and highly selective protein interaction inhibitors of bromodomain and extra-terminal (BET) proteins, a family of transcriptional co-regulators that play a key role in cancer cell survival and proliferation, but the requirements for high affinity interaction of this compound class with bromodomains has not been described. Here we provide insight into the structure–activity relationship (SAR) and selectivity of this versatile scaffold. In addition, using high resolution crystal structures we compared the binding mode of a series of benzodiazepine (BzD) and related triazolo-benzotriazepines (BzT) derivatives including clinically approved drugs such as alprazolam and midazolam. Our analysis revealed the importance of the 1-methyl triazolo ring system for BET binding and suggests modifications for the development of further high affinity bromodomain inhibitors. PMID:22137933

  19. Novel, potent and selective inhibitors of protein kinase C show oral anti-inflammatory activity.

    PubMed

    Nixon, J S; Bishop, J; Bradshaw, D; Davis, P D; Hill, C H; Elliott, L H; Kumar, H; Lawton, G; Lewis, E J; Mulqueen, M

    1991-01-01

    Clarification of the precise role of protein kinase C (PKC) in cellular functional responses has been hampered by a lack of potent, selective inhibitors. The structural lead provided by staurosporine, a potent but non-selective protein kinase (PK) inhibitor, was used to derive a series of bis(indolyl)maleimides of which the most potent, Ro 31-8425 (I50: PKC = 8 nM) showed 350-fold selectivity for PKC over cAMP-dependent protein kinase. Ro 31-8425 antagonised cellular processes triggered by phorbol esters (potent, specific PKC activators) and inhibited the allogeneic mixed lymphocyte reaction, suggesting a role for PKC in T-cell activation. Methylation of the primary amine in Ro 31-8425 produced an analogue. Ro 31-8830 which, when administered orally, produced a dose-dependent inhibition of a phorbol ester-induced paw oedema in mice (minimum effective dose = 15 mg/kg). Ro 31-8830 also selectively inhibited the secondary inflammation in a developing adjuvant arthritis model in the rat. The results presented here suggest that these selective inhibitors of PKC may have therapeutic value in the treatment of T-cell-mediated autoimmune diseases.

  20. Applying 89Zr-Transferrin To Study the Pharmacology of Inhibitors to BET Bromodomain Containing Proteins

    PubMed Central

    2016-01-01

    Chromatin modifying proteins are attractive drug targets in oncology, given the fundamental reliance of cancer on altered transcriptional activity. Multiple transcription factors can be impacted downstream of primary target inhibition, thus making it challenging to understand the driving mechanism of action of pharmacologic inhibition of chromatin modifying proteins. This in turn makes it difficult to identify biomarkers predictive of response and pharmacodynamic tools to optimize drug dosing. In this report, we show that 89Zr-transferrin, an imaging tool we developed to measure MYC activity in cancer, can be used to identify cancer models that respond to broad spectrum inhibitors of transcription primarily due to MYC inhibition. As a proof of concept, we studied inhibitors of BET bromodomain containing proteins, as they can impart antitumor effects in a MYC dependent or independent fashion. In vitro, we show that transferrin receptor biology is inhibited in multiple MYC positive models of prostate cancer and double hit lymphoma when MYC biology is impacted. Moreover, we show that bromodomain inhibition in one lymphoma model results in transferrin receptor expression changes large enough to be quantified with 89Zr-transferrin and positron emission tomography (PET) in vivo. Collectively, these data further underscore the diagnostic utility of the relationship between MYC and transferrin in oncology, and provide the rationale to incorporate transferrin-based PET into early clinical trials with bromodomain inhibitors for the treatment of solid tumors. PMID:26725682

  1. Identification of natural allosteric inhibitor for Akt1 protein through computational approaches and in vitro evaluation.

    PubMed

    Pragna Lakshmi, T; Kumar, Amit; Vijaykumar, Veena; Natarajan, Sakthivel; Krishna, Ramadas

    2017-03-01

    Akt, a serine/threonine protein kinase, is often hyper activated in breast and prostate cancers, but with poor prognosis. Allosteric inhibitors regulate aberrant kinase activity by stabilizing the protein in inactive conformation. Several natural compounds have been reported as inhibitors for kinases. In this study, to identify potential natural allosteric inhibitor for Akt1, we generated a seven-point pharmacophore model and screened it through natural compound library. Quercetin-7-O-β-d-glucopyranoside or Q7G was found to be the best among selected molecules based on its hydrogen bond occupancy with key allosteric residues, persistent polar contacts and salt bridges that stabilize Akt1 in inactive conformation and minimum binding free energy during molecular dynamics simulation. Q7G induced dose-dependent inhibition of breast cancer cells (MDA MB-231) and arrested them in G1 and sub-G phase. This was associated with down-regulation of anti-apoptotic protein Bcl-2, up-regulation of cleaved caspase-3 and PARP. Expression of p-Akt (Ser473) was also down-regulated which might be due to Akt1 inhibition in inactive conformation. We further confirmed the Akt1 and Q7G interaction which was observed to have a dissociation constant (Kd) of 0.246μM. With these computational, biological and thermodynamic studies, we suggest Q7G as a lead molecule and propose for its further optimization.

  2. Dimeric Macrocyclic Antagonists of Inhibitor of Apoptosis Proteins for the Treatment of Cancer

    PubMed Central

    2015-01-01

    A series of dimeric macrocyclic compounds were prepared and evaluated as antagonists for inhibitor of apoptosis proteins. The most potent analogue 11, which binds to XIAP and c-IAP proteins with high affinity and induces caspase-3 activation and ultimately cell apoptosis, inhibits growth of human melanoma and colorectal cell lines at low nanomolar concentrations. Furthermore, compound 11 demonstrated significant antitumor activity in the A875 human melanoma xenograft model at doses as low as 2 mg/kg on a q3d schedule. PMID:26191364

  3. Structure-based lead discovery for protein kinase C zeta inhibitor design by exploiting kinase-inhibitor complex crystal structure data and potential therapeutics for preterm labour.

    PubMed

    Shao, Qing-Chun; Zhang, Cui-Juan; Li, Jie

    2014-10-14

    The protein kinase C (PKC) is a family of serine/threonine kinases with a broad range of cellular targets. Members of the PKC family participate at the diverse biological events involved in cellular proliferation, differentiation and survival. The PKC isoform zeta (PKCζ) is an atypical member that has recently been found to play an essential role in promoting human uterine contractility and thus been raised as a new target for treating preterm labour and other tocolytic diseases. In this study, an integrative protocol was described to graft hundreds of inhibitor ligands from their complex crystal structures with cognate kinases into the active pocket of PKCζ and, based on the modeled structures, to evaluate the binding strength of these inhibitors to the non-cognate PKCζ receptor by using a consensus scoring strategy. A total of 32 inhibitors with top score were compiled, and eight out of them were tested for inhibitory potency against PKCζ. Consequently, five compounds, i.e. CDK6 inhibitor fisetin, PIM1 inhibitor myricetin, CDK9 inhibitor flavopiridol and PknB inhibitor mitoxantrone as well as the promiscuous kinase inhibitor staurosporine showed high or moderate inhibitory activity on PKCζ, with IC50 values of 58 ± 9, 1.7 ± 0.4, 108 ± 17, 280 ± 47 and 0.019 ± 0.004 μM, respectively, while other three compounds, including two marketed drugs dasatinib and sunitinib as well as the Rho inhibitor fasudil, have not been detected to possess observable activity. Next, based on the modeled structure data we modified three flavonoid kinase inhibitors, i.e. fisetin, myricetin and flavopiridol, to generate a number of more potential molecular entities, two of which were found to have a moderately improved activity as compared to their parent compounds.

  4. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    SciTech Connect

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J.

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  5. Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background—Cholesteryl ester transfer protein (CETP) inhibitors raise high-density lipoprotein (HDL) cholesterol, but torcetrapib, the first-in-class inhibitor tested in a large outcome trial, caused an unexpected blood pressure elevation and increased cardiovascular events. Whether the hypertensive...

  6. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors

    PubMed Central

    Lagorce, David; Douguet, Dominique; Miteva, Maria A.; Villoutreix, Bruno O.

    2017-01-01

    The modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess. In order to gain new insights into the ADMET properties of iPPIs, computations were carried out on eight datasets collected from several databases. These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. Several trends are reported that should assist the design and optimization of future PPI inhibitors, either for drug discovery endeavors or for chemical biology projects.

  7. Novel Inhibitors of Protein-Protein Interaction for Prostate Cancer Therapy

    DTIC Science & Technology

    2014-04-01

    inhibitors; cellular reactive oxygen species; cyclin D1 INTRODUCTION Advanced hormone refractory metastatic prostate cancer (PCa) is the second leading...sufficiently deplete androgen content while limiting the adverse growth effects not related to hormone depletion that occur with the use of 5% stripped...Scientific Publishing Co. Pte.Ltd; 2011. 3. Jorgenson TC, Zhang W, Oberley TD. Redox imbalance and biochemical changes in cancer. Cancer Res 2013;73(20

  8. New lipid modulating drugs: the role of microsomal transport protein inhibitors.

    PubMed

    Rizzo, Manfredi; Wierzbicki, Anthony S

    2011-01-01

    Microsomal triglyceride transfer protein (MTP) is involved in the synthesis of very low density lipoprotein in the liver. Its deficiency results in abetalipoproteinemia. MTP inhibitors target the assembly and secretion of apolipoprotein B-containing lipoproteins. These agents may potentially play a role, alone or in combination, in the treatment of hypercholesterolemia or hypertriglyceridaemia. Clinical applications of MTP inhibitors initially focused primarily on high-dose monotherapy in order to produce substantial reductions in LDL-cholesterol levels but these proved to induce significant hepatic steatosis and transaminase elevations. However, likely orphan indications for MTP inhibitors, where a different risk-benefit profile applies, include patients with homozygous familial hypercholesterolemia where statins often show a low response. Development of MTP inhibitors has continued to enter clinical trials at lower doses or in formulations aimed at utilizing their efficacy while avoiding their side effects. These have shown promising results in reducing cholesterol, triglycerides and apolipoprotein B with a far lower incidence of, often, transient side-effects. The clinical efficacy and safety of MTP inhibition in patients with hyperlipidaemia remains to be fully determined and to be proven in both surrogate and clinical endpoint trials but there may be a role for these agents in orphan indications for rarer severe hyperlipidaemias.

  9. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  10. A web server for predicting inhibitors against bacterial target GlmU protein

    PubMed Central

    2011-01-01

    Background The emergence of drug resistant tuberculosis poses a serious concern globally and researchers are in rigorous search for new drugs to fight against these dreadful bacteria. Recently, the bacterial GlmU protein, involved in peptidoglycan, lipopolysaccharide and techoic acid synthesis, has been identified as an important drug target. A unique C-terminal disordered tail, essential for survival and the absence of gene in host makes GlmU a suitable target for inhibitor design. Results This study describes the models developed for predicting inhibitory activity (IC50) of chemical compounds against GlmU protein using QSAR and docking techniques. These models were trained on 84 diverse compounds (GlmU inhibitors) taken from PubChem BioAssay (AID 1376). These inhibitors were docked in the active site of the C-terminal domain of GlmU protein (2OI6) using the AutoDock. A QSAR model was developed using docking energies as descriptors and achieved maximum correlation of 0.35/0.12 (r/r2) between actual and predicted pIC50. Secondly, QSAR models were developed using molecular descriptors calculated using various software packages and achieved maximum correlation of 0.77/0.60 (r/r2). Finally, hybrid models were developed using various types of descriptors and achieved high correlation of 0.83/0.70 (r/r2) between predicted and actual pIC50. It was observed that some molecular descriptors used in this study had high correlation with pIC50. We screened chemical libraries using models developed in this study and predicted 40 potential GlmU inhibitors. These inhibitors could be used to develop drugs against Mycobacterium tuberculosis. Conclusion These results demonstrate that docking energies can be used as descriptors for developing QSAR models. The current work suggests that docking energies based descriptors could be used along with commonly used molecular descriptors for predicting inhibitory activity (IC50) of molecules against GlmU. Based on this study an open source

  11. Interaction of wheat monomeric and dimeric protein inhibitors with alpha-amylase from yellow mealworm (Tenebrio molitor L. larva).

    PubMed

    Buonocore, V; Gramenzi, F; Pace, W; Petrucci, T; Poerio, E; Silano, V

    1980-06-01

    The highly purified alpha-amylase from Tenebrio molitor L. larva (yellow mealworm) reversibly combines with two closely related homogeneous glycoprotein inhibitors, one dimeric (termed 'inhibitor 0.19') and one monomeric (termed 'inhibitor 0.28'), from wheat flour. As established by means of difference spectroscopy and kinetic studies, molar combining ratios for the amylase--inhibitor-0.19 and amylase-inhibitor-0.28 complexes were 1:1 and 1:2 respectively. Two amylase--inhibitor-0.19 complexes with slightly different retention volumes on Bio-Gel P-300 and only one amylase--inhibitor-0.28 complex were observed. Dissociation constants of the amylase--inhibitor-0.19 and amylase--inhibitor-0.28 complexes were 0.85 nM and 0.13 nM respectively. A strong tendency of both complexes to precipitate under an ultracentrifugal field was observed; the minimum molecular weight calculated for the two complexes under such conditions was approx. 95 000. The two complexes showed difference spectra indicating involvement of structurally related or identical tryptophyl side chains in the binding of inhibitors 0.28 and 0.19 to the amylase. A model summarizing the main features of the inhibition of the insect amylase by the two wheat protein inhibitors is proposed.

  12. Modular mutagenesis of human placental ribonuclease inhibitor, a protein with leucine-rich repeats.

    PubMed Central

    Lee, F S; Vallee, B L

    1990-01-01

    Human placental ribonuclease inhibitor (PRI) is a potent protein inhibitor of pancreatic ribonucleases and the homologous blood vessel-inducing protein angiogenin. Although inhibition by PRI occurs with a 1:1 stoichiometry, its primary structure is composed predominantly of seven internal leucine-rich repeats. These internal repeats were systematically deleted either singly or in combination by "modular" mutagenesis. Deletion of repeat units 3 plus 4 or repeat unit 6 results in mutants that both bind to and inhibit ribonuclease A. Therefore, the angiogenin/ribonuclease binding site in PRI must reside primarily or entirely in repeats 1, 2, 5, or 7, the short N- or C-terminal segments, or a combination of these. Deletion of repeat units 3-5, 5-6, or 5 alone results in mutants that exhibit only binding activity. Hence, the binding site cannot reside exclusively in repeat 5. Other internal deletions or N- or C-terminal deletions of 6-86% of the protein all abolish activity. These results suggest that PRI has a modular structure, with one primary structural repeat constituting one module. The approach taken may be applicable to other proteins with repeat structures. Images PMID:2408043

  13. Protein synthesis inhibitors attenuate water flow in vasopressin-stimulated toad urinary bladder

    SciTech Connect

    Hoch, B.S.; Ast, M.B.; Fusco, M.J.; Jacoby, M.; Levine, S.D. )

    1988-01-01

    Vasopressin stimulates the introduction of aggregated particles, which may represent pathways for water flow, into the luminal membrane of toad urinary bladder. It is not known whether water transport pathways are degraded on removal from membrane or whether they are recycled. The authors examined the effect of the protein synthesis inhibitors cycloheximide and puromycin using repeated 30-min cycles of vasopressin followed by washout of vasopressin, all in the presence of an osmotic gradient, a protocol that maximizes aggregate turnover. High dose cycloheximide inhibited flow immediately. Low dose cycloheximide did not affect initial flow. In the absence of vasopressin, inhibition did not develop. Despite the inhibition of flow in vasopressin-treated tissues, the cAMP-dependent protein kinase ratio was elevated in cycloheximide-treated tissues, suggesting modulation at a distal site in the stimulatory cascade. ({sup 14}C)urea permeability was not inhibited by cycloheximide. Puromycin also inhibited water flow by the fourth challenge with vasopressin. The data suggest that protein synthesis inhibitors attenuate flow at a site that is distal to cAMP-dependent protein kinase. However, the reversal of inhibition in MIX-treated tissues suggests that the water pathway can be fully manifested given suitable stimulation. They conclude that either large stores of the transport system are available or that the transport system is extensively recycled on retrieval from the membrane.

  14. Discovery and mechanistic study of a class of protein arginine methylation inhibitors.

    PubMed

    Feng, You; Li, Mingyong; Wang, Binghe; Zheng, Yujun George

    2010-08-26

    Protein arginine methylation regulates multiple biological processes such as chromatin remodeling and RNA splicing. Malfunction of protein arginine methyltransferases (PRMTs) is correlated with many human diseases. Thus, small molecule inhibitors of protein arginine methylation are of great potential for therapeutic development. Herein, we report a type of compound that blocks PRMT1-mediated arginine methylation at micromolar potency through a unique mechanism. Most of the discovered compounds bear naphthalene and sulfonate groups and are structurally different from typical PRMT substrates, for example, histone H4 and glycine- and arginine-rich sequences. To elucidate the molecular basis of inhibition, we conducted a variety of kinetic and biophysical assays. The combined data reveal that this type of naphthyl-sulfo (NS) molecule directly targets the substrates but not PRMTs for the observed inhibition. We also found that suramin effectively inhibited PRMT1 activity. These findings about novel PRMT inhibitors and their unique inhibition mechanism provide a new way for chemical regulation of protein arginine methylation.

  15. Total synthesis and structure-activity relationship studies of a series of selective G protein inhibitors

    NASA Astrophysics Data System (ADS)

    Xiong, Xiao-Feng; Zhang, Hang; Underwood, Christina R.; Harpsøe, Kasper; Gardella, Thomas J.; Wöldike, Mie F.; Mannstadt, Michael; Gloriam, David E.; Bräuner-Osborne, Hans; Strømgaard, Kristian

    2016-11-01

    G proteins are key mediators of G protein-coupled receptor signalling, which facilitates a plethora of important physiological processes. The cyclic depsipeptides YM-254890 and FR900359 are the only known specific inhibitors of the Gq subfamily of G proteins; however, no synthetic route has been reported previously for these complex natural products and they are not easily isolated from natural sources. Here we report the first total synthesis of YM-254890 and FR900359, as well as of two known analogues, YM-385780 and YM-385781. The versatility of the synthetic approach also enabled the design and synthesis of ten analogues, which provided the first structure-activity relationship study for this class of compounds. Pharmacological characterization of all the compounds at Gq-, Gi- and Gs-mediated signalling provided succinct information on the structural requirements for inhibition, and demonstrated that both YM-254890 and FR900359 are highly potent inhibitors of Gq signalling, with FR900359 being the most potent. These natural products and their analogues represent unique tools for explorative studies of G protein inhibition.

  16. Reduction of Factor VIII Inhibitor Titers During Immune Tolerance Induction With Recombinant Factor VIII-Fc Fusion Protein.

    PubMed

    Groomes, Charles L; Gianferante, David M; Crouch, Gary D; Parekh, Dina S; Scott, David W; Lieuw, Kenneth

    2016-05-01

    The development of inhibitors toward factor VIII (FVIII) is a common and serious complication of hemophilia A (HA) therapy. Patients with hemophilia who develop inhibitors often undergo time- and resource-intensive immune tolerance induction (ITI) protocols. We report a 15-month-old male with severe HA and a high-titer inhibitor that occurred while receiving prophylactic treatment with recombinant FVIII (rFVIII), in whom significant inhibitor titer reduction was achieved with thrice weekly infusions of a new, prolonged half-life rFVIII-Fc fusion protein product (trade name Eloctate). Further studies are warranted to explore the potential of Eloctate in ITI protocols.

  17. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  18. Protein Kinase C Inhibitors Sensitize GNAQ Mutant Uveal Melanoma Cells to Ionizing Radiation

    PubMed Central

    Cerne, Jasmina Ziva; Hartig, Sean Michael; Hamilton, Mark Patrick; Chew, Sue Anne; Mitsiades, Nicholas; Poulaki, Vassiliki; McGuire, Sean Eric

    2014-01-01

    Purpose. Uveal melanoma (UM) tumors require large doses of radiation therapy (RT) to achieve tumor ablation, which frequently results in damage to adjacent normal tissues, leading to vision-threatening complications. Approximately 50% of UM patients present with activating somatic mutations in the gene encoding for G protein αq-subunit (GNAQ), which lead to constitutive activation of downstream pathways, including protein kinase C (PKC). In this study, we investigated the impact of small-molecule PKC inhibitors bisindolylmaleimide I (BIM) and sotrastaurin (AEB071), combined with ionizing radiation (IR), on survival in melanoma cell lines. Methods. Cellular radiosensitivity was determined by using a combination of proliferation, viability, and clonogenic assays. Cell-cycle effects were measured by flow cytometry. Transcriptomic and proteomic profiling were performed by quantitative real-time PCR, reverse-phase protein array analysis, and immunofluorescence. Results. We found that the PKC inhibitors combined with IR significantly decreased the viability, proliferation, and clonogenic potential of GNAQmt, but not GNAQwt/BRAFmt cells, compared with IR alone. Combined treatment increased the antiproliferative and proapoptotic effects of IR in GNAQmt cells through delayed DNA-damage resolution and enhanced induction of proteins involved in cell-cycle arrest, cell-growth arrest, and apoptosis. Conclusions. Our preclinical results suggest that combined modality treatment may allow for reductions in the total RT dose and/or fraction size, which may lead to better functional organ preservation in the treatment of primary GNAQmt UM. These findings suggest future clinical trials combining PKC inhibitors with RT in GNAQmt UM warrant consideration. PMID:24595385

  19. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    PubMed

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  20. New functional assays to selectively quantify the activated protein C- and tissue factor pathway inhibitor-cofactor activities of protein S in plasma.

    PubMed

    Alshaikh, N A; Rosing, J; Thomassen, M C L G D; Castoldi, E; Simioni, P; Hackeng, T M

    2017-02-17

    Essentials Protein S is a cofactor of activated protein C (APC) and tissue factor pathway inhibitor (TFPI). There are no assays to quantify separate APC and TFPI cofactor activities of protein S in plasma. We developed assays to measure the APC- and TFPI-cofactor activities of protein S in plasma. The assays were sensitive to protein S deficiency, and not affected by the Factor V Leiden mutation.

  1. Sirtuin inhibitors, EX527 and AGK2, suppress cell migration by inhibiting HSF1 protein stability.

    PubMed

    Kim, Hyun-Woo; Kim, Soo-A; Ahn, Sang-Gun

    2016-01-01

    The histone deacetylases (HDACs), Sirtuin 1 (Sirt1) and Sirt2, play crucial roles in many biological processes, including cell proliferation, differentiation and apoptosis. HDAC inhibitors have been considered as a potential therapeutic approach for various types of cancers. Here, we demonstrated that the Sirt1 and Sirt2 inhibitors EX527 and AGK2 suppressed cell growth and caused G1 phase arrest by inhibiting the expression of Cdk6 and/or Cdk4. An agar colony formation assay revealed that EX527 and AGK2 decreased colony formation in soft agar. Furthermore, EX527 and AGK2 pretreatment inhibited the expression of HSF1 and HSP27 and induced HSF1 ubiquitination. Sirt1 overexpression increased HSF1 expression and/or stabilization and induced cell migration in a scratch assay. Overall, these results indicate that EX527 and AGK2 suppress cell growth and migration by inhibiting HSF1 protein stability.

  2. Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney.

    PubMed

    Li, M; Guo, H; Damuni, Z

    1995-02-14

    Two heat-stable protein inhibitors of protein phosphatase 2A (PP2A), tentatively designated I1PP2A and I2PP2A, have been purified to apparent homogeneity from extracts of bovine kidney. The purified preparations of I1PP2A exhibited an apparent M(r) approximately 30,000 and 250,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography on Sephacryl S-300, respectively. In contrast, the purified preparations of I2PP2A exhibited an apparent M(r) approximately 20,000 and 80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography on Sephacryl S-200, respectively. The purified preparations of I1PP2A and I2PP2A inhibited PP2A with 32P-labeled myelin basic protein, 32P-labeled histone H1, 32P-labeled pyruvate dehydrogenase complex, 32P-labeled phosphorylase, and protamine kinase as substrates. By contrast, I1PP2A and I2PP2A exhibited little effect, if any, on the activity of PP2A with 32P-labeled casein, and did not prevent the autodephosphorylation of PP2A in incubations with the autophosphorylation-activated protein kinase [Guo, H., & Damuni, Z. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 2500-2504]. The purified preparations of I1PP2A and I2PP2A had little effect, if any, on the activities of protein phosphatase 1, protein phosphatase 2B, protein phosphatase 2C, and pyruvate dehydrogenase phosphatase. With 32P-labeled MBP as a substrate, kinetic analysis according to Henderson showed that I1PP2A and I2PP2A were noncompetitive and displayed a Ki of about 30 and 25 nM, respectively. Following cleavage with Staphylococcus aureus V8 protease, I1PP2A and I2PP2A displayed distinct peptide patterns, indicating that these inhibitor proteins are the products of distinct genes. The N-terminal amino acid sequences of the purified preparations indicate that I1PP2A and I2PP2A are novel proteins.

  3. Characterization of a ranavirus inhibitor of the antiviral protein kinase PKR

    PubMed Central

    2011-01-01

    Background Ranaviruses (family Iridoviridae) are important pathogens of lower vertebrates. However, little is known about how they circumvent the immune response of their hosts. Many ranaviruses contain a predicted protein, designated vIF2α, which shows homology with the eukaryotic translation initiation factor 2α. In analogy to distantly related proteins found in poxviruses vIF2α might act as an inhibitor of the antiviral protein kinase PKR. Results We have characterized the function of vIF2α from Rana catesbeiana virus Z (RCV-Z). Multiple sequence alignments and secondary structure prediction revealed homology of vIF2α with eIF2α throughout the S1-, helical- and C-terminal domains. Genetic and biochemical analyses showed that vIF2α blocked the toxic effects of human and zebrafish PKR in a heterologous yeast system. Rather than complementing eIF2α function, vIF2α acted in a manner comparable to the vaccinia virus (VACV) K3L protein (K3), a pseudosubstrate inhibitor of PKR. Both vIF2α and K3 inhibited human PKR-mediated eIF2α phosphorylation, but not PKR autophosphorylation on Thr446. In contrast the E3L protein (E3), another poxvirus inhibitor of PKR, inhibited both Thr446 and eIF2α Ser51 phosphorylation. Interestingly, phosphorylation of eIF2α by zebrafish PKR was inhibited by vIF2α and E3, but not by K3. Effective inhibition of PKR activity coincided with increased PKR expression levels, indicative of relieved autoinhibition of PKR expression. Experiments with vIF2α deletion constructs, showed that both the N-terminal and helical domains were sufficient for inhibition of PKR, whereas the C-terminal domain was dispensable. Conclusions Our results show that RCV-Z vIF2α is a functional inhibitor of human and zebrafish PKR, and probably functions in similar fashion as VACV K3. This constitutes an important step in understanding the interaction of ranaviruses and the host innate immune system. PMID:21418572

  4. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins

    PubMed Central

    Hoffstrom, Benjamin G.; Kaplan, Anna; Letso, Reka; Schmid, Ralf; Turmel, Gregory J.; Lo, Donald C.; Stockwell, Brent R.

    2010-01-01

    A hallmark of many neurodegenerative diseases is accumulation of misfolded proteins within neurons, leading to cellular dysfunction and cell death. Although several mechanisms have been proposed to link protein misfolding to cellular toxicity, the connection remains enigmatic. Here, we report a cell death pathway involving protein disulfide isomerase (PDI), a protein chaperone that catalyzes isomerization, reduction, and oxidation of disulfides. Through a small-molecule-screening approach, we discovered five structurally distinct compounds that prevent apoptosis induced by mutant huntingtin protein. Using modified Huisgen cycloaddition chemistry, we then identified PDI as the molecular target of these small molecules. Expression of polyglutamine-expanded huntingtin exon 1 in PC12 cells caused PDI to accumulate at mitochondrial-associated-ER-membranes and trigger apoptotic cell death, via mitochondrial outer membrane permeabilization. Inhibiting PDI in rat brain cells suppressed the toxicity of mutant huntingtin exon1 and Aβ peptides processed from the amyloid precursor protein. This pro-apoptotic function of PDI provides a new mechanism linking protein misfolding and apoptotic cell death. PMID:21079601

  5. Investigating the dynamic aspects of drug-protein recognition through a combination of MD and NMR analyses: implications for the development of protein-protein interaction inhibitors.

    PubMed

    Meli, Massimiliano; Pagano, Katiuscia; Ragona, Laura; Colombo, Giorgio

    2014-01-01

    In this paper, we investigate the dynamic aspects of the molecular recognition between a small molecule ligand and a flat, exposed protein surface, representing a typical target in the development of protein-protein interaction inhibitors. Specifically, we analyze the complex between the protein Fibroblast Growth Factor 2 (FGF2) and a recently discovered small molecule inhibitor, labeled sm27 for which the binding site and the residues mainly involved in small molecule recognition have been previously characterized. We have approached this problem using microsecond MD simulations and NMR-based characterizations of the dynamics of the apo and holo states of the system. Using direct combination and cross-validation of the results of the two techniques, we select the set of conformational states that best recapitulate the principal dynamic and structural properties of the complex. We then use this information to generate a multi-structure representation of the sm27-FGF2 interaction. We propose this kind of representation and approach as a useful tool in particular for the characterization of systems where the mutual dynamic influence between the interacting partners is expected to play an important role. The results presented can also be used to generate new rules for the rational expansion of the chemical diversity space of FGF2 inhibitors.

  6. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2016-01-01

    Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis.

  7. PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains.

    PubMed

    Picaud, Sarah; Da Costa, David; Thanasopoulou, Angeliki; Filippakopoulos, Panagis; Fish, Paul V; Philpott, Martin; Fedorov, Oleg; Brennan, Paul; Bunnage, Mark E; Owen, Dafydd R; Bradner, James E; Taniere, Philippe; O'Sullivan, Brendan; Müller, Susanne; Schwaller, Juerg; Stankovic, Tatjana; Knapp, Stefan

    2013-06-01

    Bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4, and BRDT) are transcriptional regulators required for efficient expression of several growth promoting and antiapoptotic genes as well as for cell-cycle progression. BET proteins are recruited on transcriptionally active chromatin via their two N-terminal bromodomains (BRD), a protein interaction module that specifically recognizes acetylated lysine residues in histones H3 and H4. Inhibition of the BET-histone interaction results in transcriptional downregulation of a number of oncogenes, providing a novel pharmacologic strategy for the treatment of cancer. Here, we present a potent and highly selective dihydroquinazoline-2-one inhibitor, PFI-1, which efficiently blocks the interaction of BET BRDs with acetylated histone tails. Cocrystal structures showed that PFI-1 acts as an acetyl-lysine (Kac) mimetic inhibitor efficiently occupying the Kac binding site in BRD4 and BRD2. PFI-1 has antiproliferative effects on leukemic cell lines and efficiently abrogates their clonogenic growth. Exposure of sensitive cell lines with PFI-1 results in G1 cell-cycle arrest, downregulation of MYC expression, as well as induction of apoptosis and induces differentiation of primary leukemic blasts. Intriguingly, cells exposed to PFI-1 showed significant downregulation of Aurora B kinase, thus attenuating phosphorylation of the Aurora substrate H3S10, providing an alternative strategy for the specific inhibition of this well-established oncology target.

  8. PFI-1 – A highly Selective Protein Interaction Inhibitor Targeting BET Bromodomains

    PubMed Central

    Picaud, Sarah; Costa, David Da; Thanasopoulou, Angeliki; Filippakopoulos, Panagis; Fish, Paul V.; Philpott, Martin; Fedorov, Oleg; Brennan, Paul; Bunnage, Mark E.; Owen, Dafydd R.; Bradner, James E.; Taniere, Philippe; O’Sullivan, Brendan; Müller, Susanne; Schwaller, Juerg; Stankovic, Tatjana; Knapp, Stefan

    2013-01-01

    Bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) are transcriptional regulators required for efficient expression of several growth promoting and anti-apoptotic genes as well as for cell cycle progression. BET proteins are recruited to transcriptionally active chromatin via their two N-terminal bromodomains (BRDs), a protein interaction module that specifically recognizes acetylated lysine residues in histones H3 and H4. Inhibition of the BET-histone interaction results in transcriptional down-regulation of a number of oncogenes providing a novel pharmacological strategy for the treatment of cancer. Here we present a potent and highly selective dihydroquinazoline-2-one inhibitor, PFI-1 that efficiently blocks the interaction of BET BRDs with acetylated histone tails. Co-crystal structures showed that PFI-1 acts as an acetyl-lysine (Kac) mimetic inhibitor efficiently occupying the Kac binding site in BRD4 and BRD2. PFI-1 has antiproliferative effects on leukaemic cell lines and efficiently abrogates their clonogenic growth. Exposure of sensitive cell lines with PFI-1 results in G1 cell cycle arrest, down-regulation of MYC expression as well as induction of apoptosis and induces differentiation of primary leukaemic blasts. Intriguingly, cells exposed to PFI-1 showed significant down-regulation of Aurora B kinase, thus attenuating phosphorylation of the Aurora substrate H3S10 providing an alternative strategy for the specific inhibition of this well established oncology target. PMID:23576556

  9. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study

    PubMed Central

    Antony, Priya; Vijayan, Ranjit

    2016-01-01

    Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis. PMID:27110097

  10. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine

    PubMed Central

    Liu, Minghua; Zhao, Ge; Cao, Shousong; Zhang, Yangyang; Li, Xiaofang; Lin, Xiukun

    2017-01-01

    Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed. PMID:28119606

  11. [Matrix Gla protein as natural inhibitor of vascular calcification and potential treatment target].

    PubMed

    Mayer, Otto

    2016-01-01

    Vascular calcification was once regarded as an advanced stage of atherosclerosis only. However, calcification is currently considered as highly regulated and potentially reversible process.Matrix Gla protein (MGP) represents natural inhibitor of vascular calcification, whereas vitamin K is key co-factor of its maturation to the active form. There is accumulating evidence that vitamin K status and corresponding MGP activity may influence cardiovascular risk. This review summarizes pathophysiological mechanism and recent evidence relative to MGP. Moreover, available data concerning vitamin K supplementation are depicted.

  12. Small-Molecule Inhibitor Leads of Ribosome-Inactivating Proteins Developed Using the Doorstop Approach

    DTIC Science & Technology

    2011-03-01

    producing E. coli O157:H7 is an emerging bacterial pathogen responsible for outbreaks of foodborne disease with significant morbidity and mortality in the...ribosome. Nucleic Acids Res 37: 602–610. 29. Li XP, Chiou JC, Remacha M, Ballesta JP, Tumer NE (2009) A two-step binding model proposed for the...toxicity. Microb Pathog 43: 88–95. Inhibitors of Ribosome-Inactivating Proteins PLoS ONE | www.plosone.org 15 March 2011 | Volume 6 | Issue 3 | e17883

  13. Human Intestinal Raf Kinase Inhibitor Protein (RKIP) Catalyzes Prasugrel as a Bioactivation Hydrolase.

    PubMed

    Kazui, Miho; Ogura, Yuji; Hagihara, Katsunobu; Kubota, Kazuishi; Kurihara, Atsushi

    2016-01-01

    Prasugrel is a thienopyridine antiplatelet prodrug that undergoes rapid hydrolysis in vivo to a thiolactone metabolite by human carboxylesterase-2 (hCE2) during gastrointestinal absorption. The thiolactone metabolite is further converted to a pharmacologically active metabolite by cytochrome P450 isoforms. The aim of the current study was to elucidate hydrolases other than hCE2 involved in the bioactivation step of prasugrel in human intestine. Using size-exclusion column chromatography of a human small intestinal S9 fraction, another peak besides the hCE2 peak was observed to have prasugrel hydrolyzing activity, and this protein was found to have a molecular weight of about 20 kDa. This prasugrel hydrolyzing protein was successfully purified from a monkey small intestinal cytosolic fraction by successive four-step column chromatography and identified as Raf-1 kinase inhibitor protein (RKIP) by liquid chromatography-tandem mass spectrometry. Second, we evaluated the enzymatic kinetic parameters for prasugrel hydrolysis using recombinant human RKIP and hCE2 and estimated the contributions of these two hydrolyzing enzymes to the prasugrel hydrolysis reaction in human intestine, which were approximately 40% for hRKIP and 60% for hCE2. Moreover, prasugrel hydrolysis was inhibited by anti-hRKIP antibody and carboxylesterase-specific chemical inhibitor (bis p-nitrophenyl phosphate) by 30% and 60%, respectively. In conclusion, another protein capable of hydrolyzing prasugrel to its thiolactone metabolite was identified as RKIP, and this protein may play a significant role with hCE2 in prasugrel bioactivation in human intestine. RKIP is known to have diverse functions in many intracellular signaling cascades, but this is the first report describing RKIP as a hydrolase involved in drug metabolism.

  14. An in-built proteinase inhibitor system for the protection of recombinant proteins recovered from transgenic plants.

    PubMed

    Rivard, Daniel; Anguenot, Raphaël; Brunelle, France; Le, Van Quy; Vézina, Louis-Philippe; Trépanier, Sonia; Michaud, Dominique

    2006-05-01

    Proteolytic degradation represents a significant barrier to the efficient production of several recombinant proteins in plants, both in vivo during their expression and in vitro during their recovery from source tissues. Here, we describe a strategy to protect recombinant proteins during the recovery process, based on the coexpression of a heterologous proteinase inhibitor acting as a 'mouse trap' against the host proteases during extraction. After confirming the importance of trypsin- and chymotrypsin-like activities in crude protein extracts of potato (Solanum tuberosum L.) leaves, transgenic lines of potato expressing either tomato cathepsin D inhibitor (CDI) or bovine aprotinin, both active against trypsin and chymotrypsin, were generated by Agrobacterium tumefaciens-mediated genetic transformation. Leaf crude protein extracts from CDI-expressing lines, showing decreased levels of cathepsin D-like and ribulose 1,5-bisphosphate carboxylase/oxygenase hydrolysing activities in vitro, conducted decreased turnover rates of the selection marker protein neomycin phosphotransferase II (NPTII) relative to the turnover rates measured for transgenic lines expressing only the marker protein. A similar stabilizing effect on NPTII was observed in leaf protein extracts from plant lines coexpressing bovine aprotinin, confirming the ability of ectopically expressed broad-spectrum serine proteinase inhibitors to reproduce the protein-stabilizing effect of low-molecular-weight proteinase inhibitors generally added to protein extraction media.

  15. Elucidating the structural chemistry of glycosaminoglycan recognition by protein C inhibitor.

    PubMed Central

    Kuhn, L A; Griffin, J H; Fisher, C L; Greengard, J S; Bouma, B N; España, F; Tainer, J A

    1990-01-01

    Glycosaminoglycans (GAGs) including heparin accelerate the inhibition of serine proteases by serine protease inhibitors (serpins), an essential process in regulating blood coagulation. to analyze the molecular basis for GAG recognition by the plasma serpin protein C inhibitor (PCI; also known as plasminogen activator inhibitor 3), we have constructed a complete, energy-minimized, three-dimensional model of PCI by using the structure of homologous alpha 1-antitrypsin as a template. Sequence analysis, hydrogen-bonding environment, and shape complementarity suggested that the N-terminal residues of PCI, which are not homologous to those of alpha 1-antitrypsin, form an amphipathic alpha-helix, here designated A+ since it precedes the alpha 1-antitrypsin A helix. Electrostatic calculations revealed a single, highly positive surface region arising from both the A+ and H helices, suggesting that this two-helix motif is required for GAG binding by PCI. The dominant role of electrostatic interactions in PCI-heparin binding was confirmed by the strong ionic strength dependence of heparin stimulation. The involvement of the A+ helix in heparin binding was verified by demonstrating that an anti-PCI antibody that specifically binds the A+ peptide blocks heparin binding. Images PMID:2172989

  16. Embryonic Dorsal-Ventral Signaling: Secreted Frizzled-Related Proteins as Inhibitors of Tolloid Proteinases

    PubMed Central

    Lee, Hojoon X.; Ambrosio, Andrea L.; Reversade, Bruno; De Robertis, E.M.

    2008-01-01

    SUMMARY Here we report an unexpected role for the secreted Frizzled-related protein (sFRP) Sizzled/Ogon as an inhibitor of the extracellular proteolytic reaction that controls BMP signaling during Xenopus gastrulation. Microinjection experiments suggest that the Frizzled domain of Sizzled regulates the activity of Xolloid-related (Xlr), a metalloproteinase that degrades Chordin, through the following molecular pathway: Szl ┤ Xlr ┤ Chd ┤ BMP → P-Smad1 → Szl. In biochemical assays, the Xlr proteinase has similar affinities for its endogenous substrate Chordin and for its competitive inhibitor Sizzled, which is resistant to enzyme digestion. Extracellular levels of Sizzled and Chordin in the gastrula embryo and enzyme reaction constants were all in the 10−8 M range, consistent with a physiological role in the regulation of dorsal-ventral patterning. Sizzled is also a natural inhibitor of BMP1, a Tolloid metalloproteinase of medical interest. Furthermore, mouse sFRP2 inhibited Xlr, suggesting a wider role for this molecular mechanism. PMID:16413488

  17. A Potent, Selective and Cell-Active Allosteric Inhibitor of Protein Arginine Methyltransferase 3 (PRMT3)**

    PubMed Central

    Kaniskan, H. Ümit; Szewczyk, Magdalena M.; Yu, Zhengtian; Eram, Mohammad S.; Yang, Xiaobao; Schmidt, Keith; Luo, Xiao; Dai, Miao; He, Feng; Zang, Irene; Lin, Ying; Kennedy, Steven; Li, Fengling; Dobrovetsky, Elena; Dong, Aiping; Smil, David; Min, Sun-Joon; Landon, Melissa; Lin-Jones, Jennifer; Huang, Xi-Ping; Roth, Bryan L.; Schapira, Matthieu; Atadja, Peter; Barsyte-Lovejoy, Dalia; Arrowsmith, Cheryl H.; Brown, Peter J.; Zhao, Kehao; Jin, Jian; Vedadi, Masoud

    2015-01-01

    PRMT3 catalyzes the asymmetric dimethylation of arginine residues of various proteins. It is essential for maturation of ribosomes, may have a role in lipogenesis, and is implicated in several diseases. A potent, selective, and cell- active PRMT3 inhibitor would be a valuable tool for further investigating PRMT3 biology. Here we report the discovery of the first PRMT3 chemical probe, SGC707, by structure-based optimization of the allosteric PRMT3 inhibitors we reported previously, and thorough characterization of this probe in biochemical, biophysical, and cellular assays. SGC707 is a potent PRMT3 inhibitor (IC50 = 31 ± 2 nm, KD = 53 ± 2 nm) with outstanding selectivity (selective against 31 other methyltransferases and more than 250 non-epigenetic targets). The mechanism of action studies and crystal structure of the PRMT3-SGC707 complex confirm the allosteric inhibition mode. Importantly, SGC707 engages PRMT3 and potently inhibits its methyltransferase activity in cells. It is also bioavailable and suitable for animal studies. This well- characterized chemical probe is an excellent tool to further study the role of PRMT3 in health and disease. PMID:25728001

  18. Structural Determinants of CX-4945 Derivatives as Protein Kinase CK2 Inhibitors: A Computational Study

    PubMed Central

    Liu, Hongbo; Wang, Xia; Wang, Jian; Wang, Jinghui; Li, Yan; Yang, Ling; Li, Guohui

    2011-01-01

    Protein kinase CK2, also known as casein kinase-2, is involved in a broad range of physiological events including cell growth, proliferation and suppression of apoptosis which are related to human cancers. A series of compounds were identified as CK2 inhibitors and their inhibitory activities varied depending on their structures. In order to explore the structure-activity correlation of CX-4945 derivatives as inhibitors of CK2, in the present study, a set of ligand- and receptor-based 3D-QSAR models were developed employing Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Index Analysis (CoMSIA). The optimum CoMFA (Rcv2 = 0.618, Rpred2 = 0.892) and CoMSIA (Rcv2 = 0.681, Rpred2 = 0.843) models exhibited reasonable statistical characteristics for CX-4945 derivatives. The results indicated that electrostatic effects contributed the most to both CoMFA and CoMSIA models. The combination of docking analysis and molecular dynamics (MD) simulation showed that Leu45, Lys68, Glu81, Val116, Asp175 and Trp176 of CK2 which formed several direct or water-bridged H-bonds with CX-4945 are crucial for CX-4945 derivatives recognition to CK2. These results can offer useful theoretical references for designing more potent CK2 inhibitors. PMID:22072932

  19. Integrating Virtual and Biochemical Screening for Protein Tyrosine Phosphatase Inhibitor Discovery

    PubMed Central

    Martin, Katie R.; Narang, Pooja; Franco, Jose L. Medina; Meurice, Nathalie; MacKeigan, Jeffrey P.

    2013-01-01

    Protein tyrosine phosphatases (PTPs) represent an important class of enzymes that mediate signal transduction and control diverse aspects of cell behavior. The importance of their activity is exemplified by their significant contribution to disease etiology with over half of all human PTP genes implicated in at least one disease. Small molecule inhibitors targeting individual PTPs are important biological tools, and are needed to fully characterize the function of these enzymes. Moreover, potent and selective PTP inhibitors hold the promise to transform the treatment of many diseases. While numerous methods exist to develop PTP-directed small molecules, we have found that complimentary use of both virtual (in silico) and biochemical (in vitro) screening approaches expedite compound identification and drug development. Here, we summarize methods pertinent to our work and others. Focusing on specific challenges and successes we have experienced, we discuss the considerable caution that must be taken to avoid enrichment of inhibitors that function by non-selective oxidation. We also discuss the utility of using “open” PTP structures to identify active-site directed compounds, a rather unconventional choice for virtual screening. When integrated closely, virtual and biochemical screening can be used in a productive workflow to identify small molecules targeting PTPs. PMID:23969317

  20. Preliminary studies of the effects of vascular adhesion protein-1 inhibitors on experimental corneal neovascularization.

    PubMed

    Enzsöly, Anna; Dunkel, Petra; Récsán, Zsuzsa; Gyorffy, Hajnalka; Tóth, Jeanette; Marics, Gábor; Bori, Zoltán; Tóth, Miklós; Zelkó, Romána; Di Paolo, Maria Luisa; Mátyus, Péter; Németh, János

    2011-07-01

    Vascular adhesion protein-1 (VAP-1) controls the adhesion of lymphocytes to endothelial cells and is upregulated at sites of inflammation. Moreover, it expresses amine oxidase activity, due to the sequence identity with semicarbazide-sensitive amine oxidase. Recent studies indicate a significant role for VAP-1 in neovascularization, besides its contribution to inflammation. Pathological blood vessel development in severe ocular diseases (such as diabetes, age-related macula degeneration, trauma and infections) might lead to decreased visual acuity and finally to blindness, yet there is no clear consensus as to its appropriate treatment. In the present case study, the effects of two VAP-1 inhibitors on experimentally induced corneal neovascularization in rabbits were compared with the effects of a known inhibitor of angiogenesis, bevacizumab, an anti-vascular endothelial growth factor antibody. In accordance with recent literature data, the results of the preliminary study reported here indicate that the administration of VAP-1 inhibitors is a potentially valuable therapeutic option in the treatment of corneal neovascularization.

  1. Effect of a protein synthetic inhibitor on in vivo estimates of protein synthesis in dogs

    SciTech Connect

    Schwenk, W.F.; Rubanyi, E.; Haymond, M.W.

    1987-05-01

    In vivo estimates of nonoxidative leucine disappearance have frequently been used as estimates of leucine incorporation into protein. To attempt to assess this extrapolation to protein synthesis, seven overnight fasted dogs received primed 4-h infusions of emetine, an alkaloid known to inhibit protein synthesis at the translational level. Protein metabolism was studied using infusions of (1-/sup 14/C)leucine and ..cap alpha..-(4,5-/sup 3/H)ketoisocaproate (KIC) and the steady-state specific activities of the leucine moiety (e.g., (/sup 14/C)KIC and (/sup 3/H)leucine) reciprocal to the infused isotopes as estimates of intracellular leucine specific activities. Plasma leucine and KIC concentrations increased, as did leucine oxidation. Estimates of nonoxidative leucine disappearance decreased by approx. 70%, and estimates of the endogenous leucine rate of appearance decreased by approx. 40% using either the /sup 14/C or /sup 3/H data. They conclude that, although in vivo estimates of leucine metabolism are not quantitative, rapid changes in whole-body estimates of protein synthesis can be predicted during infusion of labeled leucine.

  2. Design, Synthesis and in vitro Characterization of Novel Hybrid Peptidomimetic Inhibitors of STAT3 Protein

    PubMed Central

    Shahani, Vijay M.; Yue, Peibin; Fletcher, Steven; Sharmeen, Sumaiya; Sukhai, Mahadeo A.; Luu, Diana P.; Zhang, Xiaolei; Sun, Hong; Zhao, Wei; Schimmer, Aaron D.; Turkson, James; Gunning, Patrick T.

    2011-01-01

    Aberrant activation of oncogenic signal transducer and activator of transcription 3 (STAT3) protein signaling pathways has been extensively implicated in human cancers. Given STAT3’s prominent dysregulatory role in malignant transformation and tumorigenesis, there has been a significant effort to discover STAT3-specific inhibitors as chemical probes for defining the aberrant STAT3-mediated molecular events that support the malignant phenotype. To identify novel, STAT3-selective inhibitors suitable for interrogating STAT3 signaling in tumor cells, we explored the design of hybrid molecules by conjugating a known STAT3 inhibitory peptidomimetic, ISS610 to the high-affinity STAT3-binding peptide motif derived from the ILR/gp-130. Several hybrid molecules were examined in in vitro biophysical and biochemical studies for inhibitory potency against STAT3. Lead inhibitor 14aa was shown to strongly bind to STAT3 (KD = 900 nM), disrupt STAT3:phosphopeptide complexes (Ki = 5 μM) and suppress STAT3 activity in in vitro DNA-binding activity/ electrophoretic mobility shift assay (EMSA). Moreover, lead STAT3 inhibitor 14aa induced a time-dependent inhibition of constitutive STAT3 activation in v-Src transformed mouse fibroblasts (NIH3T3/v-Src), with 80 % suppression of constitutively-active STAT3 at six hours following treatment of NIH3T3/v-Src. However, STAT3 activity recovered at 24 hours after treatment of cells, suggesting potential degradation of the compound. Results further showed a suppression of aberrant STAT3 activity in NIH3T3/v-Src by the treatment with compound 14aa-OH, which is the non-pTyr version of compound 14aa. The effect of compounds 14aa and 14aa-OH are accompanied by a moderate loss of cell viability. PMID:21216604

  3. Bis-ANS as a specific inhibitor for microtubule-associated protein induced assembly of tubulin.

    PubMed

    Mazumdar, M; Parrack, P K; Mukhopadhyay, K; Bhattacharyya, B

    1992-07-21

    5,5'-Bis[8-(phenylamino)-1-naphthalenesulfonate] (bis-ANS), the fluorescent probe which binds to tubulin, inhibits its assembly into microtubules [Horowitz et al. (1984) J. Biol. Chem. 259, 14647-14650]. The results described in this paper demonstrate that bis-ANS is quite distinct from other well-known microtubule inhibitors in its specificity of action. The inhibitory potentials of bis-ANS and its three structural analogues ANS, Prodan [6-propionyl-2-(dimethylamino)naphthalene], and NSA (naphthalenesulfonic acid) have been compared. It is found that they can be arranged in the following order according to their polymerization inhibitory potentials: bis-ANS approximately equal to Prodan much greater than ANS greater than NSA. Interestingly, the naphthalene nucleus is sufficient to cause inhibition of polymerization. Detailed experiments were carried out to examine the mode of assembly inhibition by aminonaphthalenes at the molecular level, using bis-ANS as a representative. It was found that there was little or no effect of bis-ANS on the assembly of tubulin when polymerization was induced by assembly promoters like taxol, DMSO, or glutamate, or on the assembly of subtilisin-digested protein (tubulin S), for all of which half-maximal inhibition could not be achieved even at 120 microM bis-ANS. On the contrary, bis-ANS acts as an inhibitor in the case of MAP- (MAP2 and tau) and poly(L-lysine)-induced assembly of tubulin, with half-maximal inhibitory concentrations ranging from 1.5 to 7.6 microM. Our results place bis-ANS as a novel inhibitor, which seems to specifically inhibit C-termini-mediated assembly. Of all assembly inhibitors known so far, none exhibits such selection.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Differential effects of protein kinase C inhibitors on chemokine production in human synovial fibroblasts.

    PubMed Central

    Jordan, N. J.; Watson, M. L.; Yoshimura, T.; Westwick, J.

    1996-01-01

    1. Rheumatoid arthritis is associated with the accumulation and activation of selected populations of inflammatory cells within the arthritic joint. One putative signal for this process is the production, by resident cells, of a group of inflammatory mediators known as the chemokines. 2. The chemokines interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1) and RANTES (regulated on activation normal T-cell expressed and presumably secreted) are target-cell specific chemoattractants produced by synovial fibroblasts in response to stimulation with interleukin-1 alpha (IL-1 alpha) or tumour necrosis factor alpha (TNF alpha). The signalling pathways involved in their production are not well defined. We therefore used four different protein kinase C inhibitors to investigate the role of this kinase in the regulation of chemokine mRNA and protein expression in human cultured synovial fibroblasts. 3. The non-selective PKC inhibitor, staurosporine (1-300 nM) significantly increased the production of IL-1 alpha-induced IL-8 mRNA and protein. A specific PKC inhibitor, chelerythrine chloride (0.1-3 microM), also caused a small concentration-dependent increase in IL-8 mRNA and protein production. In contrast, 3-[1-[3-(amidinothio)propyl]-3-indoly]-4-(1-methyl-3-indolyl )- 1H-pyrrole-2,5-dione methanesulphonate (Ro 31-8220) and 2[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3- yl)-maleimide (GF 109203X), two selective PKC inhibitors of the substituted bisindolylmaleimide family had a concentration-dependent biphasic effect on IL-1 alpha or TNF alpha-induced chemokine expression. At low concentrations they caused a stimulation in chemokine production, which was especially evident at the mRNA level. At higher concentrations both inhibited IL-1 alpha or TNF alpha-induced chemokine mRNA and protein production. Ro 31-8220 was 10 fold more potent than GF 109203X, with an IC50 of 1.6 +/- 0.08 microM (mean +/- s.e.mean, n = 4) for IL-1 alpha induced IL-8 production. Ro 31

  5. A High-Throughput Screening Strategy for Development of RNF8-Ubc13 Protein-Protein Interaction Inhibitors.

    PubMed

    Weber, Elisabeth; Rothenaigner, Ina; Brandner, Stefanie; Hadian, Kamyar; Schorpp, Kenji

    2017-03-01

    The ubiquitin-proteasome system plays an essential role in a broad range of cellular signaling pathways. Ubiquitination is a posttranslational protein modification that involves the action of an enzymatic cascade (E1, E2, and E3 enzymes) for the covalent attachment of ubiquitin to target proteins. The emerging knowledge of the molecular mechanisms and correlation of deregulation of the ubiquitin system in human diseases is uncovering new opportunities for therapeutics development. The E3 ligase RNF8 acts in cooperation with the heterodimeric E2 enzyme Ubc13/Uev1a to generate ubiquitin conjugates at the sides of DNA double-strand breaks, and recent findings suggest RNF8 as a potential therapeutic target for the treatment of breast cancer. Here, we present a novel high-throughput screening (HTS)-compatible assay based on the AlphaScreen technology to identify inhibitors of the RNF8-Ubc13 protein-protein interaction, along with a follow-up strategy for subsequent validation. We have adapted the AlphaScreen assay to a 384-well format and demonstrate its reliability, reproducibility, and suitability for automated HTS campaigns. In addition, we have established a biochemical orthogonal homogeneous time-resolved fluorescence (HTRF) assay in HTS format and a cellular microscopy-based assay allowing verification of the primary hits. This strategy will be useful for drug screening programs aimed at RNF8-Ubc13 modulation.

  6. Benzothiazole derivatives: novel inhibitors of methylglyoxal mediated glycation of proteins in vitro.

    PubMed

    Abbasi, Sanaullah; Mirza, Salma; Rasheed, Saima; Hussain, Shafqat; Khan, Jalaluddin A J; Khan, Khalid Mohammed; Perveen, Shahnaz; Choudhary, Muhammad Iqbal

    2014-01-01

    This manuscript describes the protein anti-glycation activity of thirty-three (33) benzothiazoles, out of which twenty-seven were the newly synthesized benzothiazoles. Compound 1 (IC50= 187 ± 2.6 µM) was found to be the most active, while compounds 2 (IC50= 219 ± 3.6 µM), 3 (IC50= 224 ± 1.9 µM), 4 (IC50= 223 ± 3.3 µM), 5 (IC50= 238 ± 2.2 µM), 7 (IC50= 266 ± 5.4 µM), 17 (IC50= 226 ± 1.6 µM) and 18 (IC50= 274 ± 2.4 µM) were significantly active, when compared with the standard rutin (IC50= 294 ± 1.5 µM). This study identified potential inhibitors of methylglyoxal mediated glycation of proteins, which is the pathophysiology of late diabetic complications.

  7. Virtual screening studies to identify novel inhibitors for Sigma F protein of Mycobacterium tuberculosis.

    PubMed

    Mustyala, Kiran Kumar; Malkhed, Vasavi; Chittireddy, Venkataramana Reddy; Vuruputuri, Uma

    2015-12-01

    Tuberculosis (TB) is one of the oldest threats to public health. TB is caused by the pathogen Mycobacterium tuberculosis (MTB). The Sigma factors are essential for the survival of MTB. The Sigma factor Sigma F (SigF) regulates genes expression under stress conditions. The SigF binds to RNA polymerase and forms a holoenzyme, which initiates the transcription of various genes. The Usfx, an anti-SigF protein, binds to SigF and alters the transcription initiation and gene expression. In the present work, virtual screening studies are taken up to identify the interactions between SigF and small molecular inhibitors which can inhibit the formation of holoenzyme. The studies reveal that ARG 104 and ARG 224 amino acid residues of SigF protein are forming important binding interactions with the ligands. The in silico ADME properties for the ligand data set are calculated to check the druggability of the molecules.

  8. FAM122A, a new endogenous inhibitor of protein phosphatase 2A

    PubMed Central

    Fan, Li; Liu, Man-Hua; Guo, Meng; Hu, Chuan-Xi; Yan, Zhao-Wen; Chen, Jing; Chen, Guo-Qiang; Huang, Ying

    2016-01-01

    The regulation of the ubiquitously expressed protein phosphatase 2A (PP2A) is essential for various cellular functions such as cell proliferation, transformation, and fate determination. In this study, we demonstrate that the highly conserved protein in mammals, designated FAM122A, directly interacts with PP2A-Aα and B55α rather than B56α subunits, and inhibits the phosphatase activity of PP2A-Aα/B55α/Cα complex. Further, FAM122A potentiates the degradation of catalytic subunit PP2A-Cα with the increased poly-ubiquitination. In agreement, FAM122A silencing inhibits while its overexpression enhances cell growth and colony-forming ability. Collectively, we identify FAM122A as a new endogenous PP2A inhibitor and its physiological and pathophysiological significances warrant to be further investigated. PMID:27588481

  9. IAPs on the move: role of inhibitors of apoptosis proteins in cell migration.

    PubMed

    Oberoi-Khanuja, T K; Murali, A; Rajalingam, K

    2013-09-05

    Inhibitors of Apoptosis Proteins (IAPs) are a class of highly conserved proteins predominantly known for the regulation of caspases and immune signaling. However, recent evidence suggests a crucial role for these molecules in the regulation of tumor cell shape and migration by controlling MAPK, NF-κB and Rho GTPases. IAPs directly control Rho GTPases, thus regulating cell shape and migration. For instance, XIAP and cIAP1 function as the direct E3 ubiquitin ligases of Rac1 and target it for proteasomal degradation. IAPs are differentially expressed in tumor cells and have been targeted by several cancer therapeutic drugs that are currently in clinical trials. Here, we summarize the current knowledge on the role of IAPs in the regulation of cell migration and discuss the possible implications of these observations in regulating tumor cell metastases.

  10. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors

    PubMed Central

    Qvit, Nir; Schechtman, Deborah; Pena, Darlene Aparecida; Berti, Denise Aparecida; Soares, Chrislaine Oliveira; Miao, Qianqian; Liang, Liying (Annie); Baron, Lauren A.; Teh-Poot, Christian; Martínez-Vega, Pedro; Ramirez-Sierra, Maria Jesus; Churchill, Eric; Cunningham, Anna D.; Malkovskiy, Andrey V.; Federspiel, Nancy A.; Gozzo, Fabio Cesar; Torrecilhas, Ana Claudia; Manso Alves, Maria Julia; Jardim, Armando; Momar, Ndao; Dumonteil, Eric; Mochly-Rosen, Daria

    2016-01-01

    Parasitic diseases cause ∼500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosomareceptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs. PMID:27054066

  11. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria

    PubMed Central

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-01-01

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates. PMID:17405861

  12. Why ice-binding type I antifreeze protein acts as a gas hydrate crystal inhibitor.

    PubMed

    Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John A; Englezos, Peter

    2015-04-21

    Antifreeze proteins (AFPs) prevent ice growth by binding to a specific ice plane. Some AFPs have been found to inhibit the formation of gas hydrates which are a serious safety and operational challenge for the oil and gas industry. Molecular dynamics simulations are used to determine the mechanism of action of the winter flounder AFP (wf-AFP) in inhibiting methane hydrate growth. The wf-AFP adsorbs onto the methane hydrate surface via cooperative binding of a set of hydrophobic methyl pendant groups to the empty half-cages at the hydrate/water interface. Each binding set is composed of the methyl side chain of threonine and two alanine residues, four and seven places further down in the sequence of the protein. Understanding the principle of action of AFPs can lead to the rational design of green hydrate inhibitor molecules with potential superior performance.

  13. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  14. Molecular mechanism of hepatitis B virus (HBV) on suppression of raf kinase inhibitor protein (RKIP) expression

    PubMed Central

    Cheng, Xiao-Ke; Yu, Guo-Zheng; Li, Xiao-Dong; Ren, Xue-Qun

    2017-01-01

    Raf kinase inhibitor protein (RKIP) has been shown to be a suppressor of the mitogen-activated protein kinase pathway and is reported to be involved in human malignancy. However, the molecular mechanism of hepatitis B virus (HBV) in regulating RKIP expression is not yet clarified. In this study, we compared RKIP expression in 107 pairs of matched liver cancer and adjacent non-cancerous liver tissues. Among seven HBV-encoded proteins, we found HBV X (HBX) protein could significantly inhibit the expression level of RKIP, indicating that HBV could suppress RKIP expression through regulating HBX. To further elucidate the mechanism, analyses on transcriptional regulation and promoter methylation inhibition were conducted in Huh7 cells. Our results showed that HBX can interact with AP1 protein to inhibit the RKIP transcription. Moreover, we observed that the promoter methylation level of RKIP could be enhanced by HBV. In conclusion, our study revealed that RKIP could act as a molecular marker for HBV-infected liver cancer, but had no tumor-suppressing effect. PMID:27902472

  15. Arabidopsis Bax Inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in Saccharomyces cerevisiae

    PubMed Central

    Çakır, Birsen; Tumer, Nilgun E.

    2015-01-01

    Apoptosis is an active form of programmed cell death (PCD) that plays critical roles in the development, differentiation and resistance to pathogens in multicellular organisms. Ribosome inactivating proteins (RIPs) are able to induce apoptotic cell death in mammalian cells. In this study, using yeast as a model system, we showed that yeast cells expressing pokeweed antiviral protein (PAP), a single-chain ribosome-inactivating protein, exhibit apoptotic-like features, such as nuclear fragmentation and ROS production. We studied the interaction between PAP and AtBI-1 (Arabidopsis thaliana Bax Inhibitor-1), a plant anti-apoptotic protein, which inhibits Bax induced cell death. Cells expressing PAP and AtBI-1 were able to survive on galactose media compared to PAP alone, indicating a reduction in the cytotoxicity of PAP in yeast. However, PAP was able to depurinate the ribosomes and to inhibit total translation in the presence of AtBI-1. A C-terminally deleted AtBI-1 was able to reduce the cytotoxicity of PAP. Since anti-apoptotic proteins form heterodimers to inhibit the biological activity of their partners, we used a co-immunoprecipitation assay to examine the binding of AtBI-1 to PAP. Both full length and C-terminal deleted AtBI-1 were capable of binding to PAP. These findings indicate that PAP induces cell death in yeast and AtBI-1 inhibits cell death induced by PAP without affecting ribosome depurination and translation inhibition. PMID:28357275

  16. Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery

    PubMed Central

    Görtz, Dieter; Braun, Gerald S.; Maruta, Yuichi; Djudjaj, Sonja; van Roeyen, Claudia R.; Martin, Ina V.; Küster, Andrea; Schmitz-Van de Leur, Hildegard; Scheller, Jürgen; Ostendorf, Tammo; Floege, Jürgen; Müller-Newen, Gerhard

    2015-01-01

    Anti-cytokine therapies have substantially improved the treatment of inflammatory and autoimmune diseases. Cytokine-targeting drugs are usually biologics such as antibodies or other engineered proteins. Production of biologics, however, is complex and intricate and therefore expensive which might limit therapeutic application. To overcome this limitation we developed a strategy that involves the design of an optimized, monogenic cytokine inhibitor and the protein producing capacity of the host. Here, we engineered and characterized a receptor fusion protein, mIL-6-RFP-Fc, for the inhibition of interleukin-6 (IL-6), a well-established target in anti-cytokine therapy. Upon application in mice mIL-6-RFP-Fc inhibited IL-6-induced activation of the transcription factor STAT3 and ERK1/2 kinases in liver and kidney. mIL-6-RFP-Fc is encoded by a single gene and therefore most relevant for gene transfer approaches. Gene transfer through hydrodynamic plasmid delivery in mice resulted in hepatic production and secretion of mIL-6-RFP-Fc into the blood in considerable amounts, blocked hepatic acute phase protein synthesis and improved kidney function in an ischemia and reperfusion injury model. Our study establishes receptor fusion proteins as promising agents in anti-cytokine therapies through gene therapeutic approaches for future targeted and cost-effective treatments. The strategy described here is applicable for many cytokines involved in inflammatory and other diseases. PMID:26423228

  17. Transcriptional responses to cantharidin a protein phosphatase inhibitor in Arabidopsis thaliana reveal the involvement of multiple signal transduction pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cantharidin is a natural compound isolated from the blister beetle (Epicauta spp.). It is a very potent inhibitor of serine/threonine protein phosphatases PPP, especially PP2A and PP4. Protein phosphatases and kinases maintain a sensitive balance between phosphorylated and dephosphorylated forms of ...

  18. A Potent, Selective and Cell-active Inhibitor of Human Type I Protein Arginine Methyltransferases

    PubMed Central

    Wu, Hong; Senisterra, Guillermo; Li, Fengling; Butler, Kyle V.; Kaniskan, H. Ümit; Speed, Brandon A.; dela Seña, Carlo; Dong, Aiping; Zeng, Hong; Schapira, Matthieu; Brown, Peter J.; Arrowsmith, Cheryl H.; Barsyte-Lovejoy, Dalia; Liu, Jing; Vedadi, Masoud; Jin, Jian

    2015-01-01

    Protein arginine methyltransferases (PRMTs) play a crucial role in a variety of biological processes. Overexpression of PRMTs has been implicated in various human diseases including cancer. Consequently, selective small-molecule inhibitors of PRMTs have been pursued by both academia and pharmaceutical industry as chemical tools for testing biological and therapeutic hypotheses. PRMTs are divided into three categories: type I PRMTs which catalyze mono- and asymmetric dimethylation of arginine residues, type II PRMTs which catalyze mono- and symmetric dimethylation of arginine residues, and type III PRMT which catalyzes only monomethylation of arginine residues. Here, we report the discovery of a potent, selective and cell-active inhibitor of human type I PRMTs, MS023, and characterization of this inhibitor in a battery of biochemical, biophysical and cellular assays. MS023 displayed high potency for type I PRMTs including PRMT1, 3, 4, 6 and 8, but was completely inactive against type II and type III PRMTs, protein lysine methyltransferases and DNA methyltransferases. A crystal structure of PRMT6 in complex with MS023 revealed that MS023 binds the substrate binding site. MS023 potently decreased cellular levels of histone arginine asymmetric dimethylation. It also reduced global levels of arginine asymmetric dimethylation and concurrently increased levels of arginine monomethylation and symmetric dimethylation in cells. We also developed MS094, a close analog of MS023, which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. MS023 and MS094 are useful chemical tools for investigating the role of type I PRMTs in health and disease. PMID:26598975

  19. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    SciTech Connect

    Honma, Yuichi; Harada, Masaru

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  20. Interaction of protein C inhibitor with the type II transmembrane serine protease enteropeptidase.

    PubMed

    Prohaska, Thomas A; Wahlmüller, Felix C; Furtmüller, Margareta; Geiger, Margarethe

    2012-01-01

    The serine protease inhibitor protein C inhibitor (PCI) is expressed in many human tissues and exhibits broad protease reactivity. PCI binds glycosaminoglycans and certain phospholipids, which modulate its inhibitory activity. Enteropeptidase (EP) is a type II transmembrane serine protease mainly found on the brush border membrane of epithelial cells in the duodenum, where it activates trypsinogen to initiate the digestion of food proteins. Some active EP is also present in duodenal fluid and has been made responsible for causing pancreatitis in case of duodeno-pancreatic reflux. Together with its substrate trypsinogen, EP is furthermore present in the epidermis and in some cancer cells. In this report, we show that PCI inhibited EP with an apparent 2nd order rate constant of 4.48 × 10(4) M(-1) s(-1). Low molecular weight (LMWH) and unfractionated heparin (UFH) slightly reduced the inhibitory effect of PCI. The SI (stoichiometry of inhibition) value for the inhibition of EP by PCI was 10.8 in the absence and 17.9 in the presence of UFH (10 U/ml). By inhibiting trypsin, chymotrypsin, and additionally EP, PCI might play a role in the protection of the pancreas from autodigestion. Furthermore the interaction of PCI with EP may influence the regulation of epithelial differentiation.

  1. Discovery of Mer kinase inhibitors by Virtual Screening using Structural Protein-Ligand Interaction Fingerprints

    PubMed Central

    Da, C.; Stashko, M.; Jayakody, C.; Wang, X.; Janzen, W.; Frye, S.; Kireev, D.

    2015-01-01

    Mer is a receptor tyrosine kinase implicated in acute lymphoblastic leukemia (ALL), the most common malignancy in children. The currently available data provide a rationale for development of Mer kinase inhibitors as cancer therapeutics that can target both cell autologous and immune-modulatory anti-tumor effects. We have previously reported several series of potent Mer inhibitors and the objective of the current report is to identify a chemically dissimilar back-up series that might circumvent potential, but currently unknown, flaws inherent to the lead series. To this end, we virtually screened a database of ∼3.8 million commercially available compounds using high-throughput docking followed by a filter involving Structural Protein-Ligand Interaction Fingerprints (SPLIF). SPLIF permits a quantitative assessment of whether a docking pose interacts with the protein target similarly to an endogenous or known synthetic ligand, and therefore helps to improve both sensitivity and specificity with respect to the docking score alone. Of the total of 62 experimentally tested compounds, 15 demonstrated reliable dose-dependent responses in the Mer in vitro kinase activity assay with inhibitory potencies ranging from 0.46 μM to 9.9 μM. PMID:25638502

  2. Discovery of Mer kinase inhibitors by virtual screening using Structural Protein-Ligand Interaction Fingerprints.

    PubMed

    Da, C; Stashko, M; Jayakody, C; Wang, X; Janzen, W; Frye, S; Kireev, D

    2015-03-01

    Mer is a receptor tyrosine kinase implicated in acute lymphoblastic leukemia (ALL), the most common malignancy in children. The currently available data provide a rationale for development of Mer kinase inhibitors as cancer therapeutics that can target both cell autologous and immune-modulatory anti-tumor effects. We have previously reported several series of potent Mer inhibitors and the objective of the current report is to identify a chemically dissimilar back-up series that might circumvent potential, but currently unknown, flaws inherent to the lead series. To this end, we virtually screened a database of ∼3.8million commercially available compounds using high-throughput docking followed by a filter involving Structural Protein-Ligand Interaction Fingerprints (SPLIF). SPLIF permits a quantitative assessment of whether a docking pose interacts with the protein target similarly to an endogenous or known synthetic ligand, and therefore helps to improve both sensitivity and specificity with respect to the docking score alone. Of the total of 62 experimentally tested compounds, 15 demonstrated reliable dose-dependent responses in the Mer in vitro kinase activity assay with inhibitory potencies ranging from 0.46μM to 9.9μM.

  3. An endogenous protein inhibitor, YjhX (TopAI), for topoisomerase I from Escherichia coli

    PubMed Central

    Yamaguchi, Yoshihiro; Inouye, Masayori

    2015-01-01

    Almost all free-living bacteria contain toxin-antitoxin (TA) systems on their genomes and the targets of toxins are highly diverse. Here, we found a novel, previously unidentified TA system in Escherichia coli named yjhX-yjhQ. Induction of YjhX (85 amino acid residues) causes cell-growth arrest resulting in cell death, while YjhQ (181 residues) co-induction resumes cell growth. The primary cellular target of YjhX was found to be topoisomerase I (TopA), inhibiting both DNA replication and RNA synthesis. Notably, YjhX has no homology to any other toxins of the TA systems. YjhX was expressed well with an N-terminal protein S (PrS) tag in soluble forms. PrS-YjhX specifically interacts with the N-terminal region of TopA (TopA67) but not full-TopA in the absence of plasmid DNA, while PrS-YjhX binds to full-TopA in the presence of DNA. Notably, YjhX does not directly interact with DNA and RNA. YjhX inhibits only topoisomerase I but not topoisomerase III and IV in vitro. Hence, yjhX is renamed as the gene for the TopA inhibitor (the topAI gene). TopAI is the first endogenous protein inhibitor specific for topoisomerase I. PMID:26553797

  4. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer

    SciTech Connect

    Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine

    2009-06-10

    Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.

  5. Targeting inhibitor 2 of protein phosphatase 2A as a therapeutic strategy for prostate cancer treatment

    PubMed Central

    Mukhopadhyay, Archana; Tabanor, Kayann; Chaguturu, Rathnam; Aldrich, Jane V

    2013-01-01

    Inhibitor 2 of protein phosphatase 2A (I2PP2A), a biological inhibitor of the cellular serine/threonine protein phosphatase PP2A, is associated with numerous cellular processes that often lead to the formation and progression of cancer. In this study we hypothesized that targeting the inhibition of I2PP2A’s multiple functions in prostate cancer cells might prevent cancer progression. We have investigated the effect of the small chain C6-ceramide, known to be a bioactive tumor suppressor lipid, on I2PP2A function, thereby affecting c-Myc signaling and histone acetylation in cells. Our data indicated that C6-ceramide treatment of prostate cancer cells induces cell death in PC-3, DU145, and LNCaP cells, but not normal prostate epithelial cells. C6-ceramide was able to disrupt the association between PP2A and I2PP2A. C6-ceramide inhibits I2PP2A’s upregulation of c-Myc and downregulation of histone acetylation in prostate cancer cells. Our data indicated that targeting cancer related signaling pathways through I2PP2A using ceramide as an anti-I2PP2A agent could have beneficial effects as a therapeutic approach to prevent prostate cancer. PMID:24025258

  6. The protein kinase 2 inhibitor tetrabromobenzotriazole protects against renal ischemia reperfusion injury

    PubMed Central

    Ka, Sun-O; Hwang, Hong Pil; Jang, Jong-Hwa; Hyuk Bang, In; Bae, Ui-Jin; Yu, Hee Chul; Cho, Baik Hwan; Park, Byung-Hyun

    2015-01-01

    Protein kinase 2 (CK2) activation was reported to enhance reactive oxygen species production and activate the nuclear factor κB (NF-κB) pathway. Because oxidative stress and inflammation are critical events for tissue destruction during ischemia reperfusion (I/R), we sought to determine whether CK2 was important in the renal response to I/R. Mice underwent 25 min of renal ischemia and were then reperfused. We confirmed an increased expression of CK2α during the reperfusion period, while expression of CK2β remained consistent. We administered tetrabromobenzotriazole (TBBt), a selective CK2α inhibitor before inducing I/R injury. Mice subjected to I/R injury showed typical patterns of acute kidney injury; blood urea nitrogen and serum creatinine levels, tubular necrosis and apoptosis, inflammatory cell infiltration and proinflammatory cytokine production, and oxidative stress were markedly increased when compared to sham mice. However, pretreatment with TBBt abolished these changes and improved renal function and architecture. Similar renoprotective effects of CK2α inhibition were observed for emodin. Renoprotective effects of CK2α inhibition were associated with suppression of NF-κB and mitogen activated protein kinase (MAPK) pathways. Taken together, these results suggest that CK2α mediates proapoptotic and proinflammatory signaling, thus the CK2α inhibitor may be used to prevent renal I/R injuries observed in clinical settings. PMID:26423352

  7. Transgenic inhibitors identify two roles for protein kinase A in Drosophila development.

    PubMed Central

    Kiger, J A; Eklund, J L; Younger, S H; O'Kane, C J

    1999-01-01

    We have initiated an analysis of protein kinase A (PKA) in Drosophila using transgenic techniques to modulate PKA activity in specific tissues during development. We have constructed GAL4/UAS-regulated transgenes in active and mutant forms that encode PKAc, the catalytic subunit of PKA, and PKI(1-31), a competitive inhibitor of PKAc. We present evidence that the wild-type transgenes are active and summarize the phenotypes produced by a number of GAL4 enhancer-detector strains. We compare the effects of transgenes encoding PKI(1-31) with those encoding PKAr*, a mutant regulatory subunit that constitutively inhibits PKAc because of its inability to bind cyclic AMP. Both inhibitors block larval growth, but only PKAr* alters pattern formation by activating the Hedgehog signaling pathway. Therefore, transgenic PKI(1-31) should provide a tool to investigate the role of PKAc in larval growth regulation without concomitant changes in pattern formation. The different effects of PKI(1-31) and PKAr* suggest two distinct roles, cytoplasmic and nuclear, for PKAc in Hedgehog signal transduction. Alternatively, PKAr* may target proteins other than PKAc, suggesting a role for free PKAr in signal transduction, a role inhibited by PKAc in reversal of the classical relationship of these subunits. PMID:10224260

  8. Discovery of Sanggenon G as a natural cell-permeable small-molecular weight inhibitor of X-linked inhibitor of apoptosis protein (XIAP).

    PubMed

    Seiter, Maximilian A; Salcher, Stefan; Rupp, Martina; Hagenbuchner, Judith; Kiechl-Kohlendorfer, Ursula; Mortier, Jérémie; Wolber, Gerhard; Rollinger, Judith M; Obexer, Petra; Ausserlechner, Michael J

    2014-01-01

    Defects in the regulation of apoptosis are one main cause of cancer development and may result from overexpression of anti-apoptotic proteins such as the X-linked inhibitor of apoptosis protein (XIAP). XIAP is frequently overexpressed in human leukemia and prostate and breast tumors. Inhibition of apoptosis by XIAP is mainly coordinated through direct binding to the initiator caspase-9 via its baculovirus-IAP-repeat-3 (BIR3) domain. XIAP inhibits caspases directly making it to an attractive target for anti-cancer therapy. In the search for novel, non-peptidic XIAP inhibitors in this study we focused on the chemical constituents of sāng bái pí (mulberry root bark). Most promising candidates of this plant were tested biochemically in vitro by a fluorescence polarization (FP) assay and in vivo via protein fragment complementation analysis (PCA). We identified the Diels Alder adduct Sanggenon G (SG1) as a novel, small-molecular weight inhibitor of XIAP. As shown by FP and PCA analyses, SG1 binds specifically to the BIR3 domain of XIAP with a binding affinity of 34.26 μM. Treatment of the transgenic leukemia cell line Molt3/XIAP with SG1 enhances caspase-8, -3 and -9 cleavage, displaces caspase-9 from XIAP as determined by immunoprecipitation experiments and sensitizes these cells to etoposide-induced apoptosis. SG1 not only sensitizes the XIAP-overexpressing leukemia cell line Molt3/XIAP to etoposide treatment but also different neuroblastoma cell lines endogenously expressing high XIAP levels. Taken together, Sanggenon G (SG1) is a novel, natural, non-peptidic, small-molecular inhibitor of XIAP that can serve as a starting point to develop a new class of improved XIAP inhibitors.

  9. High-Affinity, Small-Molecule Peptidomimetic Inhibitors of MLL1/WDR5 Protein-Protein Interaction

    SciTech Connect

    Karatas, Hacer; Townsend, Elizabeth C; Cao, Fang; Chen, Yong; Bernard, Denzil; Liu, Liu; Lei, Ming; Dou, Yali; Wang, Shaomeng

    2013-02-12

    Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase, and targeting the MLL1 enzymatic activity has been proposed as a novel therapeutic strategy for the treatment of acute leukemia harboring MLL1 fusion proteins. The MLL1/WDR5 protein–protein interaction is essential for MLL1 enzymatic activity. In the present study, we designed a large number of peptidomimetics to target the MLL1/WDR5 interaction based upon -CO-ARA-NH–, the minimum binding motif derived from MLL1. Our study led to the design of high-affinity peptidomimetics, which bind to WDR5 with Ki < 1 nM and function as potent antagonists of MLL1 activity in a fully reconstituted in vitro H3K4 methyltransferase assay. Determination of co-crystal structures of two potent peptidomimetics in complex with WDR5 establishes their structural basis for high-affinity binding to WDR5. Evaluation of one such peptidomimetic, MM-102, in bone marrow cells transduced with MLL1-AF9 fusion construct shows that the compound effectively decreases the expression of HoxA9 and Meis-1, two critical MLL1 target genes in MLL1 fusion protein mediated leukemogenesis. MM-102 also specifically inhibits cell growth and induces apoptosis in leukemia cells harboring MLL1 fusion proteins. Our study provides the first proof-of-concept for the design of small-molecule inhibitors of the WDR5/MLL1 protein–protein interaction as a novel therapeutic approach for acute leukemia harboring MLL1 fusion proteins.

  10. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor

    SciTech Connect

    Zhao, Jing; Du, Yuhong; Horton, John R.; Upadhyay, Anup K.; Lou, Bin; Bai, Yan; Zhang, Xing; Du, Lupei; Li, Minyong; Wang, Binghe; Zhang, Lixin; Barbieri, Joseph T.; Khuri, Fadlo R.; Cheng, Xiaodong; Fu, Haian

    2013-02-14

    The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD{sub a} and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3{zeta} in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.

  11. Prefoldin Plays a Role as a Clearance Factor in Preventing Proteasome Inhibitor-induced Protein Aggregation*

    PubMed Central

    Abe, Akira; Takahashi-Niki, Kazuko; Takekoshi, Yuka; Shimizu, Takashi; Kitaura, Hirotake; Maita, Hiroshi; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2013-01-01

    Prefoldin is a molecular chaperone composed of six subunits, PFD1–6, and prevents misfolding of newly synthesized nascent polypeptides. Although it is predicted that prefoldin, like other chaperones, modulates protein aggregation, the precise function of prefoldin against protein aggregation under physiological conditions has never been elucidated. In this study, we first established an anti-prefoldin monoclonal antibody that recognizes the prefoldin complex but not its subunits. Using this antibody, it was found that prefoldin was localized in the cytoplasm with dots in co-localization with polyubiquitinated proteins and that the number and strength of dots were increased in cells that had been treated with lactacystin, a proteasome inhibitor, and thapsigargin, an inducer of endoplasmic reticulum stress. Knockdown of prefoldin increased the level of SDS-insoluble ubiquitinated protein and reduced cell viability in lactacystin and thapsigargin-treated cells. Opposite results were obtained in prefoldin-overexpressed cells. It has been reported that mice harboring a missense mutation L110R of MM-1α/PFD5 exhibit neurodegeneration in the cerebellum. Although the prefoldin complex containing L110R MM-1α was properly formed in vitro and in cells derived from L110R MM-1α mice, the levels of ubiquitinated proteins and cytotoxicity were higher in L110R MM-1α cells than in wild-type cells under normal conditions and were increased by lactacystin and thapsigargin treatment, and growth of L110R MM-1α cells was attenuated. Furthermore, the polyubiquitinated protein aggregation level was increased in the brains of L110R MM-1α mice. These results suggest that prefoldin plays a role in quality control against protein aggregation and that dysfunction of prefoldin is one of the causes of neurodegenerative diseases. PMID:23946485

  12. Protein isoprenylation regulates osteogenic differentiation of mesenchymal stem cells: effect of alendronate, and farnesyl and geranylgeranyl transferase inhibitors

    PubMed Central

    Duque, G; Vidal, C; Rivas, D

    2011-01-01

    BACKGROUND AND PURPOSE Protein isoprenylation is an important step in the intracellular signalling pathway conducting cell growth and differentiation. In bone, protein isoprenylation is required for osteoclast differentiation and activation. However, its role in osteoblast differentiation and function remains unknown. In this study, we assessed the role of protein isoprenylation in osteoblastogenesis in a model of mesenchymal stem cells (MSC) differentiation. EXPERIMENTAL APPROACH We tested the effect of an inhibitor of farnesylation [farnesyl transferase inhibitor-277 (FTI-277)] and one of geranylgeranylation [geranylgeranyltransferase inhibitor-298 (GGTI-298)] on osteoblast differentiating MSC. In addition, we tested the effect of alendronate on protein isoprenylation in this model either alone or in combination with other inhibitors of isoprenylation. KEY RESULTS Initially, we found that levels of unfarnesylated proteins (prelamin A and HDJ-2) increased after treatment with FTI-277 concomitantly affecting osteoblastogenesis and increasing nuclear morphological changes without affecting cell survival. Furthermore, inhibition of geranylgeranylation by GGTI-298 alone increased osteoblastogenesis. This effect was enhanced by the combination of GGTI-298 and alendronate in the osteogenic media. CONCLUSIONS AND IMPLICATIONS Our data indicate that both farnesylation and geranylgeranylation play a role in osteoblastogenesis. In addition, a new mechanism of action for alendronate on protein isoprenylation in osteogenic differentiating MSC in vitro was found. In conclusion, protein isoprenylation is an important component of the osteoblast differentiation process that could constitute a new therapeutic target for osteoporosis in the future. PMID:21077849

  13. Design, synthesis and evaluation of 3-quinoline carboxylic acids as new inhibitors of protein kinase CK2.

    PubMed

    Syniugin, Anatolii R; Ostrynska, Olga V; Chekanov, Maksym O; Volynets, Galyna P; Starosyla, Sergiy A; Bdzhola, Volodymyr G; Yarmoluk, Sergiy M

    2016-01-01

    In this article, the derivatives of 3-quinoline carboxylic acid were studied as inhibitors of protein kinase CK2. Forty-three new compounds were synthesized. Among them 22 compounds inhibiting CK2 with IC50 in the range from 0.65 to 18.2 μM were identified. The most active inhibitors were found among tetrazolo-quinoline-4-carboxylic acid and 2-aminoquinoline-3-carboxylic acid derivatives.

  14. A mitogen-activated protein kinase kinase inhibitor induced compound skin toxicity with oedema in metastatic malignant melanoma.

    PubMed

    Thomas, C L; Mortimer, P S; Larkin, J M; Basu, T N; Gore, M E; Fearfield, L

    2016-04-01

    We report three cases of skin toxicity associated with oral mitogen-activated protein kinase kinase (MEK) inhibitor treatment for metastatic malignant melanoma (MM). All three patients developed oedema, and a single patient experienced eyelash trichomegaly. This is the first known report of eyelash trichomegaly secondary to MEK inhibitor use. We also discuss possible mechanisms for MEK inhibitor-associated oedema development. This series supports the role of the dermatologist in the screening and management of patients in the rapidly developing oncology setting, as new targeted agents can give rise to marked skin toxicity.

  15. Phosphorylation of phosphatase inhibitor-2 (i-2) by a bovine thymus tyrosine protein kinase, p40

    SciTech Connect

    DePaoli-Roach, A.A.; Votaw, P.; Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1987-05-01

    Phosphatase inhibitor-2, a heat stable protein of Mr 22,800, is a regulatory component of the ATP-Mg-dependent phosphatase. It has been shown that in the cell tyrosine kinase activation can result in altered phosphorylation at serine and/or threonine residues, but the mechanism involved is unknown. The authors have found that i-2 is a substrate for a tyrosine specific protein kinase, p40, purified from bovine thymus. The purified enzyme is a monomer of Mr 40,000 that is autophosphorylated at tyrosine residue(s). The stoichiometry of phosphorylation of i-2 by this tyrosine protein kinase is up to 1 mol of phosphate per mol of i-2. Phosphoaminoacid analysis revealed that all the phosphate introduced was associated with tyrosine residues. Mapping of TSP-tryptic peptides by TLE and isoelectric focusing showed one major labeled fragment. Using the ATP-Mg-dependent phosphatase, a lesser extent of phosphorylation of i-2 by p40 was obtained although partial activation of the phosphatase was observed. The effect on the activity was not due to FA/GSK-3 contamination. These results could provide an important link between tyrosine protein kinase activity and modulation of phosphorylation at serine and/or threonine residues.

  16. Effects of the aspartic protease inhibitor from Lupinus bogotensis seeds on the growth and development of Hypothenemus hampei: an inhibitor showing high homology with storage proteins.

    PubMed

    Molina, Diana; Patiño, Luisa; Quintero, Mónica; Cortes, José; Bastos, Sara

    2014-02-01

    The coffee berry borer Hypothenemus hampei is a pest that causes great economic damage to coffee grains worldwide. Because the proteins consumed are digested by aspartic proteases in the insect's midgut, the inhibition of these proteases by transferring a gene encoding an aspartic protease inhibitor from Lupinus bogotensis Benth. to coffee plants could provide a promising strategy to control this pest. Five aspartic protease inhibitors from L. bogotensis (LbAPI) were accordingly purified and characterized. The gene encoding the L. bogotensis aspartic protease inhibitor (LbAPI), with the highest inhibitory activity against H. hampei, was expressed in Escherichia coli and the purified recombinant protein (rLbAPI), with a molecular mass of 15 kDa, was subsequently assessed for its ability to inhibit the aspartic protease activity present in the H. hampei midgut in vitro, as well as its effects on the growth and development of H. hampei in vivo. The in vitro experiments showed that rLbAPI was highly effective against aspartic proteases from H. hampei guts, with a half maximal inhibitory concentration (IC50) of 2.9 μg. The in vivo experiments showed that the concentration of rLbAPI (w/w) in the artificial diet necessary to cause 50% mortality (LD50) of the larvae was 0.91%. The amino acid sequence of LbAPI had high homology (52-80%) to the seed storage proteins, vicilin and β-conglutin, suggesting that this protein was generated by evolutionary events from a β-conglutin precursor. Based on these results, LbAPI may have a dual function as storage protein, and as defense protein against H. hampei. These results provide a promising alternative to obtain a coffee plant resistant to H. hampei.

  17. Activity of the Kinesin Spindle Protein Inhibitor Ispinesib (SB-715992) in Models of Breast Cancer

    PubMed Central

    Purcell, James W.; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S.; Gray, Joe W.; Wood, Kenneth W.; Cases, Sylvaine

    2010-01-01

    Purpose Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein, a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have shown a 9% response rate in patients with locally advanced or metastatic breast cancer and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities, or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer, we explored the activity of ispinesib alone and in combination with several therapies approved for the treatment of breast cancer. Experimental Design We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo and tested the ability of ispinesib to enhance the antitumor activity of approved therapies. Results In vitro, ispinesib displayed broad antiproliferative activity against a panel of 53 breast cell lines. In vivo, ispinesib produced regressions in each of five breast cancer models and tumor-free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the antitumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine and exhibited activity comparable with paclitaxel and ixabepilone. Conclusions These findings support further clinical exploration of kinesin spindle protein inhibitors for the treatment of breast cancer. PMID:20068098

  18. Structural studies of a baboon (Papio sp.) plasma protein inhibitor of cholesteryl ester transferase.

    PubMed

    Buchko, G W; Rozek, A; Kanda, P; Kennedy, M A; Cushley, R J

    2000-08-01

    A 38-residue protein associated with cholesteryl ester transfer inhibition has been identified in baboons (Papio sp.). The cholesteryl ester transfer inhibitor protein (CETIP) corresponds to the N-terminus of baboon apoC-I. Relative to CETIP, baboon apoC-I is a weak inhibitor of baboon cholesteryl ester transferase (CET). To study the structural features responsible for CET inhibition, CETIP was synthesized by solid-phase methods. Using sodium dodecyl sulfate (SDS) to model the lipoprotein environment, the solution structure of CETIP was probed by optical and 1H NMR spectroscopy. Circular dichroism data show that the protein lacks a well-defined structure in water but, upon the addition of SDS, becomes helical (56%). A small blue shift of 8 nm was observed in the intrinsic tryptophan fluorescence of CETIP in the presence of saturating amounts of SDS, suggesting that tryptophan-23 is not buried deeply in the lipid environment. The helical nature of CETIP in the presence of SDS was confirmed by upfield 1Halpha secondary shifts and an average solution structure determined by distance geometry/simulated annealing calculations using 476 NOE-based distance restraints. The backbone (N-Calpha-C=O) root-mean-square deviation of an ensemble of 17 out of 25 calculated structures superimposed on the average structure was 1.06+0.30 A using residues V4-P35 and 0.51+/-0.17 A using residues A7-S32. Although the side-chain orientations fit the basic description of a class A amphipathic helix, both intramolecular salt bridge formation and "snorkeling" of basic side chains toward the polar face play minor, if any, roles in stabilizing the lipid-bound amphipathic structure. Conformational features of the calculated structures for CETIP are discussed relative to models of CETIP inhibition of cholesteryl ester transferase.

  19. Epididymal protein targets: a brief history of the development of epididymal protease inhibitor as a contraceptive.

    PubMed

    O'Rand, Michael G; Widgren, Esther E; Hamil, Katherine G; Silva, Erick J; Richardson, Richard T

    2011-01-01

    The Laboratories for Reproductive Biology at the University of North Carolina at Chapel Hill began collaboration with Human Genome Sciences (Rockville, Maryland) to sequence a human epididymal library and identify epididymal-specific genes. Among the first clones obtained from Human Genome Sciences was a clone for EPPIN (official symbol, SPINLW1). Our laboratory has described EPPIN (epididymal protease inhibitor) as a novel gene on human chromosome 20q12-13.2 that encodes a cysteine-rich protein containing both Kunitz-type and WAP-type 4-disulfide core consensus sequences that characterize it as a protease inhibitor. EPPIN expresses 3 mRNA splice variants that encode 2 protein isoforms found in the testis and epididymis. Of the 2 isoforms, 1 is secreted and 1 lacks a secretory signal piece. EPPIN is predominantly a dimer, although multiples often exist, and in its native form, EPPIN is found on the sperm surface complexed with lactotransferrin and clusterin. During ejaculation, semenogelin from the seminal vesicles is bound to the EPPIN protein complex, initiating a series of events that define EPPIN's function: modulating prostate-specific antigen (PSA) activity, providing antimicrobial protection, and binding semenogelin, thereby inhibiting sperm motility. As PSA hydrolyzes semenogelin in the ejaculate coagulum, spermatozoa gain progressive motility. Using immunization as a tool to study antigen function, we demonstrated that EPPIN is essential for fertility because immunization of male monkeys with recombinant EPPIN results in complete, but reversible, contraception. To exploit our understanding of EPPIN's function, we have developed a high-throughput screen to look for compounds that inhibit EPPIN-semenogelin interaction and mimic anti-EPPIN, inhibiting sperm motility. These compounds are now being developed into a nonhormonal male contraceptive.

  20. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    PubMed

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.

  1. Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalytic functions of mitogen-activated protein kinases.

    PubMed

    Hari, Sanjay B; Merritt, Ethan A; Maly, Dustin J

    2014-05-22

    Most potent protein kinase inhibitors act by competing with ATP to block the phosphotransferase activity of their targets. However, emerging evidence demonstrates that ATP-competitive inhibitors can affect kinase interactions and functions in ways beyond blocking catalytic activity. Here, we show that stabilizing alternative ATP-binding site conformations of the mitogen-activated protein kinases (MAPKs) p38α and Erk2 with ATP-competitive inhibitors differentially, and in some cases divergently, modulates the abilities of these kinases to interact with upstream activators and deactivating phosphatases. Conformation-selective ligands are also able to modulate Erk2's ability to allosterically activate the MAPK phosphatase DUSP6, highlighting how ATP-competitive ligands can control noncatalytic kinase functions. Overall, these studies underscore the relationship between the ATP-binding and regulatory sites of MAPKs and provide insight into how ATP-competitive ligands can be designed to confer graded control over protein kinase function.

  2. Protein structures of common bean (Phaseolus vulgaris) alpha-amylase inhibitors.

    PubMed

    Lee, Shih-Chieh; Gepts, Paul L; Whitaker, John R

    2002-10-23

    Two nucleotide sequences for genes that encode alpha-amylase inhibitor 4 (alphaAI-4) from white kidney bean (WKB) cv. 858, designated gene alphaAI-4 (Accession No. ), and alpha-amylase inhibitor 5 (alphaAI-5) from black bean (BB), designated gene alphaAI-5 (Accession No. ), were determined. Genes alphaAI-4 and alphaAI-5 encode 244 amino acid prepro-alphaAI-4 and prepro-alphaAI-5 polypeptides that are 93 and 95% identical with alpha-amylase inhibitor l (alphaAI-l; Hoffman, L. M.; Ma, Y.; Barker, R. F. Nucleic Acids Res. 1982, 10, 7819-7828), 40 and 43% identical with red kidney bean lectin, and 52 and 55% identical with arcelin l of wild-type bean. The high degree of sequence similarity indicates the evolutionary relationship among these genes. PCR analysis of genomic DNA purified from six genotypes of Phaseolus vulgaris showed very similar band patterns in 2% agarose gel, another indication of the conserved size homology among these genes. Proteolytic processing sites were located between Asn77 and Ser78 for pro-alphaAI-4 and pro-alphaAI-5. A bend next to Asn77 in three-dimensional model structures of alphaAI-4 and alphaAI-5 proinhibitors indicates that the proteolytic cleavage is necessary to remove the conformational constraint for activation to the mature protein. Mature WKB alphaAI-4 was composed of four subunits (2alpha2beta) and had a molecular weight of 50000 determined by multiangle laser light scattering and 56714 determined by laser-assisted time-of-flight mass spectrometry.

  3. A Fluorescence-Based Thermal Shift Assay Identifies Inhibitors of Mitogen Activated Protein Kinase Kinase 4

    PubMed Central

    Krishna, Sankar N.; Luan, Chi-Hao; Mishra, Rama K.; Xu, Li; Scheidt, Karl A.; Anderson, Wayne F.; Bergan, Raymond C.

    2013-01-01

    Prostate cancer (PCa) is the second highest cause of cancer death in United States males. If the metastatic movement of PCa cells could be inhibited, then mortality from PCa could be greatly reduced. Mitogen-activated protein kinase kinase 4 (MAP2K4) has previously been shown to activate pro-invasion signaling pathways in human PCa. Recognizing that MAP2K4 represents a novel and validated therapeutic target, we sought to develop and characterize an efficient process for the identification of small molecules that target MAP2K4. Using a fluorescence-based thermal shift assay (FTS) assay, we first evaluated an 80 compound library of known kinase inhibitors, thereby identifying 8 hits that thermally stabilized MAP2K4 in a concentration dependent manner. We then developed an in vitro MAP2K4 kinase assay employing the biologically relevant downstream substrates, JNK1 and p38 MAPK, to evaluate kinase inhibitory function. In this manner, we validated the performance of our initial FTS screen. We next applied this approach to a 2000 compound chemically diverse library, identified 7 hits, and confirmed them in the in vitro kinase assay. Finally, by coupling our structure-activity relationship data to MAP2K4's crystal structure, we constructed a model for ligand binding. It predicts binding of our identified inhibitory compounds to the ATP binding pocket. Herein we report the creation of a robust inhibitor-screening platform with the ability to inform the discovery and design of new and potent MAP2K4 inhibitors. PMID:24339940

  4. High-Throughput Screening for Novel Inhibitors of Neisseria gonorrhoeae Penicillin-Binding Protein 2

    PubMed Central

    Fedarovich, Alena; Djordjevic, Kevin A.; Swanson, Shauna M.; Peterson, Yuri K.; Nicholas, Robert A.; Davies, Christopher

    2012-01-01

    The increasing prevalence of N. gonorrhoeae strains exhibiting decreased susceptibility to third-generation cephalosporins and the recent isolation of two distinct strains with high-level resistance to cefixime or ceftriaxone heralds the possible demise of β-lactam antibiotics as effective treatments for gonorrhea. To identify new compounds that inhibit penicillin-binding proteins (PBPs), which are proven targets for β-lactam antibiotics, we developed a high-throughput assay that uses fluorescence polarization (FP) to distinguish the fluorescent penicillin, Bocillin-FL, in free or PBP-bound form. This assay was used to screen a 50,000 compound library for potential inhibitors of N. gonorrhoeae PBP 2, and 32 compounds were identified that exhibited >50% inhibition of Bocillin-FL binding to PBP 2. These included a cephalosporin that provided validation of the assay. After elimination of compounds that failed to exhibit concentration-dependent inhibition, the antimicrobial activity of the remaining 24 was tested. Of these, 7 showed antimicrobial activity against susceptible and penicillin- or cephalosporin-resistant strains of N. gonorrhoeae. In molecular docking simulations using the crystal structure of PBP 2, two of these inhibitors docked into the active site of the enzyme and each mediate interactions with the active site serine nucleophile. This study demonstrates the validity of a FP-based assay to find novel inhibitors of PBPs and paves the way for more comprehensive high-throughput screening against highly resistant strains of N. gonorrhoeae. It also provides a set of lead compounds for optimization of anti-gonococcal agents. PMID:23049763

  5. Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A.

    PubMed Central

    Hu, D E; Fan, T P

    1995-01-01

    1. Vascular endothelial growth factor (VEGF) is a heparin-binding angiogenic factor which specifically acts on endothelial cells via distinct membrane-spanning tyrosine kinase receptors. Here we used the rat sponge implant model to test the hypothesis that the angiogenic activity of VEGF can be suppressed by protein tyrosine kinase (PTK) inhibitors. 2. Neovascular responses in subcutaneous sponge implants were determined by measurements of relative sponge blood flow by use of a 133Xe clearance technique, and confirmed by histological studies and morphometric analysis. 3. Daily local administration of 250 ng VEGF165 accelerated the rate of 133Xe clearance from the sponges and induced an intense neovascularisation. This VEGF165-induced angiogenesis was inhibited by daily co-administration of the selective PTK inhibitor, lavendustin A (10 micrograms), but not its negative control, lavendustin B (10 micrograms). Blood flow measurements and morphometric analysis of 8-day-old sponges showed that lavendustin A reduced the 133Xe clearance of VEGF165-treated sponges from 32.9 +/- 1.5% to 20.9 +/- 1.6% and the total fibrovascular growth area from 62.4 +/- 6.1% to 21.6 +/- 6.8% (n = 12, P < 0.05). 4. Co-injection of suramin (3 mg), an inhibitor of heparin-binding growth factors, also suppressed the VEGF165-elicited neovascular response. In contrast, neither lavendustin A nor suramin produced any effect on the basal sponge-induced angiogenesis. 5. When given alone, low doses of VEGF165 (25 ng) or basic fibroblast growth factor (bFGF; 10 ng) did not modify the basal sponge-induced neovascularisation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 2 PMID:7533611

  6. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance

    PubMed Central

    Stogios, Peter J.; Spanogiannopoulos, Peter; Evdokimova, Elena; Egorova, Olga; Shakya, Tushar; Todorovic, Nick; Capretta, Alfredo; Wright, Gerard D.; Savchenko, Alexei

    2013-01-01

    SYNOPSIS Activity of the aminoglycoside phosphotransferase APH(3’)-Ia leads to resistance to aminoglycoside antibiotics in pathogenic Gram-negative bacteria, and contributes to the clinical obsolescence of this class of antibiotics. One strategy to rescue compromised antibiotics such as aminoglycosides is targeting the enzymes that confer resistance with small molecules. Previously we demonstrated that eukaryotic protein kinase (ePK) inhibitors could inhibit APH enzymes, due to the structural similarity between these two enzyme families. However, limited structural information of enzyme-inhibitor complexes hindered interpretation of the results. As well, cross-reactivity of compounds between APHs and ePKs represents an obstacle to their use as aminoglycoside adjuvants to rescue aminoglycoside antibiotic activity. Here, we structurally and functionally characterize inhibition of APH(3’)-Ia by three diverse chemical scaffolds – anthrapyrazolone, 4-anilinoquinazoline and pyrazolopyrimidine (PP) – and reveal distinctions in the binding mode of anthrapyrazolone and PP compounds to APH(3’)-Ia versus ePKs. Using this observation, we identify PP-derivatives that select against ePKs, attenuate APH(3’)-Ia activity and rescue aminoglycoside antibiotic activity against a resistant E. coli strain. The structures presented here and these inhibition studies provide an important opportunity for structure-based design of compounds to target aminoglycoside phosphotransferases for inhibition, potentially overcoming this form of antibiotic resistance. PMID:23758273

  7. Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein.

    PubMed

    Mast, Alan E

    2016-01-01

    Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits early phases of the procoagulant response. Alternatively spliced isoforms of TFPI are differentially expressed by endothelial cells and human platelets and plasma. The TFPIβ isoform localizes to the endothelium surface where it is a potent inhibitor of TF-factor VIIa complexes that initiate blood coagulation. The TFPIα isoform is present in platelets. TFPIα contains a stretch of 9 amino acids nearly identical to those found in the B-domain of factor V that are well conserved in mammals. These amino acids provide exosite binding to activated factor V, which allows for TFPIα to inhibit prothrombinase during the initiation phase of blood coagulation. Endogenous inhibition at this point in the coagulation cascade was only recently recognized and has provided a biochemical rationale to explain the pathophysiological mechanisms underlying several clinical disorders. These include the east Texas bleeding disorder that is caused by production of an altered form of factor V with high affinity for TFPI and a paradoxical procoagulant effect of heparins. In addition, these findings have led to ideas for pharmacological targeting of TFPI that may reduce bleeding in hemophilia patients.

  8. [Cytopathological effects of protein synthesis inhibitor emetine on HeLa cells and their nucleoli].

    PubMed

    Smirnova, O Iu; Mishina, V A; Zatsepina, O V

    2003-01-01

    Eukaryotic cell nucleolus is a highly dynamic structure, which is sensitive to all changes within or outside cell borders. Numerous data are available on changes of the nucleolar structure and functions under different treatments. However, almost nothing is known about the action of translation inhibitors on the nucleolus, although these substances, together with TNF-alpha, are commonly used for apoptosis induction, both for scientific and therapeutic purposes. Emetine is one of such inhibitors. We have shown that emetine suppresses cell viability, decreases mitotic index, and induces apoptosis in HeLa cells. Emetine action is irreversible, and it sensitizes cells to unfavourable external conditions. The emetine action causes redistribution of UBF, one of RNA-polymerase I factor, from the nucleolus to nucleoplasm even after a short exposure, i.e. when the morphology of the nucleus and chromatin still keeps its native pattern. It is important that other nucleolar proteins, such as fibrillarin and B23, are not recognized in the nucleoplasm until the very late stages of apoptotic process. A suggestion is made that changes in UBF localization may be associated with the onset of ribosomal repeat cleavage and migration of rDNA-"free" fragments from the nucleolus to nucleoplasm. It looks likely that these changes can serve as an initial morphological indication of apoptosis.

  9. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance.

    PubMed

    Stogios, Peter J; Spanogiannopoulos, Peter; Evdokimova, Elena; Egorova, Olga; Shakya, Tushar; Todorovic, Nick; Capretta, Alfredo; Wright, Gerard D; Savchenko, Alexei

    2013-09-01

    Activity of the aminoglycoside phosphotransferase APH(3')-Ia leads to resistance to aminoglycoside antibiotics in pathogenic Gram-negative bacteria, and contributes to the clinical obsolescence of this class of antibiotics. One strategy to rescue compromised antibiotics such as aminoglycosides is targeting the enzymes that confer resistance with small molecules. We demonstrated previously that ePK (eukaryotic protein kinase) inhibitors could inhibit APH enzymes, owing to the structural similarity between these two enzyme families. However, limited structural information of enzyme-inhibitor complexes hindered interpretation of the results. In addition, cross-reactivity of compounds between APHs and ePKs represents an obstacle to their use as aminoglycoside adjuvants to rescue aminoglycoside antibiotic activity. In the present study, we structurally and functionally characterize inhibition of APH(3')-Ia by three diverse chemical scaffolds, anthrapyrazolone, 4-anilinoquinazoline and PP (pyrazolopyrimidine), and reveal distinctions in the binding mode of anthrapyrazolone and PP compounds to APH(3')-Ia compared with ePKs. Using this observation, we identify PP derivatives that select against ePKs, attenuate APH(3')-Ia activity and rescue aminoglycoside antibiotic activity against a resistant Escherichia coli strain. The structures described in the present paper and the inhibition studies provide an important opportunity for structure-based design of compounds to target aminoglycoside phosphotransferases for inhibition, potentially overcoming this form of antibiotic resistance.

  10. Protein kinase A inhibition facilitates the antitumor activity of xanthohumol, a valosin-containing protein inhibitor.

    PubMed

    Shikata, Yuki; Yoshimaru, Tetsuro; Komatsu, Masato; Katoh, Hiroto; Sato, Reiko; Kanagaki, Shuhei; Okazaki, Yasumasa; Toyokuni, Shinya; Tashiro, Etsu; Ishikawa, Shumpei; Katagiri, Toyomasa; Imoto, Masaya

    2017-01-25

    Xanthohumol (XN), a simple prenylated chalcone, can be isolated from hops and has the potential to be a cancer chemopreventive agent against several human tumor cell lines. We previously identified valosin-containing protein (VCP) as a target of XN; VCP can also play crucial roles in cancer progression and prognosis. Therefore, we investigated the molecular mechanisms governing the contribution of VCP to the antitumor activity of XN. Several human tumor cell lines were treated with XN to investigate which human tumor cell lines are sensitive to XN. Several cell lines exhibited high sensitivity to XN both in vitro and in vivo. shRNA screening and bioinformatics analysis identified that the inhibition of the adenylate cyclase (AC) pathway synergistically facilitated apoptosis induced by VCP inhibition. These results suggest there is crosstalk between the AC pathway and VCP function, and targeting both VCP and the AC pathway is a potential chemotherapeutic strategy for a subset of tumor cells. This article is protected by copyright. All rights reserved.

  11. 2-Anilino-4-aryl-1,3-thiazole inhibitors of valosin-containing protein (VCP or p97).

    PubMed

    Bursavich, Matthew G; Parker, Daniel P; Willardsen, J Adam; Gao, Zhong-Hua; Davis, Thaylon; Ostanin, Kirill; Robinson, Rosann; Peterson, Ashley; Cimbora, Daniel M; Zhu, Ju-Fen; Richards, Burt

    2010-03-01

    Valosin-containing protein (VCP; also known as p97) is a member of the AAA ATPase family with a central role in the ubiquitin-degradation of misfolded proteins. VCP also exhibits antiapoptotic function and metastasis via activation of nuclear factor kappa-B signaling pathway. We have discovered that 2-anilino-4-aryl-1,3-thiazoles are potent drug-like inhibitors of this enzyme. The identified compounds show low nanomolar VCP potency, demonstrate SAR trends, and show activity in a mechanism based cellular assay. This series of compounds represents the first steps towards a novel, small molecule VCP inhibitor as a cancer therapeutic.

  12. Amnesia produced by altered release of neurotransmitters after intraamygdala injections of a protein synthesis inhibitor

    PubMed Central

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2007-01-01

    Amnesia produced by protein synthesis inhibitors such as anisomycin provides major support for the prevalent view that the formation of long-lasting memories requires de novo protein synthesis. However, inhibition of protein synthesis might disrupt other neural functions to interfere with memory formation. Intraamygdala injections of anisomycin before inhibitory avoidance training impaired memory in rats tested 48 h later. Release of norepinephrine (NE), dopamine (DA), and serotonin, measured at the site of anisomycin infusions, increased quickly by ≈1,000–17,000%, far above the levels seen under normal conditions. NE and DA release later decreased far below baseline for several hours before recovering at 48 h. Intraamygdala injections of a β-adrenergic receptor antagonist or agonist, each timed to blunt effects of increases and decreases in NE release after anisomycin, attenuated anisomycin-induced amnesia. In addition, similar to the effects on memory seen with anisomycin, intraamygdala injections of a high dose of NE before training impaired memory tested at 48 h after training. These findings suggest that altered release of neurotransmitters may mediate amnesia produced by anisomycin and, further, raise important questions about the empirical bases for many molecular theories of memory formation. PMID:17640910

  13. Amnesia produced by altered release of neurotransmitters after intraamygdala injections of a protein synthesis inhibitor.

    PubMed

    Canal, Clinton E; Chang, Qing; Gold, Paul E

    2007-07-24

    Amnesia produced by protein synthesis inhibitors such as anisomycin provides major support for the prevalent view that the formation of long-lasting memories requires de novo protein synthesis. However, inhibition of protein synthesis might disrupt other neural functions to interfere with memory formation. Intraamygdala injections of anisomycin before inhibitory avoidance training impaired memory in rats tested 48 h later. Release of norepinephrine (NE), dopamine (DA), and serotonin, measured at the site of anisomycin infusions, increased quickly by approximately 1,000-17,000%, far above the levels seen under normal conditions. NE and DA release later decreased far below baseline for several hours before recovering at 48 h. Intraamygdala injections of a beta-adrenergic receptor antagonist or agonist, each timed to blunt effects of increases and decreases in NE release after anisomycin, attenuated anisomycin-induced amnesia. In addition, similar to the effects on memory seen with anisomycin, intraamygdala injections of a high dose of NE before training impaired memory tested at 48 h after training. These findings suggest that altered release of neurotransmitters may mediate amnesia produced by anisomycin and, further, raise important questions about the empirical bases for many molecular theories of memory formation.

  14. Proliferation related acidic leucine-rich protein PAL31 functions as a caspase-3 inhibitor

    SciTech Connect

    Sun Weiyong; Kimura, Hiromichi; Shiota, Kunio . E-mail: ashiota@mail.ecc.u-tokyo.ac.jp

    2006-04-14

    Proliferation related acidic leucine-rich protein PAL31 (PAL31) is expressed in proliferating cells and consists of 272 amino acids with a tandem structure of leucine-rich repeats in the N-terminus and a highly acidic region with a putative nuclear localization signal in the C-terminus. We previously reported that PAL31 is required for cell cycle progression. In the present study, we found that the antisense oligonucleotide of PAL31 induced apoptosis to the transfected Nb2 cells. Stable transfectants, in which PAL31 was regulated by an inducible promoter, were generated to gain further insight into the signaling role of PAL31 in the regulation of apoptosis. Expression of PAL31 resulted in the marked rescue of Rat1 cells from etoposide and UV radiation-induced apoptosis and the cytoprotection was correlated with the levels of PAL31 protein. Thus, cytoprotection from apoptosis is a physiological function of PAL31. PAL31 can suppress caspase-3 activity but not cytochrome c release in vitro, indicating that PAL31 is a direct caspase-3 inhibitor. In conclusion, PAL31 is a multifunctional protein working as a cell cycle progression factor as well as a cell survival factor.

  15. Small‐Molecule and Peptide Inhibitors of the Pro‐Survival Protein Mcl‐1

    PubMed Central

    Beekman, Andrew M.

    2015-01-01

    Abstract The ability of protein–protein interactions to regulate cellular processes in both beneficial and detrimental ways has made them obvious drug targets. The Bcl‐2 family of proteins undergo a series of protein–protein interactions which regulate the intrinsic cell‐death pathway. The pro‐survival members of the Bcl‐2 family, including Bcl‐2, Bcl‐xL, and Mcl‐1, are commonly overexpressed in a number of human cancers. Effective modulators of members of the Bcl‐2 family have been developed and are undergoing clinical trials, but the efficient modulation of Mcl‐1 is still not represented in the clinic. In addition, Mcl‐1 is a major cause of resistance to radio‐ and chemotherapies, including inhibitors that target other Bcl‐2 family members. Subsequently, the inhibition of Mcl‐1 has become of significant interest to the scientific community. This review covers the progress made to date in modulating the activity of Mcl‐1, by both stapled peptides and small molecules. The development of peptides as drug candidates, and the advancement of experimental and computational techniques used to discover small molecules are also highlighted. PMID:26696548

  16. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide.

    PubMed

    Roh, Changhyun

    2012-01-01

    Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS), and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (-)-catechin gallate and (-)-gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (-)-catechin gallate and (-)-gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 μg mL(-1), (-)-catechin gallate and (-)-gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system.

  17. A cotton gene encoding a polygalacturonase inhibitor-like protein is specifically expressed in petals.

    PubMed

    Shi, Haiyan; Zhu, Li; Zhou, Ying; Li, Gang; Chen, Liang; Li, Xuebao

    2009-04-01

    A cDNA encoding a polygalacturonase-inhibitor-like protein (PGIP) was isolated from cotton flower cDNA library. The cDNA, designated GhPS1 (GenBank accession No. ABO47744), encodes a protein with 370 amino acids that shares high similarity with the known plant PGIPs. Fluorescent microscopy indicated that GhPS1 protein localizes on the cell membranes as well as in cytoplasm. Real-time quantitative RT-PCR and Northern blot analyses showed that GhPS1 was specifically expressed in cotton petals. Furthermore, the GhPS1 expression was gradually up-regulated in petal development, and its transcripts were accumulated to the highest level in the petals at anthesis. However, its expression level was declined rapidly in senesced petals after flowering. At low temperature, the GhPS1 gene expression was gradually decreased to very low level in petals. Collectively, our results suggest that GhPS1 gene might be involved in cotton petal development and senescence, and in response to cold stress.

  18. The tumor-suppressive reagent taurolidine is an inhibitor of protein biosynthesis.

    PubMed

    Braumann, Chris; Henke, Wolfgang; Jacobi, Christoph A; Dubiel, Wolfgang

    2004-11-01

    Taurolidine has been successfully used as a disinfectant and to prevent the spreading and growth of tumor cells after surgical excision. However, the underlying mechanisms regarding its effects remain obscure. Here, we show that taurolidine treatment reduces endogenous levels of IkappaBalpha, p105, c-Jun, p53 and p27 in a dose-dependent manner in colon adenocarcinoma cells, which can be in part due to massive cell death. Because expression of tested proteins was affected by taurolidine, its influence on protein expression was studied. In the coupled transcription/translation system, taurolidine inhibited c-Jun expression with an IC50 value of 1.4 mM. There was no or little effect on transcription. In contrast, translation of c-Jun or p53 mRNA was completely inhibited by taurolidine. To determine which step of translation was affected, prominent complexes occurring in the course of translation were analyzed by density gradient centrifugation. In the presence of taurolidine, no preinitiation translation complex was assembled. Taurolidine also suppressed protein expression in bacteria. Based on our data, we conclude that taurolidine blocks a fundamental early phase of translation, which might explain its effects as a disinfectant and inhibitor of tumor growth.

  19. Preclinical antitumor activity of SST0116CL1: a novel heat shock protein 90 inhibitor.

    PubMed

    Vesci, Loredana; Milazzo, Ferdinando Maria; Carollo, Valeria; Pace, Silvia; Giannini, Giuseppe

    2014-10-01

    4-Amino substituted resorcino-isoxazole (SST0116CL1) (property of Sigma-Tau Research Switzerland S.A.) is a potent, second generation, small-molecule heat shock protein 90 inhibitor (Hsp90i). SST0116CL1 binds to the ATP binding pocket of Hsp90, and interferes with Hsp90 chaperone function thus resulting in client protein degradation and tumor growth inhibition. The aim of the study was to assess SST0116CL1 in various solid and haematological tumors. The antitumor properties of SST0116CL1 were assessed using in vitro cell proliferation and client protein degradation assays and in vivo different tumor xenograft models. Pharmacokinetic (PK) data were also generated in tumor-bearing mice to gain an understanding of optimal dosing schedules and regimens. SST0116CL1 was shown to inhibit recombinant Hsp90α and to induce the destabilization of different client proteins, often overexpressed and constitutively activated in different types of hematological or solid human tumors. In preclinical in vivo studies, it was revealed to induce antitumor effects in murine models of leukemia and of gastric and ovarian carcinoma. A modulation of PD biomarkers in terms of downregulation of Hsp90 client proteins in tumor-bearing mice was found. SST0116CL1 is a new clinical candidate for cancer therapy. The antitumor property of SST0116CL1, likely due to direct inhibition of the Hsp90 enzymatic activity, may prove to be a critical attribute as the compound enters phase I clinical trials.

  20. Specificity of Protein Covalent Modification by the Electrophilic Proteasome Inhibitor Carfilzomib in Human Cells.

    PubMed

    Federspiel, Joel D; Codreanu, Simona G; Goyal, Sandeep; Albertolle, Matthew E; Lowe, Eric; Teague, Juli; Wong, Hansen; Guengerich, F Peter; Liebler, Daniel C

    2016-10-01

    Carfilzomib (CFZ) is a second-generation proteasome inhibitor that is Food and Drug Administration and European Commission approved for the treatment of relapsed or refractory multiple myeloma. CFZ is an epoxomicin derivative with an epoxyketone electrophilic warhead that irreversibly adducts the catalytic threonine residue of the β5 subunit of the proteasome. Although CFZ produces a highly potent, sustained inactivation of the proteasome, the electrophilic nature of the drug could potentially produce off-target protein adduction. To address this possibility, we synthesized an alkynyl analog of CFZ and investigated protein adduction by this analog in HepG2 cells. Using click chemistry coupled with streptavidin based IP and shotgun tandem mass spectrometry (MS/MS), we identified two off-target proteins, cytochrome P450 27A1 (CYP27A1) and glutathione S-transferase omega 1 (GSTO1), as targets of the alkynyl CFZ probe. We confirmed the adduction of CYP27A1 and GSTO1 by streptavidin capture and immunoblotting methodology and then site-specifically mapped the adducts with targeted MS/MS methods. Although CFZ adduction of CYP27A1 and GSTO1 in vitro decreased the activities of these enzymes, the small fraction of these proteins modified by CFZ in intact cells should limit the impact of these off-target modifications. The data support the high selectivity of CFZ for covalent modification of its therapeutic targets, despite the presence of a reactive electrophile. The approach we describe offers a generalizable method to evaluate the safety profile of covalent protein-modifying therapeutics.

  1. Virtual screening of protein kinase C inhibitors from natural product library to modulate general anaesthetic effects.

    PubMed

    Zhao, Junhui; Zhou, Chuixian

    2015-01-01

    Protein kinase C (PKC) plays a key role in neurotransmission in the central nervous system, and targeting PKC domain is considered as a strategy to modulate the anaesthetic effects. In this study, we described a synthetic pipeline to perform high-throughput virtual screening against a large library of 3D structural natural products released recently in order to discover those potential PKC modulators. A total of 100 natural products with top scores were raised, from which 12 promising candidates were tested to determine their inhibitory potencies against PKC. As might be expected, the promiscuous kinase inhibitor staurosporine showed a high PKC inhibitory activity (IC50 = 64 nM), and other two tested compounds, i.e. fisetin and tetrahydropapaverine, were also highly potent with their activities at nanomolar level (IC50 = 370 and 190, respectively).

  2. Cellular inhibitor of apoptosis proteins prevent clearance of hepatitis B virus.

    PubMed

    Ebert, Gregor; Preston, Simon; Allison, Cody; Cooney, James; Toe, Jesse G; Stutz, Michael D; Ojaimi, Samar; Scott, Hamish W; Baschuk, Nikola; Nachbur, Ueli; Torresi, Joseph; Chin, Ruth; Colledge, Danielle; Li, Xin; Warner, Nadia; Revill, Peter; Bowden, Scott; Silke, John; Begley, C Glenn; Pellegrini, Marc

    2015-05-05

    Hepatitis B virus (HBV) infection can result in a spectrum of outcomes from immune-mediated control to disease progression, cirrhosis, and liver cancer. The host molecular pathways that influence and contribute to these outcomes need to be defined. Using an immunocompetent mouse model of chronic HBV infection, we identified some of the host cellular and molecular factors that impact on infection outcomes. Here, we show that cellular inhibitor of apoptosis proteins (cIAPs) attenuate TNF signaling during hepatitis B infection, and they restrict the death of infected hepatocytes, thus allowing viral persistence. Animals with a liver-specific cIAP1 and total cIAP2 deficiency efficiently control HBV infection compared with WT mice. This phenotype was partly recapitulated in mice that were deficient in cIAP2 alone. These results indicate that antagonizing the function of cIAPs may promote the clearance of HBV infection.

  3. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors

    NASA Astrophysics Data System (ADS)

    Bhowmick, Tuhin; Ghosh, Soumitra; Dixit, Karuna; Ganesan, Varsha; Ramagopal, Udupi A.; Dey, Debayan; Sarma, Siddhartha P.; Ramakumar, Suryanarayanarao; Nagaraja, Valakunja

    2014-06-01

    The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb. We identify a core region within the HU-DNA interface that can be targeted using stilbene derivatives. These small molecules specifically inhibit HU-DNA binding, disrupt nucleoid architecture and reduce Mtb growth. The stilbene inhibitors induce gene expression changes in Mtb that resemble those induced by HU deficiency. Our results indicate that HU is a potential target for the development of therapies against tuberculosis.

  4. An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis.

    PubMed

    Tao, Weikang; South, Victoria J; Diehl, Ronald E; Davide, Joseph P; Sepp-Lorenzino, Laura; Fraley, Mark E; Arrington, Kenneth L; Lobell, Robert B

    2007-01-01

    The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors.

  5. An Inhibitor of the Kinesin Spindle Protein Activates the Intrinsic Apoptotic Pathway Independently of p53 and De Novo Protein Synthesis▿ †

    PubMed Central

    Tao, Weikang; South, Victoria J.; Diehl, Ronald E.; Davide, Joseph P.; Sepp-Lorenzino, Laura; Fraley, Mark E.; Arrington, Kenneth L.; Lobell, Robert B.

    2007-01-01

    The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors. PMID:17101792

  6. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Blood pressure (BP) is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM) and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN). In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i), which forms a complex with calmodulin, activates myosin light chain (MLC) kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC). PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK), a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs) in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in concert with

  7. Differential protein stability of EGFR mutants determines responsiveness to tyrosine kinase inhibitors

    PubMed Central

    Ray, Paramita; Tan, Yee Sun; Somnay, Vishal; Mehta, Ranjit; Sitto, Merna; Ahsan, Aarif; Nyati, Shyam; Naughton, John P.; Bridges, Alexander; Zhao, Lili; Rehemtulla, Alnawaz; Lawrence, Theodore S.; Ray, Dipankar; Nyati, Mukesh K.

    2016-01-01

    Non-small cell lung cancer (NSCLC) patients carrying specific EGFR kinase activating mutations (L858R, delE746-A750) respond well to tyrosine kinase inhibitors (TKIs). However, drug resistance develops within a year. In about 50% of such patients, acquired drug resistance is attributed to the enrichment of a constitutively active point mutation within the EGFR kinase domain (T790M). To date, differential drug-binding and altered ATP affinities by EGFR mutants have been shown to be responsible for differential TKI response. As it has been reported that EGFR stability plays a role in the survival of EGFR driven cancers, we hypothesized that differential TKI-induced receptor degradation between the sensitive L858R and delE746-A750 and the resistant T790M may also play a role in drug responsiveness. To explore this, we have utilized an EGFR-null CHO overexpression system as well as NSCLC cell lines expressing various EGFR mutants and determined the effects of erlotinib treatment. We found that erlotinib inhibits EGFR phosphorylation in both TKI sensitive and resistant cells, but the protein half-lives of L858R and delE746-A750 were significantly shorter than L858R/T790M. Third generation EGFR kinase inhibitor (AZD9291) inhibits the growth of L858R/T790M-EGFR driven cells and also induces EGFR degradation. Erlotinib treatment induced polyubiquitination and proteasomal degradation, primarily in a c-CBL-independent manner, in TKI sensitive L858R and delE746-A750 mutants when compared to the L858R/T790M mutant, which correlated with drug sensitivity. These data suggest an additional mechanism of TKI resistance, and we postulate that agents that degrade L858R/T790M-EGFR protein may overcome TKI resistance. PMID:27612423

  8. Enzastaurin (LY317615), a Protein Kinase C Beta Selective Inhibitor, Enhances Antiangiogenic Effect of Radiation

    SciTech Connect

    Willey, Christopher D.; Xiao Dakai; Tu Tianxiang; Kim, Kwang Woon; Moretti, Luigi; Niermann, Kenneth J.; Tawtawy, Mohammed N.; Quarles, Chad C. Ph.D.; Lu Bo

    2010-08-01

    Purpose: Angiogenesis has generated interest in oncology because of its important role in cancer growth and progression, particularly when combined with cytotoxic therapies, such as radiotherapy. Among the numerous pathways influencing vascular growth and stability, inhibition of protein kinase B(Akt) or protein kinase C(PKC) can influence tumor blood vessels within tumor microvasculature. Therefore, we wanted to determine whether PKC inhibition could sensitize lung tumors to radiation. Methods and Materials: The combination of the selective PKC{beta} inhibitor Enzastaurin (ENZ, LY317615) and ionizing radiation were used in cell culture and a mouse model of lung cancer. Lung cancer cell lines and human umbilical vascular endothelial cells (HUVEC) were examined using immunoblotting, cytotoxic assays including cell proliferation and clonogenic assays, and Matrigel endothelial tubule formation. In vivo, H460 lung cancer xenografts were examined for tumor vasculature and proliferation using immunohistochemistry. Results: ENZ effectively radiosensitizes HUVEC within in vitro models. Furthermore, concurrent ENZ treatment of lung cancer xenografts enhanced radiation-induced destruction of tumor vasculature and proliferation by IHC. However, tumor growth delay was not enhanced with combination treatment compared with either treatment alone. Analysis of downstream effectors revealed that HUVEC and the lung cancer cell lines differed in their response to ENZ and radiation such that only HUVEC demonstrate phosphorylated S6 suppression, which is downstream of mTOR. When ENZ was combined with the mTOR inhibitor, rapamycin, in H460 lung cancer cells, radiosensitization was observed. Conclusion: PKC appears to be crucial for angiogenesis, and its inhibition by ENZ has potential to enhance radiotherapy in vivo.

  9. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis.

    PubMed

    Jiang, Zheng-Yu; Lu, Meng-Chen; Xu, Li Li; Yang, Ting-Ting; Xi, Mei-Yang; Xu, Xiao-Li; Guo, Xiao-Ke; Zhang, Xiao-Jin; You, Qi-Dong; Sun, Hao-Peng

    2014-03-27

    Keap1 is known to mediate the ubiquitination of Nrf2, a master regulator of the antioxidant response. Directly interrupting the Keap1-Nrf2 interaction has been emerged as a promising strategy to develop novel class of antioxidant, antiinflammatory, and anticancer agents. On the basis of the molecular binding determinants analysis of Keap1, we successfully designed and characterized the most potent protein-protein interaction (PPI) inhibitor of Keap1-Nrf2, compound 2, with K(D) value of 3.59 nM binding to Keap1 for the first time to single-digit nanomolar. Compound 2 can effectively disrupt the Nrf2-Keap1 interaction with an EC50 of 28.6 nM in the fluorescence polarization assay. It can also activate the Nrf2 transcription activity in the cell-based ARE-luciferase reporter assay in a dose-dependent manner. The qRT-PCR results of Nrf2 transcription targets gave the consistent results. These results confirm direct and highly efficient interruption of the Keap1-Nrf2 PPI can be fully achieved by small molecules.

  10. Flexibility of the Thrombin-activatable Fibrinolysis Inhibitor Pro-domain Enables Productive Binding of Protein Substrates*

    PubMed Central

    Valnickova, Zuzana; Sanglas, Laura; Arolas, Joan L.; Petersen, Steen V.; Schar, Christine; Otzen, Daniel; Aviles, Francesc X.; Gomis-Rüth, F. Xavier; Enghild, Jan J.

    2010-01-01

    We have previously reported that thrombin-activatable fibrinolysis inhibitor (TAFI) exhibits intrinsic proteolytic activity toward large peptides. The structural basis for this observation was clarified by the crystal structures of human and bovine TAFI. These structures evinced a significant rotation of the pro-domain away from the catalytic moiety when compared with other pro-carboxypeptidases, thus enabling access of large peptide substrates to the active site cleft. Here, we further investigated the flexible nature of the pro-domain and demonstrated that TAFI forms productive complexes with protein carboxypeptidase inhibitors from potato, leech, and tick (PCI, LCI, and TCI, respectively). We determined the crystal structure of the bovine TAFI-TCI complex, revealing that the pro-domain was completely displaced from the position observed in the TAFI structure. It protruded into the bulk solvent and was disordered, whereas TCI occupied the position previously held by the pro-domain. The authentic nature of the presently studied TAFI-inhibitor complexes was supported by the trimming of the C-terminal residues from the three inhibitors upon complex formation. This finding suggests that the inhibitors interact with the active site of TAFI in a substrate-like manner. Taken together, these data show for the first time that TAFI is able to form a bona fide complex with protein carboxypeptidase inhibitors. This underlines the unusually flexible nature of the pro-domain and implies a possible mechanism for regulation of TAFI intrinsic proteolytic activity in vivo. PMID:20880845

  11. Acetyl-lysine Binding Site of Bromodomain-Containing Protein 4 (BRD4) Interacts with Diverse Kinase Inhibitors

    PubMed Central

    2014-01-01

    Members of the bromodomain and extra terminal (BET) family of proteins are essential for the recognition of acetylated lysine (KAc) residues in histones and have emerged as promising drug targets in cancer, inflammation, and contraception research. In co-crystallization screening campaigns using the first bromodomain of BRD4 (BRD4-1) against kinase inhibitor libraries, we identified and characterized 14 kinase inhibitors (10 distinct chemical scaffolds) as ligands of the KAc binding site. Among these, the PLK1 inhibitor BI2536 and the JAK2 inhibitor TG101209 displayed strongest inhibitory potential against BRD4 (IC50 = 25 nM and 130 nM, respectively) and high selectivity for BET bromodomains. Comparative structural analysis revealed markedly different binding modes of kinase hinge-binding scaffolds in the KAc binding site, suggesting that BET proteins are potential off-targets of diverse kinase inhibitors. Combined, these findings provide a new structural framework for the rational design of next-generation BET-selective and dual-activity BET-kinase inhibitors. PMID:24568369

  12. Crystal structure determination and inhibition studies of a novel xylanase and alpha-amylase inhibitor protein (XAIP) from Scadoxus multiflorus.

    PubMed

    Kumar, Sanjit; Singh, Nagendra; Sinha, Mau; Dube, Divya; Singh, S Baskar; Bhushan, Asha; Kaur, Punit; Srinivasan, Alagiri; Sharma, Sujata; Singh, Tej P

    2010-07-01

    A novel plant protein isolated from the underground bulbs of Scadoxus multiflorus, xylanase and alpha-amylase inhibitor protein (XAIP), inhibits two structurally and functionally unrelated enzymes: xylanase and alpha-amylase. The mature protein contains 272 amino acid residues which show sequence identities of 48% to the plant chitinase hevamine and 36% to xylanase inhibitor protein-I, a double-headed inhibitor of GH10 and GH11 xylanases. However, unlike hevamine, it is enzymatically inactive and, unlike xylanase inhibitor protein-I, it inhibits two functionally different classes of enzyme. The crystal structure of XAIP has been determined at 2.0 A resolution and refined to R(cryst) and R(free) factors of 15.2% and 18.6%, respectively. The polypeptide chain of XAIP adopts a modified triosephosphate isomerase barrel fold with eight beta-strands in the inner circle and nine alpha-helices forming the outer ring. The structure contains three cis peptide bonds: Gly33-Phe34, Tyr159-Pro160 and Trp253-Asp254. Although hevamine has a long accessible carbohydrate-binding channel, in XAIP this channel is almost completely filled with the side-chains of residues Phe13, Pro77, Lys78 and Trp253. Solution studies indicate that XAIP inhibits GH11 family xylanases and GH13 family alpha-amylases through two independent binding sites located on opposite surfaces of the protein. Comparison of the structure of XAIP with that of xylanase inhibitor protein-I, and docking studies, suggest that loops alpha3-beta4 and alpha4-beta5 may be involved in the binding of GH11 xylanase, and that helix alpha7 and loop beta6-alpha6 are suitable for the interaction with alpha-amylase.

  13. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins

    PubMed Central

    Dutta, Mouparna; Ghosh, Anindya S.; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J.; Dandekar, Abhaya M.; Goñi, Félix M.

    2015-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  14. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins.

    PubMed

    Chakraborty, Sandeep; Rendón-Ramírez, Adela; Ásgeirsson, Bjarni; Dutta, Mouparna; Ghosh, Anindya S; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J; Dandekar, Abhaya M; Goñi, Félix M

    2013-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  15. An active twenty-amino-acid-residue peptide derived from the inhibitor protein of the cyclic AMP-dependent protein kinase.

    PubMed Central

    Cheng, H C; van Patten, S M; Smith, A J; Walsh, D A

    1985-01-01

    Digestion with Staphylococcus aureus V8 proteinase of the inhibitor protein of the cyclic AMP-dependent protein kinase results in the sequential formation of three active inhibitory peptides. The smallest active peptide has the sequence Thr-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile- His-Asp . This 20-amino-acid-residue peptide has 20-40% of the activity of the native molecule and a Ki of 0.2 nM. Inhibition, as a minimum, appears to be based upon the inhibitor protein containing the recognition sequences that dictate protein-substrate-specificity. This inhibitory peptide also has sequence homology with the phosphorylation site for a protein kinase other than the cyclic AMP-dependent enzyme. PMID:3000357

  16. 3D model for Cancerous Inhibitor of Protein Phosphatase 2A armadillo domain unveils highly conserved protein-protein interaction characteristics.

    PubMed

    Dahlström, Käthe M; Salminen, Tiina A

    2015-12-07

    Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is a human oncoprotein, which exerts its cancer-promoting function through interaction with other proteins, for example Protein Phosphatase 2A (PP2A) and MYC. The lack of structural information for CIP2A significantly prevents the design of anti-cancer therapeutics targeting this protein. In an attempt to counteract this fact, we modeled the three-dimensional structure of the N-terminal domain (CIP2A-ArmRP), analyzed key areas and amino acids, and coupled the results to the existing literature. The model reliably shows a stable armadillo repeat fold with a positively charged groove. The fact that this conserved groove highly likely binds peptides is corroborated by the presence of a conserved polar ladder, which is essential for the proper peptide-binding mode of armadillo repeat proteins and, according to our results, several known CIP2A interaction partners appropriately possess an ArmRP-binding consensus motif. Moreover, we show that Arg229Gln, which has been linked to the development of cancer, causes a significant change in charge and surface properties of CIP2A-ArmRP. In conclusion, our results reveal that CIP2A-ArmRP shares the typical fold, protein-protein interaction site and interaction patterns with other natural armadillo proteins and that, presumably, several interaction partners bind into the central groove of the modeled CIP2A-ArmRP. By providing essential structural characteristics of CIP2A, the present study significantly increases our knowledge on how CIP2A interacts with other proteins in cancer progression and how to develop new therapeutics targeting CIP2A.

  17. The protein phosphatase inhibitor calyculin-A affects catecholamine secretion and granular distribution in cultured adrenomedullary chromaffin cells.

    PubMed

    Gutierrez, L M; Quintanar, J L; Rueda, J; Viniegra, S; Reig, J A

    1995-09-01

    Calyculin-A, a potent inhibitor of types 1 and 2A protein phosphatases, increases basal catecholamine secretion in cultured chromaffin cells with a maximum effect observed at 100 nM. This effect was increased by forskolin and the calmodulin antagonist W7, but was modified neither by phorbol esters nor the protein kinase inhibitor, H7. The effect of the toxin, calyculin-A, on basal secretion was completely prevented by the protein kinase inhibitor K252a. In digitonin-permeabilized cells calyculin-A induced an increase in basal release, but, in contrast, it partially reduced calcium-induced secretion. Analysis of total proteins revealed that calyculin-A treatment of the cells increased the level of phosphorylation of different protein bands. Examination of the Triton X-100-insoluble fraction revealed a clear increase in the phosphorylation level of various proteins, including vimentin. Calyculin-A provoked a rapid morphological change in chromaffin cells in the same range of concentration (50-300 nM). Cells became rounder and were partially detached from the substratum forming clusters, this effect was also blocked by K252a. Transmission electron microscopy of calyculin-A-treated cells showed an increase in the proportion of chromaffin granules located closer to the membrane. These results suggest that calyculin-A induces changes both in the catecholamine secretory response and in the cytoskeletal elements of chromaffin cells by protein phosphorylation.

  18. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity.

    PubMed

    Otoguro, Teruhime; Tanaka, Tomohisa; Kasai, Hirotake; Yamashita, Atsuya; Moriishi, Kohji

    2016-11-01

    Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.

  19. Remodeling a DNA-binding protein as a specific in vivo inhibitor of bacterial secretin PulD

    PubMed Central

    Mouratou, Barbara; Schaeffer, Francis; Guilvout, Ingrid; Tello-Manigne, Diana; Pugsley, Anthony P.; Alzari, Pedro M.; Pecorari, Frédéric

    2007-01-01

    We engineered a class of proteins that binds selected polypeptides with high specificity and affinity. Use of the protein scaffold of Sac7d, belonging to a protein family that binds various ligands, overcomes limitations inherent in the use of antibodies as intracellular inhibitors: it lacks disulfide bridges, is small and stable, and can be produced in large amounts. An in vitro combinatorial/selection approach generated specific, high-affinity (up to 140 pM) binders against bacterial outer membrane secretin PulD. When exported to the Escherichia coli periplasm, they inhibited PulD oligomerization, thereby blocking the type II secretion pathway of which PulD is part. Thus, high-affinity inhibitors of protein function can be derived from Sac7d and can be exported to, and function in, a cell compartment other than that in which they are produced. PMID:17984049

  20. Secretory Leukocyte Protease Inhibitor Binds to Neisseria gonorrhoeae Outer Membrane Opacity Protein and is Bactericidal

    PubMed Central

    Cooper, Morris D.; Roberts, Melissa H.; Barauskas, Ona L.; Jarvis, Gary A.

    2012-01-01

    Problem Secretory leukocyte protease inhibitor (SLPI) is an innate immune peptide present on the genitourinary tract mucosa which has antimicrobial activity. In this study, we investigated the interaction of SLPI with Neisseria gonorrhoeae. Method of study ELISA and far-western blots were used to analyze binding of SLPI to gonococci. The binding site for SLPI was identified by tryptic digests and mass spectrometry. Antimicrobial activity of SLPI for gonococci was determined using bactericidal assays. SLPI protein levels in cell supernatants were measured by ELISA, and SLPI mRNA levels were assessed by quantitative RT-PCR. Results SLPI bound directly to the gonococcal Opa protein and was bactericidal. Epithelial cells from the reproductive tract constitutively expressed SLPI at different levels. Gonococcal infection of cells did not affect SLPI expression. Conclusion We conclude that SLPI is bactericidal for gonococci and is expressed by reproductive tract epithelial cells and thus is likely to play a role in the pathogenesis of gonococcal infection. PMID:22537232

  1. Assessing the efficacy of protein farnesyltransferase inhibitors in mouse models of progeria.

    PubMed

    Yang, Shao H; Chang, Sandy Y; Andres, Douglas A; Spielmann, H Peter; Young, Stephen G; Fong, Loren G

    2010-02-01

    Hutchinson-Gilford progeria syndrome (HGPS) is caused by the accumulation of a farnesylated form of prelamin A (progerin). Previously, we showed that blocking protein farnesylation with a farnesyltransferase inhibitor (FTI) ameliorates the disease phenotypes in mouse model of HGPS (Lmna(HG/+)). However, the interpretation of the FTI treatment studies is open to question in light of recent studies showing that mice expressing a nonfarnesylated version of progerin (Lmna(nHG/+)) develop progeria-like disease phenotypes. The fact that Lmna(nHG/+) mice manifest disease raised the possibility that the beneficial effects of an FTI in Lmna(HG/+) mice were not due to the effects of the drug on the farnesylation of progerin, but may have been due to unanticipated secondary effects of the drug on other farnesylated proteins. To address this issue, we compared the ability of an FTI to improve progeria-like disease phenotypes in both Lmna(HG/+) and Lmna(nHG/+) mice. In Lmna(HG/+) mice, the FTI reduced disease phenotypes in a highly significant manner, but the drug had no effect in Lmna(nHG/+) mice. The failure of the FTI to ameliorate disease in Lmna(nHG/+) mice supports the idea that the beneficial effects of an FTI in Lmna(HG/+) mice are due to the effect of drug on the farnesylation of progerin.

  2. Stimulus-Dependent Inhibitor of Apoptosis Protein Expression Prolongs the Duration of B Cell Signalling

    PubMed Central

    Shinohara, Hisaaki; Inoue, Kentaro; Yumoto, Noriko; Nagashima, Takeshi; Okada-Hatakeyama, Mariko

    2016-01-01

    Different dynamic behaviours of signalling activity can induce distinct biological responses in a variety of cells. However, the molecular mechanisms that determine the dynamics of kinase activities in immune cells are not well understood. In this study, we showed that the duration of both IκB kinase (IKK) and extracellular signal-regulated kinase (ERK) activities in B cell receptor (BCR)- and CD40-signalling pathways in B cells were regulated by transcriptional feedback loops. We conducted a time-course transcriptome analysis after BCR or CD40 stimulation and identified the following four candidate genes as feedback regulators for IKK and ERK: inhibitor of apoptosis protein (IAP), TNF alpha-induced protein 3, dual-specificity phosphatase 5, and sprouty homolog 2. Quantitative experiments and mathematical modelling suggested that IAP inhibition shortened the duration of IKK and ERK activity following both BCR and CD40 pathway stimulation, indicating a positive role for IAP in B cell signalling. Furthermore, transient kinase activities induced by IAP blockage reduced the levels of delayed expression genes. Together, our findings suggest that IKK and ERK activity durations can be fine-tuned by the coordinated regulation of positive and negative transcriptional feedback and that these network properties determine the biological output of B cells. PMID:27277891

  3. Long-term memory: disruption by inhibitors of protein synthesis and cytoplasmic flow

    SciTech Connect

    Flood, J.F.; Landry, D.W.; Bennett, E.L.; Jarvik, M.E.

    1981-01-01

    Colchicine (60 ..mu..g/kg), an inhibitor of axoplasmic transport, administered subcutaneously to mice has no detectable effect on retention when given shortly after active avoidance training, nor did a pertaining injection of anisomycin (ANI) have an amnesic effect. However, when ANI was administered shortly prior to training and colchicine was administered after training, retention performance was impaired. The amnesic effect was dependent on the time at which colchicine was administered. The amnesic effect was also obtained when ANI was combined with either vinblastine (6 ..mu..g/kg) or podophyllotoxin (3 ..mu..g/kg), drugs that inhibit axoplasmic transport. Intracerebral injections of colchicine (60 ng to 60 pg) caused amnesia in subjects pretreated with ANI, but not in subjects pretreated with saline. Lumicolchicine, an isomer of colchicine, which has similar central nervous system effects but has a low binding affinity for microtubule protein, did not impair retention in ANI pretreated mice. It is suggested that axonal transport of recently synthesized protein is required for long-term memory storage.

  4. Property Focused Structure-Based Optimization of Small Molecule Inhibitors of the Protein-Protein Interaction between Menin and Mixed Lineage Leukemia (MLL).

    PubMed

    Borkin, Dmitry; Pollock, Jonathan; Kempinska, Katarzyna; Purohit, Trupta; Li, Xiaoqin; Wen, Bo; Zhao, Ting; Miao, Hongzhi; Shukla, Shirish; He, Miao; Sun, Duxin; Cierpicki, Tomasz; Grembecka, Jolanta

    2016-02-11

    Development of potent small molecule inhibitors of protein-protein interactions with optimized druglike properties represents a challenging task in lead optimization process. Here, we report synthesis and structure-based optimization of new thienopyrimidine class of compounds, which block the protein-protein interaction between menin and MLL fusion proteins that plays an important role in acute leukemias with MLL translocations. We performed simultaneous optimization of both activity and druglike properties through systematic exploration of substituents introduced to the indole ring of lead compound 1 (MI-136) to identify compounds suitable for in vivo studies in mice. This work resulted in the identification of compound 27 (MI-538), which showed significantly increased activity, selectivity, polarity, and pharmacokinetic profile over 1 and demonstrated a pronounced effect in a mouse model of MLL leukemia. This study, which reports detailed structure-activity and structure-property relationships for the menin-MLL inhibitors, demonstrates challenges in optimizing inhibitors of protein-protein interactions for potential therapeutic applications.

  5. Oral delivery system for two-pulse colonic release of protein drugs and protease inhibitor/absorption enhancer compounds.

    PubMed

    Del Curto, Maria Dorly; Maroni, Alessandra; Palugan, Luca; Zema, Lucia; Gazzaniga, Andrea; Sangalli, Maria Edvige

    2011-08-01

    It is well known that the intestinal stability and absorption of protein drugs are improved when enzyme inhibitors/permeation enhancers are coadministered. Recently, it was hypothesized that an increased effectiveness of these adjuvants might be achieved by timing their release prior to that of the protein, so that a more favorable environment would be established in advance. Therefore, an oral system was proposed for two-pulse colonic release of insulin and the protease inhibitor camostat mesilate/absorption enhancer sodium glycocholate. The device consisted of a drug-containing core, an inner swellable/erodible low-viscosity hydroxypropyl methylcellulose (HPMC) coating, an intermediate adjuvant layer, and an additional outer HPMC coating. HPMC coats and camostat mesilate/sodium glycocholate films with differing thicknesses were applied to immediate-release tablet cores by aqueous spray coating. The obtained units were characterized for weight, thickness, breaking force, and release performance. All systems showed satisfactory technological properties and the pursued pulsatile delivery behavior, with programmable delay phases preceding inhibitor/enhancer release and elapsing between inhibitor/enhancer and protein release, respectively. Indeed, both lag times linearly correlated with the relevant HPMC coating level. The system was thus proven suitable for yielding two-pulse release profiles, in which lag phases could be modulated to provide convenient concentration patterns for proteins and adjuvants.

  6. Dissection of the Dislocation Pathway for Type I Membrane Proteins with a New Small Molecule Inhibitor, Eeyarestatin

    PubMed Central

    Fiebiger, Edda; Hirsch, Christian; Vyas, Jatin M.; Gordon, Eva; Ploegh, Hidde L.; Tortorella, Domenico

    2004-01-01

    The mammalian endoplasmic reticulum (ER)-to-cytosol degradation pathway for disposal of misfolded proteins is an attractive target for therapeutic intervention in diseases that are characterized by impaired protein degradation. The ability to do so is hampered by the small number of specific inhibitors available and by our limited understanding of the individual steps involved in this pathway. Cells that express a class I major histocompatibility complex (MHC) heavy chain-enhanced green fluorescent protein (EGFP) fusion protein and the human cytomegalovirus protein US11, which catalyzes dislocation of the class I MHC EGFP reporter, show only little fluorescence. Treatment with proteasome inhibitors increases their fluorescence by stabilizing EGFP-tagged MHC class I molecules. We used this change in signal intensity as a readout to screen a chemical library of 16,320 compounds and identified two structurally related compounds (eeyarestatin I and II) that interfered with the degradation of both EGFP-heavy chain and its endogenous unmodified class I MHC heavy chain counterpart. Eeyarestatin I also inhibited degradation of a second misfolded type I membrane protein, T-cell receptor α. Both compounds stabilize these dislocation substrates in the ER membrane, without preventing proteasomal turnover of cytosolic substrates. The new inhibitors must therefore interfere with a step that precedes proteasomal degradation. The use of eeyarestatin I thus allows the definition of a new intermediate in dislocation. PMID:14767067

  7. Active Depletion of Host Cell Inhibitor-of-Apoptosis Proteins Triggers Apoptosis upon Baculovirus DNA Replication▿

    PubMed Central

    Vandergaast, Rianna; Schultz, Kimberly L. W.; Cerio, Rebecca J.; Friesen, Paul D.

    2011-01-01

    Apoptosis is an important antivirus defense by virtue of its impact on virus multiplication and pathogenesis. To define molecular mechanisms by which viruses are detected and the apoptotic response is initiated, we examined the antiviral role of host inhibitor-of-apoptosis (IAP) proteins in insect cells. We report here that the principal IAPs, DIAP1 and SfIAP, of the model insects Drosophila melanogaster and Spodoptera frugiperda, respectively, are rapidly depleted and thereby inactivated upon infection with the apoptosis-inducing baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Virus-induced loss of these host IAPs triggered caspase activation and apoptotic death. Elevation of IAP levels by ectopic expression repressed caspase activation. Loss of host IAP in both species was triggered by AcMNPV DNA replication. By using selected inhibitors, we found that virus-induced IAP depletion was mediated in part by the proteasome but not by caspase cleavage. Consistent with this conclusion, mutagenic disruption of the SfIAP RING motif, which acts as an E3 ubiquitin ligase, stabilized SfIAP during infection. Importantly, SfIAP was also stabilized upon the removal of its 99-residue N-terminal leader, which serves as a critical determinant of IAP turnover. These data indicated that a host pathway initiated by virus DNA replication and acting through instability motifs embedded within IAP triggers IAP depletion and thereby causes apoptosis. Taken together, the results of our study suggest that host modulation of cellular IAP levels is a conserved mechanism by which insects mount an apoptotic antiviral response. Thus, host IAPs may function as critical sentinels of virus invasion in insects. PMID:21653668

  8. Structure-based discovery of an inhibitor of Arf activation by Sec7 domains through targeting of protein-protein complexes.

    PubMed

    Viaud, Julien; Zeghouf, Mahel; Barelli, Hélène; Zeeh, Jean-Christophe; Padilla, André; Guibert, Bernard; Chardin, Pierre; Royer, Catherine A; Cherfils, Jacqueline; Chavanieu, Alain

    2007-06-19

    Small molecules that produce nonfunctional protein-protein complexes are an alternative to competitive inhibitors for the inhibition of protein functions. Here we target the activation of the small GTP-binding protein Arf1, a major regulator of membrane traffic, by the Sec7 catalytic domain of its guanine nucleotide exchange factor ARNO. The crystal structure of the Arf1-GDP/ARNO complex, which initiates the exchange reaction, was used to discover an inhibitor, LM11, using in silico screening of a flexible pocket near the Arf1/ARNO interface. Using fluorescence kinetics and anisotropy, NMR spectroscopy and mutagenesis, we show that LM11 acts following a noncompetitive mechanism in which the inhibitor targets both Arf1-GDP and the Arf1-GDP/ARNO complex and produces a nonfunctional Arf-GDP/ARNO complex whose affinity is similar to that of the native complex. In addition, LM11 recognizes features of both Arf and ARNO near the Arf/Sec7 interface, a characteristic reminiscent of the paradigm interfacial inhibitor Brefeldin A. We then show that LM11 is a cell-active inhibitor that impairs Arf-dependent trafficking structures at the Golgi. Furthermore, LM11 inhibits ARNO-dependent migration of Madin-Darby canine kidney (MDCK) cells, demonstrating that ARNO is a target of LM11 in cells. Remarkably, LM11 inhibits the activation of Arf1 but not Arf6 in vitro, pointing to a possible synergy between Arf1 and Arf6 activation by ARNO in cell migration. Our design method shows that flexible regions in protein-protein complexes provide drugable sites with the potential to develop novel tools for investigating and inhibiting signaling pathways.

  9. Antiviral Activity of a Small Molecule Deubiquitinase Inhibitor Occurs via Induction of the Unfolded Protein Response

    PubMed Central

    Perry, Jeffrey W.; Ahmed, Mohammad; Chang, Kyeong-Ok; Donato, Nicholas J.; Showalter, Hollis D.; Wobus, Christiane E.

    2012-01-01

    Ubiquitin (Ub) is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub) cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs). However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1), a critical mediator of the unfolded protein response (UPR). WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1) through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies. PMID:22792064

  10. Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response.

    PubMed

    Perry, Jeffrey W; Ahmed, Mohammad; Chang, Kyeong-Ok; Donato, Nicholas J; Showalter, Hollis D; Wobus, Christiane E

    2012-01-01

    Ubiquitin (Ub) is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub) cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs). However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1), a critical mediator of the unfolded protein response (UPR). WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1) through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.

  11. Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs).

    PubMed

    Mackmull, Marie-Therese; Iskar, Murat; Parca, Luca; Singer, Stephan; Bork, Peer; Ori, Alessandro; Beck, Martin

    2015-05-01

    Histone deacetylases (HDACs) and acetyltransferases control the epigenetic regulation of gene expression through modification of histone marks. Histone deacetylase inhibitors (HDACi) are small molecules that interfere with histone tail modification, thus altering chromatin structure and epigenetically controlled pathways. They promote apoptosis in proliferating cells and are promising anticancer drugs. While some HDACi have already been approved for therapy and others are in different phases of clinical trials, the exact mechanism of action of this drug class remains elusive. Previous studies have shown that HDACis cause massive changes in chromatin structure but only moderate changes in gene expression. To what extent these changes manifest at the protein level has never been investigated on a proteome-wide scale. Here, we have studied HDACi-treated cells by large-scale mass spectrometry based proteomics. We show that HDACi treatment affects primarily the nuclear proteome and induces a selective decrease of bromodomain-containing proteins (BCPs), the main readers of acetylated histone marks. By combining time-resolved proteome and transcriptome profiling, we show that BCPs are affected at the protein level as early as 12 h after HDACi treatment and that their abundance is regulated by a combination of transcriptional and post-transcriptional mechanisms. Using gene silencing, we demonstrate that the decreased abundance of BCPs is sufficient to mediate important transcriptional changes induced by HDACi. Our data reveal a new aspect of the mechanism of action of HDACi that is mediated by an interplay between histone acetylation and the abundance of BCPs. Data are available via ProteomeXchange with identifier PXD001660 and NCBI Gene Expression Omnibus with identifier GSE64689.

  12. Kinetic characterization of the protein Z-dependent protease inhibitor reaction with blood coagulation factor Xa.

    PubMed

    Huang, Xin; Swanson, Richard; Broze, George J; Olson, Steven T

    2008-10-31

    Protein Z-dependent protease inhibitor (ZPI) is a recently identified member of the serpin superfamily that functions as a cofactor-dependent regulator of blood coagulation factors Xa (FXa) and XIa. Here we show that ZPI and its cofactor, protein Z (PZ), inhibit procoagulant membrane-bound factor Xa by the branched pathway acyl-intermediate trapping mechanism used by other serpins, but with significant variations of this mechanism that are unique to ZPI. Rapid kinetic analyses showed that the reaction proceeded by the initial assembly of a membrane-associated PZ-ZPI-FXa Michaelis complex (K(M) 53+/-5 nM) followed by conversion to a stable ZPI-FXa complex (k(lim) 1.2+/-0.1 s(-1)). Cofactor premixing experiments together with independent kinetic analyses of ZPI-PZ and factor Xa-PZ-membrane complex formation suggested that assembly of the Michaelis complex through either ZPI-PZ-lipid or factor Xa-PZ-lipid intermediates was rate-limiting. Reaction stoichiometry analyses and native PAGE showed that for every factor Xa molecule inhibited by ZPI, two serpin molecules were cleaved. Native PAGE and immunoblotting showed that PZ dissociated from ZPI once ZPI forms a stable complex with FXa, and kinetic analyses confirmed that PZ acted catalytically to accelerate the membrane-dependent ZPI-factor Xa reaction. The ZPI-FXa complex was only transiently stable and dissociated with a rate constant that showed a bell-shaped pH dependence indicative of participation of factor Xa active-site residues. The complex was detectable by SDS-PAGE when denatured at low pH, consistent with it being a kinetically trapped covalent acyl-intermediate. Together our findings show that ZPI functions like other serpins to regulate the activity of FXa but in a manner uniquely dependent on protein Z, procoagulant membranes, and pH.

  13. An inhibitor of apoptosis protein antagonist T-3256336 potentiates the antitumor efficacy of the Nedd8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924).

    PubMed

    Sumi, Hiroyuki; Inazuka, Masakazu; Morimoto, Megumi; Hibino, Ryosuke; Hashimoto, Kentaro; Ishikawa, Tomoyasu; Kuida, Keisuke; Smith, Peter G; Yoshida, Sei; Yabuki, Masato

    2016-11-18

    Inhibitors of apoptosis proteins (IAPs) are antiapoptotic regulators that block cell death, and are frequently overexpressed in several human cancers, where they facilitate evasion of apoptosis and promote cell survival. IAP antagonists are also known as second mitochondria-derived activator of caspase (SMAC)-mimetics, and have recently been considered as novel therapeutic agents for inducing apoptosis, alone and in combination with other anticancer drugs. In this study, we showed that T-3256336, the orally available IAP antagonist has synergistically enhances the antiproliferative effects of the NEDD8-activating enzyme (NAE) inhibitor pevonedistat (TAK-924/MLN4924), and these effects were attenuated by a TNFα-neutralizing antibody. In the present mechanistic analyses, pevonedistat induced TNFα mRNA and triggered IAP antagonist-dependent extrinsic apoptotic cell death in cancer cell lines. Furthermore, synergistic effects of the combination of T-3256336 and pevonedistat were demonstrated in a HL-60 mouse xenograft model. Our findings provide mechanistic evidence of the effects of IAP antagonists in combination with NAE inhibitors, and demonstrate the potential of a new combination therapy for cancer.

  14. Development of natural product-derived receptor tyrosine kinase inhibitors based on conservation of protein domain fold.

    PubMed

    Kissau, Lars; Stahl, Petra; Mazitschek, Ralph; Giannis, Athannasios; Waldmann, Herbert

    2003-07-03

    Receptor tyrosine kinases (RTKs) such as Tie-2, IGF1R, Her-2/Neu, EGFR, and VEGFR1-3 play crucial roles in the control of cell growth and differentiation. Inhibition of such RTKs has become a major focus of current anticancer drug development, and therefore the discovery of new classes of inhibitors for these signal-transducing proteins is of prime importance. We have recently proposed a novel concept for improving the hit-finding process by employing natural products as biologically validated starting points in structural space for compound library development. In this concept, natural products are regarded as evolutionary chosen ligands for protein domains which are structurally conserved yet genetically mobile. Here we report on the discovery of novel and highly selective VEGFR-2 and -3, Tie-2, and IGF1R inhibitors derived from the naturally occurring Her-2/Neu kinase inhibitor nakijiquinone C and developed on the basis of this concept. Based on the structure of the natural product, a small library (74 members) was synthesized and investigated for inhibition of kinases with highly similar ATP-binding domains. The library yielded inhibitors with IC(50)s in the low micromolar range with high frequency (7 out of 74). In particular, four inhibitors of Tie-2 were found, a kinase critically involved in the formation of new blood vessels from preexisting ones (angiogenesis) and believed to be a new promising target in antitumor therapy. These results support the "domain concept". To advance the development of improved inhibitors, extensive molecular modeling studies were undertaken, including the construction of new homology models for VEGFR-2 and Tie-2. These studies revealed residues in the kinase structure which are crucial to the development of tailor-made receptor tyrosine kinase inhibitors.

  15. Vanadium oxoanions and cAMP-dependent protein kinase: an anti-substrate inhibitor.

    PubMed

    Pluskey, S; Mahroof-Tahir, M; Crans, D C; Lawrence, D S

    1997-01-15

    Vanadium oxoions have been shown to elicit a wide range of effects in biological systems, including an increase in the quantity of phosphorylated proteins. This response has been attributed to the inhibition of protein phosphatases, the indirect activation of protein kinases via stimulation of enzymes at early steps in signal transduction pathways and/or the direct activation of protein kinases. We have evaluated the latter possibility by exploring the effects of vanadate, decavanadate and vanadyl cation species on the activity of the cAMP-dependent protein kinase (PKA), a serine/threonine kinase. Vanadate, in the form of monomer, dimer, tetramer and pentamer species, neither inhibits nor activates PKA. In marked contrast, decavandate is a competitive inhibitor (Ki = 1.8 +/- 0.1 mM) of kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly), a peptide-based substrate. This inhibition pattern is especially surprising, since the negatively charged decavanadate would not be predicted to bind to the region of the active site of the enzyme that accommodates the positively charged kemptide substrate. Our studies suggest that decavanadate can associate with kemptide in solution, which would prevent kemptide from interacting with the enzyme. Vanadium(IV) also inhibits the PKA-catalysed phosphorylation of kemptide, but with an IC50 of 366 +/- 10 microM. However, in this case V4+ appears to bind to the Mg(2+)-binding site, since it can substitute for Mg2+. In the absence of Mg2+, the optimal concentration of vanadium(IV) for the PKA-catalysed phosphorylation of kemptide is 100 microM, with concentrations above 100 microM being markedly inhibitory. However, even at the optimal 100 microM V4+ concentration, the Vmax and K(m) values (for kemptide) are significantly less favourable than those obtained in the presence of 100 microM Mg2+. In summary, we have found that oxovanadium ions can directly alter the activity of the serine/threonine-specific PKA.

  16. Vanadium oxoanions and cAMP-dependent protein kinase: an anti-substrate inhibitor.

    PubMed Central

    Pluskey, S; Mahroof-Tahir, M; Crans, D C; Lawrence, D S

    1997-01-01

    Vanadium oxoions have been shown to elicit a wide range of effects in biological systems, including an increase in the quantity of phosphorylated proteins. This response has been attributed to the inhibition of protein phosphatases, the indirect activation of protein kinases via stimulation of enzymes at early steps in signal transduction pathways and/or the direct activation of protein kinases. We have evaluated the latter possibility by exploring the effects of vanadate, decavanadate and vanadyl cation species on the activity of the cAMP-dependent protein kinase (PKA), a serine/threonine kinase. Vanadate, in the form of monomer, dimer, tetramer and pentamer species, neither inhibits nor activates PKA. In marked contrast, decavandate is a competitive inhibitor (Ki = 1.8 +/- 0.1 mM) of kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly), a peptide-based substrate. This inhibition pattern is especially surprising, since the negatively charged decavanadate would not be predicted to bind to the region of the active site of the enzyme that accommodates the positively charged kemptide substrate. Our studies suggest that decavanadate can associate with kemptide in solution, which would prevent kemptide from interacting with the enzyme. Vanadium(IV) also inhibits the PKA-catalysed phosphorylation of kemptide, but with an IC50 of 366 +/- 10 microM. However, in this case V4+ appears to bind to the Mg(2+)-binding site, since it can substitute for Mg2+. In the absence of Mg2+, the optimal concentration of vanadium(IV) for the PKA-catalysed phosphorylation of kemptide is 100 microM, with concentrations above 100 microM being markedly inhibitory. However, even at the optimal 100 microM V4+ concentration, the Vmax and K(m) values (for kemptide) are significantly less favourable than those obtained in the presence of 100 microM Mg2+. In summary, we have found that oxovanadium ions can directly alter the activity of the serine/threonine-specific PKA. PMID:9020863

  17. Active Inhibitor-1 Maintains Protein Hyper-Phosphorylation in Aging Hearts and Halts Remodeling in Failing Hearts

    PubMed Central

    Haghighi, Kobra; Anjak, Ahmad; Cai, Wenfeng; Jiang, Min; Nicolaou, Persoulla; Pylar, George; Karakikes, Ioannis; Rapti, Kleopatra; Rubinstein, Jack; Hajjar, Roger J.; Kranias, Evangelia G.

    2013-01-01

    Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term. PMID:24312496

  18. Protein digestion in cereal aphids (Sitobion avenae) as a target for plant defence by endogenous proteinase inhibitors.

    PubMed

    Pyati, Prashant; Bandani, Ali R; Fitches, Elaine; Gatehouse, John A

    2011-07-01

    Gut extracts from cereal aphids (Sitobion avenae) showed significant levels of proteolytic activity, which was inhibited by reagents specific for cysteine proteases and chymotrypsin-like proteases. Gut tissue contained cDNAs encoding cathepsin B-like cysteine proteinases, similar to those identified in the closely related pea aphid (Acyrthosiphon pisum). Analysis of honeydew (liquid excreta) from cereal aphids fed on diet containing ovalbumin showed that digestion of ingested proteins occurred in vivo. Protein could partially substitute for free amino acids in diet, although it could not support complete development. Recombinant wheat proteinase inhibitors (PIs) fed in diet were antimetabolic to cereal aphids, even when normal levels of free amino acids were present. PIs inhibited proteolysis by aphid gut extracts in vitro, and digestion of protein fed to aphids in vivo. Wheat subtilisin/chymotrypsin inhibitor, which was found to inhibit serine and cysteine proteinases, was more effective in both inhibitory and antimetabolic activity than wheat cystatin, which inhibited cysteine proteases only. Digestion of ingested protein is unlikely to contribute significantly to nutritional requirements when aphids are feeding on phloem, and the antimetabolic activity of dietary proteinase inhibitors is suggested to result from effects on proteinases involved in degradation of endogenous proteins.

  19. Inhibitors of BRD4 Protein from a Marine-Derived Fungus Alternaria sp. NH-F6

    PubMed Central

    Ding, Hui; Zhang, Dashan; Zhou, Biao; Ma, Zhongjun

    2017-01-01

    Bromodomains (BRD) are readers of the epigenetic code that regulate gene transcription through their recognition of acetyl-lysine modified histone tails. Recently, bromodomain-containing proteins such as BRD4 have been demonstrated to be druggable through the discovery of potent inhibitors. These protein–protein interaction inhibitors have the potential to modulate multiple diseases by their profound anti-inflammatory and antiproliferative effects. In order to explore new BRD4 inhibitors as well as lead compounds for the development of new drugs, the secondary metabolites of Alternaria sp. NH-F6, a fungus isolated from deep-sea sediment samples, were analyzed systematically. Five new compounds including two new perylenequinones (1–2), one new alternaric acid (3), 2-(N-vinylacetamide)-4-hydroxymethyl-3-ene-butyrolactone (4), one new cerebroside (5), together with 19 known compounds (6–24) were isolated from the ethyl acetate extracts of this strain. Their structures were elucidated using nuclear magnetic resonance (NMR) and high resolution electrospray ionization mass spectrometry (HR-ESI-MS) analyses. Finally, all these compounds were evaluated for their inhibitory activity against BRD4 protein, and compound 2 exhibited a potent inhibition rate of 88.1% at a concentration of 10 µM. This research provides a new BRD4 inhibitor which may possess potential antitumoral, antiviral, or anti-inflammatory pharmaceutical values. PMID:28300771

  20. Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target Leucyl-tRNA Synthetase

    PubMed Central

    Palencia, Andrés; Li, Xianfeng; Bu, Wei; Choi, Wai; Ding, Charles Z.; Easom, Eric E.; Feng, Lisa; Hernandez, Vincent; Houston, Paul; Liu, Liang; Meewan, Maliwan; Mohan, Manisha; Rock, Fernando L.; Sexton, Holly; Zhang, Suoming; Zhou, Yasheen; Wan, Baojie; Wang, Yuehong; Franzblau, Scott G.; Woolhiser, Lisa; Gruppo, Veronica; Lenaerts, Anne J.; O'Malley, Theresa; Parish, Tanya; Cooper, Christopher B.; Waters, M. Gerard; Ma, Zhenkun; Ioerger, Thomas R.; Sacchettini, James C.; Rullas, Joaquín; Angulo-Barturen, Iñigo; Pérez-Herrán, Esther; Mendoza, Alfonso; Barros, David; Cusack, Stephen; Plattner, Jacob J.

    2016-01-01

    The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis. Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid. PMID:27503647

  1. Oxazin-5-Ones as a Novel Class of Penicillin Binding Protein Inhibitors: Design, Synthesis and Structure Activity Relationship

    PubMed Central

    Onoabedje, Efeturi Abraham; Ibezim, Akachukwu; Okafor, Sunday Nwankwor; Onoabedje, Ufuoma Shalom; Okoro, Uchechukwu Chris

    2016-01-01

    Penicillin binding proteins (PBPs) are normal constituents of bacterial which are absent in mammalian cells. The theoretical binding modes of known oxazin-5-ones toward the protein were used as a guide to synthesis new inhibitors. Structural studies of protein-ligand complexes revealed that conformational discrepancies of the derivatives in the protein’s binding site gave rise to the variation in their inhibition constant which ranged from 68.58 μM to 2.04 mM. Biological assay results further confirmed the antibiotic potencies of the studied compounds. Although the outcome of biological screening does not parallel computational predictions, the results obtained from both methods suggest that the oxazin-5-one derivatives are potential PBP inhibitors, hence interesting antibiotic lead agents. PMID:27749913

  2. A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.

    PubMed

    Voter, Andrew F; Manthei, Kelly A; Keck, James L

    2016-07-01

    Induction of the Fanconi anemia (FA) DNA repair pathway is a common mechanism by which tumors evolve resistance to DNA crosslinking chemotherapies. Proper execution of the FA pathway requires interaction between the FA complementation group M protein (FANCM) and the RecQ-mediated genome instability protein (RMI) complex, and mutations that disrupt FANCM/RMI interactions sensitize cells to DNA crosslinking agents. Inhibitors that block FANCM/RMI complex formation could be useful therapeutics for resensitizing tumors that have acquired chemotherapeutic resistance. To identify such inhibitors, we have developed and validated high-throughput fluorescence polarization and proximity assays that are sensitive to inhibitors that disrupt interactions between the RMI complex and its binding site on FANCM (a peptide referred to as MM2). A pilot screen of 74,807 small molecules was performed using the fluorescence polarization assay. Hits from the primary screen were further tested using the proximity assay, and an orthogonal proximity assay was used to assess inhibitor selectivity. Direct physical interaction between the RMI complex and the most selective inhibitor identified through the screening process was measured by surface plasmon resonance and isothermal titration calorimetry. Observation of direct binding by this small molecule validates the screening protocol.

  3. Basis for the specificity and activation of the serpin protein Z-dependent proteinase inhibitor (ZPI) as an inhibitor of membrane-associated factor Xa.

    PubMed

    Huang, Xin; Dementiev, Alexey; Olson, Steven T; Gettins, Peter G W

    2010-06-25

    The serpin ZPI is a protein Z (PZ)-dependent specific inhibitor of membrane-associated factor Xa (fXa) despite having an unfavorable P1 Tyr. PZ accelerates the inhibition reaction approximately 2000-fold in the presence of phospholipid and Ca(2+). To elucidate the role of PZ, we determined the x-ray structure of Gla-domainless PZ (PZ(DeltaGD)) complexed with protein Z-dependent proteinase inhibitor (ZPI). The PZ pseudocatalytic domain bound ZPI at a novel site through ionic and polar interactions. Mutation of four ZPI contact residues eliminated PZ binding and membrane-dependent PZ acceleration of fXa inhibition. Modeling of the ternary Michaelis complex implicated ZPI residues Glu-313 and Glu-383 in fXa binding. Mutagenesis established that only Glu-313 is important, contributing approximately 5-10-fold to rate acceleration of fXa and fXIa inhibition. Limited conformational change in ZPI resulted from PZ binding, which contributed only approximately 2-fold to rate enhancement. Instead, template bridging from membrane association, together with previously demonstrated interaction of the fXa and ZPI Gla domains, resulted in an additional approximately 1000-fold rate enhancement. To understand why ZPI has P1 tyrosine, we examined a P1 Arg variant. This reacted at a diffusion-limited rate with fXa, even without PZ, and predominantly as substrate, reflecting both rapid acylation and deacylation. P1 tyrosine thus ensures that reaction with fXa or most other arginine-specific proteinases is insignificant unless PZ binds and localizes ZPI and fXa on the membrane, where the combined effects of Gla-Gla interaction, template bridging, and interaction of fXa with Glu-313 overcome the unfavorability of P1 Tyr and ensure a high rate of reaction as an inhibitor.

  4. Basis for the Specificity and Activation of the Serpin Protein Z-dependent Proteinase Inhibitor (ZPI) as an Inhibitor of Membrane-associated Factor Xa

    SciTech Connect

    Huang, Xin; Dementiev, Alexey; Olson, Steven T.; Gettins, Peter G.W.

    2012-12-13

    The serpin ZPI is a protein Z (PZ)-dependent specific inhibitor of membrane-associated factor Xa (fXa) despite having an unfavorable P1 Tyr. PZ accelerates the inhibition reaction {approx}2000-fold in the presence of phospholipid and Ca{sup 2+}. To elucidate the role of PZ, we determined the x-ray structure of Gla-domainless PZ (PZ{sub {Delta}GD}) complexed with protein Z-dependent proteinase inhibitor (ZPI). The PZ pseudocatalytic domain bound ZPI at a novel site through ionic and polar interactions. Mutation of four ZPI contact residues eliminated PZ binding and membrane-dependent PZ acceleration of fXa inhibition. Modeling of the ternary Michaelis complex implicated ZPI residues Glu-313 and Glu-383 in fXa binding. Mutagenesis established that only Glu-313 is important, contributing {approx}5-10-fold to rate acceleration of fXa and fXIa inhibition. Limited conformational change in ZPI resulted from PZ binding, which contributed only {approx}2-fold to rate enhancement. Instead, template bridging from membrane association, together with previously demonstrated interaction of the fXa and ZPI Gla domains, resulted in an additional {approx}1000-fold rate enhancement. To understand why ZPI has P1 tyrosine, we examined a P1 Arg variant. This reacted at a diffusion-limited rate with fXa, even without PZ, and predominantly as substrate, reflecting both rapid acylation and deacylation. P1 tyrosine thus ensures that reaction with fXa or most other arginine-specific proteinases is insignificant unless PZ binds and localizes ZPI and fXa on the membrane, where the combined effects of Gla-Gla interaction, template bridging, and interaction of fXa with Glu-313 overcome the unfavorability of P1 Tyr and ensure a high rate of reaction as an inhibitor.

  5. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer's amyloid beta-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered specificities.

    PubMed Central

    Scheidig, A. J.; Hynes, T. R.; Pelletier, L. A.; Wells, J. A.; Kossiakoff, A. A.

    1997-01-01

    The crystal structures of the inhibitor domain of Alzheimer's amyloid beta-protein precursor (APPI) complexed to bovine chymotrypsin (C-APPI) and trypsin (T-APPI) and basic pancreatic trypsin inhibitor (BPTI) bound to chymotrypsin (C-BPTI) have been solved and analyzed at 2.1 A, 1.8 A, and 2.6 A resolution, respectively. APPI and BPTI belong to the Kunitz family of inhibitors, which is characterized by a distinctive tertiary fold with three conserved disulfide bonds. At the specificity-determining site of these inhibitors (P1), residue 15(I)4 is an arginine in APPI and a lysine in BPTI, residue types that are counter to the chymotryptic hydrophobic specificity. In the chymotrypsin complexes, the Arg and Lys P1 side chains of the inhibitors adopt conformations that bend away from the bottom of the binding pocket to interact productively with elements of the binding pocket other than those observed for specificity-matched P1 side chains. The stereochemistry of the nucleophilic hydroxyl of Ser 195 in chymotrypsin relative to the scissile P1 bond of the inhibitors is identical to that observed for these groups in the trypsin-APPI complex, where Arg 15(I) is an optimal side chain for tryptic specificity. To further evaluate the diversity of sequences that can be accommodated by one of these inhibitors, APPI, we used phage display to randomly mutate residues 11, 13, 15, 17, and 19, which are major binding determinants. Inhibitors variants were selected that bound to either trypsin or chymotrypsin. As expected, trypsin specificity was principally directed by having a basic side chain at P1 (position 15); however, the P1 residues that were selected for chymotrypsin binding were His and Asn, rather than the expected large hydrophobic types. This can be rationalized by modeling these hydrophilic side chains to have similar H-bonding interactions to those observed in the structures of the described complexes. The specificity, or lack thereof, for the other individual subsites

  6. Novel benzimidazole inhibitors bind to a unique site in the kinesin spindle protein motor domain.

    PubMed

    Sheth, Payal R; Shipps, Gerald W; Seghezzi, Wolfgang; Smith, Catherine K; Chuang, Cheng-Chi; Sanden, David; Basso, Andrea D; Vilenchik, Lev; Gray, Kimberly; Annis, D Allen; Nickbarg, Elliott; Ma, Yao; Lahue, Brian; Herbst, Ronald; Le, Hung V

    2010-09-28

    Affinity selection-mass spectrometry (AS-MS) screening of kinesin spindle protein (KSP) followed by enzyme inhibition studies and temperature-dependent circular dichroism (TdCD) characterization was utilized to identify a series of benzimidazole compounds. This series also binds in the presence of Ispinesib, a known anticancer KSP inhibitor in phase I/II clinical trials for breast cancer. TdCD and AS-MS analyses support simultaneous binding implying existence of a novel non-Ispinesib binding pocket within KSP. Additional TdCD analyses demonstrate direct binding of these compounds to Ispinesib-resistant mutants (D130V, A133D, and A133D + D130V double mutant), further strengthening the hypothesis that the compounds bind to a distinct binding pocket. Also importantly, binding to this pocket causes uncompetitive inhibition of KSP ATPase activity. The uncompetitive inhibition with respect to ATP is also confirmed by the requirement of nucleotide for binding of the compounds. After preliminary affinity optimization, the benzimidazole series exhibited distinctive antimitotic activity as evidenced by blockade of bipolar spindle formation and appearance of monoasters. Cancer cell growth inhibition was also demonstrated either as a single agent or in combination with Ispinesib. The combination was additive as predicted by the binding studies using TdCD and AS-MS analyses. The available data support the existence of a KSP inhibitory site hitherto unknown in the literature. The data also suggest that targeting this novel site could be a productive strategy for eluding Ispinesib-resistant tumors. Finally, AS-MS and TdCD techniques are general in scope and may enable screening other targets in the presence of known drugs, clinical candidates, or tool compounds that bind to the protein of interest in an effort to identify potency-enhancing small molecules that increase efficacy and impede resistance in combination therapy.

  7. Targeting inhibitor of apoptosis proteins in combination with dacarbazine or TRAIL in melanoma cells.

    PubMed

    Engesæter, Birgit O; Sathermugathevan, Menaka; Hellenes, Tina; Engebråten, Olav; Holm, Ruth; Flørenes, Vivi Ann; Mælandsmo, Gunhild M

    2011-07-01

    Melanoma is a highly aggressive malignant tumor with an exceptional ability to develop resistance and no curative therapy is available for patients with distant metastatic disease. The inhibitor of apoptosis protein (IAP) family has been related to therapy resistance in cancer. We examined the importance of the IAPs in the resistance to the commonly used chemotherapeutic agent dacarbazine (DTIC) and the apoptosis inducer TRAIL (TNF-related apoptosis inducing ligand) in malignant melanoma. The data presented show that the expression of IAPs is universal, concomitant and generally high in melanoma cell lines and in patient samples. Depleting IAP expression by siRNA tended to reduce cell viability, with XIAP reduction being the most efficient in all four cell lines examined (FEMX-1, LOX, SKMEL-28 and WM115). The combined treatment of XIAP siRNA and DTIC showed a weak improvement in two of four cell lines, while all four cell lines showed enhanced sensitivity towards TRAIL (AdhCMV-TRAIL) after XIAP depletion. In addition, cIAP-1, cIAP-2 and survivin down-regulation sensitized to TRAIL treatment in several of the cell lines. Cells exposed to TRAIL and XIAP siRNA showed increased DNA-fragmentation and cleavage of Bid, procaspase-8, -9, -7 and -3 and PARP, and change in the balance between pro- and anti-apoptotic proteins, indicating an enhanced level of apoptosis. Furthermore, the combined treatment reduced the ability of melanoma cells to engraft and form tumors in mice, actualizing the combination for future therapy of malignant melanoma.

  8. Virtual Screening for Potential Inhibitors of NS3 Protein of Zika Virus

    PubMed Central

    Sahoo, Maheswata; Jena, Lingaraja; Daf, Sangeeta

    2016-01-01

    Zika virus (ZIKV) is a mosquito borne pathogen, belongs to Flaviviridae family having a positive-sense single-stranded RNA genome, currently known for causing large epidemics in Brazil. Its infection can cause microcephaly, a serious birth defect during pregnancy. The recent outbreak of ZIKV in February 2016 in Brazil realized it as a major health risk, demands an enhanced surveillance and a need to develop novel drugs against ZIKV. Amodiaquine, prochlorperazine, quinacrine, and berberine are few promising drugs approved by Food and Drug Administration against dengue virus which also belong to Flaviviridae family. In this study, we performed molecular docking analysis of these drugs against nonstructural 3 (NS3) protein of ZIKV. The protease activity of NS3 is necessary for viral replication and its prohibition could be considered as a strategy for treatment of ZIKV infection. Amongst these four drugs, berberine has shown highest binding affinity of –5.8 kcal/mol and it is binding around the active site region of the receptor. Based on the properties of berberine, more similar compounds were retrieved from ZINC database and a structure-based virtual screening was carried out by AutoDock Vina in PyRx 0.8. Best 10 novel drug-like compounds were identified and amongst them ZINC53047591 (2-(benzylsulfanyl)-3-cyclohexyl-3H-spiro[benzo[h]quinazoline-5,1'-cyclopentan]-4(6H)-one) was found to interact with NS3 protein with binding energy of –7.1 kcal/mol and formed H-bonds with Ser135 and Asn152 amino acid residues. Observations made in this study may extend an assuring platform for developing anti-viral competitive inhibitors against ZIKV infection. PMID:27729840

  9. Sm-like protein enhanced tolerance of recombinant Saccharomyces cerevisiae to inhibitors in hemicellulosic hydrolysate.

    PubMed

    Gao, Lan; Xia, Liming

    2012-11-01

    A current challenge of the cellulosic ethanol industry is to improve the resistance of inhibitors present in biomass hydrolysates. RNA-binding protein gene lsm6 was cloned from industrial Saccharomyces cerevisiae ZU-E8, which is able to conferment glucose and xylose, and transformed into ZU-E8 via expression vector pRS426. The positive transformant ZU-910 with over-expressing lsm6 was identified on the culture plates using high concentration of acetate and re-screened by fermentation test. Fermentation by the recombinants was performed in a medium containing 80 g/L xylose and 2 g/L acetic acid or 20 g/L NH(4)Ac/NaAc. After 96 h shaking-flask fermentation, ZU-910 utilized 90.2% xylose with an ethanol yield of 26.9 g/L, which was 8.5- and 10-fold higher than ZU-E8. Further, in the corn stover hemicellulosic hydrolysate fermentation, both the xylose conversion and ethanol production by ZU-910 was larger by 50% and 40% than ZU-E8. ZU-910 has also enhanced tolerance against furfural and SO(4)(2-).

  10. Extracellular production of riboflavin-binding protein, a potential bitter inhibitor, by Brevibacillus choshinensis.

    PubMed

    Maehashi, Kenji; Matano, Mami; Saito, Makiko; Udaka, Shigezo

    2010-05-01

    Riboflavin-binding protein (RBP) is a glycophosphoprotein found in hen eggs. We previously identified the extraordinary characteristic of RBP in reducing bitterness. For a more detailed study on the mode of action and industrial application of this characteristic, we investigated the microbial production of recombinant RBP (rRBP). We constructed a chicken RBP gene expression vector by inserting the RBP cDNA in pNCMO2, the Escherichia coli-Brevibacillus choshinensis shuttle vector. B. choshinensis HPD31 transformants produced 0.8g/l of processed and unglycosylated RBP in a soluble form in the culture supernatant. However, the expressed RBP was partially dimerized and monomeric RBP was purified by two step anion-exchange and gel-filtration chromatographies. The purified rRBP elicited bitterness reduction against quinine and caffeine, although it largely lost its riboflavin-binding ability. These results indicated that glycosylation and riboflavin-binding ability are not essential for the bitterness reduction of RBP. In addition, we assessed the usefulness of the Brevibacillus system for the expression and secretion of RBP as a new type of bitterness inhibitor.

  11. Protein arginine deiminase 2 binds calcium in an ordered fashion: implications for inhibitor design.

    PubMed

    Slade, Daniel J; Fang, Pengfei; Dreyton, Christina J; Zhang, Ying; Fuhrmann, Jakob; Rempel, Don; Bax, Benjamin D; Coonrod, Scott A; Lewis, Huw D; Guo, Min; Gross, Michael L; Thompson, Paul R

    2015-04-17

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ions that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.

  12. Protein Arginine Deiminase 2 Binds Calcium in an Ordered Fashion: Implications for Inhibitor Design

    PubMed Central

    2015-01-01

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ions that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs. PMID:25621824

  13. New Strategies and Methods to Study Interactions between Tobacco Mosaic Virus Coat Protein and Its Inhibitors

    PubMed Central

    Li, Xiangyang; Chen, Zhuo; Jin, Linhong; Hu, Deyu; Yang, Song

    2016-01-01

    Studies of the targets of anti-viral compounds are hot topics in the field of pesticide research. Various efficient anti-TMV (Tobacco Mosaic Virus) compounds, such as Ningnanmycin (NNM), Antofine (ATF), Dufulin (DFL) and Bingqingxiao (BQX) are available. However, the mechanisms of the action of these compounds on targets remain unclear. To further study the mechanism of the action of the anti-TMV inhibitors, the TMV coat protein (TMV CP) was expressed and self-assembled into four-layer aggregate disks in vitro, which could be reassembled into infectious virus particles with TMV RNA. The interactions between the anti-TMV compounds and the TMV CP disk were analyzed by size exclusion chromatography, isothermal titration calorimetry and native-polyacrylamide gel electrophoresis methods. The results revealed that assembly of the four-layer aggregate disk was inhibited by NNM; it changed the four-layer aggregate disk into trimers, and affected the regular assembly of TMV CP and TMV RNA. The four-layer aggregate disk of TMV CP was little inhibited by ATF, DFL and BQX. Our results provide original data, as well as new strategies and methods, for research on the mechanism of action of anti-viral drugs. PMID:26927077

  14. Expression of X-linked Inhibitor of Apoptosis Protein in Neoplastic Thyroid Disorder

    PubMed Central

    Yim, Ji Hye; Kim, Sun A; Kim, Won Gu; Jeon, Min Ji; Han, Ji Min; Sung, Tae Yon; Kim, Tae Yong; Kim, Won Bae; Hong, Suck Joon; Shong, Young Kee; Gong, Gyungyub

    2011-01-01

    X-linked inhibitor of apoptosis protein (XIAP) is associated with tumor genesis, growth, progression and metastasis, and acts by blocking caspase-mediated apoptosis. In the present study, we sought to evaluate the expression patterns of XIAP in various neoplastic thyroid disorders and determine the association between XIAP expression and clinicopathologic factors. Expression of XIAP was evaluated with immunohistochemical staining using monoclonal anti-XIAP in 164 specimens of conventional papillary thyroid carcinoma (PTC) and 53 specimens of other malignant or benign thyroid tumors. XIAP positivity was observed in 128 (78%) of the 164 conventional PTC specimens. Positive rates of XIAP expression in follicular variant PTC, follicular, medullary, poorly differentiated, and anaplastic thyroid carcinoma specimens were 20%, 25%, 38%, 67%, and 38%, respectively. Six nodular hyperplasia specimens were negative and 1 of 7 follicular adenomas (8%) was positive for XIAP. Lateral neck lymph node metastases were more frequent in patients negative for XIAP expression (P = 0.01). Immunohistochemical staining for XIAP as a novel molecular marker may thus be helpful in the differential diagnosis of thyroid cancer. Moreover, high XIAP expression in conventional PTC is strongly associated with reduced risk of lateral neck lymph node metastasis. PMID:21935275

  15. ING2 (inhibitor of growth protein-2) plays a crucial role in preimplantation development.

    PubMed

    Zhou, Lin; Wang, Pei; Zhang, Juanjuan; Heng, Boon Chin; Tong, Guo Qing

    2016-02-01

    ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.

  16. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors

    PubMed Central

    Mirza, Muhammad Usman; Ghori, Noor-Ul-Huda; Ikram, Nazia; Adil, Abdur Rehman; Manzoor, Sadia

    2015-01-01

    Hepatitis C virus (HCV) is one of the major viruses affecting the world today. It is a highly variable virus, having a rapid reproduction and evolution rate. The variability of genomes is due to hasty replication catalyzed by nonstructural protein 5B (NS5B) which is also a potential target site for the development of anti-HCV agents. Recently, the US Food and Drug Administration approved sofosbuvir as a novel oral NS5B inhibitor for the treatment of HCV. Unfortunately, it is much highlighted for its pricing issues. Hence, there is an urgent need to scrutinize alternate therapies against HCV that are available at affordable price and do not have associated side effects. Such a need is crucial especially in underdeveloped countries. The search for various new bioactive compounds from plants is a key part of pharmaceutical research. In the current study, we applied a pharmacoinformatics-based approach for the identification of active plant-derived compounds against NS5B. The results were compared to docking results of sofosbuvir. The lead compounds with high-binding ligands were further analyzed for pharmacokinetic and pharmacodynamic parameters based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile. The results showed the potential alternative lead compounds that can be developed into commercial drugs having high binding energy and promising ADMET properties. PMID:25848219

  17. A rational approach to identify inhibitors of Mycobacterium tuberculosis enoyl acyl carrier protein reductase.

    PubMed

    Chhabria, Mahesh T; Parmar, Kailash B; Brahmkshatriya, Pathik S

    2013-01-01

    Mycobacterial enoyl acyl carrier protein (ACP) reductase is an attractive target for focused design of novel antitubercular agents. Structural information available on enoyl-ACP reductase in complex with different ligands was used to generate receptor-based pharmacophore model in Discovery Studio (DS). In parallel, pharmacophore models were also generated using ligand-based approach (HypoGen module in DS). Statistically significant models were generated (r(2) = 0.85) which were found to be predictive as indicated from internal and external cross-validations. The model was used as a query tool to search Zinc and Maybridge databases to identify lead compounds and predict their activity in silico. Database searching retrieved many potential lead compounds having better estimated IC50 values than the training set compounds. These compounds were then evaluated for their drug-likeliness and pharmacokinetic properties using DS. Few selected compounds were then docked into the crystal structure of enoyl-ACP reductase using Dock 6.5. Most compounds were found to have high score values, which was found to be consistent with the results from pharmacophore mapping. Additionally, molecular docking provided useful insights into the nature of binding of the identified hit molecules. In summary, we show a useful strategy employing ligand- and structure-based approaches (pharmacophore modeling coupled with molecular docking) to identify new enoyl- ACP reductase inhibitors for antimycobacterial chemotherapy.

  18. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury.

    PubMed

    Chaaban, Hala; Keshari, Ravi S; Silasi-Mansat, Robert; Popescu, Narcis I; Mehta-D'Souza, Padmaja; Lim, Yow-Pin; Lupu, Florea

    2015-04-02

    Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma.

  19. Protein arginine deiminase 2 binds calcium in an ordered fashion: Implications for inhibitor design

    DOE PAGES

    Slade, Daniel J.; Fang, Pengfei; Dreyton, Christina J.; ...

    2015-01-26

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ionsmore » that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.« less

  20. Litopenaeus vannamei inhibitor of apoptosis protein 1 (LvIAP1) is essential for shrimp survival.

    PubMed

    Leu, Jiann-Horng; Chen, Yen-Chen; Chen, Li-Li; Chen, Kuan-Yu; Huang, Huai-Ting; Ho, Jan-Ming; Lo, Chu-Fang

    2012-09-01

    The members of the inhibitor of apoptosis protein (IAP) family are involved in the regulation of diverse cellular processes, including apoptosis, signal transduction and mitosis. Here, we report the cloning and characterization of three IAP genes from Pacific white shrimp Litopenaeus vannamei: LvIAP1, LvIAP2 and LvSurvivin. LvIAP1, the orthologue of Penaeus monodon IAP (PmIAP), consists of three BIR domains and one RING domain; LvIAP2 consists of two BIR domains and LvSurvivin has only one BIR domain. Expression profiling by absolute quantitative real-time RT-PCR revealed that of the three IAP genes, LvIAP1 had the highest expression levels in almost all examined tissues and LvSurvivin had the lowest expression levels. Furthermore, among the examined tissues, the lymphoid organs most strongly expressed all three genes. When LvIAP1 expression was silenced by injection of its corresponding dsRNA, the shrimp died within 48h after injection, whereas injection of the other two dsRNAs did not cause shrimp death. In LvIAP1-silenced shrimp, the number of circulating haemocytes decreased dramatically because of extensive apoptosis. This suggested that LvIAP1 is central to the regulation of shrimp haemocyte apoptosis.

  1. Protein arginine deiminase 2 binds calcium in an ordered fashion: Implications for inhibitor design

    SciTech Connect

    Slade, Daniel J.; Fang, Pengfei; Dreyton, Christina J.; Zhang, Ying; Fuhrmann, Jakob; Rempel, Don; Bax, Benjamin D.; Coonrod, Scott A.; Lewis, Huw D.; Guo, Min; Gross, Michael L.; Thompson, Paul R.

    2015-01-26

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ions that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.

  2. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors

    PubMed Central

    Petrelli, Riccardo; De la Mora-Rey, Teresa; Tiwari, Divya; Liu, Feng; Dawadi, Surrendra; Nandakumar, Madhumitha; Rhee, Kyu Y.; Schnappinger, Dirk; Finzel, Barry C.; Aldrich, Courtney C.

    2015-01-01

    Mycobacterium tuberculosis (Mtb) responsible for both latent and symptomatic tuberculosis (TB) remains the second leading cause of mortality among infectious diseases worldwide. Mycobacterial biotin protein ligase (MtBPL) is an essential enzyme in Mtb and regulates lipid metabolism through the post-translational biotinylation of acyl coenzyme A carboxylases. We report the synthesis and evaluation of a systematic series of potent nucleoside-based inhibitors of MtBPL that contain modifications to the ribofuranosyl ring of the nucleoside. All compounds were characterized by isothermal titration calorimetry (ITC) and shown to bind potently with KD's below 2 nM. Additionally, we obtained high-resolution co-crystal structures for a majority of the compounds. Despite fairly uniform biochemical potency, the whole-cell Mtb activity varied greatly with minimum inhibitory concentrations (MIC) ranging from 0.78 to >100 μM. Cellular accumulation studies showed a nearly 10-fold enhanced accumulation of a C-2′-α analog over the corresponding C-2′-β analog, consistent with their differential whole-cell activity. PMID:26299766

  3. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice.

    PubMed

    Arai, Satoko; Kitada, Kento; Yamazaki, Tomoko; Takai, Ryosuke; Zhang, Xizhong; Tsugawa, Yoji; Sugisawa, Ryoichi; Matsumoto, Ayaka; Mori, Mayumi; Yoshihara, Yasunori; Doi, Kent; Maehara, Natsumi; Kusunoki, Shunsuke; Takahata, Akiko; Noiri, Eisei; Suzuki, Yusuke; Yahagi, Naoki; Nishiyama, Akira; Gunaratnam, Lakshman; Takano, Tomoko; Miyazaki, Toru

    2016-02-01

    Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1-deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI.

  4. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis

    SciTech Connect

    Wu Yichen; Yen Wenyen; Lee, T.-C. Yih, L.-H.

    2009-04-15

    Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90{alpha}/{beta} also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.

  5. Impact of inhibitor of apoptosis proteins on immune modulation and inflammation.

    PubMed

    Sharma, Sachin; Kaufmann, Thomas; Biswas, Subhrajit

    2016-11-08

    The routes leading to programmed cell death are as tightly regulated as those of cellular growth and proliferation, and a finely synchronized balance between the life and death of cells ensures proper organ size and function. Inhibitors of apoptosis (IAPs) proteins were initially characterized by their ability to directly bind and inhibit apoptotic caspases. However, recent studies have clarified that IAPs are much more functionally versatile, modulating a vast range of signaling pathways that have an impact on antimicrobial responses, tumorigenesis, metastasis and cellular migration. A significant contribution of IAPs in tumorigenesis is their inherent function as E3 ubiquitin ligases to modulate cellular signaling downstream of death receptors or certain pattern recognition receptors. In this review, we focus on modulation of the innate and adaptive immune systems, macrophage plasticity and inflammatory responses by IAP family members. We also explore the rationale to target IAPs pharmacologically for the treatment of a number of inflammatory diseases and cancer.Immunology and Cell Biology advance online publication, 8 November 2016; doi:10.1038/icb.2016.101.

  6. Exploration of Cyanine Compounds as Selective Inhibitors of Protein Arginine Methyltransferases: Synthesis and Biological Evaluation

    PubMed Central

    2016-01-01

    Protein arginine methyltransferase 1 (PRMT1) is involved in many biological activities, such as gene transcription, signal transduction, and RNA processing. Overexpression of PRMT1 is related to cardiovascular diseases, kidney diseases, and cancers; therefore, selective PRMT1 inhibitors serve as chemical probes to investigate the biological function of PRMT1 and drug candidates for disease treatment. Our previous work found trimethine cyanine compounds that effectively inhibit PRMT1 activity. In our present study, we systematically investigated the structure–activity relationship of cyanine structures. A pentamethine compound, E-84 (compound 50), showed inhibition on PRMT1 at the micromolar level and 6- to 25-fold selectivity over CARM1, PRMT5, and PRMT8. The cellular activity suggests that compound 50 permeated the cellular membrane, inhibited cellular PRMT1 activity, and blocked leukemia cell proliferation. Additionally, our molecular docking study suggested compound 50 might act by occupying the cofactor binding site, which provided a roadmap to guide further optimization of this lead compound. PMID:25559100

  7. Oleanane triterpenes as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Camellia japonica.

    PubMed

    Uddin, Mohammad Nasir; Sharma, Govinda; Yang, Jun-Li; Choi, Hong Seok; Lim, Seong-Il; Kang, Keon Wook; Oh, Won Keun

    2014-07-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role in metabolic signaling, thereby making it an exciting drug target for type 2 diabetes and obesity. Besides, there is substantial evidence that shows its overexpression is involved in breast cancer, which suggests that selective PTP1B inhibition might be effective in breast cancer treatment. As part of our continuous research on PTP1B inhibitors from medicinal plants, four oleanane-type triterpenes were isolated from an EtOAc-soluble extract of fruit peels of Camellia japonica (Theaceae), together with 6 previously known compounds of this class. Their structures were determined on the basis of spectroscopic data analysis (UV, IR, (1)H and (13)CNMR, HMBC, HSQC, NOESY, and MS). All isolates were evaluated for their inhibitory effects on PTP1B, as well as their cytotoxic effects against human breast cancer cell lines MCF7, MCF7/ADR, and MDA-MB-231. Several compounds with OH-3 or/and COOH-28 functionalities showed strong PTP1B inhibitory activity (IC50 values ranging from 3.77±0.11 to 6.40±0.81 μM) as well as significant cytotoxicity (IC50 values ranging from 0.51±0.05 to 13.55±1.44 μM).

  8. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of CaV Function.

    PubMed

    Findeisen, Felix; Campiglio, Marta; Jo, Hyunil; Abderemane-Ali, Fayal; Rumpf, Christine H; Pope, Lianne; Rossen, Nathan D; Flucher, Bernhard E; DeGrado, William F; Minor, Daniel L

    2017-03-17

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (CaV) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (CaVβ). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:CaVβ interactions and reduce the entropic penalty associated with AID binding to CaVβ. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the CaVα1:CaVβ interaction that modulate CaV function in an CaVβ isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based CaV modulator design.

  9. Valosin-containing protein (VCP/p97) inhibitors relieve Mitofusin-dependent mitochondrial defects due to VCP disease mutants.

    PubMed

    Zhang, Ting; Mishra, Prashant; Hay, Bruce A; Chan, David; Guo, Ming

    2017-03-21

    Missense mutations of valosin-containing protein (VCP) cause an autosomal dominant disease known as inclusion body myopathy, Paget disease with frontotemporal dementia (IBMPFD) and other neurodegenerative disorders. The pathological mechanism of IBMPFD is not clear and there is no treatment. We show that endogenous VCP negatively regulates Mitofusin, which is required for outer mitochondrial membrane fusion. Because 90% of IBMPFD patients have myopathy, we generated an in vivo IBMPFD model in adult Drosophila muscle, which recapitulates disease pathologies. We show that common VCP disease mutants act as hyperactive alleles with respect to regulation of Mitofusin. Importantly, VCP inhibitors suppress mitochondrial defects, muscle tissue damage and cell death associated with IBMPFD models in Drosophila. These inhibitors also suppress mitochondrial fusion and respiratory defects in IBMPFD patient fibroblasts. These results suggest that VCP disease mutants cause IBMPFD through a gain-of-function mechanism, and that VCP inhibitors have therapeutic value.

  10. Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Kaczmarska, Zuzanna; Arkona, Christoph; Schulz, Robert; Tauber, Carolin; Wolber, Gerhard; Hilgenfeld, Rolf; Coll, Miquel; Rademann, Jörg

    2016-09-01

    Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme-inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases.

  11. Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments

    PubMed Central

    Becker, Daniel; Kaczmarska, Zuzanna; Arkona, Christoph; Schulz, Robert; Tauber, Carolin; Wolber, Gerhard; Hilgenfeld, Rolf; Coll, Miquel; Rademann, Jörg

    2016-01-01

    Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme–inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases. PMID:27677239

  12. Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments.

    PubMed

    Becker, Daniel; Kaczmarska, Zuzanna; Arkona, Christoph; Schulz, Robert; Tauber, Carolin; Wolber, Gerhard; Hilgenfeld, Rolf; Coll, Miquel; Rademann, Jörg

    2016-09-28

    Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme-inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases.

  13. Molecular Investigations of the Structure and Function of the Protein Phosphatase 1-Spinophilin-Inhibitor 2 Heterotrimeric Complex

    SciTech Connect

    Dancheck, B.; Allaire, M.; Ragusa, M.J.; Nairn, A.C.; Page, R.; Peti, W.

    2011-01-06

    Regulation of the major Ser/Thr phosphatase protein phosphatase 1 (PP1) is controlled by a diverse array of targeting and inhibitor proteins. Though many PP1 regulatory proteins share at least one PP1 binding motif, usually the RVxF motif, it was recently discovered that certain pairs of targeting and inhibitor proteins bind PP1 simultaneously to form PP1 heterotrimeric complexes. To date, structural information for these heterotrimeric complexes and, in turn, how they direct PP1 activity is entirely lacking. Using a combination of NMR spectroscopy, biochemistry, and small-angle X-ray scattering (SAXS), we show that major structural rearrangements in both spinophilin (targeting) and inhibitor 2 (I-2, inhibitor) are essential for the formation of the heterotrimeric PP1-spinophilin-I-2 (PSI) complex. The RVxF motif of I-2 is released from PP1 during the formation of PSI, making the less prevalent SILK motif of I-2 essential for complex stability. The release of the I-2 RVxF motif allows for enhanced flexibility of both I-2 and spinophilin in the heterotrimeric complex. In addition, we used inductively coupled plasma atomic emission spectroscopy to show that PP1 contains two metals in both heterodimeric complexes (PP1-spinophilin and PP1-I-2) and PSI, demonstrating that PSI retains the biochemical characteristics of the PP1-I-2 holoenzyme. Finally, we combined the NMR and biochemical data with SAXS and molecular dynamics simulations to generate a structural model of the full heterotrimeric PSI complex. Collectively, these data reveal the molecular events that enable PP1 heterotrimeric complexes to exploit both the targeting and inhibitory features of the PP1-regulatory proteins to form multifunctional PP1 holoenzymes.

  14. Steady-state concentrations of mRNA encoding two inhibitors of protein kinase C in ovine luteal tissue.

    PubMed

    Juengel, J L; Melner, M H; Clapper, J A; Turzillo, A M; Moss, G E; Nett, T M; Niswender, G D

    1998-07-01

    Prostaglandin F2 alpha (PGF2 alpha) decreases secretion of progesterone from the corpus luteum in domestic ruminants. However, it is less effective during the early part of the oestrous cycle (Louis et al., 1973) and at the time of maternal recognition of pregnancy (Silvia and Niswender, 1984; Lacroix and Kann, 1986). Decreased luteal responsiveness may be due to failure of PGF2 alpha to activate fully its normal second messenger system, protein kinase C (PKC). Alternatively, increased resistance of the corpus luteum to PGF2 alpha might be attributable to greater concentrations of recently identified biological inhibitors of PKC. These possibilities were addressed by measuring steady-state concentrations of mRNA encoding PGF2 alpha receptor and two inhibitors of PKC, protein kinase C inhibitor-1 (PKCI-1) and kinase C inhibitor protein-1 (KCIP-1, brain 14-3-3 protein), in corpora lutea collected from ewes on days 4, 10 and 15 of the oestrous cycle (n = 5 per day) and day 15 of pregnancy (n = 7). There were no differences in mean concentrations of mRNA encoding PGF2 alpha receptor among the groups. However, concentrations of mRNA encoding both inhibitors of PKC were higher (P < 0.01) on day 4 of the oestrous cycle compared with the other groups. Treatment of ewes with a luteolytic dose of PGF2 alpha, which activates PKC, did not change concentrations of mRNA encoding either PKCI-1 or KCIP-I up to 24 h later. Luteal expression of mRNA encoding the PKC inhibitors and PGF2 alpha receptor was also examined in ewes treated with oestradiol in vivo for 16 h in the midluteal phase. High concentrations of oestradiol in serum (20 and 70 pg ml-1) did not influence quantities of any of the mRNAs examined. Therefore, an increase in PKC inhibitors may be involved in resistance of the corpus luteum to PGF2 alpha during the early part of the oestrous cycle but does not appear to mediate the increased resistance of the corpus luteum to PGF2 alpha during maternal recognition of

  15. Comparison of newly developed anti-bone morphogenetic protein 4 llama-derived antibodies with commercially available BMP4 inhibitors

    PubMed Central

    Calpe, Silvia; Correia, Ana C. P.; Sancho-Serra, Maria del Carmen; Krishnadath, Kausilia K.

    2016-01-01

    ABSTRACT Due to improved understanding of the role of bone morphogenetic protein 4 (BMP4) in an increasing number of diseases, the development of selective inhibitors of BMP4 is an attractive therapeutic option. The currently available BMP4 inhibitors are not suitable as therapeutics because of their low specificity and low effectiveness. Here, we compared newly generated anti-BMP4 llama-derived antibodies (VHHs) with 3 different types of commercially available BMP4 inhibitors, natural antagonists, small molecule BMPR inhibitors and conventional anti-BMP4 monoclonal antibodies. We found that the anti-BMP4 VHHs were as effective as the natural antagonist or small molecule inhibitors, but had higher specificity. We also showed that commercial anti-BMP4 antibodies were inferior in terms of both specificity and effectiveness. These findings might result from the fact that the VHHs C4C4 and C8C8 target a small region within the BMPR1 epitope of BMP4, whereas the commercial antibodies target other areas of the BMP4 molecule. Our results show that the newly developed anti-BMP4 VHHs are promising antibodies with better specificity and effectivity for inhibition of BMP4, making them an attractive tool for research and for therapeutic applications. PMID:26967714

  16. Radio-sensitization of human leukaemic molt-4 cells by DNA-dependent protein kinase inhibitor, NU7026.

    PubMed

    Tichý, Ales; Novotná, Eva; Durisová, Kamila; Salovská, Barbora; Sedlaríková, Radka; Pejchal, Jaroslav; Zárybnická, Lenka; Vávrová, Jirina; Sinkorová, Zuzana; Rezácová, Martina

    2012-01-01

    In this paper we describe the influence of NU7026, a specific inhibitor of DNA-dependent protein kinase, phosphoinositide 3-kinase, and ATM-kinase on molecular and cellular mechanisms triggered by ionising irradiation in human T-lymphocyte leukaemic MOLT-4 cells. We studied the effect of this inhibitor (10 1microM) combined with gamma-radiation (1 Gy) leading to DNA damage response and induction of apoptosis. We used methods for apoptosis assessment (cell viability count and flow-cytometric analysis) and cell cycle analysis (DNA content measurement) and we detected expression and post-translational modifications (Western blotting) of proteins involved in DNA repair signalling pathways. Pre-treatment with NU7026 resulted into decreased activation of checkpoint kinase-2 (Thr68), p53 (Ser15 and Ser392), and histone H2A.X (Ser139) 2 hours after irradiation. Subsequently, combination of radiation and inhibitor led to decreased amount of cells in G2-phase arrest and into increased apoptosis after 72 hours. Our results indicate that in leukaemic cells the pre-incubation with inhibitor NU7026 followed by low doses of ionising radiation results in radio-sensitising of MOLT-4 cells via diminished DNA repair and delayed but pronounced apoptosis. This novel approach might offer new strategies in combined treatment of leukaemia diseases.

  17. Infusion of protein synthesis inhibitors in the entorhinal cortex blocks consolidation but not reconsolidation of object recognition memory.

    PubMed

    Lima, Ramón H; Rossato, Janine I; Furini, Cristiane R; Bevilaqua, Lia R; Izquierdo, Iván; Cammarota, Martín

    2009-05-01

    Memory consolidation and reconsolidation require the induction of protein synthesis in some areas of the brain. Here, we show that infusion of the protein synthesis inhibitors anisomycin, emetine and cycloheximide in the entorhinal cortex immediately but not 180 min or 360 min after training in an object recognition learning task hinders long-term memory retention without affecting short-term memory or behavioral performance. Inhibition of protein synthesis in the entorhinal cortex after memory reactivation involving either a combination of familiar and novel objects or two familiar objects does not affect retention. Our data suggest that protein synthesis in the entorhinal cortex is necessary early after training for consolidation of object recognition memory. However, inhibition of protein synthesis in this cortical region after memory retrieval does not seem to affect the stability of the recognition trace.

  18. Purification and characterization of a rabbit salivary protein, a potent inhibitor of crystal growth of calcium phosphate salts.

    PubMed

    Spielman, A I; Bernstein, A; Hay, D I; Blum, M; Bennick, A

    1991-01-01

    Human saliva is supersaturated with respect to basic calcium phosphate salts but is stabilized by specific macromolecules that inhibit calcium phosphate precipitation. One of the families of inhibitory proteins in human and monkey saliva is the acidic proline-rich proteins. The purpose of this study was to isolate and characterize inhibitors of calcium phosphate precipitation from rabbit parotid saliva. Saliva was fractionated by immunoaffinity chromatography and anion exchange chromatography. Individual fractions were assayed for their ability to inhibit calcium phosphate crystal growth and the fraction associated with the inhibition was purified by repeated anion exchange chromatography, preparative gel electrophoresis and electroelution. A major (APRP) and two minor proteins (AM1, AM2) that were inhibitory were purified. APRP is an acidic proline-rich phospho-glycoprotein and a very potent inhibitor of secondary crystal growth of calcium phosphate as it was active at a concentration of 2 x 10(-8) M in a standard assay. The N-terminal sequence of one APRP was EYENLDGSLAATQNDDD?Q and a clostripain fragment of APRP had the following N-terminal sequence PQHRPPRPGGH-????SPPP?GN???PPP. Although the N-terminal segment of APRP does not resemble that of proline-rich proteins, alignment of the clostripain fragment with the repeat region of such proteins from rat, mouse, monkey and man revealed a high degree of similarity, indicating a structural relationship with the proline-rich protein family.

  19. Secretion of soluble complement inhibitors factor H and factor H-like protein (FHL-1) by ovarian tumour cells.

    PubMed

    Junnikkala, S; Hakulinen, J; Jarva, H; Manuelian, T; Bjørge, L; Bützow, R; Zipfel, P F; Meri, S

    2002-11-04

    We observed that the soluble complement regulators factor H and factor H-like protein were abundantly present in ascites samples as well as in primary tumours of patients with ovarian cancer. RT-PCR and immunoblotting analyses showed that the two complement inhibitors were constitutively produced by the ovarian tumour cell lines SK-OV-3 and Caov-3, but not PA-1 or SW626 cells. The amounts of factor H-like protein secreted were equal to those of factor H. This is exceptional, because e.g. in normal human serum the concentration of factor H-like protein is below 1/10th of that of factor H. In ascites samples the mean level of factor H-like protein (130+/-55 microg ml(-1)) was 5.5-fold higher than in normal human serum (24+/-3 microg ml(-1)). Ovarian tumour cells thus preferentially synthesise factor H-like protein, the alternatively spliced short variant of factor H. The tumour cells were found to bind both (125)I-labelled factor H and recombinant factor H-like protein to their surfaces. Surprisingly, the culture supernatants of all of the ovarian tumour cell lines studied, including those of PA-1 and SW626 that did not produce factor H/factor H-like protein, promoted factor I-mediated cleavage of C3b to inactive iC3b. Subsequently, the PA-1 and SW626 cell lines were found to secrete a soluble form of the membrane cofactor protein (CD46). Thus, our studies reveal two novel complement resistance mechanisms of ovarian tumour cells: (i) production of factor H-like protein and factor H and (ii) secretion of soluble membrane cofactor protein. Secretion of soluble complement inhibitors could protect ovarian tumour cells against humoral immune attack and pose an obstacle for therapy with monoclonal antibodies.

  20. Use of structure-based drug design approaches to obtain novel anthranilic acid acyl carrier protein synthase inhibitors.

    PubMed

    Joseph-McCarthy, Diane; Parris, Kevin; Huang, Adrian; Failli, Amedeo; Quagliato, Dominick; Dushin, Elizabeth Glasfeld; Novikova, Elena; Severina, Elena; Tuckman, Margareta; Petersen, Peter J; Dean, Charles; Fritz, Christian C; Meshulam, Tova; DeCenzo, Maureen; Dick, Larry; McFadyen, Iain J; Somers, William S; Lovering, Frank; Gilbert, Adam M

    2005-12-15

    Acyl carrier protein synthase (AcpS) catalyzes the transfer of the 4'-phosphopantetheinyl group from the coenzyme A to a serine residue in acyl carrier protein (ACP), thereby activating ACP, an important step in cell wall biosynthesis. The structure-based design of novel anthranilic acid inhibitors of AcpS, a potential antibacterial target, is presented. An initial high-throughput screening lead and numerous analogues were modeled into the available AcpS X-ray structure, opportunities for synthetic modification were identified, and an iterative process of synthetic modification, X-ray complex structure determination with AcpS, biological testing, and further modeling ultimately led to potent inhibitors of the enzyme. Four X-ray complex structures of representative anthranilic acid ligands bound to AcpS are described in detail.

  1. Improvement of inhibitor identification for heat shock protein 90α by utilizing a red-shifted fluorescence polarization probe.

    PubMed

    Qian, Jie; Holskin, Beverly P; Theroff, Jay; Underiner, Ted; Meyer, Sheryl L; Angeles, Thelma S

    2012-08-01

    Heat shock protein-90 (HSP90) is an ATP-dependent molecular chaperone with intrinsic ATPase activity. HSP90 is required for the stability and function of client proteins, many of which are involved in oncogenesis. Thus, identification of HSP90 inhibitors would potentially lead to the discovery of cancer therapeutics. Here, we present a high-throughput screening campaign utilizing two geldanamycin (GM)-labeled probes in a fluorescence polarization (FP) assay. For the primary screen, a previously reported green BODIPY-labeled GM (GM-BODIPY) was used to evaluate a library collection of about 400,000 compounds. From this screen, 3058 compounds showed >30% inhibition. To distinguish true positives from compound interference, a confirmatory screen was deemed necessary. Accordingly, a red-shifted FP binding assay was developed using GM labeled with red BODIPY. This tool enabled reliable identification of promising HSP90α inhibitors.

  2. A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1.

    PubMed

    Reca, Ida Barbara; Lionetti, Vincenzo; Camardella, Laura; D'Avino, Rossana; Giardina, Thierry; Cervone, Felice; Bellincampi, Daniela

    2012-07-01

    A pectin methylesterase inhibitor (SolyPMEI) from tomato has been identified and characterised by a functional genomics approach. SolyPMEI is a cell wall protein sharing high similarity with Actinidia deliciosa PMEI (AdPMEI), the best characterised inhibitor from kiwi. It typically affects the activity of plant pectin methylesterases (PMEs) and is inactive against a microbial PME. SolyPMEI transcripts were mainly expressed in flower, pollen and ripe fruit where the protein accumulated at breaker and turning stages of ripening. The expression of SolyPMEI correlated during ripening with that of PME-1, the major fruit specific PME isoform. The interaction of SolyPMEI with PME-1 was demonstrated in ripe fruit by gel filtration and by immunoaffinity chromatography. The analysis of the zonal distribution of PME activity and the co-localization of SolyPMEI with high esterified pectins suggest that SolyPMEI regulates the spatial patterning of distribution of esterified pectins in fruit.

  3. Characterization of. alpha. -amylase-inhibitor, a lectin-like protein in the seeds of Phaseolus vulgaris

    SciTech Connect

    Moreno, J.; Altabella, T.; Chrispeels, M.J. )

    1990-03-01

    The common bean, Phaseolus vulgaris, contains a glycoprotein that inhibits the activity of mammalian and insect {alpha}-amylases but not of plant {alpha}-amylases. It is therefore classified as an antifeedant or seed defense protein. In P. vulgaris cv Greensleeves, {alpha}-amylase inhibitor ({alpha}Al) is present in embryonic axes and cotyledons, but not in other organs of the plant. The protein is synthesized during the same time period that phaseolin and phytohemagglutinin are made and also accumulates in the protein storage vacuoles (protein bodies). All the glycoforms have complex glycans that are resistant to removal by endoglycosidase H, indicating transport of the protein through the Golgi apparatus. The two different polypeptides correspond to the N-terminal and C-terminal halves of a lectin-like protein encoded by an already identified gene or a gene closely related to it. The primary translation product of {alpha}Al is a polypeptide of M{sub r} 28,000. Immunologically cross-reacting glycopolypeptides of M{sub r} 30,000 to 35,000 are present in the endoplasmic reticulum, while the smaller polypeptides (M{sub r} 15,000-19,000) accumulate in protein storage vacuoles (protein bodies). Together these data indicate that {alpha}Al is a typical bean lectin-type protein that is synthesized on the rough endoplasmic reticulum, modified in the Golgi, and transported to the protein storage vacuoles.

  4. A High-Throughput Screening Assay Using a Photoconvertable Protein for Identifying Inhibitors of Transcription, Translation, or Proteasomal Degradation.

    PubMed

    Heidary, David K; Fox, Ashley; Richards, Chris I; Glazer, Edith C

    2017-04-01

    Dysregulated transcription, translation, and protein degradation are common features of cancer cells, regardless of specific genetic profiles. Several clinical anticancer agents take advantage of this characteristic vulnerability and interfere with the processes of transcription and translation or inhibit protein degradation. However, traditional assays that follow the process of protein production and removal require multistep processing and are not easily amenable to high-throughput screening. The use of recombinant fluorescent proteins provides a convenient solution to this problem, and moreover, photoconvertable fluorescent proteins allow for ratiometric detection of both new protein production and removal of existing proteins. Here, the photoconvertable protein Dendra2 is used in the development of in-cell assays of protein production and degradation that are optimized and validated for high-throughput screening. Conversion from the green to red emissive form can be achieved using a high-intensity light-emitting diode array, producing a stable pool of the red fluorescent form of Dendra2. This allows for rates of protein production or removal to be quantified in a plate reader or by fluorescence microscopy, providing a means to measure the potencies of inhibitors that affect these key processes.

  5. Development of a yeast two-hybrid screen for selection of human Ras-Raf protein interaction inhibitors.

    PubMed

    Khazak, Vladimir; Golemis, Erica A; Weber, Lutz

    2005-01-01

    A yeast two-hybrid screening system was developed to screen for small molecules that inhibit the interaction of the Ras and the Raf proteins. Hyperpermeable yeast strains useful for high-throughput screening (HTS) for the two-hybrid system were created. Differential inhibition of the Ras-Raf vs the hsRPB4-hsRPB7 interaction allowed the identification of selective inhibitors.

  6. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    SciTech Connect

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  7. Elucidating the Mechanism of Gain of Toxic Function From Mutant C1 Inhibitor Proteins in Hereditary Angioedema

    DTIC Science & Technology

    2015-10-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0506 TITLE: Elucidating the Mechanism of Gain of Toxic Function From Mutant C1 Inhibitor Proteins...REPORT TYPE Annual 3. DATES COVERED 30 Sept 2014 – 29 Sept 2015 4. TITLE AND SUBTITLE Elucidating the Mechanism of Gain of Toxic Function From Mutant ...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT HAE is autosomal dominant. Cells, heterozygous for the SERPING1 mutation, express both mutant and WT

  8. Slow conformational dynamics of an endonuclease persist in its complex with its natural protein inhibitor.

    PubMed

    Whittaker, S B; Czisch, M; Wechselberger, R; Kaptein, R; Hemmings, A M; James, R; Kleanthous, C; Moore, G R

    2000-04-01

    The bacterial toxin colicin E9 is secreted by producing Escherichia coli cells with its 9.5 kDa inhibitor protein Im9 bound tightly to its 14.5 kDa C-terminal DNase domain. Double- and triple-resonance NMR spectra of the isolated DNase domain uniformly labeled with 13C/15N bound to unlabeled Im9 contain more signals than expected for a single DNase conformer, consistent with the bound DNase being present in more than one form. The presence of chemical exchange cross peaks in 750 MHz 15N-1H-15N HSQC-NOESY-HSQC spectra for backbone NH groups of Asp20, Lys21, Trp22, Leu23, Lys69, and Asn70 showed that the bound DNase was in dynamic exchange. The rate of exchange from the major to the minor form was determined to be 1.1 +/- 0.2 s(-1) at 298 K. Previous NMR studies have shown that the free DNase interchanges between two conformers with a forward rate constant of 1.61 +/- 0.11 s(-1) at 288 K, and that the bound Im9 is fixed in one conformation. The NMR studies of the bound DNase show that Im9 binds similarly to both conformers of the DNase and that the buried Trp22 is involved in the dynamic process. For the free DNase, all NH groups within a 9 A radius of any point of the Trp22 ring exhibit heterogeneity suggesting that a rearrangement of the position of this side chain is connected with the conformational interchange. The possible functional significance of this feature of the DNase is discussed.

  9. Ocular hypotensive effects of a Rho-associated protein kinase inhibitor in rabbits

    PubMed Central

    Kamaruddin, Muhammad Irfan; Nakamura-Shibasaki, Momoko; Mizuno, Yu; Kiuchi, Yoshiaki

    2017-01-01

    Purpose Ripasudil is a novel Rho-associated protein kinase inhibitor that is used to treat ocular hypertension. However, the comparison of the intraocular pressure (IOP)-lowering effects between ripasudil alone and other ocular hypotensive drugs has not been studied thoroughly. The purpose of this study is to examine the ocular hypotensive effects of 0.4% ripasudil, 2% pilocarpine, 0.5% timolol and 0.1% dorzolamide in rabbits. We also studied the IOP changes when 0.4% ripasudil was combined with 2% pilocarpine, 0.5% timolol or 0.1% dorzolamide. Methods One drop of saline solution, 0.4% ripasudil, 0.5% timolol, 2% pilocarpine or 1% dorzolamide or a combination of these agents was applied topically to the left eyes of eight healthy albino rabbits. Posttreatment changes in the IOP of albino rabbits were monitored using a rebound tonometer over a 5-h time course. Changes in IOP after application of saline served as the control. One-way analysis of variance and Dunnett’s post hoc tests were used for statistical analyses. Results After topical instillation, 0.4% ripasudil resulted in significant decreases in IOP at 0.5 and 1 h compared with the control group. Treatment with timolol, pilocarpine or dorzolamide had no significant effect on IOP. Treatment with timolol, pilocarpine or dorzolamide in combination with ripasudil resulted in significant reductions in IOP at 1 h. However, none of these agents enhanced the IOP-lowering effects of ripasudil. Conclusion Ripasudil has stronger IOP-lowering effects than timolol, pilocarpine or dorzolamide hypotensive agents in our rabbit model. Addition of timolol, pilocarpine or dorzolamide did not enhance the IOP-lowering effects of ripasudil alone.

  10. Examination of the Addictive and Behavioral Properties of Fatty Acid-Binding Protein Inhibitor SBFI26

    PubMed Central

    Thanos, Panayotis K.; Clavin, Brendan H.; Hamilton, John; O’Rourke, Joseph R.; Maher, Thomas; Koumas, Christopher; Miao, Erick; Lankop, Jessenia; Elhage, Aya; Haj-Dahmane, Samir; Deutsch, Dale; Kaczocha, Martin

    2016-01-01

    The therapeutic properties of cannabinoids have been well demonstrated but are overshadowed by such adverse effects as cognitive and motor dysfunction, as well as their potential for addiction. Recent research on the natural lipid ligands of cannabinoid receptors, also known as endocannabinoids, has shed light on the mechanisms of intracellular transport of the endocannabinoid anandamide by fatty acid-binding proteins (FABPs) and subsequent catabolism by fatty acid amide hydrolase. These findings facilitated the recent development of SBFI26, a pharmacological inhibitor of epidermal- and brain-specific FABP5 and FABP7, which effectively increases anandamide signaling. The goal of this study was to examine this compound for any possible rewarding and addictive properties as well as effects on locomotor activity, working/recognition memory, and propensity for sociability and preference for social novelty (SN) given its recently reported anti-inflammatory and analgesic properties. Male C57BL mice were split into four treatment groups and conditioned with 5.0, 20.0, 40.0 mg/kg SBFI26, or vehicle during a conditioned place preference (CPP) paradigm. Following CPP, mice underwent a battery of behavioral tests [open field, novel object recognition (NOR), social interaction (SI), and SN] paired with acute SBFI26 administration. Results showed that SBFI26 did not produce CPP or conditioned place aversion regardless of dose and did not induce any differences in locomotor and exploratory activity during CPP- or SBFI26-paired open field activity. We also observed no differences between treatment groups in NOR, SI, and SN. In conclusion, as SBFI26 was shown previously by our group to have significant analgesic and anti-inflammatory properties, here we show that it does not pose a risk of dependence or motor and cognitive impairment under the conditions tested. PMID:27092087

  11. Single GDP-dissociation Inhibitor Protein regulates endocytic and secretory pathways in Leishmania

    PubMed Central

    Shanmugam, Senthil kumar; Kumar, Kamal; Singh, Pawan Kishor; Rastogi, Ruchir; Mukhopadhyay, Amitabha

    2016-01-01

    The role of GDP dissociation inhibitor (GDI) protein in regulation of Rab cycle in Leishmania is not known. Here, we have cloned and characterized the functions of GDI homologue in vivo in Leishmania. Our results have shown that LdGDI:WT along with GDP removes the Rab5 from purified endosomes and inhibits the homotypic fusion between early endosomes. Whereas, LdGDI:R239A, a dominant negative mutant of GDI, under the same condition neither removes the Rab5 from endosome nor inhibits fusion. To determine the role of Ld-GDI in vivo, transgenic parasites overexpressing GFP-LdGDI:WT or GFP-LdGDI:R239A, are co-expressed with RFP-LdRab5:WT, RFP-LdRab7:WT or RFP-LdRab1:WT. Our results have shown that overexpression of GFP-LdGDI:WT extracts the RFP-LdRab5, RFP-LdRab7 or RFP-LdRab1 from their discrete endomembrane predominantly into cytosol. No change in the distribution of indicated Rabs is detected with overexpression of GFP-LdGDI:R239A. To determine the functional significance, we have used hemoglobin as an endocytic marker and gp63 as a marker for secretory pathway. We have found that overexpression of GFP-LdGDI:WT enhances the lysosomal targeting of internalized hemoglobin and the secretion of gp63 in the parasites possibly by triggering Rab cycle. This is the first demonstration of a single GDI ubiquitously regulating both endocytic and secretory pathways in Leishmania. PMID:27841328

  12. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2

    SciTech Connect

    Winiewska, Maria; Makowska, Małgorzata; Maj, Piotr; Wielechowska, Monika; Bretner, Maria; Poznański, Jarosław; Shugar, David

    2015-01-02

    Highlights: • Two new compounds being potential human CK2a inhibitors are studied. • Their IC50 values were determined in vitro. • The heats of binding and kbind were estimated using DSC. • The increased stability of protein–ligand complexes was followed by fluorescence. • Methylated TBBt derivative (MeBr3Br) is almost as active as TBBt. - Abstract: The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC{sub 50}) and biophysical methods (thermal stability of protein–ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein–ligand complexes shows that the heat of ligand binding (H{sub bind}) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between H{sub bind} and ligand pK{sub a}. Screening, based on fluorescence-monitored thermal unfolding of protein–ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site.

  13. Suppression of the biosynthesis of guanosine triphosphate by protein synthesis inhibitors

    SciTech Connect

    Volkin, E.; Boling, M.E.; Jones, M.H.; Lee, W.H.; Pike, L.M.

    1980-10-10

    In a prior report it was observed that CTP synthesis and concomitant incorporation of CMP into RNA and dCMP into DNA were markedly reduced in cells cultured in the presence of cycloheximide and puromycin. Experiments described here with Novikoff hepatoma cells reveal that the purine biosynthetic pathway is similarly affected. When the cells are subjected to cycloheximide (30 or 60 ..mu..g/ml) or puromycin (100 ..mu..g/ml), there is a substantial reduction in the bioconversion of hypoxanthine, adenosine, and deoxyadenosine into guanylate compared to untreated cultures. Whereas synthesis (counts per min/nmol) of pool ATP was 70 to 100% of controls, that of pool GTP was 20 to 35% of controls. Incorporation of AMP into RNA was 40 to 60% of controls, but that of GMP was only 10 to 25% of controls. Incorporation of dAMP into DNA averaged 10% of controls, but that of dGMP was only 4% of controls. Synthesis of guanylates from formate by the de novo pathway was similarly reduced, but incorporation of guanosine, which enters via kinase action alone, was not disproportionately lowered. These results suggest that protein synthesis inhibitors cause a severely reduced availability of newly synthesized GTP and CTP as well as their deoxy counterparts, dGTP and dCTP, the proximal precursors for the synthesis of RNA and DNA. However, the nanomolar levels of all nucleoside triphosphates remain high, probably as a result of recycling of nucleic acid breakdown products. Thus, reduced synthesis of these compounds may restrict nucleic acid synthesis only of some sort of compartmentation leads to a limitation of these precursors at the site(s) of nucleic acid synthesis.

  14. Efficacy and Safety of a Microsomal Triglyceride Transfer Protein Inhibitor in Homozygous Familial Hypercholesterolemia

    PubMed Central

    Cuchel, M; Meagher, EA; du Toit, Theron H.; Blom, DJ; Marais, AD; Hegele, RA; Averna, M; Sirtori, C; Shah, PK; Gaudet, D; Stefanutti, C; Vigna, GB; Du Plessis, AME; Propert, Kathleen J.; Sasiela, WJ; Bloedon, LT; Rader, DJ

    2015-01-01

    Background Patients with homozygous familial hypercholesterolemia (HoFH) respond inadequately to existing drugs. We conducted a phase 3 study to assess the efficacy and safety of the microsomal triglyceride transfer protein inhibitor lomitapide in adults with HoFH. Methods Twenty-nine subjects enrolled into a single-arm, open-label study and maintained current lipid lowering therapy from six weeks before baseline through at least week 26. Lomitapide dose was escalated based on safety and tolerability from 5 mg to a maximum of 60 mg/day. The primary endpoint was mean percent change from baseline in LDL-C at week 26, after which patients remained on lomitapide through week 78 for safety assessment. Findings Twenty-three subjects completed weeks 26 and 78. The median dose of lomitapide was 40 mg/day. LDL-C was reduced by 50% from baseline at week 26 (4·3 ± 2·5 mmol/L vs. 8·7 ± 2·9 mmol/L, p<0.0001). Eight subjects achieved LDL-C <2·6 mmol/L at this time point. LDL-C was reduced by 44% at week 56 and 38% at week 78 (p<0.0001 for both). Gastrointestinal symptoms were the most common adverse event. Four patients had aminotransaminase > 5× ULN that resolved after dose reduction or temporary interruption of lomitapide. No subject permanently discontinued treatment due to liver abnormalities. Liver fat content assessed by nuclear magnetic resonance spectroscopy (NMRS; n=20) was 1·0 ± 1·3 % at baseline, 8·6 ± 8·1% at week 26 and remained stable up to week 78 (8·3± 5·3%). Interpretation These data demonstrate that lomitapide had a robust and durable efficacy in lowering LDL-C in patients with HoFH with an acceptable safety and tolerability profile. PMID:23122768

  15. Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction

    PubMed Central

    Laudet, Béatrice; Barette, Caroline; Dulery, Vincent; Renaudet, Olivier; Dumy, Pascal; Metz, Alexandra; Prudent, Renaud; Deshiere, Alexandre; Dideberg, Otto; Filhol, Odile; Cochet, Claude

    2007-01-01

    X-ray crystallography studies, as well as live-cell fluorescent imaging, have recently challenged the traditional view of protein kinase CK2. Unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumours. Thus the potential intersubunit flexibility suggested by these studies raises the likely prospect that the CK2 holoenzyme complex is subject to disassembly and reassembly. In the present paper, we show evidence for the reversible multimeric organization of the CK2 holoenzyme complex in vitro. We used a combination of site-directed mutagenesis, binding experiments and functional assays to show that, both in vitro and in vivo, only a small set of primary hydrophobic residues of CK2β which contacts at the centre of the CK2α/CK2β interface dominates affinity. The results indicate that a double mutation in CK2β of amino acids Tyr188 and Phe190, which are complementary and fill up a hydrophobic pocket of CK2α, is the most disruptive to CK2α binding both in vitro and in living cells. Further characterization of hotspots in a cluster of hydrophobic amino acids centred around Tyr188–Phe190 led us to the structure-based design of small-peptide inhibitors. One conformationally constrained 11-mer peptide (Pc) represents a unique CK2β-based small molecule that was particularly efficient (i) to antagonize the interaction between the CK2 subunits, (ii) to inhibit the assembly of the CK2 holoenzyme complex, and (iii) to strongly affect its substrate preference. PMID:17714077

  16. Examination of the Addictive and Behavioral Properties of Fatty Acid-Binding Protein Inhibitor SBFI26.

    PubMed

    Thanos, Panayotis K; Clavin, Brendan H; Hamilton, John; O'Rourke, Joseph R; Maher, Thomas; Koumas, Christopher; Miao, Erick; Lankop, Jessenia; Elhage, Aya; Haj-Dahmane, Samir; Deutsch, Dale; Kaczocha, Martin

    2016-01-01

    The therapeutic properties of cannabinoids have been well demonstrated but are overshadowed by such adverse effects as cognitive and motor dysfunction, as well as their potential for addiction. Recent research on the natural lipid ligands of cannabinoid receptors, also known as endocannabinoids, has shed light on the mechanisms of intracellular transport of the endocannabinoid anandamide by fatty acid-binding proteins (FABPs) and subsequent catabolism by fatty acid amide hydrolase. These findings facilitated the recent development of SBFI26, a pharmacological inhibitor of epidermal- and brain-specific FABP5 and FABP7, which effectively increases anandamide signaling. The goal of this study was to examine this compound for any possible rewarding and addictive properties as well as effects on locomotor activity, working/recognition memory, and propensity for sociability and preference for social novelty (SN) given its recently reported anti-inflammatory and analgesic properties. Male C57BL mice were split into four treatment groups and conditioned with 5.0, 20.0, 40.0 mg/kg SBFI26, or vehicle during a conditioned place preference (CPP) paradigm. Following CPP, mice underwent a battery of behavioral tests [open field, novel object recognition (NOR), social interaction (SI), and SN] paired with acute SBFI26 administration. Results showed that SBFI26 did not produce CPP or conditioned place aversion regardless of dose and did not induce any differences in locomotor and exploratory activity during CPP- or SBFI26-paired open field activity. We also observed no differences between treatment groups in NOR, SI, and SN. In conclusion, as SBFI26 was shown previously by our group to have significant analgesic and anti-inflammatory properties, here we show that it does not pose a risk of dependence or motor and cognitive impairment under the conditions tested.

  17. Inhibitors of apoptosis proteins in experimental benign prostatic hyperplasia: effects of serenoa repens, selenium and lycopene

    PubMed Central

    2014-01-01

    Background The apoptosis machinery is a promising target against benign prostatic hyperplasia (BPH). Inhibitors of apoptosis proteins (IAPs) modulate apoptosis by direct inhibition of caspases. Serenoa Repens (SeR) may be combined with other natural compounds such as Lycopene (Ly) and Selenium (Se) to maximize its therapeutic activity in BPH. We investigated the effects of SeR, Se and Ly, alone or in association, on the expression of four IAPs, cIAP-1, cIAP-2, NAIP and survivin in rats with experimental testosterone-dependent BPH. Moreover, caspase-3, interleukin-6 (IL-6) and prostate specific membrane antigen (PSMA) have been evaluated. Rats were administered, daily, with testosterone propionate (3 mg/kg/sc) or its vehicle for 14 days. Testosterone injected animals (BPH) were randomized to receive vehicle, SeR (25 mg/kg/sc), Se (3 mg/kg/sc), Ly (1 mg/kg/sc) or the SeR-Se-Ly association for 14 days. Animals were sacrificed and prostate removed for analysis. Results BPH animals treated with vehicle showed unchanged expression of cIAP-1 and cIAP-2 and increased expression of NAIP, survivin, caspase-3, IL-6 and PSMA levels when compared with sham animals. Immunofluorescence studies confirmed the enhanced expression of NAIP and survivin with a characteristic pattern of cellular localization. SeR-Se-Ly association showed the highest efficacy in reawakening apoptosis; additionally, this therapeutic cocktail significantly reduced IL-6 and PSMA levels. The administration of SeR, Se and Ly significantly blunted prostate overweight and growth; moreover, the SeR-Se-Ly association was most effective in reducing prostate enlargement and growth by 43.3% in treated animals. Conclusions The results indicate that IAPs may represent interesting targets for drug therapy of BPH. PMID:24606563

  18. Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor.

    PubMed

    Hu, Wei; Wu, WeiGuo; Verschraegen, Claire F; Chen, Ling; Mao, Li; Yeung, Sai-Ching Jim; Kudelka, Andrzej P; Freedman, Ralph S; Kavanagh, John J

    2003-10-01

    Farnesyl transferase inhibitors (FTIs) are novel antitumor drugs with clinical activity. FTIs inhibit cell growth not only by preventing direct Ras farnesylation but also through a Ras-independent pathway. Proteomics has been shown to be a powerful tool to monitor and analyze molecular networks and fluxes within the living cells and to identify the proteins that participate in these networks upon perturbation of the cellular environment. To observe early and dynamic protein changes in the cellular response to FTI in ovarian cancer cells, total proteins were extracted from 2774 cells treated or not with 10 microM manumycin, an FTI, for 3, 6 and 16 h. The proteins in the cells that were differentially expressed following treatment with manumycin for 3, 6 and 16 h were noted by two-dimensional electrophoresis and further identified by peptide mass fingerprinting as stress proteins. Both heat shock protein 70 (HSP70) and altered HSP70 were significantly up-regulated as early as 16 h in 2774 cells after exposure to manumycin. Since HSP70 plays an important role in protecting cells under stress, we treated the 2774 cells with the HSP inhibitor quercetin in combination with FTI. Quercetin dramatically enhanced the manumycin-mediated apoptosis in 2774 cells. Inducible HSP70 by manumycin in surviving ovarian cancer cells was also inhibited by quercetin as demonstrated by enzyme-linked immunosorbent assay. The inhibition of HSP70 by quercetin was correlated with enhancement of manumycin-induced mediated apoptosis in 2774 cells. The inhibition of HSP70 by 50 microM quercetin was also correlated with a decreased expression of procaspase-3 and enhancement of specific cleavage of poly (ADP-ribose) polymerase into apoptotic fragment in 2774 cells treated with manumycin. The interaction between the HSP70 inhibitor and FTI confirms the functional significance of the up-regulation of HSP70 as a protective mechanism against FTI-induced apoptosis and provides the framework for

  19. Identification of novel potent inhibitors against Bcl-xL anti-apoptotic protein using docking studies.

    PubMed

    Shipra, Gupta; Gauri, Misra; Chandra, Pant Mohan; Kishore, Seth Prahlad

    2012-12-01

    Bcl-xL protein belongs to BCL-2 family which has either pro- or anti-apoptotic activities owing to their importance in the regulation of apoptosis, tumor genesis and cellular responses to anti-cancer therapy. Bcl-xL permeabilize the outer mitochondrial membrane of cells and inhibit these processes. Protein-inhibitor interactions play an important role in regulating the expression of Bcl-xL protein. Here, we report the docking studies that resulted in the identification of new inhibitors distinct from the previously reported inhibitor against this protein. The results have been validated using Sybyl surflux docking. New potent inhibitors from docking analysis are pentacyclic triterpenoid derivative (2S,4aR,6aR, 6bS,8aS,10R,12R,12aS,12bR,14bR,E)-10,12-dihydroxy-2,4a,14b-trimethyl-9-((((R)-3,4,5-trihydroxy-6-methyl-2H-pyran- 2-yl)oxy)methylene)-1,2,3,4,4a,5,6,6a,6b,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-2-car-boxylic acid and 4- alkyl-4-methoxypiperidine derivative 8h (where R= 4-Cl-Ph) that promotes the release of pro-apoptotic proteins from the mitochondria which is a key event in cell death signaling. The compounds form stable complex with protein exhibiting highest binding affinity and Gibbs free energy. Pentacyclic triterpenoid derivatives compound-201 and piperidine derivative compound-39 are potent inhibitors with Ki value of 172.62nM and 175.24 nM high affinity and inhibitory potency. Salt bridge, pi-pi and hydrogen bonding interactions predominantly contribute towards the stability of the complexes. These compounds can further be exploited for their potential to enhance apoptosis. We have established the correlation between the experimental Ki value with our computational inhibition constant. The quantitative predictions in this study provide a scope for further experimental testing giving structural insights into the design and development of novel anticancer drugs.

  20. Identification and Analysis of Bacterial Protein Secretion Inhibitors Utilizing a SecA-LacZ Reporter Fusion System

    PubMed Central

    Alksne, L. E.; Burgio, P.; Hu, W.; Feld, B.; Singh, M. P.; Tuckman, M.; Petersen, P. J.; Labthavikul, P.; McGlynn, M.; Barbieri, L.; McDonald, L.; Bradford, P.; Dushin, R. G.; Rothstein, D.; Projan, S. J.

    2000-01-01

    Protein secretion is an essential process for bacterial growth, yet there are few if any antimicrobial agents which inhibit secretion. An in vivo, high-throughput screen to detect secretion inhibitors was developed based on the translational autoregulation of one of the central protein components, SecA. The assay makes use of a SecA-LacZ fusion reporter construct in Escherichia coli which is induced when secretion is perturbed. Several compounds, including two natural product extracts, which had the ability to induce the reporter fusion were identified and the MICs of these compounds for Staphylococcus aureus strain MN8 were found to be ≤128 μg/ml. Enzyme-linked immunosorbent assay, Western blotting, and immunoprecipitation techniques were used to analyze the affects of these compounds on protein secretion. Six representative compounds presented here appear to be bona fide secretion inhibitors but were found to have deleterious effects on membranes. It was concluded that, while the method described here for identifying inhibitors of secretion is valid, screens such as this, which are directed against the membrane-bound portion of a pathway, may preferentially identify compounds which affect membrane integrity. PMID:10817687

  1. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    NASA Technical Reports Server (NTRS)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  2. The Drosophila melanogaster seminal fluid protein Acp62F is a protease inhibitor that is toxic upon ectopic expression.

    PubMed Central

    Lung, Oliver; Tram, Uyen; Finnerty, Casey M; Eipper-Mains, Marcie A; Kalb, John M; Wolfner, Mariana F

    2002-01-01

    Drosophila melanogaster seminal fluid proteins stimulate sperm storage and egg laying in the mated female but also cause a reduction in her life span. We report here that of eight Drosophila seminal fluid proteins (Acps) and one non-Acp tested, only Acp62F is toxic when ectopically expressed. Toxicity to preadult male or female Drosophila occurs upon one exposure, whereas multiple exposures are needed for toxicity to adult female flies. Of the Acp62F received by females during mating, approximately 10% enters the circulatory system while approximately 90% remains in the reproductive tract. We show that in the reproductive tract, Acp62F localizes to the lumen of the uterus and the female's sperm storage organs. Analysis of Acp62F's sequence, and biochemical assays, reveals that it encodes a trypsin inhibitor with sequence and structural similarities to extracellular serine protease inhibitors from the nematode Ascaris. In light of previous results demonstrating entry of Acp62F into the mated female's hemolymph, we propose that Acp62F is a candidate for a molecule to contribute to the Acp-dependent decrease in female life span. We propose that Acp62F's protease inhibitor activity exerts positive protective functions in the mated female's reproductive tract but that entry of a small amount of this protein into the female's hemolymph could contribute to the cost of mating. PMID:11805057

  3. Benzimidazole inhibitors of the protein kinase CHK2: clarification of the binding mode by flexible side chain docking and protein-ligand crystallography.

    PubMed

    Matijssen, Cornelis; Silva-Santisteban, M Cris; Westwood, Isaac M; Siddique, Samerene; Choi, Vanessa; Sheldrake, Peter; van Montfort, Rob L M; Blagg, Julian

    2012-11-15

    Two closely related binding modes have previously been proposed for the ATP-competitive benzimidazole class of checkpoint kinase 2 (CHK2) inhibitors; however, neither binding mode is entirely consistent with the reported SAR. Unconstrained rigid docking of benzimidazole ligands into representative CHK2 protein crystal structures reveals an alternative binding mode involving a water-mediated interaction with the hinge region; docking which incorporates protein side chain flexibility for selected residues in the ATP binding site resulted in a refinement of the water-mediated hinge binding mode that is consistent with observed SAR. The flexible docking results are in good agreement with the crystal structures of four exemplar benzimidazole ligands bound to CHK2 which unambiguously confirmed the binding mode of these inhibitors, including the water-mediated interaction with the hinge region, and which is significantly different from binding modes previously postulated in the literature.

  4. Design of HIV Protease Inhibitors Targeting Protein Backbone: An Effective Strategy for Combating Drug Resistance

    SciTech Connect

    Ghosh, Arun K.; Chapsal, Bruno D.; Weber, Irene T.; Mitsuya, Hiroaki

    2008-06-03

    The discovery of human immunodeficiency virus (HIV) protease inhibitors (PIs) and their utilization in highly active antiretroviral therapy (HAART) have been a major turning point in the management of HIV/acquired immune-deficiency syndrome (AIDS). However, despite the successes in disease management and the decrease of HIV/AIDS-related mortality, several drawbacks continue to hamper first-generation protease inhibitor therapies. The rapid emergence of drug resistance has become the most urgent concern because it renders current treatments ineffective and therefore compels the scientific community to continue efforts in the design of inhibitors that can efficiently combat drug resistance.

  5. BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90.

    PubMed

    Lundgren, Karen; Zhang, Hong; Brekken, John; Huser, Nanni; Powell, Rachel E; Timple, Noel; Busch, David J; Neely, Laura; Sensintaffar, John L; Yang, Yong-ching; McKenzie, Andres; Friedman, Jessica; Scannevin, Robert; Kamal, Adeela; Hong, Kevin; Kasibhatla, Srinivas R; Boehm, Marcus F; Burrows, Francis J

    2009-04-01

    Inhibition of heat shock protein 90 (Hsp90) results in the degradation of oncoproteins that drive malignant progression, inducing cell death, making Hsp90 a target of substantial interest for cancer therapy. BIIB021 is a novel, fully synthetic inhibitor of Hsp90 that binds competitively with geldanamycin in the ATP-binding pocket of Hsp90. In tumor cells, BIIB021 induced the degradation of Hsp90 client proteins including HER-2, AKT, and Raf-1 and up-regulated expression of the heat shock proteins Hsp70 and Hsp27. BIIB021 treatment resulted in growth inhibition and cell death in cell lines from a variety of tumor types at nanomolar concentrations. Oral administration of BIIB021 led to the degradation of Hsp90 client proteins measured in tumor tissue and resulted in the inhibition of tumor growth in several human tumor xenograft models. Studies to investigate the antitumor effects of BIIB021 showed activity on both daily and intermittent dosing schedules, providing dose schedule flexibility for clinical studies. Assays measuring the HER-2 protein in tumor tissue and the HER-2 extracellular domain in plasma were used to show interdiction of the Hsp90 pathway and utility as potential biomarkers in clinical trials for BIIB021. Together, these data show that BIIB021 is a promising new oral inhibitor of Hsp90 with antitumor activity in preclinical models.

  6. Ligand-protein interactions of selective casein kinase 1δ inhibitors.

    PubMed

    Mente, Scot; Arnold, Eric; Butler, Todd; Chakrapani, Subramanyam; Chandrasekaran, Ramalakshmi; Cherry, Kevin; DiRico, Ken; Doran, Angela; Fisher, Katherine; Galatsis, Paul; Green, Michael; Hayward, Matthew; Humphrey, John; Knafels, John; Li, Jianke; Liu, Shenping; Marconi, Michael; McDonald, Scott; Ohren, Jeff; Paradis, Vanessa; Sneed, Blossom; Walton, Kevin; Wager, Travis

    2013-09-12

    Casein kinase 1δ (CK1δ) and 1ε (CK1ε) are believed to be necessary enzymes for the regulation of circadian rhythms in all mammals. On the basis of our previously published work demonstrating a CK1ε-preferring compound to be an ineffective circadian clock modulator, we have synthesized a series of pyrazole-substitued pyridine inhibitors, selective for the CK1δ isoform. Additionally, using structure-based drug design, we have been able to exploit differences in the hinge region between CK1δ and p38 to find selective inhibitors that have minimal p38 activity. The SAR, brain exposure, and the effect of these inhibitors on mouse circadian rhythms are described. The in vivo evaluation of these inhibitors demonstrates that selective inhibition of CK1δ at sufficient central exposure levels is capable of modulating circadian rhythms.

  7. Creating an antibacterial with in vivo efficacy: synthesis and characterization of potent inhibitors of the bacterial cell division protein FtsZ with improved pharmaceutical properties.

    PubMed

    Haydon, David J; Bennett, James M; Brown, David; Collins, Ian; Galbraith, Greta; Lancett, Paul; Macdonald, Rebecca; Stokes, Neil R; Chauhan, Pramod K; Sutariya, Jignesh K; Nayal, Narendra; Srivastava, Anil; Beanland, Joy; Hall, Robin; Henstock, Vincent; Noula, Caterina; Rockley, Chris; Czaplewski, Lloyd

    2010-05-27

    3-Methoxybenzamide (1) is a weak inhibitor of the essential bacterial cell division protein FtsZ. Alkyl derivatives of 1 are potent antistaphylococcal compounds with suboptimal drug-like properties. Exploration of the structure-activity relationships of analogues of these inhibitors led to the identification of potent antistaphylococcal compounds with improved pharmaceutical properties.

  8. Protein inhibitor of activated STAT3 (PIAS3) protein promotes SUMOylation and nuclear sequestration of the intracellular domain of ErbB4 protein.

    PubMed

    Sundvall, Maria; Korhonen, Anna; Vaparanta, Katri; Anckar, Julius; Halkilahti, Kalle; Salah, Zaidoun; Aqeilan, Rami I; Palvimo, Jorma J; Sistonen, Lea; Elenius, Klaus

    2012-06-29

    ErbB4 is a receptor tyrosine kinase implicated in the development and homeostasis of the heart, central nervous system, and mammary gland. Cleavable isoforms of ErbB4 release a soluble intracellular domain (ICD) that can translocate to the nucleus and function as a transcriptional coregulator. In search of regulatory mechanisms of ErbB4 ICD function, we identified PIAS3 as a novel interaction partner of ErbB4 ICD. In keeping with the small ubiquitin-like modifier (SUMO) E3 ligase function of protein inhibitor of activated STAT (PIAS) proteins, we showed that the ErbB4 ICD is modified by SUMO, and that PIAS3 stimulates the SUMOylation. Upon overexpression of PIAS3, the ErbB4 ICD generated from the full-length receptor accumulated into the nucleus in a manner that was dependent on the functional nuclear localization signal of ErbB4. In the nucleus, ErbB4 colocalized with PIAS3 and SUMO-1 in promyelocytic leukemia nuclear bodies, nuclear domains involved in regulation of transcription. Accordingly, PIAS3 overexpression had an effect on the transcriptional coregulatory activity of ErbB4, repressing its ability to coactivate transcription with Yes-associated protein. Finally, knockdown of PIAS3 with siRNA partially rescued the inhibitory effect of the ErbB4 ICD on differentiation of MDA-MB-468 breast cancer and HC11 mammary epithelial cells. Our findings illustrate that PIAS3 is a novel regulator of ErbB4 receptor tyrosine kinase, controlling its nuclear sequestration and function.

  9. Protein Inhibitor of Activated STAT3 (PIAS3) Protein Promotes SUMOylation and Nuclear Sequestration of the Intracellular Domain of ErbB4 Protein*

    PubMed Central

    Sundvall, Maria; Korhonen, Anna; Vaparanta, Katri; Anckar, Julius; Halkilahti, Kalle; Salah, Zaidoun; Aqeilan, Rami I.; Palvimo, Jorma J.; Sistonen, Lea; Elenius, Klaus

    2012-01-01

    ErbB4 is a receptor tyrosine kinase implicated in the development and homeostasis of the heart, central nervous system, and mammary gland. Cleavable isoforms of ErbB4 release a soluble intracellular domain (ICD) that can translocate to the nucleus and function as a transcriptional coregulator. In search of regulatory mechanisms of ErbB4 ICD function, we identified PIAS3 as a novel interaction partner of ErbB4 ICD. In keeping with the small ubiquitin-like modifier (SUMO) E3 ligase function of protein inhibitor of activated STAT (PIAS) proteins, we showed that the ErbB4 ICD is modified by SUMO, and that PIAS3 stimulates the SUMOylation. Upon overexpression of PIAS3, the ErbB4 ICD generated from the full-length receptor accumulated into the nucleus in a manner that was dependent on the functional nuclear localization signal of ErbB4. In the nucleus, ErbB4 colocalized with PIAS3 and SUMO-1 in promyelocytic leukemia nuclear bodies, nuclear domains involved in regulation of transcription. Accordingly, PIAS3 overexpression had an effect on the transcriptional coregulatory activity of ErbB4, repressing its ability to coactivate transcription with Yes-associated protein. Finally, knockdown of PIAS3 with siRNA partially rescued the inhibitory effect of the ErbB4 ICD on differentiation of MDA-MB-468 breast cancer and HC11 mammary epithelial cells. Our findings illustrate that PIAS3 is a novel regulator of ErbB4 receptor tyrosine kinase, controlling its nuclear sequestration and function. PMID:22584572

  10. The isolation, total synthesis and structure elucidation of chlorofusin, a natural product inhibitor of the p53-MDM2 protein-protein interaction

    PubMed Central

    Clark, Ryan C.; Lee, Sang Yeul; Searcey, Mark; Boger, Dale L.

    2009-01-01

    Inhibitors of key protein-protein interactions are emerging as exciting therapeutic targets for the treatment of cancer. One such interaction between MDM2 (HDM2) and p53, that silences the tumour suppression activities of p53, was found to be inhibited by the recently isolated natural product chlorofusin. Synthetic studies on this complex natural product summarized herein have served to reassign its chromophore relative stereochemistry, assign its absolute stereochemistry, and provided access to a series of key analogues and partial structures for biological evaluation. PMID:19642417

  11. Low molecular weight serine protease inhibitors from insects are proteins with highly conserved sequences.

    PubMed

    Boigegrain, R A; Pugnière, M; Paroutaud, P; Castro, B; Brehélin, M

    2000-02-01

    A low molecular weight protease inhibitor peptide found in ovaries of the desert locust Schistocerca gregaria (SGPI-2), was purified from plasma of the same locust and sequenced. It was named SGCI. It was found active towards chymotrypsin and human leukocyte elastase. SGCI was synthesized using a solid-phase procedure and the sequence of its reactive site for chymotrypsin was determined. Compared with an inhibitor purified earlier from another locust species, the total sequence of SGCI showed 88% identity. In particular, the sequence of the reactive site of these inhibitors was identical. Our search for a closely related peptide in an insect species far removed from locusts, the lepidopteran Spodoptera littoralis, was unfruitful but a different chymotrypsin inhibitor, belonging to the Kazal family, was found whose mass is greater than that of SGCI (20 vs 3.6 kDa). Its N-terminal sequence shares 80% identity with that of a chymotrypsin inhibitor purified earlier from the haemolymph of another lepidopteran. Conservation of the amino acid sequence in the reactive site seems to be an exception among protease inhibitors.

  12. Selectivity of commonly used inhibitors of clathrin-mediated and caveolae-dependent endocytosis of G protein-coupled receptors.

    PubMed

    Guo, Shuohan; Zhang, Xiaohan; Zheng, Mei; Zhang, Xiaowei; Min, Chengchun; Wang, Zengtao; Cheon, Seung Hoon; Oak, Min-Ho; Nah, Seung-Yeol; Kim, Kyeong-Man

    2015-10-01

    Among the multiple G protein-coupled receptor (GPCR) endocytic pathways, clathrin-mediated endocytosis (CME) and caveolar endocytosis are more extensively characterized than other endocytic pathways. A number of endocytic inhibitors have been used to block CME; however, systemic studies to determine the selectivity of these inhibitors are needed. Clathrin heavy chain or caveolin1-knockdown cells have been employed to determine the specificity of various chemical and molecular biological tools for CME and caveolar endocytosis. Sucrose, concanavalin A, and dominant negative mutants of dynamin blocked other endocytic pathways, in addition to CME. In particular, concanavalin A nonspecifically interfered with the signaling of several GPCRs tested in the study. Decreased pH, monodansylcadaverine, and dominant negative mutants of epsin were more specific for CME than other treatments were. A recently introduced CME inhibitor, Pitstop2™, showed only marginal selectivity for CME and interfered with receptor expression on the cell surface. Blockade of receptor endocytosis by epsin mutants and knockdown of the clathrin heavy chain enhanced the β2AR-mediated ERK activation. Overall, our studies show that previous experimental results should be interpreted with discretion if they included the use of endocytic inhibitors that were previously thought to be CME-selective. In addition, our study shows that endocytosis of β2 adrenoceptor through clathrin-mediated pathway has negative effects on ERK activation.

  13. Thermodynamics of nucleotide and inhibitor binding to wild-type and ispinesib-resistant forms of human kinesin spindle protein.

    PubMed

    Sheth, Payal R; Basso, Andrea; Duca, José S; Lesburg, Charles A; Ogas, Polina; Gray, Kimberly; Nale, Lissette; Mannarino, Anthony F; Prongay, Andrew J; Le, Hung V

    2009-11-24

    Current antimitotic cancer chemotherapy based on vinca alkaloids and taxanes target tubulin, a protein required not only for mitotic spindle formation but also for the overall structural integrity of terminally differentiated cells. Among many innovations targeting specific mitotic events, inhibition of motor enzymes including KSP (or Eg5) has been validated as a highly productive approach. Many reported KSP inhibitors bind to an induced allosteric site near the site of ATP hydrolysis, and some have been tested in clinical trials with varying degrees of success. This allosteric site was defined in detail by X-ray crystallography of inhibitor complexes, yet complementary information on binding thermodynamics is still lacking. Using two model ATP-uncompetitive inhibitors, monastrol and ispinesib, we report here the results of thermal denaturation and isothermal titration calorimetric studies. These binding studies were conducted with the wild-type KSP motor domain as well as two ispinesib mutants (D130V and A133D) identified to confer resistance to ispinesib treatment. The thermodynamic parameters obtained were placed in the context of the available structural information and corresponding models of the two ispinesib-resistant mutants. The resulting overall information formed a strong basis for future structure-based design of inhibitors of KSP and related motor enzymes.

  14. Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein.

    PubMed

    Hothorn, Michael; Van den Ende, Wim; Lammens, Willem; Rybin, Vladimir; Scheffzek, Klaus

    2010-10-05

    Invertases are highly regulated enzymes with essential functions in carbohydrate partitioning, sugar signaling, and plant development. Here we present the 2.6 Å crystal structure of Arabidopsis cell-wall invertase 1 (INV1) in complex with a protein inhibitor (CIF, or cell-wall inhibitor of β-fructosidase) from tobacco. The structure identifies a small amino acid motif in CIF that directly targets the invertase active site. The activity of INV1 and its interaction with CIF are strictly pH-dependent with a maximum at about pH 4.5. At this pH, isothermal titration calorimetry reveals that CIF tightly binds its target with nanomolar affinity. CIF competes with sucrose (Suc) for the same binding site, suggesting that both the extracellular Suc concentration and the pH changes regulate association of the complex. A conserved glutamate residue in the complex interface was previously identified as an important quantitative trait locus affecting fruit quality, which implicates the invertase-inhibitor complex as a main regulator of carbon partitioning in plants. Comparison of the CIF/INV1 structure with the complex between the structurally CIF-related pectin methylesterase inhibitor (PMEI) and pectin methylesterase indicates a common targeting mechanism in PMEI and CIF. However, CIF and PMEI use distinct surface areas to selectively inhibit very different enzymatic scaffolds.

  15. Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase.

    PubMed

    Lin, Yuan; Liu, Jun; Liu, Xun; Ou, Yongbin; Li, Meng; Zhang, Huiling; Song, Botao; Xie, Conghua

    2013-12-01

    The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resistant wild potato species Solanum berthaultii and CIS-sensitive potato cultivar AC035-01 for the yeast two-hybrid analysis. The StvacINV1 (one of the potato VIs) and StInvInh2B (one of the potato VIHs), previously identified to be associated with potato CIS, were used as baits to screen the two libraries. Through positive selection and sequencing, 27 potential target proteins of StvacINV1 and eight of StInvInh2B were clarified. The Kunitz-type protein inhibitors were captured by StvacINV1 in both libraries and the interaction between them was confirmed by bimolecular fluorescence complementation assay in tobacco cells, reinforcing a fundamental interaction between VI and VIH. Notably, a sucrose non-fermenting-1-related protein kinase 1 was captured by both the baits, suggesting that a protein complex could be necessary for fine turning of the invertase activity. The target proteins clarified in present research provide a route to elucidate the mechanism by which the VI activity can be subtly modulated.

  16. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    SciTech Connect

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.; Ulrich, Robert G.; Burke, Terrence R. Jr Waugh, David S.

    2011-07-01

    The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacing a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors.

  17. EZH2 inhibitors transcriptionally upregulate cytotoxic autophagy and cytoprotective unfolded protein response in human colorectal cancer cells

    PubMed Central

    Hsieh, Yao-Yu; Lo, Hsiang-Ling; Yang, Pei-Ming

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) has been emerged as novel anticancer target. Various EZH2 small-molecule inhibitors have been developed in recent years. A major class of EZH2 inhibitors are S-adenosyl-L-methionine (SAM)-competitive inhibitors, such as EPZ005687, EI1, GSK126, UNC1999 and GSK343. Autophagy, a physiological process of self-digestion, is involved in the turnover of proteins or intracellular organelles. It can serve as cytoprotective or cytotoxic function in cancer. Our previous study has found that UNC1999 and GSK343 are potent autophagy inducers. In this study, the underlying molecular mechanisms were further investigated. Our results showed that UNC1999 and GSK343 transcriptionally upregulated autophagy of human colorectal cancer (CRC) cells through inducing LC3B gene expression. Besides, UNC1999/GSK343-induced autophagy was partially dependent on ATG7 but independent to EZH2 inhibition. Microarray and PCR array analyses identified that UNC1999 and GSK343 also induced endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UNC1999/GSK343-induced ER stress/UPR contributed to the survival of cancer cells, which was opposite to UNC1999/GSK343-induced autophagy that promoted cell death. PMID:27648357

  18. Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase.

    PubMed

    Kupperman, E; Wen, W; Meinkoth, J L

    1993-08-01

    Microinjection of a dominant interfering mutant of Ras (N17 Ras) caused a significant reduction in thyrotropin (thyroid-stimulating hormone [TSH])-stimulated DNA synthesis in rat thyroid cells. A similar reduction was observed following injection of the heat-stable protein kinase inhibitor of the cyclic AMP-dependent protein kinase. Coinjection of both inhibitors almost completely abolished TSH-induced DNA synthesis. In contrast to TSH, overexpression of cellular Ras protein did not stimulate the expression of a cyclic AMP response element-regulated reporter gene. Similarly, injection of N17 Ras had no effect on TSH-stimulated reporter gene expression. Moreover, overexpression of cellular Ras protein stimulated similar levels of DNA synthesis in the presence or absence of the heat-stable protein kinase inhibitor. Together, these results suggest that in Wistar rat thyroid cells, a full mitogenic response to TSH requires both Ras and cyclic APK-dependent protein kinase.

  19. Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase.

    PubMed Central

    Kupperman, E; Wen, W; Meinkoth, J L

    1993-01-01

    Microinjection of a dominant interfering mutant of Ras (N17 Ras) caused a significant reduction in thyrotropin (thyroid-stimulating hormone [TSH])-stimulated DNA synthesis in rat thyroid cells. A similar reduction was observed following injection of the heat-stable protein kinase inhibitor of the cyclic AMP-dependent protein kinase. Coinjection of both inhibitors almost completely abolished TSH-induced DNA synthesis. In contrast to TSH, overexpression of cellular Ras protein did not stimulate the expression of a cyclic AMP response element-regulated reporter gene. Similarly, injection of N17 Ras had no effect on TSH-stimulated reporter gene expression. Moreover, overexpression of cellular Ras protein stimulated similar levels of DNA synthesis in the presence or absence of the heat-stable protein kinase inhibitor. Together, these results suggest that in Wistar rat thyroid cells, a full mitogenic response to TSH requires both Ras and cyclic APK-dependent protein kinase. Images PMID:8336696

  20. Thermodynamic and structural characterization of halogen bonding in protein-ligand interactions: a case study of PDE5 and its inhibitors.

    PubMed

    Ren, Jing; He, Yang; Chen, Wuyan; Chen, Tiantian; Wang, Guan; Wang, Zhen; Xu, Zhijian; Luo, Xiaomin; Zhu, Weiliang; Jiang, Hualiang; Shen, Jingshan; Xu, Yechun

    2014-04-24

    The significance of halogen bonding in protein-ligand interactions has been recognized recently. We present here the first comprehensive thermodynamic and structural characterization of halogen bonding in PDE5-inhibitor interactions. ITC studies reveal that binding strength of the halogen bonding between chlorine, bromine, and iodine of inhibitor and the protein is -1.57, -3.09, and -5.59 kJ/mol, respectively. The halogens interact with the designed residue Y612 and an unexpected buried water molecule.

  1. X-Linked Inhibitor of Apoptosis Protein – A Critical Death Resistance Regulator and Therapeutic Target for Personalized Cancer Therapy

    PubMed Central

    Obexer, Petra; Ausserlechner, Michael J.

    2014-01-01

    Defects in apoptosis regulation are one main cause of cancer development and may result from overexpression of anti-apoptotic proteins such as inhibitor of apoptosis proteins (IAPs). IAPs are cell death regulators that, among other functions, bind caspases, and interfere with apoptotic signaling via death receptors or intrinsic cell death pathways. All IAPs share one to three common structures, the so called baculovirus-IAP-repeat (BIR)-domains that allow them to bind caspases and other proteins. X-linked inhibitor of apoptosis protein (XIAP) is the most potent and best-defined anti-apoptotic IAP family member that directly neutralizes caspase-9 via its BIR3 domain and the effector caspases-3 and -7 via its BIR2 domain. A natural inhibitor of XIAP is SMAC/Diablo, which is released from mitochondria in apoptotic cells and displaces bound caspases from the BIR2/BIR3 domains of XIAP thereby reactivating cell death execution. The central apoptosis-inhibitory function of XIAP and its overexpression in many different types of advanced cancers have led to significant efforts to identify therapeutics that neutralize its anti-apoptotic effect. Most of these drugs are chemical derivatives of the N-terminal part of SMAC/Diablo. These “SMAC-mimetics” either specifically induce apoptosis in cancer cells or act as drug-sensitizers. Several “SMAC-mimetics” are currently tested by the pharmaceutical industry in Phase I and Phase II trials. In this review, we will discuss recent advances in understanding the function of IAPs in normal and malignant cells and focus on approaches to specifically neutralize XIAP in cancer cells. PMID:25120954

  2. Discovery of new potent human protein tyrosine phosphatase inhibitors via pharmacophore and QSAR analysis followed by in silico screening.

    PubMed

    Taha, Mutasem O; Bustanji, Yasser; Al-Bakri, Amal G; Yousef, Al-Motassem; Zalloum, Waleed A; Al-Masri, Ihab M; Atallah, Naji

    2007-03-01

    A pharmacophoric model was developed for human protein tyrosine phosphatase 1B (h-PTP 1B) inhibitors utilizing the HipHop-REFINE module of CATALYST software. Subsequently, genetic algorithm and multiple linear regression analysis were employed to select an optimal combination of physicochemical descriptors and pharmacophore hypothesis that yield consistent QSAR equation of good predictive potential (r = 0.87,F-statistic = 69.13,r(BS)2 = 0.76,r(LOO)2 = 0.68). The validity of the QSAR equation and the associated pharmacophoric hypothesis was experimentally established by the identification of five new h-PTP 1B inhibitors retrieved from the National Cancer Institute (NCI) database.

  3. Discrimination of Potent Inhibitors of Toxoplasma gondii Enoyl-Acyl Carrier Protein Reductase by Thermal Shift Assay

    PubMed Central

    Afanador, Gustavo A.; Muench, Stephen P.; McPhillie, Martin; Fomovska, Alina; Schön, Arne; Zhou, Ying; Cheng, Gang; Stec, Jozef; Freundlich, Joel S.; Shieh, Hong-Ming; Anderson, John W.; Jacobus, David P.; Fidock, David A.; Kozikowski, Alan P.; Fishwick, Colin W.; Rice, David W.; Freire, Ernesto; McLeod, Rima; Prigge, Sean T.

    2014-01-01

    Many microbial pathogens rely on a type II fatty acid synthesis (FASII) pathway which is distinct from the type I pathway found in humans. Enoyl-Acyl Carrier Protein Reductase (ENR) is an essential FASII pathway enzyme and the target of a number of antimicrobial drug discovery efforts. The biocide triclosan is established as a potent inhibitor of ENR and has been the starting point for medicinal chemistry studies. We evaluated a series of triclosan analogs for their ability to inhibit the growth of Toxoplasma gondii, a pervasive human pathogen, and its ENR enzyme (TgENR). Several compounds were identified that inhibited TgENR at low nanomolar concentrations, but could not be further differentiated due to the limited dynamic range of the TgENR activity assay. Thus, we adapted a thermal shift assay (TSA) to directly measure the dissociation constant (Kd) of the most potent inhibitors identified in this study as well as inhibitors from previous studies. Furthermore, the TSA allowed us to determine the mode of action of these compounds in the presence of NADH or NAD+ cofactors. We found that all of the inhibitors bind to a TgENR/NAD+ complex, but that they differed in their dependence on NAD+ concentration. Ultimately, we were able to identify compounds which bind to the TgENR/NAD+ complex in the low femtomolar range. This shows how TSA data combined with enzyme inhibition, parasite growth inhibition data and ADMET predictions allow for better discrimination between potent ENR inhibitors for future medicine development. PMID:24295325

  4. Affinity purification of proteins binding to kinase inhibitors immobilized on self-assembling monolayers.

    PubMed

    Bantscheff, Marcus; Hobson, Scott; Kuster, Bernhard

    2012-01-01

    Kinase inhibitors represent a relatively new class of drugs that offer novel therapies targeting specific -malfunctioning kinase-mediated signaling pathways in oncology and potentially inflammation. As the ATP binding sites of the ∼500 human kinases are structurally conserved and because most current drugs target the ATP binding site, there is a need to profile all the kinases that a drug may bind and/or inhibit. We have developed a chemical proteomics method that affinity purifies kinases from cell or tissue lysates using kinase inhibitors immobilized on self-assembling monolayers. The method can be applied to assess the selectivity of a given kinase inhibitor and thus to guide its preclinical or clinical development.

  5. Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors

    PubMed Central

    Franke, Niels E.; Kaspers, Gertjan L.; Assaraf, Yehuda G.; van Meerloo, Johan; Niewerth, Denise; Kessler, Floortje L.; Poddighe, Pino J.; Kole, Jeroen; Smeets, Serge J.; Ylstra, Bauke; Bi, Chonglei; Chng, Wee Joo; Horton, Terzah M.; Menezes, Rene X.; Musters, Renée J.P.; Zweegman, Sonja; Jansen, Gerrit; Cloos, Jacqueline

    2016-01-01

    PSMB5 mutations and upregulation of the β5 subunit of the proteasome represent key determinants of acquired resistance to the proteasome inhibitor bortezomib (BTZ) in leukemic cells in vitro. We here undertook a multi-modality (DNA, mRNA, miRNA) array-based analysis of human CCRF-CEM leukemia cells and BTZ-resistant subclones to determine whether or not complementary mechanisms contribute to BTZ resistance. These studies revealed signatures of markedly reduced expression of proteolytic stress related genes in drug resistant cells over a broad range of BTZ concentrations along with a high upregulation of myristoylated alanine-rich C-kinase substrate (MARCKS) gene expression. MARCKS upregulation was confirmed on protein level and also observed in other BTZ-resistant tumor cell lines as well as in leukemia cells with acquired resistance to other proteasome inhibitors. Moreover, when MARCKS protein expression was demonstrated in specimens derived from therapy-refractory pediatric leukemia patients (n = 44), higher MARCKS protein expression trended (p = 0.073) towards a dismal response to BTZ-containing chemotherapy. Mechanistically, we show a BTZ concentration-dependent association of MARCKS protein levels with the emergence of ubiquitin-containing vesicles in BTZ-resistant CEM cells. These vesicles were found to be extruded and taken up in co-cultures with proteasome-proficient acceptor cells. Consistent with these observations, MARCKS protein associated with ubiquitin-containing vesicles was also more prominent in clinical leukemic specimen with ex vivo BTZ resistance compared to BTZ-sensitive leukemia cells. Collectively, we propose a role for MARCKS in a novel mechanism of BTZ resistance via exocytosis of ubiquitinated proteins in BTZ-resistant cells leading to quenching of proteolytic stress. PMID:27542283

  6. Characterization of α-Amylase-Inhibitor, a Lectin-Like Protein in the Seeds of Phaseolus vulgaris1

    PubMed Central

    Moreno, Joaquin; Altabella, Teresa; Chrispeels, Maarten J.

    1990-01-01

    The common bean, Phaseolus vulgaris, contains a glycoprotein that inhibits the activity of mammalian and insect α-amylases, but not of plant α-amylases. It is therefore classified as an antifeedant or seed defense protein. In P. vulgaris cv Greensleeves, α-amylase inhibitor (αAl) is present in embryonic axes and cotyledons, but not in other organs of the plant. The protein is synthesized during the same time period that phaseolin and phytohemagglutinin are made and also accumulates in the protein storage vacuoles (protein bodies). Purified αAl can be resolved by SDS-PAGE into five bands (Mr 15,000-19,000), four of which have covalently attached glycans. These bands represent glycoforms of two different polypeptides. All the glycoforms have complex glycans that are resistant to removal by endoglycosidase H, indicating transport of the protein through the Golgi apparatus. The two different polypeptides correspond to the N-terminal and C-terminal halves of a lectin-like protein encoded by an already identified gene or a gene closely related to it (LM Hoffman [1984] J Mol Appl Genet 2: 447-453; J Moreno, MJ Chrispeels [1989] Proc Natl Acad Sci USA 86:7885-7889). The primary translation product of αAl is a polypeptide of Mr 28,000. Immunologically cross-reacting glycopolypeptides of Mr 30,000 to 35,000 are present in the endoplasmic reticulum, while the smaller polypeptides (Mr 15,000-19,000) accumulate in protein storage vacuoles (protein bodies). Together these data indicate that αAl is a typical bean lectin-type protein that is synthesized on the rough endoplasmlc reticulum, modified in the Golgi, and transported to the protein storage vacuoles. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:16667338

  7. Screening bicyclic peptide libraries for protein-protein interaction inhibitors: discovery of a tumor necrosis factor-α antagonist.

    PubMed

    Lian, Wenlong; Upadhyaya, Punit; Rhodes, Curran A; Liu, Yusen; Pei, Dehua

    2013-08-14

    Protein-protein interactions represent a new class of exciting but challenging drug targets, because their large, flat binding sites lack well-defined pockets for small molecules to bind. We report here a methodology for chemical synthesis and screening of large combinatorial libraries of bicyclic peptides displayed on rigid small-molecule scaffolds. With planar trimesic acid as the scaffold, the resulting bicyclic peptides are effective for binding to protein surfaces such as the interfaces of protein-protein interactions. Screening of a bicyclic peptide library against tumor necrosis factor-α (TNFα) identified a potent antagonist that inhibits the TNFα-TNFα receptor interaction and protects cells from TNFα-induced cell death. Bicyclic peptides of this type may provide a general solution for inhibition of protein-protein interactions.

  8. Expression of Raf kinase inhibitor protein is downregulated in response to Newcastle disease virus infection to promote viral replication.

    PubMed

    Yin, Renfu; Liu, Xinxin; Bi, Yuhai; Xie, Guangyao; Zhang, Pingze; Meng, Xin; Ai, Lili; Xu, Rongyi; Sun, Yuzhang; Stoeger, Tobias; Ding, Zhuang

    2015-09-01

    Newcastle disease virus (NDV) causes a severe and economically significant disease affecting almost the entire poultry industry worldwide. However, factors that affect NDV replication in host cells are poorly understood. Raf kinase inhibitory protein (RKIP) is a physiological inhibitor of c-RAF kinase and NF-κB signalling, known for their functions in the control of immune response as well as tumour invasion and metastasis. In the present study, we investigated the consequences of overexpression of host RKIP during viral infection. We demonstrate that NDV infection represses RKIP expression thereby promoting virus replication. Experimental upregulation of RKIP in turn acts as a potential antiviral defence mechanism in host cells that restricts NDV replication by repressing the activation of Raf/MEK/ERK and IκBα/NF-κB signalling pathways. Our results not only extend the concept of linking NDV-host interactions, but also reveal RKIP as a new class of protein-kinase-inhibitor protein that affects NDV replication with therapeutic potential.

  9. Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library.

    PubMed Central

    Puras Lutzke, R A; Eppens, N A; Weber, P A; Houghten, R A; Plasterk, R H

    1995-01-01

    Integration of human immunodeficiency virus (HIV) DNA into the human genome requires the virus-encoded integrase (IN) protein, and therefore the IN protein is a suitable target for antiviral strategies. To find a potent HIV IN inhibitor, we screened a "synthetic peptide combinatorial library." We identified a hexapeptide with the sequence HCKFWW that inhibits IN-mediated 3'-processing and integration with an IC50 of 2 microM. The peptide is active on IN proteins from other retroviruses such as HIV-2, feline immunodeficiency virus, and Moloney murine leukemia virus, supporting the notion that a conserved region of IN is targeted. The hexapeptide was also tested in the disintegration reaction. This phosphoryl-transfer reaction can be carried out by the catalytic core of IN alone, and the peptide HCKFWW was found to inhibit this reaction, suggesting that the hexapeptide acts at or near the catalytic site of IN. Identification of an IN hexapeptide inhibitor provides proof of concept for the approach, and, moreover, this peptide may be useful for structure-function analysis of IN. Images Fig. 4 Fig. 5 PMID:8524782

  10. Screening of a Library of FDA-Approved Drugs Identifies Several Enterovirus Replication Inhibitors That Target Viral Protein 2C

    PubMed Central

    Ulferts, Rachel; de Boer, S. Matthijn; van der Linden, Lonneke; Bauer, Lisa; Lyoo, Hey Rhyoung; Maté, Maria J.; Lichière, Julie; Canard, Bruno; Lelieveld, Daphne; Omta, Wienand; Egan, David; Coutard, Bruno

    2016-01-01

    Enteroviruses (EVs) represent many important pathogens of humans. Unfortunately, no antiviral compounds currently exist to treat infections with these viruses. We screened the Prestwick Chemical Library, a library of approved drugs, for inhibitors of coxsackievirus B3, identified pirlindole as a potent novel inhibitor, and confirmed the inhibitory action of dibucaine, zuclopenthixol, fluoxetine, and formoterol. Upon testing of viruses of several EV species, we found that dibucaine and pirlindole inhibited EV-B and EV-D and that dibucaine also inhibited EV-A, but none of them inhibited EV-C or rhinoviruses (RVs). In contrast, formoterol inhibited all enteroviruses and rhinoviruses tested. All compounds acted through the inhibition of genome replication. Mutations in the coding sequence of the coxsackievirus B3 (CV-B3) 2C protein conferred resistance to dibucaine, pirlindole, and zuclopenthixol but not formoterol, suggesting that 2C is the target for this set of compounds. Importantly, dibucaine bound to CV-B3 protein 2C in vitro, whereas binding to a 2C protein carrying the resistance mutations was reduced, providing an explanation for how resistance is acquired. PMID:26856848

  11. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    SciTech Connect

    Steen, Hakan; Lindholm, Dan

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent to the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.

  12. Cathepsin D-mediated yolk protein degradation is blocked by acid phosphatase inhibitors.

    PubMed

    Fialho, Eliane; Nakamura, Angelica; Juliano, Luiz; Masuda, Hatisaburo; Silva-Neto, Mário A C

    2005-04-15

    Vitellin (VT) is a lipoglycophosphoprotein stored inside the eggs of every oviparous organism during oogenesis. In the blood-sucking bug Rhodnius prolixus, VT is deposited inside growing oocytes together with two acid hydrolases: acid phosphatase (AP) and cathepsin D (CD). Egg fertilization triggers AP activity and VT proteolysis in vivo [Insect Biochem. Mol. Biol. 2002 (32) 847]. Here, we show that CD is the main protease targeting VT proteolysis during egg development. CD activity in total egg homogenates is blocked by the classical aspartyl protease inhibitor, pepstatin A. Surprisingly, AP inhibitors such as NaF, Na+/K+ tartrate, and inorganic phosphate also block VT proteolysis, whereas this effect is not observed when tyrosine phosphatase inhibitors such as vanadate and phenylarsine oxide or an inhibitor of alkaline phosphatases such as levamisole are used in a VT proteolysis assay. NaF concentrations that block isolated AP activity do not affect the activity of partially purified CD. Therefore, a specific repressor of VT proteolysis must be dephosphorylated by AP in vivo. In conclusion, these results demonstrate for the first time that acid hydrolases act cooperatively to promote yolk degradation during egg development in arthropods.

  13. Zika Virus NS5 Protein Potential Inhibitors: An Enhanced In silico Approach in Drug Discovery.

    PubMed

    Ramharack, Pritika; Soliman, Mahmoud E S

    2017-03-29

    The re-emerging Zika virus is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus has already been linked to irreversible chronic central nervous system (CNS) conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of Zika virus Methyltransferase and RNA dependent RNA polymerase. This in silico "per-residue energy decomposition pharmacophore" virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents.

  14. Crystal Structure of the Ca2+/Calmodulin-dependent Protein Kinase Kinase in Complex with the Inhibitor STO-609*

    PubMed Central

    Kukimoto-Niino, Mutsuko; Yoshikawa, Seiko; Takagi, Tetsuo; Ohsawa, Noboru; Tomabechi, Yuri; Terada, Takaho; Shirouzu, Mikako; Suzuki, Atsushi; Lee, Suni; Yamauchi, Toshimasa; Okada-Iwabu, Miki; Iwabu, Masato; Kadowaki, Takashi; Minokoshi, Yasuhiko; Yokoyama, Shigeyuki

    2011-01-01

    Ca2+/calmodulin (CaM)-dependent protein kinase (CaMK) kinase (CaMKK) is a member of the CaMK cascade that mediates the response to intracellular Ca2+ elevation. CaMKK phosphorylates and activates CaMKI and CaMKIV, which directly activate transcription factors. In this study, we determined the 2.4 Å crystal structure of the catalytic kinase domain of the human CaMKKβ isoform complexed with its selective inhibitor, STO-609. The structure revealed that CaMKKβ lacks the αD helix and that the equivalent region displays a hydrophobic molecular surface, which may reflect its unique substrate recognition and autoinhibition. Although CaMKKβ lacks the activation loop phosphorylation site, the activation loop is folded in an active-state conformation, which is stabilized by a number of interactions between amino acid residues conserved among the CaMKK isoforms. An in vitro analysis of the kinase activity confirmed the intrinsic activity of the CaMKKβ kinase domain. Structure and sequence analyses of the STO-609-binding site revealed amino acid replacements that may affect the inhibitor binding. Indeed, mutagenesis demonstrated that the CaMKKβ residue Pro274, which replaces the conserved acidic residue of other protein kinases, is an important determinant for the selective inhibition by STO-609. Therefore, the present structure provides a molecular basis for clarifying the known biochemical properties of CaMKKβ and for designing novel inhibitors targeting CaMKKβ and the related protein kinases. PMID:21504895

  15. Mechanistic characterization of a 2-thioxanthine myeloperoxidase inhibitor and selectivity assessment utilizing click chemistry--activity-based protein profiling.

    PubMed

    Ward, Jessica; Spath, Samantha N; Pabst, Brandon; Carpino, Philip A; Ruggeri, Roger B; Xing, Gang; Speers, Anna E; Cravatt, Benjamin F; Ahn, Kay

    2013-12-23

    Myeloperoxidase (MPO) is a heme peroxidase that catalyzes the production of hypochlorous acid. Despite a high level of interest in MPO as a therapeutic target, there have been limited reports about MPO inhibitors that are suitable for evaluating MPO in pharmacological studies. 2-Thioxanthine, 3-(2-ethoxypropyl)-2-thioxo-2,3-dihydro-1H-purin-6(9H)-one (A), has recently been reported to inhibit MPO by covalently modifying the heme prosthetic group. Here we report a detailed mechanistic characterization demonstrating that A possesses all the distinguishing features of a mechanism-based inactivator. A is a time-dependent MPO inhibitor and displays saturable inactivation kinetics consistent with a two-step mechanism of inactivation and a potency (k(inact)/K(I) ratio) of 8450 ± 780 M⁻¹ s⁻¹. MPO inactivation by A is dependent on MPO catalysis and is protected by substrate. A reduces MPO compound I to compound II with a second-order rate constant of (0.801 ± 0.056) × 10⁶ M⁻¹ s⁻¹, and its irreversible inactivation of MPO occurs prior to release of the activated inhibitory species. Despite its relatively high selectivity against a broad panel of more than 100 individual targets, including enzymes, receptors, transporters, and ion channels, we demonstrate that A labels multiple other protein targets in the presence of MPO. By synthesizing an alkyne analogue of A and utilizing click chemistry-activity-based protein profiling, we present that the MPO-activated inhibitory species can diffuse away to covalently modify other proteins, as reflected by the relatively high partition ratio of A, which we determined to be 15.6. This study highlights critical methods that can guide the discovery and development of next-generation MPO inhibitors.

  16. Bisindolylmaleimide protein-kinase-C inhibitors delay the decline in DNA synthesis in mouse hair follicle organ cultures.

    PubMed

    Harmon, C S; Nevins, T D; Ducote, J; Lutz, D

    1997-01-01

    We have used a series of bisindolylmaleimide selective protein-kinase C (PKC) inhibitors to investigate the role of this enzyme in the regulation of cell proliferation in mouse hair follicle organ cultures. Mouse whisker follicles were isolated by microdissection, and rates of DNA synthesis during culture were determined from 3H-thymidine incorporation. The bisindolylmaleimides Ro 31-7549, Ro 31-8161, Ro 31-8425 and Ro 31-8830 inhibit isolated brain PKC with IC50 values of 8-80 nM, are > 60-fold less potent against protein kinase A, and inhibit PKC-mediated protein phosphorylation in platelets with IC50 values in the range 0.25-4.4 microM. These PKC inhibitors were found to increase levels of mouse hair follicle DNA synthesis, with EC50 values in the range 1-4 microM and maximal levels in the range 151-197% of control. Ro 31-7549 had an IC50 value 50-fold lower than that of minoxidil, while the maximal level of DNA synthesis for the PKC inhibitor was 86% higher. Incubation of mouse hair follicles with Ro 31-7549 resulted in a delay of approximately 24 h in the onset of decline in follicular DNA synthesis rates. Ro 31-6045 and Ro 31-7208, bisindolylmaleimides without activity in the platelet PKC assay, did not affect mouse hair follicle DNA synthesis rates. Taken together, these findings show that PKC mediates, at least in part, the rapid loss of proliferative activity that occurs in mouse whisker follicles in culture, and provide further evidence that PKC plays a role as a negative proliferative signal in hair follicles.

  17. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins.

    PubMed

    Lee, Young Ah; Saito-Nakano, Yumiko; Kim, Kyeong Ah; Min, Arim; Nozaki, Tomoyoshi; Shin, Myeong Heon

    2015-02-01

    Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis.

  18. Identification of a Potent Allosteric Inhibitor of Human Protein Kinase CK2 by Bacterial Surface Display Library Screening

    PubMed Central

    Nienberg, Christian; Garmann, Claudia; Gratz, Andreas; Bollacke, Andre; Götz, Claudia; Jose, Joachim

    2017-01-01

    Human protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 105 variants was displayed on the surface of E. coli by autodisplay. Screening of this peptide library on variants with affinity to CK2 was performed by fluorophore-conjugated CK2 and subsequent flow cytometry. Single cell sorting of CK2-bound E. coli yielded new peptide variants, which were tested on inhibition of CK2 by a CE-based assay. Peptide B2 (DCRGLIVMIKLH) was the most potent inhibitor of both, CK2 holoenzyme and the catalytic CK2α subunit (IC50 = 0.8 µM). Using different ATP concentrations and different substrate concentrations for IC50 determination, B2 was shown to be neither ATP- nor substrate competitive. By microscale thermophoresis (MST) the KD value of B2 with CK2α was determined to be 2.16 µM, whereas no binding of B2 to CK2β-subunit was detectable. To our surprise, besides inhibition of enzymatic activity, B2 also disturbed the interaction of CK2α with CK2β at higher concentrations (≥25 µM). PMID:28067769

  19. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer.

  20. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor.

    PubMed

    Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E; Knudson, Susan E; Bommineni, Gopal R; Walker, Stephen G; Slayden, Richard A; Sotriffer, Christoph A; Tonge, Peter J; Kisker, Caroline

    2014-06-06

    Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms.

  1. CuAAC click chemistry accelerates the discovery of novel chemical scaffolds as promising protein tyrosine phosphatases inhibitors.

    PubMed

    He, X-P; Xie, J; Tang, Y; Li, J; Chen, G-R

    2012-01-01

    Protein tyrosine phosphatases (PTPs) are crucial regulators for numerous biological processes in nature. The dysfunction and overexpression of many PTP members have been demonstrated to cause fatal human diseases such as cancers, diabetes, obesity, neurodegenerative diseases and autoimmune disorders. In the past decade, considerable efforts have been devoted to the production of PTPs inhibitors by both academia and the pharmaceutical industry. However, there are only limited drug candidates in clinical trials and no commercial drugs have been approved, implying that further efficient discovery of novel chemical entities competent for inhibition of the specific PTP target in vivo remains yet a challenge. In light of the click-chemistry paradigm which advocates the utilization of concise and selective carbon-heteroatom ligation reactions for the modular construction of useful compound libraries, the Cu(I)-catalyzed azidealkyne 1,3-dipolar cycloaddition reaction (CuAAC) has fueled enormous energy into the modern drug discovery. Recently, this ingenious chemical ligation tool has also revealed efficacious and expeditious in establishing large combinatorial libraries for the acquisition of novel PTPs inhibitors with promising pharmacological profiles. We thus offer here a comprehensive review highlighting the development of PTPs inhibitors accelerated by the CuAAC click chemistry.

  2. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors

    PubMed Central

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-01-01

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficientor Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy. DOI: http://dx.doi.org/10.7554/eLife.14709.001 PMID:27304073

  3. Paroxetine Is a Direct Inhibitor of G Protein-Coupled Receptor Kinase 2 and Increases Myocardial Contractility

    SciTech Connect

    Thal, David M.; Homan, Kristoff T.; Chen, Jun; Wu, Emily K.; Hinkle, Patricia M.; Huang, Z. Maggie; Chuprun, J. Kurt; Song, Jianliang; Gao, Erhe; Cheung, Joseph Y.; Sklar, Larry A.; Koch, Walter J.; Tesmer, John J.G.

    2012-08-10

    G protein-coupled receptor kinase 2 (GRK2) is a well-established therapeutic target for the treatment of heart failure. In this paper we identify the selective serotonin reuptake inhibitor (SSRI) paroxetine as a selective inhibitor of GRK2 activity both in vitro and in living cells. In the crystal structure of the GRK2·paroxetine–Gβγ complex, paroxetine binds in the active site of GRK2 and stabilizes the kinase domain in a novel conformation in which a unique regulatory loop forms part of the ligand binding site. Isolated cardiomyocytes show increased isoproterenol-induced shortening and contraction amplitude in the presence of paroxetine, and pretreatment of mice with paroxetine before isoproterenol significantly increases left ventricular inotropic reserve in vivo with no significant effect on heart rate. Neither is observed in the presence of the SSRI fluoxetine. Our structural and functional results validate a widely available drug as a selective chemical probe for GRK2 and represent a starting point for the rational design of more potent and specific GRK2 inhibitors.

  4. Valosin-containing protein (VCP/p97) inhibitors relieve Mitofusin-dependent mitochondrial defects due to VCP disease mutants

    PubMed Central

    Zhang, Ting; Mishra, Prashant; Hay, Bruce A; Chan, David; Guo, Ming

    2017-01-01

    Missense mutations of valosin-containing protein (VCP) cause an autosomal dominant disease known as inclusion body myopathy, Paget disease with frontotemporal dementia (IBMPFD) and other neurodegenerative disorders. The pathological mechanism of IBMPFD is not clear and there is no treatment. We show that endogenous VCP negatively regulates Mitofusin, which is required for outer mitochondrial membrane fusion. Because 90% of IBMPFD patients have myopathy, we generated an in vivo IBMPFD model in adult Drosophila muscle, which recapitulates disease pathologies. We show that common VCP disease mutants act as hyperactive alleles with respect to regulation of Mitofusin. Importantly, VCP inhibitors suppress mitochondrial defects, muscle tissue damage and cell death associated with IBMPFD models in Drosophila. These inhibitors also suppress mitochondrial fusion and respiratory defects in IBMPFD patient fibroblasts. These results suggest that VCP disease mutants cause IBMPFD through a gain-of-function mechanism, and that VCP inhibitors have therapeutic value. DOI: http://dx.doi.org/10.7554/eLife.17834.001 PMID:28322724

  5. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  6. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    PubMed

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  7. Identification of a Potent Allosteric Inhibitor of Human Protein Kinase CK2 by Bacterial Surface Display Library Screening.

    PubMed

    Nienberg, Christian; Garmann, Claudia; Gratz, Andreas; Bollacke, Andre; Götz, Claudia; Jose, Joachim

    2017-01-05

    Human protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 10⁵ variants was displayed on the surface of E. coli by autodisplay. Screening of this peptide library on variants with affinity to CK2 was performed by fluorophore-conjugated CK2 and subsequent flow cytometry. Single cell sorting of CK2-bound E. coli yielded new peptide variants, which were tested on inhibition of CK2 by a CE-based assay. Peptide B2 (DCRGLIVMIKLH) was the most potent inhibitor of both, CK2 holoenzyme and the catalytic CK2α subunit (IC50 = 0.8 µM). Using different ATP concentrations and different substrate concentrations for IC50 determination, B2 was shown to be neither ATP- nor substrate competitive. By microscale thermophoresis (MST) the KD value of B2 with CK2α was determined to be 2.16 µM, whereas no binding of B2 to CK2β-subunit was detectable. To our surprise, besides inhibition of enzymatic activity, B2 also disturbed the interaction of CK2α with CK2β at higher concentrations (≥25 µM).

  8. Association of Tenebrio molitor L. alpha-amylase with two protein inhibitors--one monomeric, one dimeric--from wheat flour. Differential scanning calorimetric comparison of heat stabilities.

    PubMed

    Silano, V; Zahnley, J C

    1978-03-28

    Thermal stabilization resulting from protein . protein association between two protein inhibitors (coded as 0.19, a dimer, and 0.28, a monomer) from wheat flour and the alpha-amylase from Tenebrio molitor L. (yellow mealworm) larvae was investigated by differential scanning calorimetry (heating rate 10 degrees C/min). Thermograms (plots of heat flow vs. temperature) for the two inhibitors showed broad endothermic peaks with the same extrema (denaturation temperatures) at 93 degrees C, and equal, small enthalpies of denaturation (2 cal/g). The amylase produced a sharp endotherm at 70.5 degrees C, but a larger enthalpy change on denaturation (6 cal/g). The amylase . inhibitor complexes differed in thermal stability, but both showed significant stabilization relative to free enzyme. The complex formed with monomeric inhibitor 0.28 showed a higher denaturation temperature (85.0 degrees C) than that formed with dimeric inhibitor 0.19 (80.5 degrees C). This order of stabilization agrees with the relative affinities of the inhibitors for the amylase. These thermograms are consistent with previous results which indicated that 1 mol of amylase binds 1 mol of inhibitor 0.19.

  9. Evaluation of EML4-ALK Fusion Proteins in Non-Small Cell Lung Cancer Using Small Molecule Inhibitors12

    PubMed Central

    Li, Yongjun; Ye, Xiaofen; Liu, Jinfeng; Zha, Jiping; Pei, Lin

    2011-01-01

    The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non-small cell lung cancer and is mutually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non-small cell lung cancer (NSCLC). We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mechanism of EML4-ALK inhibition by a small molecule inhibitor. PMID:21245935

  10. Heat Shock Protein 90 Inhibitors Reduce Trafficking of ATP-gated P2X1 Receptors and Human Platelet Responsiveness*

    PubMed Central

    Lalo, Ulyana; Jones, Sarah; Roberts, Jonathan A.; Mahaut-Smith, Martyn P.; Evans, Richard J.

    2012-01-01

    We have used selective inhibitors to determine whether the molecular chaperone heat shock protein 90 (HSP90) has an effect on both recombinant and native human P2X1 receptors. P2X1 receptor currents in HEK293 cells were reduced by ∼70–85% by the selective HSP90 inhibitor geldanamycin (2 μm, 20 min). This was associated with a speeding in the time course of desensitization as well as a reduction in cell surface expression. Imaging in real time of photoactivatable GFP-tagged P2X receptors showed that they are highly mobile. Geldanamycin almost abolished this movement for P2X1 receptors but had no effect on P2X2 receptor trafficking. P2X1/2 receptor chimeras showed that the intracellular N and C termini were involved in geldanamycin sensitivity. Geldanamycin also inhibited native P2X1 receptor-mediated responses. Platelet P2X1 receptors play an important role in hemostasis, contribute to amplification of signaling to a range of stimuli including collagen, and are novel targets for antithrombotic therapies. Platelet P2X1 receptor-, but not P2Y1 receptor-, mediated increases in intracellular calcium were reduced by 40–45% following HSP90 inhibition with geldanamycin or radicicol. Collagen stimulation leads to ATP release from platelets, and calcium increases to low doses of collagen were also reduced by ∼40% by the HSP90 inhibitors consistent with an effect on P2X1 receptors. These studies suggest that HSP90 inhibitors may be as effective as selective antagonists in regulating platelet P2X1 receptors, and their potential effects on hemostasis should be considered in clinical studies. PMID:22851178

  11. 3D-QSAR AND CONTOUR MAP ANALYSIS OF TARIQUIDAR ANALOGUES AS MULTIDRUG RESISTANCE PROTEIN-1 (MRP1) INHIBITORS

    PubMed Central

    Kakarla, Prathusha; Inupakutika, Madhuri; Devireddy, Amith R.; Gunda, Shravan Kumar; Willmon, Thomas Mark; Ranjana, KC; Shrestha, Ugina; Ranaweera, Indrika; Hernandez, Alberto J.; Barr, Sharla; Varela, Manuel F.

    2016-01-01

    One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2(non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D–contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates. PMID:26913287

  12. Development of potent ALK inhibitor and its molecular inhibitory mechanism against NSCLC harboring EML4-ALK proteins

    SciTech Connect

    Kang, Chung Hyo; Yun, Jeong In; Lee, Kwangho; Lee, Chong Ock; Lee, Heung Kyoung; Yun, Chang-Soo; Hwang, Jong Yeon; Cho, Sung Yun; Jung, Heejung; Kim, Pilho; Ha, Jae Du; Jeon, Jeong Hee; Choi, Sang Un; Jeong, Hye Gwang; Kim, Hyoung Rae; Park, Chi Hoon

    2015-08-28

    Here, we show the newly synthesized and potent ALK inhibitor having similar scaffold to KRCA-0008, which was reported previously, and its molecular mechanism against cancer cells harboring EML4-ALK fusion protein. Through ALK wild type enzyme assay, we selected two compounds, KRCA-0080 and KRCA-0087, which have trifluoromethyl instead of chloride in R2 position. We characterized these newly synthesized compounds by in vitro and in vivo assays. Enzyme assay shows that KRCA-0080 is more potent against various ALK mutants, including L1196M, G1202R, T1151-L1152insT, and C1156Y, which are seen in crizotinib-resistant patients, than KRCA-0008 is. Cell based assays demonstrate our compounds downregulate the cellular signaling, such as Akt and Erk, by suppressing ALK activity to inhibit the proliferation of the cells harboring EML4-ALK. Interestingly, our compounds induced strong G1/S arrest in H3122 cells leading to the apoptosis, which is proved by PARP-1 cleavage. In vivo H3122 xenograft assay, we found that KRCA-0080 shows significant reduction in tumor size compared to crizotinib and KRCA-0008 by 15–20%. Conclusively, we report a potent ALK inhibitor which shows significant in vivo efficacy as well as excellent inhibitory activity against various ALK mutants. - Highlights: • We synthesized KRCA-0008 derivatives having trifluoromethyl instead of chloride. • KRCA-0080 shows superior activity against several ALK mutants to KRCA-0008. • Cellular assays show our ALK inhibitors suppress only EML4-ALK positive cells. • Our ALK inhibitors induce G1/S arrest to lead apoptosis in H3122 cells. • KRCA-0080 has superior in vivo efficacy to crizotinib and KRCA-0008 by 15–20%.

  13. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies

    PubMed Central

    N, Nagasundaram; Zhu, Hailong; Liu, Jiming; V, Karthick; C, George Priya Doss; Chakraborty, Chiranjib; Chen, Luonan

    2015-01-01

    The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment. PMID:26252490

  14. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies.

    PubMed

    N, Nagasundaram; Zhu, Hailong; Liu, Jiming; V, Karthick; C, George Priya Doss; Chakraborty, Chiranjib; Chen, Luonan

    2015-01-01

    The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment.

  15. Preclinical efficacy of a RAF inhibitor that evades paradoxical MAPK pathway activation in protein kinase BRAF-mutant lung cancer.

    PubMed

    Okimoto, Ross A; Lin, Luping; Olivas, Victor; Chan, Elton; Markegard, Evan; Rymar, Andrey; Neel, Dana; Chen, Xiao; Hemmati, Golzar; Bollag, Gideon; Bivona, Trever G

    2016-11-22

    Oncogenic activation of protein kinase BRAF drives tumor growth by promoting mitogen-activated protein kinase (MAPK) pathway signaling. Because oncogenic mutations in BRAF occur in ∼2-7% of lung adenocarcinoma (LA), BRAF-mutant LA is the most frequent cause of BRAF-mutant cancer mortality worldwide. Whereas most tumor types harbor predominantly the BRAF(V600E)-mutant allele, the spectrum of BRAF mutations in LA includes BRAF(V600E) (∼60% of cases) and non-V600E mutant alleles (∼40% of cases) such as BRAF(G469A) and BRAF(G466V) The presence of BRAF(V600E) in LA has prompted clinical trials testing selective BRAF inhibitors such as vemurafenib in BRAF(V600E)-mutant patients. Despite promising clinical efficacy, both innate and acquired resistance often result from reactivation of MAPK pathway signaling, thus limiting durable responses to the current BRAF inhibitors. Further, the optimal therapeutic strategy to block non-V600E BRAF-mutant LA remains unclear. Here, we report the efficacy of the Raf proto-oncogene serine/threonine protein kinase (RAF) inhibitor, PLX8394, that evades MAPK pathway reactivation in BRAF-mutant LA models. We show that PLX8394 treatment is effective in both BRAF(V600E) and certain non-V600 LA models, in vitro and in vivo. PLX8394 was effective against treatment-naive BRAF-mutant LAs and those with acquired vemurafenib resistance caused by an alternatively spliced, truncated BRAF(V600E) that promotes vemurafenib-insensitive MAPK pathway signaling. We further show that acquired PLX8394 resistance occurs via EGFR-mediated RAS-mTOR signaling and is prevented by upfront combination therapy with PLX8394 and either an EGFR or mTOR inhibitor. Our study provides a biological rationale and potential polytherapy strategy to aid the deployment of PLX8394 in lung cancer patients.

  16. Post-translational modification and conformational state of Heat Shock Protein 90 differentially affect binding of chemically diverse small molecule inhibitors

    PubMed Central

    Beebe, Kristin; Mollapour, Mehdi; Scroggins, Bradley; Prodromou, Chrisostomos; Xu, Wanping; Tokita, Mari; Taldone, Tony; Pullen, Lester; Zierer, Bettina K.; Lee, Min-Jung; Trepel, Jane; Buchner, Johannes; Bolon, Daniel; Chiosis, Gabriela; Neckers, Leonard

    2013-01-01

    Heat shock protein 90 (Hsp90) is an essential molecular chaperone in eukaryotes that facilitates the conformational maturation and function of a diverse protein clientele, including aberrant and/or over-expressed proteins that are involved in cancer growth and survival. A role for Hsp90 in supporting the protein homeostasis of cancer cells has buoyed interest in the utility of Hsp90 inhibitors as anti-cancer drugs. Despite the fact that all clinically evaluated Hsp90 inhibitors target an identical nucleotide-binding pocket in the N domain of the chaperone, the precise determinants that affect drug binding in the cellular environment remain unclear, and it is possible that chemically distinct inhibitors may not share similar binding preferences. Here we demonstrate that two chemically unrelated Hsp90 inhibitors, the benzoquinone ansamycin geldanamycin and the purine analog PU-H71, select for overlapping but not identical subpopulations of total cellular Hsp90, even though both inhibitors bind to an amino terminal nucleotide pocket and prevent N domain dimerization. Our data also suggest that PU-H71 is able to access a broader range of N domain undimerized Hsp90 conformations than is geldanamycin and is less affected by Hsp90 phosphorylation, consistent with its broader and more potent anti-tumor activity. A more complete understanding of the impact of the cellular milieu on small molecule inhibitor binding to Hsp90 should facilitate their more effective use in the clinic. PMID:23867252

  17. The Protein Phosphatase-1/Inhibitor-2 Complex Differentially Regulates GSK-3 Dephosphorylation and Increases Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2 Levels

    PubMed Central

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N.

    2007-01-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3α and Ser9 of GSK3β. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3β, but not GSK3α. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels. PMID:16987514

  18. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target.

    PubMed

    Chiba, Shuntaro; Ikeda, Kazuyoshi; Ishida, Takashi; Gromiha, M Michael; Taguchi, Y-H; Iwadate, Mitsuo; Umeyama, Hideaki; Hsin, Kun-Yi; Kitano, Hiroaki; Yamamoto, Kazuki; Sugaya, Nobuyoshi; Kato, Koya; Okuno, Tatsuya; Chikenji, George; Mochizuki, Masahiro; Yasuo, Nobuaki; Yoshino, Ryunosuke; Yanagisawa, Keisuke; Ban, Tomohiro; Teramoto, Reiji; Ramakrishnan, Chandrasekaran; Thangakani, A Mary; Velmurugan, D; Prathipati, Philip; Ito, Junichi; Tsuchiya, Yuko; Mizuguchi, Kenji; Honma, Teruki; Hirokawa, Takatsugu; Akiyama, Yutaka; Sekijima, Masakazu

    2015-11-26

    A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective.

  19. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins.

    PubMed

    Hassig, Christian A; Zeng, Fu-Yue; Kung, Paul; Kiankarimi, Mehrak; Kim, Sylvia; Diaz, Paul W; Zhai, Dayong; Welsh, Kate; Morshedian, Shana; Su, Ying; O'Keefe, Barry; Newman, David J; Rusman, Yudi; Kaur, Harneet; Salomon, Christine E; Brown, Susan G; Baire, Beeraiah; Michel, Andrew R; Hoye, Thomas R; Francis, Subhashree; Georg, Gunda I; Walters, Michael A; Divlianska, Daniela B; Roth, Gregory P; Wright, Amy E; Reed, John C

    2014-09-01

    Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach.

  20. The protein synthesis inhibitor anisomycin reduces sex behavior during a critical period after testosterone treatment in male Syrian hamsters.

    PubMed

    Piekarski, David J; Seto, Tiffany; Zucker, Irving

    2012-01-18

    Testosterone (T) is critical for maintaining male sexual behavior (MSB) in rodents, in part by altering protein synthesis in a well-defined neural circuit. The specific timing of protein synthesis essential for expression of MSB has never been investigated. We administered the protein synthesis inhibitor anisomycin (Ani) to castrated male Syrian hamsters treated sc with 100 μg T in an aqueous vehicle once weekly; this T regimen maintains MSB while elevating circulating T concentrations for only a few hours after each injection. Hamsters were injected s.c. with the vehicle or 12.5 mg Ani at one of several times relative to T administration; MSB was assessed once per week, 6 days after the previous T injection, for 5 weeks. Anisomycin administered 6-12 h after T injection significantly reduced the expression of sexual behavior, whereas Ani treatment between 3 h before and 3 h after T injection did not impair MSB. This experiment is the first to assess the specific timing of protein synthesis relative to a T pulse that is required for the expression of MSB. The demarcation of a critical interval for T-induced protein synthesis necessary for maintenance of MSB should facilitate specification of the genomic, proteomic, and biochemical cascades that subserve actions of T on male copulation.

  1. Immunohistochemical detection of antiapoptotic protein X-linked inhibitor of apoptosis in mammary carcinoma.

    PubMed

    Jaffer, Shabnam; Orta, Lurmag; Sunkara, Srinivas; Sabo, Edmond; Burstein, David E

    2007-06-01

    An immunohistochemical survey of X-linked inhibitor of apoptosis (XIAP) expression in mammary carcinoma was performed. XIAP, the most potent of the inhibitor of apoptosis family of caspase inhibitors, has been linked to tumor aggressiveness and therapeutic resistance in several malignancies and is considered an attractive target for cancer drug discovery. Routinely processed sections from 94 ductal carcinomas, 9 lobular carcinomas, and 10 ductal carcinomas with lobular components or features were subjected to citrate-based antigen retrieval, immunostained with anti-XIAP (BD Biosciences, Franklin Lakes, NJ), Envision+ reagents (Dako, Carpinteria, CA), and diaminobenzidine. Positive staining was found in 22.7% of grade 1, 44% of grade 2, and 89.5% of grade 3 ductal carcinomas. Strong staining occurred in no cases of grade 1, 13% of grade 2, and 55.2% of grade 3 ductal carcinomas. XIAP staining increased overall with grade of ductal carcinoma in situ as well. The staining intensity of invasive carcinoma correlated with that of the corresponding ductal carcinoma in situ in 70% of cases. Ductal carcinomas overall showed more staining than lobular carcinomas. XIAP is most strongly and commonly detected in grade 3 ductal carcinoma. The degree of XIAP expression appears frequently to be determined in the preinvasive intraductal phase of tumorigenesis. These findings suggest a possible role of XIAP in the more aggressive clinical behavior of grade 3, compared with lower-grade ductal carcinomas.

  2. Design, Synthesis, and Protein Crystallography of Biaryltriazoles as Potent Tautomerase Inhibitors of Macrophage Migration Inhibitory Factor

    PubMed Central

    Dziedzic, Pawel; Cisneros, José A.; Robertson, Michael J.; Hare, Alissa A.; Danford, Nadia E.; Baxter, Richard H. G.; Jorgensen, William L.

    2015-01-01

    Optimization is reported for biaryltriazoles as inhibitors of the tautomerase activity of human macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with numerous inflammatory diseases and cancer. A combined approach was taken featuring organic synthesis, enzymatic assaying, crystallography, and modeling including free-energy perturbation (FEP) calculations. X-ray crystal structures for 3a and 3b bound to MIF are reported and provided a basis for the modeling efforts. The accommodation of the inhibitors in the binding site is striking with multiple hydrogen bonds and aryl–aryl interactions. Additional modeling encouraged pursuit of 5-phenoxyquinolinyl analogues, which led to the very potent compound 3s. Activity was further enhanced by addition of a fluorine atom adjacent to the phenolic hydroxyl group as in 3w, 3z, 3aa, and 3bb to strengthen a key hydrogen bond. It is also shown that physical properties of the compounds can be modulated by variation of solvent-exposed substituents. Several of the compounds are likely the most potent known MIF tautomerase inhibitors; the most active ones are more than 1000-fold more active than the well-studied (R)-ISO-1 and more than 200-fold more active than the chromen-4-one Orita-13. PMID:25697265

  3. Purification of storage granule protein-23. A novel protein identified by phage display technology and interaction with type I plasminogen activator inhibitor.

    PubMed

    Lang, I M; Chuang, T L; Barbas, C F; Schleef, R R

    1996-11-22

    Type 1 plasminogen activator inhibitor (PAI-1) is a key regulator of the fibrinolytic cascade that is stored in a rapidly releasable form within platelet alpha-granules. To identify proteins that may participate in the targeting or storage of this potent inhibitor, this report investigates the applicability of utilizing filamentous bacteriophages to display proteins expressed by cells containing a regulated secretory pathway and their enrichment based upon an interaction with PAI-1. For this purpose, RNA was extracted from AtT-20 cells (i.e. a classical model cell system for intracellular protein sorting), reverse transcribed, amplified using polymerase chain reaction primers containing internal restriction sites, and cloned into the phagemid pCOMB3H for expression as fusion constructs with the bacteriophage gene III protein. Escherichia coli was transformed with the phagemids and infected with VCSM13 helper phage, and the resulting AtT-20 cDNA-bacteriophage library was enriched by panning against solid- and solution-phase PAI-1. The enriched cDNA library was subcloned into a prokaryotic expression vector system that replaces the gene III protein with a decapeptide tag for immunologic quantitation. One novel cDNA clone (i.e. A-61), which preferentially recognized solution-phase PAI-1 and reacted positively with antibodies derived from a rabbit immunized with alpha-granules, was subcloned into the prokaryotic expression vector pTrcHis to create a construct containing an N-terminal six-histidine purification tag. This construct was expressed in E. coli, purified by nickel-chelate chromatography followed by preparative SDS-polyacrylamide gel electrophoresis, and utilized for the generation of polyclonal antibodies. Immunoblotting analysis employing antibodies against the purified A-61 construct revealed a 23-kDa protein present in the regulated secretory pathway of AtT-20 cells. The 23-kDa molecule was purified from media conditioned by AtT-20 cells by ion exchange

  4. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2.

    PubMed

    Nilges, M; Gronenborn, A M; Brünger, A T; Clore, G M

    1988-04-01

    An automated method, based on the principle of simulated annealing, is presented for determining the three-dimensional structures of proteins on the basis of short (less than 5 A) interproton distance data derived from nuclear Overhauser enhancement (NOE) measurements. The method makes use of Newton's equations of motion to increase temporarily the temperature of the system in order to search for the global minimum region of a target function comprising purely geometric restraints. These consist of interproton distances supplemented by bond lengths, bond angles, planes and soft van der Waals repulsion terms. The latter replace the dihedral, van der Waals, electrostatic and hydrogen-bonding potentials of the empirical energy function used in molecular dynamics simulations. The method presented involves the implementation of a number of innovations over our previous restrained molecular dynamics approach [Clore, G.M., Brünger, A.T., Karplus, M. and Gronenborn, A.M. (1986) J. Mol. Biol., 191, 523-551]. These include the development of a new effective potential for the interproton distance restraints whose functional form is dependent on the magnitude of the difference between calculated and target values, and the design and implementation of robust and fully automatic protocol. The method is tested on three systems: the model system crambin (46 residues) using X-ray structure derived interproton distance restraints, and potato carboxypeptidase inhibitor (CPI; 39 residues) and barley serine proteinase inhibitor 2 (BSPI-2; 64 residues) using experimentally derived interproton distance restraints. Calculations were carried out starting from the extended strands which had atomic r.m.s. differences of 57, 38 and 33 A with respect to the crystal structures of BSPI-2, crambin and CPI respectively. Unbiased sampling of the conformational space consistent with the restraints was achieved by varying the random number seed used to assign the initial velocities. This ensures

  5. Human epididymis protein 4 and secretory leukocyte protease inhibitor in vaginal fluid: relation to vaginal components and bacterial composition.

    PubMed

    Orfanelli, Theofano; Jayaram, Aswathi; Doulaveris, Georgios; Forney, Larry J; Ledger, William J; Witkin, Steven S

    2014-04-01

    Human epididymis protein 4 (HE4) is a protease inhibitor and a recently identified serum biomarker for ovarian cancer. Properties of HE4 in the genital tract of healthy women have not been evaluated. We evaluated associations between HE4 and a second vaginal protease inhibitor, secretory leukocyte protease inhibitor (SLPI), with vaginal concentrations of innate immune mediators or proteases and with the types of vaginal bacterial communities. Vaginal secretions were collected from 18 healthy reproductive age women and assayed by enzyme-linked immunosorbent assay for concentrations of HE4, SLPI, kallikrein 5, cathepsin B, interleukin 1β (IL-1), IL-1 receptor antagonist (IL-1 ra), mannose-binding lectin (MBL), the inducible 70-kDa heat shock protein, and matrix metalloproteinase (MMP)-8. The species composition of vaginal bacterial communities in 16 women was characterized by sequencing amplicons derived from 16S bacterial ribosomal RNA genes. Correlations between any 2 assays were analyzed by the Spearman rank correlation tests. Differences in the concentrations of HE4 and SLPI, and between soluble components and vaginal community types, were analyzed by the Mann-Whitney U tests. Vaginal HE4 concentrations, but not SLPI levels, were positively correlated with levels of IL-1β (P = .0152), IL-1ra (P = .0061), MBL (P = .0100), and MMP-8 (P = .0315). The median vaginal HE4 level, as well as concentrations of MBL, IL-1β, IL-1ra, and MMP-8, was highest when Gardnerella vaginalis dominated a vaginal community. The association between HE4, elevated levels of proteases, immune mediators and high proportions of G vaginalis strongly suggests that HE4 is a component of the proinflammatory immune response in the female genital tract.

  6. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    SciTech Connect

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  7. Development of in vitro PIK3C3/VPS34 complex protein assay for autophagy-specific inhibitor screening.

    PubMed

    Kim, Tae-Mi; Baek, Jong-Hyuk; Kim, Jeong Hee; Oh, Myung Sook; Kim, Joungmok

    2015-07-01

    Autophagy is an important catabolic program to respond to a variety of cellular stresses by forming a double membrane vesicle, autophagosome. Autophagy plays key roles in various cellular functions. Accordingly, dysregulation of autophagy is closely associated with diseases such as diabetes, neurodegenerative diseases, cardiomyopathy, and cancer. In this sense, autophagy is emerging as an important therapeutic target for disease control. Among the autophagy machineries, PIK3C3/VPS34 complex functions as an autophagy-triggering kinase to recruit the subsequent autophagy protein machineries on the phagophore membrane. Accumulating evidence showing that inhibition of PIK3C3/VPS34 complex successfully inhibits autophagy makes the complex an attractive target for developing autophagy inhibitors. However, one concern about PIK3C3/VPS34 complex is that many different PIK3C3/VPS34 complexes have distinct cellular functions. In this study, we have developed an in vitro PIK3C3/VPS34 complex monitoring assay for autophagy inhibitor screening in a high-throughput assay format instead of targeting the catalytic activity of the PIK3C3/VPS34 complex, which shuts down all PIK3C3/VPS34 complexes. We performed in vitro reconstitution of an essential autophagy-promoting PIK3C3/VPS34 complex, Vps34-Beclin1-ATG14L complex, in a microwell plate (96-well format) and successfully monitored the complex formation in many different conditions. This PIK3C3/VPS34 complex protein assay would provide a reliable tool for the screening of autophagy-specific inhibitors.

  8. Fatty Acid Transport Protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    PubMed Central

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-01-01

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC50 8–11μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC50 58μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of 13C-oleate demonstrating its potential as a therapeutic agent. PMID:26284975

  9. Exploration of a Series of 5-Arylidene-2-thioxoimidazolidin-4-ones as Inhibitors of the Cytolytic Protein Perforin

    PubMed Central

    2013-01-01

    A series of novel 5-arylidene-2-thioxoimidazolidin-4-ones were investigated as inhibitors of the lymphocyte-expressed pore-forming protein perforin. Structure–activity relationships were explored through variation of an isoindolinone or 3,4-dihydroisoquinolinone subunit on a fixed 2-thioxoimidazolidin-4-one/thiophene core. The ability of the resulting compounds to inhibit the lytic activity of both isolated perforin protein and perforin delivered in situ by natural killer cells was determined. A number of compounds showed excellent activity at concentrations that were nontoxic to the killer cells, and several were a significant improvement on previous classes of inhibitors, being substantially more potent and soluble. Representative examples showed rapid and reversible binding to immobilized mouse perforin at low concentrations (≤2.5 μM) by surface plasmon resonance and prevented formation of perforin pores in target cells despite effective target cell engagement, as determined by calcium influx studies. Mouse PK studies of two analogues showed T1/2 values of 1.1–1.2 h (dose of 5 mg/kg iv) and MTDs of 60–80 mg/kg (ip). PMID:24195776

  10. Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells.

    PubMed

    Wang, Yanchun; Luo, Zhongguang; Pan, Yongfu; Wang, Weige; Zhou, Xiaoyan; Jeong, Lak Shin; Chu, Yiwei; Liu, Jie; Jia, Lijun

    2015-01-01

    Recent studies indicate that post-translational protein neddylation is required for the maintenance of cell viability in several lymphoma cell lines, while inhibition of the neddylation pathway with an NEDD8-activating enzyme (NAE) inhibitor MLN4924 induces apoptosis in lymphoma cells. However, the mechanism by which neddylation inhibition induces apoptosis in lymphoma cells has not been fully elucidated. Moreover, it is unknown whether neddylation inhibition triggers non-apoptotic cell-killing responses, such as cell senescence, in lymphoma cells. Here, we report that MLN4924 specifically inhibited protein neddylation, inactivated cullin-RING E3 ligase (CRL), the best-known neddylation substrate, and induced the accumulation of tumor-suppressive CRL substrates in lymphoma cells. Moreover, MLN4924 potently suppressed the growth of lymphoma cells by inducing G2 cell-cycle arrest, followed by apoptosis or senescence in a cell line-dependent manner. MLN4924-induced apoptosis was mediated by intrinsic apoptotic signaling with substantial up-regulation of pro-apoptotic Bik and Noxa as well as down-regulation of anti-apoptotic XIAP, c-IAP1 and c-IAP2, while senescence induction upon neddylation inhibition seemed dependent on the expression of tumor suppressor p21/p27. Together, these findings expand our understanding on how lymphoma cells respond to neddylation inhibition and support the development of neddylation inhibitors (e.g. MLN4924) for the treatment of lymphoma.

  11. Increased spinal release of excitatory amino acids following intradermal injection of capsaicin is reduced by a protein kinase G inhibitor.

    PubMed

    Sluka, K A; Willis, W D

    1998-07-06

    Second messengers have been shown to play a role in the release of neurotransmitters presynaptically in several brain regions and cell types. This study was designed to test the hypothesis that the increased release of aspartate and glutamate that occurs after injection of capsaicin is dependent on activation of the cAMP and the cGMP transduction cascades. A microdialysis fiber was implanted into the dorsal horn of the spinal cord for collection of extracellular fluid and for administration of drugs to the spinal cord. Dialysate samples were collected before and after injection of capsaicin and after infusion of inhibitors of protein kinase G (PKG; KT5823) or protein kinase A (PKA; H89). KT5823, H89, or artificial cerebrospinal fluid (ACSF; control) were administered after injection of capsaicin to reduce the increased release of aspartate and glutamate. At the time of injection of capsaicin, there is an increase in release of aspartate (191+/-21%) and glutamate (194+/-14%). This increased release is maintained through 2.5 h for both glutamate and aspartate at approximately 125% to 150%. The increase in aspartate and glutamate concentrations that occurs after capsaicin injection was reduced back to baseline after spinal infusion of the PKG inhibitor, KT5823. Blockade of PKA had no effect on the increased release of aspartate and glutamate. Thus, the current data support a role for the cGMP-PKG pathway in the control of neurotransmitter release in vivo.

  12. Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A

    PubMed Central

    1992-01-01

    The protein phosphatase 1 and 2A inhibitor, okadaic acid, has been shown to stimulate many cellular functions by increasing the phosphorylation state of phosphoproteins. In human monocytes, okadaic acid by itself stimulates tumor necrosis factor alpha (TNF-alpha) mRNA accumulation and TNF-alpha synthesis. Calyculin A, a more potent inhibitor of phosphatase 1, has similar effects. TNF-alpha mRNA accumulation in okadaic acid-treated monocytes is due to increased TNF- alpha mRNA stability and transcription rate. The increase in TNF-alpha mRNA stability is more remarkable in okadaic acid-treated monocytes than the mRNA stability of other cytokines, such as interleukin 1 alpha (IL-1 alpha), IL-1 beta, and IL-6. Gel retardation studies show the stimulation of AP-1, AP-2, and NF-kappa B binding activities in okadaic acid-stimulated monocytes. This increase may correlate with the increase in TNF-alpha mRNA transcription rate. In addition to the stimulation of TNF-alpha secretion by monocytes, okadaic acid appears to modulate TNF-alpha precursor processing, as indicated by a marked increase in the cell-associated 26-kD precursor. These results suggest that active basal phosphorylation/dephosphorylation occurs in monocytes, and that protein phosphatase 1 or 2A is important in regulating TNF-alpha gene transcription, translation, and posttranslational modification. PMID:1324971

  13. Identification of Protein Kinase Inhibitors with a Selective Negative Effect on the Viability of Epstein-Barr Virus Infected B Cell Lines

    PubMed Central

    Mavromatidis, Vassilis; Varga, Zoltan; Waczek, Frigyes; Őrfi, Zoltán; Őrfi, László; Kéri, György; Mosialos, George

    2014-01-01

    Epstein-Barr virus (EBV) is a human herpesvirus, which is causally associated with the development of several B lymphocytic malignancies that include Burkitt's lymphomas, Hodgkin's disease, AIDS and posttransplant associated lymphomas. The transforming activity of EBV is orchestrated by several latent viral proteins that mimic and modulate cellular growth promoting and antiapoptotic signaling pathways, which involve among others the activity of protein kinases. In an effort to identify small molecule inhibitors of the growth of EBV-transformed B lymphocytes a library of 254 kinase inhibitors was screened. This effort identified two tyrosine kinase inhibitors and two MEK inhibitors that compromised preferentially the viability of EBV-infected human B lymphocytes. Our findings highlight the possible dependence of EBV-infected B lymphocytes on specific kinase-regulated pathways underlining the potential for the development of small molecule-based therapeutics that could target selectively EBV-associated human B lymphocyte malignancies. PMID:24759913

  14. Screening for inhibitors of low-affinity epigenetic peptide-protein interactions: an AlphaScreen-based assay for antagonists of methyl-lysine binding proteins.

    PubMed

    Wigle, Tim J; Herold, J Martin; Senisterra, Guillermo A; Vedadi, Masoud; Kireev, Dmitri B; Arrowsmith, Cheryl H; Frye, Stephen V; Janzen, William P

    2010-01-01

    The histone code comprises many posttranslational modifications that occur mainly in histone tail peptides. The identity and location of these marks are read by a variety of histone-binding proteins that are emerging as important regulators of cellular differentiation and development and are increasingly being implicated in numerous disease states. The authors describe the development of the first high-throughput screening assay for the discovery of inhibitors of methyl-lysine binding proteins that will be used to initiate a full-scale discovery effort for this broad target class. They focus on the development of an AlphaScreen-based assay for malignant brain tumor (MBT) domain-containing proteins, which bind to the lower methylation states of lysine residues present in histone tail peptides. This assay takes advantage of the avidity of the AlphaScreen beads to clear the hurdle to assay development presented by the low micromolar binding constants of the histone binding proteins for their cognate peptides. The assay is applicable to other families of methyl-lysine binding proteins, and it has the potential to be used in screening efforts toward the discovery of novel small molecules with utility as research tools for cellular reprogramming and ultimately drug discovery.

  15. The NTR module: domains of netrins, secreted frizzled related proteins, and type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteases.

    PubMed Central

    Bányai, L.; Patthy, L.

    1999-01-01

    Using homology search, structure prediction, and structural characterization methods we show that the C-terminal domains of (1) netrins, (2) complement proteins C3, C4, C5, (3) secreted frizzled-related proteins, and (4) type I procollagen C-proteinase enhancer proteins (PCOLCEs) are homologous with the N-terminal domains of (5) tissue inhibitors of metalloproteinases (TIMPs). The proteins harboring this netrin module (NTR module) fulfill diverse biological roles ranging from axon guidance, regulation of Wnt signaling, to the control of the activity of metalloproteases. With the exception of TIMPs, it is not known at present what role the NTR modules play in these processes. In view of the fact that the NTR modules of TIMPs are involved in the inhibition of matrixin-type metalloproteases and that the NTR module of PCOLCEs is involved in the control of the activity of the astacin-type metalloprotease BMP1, it seems possible that interaction with metzincins could be a shared property of NTR modules and could be critical for the biological roles of the host proteins. PMID:10452607

  16. Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration.

    PubMed

    Kazi, Rubina S; Banarjee, Reema M; Deshmukh, Arati B; Patil, Gouri V; Jagadeeshaprasad, Mashanipalya G; Kulkarni, Mahesh J

    2017-03-06

    Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose.

  17. Stimulation of tentoxin synthesis by aged-culture filtrates and continued synthesis in the presence of protein inhibitors.

    PubMed

    Sheu, J T; Talburt, D E

    1986-02-01

    Tentoxin, a cyclic tetrapeptide produced by Alternaria alternata (Fries) Keissler, induces chlorosis in certain seedling plants. It can be extracted from culture filtrates of the fungus. Tentoxin production is stimulated and increased by using a mixture of aged culture filtrates and modified Richards solution. Aged culture filtrates can be obtained from 3-week-old or older cultures of A. alternata in modified Richards solution or Pratts solution. A mixture of aged culture filtrate and fresh medium in the ratio 2:3 gives the maximal enhancement of tentoxin production. This growth system provided us with a model for studying the effects of protein synthesis inhibitors on tentoxin production. Two antibiotics which inhibit protein synthesis at the ribosomal level were tested on growth, protein synthesis, and tentoxin production in A. alternata cultures. Cycloheximide at concentrations of 500 mug/ml or emetine at concentrations of 250 mug/ml did not inhibit tentoxin synthesis, although they stopped mycelial growth and protein synthesis of the fungus at the logarithmic growth stage in the enhancement medium. These results led us to conclude that tentoxin, like certain other bioactive cyclic peptides, is synthesized by a nonribosomal peptide synthesis mechanism.

  18. Discovery of direct inhibitors of Keap1–Nrf2 protein–protein interaction as potential therapeutic and preventive agents

    PubMed Central

    Abed, Dhulfiqar Ali; Goldstein, Melanie; Albanyan, Haifa; Jin, Huijuan; Hu, Longqin

    2015-01-01

    The Keap1–Nrf2–ARE pathway is an important antioxidant defense mechanism that protects cells from oxidative stress and the Keap1–Nrf2 protein–protein interaction (PPI) has become an important drug target to upregulate the expression of ARE-controlled cytoprotective oxidative stress response enzymes in the development of therapeutic and preventive agents for a number of diseases and conditions. However, most known Nrf2 activators/ARE inducers are indirect inhibitors of Keap1–Nrf2 PPI and they are electrophilic species that act by modifying the sulfhydryl groups of Keap1׳s cysteine residues. The electrophilicity of these indirect inhibitors may cause "off-target" side effects by reacting with cysteine residues of other important cellular proteins. Efforts have recently been focused on the development of direct inhibitors of Keap1–Nrf2 PPI. This article reviews these recent research efforts including the development of high throughput screening assays, the discovery of peptide and small molecule direct inhibitors, and the biophysical characterization of the binding of these inhibitors to the target Keap1 Kelch domain protein. These non-covalent direct inhibitors of Keap1–Nrf2 PPI could potentially be developed into effective therapeutic or preventive agents for a variety of diseases and conditions. PMID:26579458

  19. Discovery of a novel class of targeted kinase inhibitors that blocks protein kinase C signaling and ameliorates retinal vascular leakage in a diabetic rat model.

    PubMed

    Grant, Stephan; Tran, Phong; Zhang, Qin; Zou, Aihua; Dinh, Dac; Jensen, Jordan; Zhou, Sue; Kang, Xiaolin; Zachwieja, Joseph; Lippincott, John; Liu, Kevin; Johnson, Sarah Ludlum; Scales, Stephanie; Yin, Chunfeng; Nukui, Seiji; Stoner, Chad; Prasanna, Ganesh; Lafontaine, Jennifer; Wells, Peter; Li, Hui

    2010-02-10

    Protein kinase C (PKC) family members such as PKCbetaII may become activated in the hyperglycemic state associated with diabetes. Preclinical and clinical data implicate aberrant PKC activity in the development of diabetic microvasculature abnormalities. Based on this potential etiological role for PKC in diabetic complications, several therapeutic PKC inhibitors have been investigated in clinical trials for the treatment of diabetic patients. In this report, we present the discovery and preclinical evaluation of a novel class of 3-amino-pyrrolo[3,4-c]pyrazole derivatives as inhibitors of PKC that are structurally distinct from the prototypical indolocarbazole and bisindolylmaleimide PKC inhibitors. From this pyrrolo-pyrazole series, several compounds were identified from biochemical assays as potent, ATP-competitive inhibitors of PKC activity with high specificity for PKC over other protein kinases. These compounds were also found to block PKC signaling activity in multiple cellular functional assays. PF-04577806, a representative from this series, inhibited PKC activity in retinal lysates from diabetic rats stimulated with phorbol myristate acetate. When orally administered, PF-04577806 showed good exposure in the retina of diabetic Long-Evans rats and ameliorated retinal vascular leakage in a streptozotocin-induced diabetic rat model. These novel PKC inhibitors represent a promising new class of targeted protein kinase inhibitors with potential as therapeutic agents for the treatment of patients with diabetic microvascular complications.

  20. Effects of protein kinase inhibitors on canine Purkinje fibre pacemaker depolarization and the pacemaker current i(f).

    PubMed

    Chang, F; Cohen, I S; DiFrancesco, D; Rosen, M R; Tromba, C

    1991-01-01

    1. The effects of the protein kinase inhibitors H-7 and H-8 were investigated on diastolic depolarization of the action potential with microelectrodes and on the pacemaker current if with the two-microelectrode voltage clamp in canine cardiac Purkinje fibres. 2. Both 200 microM-H-7 and 100 microM-H-8 had no significant effect on the slope of diastolic depolarization but eliminated the actions of isoprenaline (1 microM). 3. We examined the actions of H-7 and H-8 on if in the presence and absence of isoprenaline. H-7 (200 microM) shifted the pacemaker current if in the negative direction on the voltage axis, whereas 100 microM-H-8 had no significant effect by itself. Both 200 microM-H-7 and 100 microM-H-8 can reverse or prevent the actions of isoprenaline (1-5 microM) on if. 4. We applied activators of the cyclic AMP cascade down-stream to the beta-receptor, to further evaluate where H-7 and H-8 might be exerting their effects. When exposing Purkinje fibres to an adenylyl cyclase activator (forskolin, 10-50 microM), a phosphodiesterase inhibitor (IBMX, 100 microM) and a permeable cyclic AMP analogue (8-chlorophenylthio-cyclic AMP, 200 microM-1 mM), the amplitude of if was increased. H-7 and H-8 at 100-200 microM eliminated each of these actions. 5. These results suggest that a phosphorylation process is involved in the modulation of the pacemaker current, if, in Purkinje fibres. The different actions of H-7 and H-8 on basal if suggest the hypothesis that other protein kinases, possibly protein kinase C, might also be involved in regulating basal phosphorylation of if in Purkinje fibres.

  1. Immunohistochemical detection of the X-linked inhibitor of apoptosis protein (XIAP) in cervical squamous intraepithelial neoplasia and squamous carcinoma.

    PubMed

    Burstein, David E; Idrees, Muhammad T; Li, Gon; Wu, Maoxin; Kalir, Tamara

    2008-04-01

    Premalignant and invasive squamous lesions of the uterine cervix were surveyed for the immunohistochemical detectability of the X-linked inhibitor of apoptosis protein (XIAP), believed to be the most potent of a novel group of proteins designated inhibitor of apoptosis proteins (IAPs). IAPs bind and prevent the activation of apoptosis-mediating caspases. Recent cancer biologic studies have implicated IAPs in therapeutic resistance and tumor aggressiveness. XIAP in particular is considered a highly promising target for drug discovery. Forty-four formalin-fixed and paraffin-embedded archival tissue sections were deparaffinized; subjected to citrate-based antigen retrieval; and immunostained with anti-XIAP monoclonal antibody (clone 48, BD Biosciences, San Jose, Calif) diluted 1:250, 4 degrees C x 72 hours; and developed using EnVision-Plus (Dako, Carpinteria, Calif) and diaminobenzidine as chromagen. Particulate or heterogeneous cytoplasmic staining was considered positive. Normal squamous epithelium was XIAP-positive in 7 of 34 cases (20.6%). Preinvasive intraepithelial lesions were positively stained in 54.5% of cases. Nineteen of 22 invasive squamous carcinomas were positive (86.4%). The intensity and extensiveness of XIAP immunostaining varied among individual cases, but trended upward with loss of tumor differentiation: 8 of 9 cases with strong staining were poorly differentiated carcinomas. The present study suggests the characteristic link between poor tumor differentiation and more aggressive clinical behavior could in some malignancies be based upon the concomitant induction of XIAP. Induction of XIAP appears to occur in a subset of intraepithelial lesions; in others, XIAP is detected only upon progression to invasive carcinoma. Detection of enhanced XIAP expression may also pinpoint those lesions that might benefit from pharmacologic disruption of XIAP's actions.

  2. Effects of protein kinase inhibitors on canine Purkinje fibre pacemaker depolarization and the pacemaker current i(f).

    PubMed Central

    Chang, F; Cohen, I S; DiFrancesco, D; Rosen, M R; Tromba, C

    1991-01-01

    1. The effects of the protein kinase inhibitors H-7 and H-8 were investigated on diastolic depolarization of the action potential with microelectrodes and on the pacemaker current if with the two-microelectrode voltage clamp in canine cardiac Purkinje fibres. 2. Both 200 microM-H-7 and 100 microM-H-8 had no significant effect on the slope of diastolic depolarization but eliminated the actions of isoprenaline (1 microM). 3. We examined the actions of H-7 and H-8 on if in the presence and absence of isoprenaline. H-7 (200 microM) shifted the pacemaker current if in the negative direction on the voltage axis, whereas 100 microM-H-8 had no significant effect by itself. Both 200 microM-H-7 and 100 microM-H-8 can reverse or prevent the actions of isoprenaline (1-5 microM) on if. 4. We applied activators of the cyclic AMP cascade down-stream to the beta-receptor, to further evaluate where H-7 and H-8 might be exerting their effects. When exposing Purkinje fibres to an adenylyl cyclase activator (forskolin, 10-50 microM), a phosphodiesterase inhibitor (IBMX, 100 microM) and a permeable cyclic AMP analogue (8-chlorophenylthio-cyclic AMP, 200 microM-1 mM), the amplitude of if was increased. H-7 and H-8 at 100-200 microM eliminated each of these actions. 5. These results suggest that a phosphorylation process is involved in the modulation of the pacemaker current, if, in Purkinje fibres. The different actions of H-7 and H-8 on basal if suggest the hypothesis that other protein kinases, possibly protein kinase C, might also be involved in regulating basal phosphorylation of if in Purkinje fibres. PMID:1804968

  3. LKB1 is a DNA damage response protein that regulates cellular sensitivity to PARP inhibitors

    PubMed Central

    Wang, Huibo; Wang, Shuai; Hang, Wei; Zeng, Qinghua; Quan, Cheng-Shi; Zhai, Ying-Xian; Wang, Jian-Wei; Shen, Xiang-Feng; Jian, Yong-Ping; Zhao, Rui-Xun; Werle, Kaitlin D.; Cui, Rutao; Liang, Jiyong; Li, Yu-Lin; Xu, Zhi-Xiang

    2016-01-01

    Liver kinase B1 (LKB1) functions as a tumor suppressor encoded by STK11, a gene that mutated in Peutz-Jeghers syndrome and in sporadic cancers. Previous studies showed that LKB1 participates in IR- and ROS-induced DNA damage response (DDR). However, the impact of LKB1 mutations on targeted cancer therapy remains unknown. Herein, we demonstrated that LKB1 formed DNA damage-induced nuclear foci and co-localized with ataxia telangiectasia mutated kinase (ATM), γ-H2AX, and breast cancer susceptibility 1 (BRCA1). ATM mediated LKB1 phosphorylation at Thr 363 following the exposure of cells to ionizing radiation (IR). LKB1 interacted with BRCA1, a downstream effector in DDR that is recruited to sites of DNA damage and functions directly in homologous recombination (HR) DNA repair. LKB1 deficient cells exhibited delayed DNA repair due to insufficient HR. Notably, LKB1 deficiency sensitized cells to poly (ADP-ribose) polymerase (PARP) inhibitors. Thus, we have demonstrated a novel function of LKB1 in DNA damage response. Cancer cells lacking LKB1 are more susceptible to DNA damage-based therapy and, in particular, to drugs that further impair DNA repair, such as PARP inhibitors. PMID:27705915

  4. Protein-kinase inhibitors: A new treatment pathway for autoimmune and inflammatory diseases?

    PubMed

    Hernández-Flórez, Diana; Valor, Lara

    2016-01-01

    Although advances in biological medicine have seen significant progress in the treatment of autoimmune and inflammatory disease, many patients do not experience a satisfactory response. Hence, there are two challenges facing the medical research community. The first is to continue development in the field of existing biological therapies, such as monoclonal antibodies. The second is to open new frontiers of research and explore treatment alternatives for non-responders to other therapies. Attention has increasingly turned to the therapeutic potential of small molecule weight kinase inhibitors (SMKIs), currently used extensively in oncology and haematology. Initial research into the therapeutic value of SMKIs for autoimmune and inflammatory diseases has been encouraging. SMKIs are taken orally, which reduces cost for the health provider, and could increase compliance for the patient. This is why research is now focusing increasingly on SMKIs as a new generation line of treatment in these diseases. Tofacitinib, an inhibitor of Janus-kinase, is currently the only drug approved for the treatment of rheumatoid arthritis by FDA. However, much more needs to be done to understand the intracellular signalling pathways and how these might affect disease progression before solid conclusions can be drawn.

  5. Small Molecule Inhibitors of Ca2+-S100B Reveal Two Protein Conformations

    PubMed Central

    Cavalier, Michael C.; Ansari, Mohd. Imran; Pierce, Adam D.; Wilder, Paul T.; McKnight, Laura E.; Raman, E. Prabhu; Neau, David B.; Bezawada, Padmavani; Alasady, Milad J.; Charpentier, Thomas H.; Varney, Kristen M.; Toth, Eric A.; MacKerell, Alexander D.; Coop, Andrew; Weber, David J.

    2016-01-01

    The drug pentamidine inhibits calcium-dependent complex formation with p53 (CaS100B•p53) in malignant melanoma (MM), and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure-activity relationship (SAR) studies were therefore completed here with 23 pentamidine analogues, and X-ray structures of CaS100B•inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe-87 and Phe-88 being the distinguishing feature and termed the “FF-Gate”. For symmetric pentamidine analogues (CaS100B•5a, CaS100B•6b) a channel between Sites 1 and 2 on S100B was occluded by residue Phe-88, but for an asymmetric pentamidine analogue (CaS100B•17), this same channel was open. The CaS100B•17 structure illustrates, for the first time, a pentamidine analog capable of binding the “open” form of the “FF-gate” and provides a means to block all three “hot spots” on CaS100B, which will impact next generation CaS100B•p53 inhibitor design. PMID:26727270

  6. Small molecule inhibitors of Ca2+-S100B reveal two protein conformations

    DOE PAGES

    Cavalier, Michael C.; Ansari, Mohd. Imran; Pierce, Adam D.; ...

    2016-01-04

    The drug pentamidine inhibits calcium-dependent complex formation with p53 (CaS100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure–activity relationship (SAR) studies were therefore completed in this study with 23 pentamidine analogues, and X-ray structures of CaS100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the “FF-gate”. For symmetric pentamidine analogues (CaS100B·5a, CaS100B·6b) a channel between sites 1 and 2 on S100B was occluded by residue Phe88, but formore » an asymmetric pentamidine analogue (CaS100B·17), this same channel was open. Finally, the CaS100B·17 structure illustrates, for the first time, a pentamidine analog capable of binding the “open” form of the “FF-gate” and provides a means to block all three “hot spots” on CaS100B, which will impact next generation CaS100B·p53 inhibitor design.« less

  7. Protein-protein interaction and molecular dynamics analysis for identification of novel inhibitors in Burkholderia cepacia GG4.

    PubMed

    Gupta, Money; Chauhan, Rashi; Prasad, Yamuna; Wadhwa, Gulshan; Jain, Chakresh Kumar

    2016-12-01

    The lack of complete treatments and appearance of multiple drug-resistance strains of Burkholderia cepacia complex (Bcc) are causing an increased risk of lung infections in cystic fibrosis patients. Bcc infection is a big risk to human health and demands an urgent need to identify new therapeutics against these bacteria. Network biology has emerged as one of the prospective hope in identifying novel drug targets and hits. We have applied protein-protein interaction methodology to identify new drug-target candidates (orthologs) in Burkhloderia cepacia GG4, which is an important strain for studying the quorum-sensing phenomena. An evolutionary based ortholog mapping approach has been applied for generating the large scale protein-protein interactions in B. Cepacia. As a case study, one of the identified drug targets; GEM_3202, a NH (3)-dependent NAD synthetase protein has been studied and the potential ligand molecules were screened using the ZINC database. The three dimensional structure (NH (3)-dependent NAD synthetase protein) has been predicted from MODELLERv9.11 tool using multiple PDB templates such as 3DPI, 2PZ8 and 1NSY with sequence identity of 76%, 50% and 50% respectively. The structure has been validated with Ramachandaran plot having 100% residues of NadE in allowed region and overall quality factor of 81.75 using ERRAT tool. High throughput screening and Vina resulted in two potential hits against NadE such as ZINC83103551 and ZINC38008121. These molecules showed lowest binding energy of -5.7kcalmol(-1) and high stability in the binding pockets during molecular dynamics simulation analysis. The similar approach for target identification could be applied for clinical strains of other pathogenic microbes.

  8. Human protein HC and its IgA complex are inhibitors of neutrophil chemotaxis.

    PubMed Central

    Méndez, E; Fernández-Luna, J L; Grubb, A; Leyva-Cobián, F

    1986-01-01

    Protein HC, a heterogeneously charged low molecular weight glycoprotein, and its IgA complex were isolated from human plasma and urine. Plasma from individuals with monoclonal IgA populations was used as starting material for the isolation of the protein HC-IgA complex to obtain homogeneous complex populations. Neither low molecular weight protein HC nor its IgA complex in the concentrations 30 and 600 mg/liter influenced the random migration of normal human neutrophils. The chemotactic response of neutrophils to endotoxin-activated serum was, however, attenuated in a dose-dependent way by both low molecular weight protein HC and protein HC-IgA complex. Concentrations of protein HC and its IgA complex producing significant inhibition of the chemotactic response were found to occur in plasma from healthy and diseased individuals as well as in synovial fluid from patients with rheumatoid arthritis. These results suggest that protein HC and its IgA complex play physiological roles in the regulation of the inflammatory response. PMID:2419908

  9. Co-active receptor tyrosine kinases mitigate the effect of FGFR inhibitors in FGFR1-amplified lung cancers with low FGFR1 protein expression.

    PubMed

    Kotani, H; Ebi, H; Kitai, H; Nanjo, S; Kita, K; Huynh, T G; Ooi, A; Faber, A C; Mino-Kenudson, M; Yano, S

    2016-07-07

    Targeted therapies are effective in subsets of lung cancers with EGFR mutations and anaplastic lymphoma kinase (ALK) translocations. Large-scale genomics have recently expanded the lung cancer landscape with FGFR1 amplification found in 10-20% of squamous cell carcinomas (SCCs). However, the response rates have been low for biomarker-directed fibroblast growth factor receptor (FGFR) inhibitor therapy in SCC, which contrasts to the relatively high rates of response seen in EGFR mutant and ALK-translocated lung cancers treated with epidermal growth factor receptor (EGFR) inhibitors and ALK inhibitors, respectively. In order to better understand the low response rates of FGFR1-amplified lung cancers to FGFR inhibitors, relationships between gene copy number, mRNA expression and protein expression of FGFR1 were assessed in cell lines, tumor specimens and data from The Cancer Genome Atlas. The importance of these factors for the sensitivity to FGFR inhibitors was determined by analyzing drug screen data and conducting in vitro and in vivo experiments. We report that there was a discrepancy between FGFR1 amplification level and FGFR1 protein expression in a number of these cell lines, and the cancers with unexpectedly low FGFR1 expression were uniformly resistant to the different FGFR inhibitors. Further interrogation of the receptor tyrosine kinase activity in these discordant cell lines revealed co-activation of HER2 and platelet-derived growth factor receptor-α (PDGFRα) caused by gene amplification or ligand overexpression maintained phosphoinositide 3-kinase (PI3K) and MEK/ERK signaling even in the presence of FGFR inhibitor. Accordingly, co-inhibition of FGFR1 and HER2 or PDGFRα led to enhanced drug responses. In contrast, FGFR1-amplified high FGFR1 protein-expressing lung cancers are sensitive to FGFR inhibitor monotherapy by downregulating ERK signaling. Addition of a PI3K inhibitor to these high FGFR1 protein-expressing cancers further sensitized them to FGFR

  10. A novel inhibitor of apoptosis protein (IAP)-interacting protein, Vestigial-like (Vgl)-4, counteracts apoptosis-inhibitory function of IAPs by nuclear sequestration.

    PubMed

    Jin, Hyung-Seung; Park, Hyung-Sun; Shin, Jun-Ha; Kim, Dong-Hwan; Jun, Sung-Hun; Lee, Chang-Jun; Lee, Tae H

    2011-09-02

    The inhibitors of apoptosis proteins (IAP), which include cIAP1, cIAP2 and XIAP, suppress apoptosis through the inhibition of caspases, and the activity of IAPs is regulated by a variety of IAP-binding proteins. Herein, we report the identification of a Vestigial-like 4 (Vgl-4), which functions as a transcription cofactor in cardiac myocytes, as a new IAP binding protein. Vgl-4 is expressed predominantly in the nucleus and its overexpression triggers a relocalization of IAPs from the cytoplasm to the nucleus. cIAP1/2-interacting protein TRAF2 (TNF receptor-associated factor 2) prevented the Vgl-4-driven nuclear localization of cIAP2. Accordingly, the forced relocation of IAPs to the nucleus by Vgl-4 significantly reduced their ability to prevent Bax- and TNFα-induced apoptosis, which can be recovered by co-expression with TRAF2. Our results suggest that Vgl-4 may play a role in the apoptotic pathways by regulating translocation of IAPs between different cell compartments.

  11. Discovery of novel N,N-3-phenyl-3-benzylaminopropionanilides as potent inhibitors of cholesteryl ester transfer protein in vivo.

    PubMed

    Xie, Honglei; Li, Yiqun; Bai, Changlin; Wang, Ruifeng; Liu, Chunchi; Hao, Chenzhou; Lin, Bin; Cheng, Maosheng; Zhao, Dongmei

    2016-04-15

    Epidemiological studies have identified that the risk of cardiovascular events increases due to the decreased levels of high density lipoprotein-cholesterol and the elevated levels of low density lipoprotein-cholesterol. Herein, we report a novel series of N,N-3-phenyl-3-benzylaminopropionanilide derivatives, which were identified as potent cholesteryl ester transfer protein (CETP) inhibitor. The initial lead compound L10 (IC50 8.06 μM) was found by pharmacophore-based virtual screening (Dong-Mei Zhao et al., Chin. Chem. Lett.2014, 25, 299). After systematic structure variation and biological testing against CETP, two different series were identified as scaffolds for potent CETP inhibitors. One is N,N-3-phenyl-3-benzylaminopropanamide derivatives, which were investigated in our previous paper (Bioorg. Med. Chem.2015, doi: http://dx.doi.org/10.1016/j.bmc.2015.12.010). The most potent compound HL16 in that series has the IC50 of 0.69 μM. The other series is N,N-3-phenyl-3-benzylaminopropionanilide derivatives, which was investigated in current study. Further optimization of the structure-activity relationship (SAR) resulted in H16 (IC50 0.15 μM), which was discovered as a potent CETP inhibitor in vitro by BODIPY-CE fluorescence assay. In addition, the results of pharmacodynamics studies showed that H16 exhibited both favorable HDL-C enhancement and LDL-C reduction in vivo by hamster. It also has an excellent stability in rat liver microsomal.

  12. Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism.

    PubMed

    Tan, Xue Fei; Uddin, Zia; Park, Chanin; Song, Yeong Hun; Son, Minky; Lee, Keun Woo; Park, Ki Hun

    2017-04-15

    Protein tyrosine phosphatase 1B (PTP1B) plays important role in diabetes, obesity and cancer. The methanol extract of the gum resin of Garcinia hanburyi (G. hanburyi) showed potent PTP1B inhibition at 10µg/ml. The active compounds were identified as prenylated caged xanthones (1-9) which inhibited PTP1B in dose-dependent manner. Carboxybutenyl group within caged motif (A ring) was found to play a critical role in enzyme inhibition such as 1-6 (IC50s=0.47-4.69µM), whereas compounds having hydroxymethylbutenyl 7 (IC50=70.25µM) and methylbutenyl 8 (IC50>200µM) showed less activity. The most potent inhibitor, gambogic acid 1 (IC50=0.47µM) showed 30-fold more potency than ursolic acid (IC50=15.5µM), a positive control. In kinetic study, all isolated xanthones behaved as competitive inhibitors which were fully demonstrated with Km, Vmax and Kik/Kiv ratio. It was also proved that inhibitor 1 operated under the enzyme isomerization model having k5=0.0751µM(-)(1)S(-)(1), k6=0.0249µM(-)(1)S(-)(1) and Ki(app)=0.499µM. To develop a pharmacophore model, we explored the binding sites of compound 1 and 7 in PTP1B. These modeling results were in agreement with our findings, which revealed that the inhibitory activities are tightly related to caged motif and prenyl group in A ring.

  13. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models.

    PubMed

    Pereira, M; Siba, I P; Chioca, L R; Correia, D; Vital, M A B F; Pizzolatti, M G; Santos, A R S; Andreatini, R

    2011-08-15

    Myricitrin is a nitric oxide (NO) and protein kinase C (PKC) inhibitor that has central nervous system activity, including anxiolytic-like action. Nitric oxide inhibitors blocked the behavioral effects of apomorphine, suggesting an antipsychotic-like effect. Furthermore, PKC inhibition reduced psychotic symptoms in acute mania patients and blocked amphetamine-induced hyperlocomotion, suggesting a potential antipsychotic-like effect. The present study evaluated the effects of myricitrin in animal models that assess antipsychotic-like effects (apomorphine-induced stereotypy and climbing and the paw test) and extrapyramidal side effects (catalepsy test and paw test). Olanzapine was used as a positive control. 7-Nitroindazole (7-NI), a NOS inhibitor, and l-arginine, a NO precursor, were used to evaluate nitrergic modulation, and tamoxifen was used to test the effect of PKC inhibition. In mice, myricitrin dose-dependently and olanzapine blocked the stereotypy and climbing induced by apomorphine at doses that did not induce catalepsy. 7-Nitroindazole also blocked apomorphine-induced stereotypy and climbing, which were reversed by l-arginine pretreatment. l-arginine only attenuated the effects of myricitrin on apomorphine's effects. Tamoxifen also blocked apomorphine-induced stereotypy and climbing. In the paw test in rats, myricitrin and olanzapine increased hindlimb retraction time at doses that did not affect forelimb reaction time, whereas haloperidol affected both parameters at the same dose. Myricitrin did not induce catalepsy in the bar test. Tamoxifen did not affect hindlimb retraction time or forelimb retraction time, whereas 7-NI significantly increased hindlimb reaction time. Thus, myricitrin exhibited an antipsychotic-like profile at doses that did not induce catalepsy, and this effect may be related to nitrergic action.

  14. Proteins in Soy Might Have a Higher Role in Cancer Prevention than Previously Expected: Soybean Protein Fractions Are More Effective MMP-9 Inhibitors Than Non-Protein Fractions, Even in Cooked