Science.gov

Sample records for inhibitor r-roscovitine suppresses

  1. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation.

    PubMed

    Orba, Yasuko; Sunden, Yuji; Suzuki, Tadaki; Nagashima, Kazuo; Kimura, Takashi; Tanaka, Shinya; Sawa, Hirofumi

    2008-01-05

    The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation of the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML).

  2. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation

    SciTech Connect

    Orba, Yasuko; Sunden, Yuji; Suzuki, Tadaki; Nagashima, Kazuo; Kimura, Takashi; Tanaka, Shinya; Sawa, Hirofumi

    2008-01-05

    The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation of the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML)

  3. (R)-roscovitine, a cyclin-dependent kinase inhibitor, enhances tonic GABA inhibition in rat hippocampus.

    PubMed

    Ivanov, A; Tyzio, R; Zilberter, Y; Ben-Ari, Yehezkel

    2008-10-02

    Pharmacological agents that mediate a persistent GABAergic conductance are of considerable interest for treatment of epilepsy. (R)-roscovitine is a membrane permeable cyclin-dependent kinase inhibitor, designed to block cell division. It is currently undergoing a phase II clinical trial as an anticancer drug. We show that (R)-roscovitine increases a tonic GABA-mediated current in rat hippocampal neurons. This enhanced tonic current appears independent of synaptic GABA release and requires functional transmembrane GABA transport. The effect of (R)-roscovitine is associated with neither modification of GABAA receptors nor protein kinase activity, but is associated with a significant increase in intracellular GABA concentration in hippocampal GABAergic neurons. (R)-roscovitine-induced tonic inhibition significantly suppresses spontaneous spiking activity of hippocampal pyramidal cells. Therefore, (R)-roscovitine is a potent modulator of neuronal activity in rat hippocampus and may provide a tool for preventing paroxysmal activity.

  4. Effects of the cyclin-dependent kinase inhibitor R-roscovitine on eosinophil survival and clearance.

    PubMed

    Farahi, N; Uller, L; Juss, J K; Langton, A J; Cowburn, A S; Gibson, A; Foster, M R; Farrow, S N; Marco-Casanova, P; Sobolewski, A; Condliffe, A M; Chilvers, E R

    2011-05-01

    Eosinophils are pro-inflammatory cells implicated in the pathogenesis of asthma and atopy. Apoptosis has been proposed as a potential mechanism underlying the resolution of eosinophilic inflammation and studies have indicated the ability of interventions that induce human eosinophil apoptosis to promote the resolution of eosinophilic inflammation. Recently, the cyclin-dependent kinase (CDK) inhibitor R-roscovitine was shown to enhance neutrophil apoptosis and promote the resolution of neutrophilic inflammation. The purpose of this study was to examine the expression of CDKs in human blood eosinophils, the effects of R-roscovitine on eosinophil survival in vitro and whether R-roscovitine could influence eosinophilic lung inflammation in vivo. Eosinophils were isolated from human peripheral blood and the effects of R-roscovitine on apoptosis, degranulation and phagocytic uptake examined in vitro. The effects of R-roscovitine on eosinophilic lung inflammation in vivo were also assessed using an ovalbumin mouse model. Our data demonstrate that human eosinophils express five known targets for R-roscovitine: CDK1, -2, -5, -7 and -9. R-roscovitine induced eosinophil apoptosis in a time- and concentration-dependent manner but also accelerated transition to secondary necrosis as assessed by microscopy, flow cytometry and caspase activation. In addition, we show that R-roscovitine can override the anti-apoptotic signals of GM-CSF and IL-5. We report that the pro-apoptotic effect of R-roscovitine is associated with suppression of Mcl-1L expression and that this compound enhanced phagocytic clearance of eosinophils by macrophages. Finally, we show that R-roscovitine induces apoptosis in murine peripheral blood and spleen-derived eosinophils; despite this, R-roscovitine did not modulate the tissue and lumen eosinophilia characteristic of the ovalbumin mouse model of airway eosinophilia. These data demonstrate that R-roscovitine is capable of inducing rapid apoptosis and

  5. The cyclin dependent kinase inhibitor (R)-roscovitine mediates selective suppression of alloreactive human T cells but preserves pathogen-specific and leukemia-specific effectors

    PubMed Central

    Nellore, Anoma; Liu, Bianling; Patsoukis, Nikolaos; Boussiotis, Vassiliki A.; Li, Lequn

    2014-01-01

    Graft versus host disease (GvHD), mediated by donor T cells, remains the primary cause of non-relapse mortality after allogeneic hematopoietic stem cell transplantation and novel therapeutic approaches are required. Cdk2 is a critical node of signal integration and programming of T cell responses towards immunity versus anergy but is dispensable for hematopoiesis and thymocyte development. We examined the effects of pharmacologic Cdk2 inhibition on alloreactive human T cells. Inhibition of Cdk2 blocked expansion of alloreactive T cells upon culture with HLA-mismatched dendritic cells and prevented generation of IFN-γ-producing alloantigen-specific effectors. In contrast, Cdk2 inhibition preserved effectors specific for Wilms’ tumor 1 (WT1) leukemia antigen and for CMV as determined by WT1-specific and CMV-specific pentamers. Cdk2 inhibition preserved Treg cells, which have the ability to prevent GvHD while maintaining GvL. Thus, Cdk inhibitors may improve allogeneic HSCT by reducing alloreactivity and GvHD without loss of pathogen-specific and leukemia-specific immunity. PMID:24631965

  6. CDK inhibitors R-roscovitine and S-CR8 effectively block renal and hepatic cystogenesis in an orthologous model of ADPKD

    PubMed Central

    Bukanov, Nikolay O.; Moreno, Sarah E.; Natoli, Thomas A.; Rogers, Kelly A.; Smith, Laurie A.; Ledbetter, Steven R.; Oumata, Nassima; Galons, Hervé; Meijer, Laurent; Ibraghimov-Beskrovnaya, Oxana

    2012-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD. To evaluate whether CDK inhibition approach will translate into efficacy in an orthologous model of ADPKD, we tested R-roscovitine and its derivative S-CR8 in a model with a conditionally inactivated Pkd1 gene (Pkd1 cKO). Similar to ADPKD, Pkd1 cKO mice developed renal and hepatic cysts. Treatment of Pkd1 cKO mice with R-roscovitine and its more potent and selective analog S-CR8 significantly reduced renal and hepatic cystogenesis and attenuated kidney function decline. Mechanism of action studies demonstrated effective blockade of cell cycle and proliferation and reduction of apoptosis. Together, these data validate CDK inhibition as a novel and effective approach for the treatment of ADPKD. PMID:23032260

  7. CDK inhibitors R-roscovitine and S-CR8 effectively block renal and hepatic cystogenesis in an orthologous model of ADPKD.

    PubMed

    Bukanov, Nikolay O; Moreno, Sarah E; Natoli, Thomas A; Rogers, Kelly A; Smith, Laurie A; Ledbetter, Steven R; Oumata, Nassima; Galons, Hervé; Meijer, Laurent; Ibraghimov-Beskrovnaya, Oxana

    2012-11-01

    Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD. To evaluate whether CDK inhibition approach will translate into efficacy in an orthologous model of ADPKD, we tested R-roscovitine and its derivative S-CR8 in a model with a conditionally inactivated Pkd1 gene (Pkd1 cKO). Similar to ADPKD, Pkd1 cKO mice developed renal and hepatic cysts. Treatment of Pkd1 cKO mice with R-roscovitine and its more potent and selective analog S-CR8 significantly reduced renal and hepatic cystogenesis and attenuated kidney function decline. Mechanism of action studies demonstrated effective blockade of cell cycle and proliferation and reduction of apoptosis. Together, these data validate CDK inhibition as a novel and effective approach for the treatment of ADPKD.

  8. The cyclin dependent kinase inhibitor (R)-roscovitine prevents alloreactive T cell clonal expansion and protects against acute GvHD

    PubMed Central

    Li, Lequn; Wang, Hui; Kim, Jin sub; Pihan, German; Boussiotis, Vassiliki A.

    2009-01-01

    Cell cycle re-entry of quiescent T lymphocytes regulated by cdk2 is required for antigen-specific clonal expansion and generation of productive T cell responses. Recently, we determined that induction of antigen-specific T cell tolerance results in impaired cdk2 activity leading to enhanced Smad3 transactivation, upregulation of p15 and blockade of cell cycle progression. Here we report that pharmacologic inhibition of cdk2 with (R)-roscovitine blocked expansion of alloreactive T cells in vitro and in vivo and protected from lethal acute GvHD. In addition to inhibiting alloreactive T cell responses, (R)-roscovitine prevented TNFα-mediated activation of NFκB pathway, which is involved in the inflammatory process leading to the development of GvHD. The combined anti-proliferative and anti-inflammatory properties of (R)-roscovitine make it an attractive treatment modality toward control of GvHD. PMID:19448431

  9. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days

    PubMed Central

    Benson, C; White, J; Bono, J De; O'Donnell, A; Raynaud, F; Cruickshank, C; McGrath, H; Walton, M; Workman, P; Kaye, S; Cassidy, J; Gianella-Borradori, A; Judson, I; Twelves, C

    2006-01-01

    Seliciclib (CYC202; R-roscovitine) is the first selective, orally bioavailable inhibitor of cyclin-dependent kinases 1, 2, 7 and 9 to enter clinical trial. Preclinical studies showed antitumour activity in a broad range of human tumour xenografts. A phase I trial was performed with a 7-day b.i.d. p.o. schedule. Twenty-one patients (median age 62 years, range: 39–73 years) were treated with doses of 100, 200 and 800 b.i.d. Dose-limiting toxicities were seen at 800 mg b.i.d.; grade 3 fatigue, grade 3 skin rash, grade 3 hyponatraemia and grade 4 hypokalaemia. Other toxicities included reversible raised creatinine (grade 2), reversible grade 3 abnormal liver function and grade 2 emesis. An 800 mg portion was investigated further in 12 patients, three of whom had MAG3 renograms. One patient with a rapid increase in creatinine on day 3 had a reversible fall in renal perfusion, with full recovery by day 14, and no changes suggestive of renal tubular damage. Further dose escalation was precluded by hypokalaemia. Seliciclib reached peak plasma concentrations between 1 and 4 h and elimination half-life was 2–5 h. Inhibition of retinoblastoma protein phosphorylation was not demonstrated in peripheral blood mononuclear cells. No objective tumour responses were noted, but disease stabilisation was recorded in eight patients; this lasted for a total of six courses (18 weeks) in a patient with ovarian cancer. PMID:17179992

  10. R-roscovitine reduces lung inflammation induced by lipoteichoic acid and Streptococcus pneumoniae.

    PubMed

    Hoogendijk, Arie J; Roelofs, Joris J T H; Duitman, Janwillem; van Lieshout, Miriam H P; Blok, Dana C; van der Poll, Tom; Wieland, Catharina W

    2012-09-25

    Bacterial pneumonia remains associated with high morbidity and mortality. The gram-positive pathogen Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. Lipoteichoic acid (LTA) is an important proinflammatory component of the gram-positive bacterial cell wall. R-roscovitine, a purine analog, is a potent cyclin-dependent kinase (CDK)-1, -2, -5 and -7 inhibitor that has the ability to inhibit the cell cycle and to induce polymorphonuclear cell (PMN) apoptosis. We sought to investigate the effect of R-roscovitine on LTA-induced activation of cell lines with relevance for lung inflammation in vitro and on lung inflammation elicited by either LTA or viable S. pneumoniae in vivo. In vitro R-roscovitine enhanced apoptosis in PMNs and reduced tumor necrosis factor (TNF)-α and keratinocyte chemoattractant (KC) production in MH-S (alveolar macrophage) and MLE-12/MLE-15 (respiratory epithelial) cell lines. In vivo R-roscovitine treatment reduced PMN numbers in bronchoalveolar lavage fluid during LTA-induced lung inflammation; this effect was reversed by inhibiting apoptosis. Postponed treatment with R-roscovitine (24 and 72 h) diminished PMN numbers in lung tissue during gram-positive pneumonia; this step was associated with a transient increase in pulmonary bacterial loads. R-roscovitine inhibits proinflammatory responses induced by the gram-positive stimuli LTA and S. pneumoniae. R-roscovitine reduces PMN numbers in lungs upon LTA administration by enhancing apoptosis. The reduction in PMN numbers caused by R-roscovitine during S. pneumoniae pneumonia may hamper antibacterial defense.

  11. R-roscovitine Reduces Lung Inflammation Induced by Lipoteichoic Acid and Streptococcus pneumoniae

    PubMed Central

    Hoogendijk, Arie J; Roelofs, Joris J T H; Duitman, JanWillem; van Lieshout, Miriam H P; Blok, Dana C; van der Poll, Tom; Wieland, Catharina W

    2012-01-01

    Bacterial pneumonia remains associated with high morbidity and mortality. The gram-positive pathogen Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. Lipoteichoic acid (LTA) is an important proinflammatory component of the gram-positive bacterial cell wall. R-roscovitine, a purine analog, is a potent cyclin-dependent kinase (CDK)-1, −2, −5 and −7 inhibitor that has the ability to inhibit the cell cycle and to induce polymorphonuclear cell (PMN) apoptosis. We sought to investigate the effect of R-roscovitine on LTA-induced activation of cell lines with relevance for lung inflammation in vitro and on lung inflammation elicited by either LTA or viable S. pneumoniae in vivo. In vitro R-roscovitine enhanced apoptosis in PMNs and reduced tumor necrosis factor (TNF)-α and keratinocyte chemoattractant (KC) production in MH-S (alveolar macrophage) and MLE-12/MLE-15 (respiratory epithelial) cell lines. In vivo R-roscovitine treatment reduced PMN numbers in bronchoalveolar lavage fluid during LTA-induced lung inflammation; this effect was reversed by inhibiting apoptosis. Postponed treatment with R-roscovitine (24 and 72 h) diminished PMN numbers in lung tissue during gram-positive pneumonia; this step was associated with a transient increase in pulmonary bacterial loads. R-roscovitine inhibits proinflammatory responses induced by the gram-positive stimuli LTA and S. pneumoniae. R-roscovitine reduces PMN numbers in lungs upon LTA administration by enhancing apoptosis. The reduction in PMN numbers caused by R-roscovitine during S. pneumoniae pneumonia may hamper antibacterial defense. PMID:22692577

  12. R-roscovitine sensitizes anaplastic thyroid carcinoma cells to TRAIL-induced apoptosis via regulation of IKK/NF-kappaB pathway.

    PubMed

    Festa, Michela; Petrella, Antonello; Alfano, Silvia; Parente, Luca

    2009-06-01

    Among thyroid carcinomas, highly aggressive undifferentiated or anaplastic carcinomas still await effective therapeutic strategies. R-roscovitine is a novel cyclin-dependent kinase inhibitor in clinical trials as anti-cancer agent. We have investigated the effects of R-roscovitine on proliferation and apoptosis of 4 thyroid cancer cell lines with different degrees of malignancy. R-roscovitine induced cell cycle arrest in G2/M phase in all cells analyzed possibly by inhibiting the CDK1-cyclin B1 complex. However, the compound was unable to induce a significant cell apoptosis. R-roscovitine has been shown to sensitize cancer cells to TRAIL-induced apoptosis. We report that R-roscovitine sensitized thyroid cell lines to TRAIL-induced apoptosis with the highest degree of synergism observed in the most undifferentiated cancer cells. Apoptosis was associated with the activation of caspases. In thyroid cancers, NF-kappaB is constitutively activated contributing to the proliferation of malignant cells. Accordingly, we observed that R-roscovitine inhibited p65 expression and nuclear translocation. Moreover, IKKbeta over-expression inhibited R-roscovitine- and TRAIL-induced apoptosis. The combined treatment also caused down-regulation of anti-apoptotic proteins transcriptionally regulated by NF-kappaB. Finally, R-roscovitine up-regulated expression of DR5 TRAIL receptors. These results demonstrate that undifferentiated thyroid carcinoma cells can be effectively killed by a combination treatment of subtoxic doses of R-roscovitine and TRAIL. R-roscovitine sensitization of TRAIL-induced apoptosis appears to be mediated by the inhibition of the IKK/NF-KB pathway leading to down-regulation of anti-apoptotic genes and up-regulation of TRAIL death receptors. The combination of R-roscovitine and TRAIL may represent a novel approach to the treatment of anaplastic thyroid carcinomas resistant to conventional chemotherapy.

  13. Modulating innate and adaptative immunity by (R)-roscovitine: potential therapeutic opportunity in cystic fibrosis

    PubMed Central

    MEIJER, Laurent; NELSON, Deborah; RIAZANSKI, Vladimir; GABDOULKHAKOVA, Aida G.; HERY-ARNAUD, Geneviève; LE BERRE, Rozenn; LOAËC, Nadège; OUMATA, Nassima; GALONS, Hervé; NOWAK, Emmanuel; GUEGANTON, Laetitia; DOROTHEE, Guillaume; PROCHAZKOVA, Michaela; HALL, Bradford; KULKARNI, Ashok B.; GRAY, Robert D.; ROSSI, Adriano G.; WITKO-SARSAT, Véronique; NOREZ, Caroline; BECQ, Frédéric; RAVEL, Denis; MOTTIER, Dominique; RAULT, Gilles

    2016-01-01

    (R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing disease and rheumatoid arthritis. We here review the data that support investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favourably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favours its trafficking to the plasma membrane, (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity, (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation, induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, phase I clinical and phase II clinical trials in cancer patients encourage its repurposing as a CF drug candidate. PMID:26987072

  14. Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis.

    PubMed

    Meijer, Laurent; Nelson, Deborah J; Riazanski, Vladimir; Gabdoulkhakova, Aida G; Hery-Arnaud, Geneviève; Le Berre, Rozenn; Loaëc, Nadège; Oumata, Nassima; Galons, Hervé; Nowak, Emmanuel; Gueganton, Laetitia; Dorothée, Guillaume; Prochazkova, Michaela; Hall, Bradford; Kulkarni, Ashok B; Gray, Robert D; Rossi, Adriano G; Witko-Sarsat, Véronique; Norez, Caroline; Becq, Frédéric; Ravel, Denis; Mottier, Dominique; Rault, Gilles

    2016-01-01

    (R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate. © 2016 S. Karger AG, Basel.

  15. R-Roscovitine simultaneously targets both the p53 and NF-kappaB pathways and causes potentiation of apoptosis: implications in cancer therapy.

    PubMed

    Dey, A; Wong, E T; Cheok, C F; Tergaonkar, V; Lane, D P

    2008-02-01

    Seliciclib (CYC202, R-Roscovitine) is a 2, 6, 9-substituted purine analog that is currently in phase II clinical trials as an anticancer agent. We show in this study that R-Roscovitine can downregulate nuclear factor-kappa B (NF-kappaB) activation in response to tumor necrosis factor (TNF)alpha and interleukin 1. Activation of p53-dependent transcription is not compromised when R-Roscovitine is combined with TNFalpha. We characterize the molecular mechanism governing NF-kappaB repression and show that R-Roscovitine inhibits the IkappaB kinase (IKK) kinase activity, which leads to defective IkappaBalpha phosphorylation, degradation and hence nuclear function of NF-kappaB. We further show that the downregulation of the NF-kappaB pathway is also at the level of p65 modification and that the phosphorylation of p65 at Ser 536 is repressed by R-Roscovitine. Consistent with repression of canonical IKK signaling pathway, the induction of NF-kappaB target genes monocyte chemoattractant protein, intercellular adhesion molecule-1, cyclooxygenase-2 and IL-8 is also inhibited by R-Roscovitine. We further show that treatment of cells with TNFalpha and R-Roscovitine causes potentiation of cell death. Based on these results, we suggest the potential use of R-Roscovitine as a bitargeted anticancer drug that functions by simultaneously causing p53 activation and NF-kappaB suppression. This study also provides mechanistic insight into the molecular mechanism of action of R-Roscovitine, thereby possibly explaining its anti-inflammatory properties.

  16. Novel R-roscovitine NO-donor hybrid compounds as potential pro-resolution of inflammation agents.

    PubMed

    Montanaro, Gabriele; Bertinaria, Massimo; Rolando, Barbara; Fruttero, Roberta; Lucas, Christopher D; Dorward, David A; Rossi, Adriano G; Megson, Ian L; Gasco, Alberto

    2013-04-01

    Neutrophils play a pivotal role in the pathophysiology of multiple human inflammatory diseases. Novel pharmacological strategies which drive neutrophils to undergo programmed cell death (apoptosis) have been shown to facilitate the resolution of inflammation. Both the cyclin-dependent kinase inhibitor (CDKi) R-roscovitine and nitric oxide (NO) have been shown to enhance apoptosis of neutrophils and possess pro-resolution of inflammation properties. In order to search for new multi-target pro-resolution derivatives, here we describe the design, synthesis and investigation of the biological potential of a small series of hybrid compounds obtained by conjugating R-roscovitine with two different NO-donor moieties (compounds 2, 9a, 9c). The synthesized compounds were tested as potential pro-resolution agents, with their ability to promote human neutrophil apoptosis evaluated. Both compound 9a and 9c showed an increased pro-apoptotic activity when compared with either R-roscovitine or structurally related compounds devoid of the ability to release NO (des-NO analogues). Inhibition of either NO-synthase or soluble guanylate cyclase did not affect the induction of apoptosis by the R-roscovitine derivatives, similar to that reported for other classes of NO-donors. In contrast the NO scavenger PTIO prevented the enhanced apoptosis seen with compound 9a over R-roscovitine. These data show that novel compounds such as CDKi-NO-donor hybrids may have additive pro-resolution of inflammation effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Novel R-roscovitine NO-donor hybrid compounds as potential pro-resolution of inflammation agents

    PubMed Central

    Montanaro, Gabriele; Bertinaria, Massimo; Rolando, Barbara; Fruttero, Roberta; Lucas, Christopher D.; Dorward, David A.; Rossi, Adriano G.; Megson, Ian L.; Gasco, Alberto

    2013-01-01

    Neutrophils play a pivotal role in the pathophysiology of multiple human inflammatory diseases. Novel pharmacological strategies which drive neutrophils to undergo programmed cell death (apoptosis) have been shown to facilitate the resolution of inflammation. Both the cyclin-dependent kinase inhibitor (CDKi) R-roscovitine and nitric oxide (NO) have been shown to enhance apoptosis of neutrophils and possess pro-resolution of inflammation properties. In order to search for new multi-target pro-resolution derivatives, here we describe the design, synthesis and investigation of the biological potential of a small series of hybrid compounds obtained by conjugating R-roscovitine with two different NO-donor moieties (compounds 2, 9a, 9c). The synthesized compounds were tested as potential pro-resolution agents, with their ability to promote human neutrophil apoptosis evaluated. Both compound 9a and 9c showed an increased pro-apoptotic activity when compared with either R-roscovitine or structurally related compounds devoid of the ability to release NO (des-NO analogues). Inhibition of either NO-synthase or soluble guanylate cyclase did not affect the induction of apoptosis by the R-roscovitine derivatives, similar to that reported for other classes of NO-donors. In contrast the NO scavenger PTIO prevented the enhanced apoptosis seen with compound 9a over R-roscovitine. These data show that novel compounds such as CDKi–NO-donor hybrids may have additive pro-resolution of inflammation effects. PMID:23394865

  18. R-Roscovitine (Seliciclib) prevents DNA damage-induced cyclin A1 upregulation and hinders non-homologous end-joining (NHEJ) DNA repair

    PubMed Central

    2010-01-01

    Background CDK-inhibitors can diminish transcriptional levels of cell cycle-related cyclins through the inhibition of E2F family members and CDK7 and 9. Cyclin A1, an E2F-independent cyclin, is strongly upregulated under genotoxic conditions and functionally was shown to increase NHEJ activity. Cyclin A1 outcompetes with cyclin A2 for CDK2 binding, possibly redirecting its activity towards DNA repair. To see if we could therapeutically block this switch, we analyzed the effects of the CDK-inhibitor R-Roscovitine on the expression levels of cyclin A1 under genotoxic stress and observed subsequent DNA damage and repair mechanisms. Results We found that R-Roscovitine alone was unable to alter cyclin A1 transcriptional levels, however it was able to reduce protein expression through a proteosome-dependent mechanism. When combined with DNA damaging agents, R-Roscovitine was able to prevent the DNA damage-induced upregulation of cyclin A1 on a transcriptional and post-transcriptional level. This, moreover resulted in a significant decrease in non-homologous end-joining (NHEJ) paired with an increase in DNA DSBs and overall DNA damage over time. Furthermore, microarray analysis demonstrated that R-Roscovitine affected DNA repair mechanisms in a more global fashion. Conclusions Our data reveal a new mechanism of action for R-Roscovitine on DNA repair through the inhibition of the molecular switch between cyclin A family members under genotoxic conditions resulting in reduced NHEJ capability. PMID:20684776

  19. R-Roscovitine (Seliciclib) prevents DNA damage-induced cyclin A1 upregulation and hinders non-homologous end-joining (NHEJ) DNA repair.

    PubMed

    Federico, Mario; Symonds, Catherine E; Bagella, Luigi; Rizzolio, Flavio; Fanale, Daniele; Russo, Antonio; Giordano, Antonio

    2010-08-04

    CDK-inhibitors can diminish transcriptional levels of cell cycle-related cyclins through the inhibition of E2F family members and CDK7 and 9. Cyclin A1, an E2F-independent cyclin, is strongly upregulated under genotoxic conditions and functionally was shown to increase NHEJ activity. Cyclin A1 outcompetes with cyclin A2 for CDK2 binding, possibly redirecting its activity towards DNA repair. To see if we could therapeutically block this switch, we analyzed the effects of the CDK-inhibitor R-Roscovitine on the expression levels of cyclin A1 under genotoxic stress and observed subsequent DNA damage and repair mechanisms. We found that R-Roscovitine alone was unable to alter cyclin A1 transcriptional levels, however it was able to reduce protein expression through a proteosome-dependent mechanism. When combined with DNA damaging agents, R-Roscovitine was able to prevent the DNA damage-induced upregulation of cyclin A1 on a transcriptional and post-transcriptional level. This, moreover resulted in a significant decrease in non-homologous end-joining (NHEJ) paired with an increase in DNA DSBs and overall DNA damage over time. Furthermore, microarray analysis demonstrated that R-Roscovitine affected DNA repair mechanisms in a more global fashion. Our data reveal a new mechanism of action for R-Roscovitine on DNA repair through the inhibition of the molecular switch between cyclin A family members under genotoxic conditions resulting in reduced NHEJ capability.

  20. State-dependent block of HERG potassium channels by R-roscovitine: implications for cancer therapy.

    PubMed

    Ganapathi, Sindura B; Kester, Mark; Elmslie, Keith S

    2009-04-01

    Human ether-a-go-go-related gene (HERG) potassium channel acts as a delayed rectifier in cardiac myocytes and is an important target for both pro- and antiarrhythmic drugs. Many drugs have been pulled from the market for unintended HERG block causing arrhythmias. Conversely, recent evidence has shown that HERG plays a role in cell proliferation and is overexpressed both in multiple tumor cell lines and in primary tumor cells, which makes HERG an attractive target for cancer treatment. Therefore, a drug that can block HERG but that does not induce cardiac arrhythmias would have great therapeutic potential. Roscovitine is a cyclin-dependent kinase (CDK) inhibitor that is in phase II clinical trials as an anticancer agent. In the present study we show that R-roscovitine blocks HERG potassium current (human embryonic kidney-293 cells stably expressing HERG) at clinically relevant concentrations. The block (IC(50) = 27 microM) was rapid (tau = 20 ms) and reversible (tau = 25 ms) and increased with channel activation, which supports an open channel mechanism. Kinetic study of wild-type and inactivation mutant HERG channels supported block of activated channels by roscovitine with relatively little effect on either closed or inactivated channels. A HERG gating model reproduced all roscovitine effects. Our model of open channel block by roscovitine may offer an explanation of the lack of arrhythmias in clinical trials using roscovitine, which suggests the utility of a dual CDK/HERG channel block as an adjuvant cancer therapy.

  1. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor

    PubMed Central

    Liu, Ning-Ai; Jiang, Hong; Ben-Shlomo, Anat; Wawrowsky, Kolja; Fan, Xue-Mo; Lin, Shuo; Melmed, Shlomo

    2011-01-01

    Cushing disease caused by adrenocorticotropin (ACTH)-secreting pituitary adenomas leads to hypercortisolemia predisposing to diabetes, hypertension, osteoporosis, central obesity, cardiovascular morbidity, and increased mortality. There is no effective pituitary targeted pharmacotherapy for Cushing disease. Here, we generated germline transgenic zebrafish with overexpression of pituitary tumor transforming gene (PTTG/securin) targeted to the adenohypophyseal proopiomelanocortin (POMC) lineage, which recapitulated early features pathognomonic of corticotroph adenomas, including corticotroph expansion and partial glucocorticoid resistance. Adult Tg:Pomc-Pttg fish develop neoplastic coticotrophs and pituitary cyclin E up-regulation, as well as metabolic disturbances mimicking hypercortisolism caused by Cushing disease. Early development of corticotroph pathologies in Tg:Pomc-Pttg embryos facilitated drug testing in vivo. We identified a pharmacologic CDK2/cyclin E inhibitor, R-roscovitine (seliciclib; CYC202), which specifically reversed corticotroph expansion in live Tg:Pomc-Pttg embryos. We further validated that orally administered R-roscovitine suppresses ACTH and corticosterone levels, and also restrained tumor growth in a mouse model of ACTH-secreting pituitary adenomas. Molecular analyses in vitro and in vivo showed that R-roscovitine suppresses ACTH expression, induces corticotroph tumor cell senescence and cell cycle exit by up-regulating p27, p21 and p57, and downregulates cyclin E expression. The results suggest that use of selective CDK inhibitors could effectively target corticotroph tumor growth and hormone secretion. PMID:21536883

  2. CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases.

    PubMed

    Bettayeb, K; Oumata, N; Echalier, A; Ferandin, Y; Endicott, J A; Galons, H; Meijer, L

    2008-10-02

    Among the ten pharmacological inhibitors of cyclin-dependent kinases (CDKs) currently in clinical trials, the purine roscovitine (CYC202, Seliciclib) is undergoing phase 2 trials against non-small-cell lung and nasopharyngeal cancers. An extensive medicinal chemistry study, designed to generate more potent analogues of roscovitine, led to the identification of an optimal substitution at the N6 position (compound CR8). An extensive selectivity study (108 kinases) highlights the exquisite selectivity of CR8 for CDK1/2/3/5/7/9. CR8 was 2- to 4-fold more potent than (R)-roscovitine at inhibiting these kinases. Cocrystal structures of (R)-CR8 and (R)-roscovitine with pCDK2/cyclin A showed that both inhibitors adopt essentially identical positions. The cellular effects of CR8 and (R)-roscovitine were investigated in human neuroblastoma SH-SY5Y cells. CR8 inhibited the phosphorylation of CDK1 and 9 substrates, with a 25-50 times higher potency compared to (R)-roscovitine. CR8 was consistently more potent than (R)-roscovitine at inducing apoptotic cell death parameters: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reduction (40-fold), lactate dehydrogenase release (35-fold), caspases activation (68-fold) and poly-(ADP-ribose)polymerase cleavage (50-fold). This improved cell death-inducing activity of CR8 over (R)-roscovitine was observed in 25 different cell lines. Altogether these results show that second-generation analogues of (R)-roscovitine can be designed with improved antitumor potential.

  3. Suppression of coronavirus replication by cyclophilin inhibitors.

    PubMed

    Tanaka, Yoshikazu; Sato, Yuka; Sasaki, Takashi

    2013-05-22

    Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS), feline infectious peritonitis (FIP), mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA), could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  4. Suppression of caspase-11 expression by histone deacetylase inhibitors

    SciTech Connect

    Heo, Hyejung; Yoo, Lang; Shin, Ki Soon; Kang, Shin Jung

    2009-01-02

    It has been well documented that histone deacetylase inhibitors suppress inflammatory gene expression. Therefore, we investigated whether histone deacetylase inhibitors modulate the expression of caspase-11 that is known as an inducible caspase regulating both inflammation and apoptosis. In the present study, we show that sodium butyrate and trichostatin A, two structurally unrelated inhibitors of histone deacetylase (HDAC), effectively suppressed the induction of caspase-11 in mouse embryonic fibroblasts stimulated with lipopolysaccharides. Sodium butyrate inhibited the activation of upstream signaling events for the caspase-11 induction such as activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, degradation of inhibitor of {kappa}B, and activation of nuclear factor-{kappa}B. These results suggest that the HDAC inhibitor suppressed cytosolic signaling events for the induction of caspase-11 by inhibiting the deacetylation of non-histone proteins.

  5. N-&-N, a new class of cell death-inducing kinase inhibitors derived from the purine roscovitine.

    PubMed

    Bettayeb, Karima; Sallam, Hatem; Ferandin, Yoan; Popowycz, Florence; Fournet, Guy; Hassan, Moustapha; Echalier, Aude; Bernard, Philippe; Endicott, Jane; Joseph, Benoît; Meijer, Laurent

    2008-09-01

    Cyclin-dependent kinases (CDKs) and their regulators show frequent abnormalities in tumors. Ten low molecular weight pharmacologic inhibitors of CDKs are currently in clinical trials against various cancers, including the 2,6,9-trisubstituted purine (R)-roscovitine (CYC202/Seliciclib). We here report the characterization of N-&-N1, a bioisoster of roscovitine displaying improved antitumoral properties. N-&-N1 shows exquisite selectivity for CDKs, with 2- to 3-fold enhanced potency compared with (R)-roscovitine. Inhibition of retinoblastoma protein phosphorylation and RNA polymerase II Ser2 phosphorylation in neuroblastoma SH-SY5Y cells exposed to N-&-N1 indicates that N-&-N1 is able to inhibit CDKs in a cellular context. N-&-N1 also down-regulates the expression of RNA polymerase. Cocrystal structures of N-&-N1 and (R)-roscovitine in complex with CDK2/cyclin A reveal that both inhibitors adopt similar binding modes. A competitive assay shows that, compared with (R)-roscovitine, N-&-N1 has reduced affinity for Erk2 and pyridoxal kinase. N-&-N1 triggers cell death in a panel of diverse cell lines. Cell death is accompanied by events characteristic of apoptosis: cytochrome c release, activation of effector caspases, and poly(ADP-ribose) polymerase cleavage. Induction of p53 and p21CIP1 and down-regulation of the Mcl-1 antiapoptotic factor were also observed. Studies in mice show that N-&-N1 has pharmacokinetics properties similar to those of (R)-roscovitine. Altogether, these results show that analogues of (R)-roscovitine can be designed with improved antitumor potential.

  6. Inhibitors of nucleotidyltransferase superfamily enzymes suppress herpes simplex virus replication.

    PubMed

    Tavis, John E; Wang, Hong; Tollefson, Ann E; Ying, Baoling; Korom, Maria; Cheng, Xiaohong; Cao, Feng; Davis, Katie L; Wold, William S M; Morrison, Lynda A

    2014-12-01

    Herpesviruses are large double-stranded DNA viruses that cause serious human diseases. Herpesvirus DNA replication depends on multiple processes typically catalyzed by nucleotidyltransferase superfamily (NTS) enzymes. Therefore, we investigated whether inhibitors of NTS enzymes would suppress replication of herpes simplex virus 1 (HSV-1) and HSV-2. Eight of 42 NTS inhibitors suppressed HSV-1 and/or HSV-2 replication by >10-fold at 5 μM, with suppression at 50 μM reaching ∼1 million-fold. Five compounds in two chemical families inhibited HSV replication in Vero and human foreskin fibroblast cells as well as the approved drug acyclovir did. The compounds had 50% effective concentration values as low as 0.22 μM with negligible cytotoxicity in the assays employed. The inhibitors suppressed accumulation of viral genomes and infectious particles and blocked events in the viral replication cycle before and during viral DNA replication. Acyclovir-resistant mutants of HSV-1 and HSV-2 remained highly sensitive to the NTS inhibitors. Five of six NTS inhibitors of the HSVs also blocked replication of another herpesvirus pathogen, human cytomegalovirus. Therefore, NTS enzyme inhibitors are promising candidates for new herpesvirus treatments that may have broad efficacy against members of the herpesvirus family.

  7. Mitochondrial Fission Inhibitors Suppress Endothelin-1-Induced Artery Constriction.

    PubMed

    Chen, Chang; Gao, Jin-Lai; Liu, Ming-Yu; Li, Shan-Liang; Xuan, Xiu-Chen; Zhang, Xin-Zi; Zhang, Xi-Yue; Wei, Yuan-Yuan; Zhen, Chang-Lin; Jin, Jing; Shen, Xin; Dong, De-Li

    2017-07-27

    Endothelin-1 is implicated in the pathogenesis of hypertension, but the underlying mechanisms remained elusive. Our previous study found that inhibition of mitochondrial fission of smooth muscle cells suppressed phenylephrine- and high K+-induced artery constriction. Here, we studied the effects of mitochondrial fission inhibitors on endothelin-1-induced vasoconstriction. The tension of rat mesenteric arteries and thoracic aorta was measured by using a multi-wire myograph system. Mitochondrial morphology of aortic smooth muscle cells was observed by using transmission electron microscopy. Dynamin-related protein-1 selective inhibitor mdivi-1 relaxed endothelin-1-induced constriction, and mdivi-1 pre-treatment prevented endothelin-1-induced constriction of rat mesenteric arteries with intact and denuded endothelium. Mdivi-1 had a similar inhibitory effect on rat thoracic aorta. Another mitochondrial fission inhibitor dynasore showed similar effects as mdivi-1 in rat mesenteric arteries. Mdivi-1 inhibited endothelin-1-induced increase of mitochondrial fission in smooth muscle cells of rat aorta. Rho-associated protein kinase inhibitor Y-27632 which relaxed endothelin-1-induced vasoconstriction inhibited endothelin-1-induced mitochondrial fission in smooth muscle cells of rat aorta. Endothelin-1 increases mitochondrial fission in vascular smooth muscle cells, and mitochondrial fission inhibitors suppress endothelin-1-induced vasoconstriction. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. CDK/CK1 inhibitors roscovitine and CR8 downregulate amplified MYCN in neuroblastoma cells.

    PubMed

    Delehouzé, C; Godl, K; Loaëc, N; Bruyère, C; Desban, N; Oumata, N; Galons, H; Roumeliotis, T I; Giannopoulou, E G; Grenet, J; Twitchell, D; Lahti, J; Mouchet, N; Galibert, M-D; Garbis, S D; Meijer, L

    2014-12-11

    To understand the mechanisms of action of (R)-roscovitine and (S)-CR8, two related pharmacological inhibitors of cyclin-dependent kinases (CDKs), we applied a variety of '-omics' techniques to the human neuroblastoma SH-SY5Y and IMR32 cell lines: (1) kinase interaction assays, (2) affinity competition on immobilized broad-spectrum kinase inhibitors, (3) affinity chromatography on immobilized (R)-roscovitine and (S)-CR8, (4) whole genome transcriptomics analysis and specific quantitative PCR studies, (5) global quantitative proteomics approach and western blot analysis of selected proteins. Altogether, the results show that the major direct targets of these two molecules belong to the CDKs (1,2,5,7,9,12), DYRKs, CLKs and CK1s families. By inhibiting CDK7, CDK9 and CDK12, these inhibitors transiently reduce RNA polymerase 2 activity, which results in downregulation of a large set of genes. Global transcriptomics and proteomics analysis converge to a central role of MYC transcription factors downregulation. Indeed, CDK inhibitors trigger rapid and massive downregulation of MYCN expression in MYCN-amplified neuroblastoma cells as well as in nude mice xenografted IMR32 cells. Inhibition of casein kinase 1 may also contribute to the antitumoral activity of (R)-roscovitine and (S)-CR8. This dual mechanism of action may be crucial in the use of these kinase inhibitors for the treatment of MYC-dependent cancers, in particular neuroblastoma where MYCN amplification is a strong predictor factor for high-risk disease.

  9. Selective Serotonin Reuptake Inhibitor Suppression of HIV Infectivity and Replication

    PubMed Central

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R.; Tustin, Nancy B.; Lai, Jian Ping; Metzger, David S.; Blume, Joshua; Douglas, Steven D.; Evans, Dwight L.

    2010-01-01

    Objective To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down regulate HIV infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/AIDS. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells (NK) cells and CD8+ lymphocytes, key regulators of HIV infection. Methods Ex-vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication, in 48 depressed and non-depressed women. For both the acute and chronic infection models, HIV reverse transcriptase (RT) activity was measured in the citalopram treatment condition and the control condition. Results The SSRI significantly downregulated the RT response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. Conclusions These studies suggest that an SSRI enhances NK/CD8 non-cytolytic HIV suppression in HIV/AIDS and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV. PMID:20947783

  10. Suppression of BRCA1 sensitizes cells to proteasome inhibitors

    PubMed Central

    Gu, Y; Bouwman, P; Greco, D; Saarela, J; Yadav, B; Jonkers, J; Kuznetsov, S G

    2014-01-01

    BRCA1 is a multifunctional protein best known for its role in DNA repair and association with breast and ovarian cancers. To uncover novel biologically significant molecular functions of BRCA1, we tested a panel of 198 approved and experimental drugs to inhibit growth of MDA-MB-231 breast cancer cells depleted for BRCA1 by siRNA. 26S proteasome inhibitors bortezomib and carfilzomib emerged as a new class of selective BRCA1-targeting agents. The effect was confirmed in HeLa and U2OS cancer cell lines using two independent siRNAs, and in mouse embryonic stem (ES) cells with inducible deletion of Brca1. Bortezomib treatment did not cause any increase in nuclear foci containing phosphorylated histone H2AX, and knockdown of BRCA2 did not entail sensitivity to bortezomib, suggesting that the DNA repair function of BRCA1 may not be directly involved. We found that a toxic effect of bortezomib on BRCA1-depleted cells is mostly due to deregulated cell cycle checkpoints mediated by RB1-E2F pathway and 53BP1. Similar to BRCA1, depletion of RB1 also conferred sensitivity to bortezomib, whereas suppression of E2F1 or 53BP1 together with BRCA1 reduced induction of apoptosis after bortezomib treatment. A gene expression microarray study identified additional genes activated by bortezomib treatment only in the context of inactivation of BRCA1 including a critical involvement of the ERN1-mediated unfolded protein response. Our data indicate that BRCA1 has a novel molecular function affecting cell cycle checkpoints in a manner dependent on the 26S proteasome activity. PMID:25522274

  11. ERK Signal Suppression and Sensitivity to CH5183284/Debio 1347, a Selective FGFR Inhibitor.

    PubMed

    Nakanishi, Yoshito; Mizuno, Hideaki; Sase, Hitoshi; Fujii, Toshihiko; Sakata, Kiyoaki; Akiyama, Nukinori; Aoki, Yuko; Aoki, Masahiro; Ishii, Nobuya

    2015-12-01

    Drugs that target specific gene alterations have proven beneficial in the treatment of cancer. Because cancer cells have multiple resistance mechanisms, it is important to understand the downstream pathways of the target genes and monitor the pharmacodynamic markers associated with therapeutic efficacy. We performed a transcriptome analysis to characterize the response of various cancer cell lines to a selective fibroblast growth factor receptor (FGFR) inhibitor (CH5183284/Debio 1347), a mitogen-activated protein kinase kinase (MEK) inhibitor, or a phosphoinositide 3-kinase (PI3K) inhibitor. FGFR and MEK inhibition produced similar expression patterns, and the extracellular signal-regulated kinase (ERK) gene signature was altered in several FGFR inhibitor-sensitive cell lines. Consistent with these findings, CH5183284/Debio 1347 suppressed phospho-ERK in every tested FGFR inhibitor-sensitive cell line. Because the mitogen-activated protein kinase (MAPK) pathway functions downstream of FGFR, we searched for a pharmacodynamic marker of FGFR inhibitor efficacy in a collection of cell lines with the ERK signature and identified dual-specificity phosphatase 6 (DUSP6) as a candidate marker. Although a MEK inhibitor suppressed the MAPK pathway, most FGFR inhibitor-sensitive cell lines are insensitive to MEK inhibitors and we found potent feedback activation of several pathways via FGFR. We therefore suggest that FGFR inhibitors exert their effect by suppressing ERK signaling without feedback activation. In addition, DUSP6 may be a pharmacodynamic marker of FGFR inhibitor efficacy in FGFR-addicted cancers.

  12. Suppression of microRNAs by dual-targeting and clustered Tough Decoy inhibitors

    PubMed Central

    Hollensen, Anne Kruse; Bak, Rasmus O.; Haslund, Didde; Mikkelsen, Jacob Giehm

    2013-01-01

    MicroRNAs (miRNAs) are ubiquitous regulators of gene expression that contribute to almost any cellular process. Methods for managing of miRNA activity are attracting increasing attention in relation to diverse experimental and therapeutic applications. DNA-encoded miRNA inhibitors expressed from plasmid or virus-based vectors provide persistent miRNA suppression and options of tissue-directed micromanaging. In this report, we explore the potential of exploiting short, hairpin-shaped RNAs for simultaneous suppression of two or more miRNAs. Based on the “Tough Decoy” (TuD) design, we create dual-targeting hairpins carrying two miRNA recognition sites and demonstrate potent co-suppression of different pairs of unrelated miRNAs by a single DNA-encoded inhibitor RNA. In addition, enhanced miRNA suppression is achieved by expression of RNA polymerase II-transcribed inhibitors carrying clustered TuD hairpins with up to a total of eight miRNA recognition sites. Notably, by expressing clustered TuD inhibitors harboring a single recognition site for each of a total of six miRNAs, we document robust parallel suppression of multiple miRNAs by inhibitor RNA molecules encoded by a single expression cassette. These findings unveil a new potential of TuD-based miRNA inhibitors and pave the way for standardizing synchronized suppression of families or clusters of miRNAs. PMID:23324610

  13. Suppression of dioxins by S-N inhibitors in pilot-scale experiments.

    PubMed

    Zhan, Ming-Xiu; Fu, Jian-Ying; Chen, Tong; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-08-01

    S-N inhibitors like thiourea and sewage sludge decomposition gases (SDG) are relatively novel dioxins suppressants and their efficiencies are proven in numerous lab-scale experiments. In this study, the suppression effects of both thiourea and SDG on the formation of dioxins are systematically tested in a pilot-scale system, situated at the bypass of a hazardous waste incinerator (HWI). Moreover, a flue gas recirculation system is used to get high dioxin suppression efficiencies. Operating experience shows that this system is capable of stable operation and to keep gaseous suppressant compounds at a high and desirable molar ratio (S + N)/Cl level in the flue gas. The suppression efficiencies of dioxins are investigated in flue gas both without and with addition of S-N inhibitors. A dioxin reduction of more than 80 % is already achieved when the (S + N)/Cl molar ratio is increased to ca. 2.20. When this (S + N)/Cl molar ratio has augmented to 4.18 by applying suppressant recirculation, the residual PCDD/Fs concentration in the flue gas shrank from 1.22 to 0.08 ng I-TEQ/Nm(3). Furthermore, the congener distribution of dioxins is analysed to find some possible explanation or suppression mechanism. In addition, a correlation analysis between (S + N)/Cl molar ratios and PCDD/Fs is also conducted to investigate the chief functional compounds for dioxin suppression.

  14. Converting enzyme inhibitor temocaprilat prevents high glucose-mediated suppression of human aortic endothelial cell proliferation.

    PubMed

    Yasunari, Kenichi; Maeda, Kensaku; Watanabe, Takanori; Nakamura, Munehiro; Asada, Akira; Yoshikawa, Junichi

    2003-12-01

    We examined the involvement of the oxidative stress in high glucose-induced suppression of human aortic endothelial cell proliferation. Chronic glucose treatment for 72 h concentration-dependently (5.6-22.2 mol/l) inhibited human coronary endothelial cell proliferation. Temocaprilat, an angiotensin-converting enzyme inhibitor, at 10 nmol/l to 1 micromol/l inhibited high glucose (22.2 mmol/l)-mediated suppression of human aortic endothelial cell proliferation. Temocaprilat at 1 micromol/l inhibited high glucose-induced membrane-bound protein kinase C activity in human aortic endothelial cells. The protein kinase C inhibitors calphostin C 100 nmol/l or chelerythrine 1 micromol/l inhibited high glucose-mediated suppression of human aortic endothelial cell proliferation. Chronic high glucose treatment for 72 h increased intracellular oxidative stress, directly measured by flow cytometry using carboxydichlorofluorescein diacetate bis-acetoxymethyl ester, and this increase was significantly suppressed by temocaprilat 10 nmol/l to 1 micromol/l. Bradykinin B2 receptor antagonist icatibant 100 nmol/l significantly reduced the action of temocaprilat; whereas bradykinin B1 receptor antagonist des-Arg9-Leu8-bradykinin 100 nmol/l had no effect. These findings suggest that high glucose inhibits human aortic endothelial cell proliferation and that the angiotensin-converting enzyme inhibitor temocaprilat inhibits high glucose-mediated suppression of human aortic endothelial cell proliferation, possibly through suppression of protein kinase C, bradykinin B2 receptors and oxidative stress.

  15. Potent microRNA suppression by RNA Pol II-transcribed 'Tough Decoy' inhibitors.

    PubMed

    Bak, Rasmus O; Hollensen, Anne Kruse; Primo, Maria Nascimento; Sørensen, Camilla Darum; Mikkelsen, Jacob Giehm

    2013-02-01

    MicroRNAs (miRNAs) are key regulators of gene expression and modulators of diverse biological pathways. Analyses of miRNA function as well as therapeutic managing of miRNAs rely on cellular administration of miRNA inhibitors which may be achieved by the use of viral vehicles. This study explores the miRNA-suppressive capacity of inhibitors expressed intracellularly from lentivirus-derived gene vectors. Superior activity of two decoy-type inhibitors, a "Bulged Sponge" with eight miRNA recognition sites and a hairpin-shaped "Tough Decoy" containing two miRNA recognition sites, is demonstrated in a side-by-side comparison of seven types of miRNA inhibitors transcribed as short RNAs from an RNA Pol III promoter. We find that lentiviral vectors expressing Tough Decoy inhibitors are less vulnerable than Bulged Sponge-encoding vectors to targeting by the cognate miRNA and less prone, therefore, to reductions in transfer efficiency. Importantly, it is demonstrated that Tough Decoy inhibitors retain their miRNA suppression capacity in the context of longer RNA transcripts expressed from an RNA Pol II promoter. Such RNA Pol II-transcribed Tough Decoy inhibitors are new tools in managing of miRNAs and may have potential for temporal and spatial regulation of miRNA activity as well as for therapeutic targeting of miRNAs that are aberrantly expressed in human disease.

  16. The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice.

    PubMed

    Yorifuji, Naoki; Inoue, Takuya; Iguchi, Munetaka; Fujiwara, Kaori; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kawakami, Ken; Abe, Yosuke; Takeuchi, Toshihisa; Higuchi, Kazuhide

    2016-02-01

    Patients with type 2 diabetes mellitus are known to have an increased risk of colorectal neoplasia. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been used as a new therapeutic tool for type 2 diabetes. Since the substrates for DPP-4 include intestinotrophic hormones and chemokines such as GLP-2 and stromal cell-derived factor-1 (SDF-1), which are associated with tumor progression, DPP-4 inhibitors may increase the risk of colorectal tumors. However, the influence of DPP-4 inhibitors on colorectal neoplasia in patients with type 2 diabetes remains unknown. In the present study, we show that long-term administration of a DPP-4 inhibitor, sitagliptin (STG), suppressed colon carcinogenesis in leptin-deficient (ob/ob) C57BL/6J mice. Colonic mucosal concentrations of glucagon‑like peptide-1 (GLP-1) and GLP-2 were significantly elevated in the ob/ob mice. However, mucosal GLP concentrations and the plasma level of SDF-1 were not affected by the administration of STG. Real‑time PCR analysis revealed that colonic mucosal IL-6 mRNA expression, which was significantly upregulated in the ob/ob mice, was significantly suppressed by the long-term administration of STG. These results suggest that a DPP-4 inhibitor may suppress colon carcinogenesis in mice with type 2 diabetes in a GLP-independent manner. Since DPP-4 has multiple biological functions, further studies analyzing other factors related to colon carcinogenesis are needed.

  17. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury.

    PubMed

    Zhou, Xiaogang; Zhou, Jian; Li, Xilei; Guo, Chang'an; Fang, Taolin; Chen, Zhengrong

    2011-07-29

    Previous studies have shown that GSK-3β inhibitor could reduce infarct volume after ischemia brain injury. However, the underlying mechanisms of GSK-3β inhibitor involving neuroprotection remain poorly understood. In the present study, we demonstrated that GSK-3β inhibitor suppressed insult-induced neuroinflammation in rat cortex by increasing autophagy activation in ischemic injury. Male rats were subjected to pMCAO (permanent middle cerebral artery occlusion) followed by treating with SB216763, a GSK-3β inhibitor. We found that insult-induced inflammatory response was significantly decreased by intraperitoneal infusion of SB216763 in rat cortex. A higher level of autophagy was also detected after SB216763 treatment. In the cultured primary microglia, SB216763 activated autophagy and suppressed inflammatory response. Importantly, inhibition of autophagy by Beclin1-siRNA increased inflammatory response in the SB216763-treated microglia. These data suggest that GSK-3β inhibitor suppressed neuroinflammation by activating autophagy after ischemic brain injury, thus offering a new target for prevention of ischemic brain injury.

  18. Inhibitors of Cytochrome P450 4A Suppress Angiogenic Responses

    PubMed Central

    Chen, Ping; Guo, Meng; Wygle, Dana; Edwards, Paul A.; Falck, John R.; Roman, Richard J.; Scicli, A. Guillermo

    2005-01-01

    Cytochrome P450 enzymes of the 4A family (CYP4A) convert arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) in blood vessels of several vascular beds. The present study examined the effects of inhibiting the formation of 20-HETE with N-hydroxy-N′-(4-butyl-2-methylphenol) formamidine (HET0016) on the mitogenic response of vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs) in vitro, and on growth factor-induced angiogenesis in the cornea of rats in vivo. HET0016 (10 μmol/L and 20 μg, respectively) abolished the mitogenic response to VEGF in HUVECs and the angiogenic response to VEGF, basic fibroblast growth factor, and epidermal growth factor in vivo by 80 to 90% (P < 0.001). Dibromododecenyl methylsulfonimide (DDMS), a structurally and mechanistically different inhibitor of 20-HETE synthesis, also abolished angiogenic responses when tested with VEGF. Additionally, administration of the stable 20-HETE agonist, 20-hydroxyeicosa-6(Z) 15(Z)-dienoic acid (WIT003) induced mitogenesis in HUVECs and angiogenesis in the rat cornea in vivo. We studied the ability of HET0016 to alter the angiogenic response in the rat cornea to human glioblastoma cancer cells (U251). When administered locally into the cornea, HET0016 (20 μg) reduced the angiogenic response to U251 cancer cells by 70%. These results suggest that a product of CYP4A product, possibly 20-HETE, plays a critical role in the regulation of angiogenesis and may provide a useful target for reduction of pathological angiogenesis. PMID:15681843

  19. Inhibitors of cytochrome P450 4A suppress angiogenic responses.

    PubMed

    Chen, Ping; Guo, Meng; Wygle, Dana; Edwards, Paul A; Falck, John R; Roman, Richard J; Scicli, A Guillermo

    2005-02-01

    Cytochrome P450 enzymes of the 4A family (CYP4A) convert arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) in blood vessels of several vascular beds. The present study examined the effects of inhibiting the formation of 20-HETE with N-hydroxy-N'-(4-butyl-2-methylphenol) formamidine (HET0016) on the mitogenic response of vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs) in vitro, and on growth factor-induced angiogenesis in the cornea of rats in vivo. HET0016 (10 micromol/L and 20 microg, respectively) abolished the mitogenic response to VEGF in HUVECs and the angiogenic response to VEGF, basic fibroblast growth factor, and epidermal growth factor in vivo by 80 to 90% (P < 0.001). Dibromododecenyl methylsulfonimide (DDMS), a structurally and mechanistically different inhibitor of 20-HETE synthesis, also abolished angiogenic responses when tested with VEGF. Additionally, administration of the stable 20-HETE agonist, 20-hydroxyeicosa-6(Z) 15(Z)-dienoic acid (WIT003) induced mitogenesis in HUVECs and angiogenesis in the rat cornea in vivo. We studied the ability of HET0016 to alter the angiogenic response in the rat cornea to human glioblastoma cancer cells (U251). When administered locally into the cornea, HET0016 (20 microg) reduced the angiogenic response to U251 cancer cells by 70%. These results suggest that a product of CYP4A product, possibly 20-HETE, plays a critical role in the regulation of angiogenesis and may provide a useful target for reduction of pathological angiogenesis.

  20. Suppression of mammalian bone growth by membrane transport inhibitors.

    PubMed

    Loqman, Mohamad Y; Bush, Peter G; Farquharson, Colin; Hall, Andrew C

    2013-03-01

    Bone lengthening during skeletal growth is driven primarily by the controlled enlargement of growth plate (GP) chondrocytes. The cellular mechanisms are unclear but membrane transporters are probably involved. We investigated the role of the Na(+)/H(+) antiporter (NHE1) and anion exchanger (AE2) in bone lengthening and GP chondrocyte hypertrophy in Sprague-Dawley 7-day-old rat (P7) bone rudiments using the inhibitors EIPA (5-(N-ethyl-N-isopropyl)amiloride) and DIDS (4,4-diidothiocyano-2,2-stilbenedisulphonate), respectively. We have also determined cell-associated levels of these transporters along the GP using fluorescent immunohistochemistry (FIHC). Culture of bones with EIPA or DIDS inhibited rudiment growth (50% at approx. 250 and 25 µM, respectively). Both decreased the size of the hypertrophic zone (P < 0.05) but had no effect on overall length or cell density of the GP. In situ chondrocyte volume in proliferative and hypertrophic zones was decreased (P < 0.01) with EIPA but not DIDS. FIHC labeling of NHE1 was relatively high and constant along the GP but declined steeply in the late hypertrophic zone. In contrast, AE2 labeling was relatively low in proliferative zone cells but increased (P < 0.05) reaching a maximum in the early hypertrophic zone, before falling rapidly in the late hypertrophic zone suggesting AE2 might regulate the transition phase of chondrocytes between proliferative and hypertrophic zones. The inhibition of bone growth by EIPA may be due to a reduction to chondrocyte volume set-point. However the effect of DIDS was unclear but could result from inhibition of AE2 and blocking of the transition phase. These results demonstrate that NHE1 and AE2 are important regulators of bone growth. Copyright © 2012 Wiley Periodicals, Inc.

  1. Suppression of FVIII Inhibitor Formation in Hemophilic Mice by Delivery of Transgene Modified Apoptotic Fibroblasts

    PubMed Central

    Su, Rui-Jun; Epp, Angela; Latchman, Yvette; Bolgiano, Doug; Pipe, Steven W; Josephson, Neil C

    2009-01-01

    The development of inhibitory antibodies to factor VIII (FVIII) is currently the most significant complication of FVIII replacement therapy in the management of patients with severe hemophilia A. Immune tolerance protocols for the eradication of inhibitors require daily delivery of intravenous FVIII for at least 6 months and are unsuccessful in 20–40% of treated patients. We hypothesize that tolerance can be induced more efficiently and reliably by delivery of FVIII antigen within autologous apoptotic cells (ACs). In this study, we demonstrated suppression of the T cell and inhibitor responses to FVIII by infusion of FVIII expression vector modified apoptotic syngeneic fibroblasts in both naive and preimmunized hemophilia A mice. ACs without FVIII antigen exerted modest generalized immune suppression mediated by anti-inflammatory signals. However, FVIII expressing apoptotic syngeneic fibroblasts produced much stronger antigen-specific immune suppression. Mice treated with these fibroblasts generated CD4+ T cells that suppressed the immune response to FVIII after adoptive transfer into naive recipients and antigen-specific CD4+CD25+ regulatory T cells (Tregs) that inhibited the proliferation of FVIII responsive effector T cells in vitro. These preclinical results demonstrate the potential for using FVIII vector modified autologous ACs to treat high-titer inhibitors in patients with hemophilia A. PMID:19755963

  2. Syk inhibitors interfere with erythrocyte membrane modification during P falciparum growth and suppress parasite egress.

    PubMed

    Pantaleo, Antonella; Kesely, Kristina R; Pau, Maria Carmina; Tsamesidis, Ioannis; Schwarzer, Evelin; Skorokhod, Oleksii A; Chien, Huynh D; Ponzi, Marta; Bertuccini, Lucia; Low, Philip S; Turrini, Francesco M

    2017-08-24

    Band 3 (also known as the anion exchanger, SLCA1, AE1) constitutes the major attachment site of the spectrin-based cytoskeleton to the erythrocyte's lipid bilayer and thereby contributes critically to the stability of the red cell membrane. During the intraerythrocytic stage of Plasmodium falciparum's lifecycle, band 3 becomes tyrosine phosphorylated in response to oxidative stress, leading to a decrease in its affinity for the spectrin/actin cytoskeleton and causing global membrane destabilization. Because this membrane weakening is hypothesized to facilitate parasite egress and the consequent dissemination of released merozoites throughout the bloodstream, we decided to explore which tyrosine kinase inhibitors might block the kinase-induced membrane destabilization. We demonstrate here that multiple Syk kinase inhibitors both prevent parasite-induced band 3 tyrosine phosphorylation and inhibit parasite-promoted membrane destabilization. We also show that the same Syk kinase inhibitors suppress merozoite egress near the end of the parasite's intraerythrocytic lifecycle. Because the entrapped merozoites die when prevented from escaping their host erythrocytes and because some Syk inhibitors have displayed long-term safety in human clinical trials, we suggest Syk kinase inhibitors constitute a promising class of antimalarial drugs that can suppress parasitemia by inhibiting a host target that cannot be mutated by the parasite to evolve drug resistance. © 2017 by The American Society of Hematology.

  3. A DPP-4 inhibitor suppresses fibrosis and inflammation on experimental autoimmune myocarditis in mice.

    PubMed

    Hirakawa, Hiroyuki; Zempo, Hirofumi; Ogawa, Masahito; Watanabe, Ryo; Suzuki, Jun-Ichi; Akazawa, Hiroshi; Komuro, Issei; Isobe, Mitsuaki

    2015-01-01

    Myocarditis is a critical inflammatory disorder which causes life-threatening conditions. No specific or effective treatment has been established. DPP-4 inhibitors have salutary effects not only on type 2 diabetes but also on certain cardiovascular diseases. However, the role of a DPP-4 inhibitor on myocarditis has not been investigated. To clarify the effects of a DPP-4 inhibitor on myocarditis, we used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. EAM mice were assigned to the following groups: EAM mice group treated with a DPP-4 inhibitor (linagliptin) (n = 19) and those untreated (n = 22). Pathological analysis revealed that the myocardial fibrosis area ratio in the treated group was significantly lower than in the untreated group. RT-PCR analysis demonstrated that the levels of mRNA expression of IL-2, TNF-α, IL-1β and IL-6 were significantly lower in the treated group than in the untreated group. Lymphocyte proliferation assay showed that treatment with the DPP-4 inhibitor had no effect on antigen-induced spleen cell proliferation. Administration of the DPP-4 inhibitor remarkably suppressed cardiac fibrosis and reduced inflammatory cytokine gene expression in EAM mice. Thus, the agents present in DPP-4 inhibitors may be useful to treat and/or prevent clinical myocarditis.

  4. Sirtuin inhibitors, EX527 and AGK2, suppress cell migration by inhibiting HSF1 protein stability.

    PubMed

    Kim, Hyun-Woo; Kim, Soo-A; Ahn, Sang-Gun

    2016-01-01

    The histone deacetylases (HDACs), Sirtuin 1 (Sirt1) and Sirt2, play crucial roles in many biological processes, including cell proliferation, differentiation and apoptosis. HDAC inhibitors have been considered as a potential therapeutic approach for various types of cancers. Here, we demonstrated that the Sirt1 and Sirt2 inhibitors EX527 and AGK2 suppressed cell growth and caused G1 phase arrest by inhibiting the expression of Cdk6 and/or Cdk4. An agar colony formation assay revealed that EX527 and AGK2 decreased colony formation in soft agar. Furthermore, EX527 and AGK2 pretreatment inhibited the expression of HSF1 and HSP27 and induced HSF1 ubiquitination. Sirt1 overexpression increased HSF1 expression and/or stabilization and induced cell migration in a scratch assay. Overall, these results indicate that EX527 and AGK2 suppress cell growth and migration by inhibiting HSF1 protein stability.

  5. CDK/CK1 inhibitors roscovitine and CR8 down-regulate amplified MYCN in neuroblastoma cells

    PubMed Central

    DELEHOUZE, Claire; GODL, Klaus; LOAEC, Nadège; BRUYERE, Céline; DESBAN, Nathalie; OUMATA, Nassima; GALONS, Hervé; ROUMELIOTIS, Theodoros I.; GIANNOPOULOU, Eugenia G.; GRENET, Jose; TWITCHELL, Devin; LAHTI, Jill; MOUCHET, Nicolas; GALIBERT, Marie-Dominique; GARBIS, Spiros D.; MEIJER, Laurent

    2014-01-01

    To understand the mechanisms of action of (R)-roscovitine and (S)-CR8, two related pharmacological inhibitors of cyclin-dependent kinases (CDKs), we applied a variety of ‘-omics’ techniques to the human neuroblastoma SH-SY5Y and IMR32 cell lines: [1] kinase interaction assays, [2] affinity competition on immobilized broad-spectrum kinase inhibitors, [3] affinity chromatography on immobilized (R)-roscovitine and (S)-CR8, [4] whole genome transcriptomics analysis and specific quantitative PCR studies, [5] global quantitative proteomics approach and Western blot analysis of selected proteins. Altogether the results show that the major direct targets of these two molecules belong to the CDKs (1, 2, 5, 7, 9, 12), DYRKs, CLKs, CK1s families. By inhibiting CDK7, CDK9 and CDK12, these inhibitors transiently reduce RNA polymerase 2 activity, which results in down-regulation of a large set of genes. Global transcriptomics and proteomics analysis converge to a central role of MYC transcription factors down-regulation. Indeed CDK inhibitors trigger rapid and massive down-regulation of MYCN expression in MYCN amplified neuroblastoma cells as well as in nude mice xenografted IMR32 cells. Inhibition of casein kinase 1 may also contribute to the antitumoral activity of (R)-roscovitine and (S)-CR8. This dual mechanism of action may be crucial in the use of these kinase inhibitors for the treatment of MYC-dependent cancers, in particular neuroblastoma where MYCN amplification is a strong predictor factor for high-risk disease. PMID:24317512

  6. The Cox inhibitor, sulindac sulfide inhibits EP4 expression and suppresses the growth of glioblastoma cells

    PubMed Central

    Kambe, Atsushi; Yoshioka, Hiroki; Kamitani, Hideki; Watanabe, Takashi; Baek, Seung Joon; Eling, Thomas E.

    2009-01-01

    EP4 expression in human glioblastoma cells correlates with growth on soft agar. The cyclooxygenase (COX) inhibitor, sulindac sulfide, first altered specificity protein-1 (Sp-1) and, early growth response gene-1 (Egr1) expression, then increased the expression of nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) and activating transcription factor-3 (ATF3), and then decreased EP4 expression. EP4 suppression was dependent on blocking the Sp-1 binding sites in the human EP4 promoter. Mutation in the Sp-1 sites in EP4 altered the promoter activity and abolished sulindac sulfide effects. The inhibitory effect of sulindac sulfide on EP4 expression was reversed by PD98059, an MEK-1/Erk inhibitor. Sp-1 phosphorylation was dependent on sulindac sulfide-induced Erk activation. ChIP assay confirmed that Sp-1 phosphorylation decreases Sp-1 binding to DNA and leads to the suppression of EP4. Inhibition of cell growth on soft agar assay was found to be a highly complex process and appears to require not only the inhibition of COX activity but also increased expression of NAG-1 and ATF3 and suppression of EP4 expression. Our data suggest that the suppression of EP4 expression by sulindac sulfide represents a new mechanism for understanding the tumor suppressor activity. PMID:19934343

  7. PKC/MEK inhibitors suppress oxaliplatin-induced neuropathy and potentiate the antitumor effects.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Tani, Tadahumi; Shimaoka, Hirotaka; Suzuyama, Naohiro; Sakamoto, Kotaro; Fujita, Arisa; Ogawa, Naoki; Itoh, Tatsuki; Imano, Motohiro; Funakami, Yoshinori; Ichida, Seiji; Satou, Takao; Nishida, Shozo

    2015-07-01

    Oxaliplatin is a key drug commonly used in colorectal cancer treatment. Despite high clinical efficacy, its therapeutic application is limited by common, dose-limiting occurrence of neuropathy. As usual symptomatic neuropathy treatments fail to improve the patients' condition, there is an urgent need to advance our understanding of the pathogenesis of neuropathy to propose effective therapy and ensure adequate pain management. Oxaliplatin-induced neuropathy was recently reported to be associated with protein kinase C (PKC) activation. It is unclear, however, whether PKC inhibition can prevent neuropathy. In our current studies, we found that a PKC inhibitor, tamoxifen, inhibited oxaliplatin-induced neuropathy via the PKC/extracellular signal-regulated kinase (ERK)/c-Fos pathway in lumbar spinal cords (lumbar segments 4-6). Additionally, tamoxifen was shown to act in synergy with oxaliplatin to inhibit growth in tumor cells-implanted mice. Moreover, mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, PD0325901, suppressed oxaliplatin-induced neuropathy and enhanced oxaliplatin efficacy. Our results indicate that oxaliplatin-induced neuropathy is associated with PKC/ERK/c-Fos pathway in lumbar spinal cord. Additionally, we demonstrate that disruption of this pathway by PKC and MEK inhibitors suppresses oxaliplatin-induced neuropathy, thereby suggesting that PKC and MEK inhibitors may be therapeutically useful in preventing oxaliplatin-induced neuropathy and could aid in combination antitumor pharmacotherapy. © 2014 UICC.

  8. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer.

    PubMed

    Papadakis, Andreas I; Sun, Chong; Knijnenburg, Theo A; Xue, Yibo; Grernrum, Wipawadee; Hölzel, Michael; Nijkamp, Wouter; Wessels, Lodewyk F A; Beijersbergen, Roderick L; Bernards, Rene; Huang, Sidong

    2015-04-01

    Recurrent inactivating mutations in components of SWI/SNF chromatin-remodeling complexes have been identified across cancer types, supporting their roles as tumor suppressors in modulating oncogenic signaling pathways. We report here that SMARCE1 loss induces EGFR expression and confers resistance to MET and ALK inhibitors in non-small cell lung cancers (NSCLCs). We found that SMARCE1 binds to regulatory regions of the EGFR locus and suppresses EGFR transcription in part through regulating expression of Polycomb Repressive Complex component CBX2. Addition of the EGFR inhibitor gefitinib restores the sensitivity of SMARCE1-knockdown cells to MET and ALK inhibitors in NSCLCs. Our findings link SMARCE1 to EGFR oncogenic signaling and suggest targeted treatment options for SMARCE1-deficient tumors.

  9. Adherence and Viral Suppression among Infants and Young Children Initiating Protease Inhibitor-Based Antiretroviral Therapy

    PubMed Central

    Teasdale, Chloe A; Abrams, Elaine J; Coovadia, Ashraf; Strehlau, Renate; Martens, Leigh; Kuhn, Louise

    2012-01-01

    Background High levels of adherence to antiretroviral therapy (ART) are considered necessary to achieve viral suppression. We analyzed data from a cohort of HIV-infected children who were less than 2 years of age receiving protease inhibitor (PI)-based ART to investigate associations between viral suppression and adherence ascertained using different methods. Methods Data were from the pre-randomization phase of a clinical trial in South Africa of HIV-infected children initiating either ritonavir-boosted lopinavir (LPV/r)- or ritonavir-based ART. At scheduled visits during the first 24 weeks of enrollment, study pharmacists measured quantities of medications returned (MR) to the clinic. Caregivers answered questionnaires on missed doses and adherence barriers. Associations between adherence and viral suppression (HIV-1 RNA <400 copies/mL) were investigated by regimen. Results By 24 weeks, 197/269 (73%) children achieved viral suppression. There was no association between viral suppression and caregiver reported missed doses or adherence barriers. For children receiving the LPV/r-based regimen, MR adherence to each of the three drugs in the regimen (LPV/r, lamivudine or stavudine) individually or together was associated with viral suppression at different adherence thresholds. For example, <85% adherence to any of the three medications significantly increased odds of lack of viral suppression (Odds Ratio [OR] 2.30 [95% CI: 1.30–4.07], p=.004). In contrast, for children receiving the ritonavir-based regimen, there was no consistent pattern of association between MR and viral suppression. Conclusions Caregiver reports of missed doses did not predict virologic response to treatment. Pharmacist medication reconciliation correlated strongly with virologic response for children taking a LPV/r-based regimen and appears to be a valid method for measuring pediatric adherence. PMID:23249913

  10. IDO1 suppresses inhibitor development in hemophilia A treated with factor VIII

    PubMed Central

    Matino, Davide; Gargaro, Marco; Santagostino, Elena; Di Minno, Matteo N.D.; Castaman, Giancarlo; Morfini, Massimo; Rocino, Angiola; Mancuso, Maria E.; Di Minno, Giovanni; Coppola, Antonio; Talesa, Vincenzo N.; Volpi, Claudia; Vacca, Carmine; Orabona, Ciriana; Iannitti, Rossana; Mazzucconi, Maria G.; Santoro, Cristina; Tosti, Antonella; Chiappalupi, Sara; Sorci, Guglielmo; Tagariello, Giuseppe; Belvini, Donata; Radossi, Paolo; Landolfi, Raffaele; Fuchs, Dietmar; Boon, Louis; Pirro, Matteo; Marchesini, Emanuela; Grohmann, Ursula; Puccetti, Paolo; Iorio, Alfonso; Fallarino, Francesca

    2015-01-01

    The development of inhibitory antibodies to factor VIII (FVIII) is a major obstacle in using this clotting factor to treat individuals with hemophilia A. Patients with a congenital absence of FVIII do not develop central tolerance to FVIII, and therefore, any control of their FVIII-reactive lymphocytes relies upon peripheral tolerance mechanisms. Indoleamine 2,3-dioxygenase 1 (IDO1) is a key regulatory enzyme that supports Treg function and peripheral tolerance in adult life. Here, we investigated the association between IDO1 competence and inhibitor status by evaluating hemophilia A patients harboring F8-null mutations that were either inhibitor negative (n = 50) or positive (n = 50). We analyzed IDO1 induction, expression, and function for any relationship with inhibitor occurrence by multivariable logistic regression and determined that defective TLR9-mediated activation of IDO1 induction is associated with an inhibitor-positive status. Evaluation of experimental hemophilic mouse models with or without functional IDO1 revealed that tryptophan metabolites, which result from IDO1 activity, prevent generation of anti-FVIII antibodies. Moreover, treatment of hemophilic animals with a TLR9 agonist suppressed FVIII-specific B cells by a mechanism that involves IDO1-dependent induction of Tregs. Together, these findings indicate that strategies aimed at improving IDO1 function should be further explored for preventing or eradicating inhibitors to therapeutically administered FVIII protein. PMID:26426076

  11. Catalytic inhibitors of DNA topoisomerase II suppress the androgen receptor signaling and prostate cancer progression

    PubMed Central

    Li, Haolong; Xie, Ning; Gleave, Martin E.; Dong, Xuesen

    2015-01-01

    Although the new generation of androgen receptor (AR) antagonists like enzalutamide (ENZ) prolong survival of metastatic castration-resistant prostate cancer (CRPC), AR-driven tumors eventually recur indicating that additional therapies are required to fully block AR function. Since DNA topoisomerase II (Topo II) was demonstrated to be essential for AR to initiate gene transcription, this study tested whether catalytic inhibitors of Topo II can block AR signaling and suppress ENZ-resistant CRPC growth. Using multiple prostate cancer cell lines, we showed that catalytic Topo II inhibitors, ICRF187 and ICRF193 inhibited transcription activities of the wild-type AR, mutant ARs (F876L and W741C) and the AR-V7 splice variant. ICRF187 and ICRF193 decreased AR recruitment to target promoters and reduced AR nuclear localization. Both ICRF187 and ICRF193 also inhibited cell proliferation and delayed cell cycling at the G2/M phase. ICRF187 inhibited tumor growth of castration-resistant LNCaP and 22RV1 xenografts as well as ENZ-resistant MR49F xenografts. We conclude that catalytic Topo II inhibitors can block AR signaling and inhibit tumor growth of CRPC xenografts, identifying a potential co-targeting approach using these inhibitors in combination with AR pathway inhibitors in CRPC. PMID:26009876

  12. Suppression of heavy drinking and alcohol seeking by a selective ALDH-2 inhibitor.

    PubMed

    Arolfo, Maria P; Overstreet, David H; Yao, Lina; Fan, Peidong; Lawrence, Andrew J; Tao, Guoxin; Keung, Wing-Ming; Vallee, Bert L; Olive, M Foster; Gass, Justin T; Rubin, Emanuel; Anni, Helen; Hodge, Clyde W; Besheer, Joyce; Zablocki, Jeff; Leung, Kwan; Blackburn, Brent K; Lange, Louis G; Diamond, Ivan

    2009-11-01

    Inherited human aldehyde dehydrogenase 2 (ALDH-2) deficiency reduces the risk for alcoholism. Kudzu plants and extracts have been used for 1,000 years in traditional Chinese medicine to treat alcoholism. Kudzu contains daidzin, which inhibits ALDH-2 and suppresses heavy drinking in rodents. Decreased drinking due to ALDH-2 inhibition is attributed to aversive properties of acetaldehyde accumulated during alcohol consumption. However, daidzin can reduce drinking in some rodents without necessarily increasing acetaldehyde. Therefore, a selective ALDH-2 inhibitor might affect other metabolic factors involved in regulating drinking. Aldehyde dehydrogenase 2 inhibitors were synthesized based on the co-crystal structure of ALDH-2 and daidzin. We tested the efficacy of a highly selective reversible ALDH-2 inhibitor, CVT-10216, in models of moderate and high alcohol drinking rats. We studied 2-bottle choice and deprivation-induced drinking paradigms in Fawn Hooded (FH) rats, operant self-administration in Long Evans (LE), FH, and inbred P (iP) rats and in cue-induced reinstatement in iP rats. We also assayed blood acetaldehyde levels as well as dopamine (DA) release in the nucleus accumbens (NAc) and tested possible rewarding/aversive effects of the inhibitor in a conditioned place preference (CPP) paradigm. CVT-10216 increases acetaldehyde after alcohol gavage and inhibits 2-bottle choice alcohol intake in heavy drinking rodents, including deprivation-induced drinking. Moreover, CVT-10216 also prevents operant self-administration and eliminates cue-induced reinstatement of alcohol seeking even when alcohol is not available (i.e., no acetaldehyde). Alcohol stimulates DA release in the NAc, which is thought to contribute to increased drinking and relapse in alcoholism. CVT-10216 prevents alcohol-induced increases in NAc DA without changing basal levels. CVT-10216 does not show rewarding or aversive properties in the CPP paradigm at therapeutic doses. Our findings suggest

  13. Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells.

    PubMed

    Lan, Huiyin; Tang, Zaiming; Jin, Hongchuan; Sun, Yi

    2016-04-11

    MLN4924 is a recently discovered small molecule inhibitor of NEDD8-Activating Enzyme (NAE). Because cullin RING ligase (CRL), the largest family of E3 ubiquitin ligase, requires cullin neddylation for its activity, MLN4924, therefore, acts as an indirect inhibitor of CRL by blocking cullin neddylation. Given that CRLs components are up-regulated, whereas neddylation modification is over-activated in a number of human cancers, MLN4924 was found to be effective in growth suppression of cancer cells. Whether MLN4924 is effective against gastric cancer cells, however, remains elusive. Here we showed that in gastric cancer cells, MLN4924 rapidly inhibited cullin 1 neddylation and remarkably suppressed growth and survival as well as migration in a dose-and time-dependent manner. Mechanistic studies in combination with siRNA knockdown-based rescue experiments revealed that MLN4924 induced the accumulation of a number of CRL substrates, including CDT1/ORC1, p21/p27, and PHLPP1 to trigger DNA damage response and induce growth arrest at the G2/M phase, to induce senescence, as well as autophagy, respectively. MLN4924 also significantly suppressed migration by transcriptionally activating E-cadherin and repressing MMP-9. Taken together, our study suggest that neddylation modification and CRL E3 ligase are attractive gastric cancer targets, and MLN4924 might be further developed as a potent therapeutic agent for the treatment of gastric cancer.

  14. The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo.

    PubMed

    Akhmetshina, Dinara; Zakharov, Andrei; Vinokurova, Daria; Nasretdinov, Azat; Valeeva, Guzel; Khazipov, Roustem

    2016-06-01

    Inhibition of serotonin uptake, which causes an increase in extracellular serotonin levels, disrupts the development of thalamocortical barrel maps in neonatal rodents. Previous in vitro studies have suggested that the disruptive effect of excessive serotonin on barrel map formation involves a depression at thalamocortical synapses. However, the effects of serotonin uptake inhibitors on the early thalamocortical activity patterns in the developing barrel cortex in vivo remain largely unknown. Here, using extracellular recordings of the local field potentials and multiple unit activity (MUA) we explored the effects of the selective serotonin reuptake inhibitor (SSRI) citalopram (10-20mg/kg, intraperitoneally) on sensory evoked activity in the barrel cortex of neonatal (postnatal days P2-5) rats in vivo. We show that administration of citalopram suppresses the amplitude and prolongs the delay of the sensory evoked potentials, reduces the power and frequency of the early gamma oscillations, and suppresses sensory evoked and spontaneous neuronal firing. In the adolescent P21-29 animals, citalopram affected neither sensory evoked nor spontaneous activity in barrel cortex. We suggest that suppression of the early thalamocortical activity patterns contributes to the disruption of the barrel map development caused by SSRIs and other conditions elevating extracellular serotonin levels.

  15. Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice.

    PubMed

    Huang, Chao-Cheng; Wang, Shuo-Yu; Lin, Li-Ling; Wang, Pei-Wen; Chen, Ting-Ya; Hsu, Wen-Ming; Lin, Tsu-Kung; Liou, Chia-Wei; Chuang, Jiin-Haur

    2015-10-01

    Neuroblastoma is characterized by a wide range of clinical manifestations and associated with poor prognosis when there is amplification of MYCN oncogene or high expression of Myc oncoproteins. In a previous in vitro study, we found that the glycolytic inhibitor 2-deoxyglucose (2DG) could suppress the growth of neuroblastoma cells, particularly in those with MYCN amplification. In this study, we established a mouse model of neuroblastoma xenografts with SK-N-DZ and SK-N-AS cells treated with 2DG by intraperitoneal injection twice a week for 3 weeks at 100 or 500 mg/kg body weight. We found that 2DG was effective in suppressing the growth of both MYCN-amplified SK-N-DZ and MYCN-non-amplified SK-N-AS neuroblastoma xenografts, which was associated with downregulation of HIF-1α, PDK1 and c-Myc, and a reduction in the number of tumor blood vessels. In vitro study showed that 2DG can suppress proliferation, cause apoptosis and reduce migration of murine endothelial cells, with inhibition of the formation of lamellipodia and filopodia and disorganization of F-actin filaments. The results suggest that 2DG might simultaneously target cancer cells and endothelial cells in the neuroblastoma xenografts in mice regardless of the status of MYCN amplification, providing a potential therapeutic opportunity to use 2DG or other glycolytic inhibitors for the treatment of patients with refractory neuroblastoma.

  16. Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice

    PubMed Central

    Huang, Chao-Cheng; Wang, Shuo-Yu; Lin, Li-Ling; Wang, Pei-Wen; Chen, Ting-Ya; Hsu, Wen-Ming; Lin, Tsu-Kung; Liou, Chia-Wei; Chuang, Jiin-Haur

    2015-01-01

    ABSTRACT Neuroblastoma is characterized by a wide range of clinical manifestations and associated with poor prognosis when there is amplification of MYCN oncogene or high expression of Myc oncoproteins. In a previous in vitro study, we found that the glycolytic inhibitor 2-deoxyglucose (2DG) could suppress the growth of neuroblastoma cells, particularly in those with MYCN amplification. In this study, we established a mouse model of neuroblastoma xenografts with SK-N-DZ and SK-N-AS cells treated with 2DG by intraperitoneal injection twice a week for 3 weeks at 100 or 500 mg/kg body weight. We found that 2DG was effective in suppressing the growth of both MYCN-amplified SK-N-DZ and MYCN-non-amplified SK-N-AS neuroblastoma xenografts, which was associated with downregulation of HIF-1α, PDK1 and c-Myc, and a reduction in the number of tumor blood vessels. In vitro study showed that 2DG can suppress proliferation, cause apoptosis and reduce migration of murine endothelial cells, with inhibition of the formation of lamellipodia and filopodia and disorganization of F-actin filaments. The results suggest that 2DG might simultaneously target cancer cells and endothelial cells in the neuroblastoma xenografts in mice regardless of the status of MYCN amplification, providing a potential therapeutic opportunity to use 2DG or other glycolytic inhibitors for the treatment of patients with refractory neuroblastoma. PMID:26398947

  17. A Novel Malate Dehydrogenase 2 Inhibitor Suppresses Hypoxia-Inducible Factor-1 by Regulating Mitochondrial Respiration

    PubMed Central

    Jang, Kusik; Kim, Inhyub; Kim, Bo-Kyung; Lee, Kyeong; Won, Misun

    2016-01-01

    We previously reported that hypoxia-inducible factor (HIF)-1 inhibitor LW6, an aryloxyacetylamino benzoic acid derivative, inhibits malate dehydrogenase 2 (MDH2) activity during the mitochondrial tricarboxylic acid (TCA) cycle. In this study, we present a novel MDH2 inhibitor compound 7 containing benzohydrazide moiety, which was identified through structure-based virtual screening of chemical library. Similar to LW6, compound 7 inhibited MDH2 activity in a competitive fashion, thereby reducing NADH level. Consequently, compound 7 reduced oxygen consumption and ATP production during the mitochondrial respiration cycle, resulting in increased intracellular oxygen concentration. Therefore, compound 7 suppressed the accumulation of HIF-1α and expression of its target genes, vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1). Moreover, reduction in ATP content activated AMPK, thereby inactivating ACC and mTOR the downstream pathways. As expected, compound 7 exhibited significant growth inhibition of human colorectal cancer HCT116 cells. Compound 7 demonstrated substantial anti-tumor efficacy in an in vivo xenograft assay using HCT116 mouse model. Taken together, a novel MDH2 inhibitor, compound 7, suppressed HIF-1α accumulation via reduction of oxygen consumption and ATP production, integrating metabolism into anti-cancer efficacy in cancer cells. PMID:27611801

  18. MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo.

    PubMed

    Fontan, Lorena; Yang, Chenghua; Kabaleeswaran, Venkataraman; Volpon, Laurent; Osborne, Michael J; Beltran, Elena; Garcia, Monica; Cerchietti, Leandro; Shaknovich, Rita; Yang, Shao Ning; Fang, Fang; Gascoyne, Randy D; Martinez-Climent, Jose Angel; Glickman, J Fraser; Borden, Katherine; Wu, Hao; Melnick, Ari

    2012-12-11

    MALT1 cleavage activity is linked to the pathogenesis of activated B cell-like diffuse large B cell lymphoma (ABC-DLBCL), a chemoresistant form of DLBCL. We developed a MALT1 activity assay and identified chemically diverse MALT1 inhibitors. A selected lead compound, MI-2, featured direct binding to MALT1 and suppression of its protease function. MI-2 concentrated within human ABC-DLBCL cells and irreversibly inhibited cleavage of MALT1 substrates. This was accompanied by NF-κB reporter activity suppression, c-REL nuclear localization inhibition, and NF-κB target gene downregulation. Most notably, MI-2 was nontoxic to mice, and displayed selective activity against ABC-DLBCL cell lines in vitro and xenotransplanted ABC-DLBCL tumors in vivo. The compound was also effective against primary human non-germinal center B cell-like DLBCLs ex vivo.

  19. Suppression of hepatitis C virus replication by cyclin-dependent kinase inhibitors.

    PubMed

    Munakata, Tsubasa; Inada, Makoto; Tokunaga, Yuko; Wakita, Takaji; Kohara, Michinori; Nomoto, Akio

    2014-08-01

    Hepatitis C virus (HCV) is a causative agent of chronic hepatitis. Although the standard therapy for HCV-infected patients consists of pegylated interferon plus ribavirin, this treatment is associated with serious side effects and high costs, and fails in some patients infected with specific HCV genotypes. To address this problem, we are developing small-molecule inhibitors of cyclin-dependent kinases (CDKs) as novel anti-HCV drug candidates. Previous data showed that HCV replication is inhibited by retinoblastoma protein, which is itself inactivated by CDK-mediated phosphorylation. Here, we report that CDK inhibitors suppress HCV replication in vitro and in vivo, and that CDK4 is required for efficient HCV replication. These findings shed light on the development of novel anti-HCV drugs that target host factors.

  20. Bromodomain and Extra-terminal (BET) Protein Inhibitors Suppress Chondrocyte Differentiation and Restrain Bone Growth.

    PubMed

    Niu, Ningning; Shao, Rui; Yan, Guang; Zou, Weiguo

    2016-12-23

    Small molecule inhibitors for bromodomain and extra-terminal (BET) proteins have recently emerged as potential therapeutic agents in clinical trials for various cancers. However, to date, it is unknown whether these inhibitors have side effects on bone structures. Here, we report that inhibition of BET bromodomain proteins may suppress chondrocyte differentiation and restrain bone growth. We generated a luciferase reporter system using the chondrogenic cell line ATDC5 in which the luciferase gene was driven by the promoter of Col2a1, an elementary collagen of the chondrocyte. The Col2a1-luciferase ATDC5 system was used for rapidly screening both activators and repressors of human collagen Col2a1 gene expression, and we found that BET bromodomain inhibitors reduce the Col2a1-luciferase. Consistent with the luciferase assay, BET inhibitors decrease the expression of Col2a1 Furthermore, we constructed a zebrafish line in which the enhanced green fluorescent protein (EGFP) expression was driven by col2a1 promoter. The transgenic (col2a1-EGFP) zebrafish line demonstrated that BET inhibitors I-BET151 and (+)-JQ1 may affect EGFP expression in zebrafish. Furthermore, we found that I-BET151 and (+)-JQ1 may affect chondrocyte differentiation in vitro and inhibit zebrafish growth in vivo Mechanistic analysis revealed that BET inhibitors influenced the depletion of RNA polymerase II from the Col2a1 promoter. Collectively, these results suggest that BET bromodomain inhibition may have side effects on skeletal bone structures. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling

    PubMed Central

    Vin, Harina; Ojeda, Sandra S; Ching, Grace; Leung, Marco L; Chitsazzadeh, Vida; Dwyer, David W; Adelmann, Charles H; Restrepo, Monica; Richards, Kristen N; Stewart, Larissa R; Du, Lili; Ferguson, Scarlett B; Chakravarti, Deepavali; Ehrenreiter, Karin; Baccarini, Manuela; Ruggieri, Rosamaria; Curry, Jonathan L; Kim, Kevin B; Ciurea, Ana M; Duvic, Madeleine; Prieto, Victor G; Ullrich, Stephen E; Dalby, Kevin N; Flores, Elsa R; Tsai, Kenneth Y

    2013-01-01

    Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001 PMID:24192036

  2. Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer

    PubMed Central

    Yamamoto, Keisuke; Tateishi, Keisuke; Kudo, Yotaro; Hoshikawa, Mayumi; Tanaka, Mariko; Nakatsuka, Takuma; Fujiwara, Hiroaki; Miyabayashi, Koji; Takahashi, Ryota; Tanaka, Yasuo; Ijichi, Hideaki; Nakai, Yousuke; Isayama, Hiroyuki; Morishita, Yasuyuki; Aoki, Taku; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro; Fukayama, Masashi; Koike, Kazuhiko

    2016-01-01

    Inhibitors of bromodomain and extraterminal domain (BET) proteins, a family of chromatin reader proteins, have therapeutic efficacy against various malignancies. However, the detailed mechanisms underlying the anti-tumor effects in distinct tumor types remain elusive. Here, we show a novel antitumor mechanism of BET inhibition in pancreatic ductal adenocarcinoma (PDAC). We found that JQ1, a BET inhibitor, decreased desmoplastic stroma, a hallmark of PDAC, and suppressed the growth of patient-derived tumor xenografts (PDX) of PDACs. In vivo antitumor effects of JQ1 were not always associated with the JQ1 sensitivity of respective PDAC cells, and were rather dependent on the suppression of tumor-promoting activity in cancer-associated fibroblasts (CAFs). JQ1 inhibited Hedgehog and TGF-β pathways as potent regulators of CAF activation and suppressed the expression of α-SMA, extracellular matrix, cytokines, and growth factors in human primary CAFs. Consistently, conditioned media (CM) from CAFs promoted the proliferation of PDAC cells along with the activation of ERK, AKT, and STAT3 pathways, though these effects were suppressed when CM from JQ1-treated CAFs was used. Mechanistically, chromatin immunoprecipitation experiments revealed that JQ1 reduced TGF-β–dependent gene expression by disrupting the recruitment of the transcriptional machinery containing BET proteins. Finally, combination therapy with gemcitabine plus JQ1 showed greater efficacy than gemcitabine monotherapy against PDAC in vivo. Thus, our results reveal BET proteins as the critical regulators of CAF-activation and also provide evidence that stromal remodeling by epigenetic modulators can be a novel therapeutic option for PDAC. PMID:27528027

  3. Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer.

    PubMed

    Yamamoto, Keisuke; Tateishi, Keisuke; Kudo, Yotaro; Hoshikawa, Mayumi; Tanaka, Mariko; Nakatsuka, Takuma; Fujiwara, Hiroaki; Miyabayashi, Koji; Takahashi, Ryota; Tanaka, Yasuo; Ijichi, Hideaki; Nakai, Yousuke; Isayama, Hiroyuki; Morishita, Yasuyuki; Aoki, Taku; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro; Fukayama, Masashi; Koike, Kazuhiko

    2016-09-20

    Inhibitors of bromodomain and extraterminal domain (BET) proteins, a family of chromatin reader proteins, have therapeutic efficacy against various malignancies. However, the detailed mechanisms underlying the anti-tumor effects in distinct tumor types remain elusive. Here, we show a novel antitumor mechanism of BET inhibition in pancreatic ductal adenocarcinoma (PDAC). We found that JQ1, a BET inhibitor, decreased desmoplastic stroma, a hallmark of PDAC, and suppressed the growth of patient-derived tumor xenografts (PDX) of PDACs. In vivo antitumor effects of JQ1 were not always associated with the JQ1 sensitivity of respective PDAC cells, and were rather dependent on the suppression of tumor-promoting activity in cancer-associated fibroblasts (CAFs). JQ1 inhibited Hedgehog and TGF-β pathways as potent regulators of CAF activation and suppressed the expression of α-SMA, extracellular matrix, cytokines, and growth factors in human primary CAFs. Consistently, conditioned media (CM) from CAFs promoted the proliferation of PDAC cells along with the activation of ERK, AKT, and STAT3 pathways, though these effects were suppressed when CM from JQ1-treated CAFs was used. Mechanistically, chromatin immunoprecipitation experiments revealed that JQ1 reduced TGF-β-dependent gene expression by disrupting the recruitment of the transcriptional machinery containing BET proteins. Finally, combination therapy with gemcitabine plus JQ1 showed greater efficacy than gemcitabine monotherapy against PDAC in vivo. Thus, our results reveal BET proteins as the critical regulators of CAF-activation and also provide evidence that stromal remodeling by epigenetic modulators can be a novel therapeutic option for PDAC.

  4. Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A.

    PubMed Central

    Hu, D E; Fan, T P

    1995-01-01

    1. Vascular endothelial growth factor (VEGF) is a heparin-binding angiogenic factor which specifically acts on endothelial cells via distinct membrane-spanning tyrosine kinase receptors. Here we used the rat sponge implant model to test the hypothesis that the angiogenic activity of VEGF can be suppressed by protein tyrosine kinase (PTK) inhibitors. 2. Neovascular responses in subcutaneous sponge implants were determined by measurements of relative sponge blood flow by use of a 133Xe clearance technique, and confirmed by histological studies and morphometric analysis. 3. Daily local administration of 250 ng VEGF165 accelerated the rate of 133Xe clearance from the sponges and induced an intense neovascularisation. This VEGF165-induced angiogenesis was inhibited by daily co-administration of the selective PTK inhibitor, lavendustin A (10 micrograms), but not its negative control, lavendustin B (10 micrograms). Blood flow measurements and morphometric analysis of 8-day-old sponges showed that lavendustin A reduced the 133Xe clearance of VEGF165-treated sponges from 32.9 +/- 1.5% to 20.9 +/- 1.6% and the total fibrovascular growth area from 62.4 +/- 6.1% to 21.6 +/- 6.8% (n = 12, P < 0.05). 4. Co-injection of suramin (3 mg), an inhibitor of heparin-binding growth factors, also suppressed the VEGF165-elicited neovascular response. In contrast, neither lavendustin A nor suramin produced any effect on the basal sponge-induced angiogenesis. 5. When given alone, low doses of VEGF165 (25 ng) or basic fibroblast growth factor (bFGF; 10 ng) did not modify the basal sponge-induced neovascularisation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 2 PMID:7533611

  5. The novel combination of dual mTOR inhibitor AZD2014 and pan-PIM inhibitor AZD1208 inhibits growth in acute myeloid leukemia via HSF pathway suppression.

    PubMed

    Harada, Masako; Benito, Juliana; Yamamoto, Shinichi; Kaur, Surinder; Arslan, Dirim; Ramirez, Santiago; Jacamo, Rodrigo; Platanias, Leonidas; Matsushita, Hiromichi; Fujimura, Tsutomu; Kazuno, Saiko; Kojima, Kensuke; Tabe, Yoko; Konopleva, Marina

    2015-11-10

    Mammalian target of rapamycin (mTOR) signaling is a critical pathway in the biology of acute myeloid leukemia (AML). Proviral integration site for moloney murine leukemia virus (PIM) serine/threonine kinase signaling takes part in various pathways exerting tumorigenic properties. We hypothesized that the combination of a PIM kinase inhibitor with an mTOR inhibitor might have complementary growth-inhibitory effects against AML. The simultaneous inhibition of the PIM kinase by pan-PIM inhibitor AZD1208 and of mTOR by selective mTORC1/2 dual inhibitor AZD2014 exerted anticancer properties in AML cell lines and in cells derived from primary AML samples with or without supportive stromal cell co-culture, leading to suppressed proliferation and increased apoptosis. The combination of AZD1208 and AZD2014 rapidly activated AMPKα, a negative regulator of translation machinery through mTORC1/2 signaling in AML cells; profoundly inhibited AKT and 4EBP1 activation; and suppressed polysome formation. Inhibition of both mTOR and PIM counteracted induction of heat-shock family proteins, uncovering the master negative regulation of heat shock factor 1 (HSF1), the dominant transcription factor controlling cellular stress responses. The novel combination of the dual mTOR inhibitor and pan-PIM inhibitor synergistically inhibited AML growth by effectively reducing protein synthesis through heat shock factor pathway suppression.

  6. HS-173, a novel PI3K inhibitor suppresses EMT and metastasis in pancreatic cancer

    PubMed Central

    Fang, Zhenghuan; Yan, Hong Hua; Son, Mi Kwon; Kim, Soo Jung; Kim, Juyoung; Park, Jung Hee; Lim, Joo Han; Hong, Sungwoo; Hong, Soon-Sun

    2016-01-01

    Pancreatic cancer is one of the most aggressive solid malignancies prone to metastasis. Epithelial-mesenchymal transition (EMT) contributes to cancer invasiveness and drug resistance. In this study, we investigated whether HS-173, a novel PI3K inhibitor blocked the process of EMT in pancreatic cancer. HS-173 inhibited the growth of pancreatic cancer cells in a dose- and time-dependent manner. Moreover, it significantly suppressed the TGF-β-induced migration and invasion, as well as reversed TGF-β-induced mesenchymal cell morphology. Also, HS-173 reduced EMT by increasing epithelial markers and decreasing the mesenchymal markers by blocking the PI3K/AKT/mTOR and Smad2/3 signaling pathways in pancreatic cancer cells. In addition, HS-173 clearly suppressed tumor growth without drug toxicity in both xenograft and orthotopic mouse models. Furthermore, to explore the anti-metastatic effect of HS-173, we established pancreatic cancer metastatic mouse models and found that it significantly inhibited metastatic dissemination of the primary tumor to liver and lung. Taken together, our findings demonstrate that HS-173 can efficiently suppress EMT and metastasis by inhibiting PI3K/AKT/mTOR and Smad2/3 signaling pathways, suggesting it can be a potential candidate for the treatment of advanced stage pancreatic cancer. PMID:27793006

  7. HS-173, a novel PI3K inhibitor suppresses EMT and metastasis in pancreatic cancer.

    PubMed

    Rumman, Marufa; Jung, Kyung Hee; Fang, Zhenghuan; Yan, Hong Hua; Son, Mi Kwon; Kim, Soo Jung; Kim, Juyoung; Park, Jung Hee; Lim, Joo Han; Hong, Sungwoo; Hong, Soon-Sun

    2016-11-22

    Pancreatic cancer is one of the most aggressive solid malignancies prone to metastasis. Epithelial-mesenchymal transition (EMT) contributes to cancer invasiveness and drug resistance. In this study, we investigated whether HS-173, a novel PI3K inhibitor blocked the process of EMT in pancreatic cancer. HS-173 inhibited the growth of pancreatic cancer cells in a dose- and time-dependent manner. Moreover, it significantly suppressed the TGF-β-induced migration and invasion, as well as reversed TGF-β-induced mesenchymal cell morphology. Also, HS-173 reduced EMT by increasing epithelial markers and decreasing the mesenchymal markers by blocking the PI3K/AKT/mTOR and Smad2/3 signaling pathways in pancreatic cancer cells. In addition, HS-173 clearly suppressed tumor growth without drug toxicity in both xenograft and orthotopic mouse models. Furthermore, to explore the anti-metastatic effect of HS-173, we established pancreatic cancer metastatic mouse models and found that it significantly inhibited metastatic dissemination of the primary tumor to liver and lung. Taken together, our findings demonstrate that HS-173 can efficiently suppress EMT and metastasis by inhibiting PI3K/AKT/mTOR and Smad2/3 signaling pathways, suggesting it can be a potential candidate for the treatment of advanced stage pancreatic cancer.

  8. Suppression of chlorinated aromatics by nitrogen and sulphur inhibitors in iron ore sintering.

    PubMed

    Zhang, Yadi; Buekens, Alfons; Liu, Lina; Zhang, Yibo; Zeng, Xiaolan; Sun, Yifei

    2016-07-01

    Dioxins generated by iron and steel industry account for the majority of industrial dioxins emissions. This study compares the performance of different additives (including calcium sulphate dehydrate CaSO4·2H2O; calcium polysulphide CaSx; ammonium sulphate (NH4)2SO4; 4-methylthiosemicarbazide H3C-SC(NH)2NH2 and thiourea H2NCSNH2) as suppressant of chlorinated aromatics in iron ore sintering. The formation of chlorobenzenes (CBz) and polychlorinated biphenyls (PCBs), used as surrogates for dioxins, was suppressed significantly in the present of various inhibitors (1 wt%) except for CaSO4·2H2O. Moreover, a larger molar ratio of (S + N)/Cl leads to a higher suppression efficiency, so that the inhibition capacity of (NH4)2SO4 on both CBz and PCBs was weaker than H2NCSNH2. The generation of dioxin-like PCBs (Co- or dl-PCB) was also analysed.

  9. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma

    PubMed Central

    Vleeshouwer-Neumann, Terra; Phelps, Michael; Bammler, Theo K.; MacDonald, James W.; Jenkins, Isaac; Chen, Eleanor Y.

    2015-01-01

    Embryonal rhabdomyosarcoma (ERMS) is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs) in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat) in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP) studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients. PMID:26636678

  10. Combination of PIM and JAK2 inhibitors synergistically suppresses cell proliferation and overcomes drug resistance of myeloproliferative neoplasms

    PubMed Central

    Greco, Rita; Li, Zhifang; Sun, Fangxian; Barberis, Claude; Tabart, Michel; Patel, Vinod; Schio, Laurent; Hurley, Raelene; Chen, Bo; Cheng, Hong; Lengauer, Christoph; Pollard, Jack; Watters, James; Garcia-Echeverria, Carlos; Wiederschain, Dmitri; Adrian, Francisco; Zhang, JingXin

    2014-01-01

    Inhibitors of JAK2 kinase are emerging as an important treatment modality for myeloproliferative neoplasms (MPN). However, similar to other kinase inhibitors, resistance to JAK2 inhibitors may eventually emerge through a variety of mechanisms. Effective drug combination is one way to enhance therapeutic efficacy and combat resistance against JAK2 inhibitors. To identify potential combination partners for JAK2 compounds in MPN cell lines, we performed pooled shRNA screen targeting 5,000 genes in the presence or absence of JAK2 blockade. One of the top hits identified was MYC, an oncogenic transcription factor that is difficult to inhibit directly, but could be targeted by modulation of upstream regulatory elements such as kinases. We demonstrate herein that PIM kinase inhibitors efficiently suppress MYC protein levels in MPN cell lines. Overexpression of MYC restores the viability of PIM inhibitor-treated cells, revealing causal relationship between MYC down-regulation and cell growth inhibition by PIM compounds. Combination of various PIM inhibitors with a JAK2 inhibitor results in significant synergistic growth inhibition of multiple MPN cancer cell lines and induction of apoptosis. Mechanistic studies revealed strong downregulation of phosphorylated forms of S6 and 4EBP1 by JAK2/PIM inhibitor combination treatment. Finally, such combination was effective in eradicating in vitro JAK2 inhibitor-resistant MPN clones, where MYC is consistently up-regulated. These findings demonstrate that simultaneous suppression of JAK2 and PIM kinase activity by small molecule inhibitors is more effective than either agent alone in suppressing MPN cell growth. Our data suggest that JAK2 and PIM combination might warrant further investigation for the treatment of JAK2-driven hematologic malignancies. PMID:24830942

  11. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification.

    PubMed

    Lin, Yi-Ching; Lin, Yu-Chih; Huang, Ming-Yii; Kuo, Po-Lin; Wu, Cheng-Chin; Lee, Min-Sheng; Hsieh, Chong-Chao; Kuo, Hsuan-Fu; Kuo, Chang-Hung; Tsai, Wen-Chan; Hung, Chih-Hsing

    2017-03-01

    The treatment of rheumatoid arthritis (RA) with tumor necrosis factor-alpha (TNF-α) inhibitors could lead to adverse effects. Therefore, the identification of downstream therapeutic targets is important. Monocyte chemoattractant protein-1 (MCP-1, also called CCL2) is related to RA disease activity, and epigenetic modifications are hypothesized to regulate gene expression in RA pathogenesis. We studied the effects of two TNF-α inhibitors, etanercept and adalimumab, on CCL2 expression and the potentially associated intracellular mechanisms, including epigenetic regulation. Etanercept and adalimumab decreased CCL2 production in THP-1 cells and human primary monocytes, as detected using enzyme-linked immunosorbent assays, and these changes in the CCL2 levels were independent of the TNF-α levels. Etanercept and adalimumab suppressed mitogen-activated protein kinase (MAPK) phospho-p38, phospho-JNK, phospho-ERK and nuclear factor-κB (NF-κB) phospho-p65, as demonstrated using western blot analyses. The investigation of epigenetic modifications using chromatin immunoprecipitation revealed that etanercept and adalimumab down-regulated acetylation of histone (H)3 and H4 in the CCL2 promoter region by decreasing the recruitment of the NF-κB associated acetyltransferases p300, CBP and PCAF. Etanercept and adalimumab also down-regulated trimethylation of H3K4, H3K27, H3K36 and H3K79 in the CCL2 promoter region by decreasing the expression of the related methyltransferases WDR5 and Smyd2. We demonstrated that TNF-α inhibitors exert immunomodulatory effects on CCL2 expression in human monocytes via MAPKs, NF-κB and epigenetic modifications. These findings broaden the mechanistic knowledge related to TNF-α inhibitors and provide novel therapeutic targets for RA.

  12. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice

    PubMed Central

    Green, Eric M.; Wakimoto, Hiroko; Anderson, Robert L.; Evanchik, Marc J.; Gorham, Joshua M.; Harrison, Brooke C.; Henze, Marcus; Kawas, Raja; Oslob, Johan D.; Rodriguez, Hector M.; Song, Yonghong; Wan, William; Leinwand, Leslie A.; Spudich, James A.; McDowell, Robert S.; Seidman, J. G.; Seidman, Christine E.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM. PMID:26912705

  13. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice.

    PubMed

    Green, Eric M; Wakimoto, Hiroko; Anderson, Robert L; Evanchik, Marc J; Gorham, Joshua M; Harrison, Brooke C; Henze, Marcus; Kawas, Raja; Oslob, Johan D; Rodriguez, Hector M; Song, Yonghong; Wan, William; Leinwand, Leslie A; Spudich, James A; McDowell, Robert S; Seidman, J G; Seidman, Christine E

    2016-02-05

    Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM.

  14. PRMT5-Selective Inhibitors Suppress Inflammatory T Cell Responses and Experimental Autoimmune Encephalomyelitis.

    PubMed

    Webb, Lindsay M; Amici, Stephanie A; Jablonski, Kyle A; Savardekar, Himanshu; Panfil, Amanda R; Li, Linsen; Zhou, Wei; Peine, Kevin; Karkhanis, Vrajesh; Bachelder, Eric M; Ainslie, Kristy M; Green, Patrick L; Li, Chenglong; Baiocchi, Robert A; Guerau-de-Arellano, Mireia

    2017-02-15

    In the autoimmune disease multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), expansion of pathogenic, myelin-specific Th1 cell populations drives active disease; selectively targeting this process may be the basis for a new therapeutic approach. Previous studies have hinted at a role for protein arginine methylation in immune responses, including T cell-mediated autoimmunity and EAE. However, a conclusive role for the protein arginine methyltransferase (PRMT) enzymes that catalyze these reactions has been lacking. PRMT5 is the main PRMT responsible for symmetric dimethylation of arginine residues of histones and other proteins. PRMT5 drives embryonic development and cancer, but its role in T cells, if any, has not been investigated. In this article, we show that PRMT5 is an important modulator of CD4(+) T cell expansion. PRMT5 was transiently upregulated during maximal proliferation of mouse and human memory Th cells. PRMT5 expression was regulated upstream by the NF-κB pathway, and it promoted IL-2 production and proliferation. Blocking PRMT5 with novel, highly selective small molecule PRMT5 inhibitors severely blunted memory Th expansion, with preferential suppression of Th1 cells over Th2 cells. In vivo, PRMT5 blockade efficiently suppressed recall T cell responses and reduced inflammation in delayed-type hypersensitivity and clinical disease in EAE mouse models. These data implicate PRMT5 in the regulation of adaptive memory Th cell responses and suggest that PRMT5 inhibitors may be a novel therapeutic approach for T cell-mediated inflammatory disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. PRMT5-Selective Inhibitors Suppress Inflammatory T Cell Responses and Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Webb, Lindsay M.; Amici, Stephanie A.; Jablonski, Kyle A.; Savardekar, Himanshu; Panfil, Amanda R.; Li, Linsen; Zhou, Wei; Peine, Kevin; Karkhanis, Vrajesh; Bachelder, Eric M.; Ainslie, Kristy M.; Green, Patrick L.; Li, Chenglong; Baiocchi, Robert A.

    2017-01-01

    In the autoimmune disease multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), expansion of pathogenic, myelin-specific Th1 cell populations drives active disease; selectively targeting this process may be the basis for a new therapeutic approach. Previous studies have hinted at a role for protein arginine methylation in immune responses, including T cell–mediated autoimmunity and EAE. However, a conclusive role for the protein arginine methyltransferase (PRMT) enzymes that catalyze these reactions has been lacking. PRMT5 is the main PRMT responsible for symmetric dimethylation of arginine residues of histones and other proteins. PRMT5 drives embryonic development and cancer, but its role in T cells, if any, has not been investigated. In this article, we show that PRMT5 is an important modulator of CD4+ T cell expansion. PRMT5 was transiently upregulated during maximal proliferation of mouse and human memory Th cells. PRMT5 expression was regulated upstream by the NF-κB pathway, and it promoted IL-2 production and proliferation. Blocking PRMT5 with novel, highly selective small molecule PRMT5 inhibitors severely blunted memory Th expansion, with preferential suppression of Th1 cells over Th2 cells. In vivo, PRMT5 blockade efficiently suppressed recall T cell responses and reduced inflammation in delayed-type hypersensitivity and clinical disease in EAE mouse models. These data implicate PRMT5 in the regulation of adaptive memory Th cell responses and suggest that PRMT5 inhibitors may be a novel therapeutic approach for T cell–mediated inflammatory disease. PMID:28087667

  16. Inhibitor of 5-lipoxygenase, zileuton, suppresses prostate cancer metastasis by upregulating E-cadherin and paxillin.

    PubMed

    Meng, Zhe; Cao, Rui; Yang, Zhonghua; Liu, Tao; Wang, Yongzhi; Wang, Xinghuan

    2013-12-01

    To investigate the expression of 5-lipoxygenase (5-LOX) in metastatic prostate cancer and whether zileuton, the inhibitor of 5-LOX, plays a role in the metastasis of prostate cancer. An enzyme-linked immunosorbent assay was used to measure 5-hydroxyeicosatetraenoic acid (5-HETE) in patient and TRAMP mice blood samples. Kaplan-Meier analysis and the log-rank test were used to analyze the survival of the mice. Immunofluorescence and immunohistochemistry were used to assay the expression of 5-LOX in the samples. After treatment with 10 μM zileuton, cell motility and the invasion of PC-3 cells were assayed using immunofluorescence, Western blotting, and transwell. TRAMP mice were treated with zileuton (600 mg/kg and 1200 mg/kg) at 24 weeks of age. Ten weeks later, the mice were killed, and the tumors (size and number) were measured. The levels of 5-HETE were significantly greater in the TRAMP mice with metastasis than in the tumors in situ. However, no such difference was found in the human samples. The lifespan of the mice was shorter at high levels of 5-HETE (>2.4 ng/mL). The expression of 5-LOX in the metastasis sample was notably greater than that in the tumors in situ. After treatment with zileuton, the expression of paxillin and E-cadherin in PC-3 and LNCaP cells was upregulated. In the transwell experiments, the motility of PC-3 was suppressed after treatment with zileuton. The mice treated with a high level of zileuton (1200 mg/kg) also had fewer tumors; however, the size did not show a significant difference. The inhibitor of 5-LOX, zileuton, can suppress prostate cancer metastasis by repaired expression of E-cadherin and paxillin. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  17. The p53 inhibitor, pifithrin-{alpha}, suppresses self-renewal of embryonic stem cells

    SciTech Connect

    Abdelalim, Essam Mohamed; Tooyama, Ikuo

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We determine the role of p53 in ES cells under unstressful conditions. Black-Right-Pointing-Pointer PFT-{alpha} suppresses ES cell proliferation. Black-Right-Pointing-Pointer PFT-{alpha} induces ES cell cycle arrest. Black-Right-Pointing-Pointer PFT-{alpha} downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-{alpha}, an inhibitor of p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-{alpha} resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-{alpha} caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.

  18. CT-2576, an inhibitor of phospholipid signaling, suppresses constitutive and induced expression of human immunodeficiency virus.

    PubMed Central

    Leung, D W; Peterson, P K; Weeks, R; Gekker, G; Chao, C C; Kaplan, A H; Balantac, N; Tompkins, C; Underiner, G E; Bursten, S

    1995-01-01

    Viruses such as human immunodeficiency virus (HIV) require cellular activation for expression. Cellular activation in lymphoid cells is associated with augmented accumulation of certain phosphatidic acid (PA) species derived from the hydrolysis of glycan phosphatidylinositol (GPI). This suggests that activation of a phospholipid pathway may play a role in initiation of viral replication. To test this hypothesis, we examined the effect of tat gene expression on the production of cellular PA species, as the Tat protein is essential for HIV expression and has been implicated in activating the expression of multiple host cellular genes. Expression of tat increased the expression of PA. We then tested whether synthetic inhibitors of PA metabolism would inhibit activation of the HIV long terminal repeat by Tat and tumor necrosis factor alpha (TNF-alpha). CT-2576 suppressed both PA generation induced by Tat and HIV long terminal repeat-directed gene expression in response to Tat or TNF-alpha at a posttranscriptional step. CT-2576 also inhibited constitutive as well as TNF-alpha- and interleukin 6-induced expression of HIV p24 antigen in chronically infected U1 cells and in peripheral blood lymphocytes acutely infected with a clinical isolate of HIV. Pharmacological inhibition of synthesis of selected PA species may therefore provide a therapeutic approach to suppression of HIV replication. Images Fig. 1 Fig. 3 Fig. 5 PMID:7761405

  19. Suppression of immunoglobulin production by a novel dihydroorotate dehydrogenase inhibitor, S-2678.

    PubMed

    Deguchi, Masashi; Kishino, Junji; Hattori, Maki; Furue, Yoko; Yamamoto, Mina; Mochizuki, Izumi; Iguchi, Motofumi; Hirano, Yosuke; Hojou, Kanji; Nagira, Morio; Nishitani, Yoshinori; Okazaki, Kenichi; Yasui, Kiyoshi; Arimura, Akinori

    2008-12-28

    We discovered a novel dihydroorotate dehydrogenase (DHO-DH) inhibitor, S-2678 ([2-fluoro-2',5'-dimethyl-4'-[6-(3-methyl-2-butenyloxy) pyridin-3-yl] biphenyl-4-yl]-(3-methyl-2-butenyl) amine). Its inhibitory activity against DHO-DH was more potent than that of A77 1726, an active metabolite of the anti-rheumatic drug leflunomide. S-2678 suppressed immunoglobulin production in mouse B cells and human peripheral blood mononuclear cells in vitro, with little or no inhibition of cell proliferation, probably through inhibition of class switch recombination in the immunoglobulin heavy chain loci in B cells. In vivo antibody production induced by systemic immunization with ovalbumin was dramatically suppressed by oral administration of S-2678, without any toxicological signs. However, S-2678 did not affect T-cell activation in vitro, and cytokine production induced by intravenous anti-CD3 antibody in mice. S-2678 did not affect host defense in a mouse model of Candida infection, whereas leflunomide severely impaired it. In conclusion, S-2678 selectively acts on B cells, resulting in antibody production, which suggests that it is useful for the treatment of humoral immunity-related diseases.

  20. BAX inhibitor-1 silencing suppresses white spot syndrome virus replication in red swamp crayfish, Procambarus clarkii.

    PubMed

    Du, Zhi-Qiang; Lan, Jiang-Feng; Weng, Yu-Ding; Zhao, Xiao-Fan; Wang, Jin-Xing

    2013-07-01

    BAX inhibitor-1 (BI-1) was originally described as an anti-apoptotic protein in both animal and plant cells. BI-1 overexpression suppresses ER stress-induced apoptosis in animal cells. Inhibition of BI-1 activity could induce the cell death in mammals and plants. However, the function of BI-1 in crustacean immunity was unclear. In this paper, the full-length cDNA of a BI-1 protein in red swamp crayfish, Procambarus clarkii (PcBI-1) was cloned and its expression profiles in normal and infected crayfish were analyzed. The results showed that PcBI-1 was expressed in hemocytes, heart, hepatopancreas, gills, stomach, and intestines of the crayfish and was upregulated after challenged with Vibrio anguillarum and with white spot syndrome virus (WSSV). To determine the function of PcBI-1 in the innate immunity of the crayfish, the RNA interference against PcBI-1 was performed and the results indicated the hemocyte programmed cell death rate was increased significantly and WSSV replication was declined after PcBI-1 knocked down. Altogether, PcBI-1 plays an anti-apoptotic role, wherein high PcBI-1 expression suppresses programmed cell death, which is beneficial for WSSW replication in crayfish. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Molecular mechanism of hepatitis B virus (HBV) on suppression of raf kinase inhibitor protein (RKIP) expression

    PubMed Central

    Cheng, Xiao-Ke; Yu, Guo-Zheng; Li, Xiao-Dong; Ren, Xue-Qun

    2017-01-01

    Raf kinase inhibitor protein (RKIP) has been shown to be a suppressor of the mitogen-activated protein kinase pathway and is reported to be involved in human malignancy. However, the molecular mechanism of hepatitis B virus (HBV) in regulating RKIP expression is not yet clarified. In this study, we compared RKIP expression in 107 pairs of matched liver cancer and adjacent non-cancerous liver tissues. Among seven HBV-encoded proteins, we found HBV X (HBX) protein could significantly inhibit the expression level of RKIP, indicating that HBV could suppress RKIP expression through regulating HBX. To further elucidate the mechanism, analyses on transcriptional regulation and promoter methylation inhibition were conducted in Huh7 cells. Our results showed that HBX can interact with AP1 protein to inhibit the RKIP transcription. Moreover, we observed that the promoter methylation level of RKIP could be enhanced by HBV. In conclusion, our study revealed that RKIP could act as a molecular marker for HBV-infected liver cancer, but had no tumor-suppressing effect. PMID:27902472

  2. New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells

    PubMed Central

    Lennig, Petra; Zhang, Yixin; Schroeder, Michael

    2016-01-01

    Drug resistance is an important open problem in cancer treatment. In recent years, the heat shock protein HSP27 (HSPB1) was identified as a key player driving resistance development. HSP27 is overexpressed in many cancer types and influences cellular processes such as apoptosis, DNA repair, recombination, and formation of metastases. As a result cancer cells are able to suppress apoptosis and develop resistance to cytostatic drugs. To identify HSP27 inhibitors we follow a novel computational drug repositioning approach. We exploit a similarity between a predicted HSP27 binding site to a viral thymidine kinase to generate lead inhibitors for HSP27. Six of these leads were verified experimentally. They bind HSP27 and down-regulate its chaperone activity. Most importantly, all six compounds inhibit development of drug resistance in cellular assays. One of the leads – chlorpromazine – is an antipsychotic, which has a positive effect on survival time in human breast cancer. In summary, we make two important contributions: First, we put forward six novel leads, which inhibit HSP27 and tackle drug resistance. Second, we demonstrate the power of computational drug repositioning. PMID:27626687

  3. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974

    PubMed Central

    Jang, Jaewoong; Jung, Yoonju; Kim, Youngeun; Jho, Eek-hoon; Yoon, Yoosik

    2017-01-01

    In this study, LPS-induced inflammatory responses in BEAS-2B human bronchial epithelial cells and human umbilical vein endothelial cell (HUVEC)s were found to be prevented by Dickkopf-1 (DKK-1), a secreted Wnt antagonist, and LGK974, a small molecular inhibitor of the Wnt secretion. LPS-induced IκB degradation and NF-κB nuclear translocation as well as the expressions of pro-inflammatory genes including IL-6, IL-8, TNF- α, IL-1β, MCP-1, MMP-9, COX-2 and iNOS, were all suppressed by DKK-1 and LGK974 in a dose-dependent manner. The suppressive effects of LGK974 on NF-κB, IκB, and pro-inflammatory gene expression were rescued by ectopic expression of β-catenin, suggesting that the anti-inflammatory activity of LGK974 is mediated by modulation of the Wnt/β-catenin pathway and not by unrelated side effects. When Wnt recombinant proteins were treated to cells, Wnt3a and Wnt5a significantly induced pro-inflammatory gene expressions, while Wnt7a and Wnt10b showed little effects. It was also found that Wnt3a and Wnt5a expressions were significantly induced by LPS treatment. Consistently, knockdown of Wnt3a and Wnt5a blocked LPS-induced inflammatory responses, while treatment of recombinant Wnt3a and Wnt5a proteins rescued the inhibition of inflammatory responses by LGK974. Findings of this study showed that DKK-1 and LGK974 suppress LPS-induced inflammatory response by modulating Wnt/β-catenin pathway. PMID:28128299

  4. HIV-1 protease inhibitor induced oxidative stress suppresses glucose stimulated insulin release: protection with thymoquinone.

    PubMed

    Chandra, Surabhi; Mondal, Debasis; Agrawal, Krishna C

    2009-04-01

    The highly active anti-retroviral therapy (HAART) regimen has considerably reduced the mortality rate in HIV-1 positive patients. However, long-term exposure to HAART is associated with a metabolic syndrome manifesting cardiovascular dysfunction, lipodystrophy, and insulin resistance syndrome (IRS). The inclusion of HIV-1 protease inhibitors (PIs) in HAART has been linked to the induction of IRS. Although several molecular mechanisms of PI-induced effects on insulin action have been postulated, the deleterious effects of PIs on insulin production by pancreatic beta-cells have not been fully investigated and therapeutic strategies to ameliorate insulin dysregulation at this level have not been targeted. The present study showed that exposure to several different PIs, nelfinavir (5-10 microM), saquinavir (5-10 microM) and atazanavir (8-20 microM), decreases glucose stimulated insulin secretion from rat pancreatic beta-cells (INS-1). Nelfinavir significantly increased reactive oxygen species (ROS) generation and suppressed cytosolic, but not mitochondrial superoxide dismutase (SOD) levels. Nelfinvair also decreased both glutathione and ATP and increased UCP2 levels in these cells. Simultaneous treatment with thymoquinone (TQ) (2.5 microM), an active ingredient of black seed oil, significantly inhibited the effect of nelfinavir on augmented ROS production and suppressed SOD levels. Both TQ and black seed oil exposure increased glucose stimulated insulin secretion and ameliorated the suppressive effect of nelfinavir. The present findings imply a direct role of ROS in PI induced deleterious effects on pancreatic beta-cells. Our findings also suggest that TQ may be used as a potential therapeutic agent to normalize the dysregulated insulin production observed in HAART treated patients.

  5. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages

    PubMed Central

    Rossi, A; Pergola, C; Koeberle, A; Hoffmann, M; Dehm, F; Bramanti, P; Cuzzocrea, S; Werz, O; Sautebin, L

    2010-01-01

    BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed. PMID:20880396

  6. LIMK1/2 inhibitor LIMKi 3 suppresses porcine oocyte maturation

    PubMed Central

    Jia, Ru-Xia; Duan, Xing; Song, Si-Jing

    2016-01-01

    LIMKi 3 is a specific selective LIMK inhibitor against LIMK1 and LIMK2, while LIMK1 and LIMK2 are the main regulators of actin cytoskeleton to participate in many cell activities. However, the effect of LIMKi 3 in porcine oocyte meiosis is still unclear. The present study was designed to investigate the effects of LIMKi 3 and potential regulatory role of LIMK1/2 on porcine oocyte meiotic maturation. Immunofluorescent staining of p-LIMK1/2 antibody showed that LIMK1/2 was localized mainly to the cortex of porcine oocyte, which co-localized with actin. After LIMKi 3 treatment, the diffusion of COCs became weak and the rate of polar body extrusion was decreased. This could be rescued by moving oocytes to fresh medium. After prolonging the culture time of oocytes, the maturation rate of porcine oocyte increased in LIMKi 3 groups, indicating that LIMKi 3 may suppress the cell cycle during porcine oocyte maturation. We also found that after LIMKi 3 treatment actin distribution was significantly disturbed at porcine oocyte membranes and cytoplasm, indicating the conserved roles of LIMK1/2 on actin dynamics. Next we examined the meiotic spindle positioning in porcine oocyte, and the results showed that a majority of spindles were not attached to the cortex of porcine oocyte, indicating that LIMKi 3 may affect actin-mediated spindle positioning. Taken together, these results showed that LIMK1/2 inhibitor LIMKi 3 had a repressive role on porcine oocyte meiotic maturation. PMID:27761340

  7. Urotensin II inhibitor eases neuropathic pain by suppressing the JNK/NF-κB pathway.

    PubMed

    Li, Jing; Zhao, Pan-Pan; Hao, Ting; Wang, Dan; Wang, Yu; Zhu, Yang-Zi; Wu, Yu-Qing; Zhou, Cheng-Hua

    2017-02-01

    Urotensin II (U-II), a cyclic peptide originally isolated from the caudal neurosecretory system of fishes, can produce proinflammatory effects through its specific G protein-coupled receptor, GPR14. Neuropathic pain, a devastating disease, is related to excessive inflammation in the spinal dorsal horn. However, the relationship between U-II and neuropathic pain has not been reported. This study was designed to investigate the effect of U-II antagonist on neuropathic pain and to understand the associated mechanisms. We reported that U-II and its receptor GPR14 were persistently upregulated and activated in the dorsal horn of L4-6 spinal cord segments after chronic constriction injury (CCI) in rats. Intrathecal injection of SB657510, a specific antagonist against U-II, reversed CCI-induced thermal hyperalgesia and mechanical allodynia. Furthermore, we found that SB657510 reduced the expression of phosphorylated c-Jun N-terminal kinase (p-JNK) and nuclear factor-κB (NF-κB) p65 as well as subsequent secretion of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). It was also showed that both the JNK inhibitor SP600125 and the NF-κB inhibitor PDTC significantly attenuated thermal hyperalgesia and mechanical allodynia in CCI rats. Our present research showed that U-II receptor antagonist alleviated neuropathic pain possibly through the suppression of the JNK/NF-κB pathway in CCI rats, which will contribute to the better understanding of function of U-II and pathogenesis of neuropathic pain.

  8. Met tyrosine kinase inhibitor, PF-2341066, suppresses growth and invasion of nasopharyngeal carcinoma

    PubMed Central

    Zhao, Yuanyuan; Zhang, Jing; Tian, Ying; Xue, Cong; Hu, Zhihuang; Zhang, Li

    2015-01-01

    Purpose We explored the effect of hepatocyte growth factor (HGF)/Met signaling pathway on nasopharyngeal carcinoma (NPC) cells in vitro and in vivo, and investigated the ability of Met tyrosine kinase inhibitor (TKI) to block HGF-induced biological signaling. Experimental design Met TKI inhibitor PF-2341066 alone, or in combination with cisplatin, was investigated for its ability to block HGF-induced signaling and biological effects in vitro and in vivo. HGF/Met expression and activation of signaling in NPC cells were detected by using Western blot and immunohistochemistry. Biological evaluation, including wound healing, cell proliferation, and invasion of NPC cells, was also examined, and the correlation between HGF/Met expression of primary and metastatic tumor in NPC patients and clinical prognosis were also analyzed. Results Met TKI inhibitor, PF-2341066, inhibited growth of NPC cells in vivo with half maximal inhibitory concentration of 0.79±0.21 μmol/L, and suppressed invasion and migration of NPC cells; also, the inhibition of PF-2341066 was synergized with cisplatin treatment. Compared with the control group, Met TKI inhibited metastasis of transplanted NPC in nude mice (the number of live metastases [mean ± SD]: 5.8±2.2 versus 11.8±2.2, P=0.03; the number of lung metastases: 2.3±1.5 versus 5.3±0.9, P=0.06). HGF was widely expressed in both primary and metastatic lesions while Met expression of metastatic lesions was higher than that of primary lesions (primary lesions: 24.7%; liver metastases: 40%; lung metastases: 29%; lymph node metastases: 29%, P<0.05), and overall survival of NPC patients with higher expression of Met was shorter (P=0.13). Conclusion Our results demonstrated that HGF/Met signaling promoted NPC growth, further resulting in metastasis and poor prognosis. Met TKI, PF-2341066, showed potent antitumor activity in vivo and in vitro which was enhanced by combination with cisplatin. Our study implied that HGF/Met signaling was the

  9. The novel ATP-competitive MEK/Aurora kinase inhibitor BI-847325 overcomes acquired BRAF inhibitor resistance through suppression of Mcl-1 and MEK expression

    PubMed Central

    Phadke, Manali S.; Sini, Patrizia; Smalley, Keiran S. M.

    2015-01-01

    Resistance to BRAF inhibitors is a major clinical problem. Here we evaluate BI-847325, an ATP-competitive inhibitor of MEK and Aurora kinases, in treatment-naïve and drug-resistant BRAF-mutant melanoma models. BI-847325 potently inhibited growth and survival of melanoma cell lines that were both BRAF inhibitor naïve and resistant in 2D culture, 3D cell culture conditions and in colony formation assays. Western blot studies showed BI-847325 to reduce expression of phospho-ERK and phospho-histone 3 in multiple models of vemurafenib resistance. Mechanistically, BI-847325 decreased the expression of MEK and Mcl-1 while increasing the expression of the pro-apoptotic protein BIM. Strong suppression of MEK expression was observed after 48 h of treatment, with no recovery following >72 h of washout. siRNA mediated knockdown of Mcl-1 enhanced the effects of BI-847325, whereas Mcl-1 overexpression reversed this in both 2D cell culture and 3D spheroid melanoma models. In vivo, once weekly BI-847325 (70 mg/kg) led to durable regression of BRAF-inhibitor naive xenografts with no regrowth seen (>65 days of treatment). In contrast, treatment with the vemurafenib analog PLX4720 was associated with tumor relapse at >30 days. BI-847325 also suppressed the long-term growth of xenografts with acquired PLX4720 resistance. Analysis of tumor samples revealed BI-847325 to induce apoptosis associated with suppression of phospho-ERK, total MEK, phospho-Histone3 and Mcl-1 expression. Our studies indicate that BI-847325 is effective in overcoming BRAF inhibitor resistance and has long-term inhibitory effects upon BRAF-mutant melanoma in vivo, through a mechanism associated with the decreased expression of both MEK and Mcl-1. PMID:25873592

  10. Serine protease inhibitor (SERPIN) B1 suppresses cell migration and invasion in glioma cells.

    PubMed

    Huasong, Gao; Zongmei, Ding; Jianfeng, Huang; Xiaojun, Qiu; Jun, Guo; Sun, Guan; Donglin, Wang; Jianhong, Zhu

    2015-03-10

    The serine protease inhibitor (SERPIN) B1 is expressed in numerous human tumors, but little is known regarding its role in the pathophysiology of glioma. In this paper, we report that SERPINB1 expression was down-regulated in high-grade human glioma tissue samples and glioblastoma cell lines. To investigate the role of SERPINB1 in glioma migration and invasion, we generated human glioma cell lines in which SERPINB1 was either overexpressed or depleted. Overexpression of SERPINB1 suppressed, while elimination of SERPINB1 promoted, the migration and invasion of glioma cells. SERPINB1 inhibited glioma migration and invasion probably by dampening the expression of matrix metalloproteinase-2 (MMP-2). Molecular data showed that the effect of SERPINB1 in glioma cells might be mediated via sustained inactivation of the phosphorylation of focal adhesion kinase (FAK) involved in the downregulation of the expressions of MMP-2. In a multivariate analysis, high SERPINB1 expression was showed to be associated with good prognosis in glioma. In conclusion, our data suggest that SERPINB1 negatively regulates glioma cell migration and invasion probably by abrogating the expression of MMP-2 and the activation of FAK. We suggest that SERPINB1 may offer the application in clinical medicine. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The tumor-suppressive reagent taurolidine is an inhibitor of protein biosynthesis.

    PubMed

    Braumann, Chris; Henke, Wolfgang; Jacobi, Christoph A; Dubiel, Wolfgang

    2004-11-01

    Taurolidine has been successfully used as a disinfectant and to prevent the spreading and growth of tumor cells after surgical excision. However, the underlying mechanisms regarding its effects remain obscure. Here, we show that taurolidine treatment reduces endogenous levels of IkappaBalpha, p105, c-Jun, p53 and p27 in a dose-dependent manner in colon adenocarcinoma cells, which can be in part due to massive cell death. Because expression of tested proteins was affected by taurolidine, its influence on protein expression was studied. In the coupled transcription/translation system, taurolidine inhibited c-Jun expression with an IC50 value of 1.4 mM. There was no or little effect on transcription. In contrast, translation of c-Jun or p53 mRNA was completely inhibited by taurolidine. To determine which step of translation was affected, prominent complexes occurring in the course of translation were analyzed by density gradient centrifugation. In the presence of taurolidine, no preinitiation translation complex was assembled. Taurolidine also suppressed protein expression in bacteria. Based on our data, we conclude that taurolidine blocks a fundamental early phase of translation, which might explain its effects as a disinfectant and inhibitor of tumor growth.

  12. Linoleic acid enhances angiogenesis through suppression of angiostatin induced by plasminogen activator inhibitor 1

    PubMed Central

    Nishioka, N; Matsuoka, T; Yashiro, M; Hirakawa, K; Olden, K; Roberts, J D

    2011-01-01

    Background: The intake of dietary fatty acids is highly correlated with the risk of various cancers. Linoleic acid (LA) is the most abundant polyunsaturated fat in the western diet, but the mechanism(s) by fatty acids such as LA modulate cancer cells is unclear. In this study, we examined the role of LA in various steps in gastric cancer progression. Methods: The difference in gene expression between LA-treated and untreated OCUM-2MD3 gastric carcinoma cells was examined by mRNA differential display. The involvement of candidate genes was examined by oligo- and plasmid-mediated RNA interference. Biological functions of several of these genes were examined using in vitro assays for invasion, angiogenesis, apoptosis, cell viability, and matrix digestion. Angiogenesis in vivo was measured by CD-31 immunohistochemistry and microvessel density scoring. Results: LA enhanced the plasminogen activator inhibitor 1 (PAI-1) mRNA and protein expression, which are controlled by PAI-1 mRNA-binding protein. LA-stimulated invasion depended on PAI-1. LA also enhanced angiogenesis by suppression of angiostatin, also through PAI-1. LA did not alter cell growth in culture, but increased dietary LA-enhanced tumour growth in an animal model. Conclusion: Our findings suggest that dietary LA impacts multiple steps in cancer invasion and angiogenesis, and that reducing LA in the diet may help slow cancer progression. PMID:22015554

  13. Plasminogen activator inhibitor (PAI)-1 suppresses inhibition of gastric emptying by cholecystokinin (CCK) in mice.

    PubMed

    Gamble, Joanne; Kenny, Susan; Dockray, Graham J

    2013-08-10

    The intestinal hormone cholecystokinin (CCK) delays gastric emptying and inhibits food intake by actions on vagal afferent neurons. Recent studies suggest plasminogen activator inhibitor (PAI)-1 suppresses the effect of CCK on food intake. In this study we asked whether PAI-1 also modulated CCK effects on gastric emptying. Five minute gastric emptying of liquid test meals was studied in conscious wild type mice (C57BL/6) and in transgenic mice over-expressing PAI-1 in gastric parietal cells (PAI-1H/Kβ mice), or null for PAI-1. The effects of exogenous PAI-1 and CCK8s on gastric emptying were studied after ip administration. Intragastric peptone delayed gastric emptying in C57BL/6 mice by a mechanism sensitive to the CCK-1 receptor antagonist lorglumide. Peptone did not delay gastric emptying in PAI-1-H/Kβ mice. Exogenous CCK delayed gastric emptying of a control test meal in C57BL/6 mice and this was attenuated by administration of PAI-1; exogenous CCK had no effect on emptying in PAI-1-H/Kβ mice. Prior administration of gastrin to increase gastric PAI-1 inhibited CCK-dependent effects on gastric emptying in C57BL/6 mice but not in PAI-1 null mice. Thus, both endogenous and exogenous PAI-1 inhibit the effects of CCK (whether exogenous or endogenous) on gastric emptying. The data are compatible with emerging evidence that gastric PAI-1 modulates vagal effects of CCK.

  14. Improving allogeneic islet transplantation by suppressing Th17 and enhancing Treg with histone deacetylase inhibitors.

    PubMed

    Sugimoto, Koji; Itoh, Takeshi; Takita, Morihito; Shimoda, Masayuki; Chujo, Daisuke; SoRelle, Jeff A; Naziruddin, Bashoo; Levy, Marlon F; Shimada, Mitsuo; Matsumoto, Shinichi

    2014-04-01

    Islet transplantation is a new treatment for achieving insulin independence for patients with severe diabetes. However, major drawbacks of this treatment are the long graft survival, the necessity for immunosuppressive drugs, and the efficacy of transplantation. Donor-specific transfusion (DST) has been shown to reduce rejection after organ transplantation, potentially through enhanced regulatory T-cell (Treg) activity. However, recent findings have shown that activated Treg can be converted into Th17 cells. We focused on histone deacetylase inhibitors (HDACi) because it was reported that inhibition of HDAC activity prevented Treg differentiation into IL17-producing cells. We therefore sought to enhance Treg while suppressing Th17 cells using DST with HDACi to prolong graft survival. To stimulate Treg by DST, we used donor splenocytes. In DST with HDACi group, Foxp3 mRNA expression and Treg population increased in the thymus and spleen, whereas Th17 population decreased. qPCR analysis of lymphocyte mRNA indicated that Foxp3, IL-10, and TGF-b expression increased. However, interleukin 17a, Stat3 (Th17), and IFN-g expression decreased in DST + HDACi group, relative to DST alone. Moreover, DST treated with HDACi prolonged graft survival relative to controls in mice islet transplantation. DST with HDACi may therefore have utility in islet transplantation.

  15. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    SciTech Connect

    Liu, Tongxin; Li, Qi; Sun, Quanquan; Zhang, Yuqin; Yang, Hua; Wang, Rong; Chen, Longhua; Wang, Wei

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediated by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.

  16. SUPPRESSION OF THE NITRIC OXIDE PATHWAY IN METASTATIC RENAL CELL CARCINOMA PATIENTS RECEIVING VEGF-SIGNALING INHIBITORS

    PubMed Central

    Robinson, Emily S.; Khankin, Eliyahu V.; Choueiri, Toni K.; Dhawan, Mallika D.; Rogers, Miranda J.; Karumanchi, S. Ananth; Humphreys, Benjamin D.

    2010-01-01

    Therapies that target the vascular endothelial growth factor (VEGF) pathway cause hypertension but the mechanism remains unknown. This cross-sectional study tested the hypothesis that VEGF inhibition causes hypertension by suppressing VEGF-mediated vasodilatory pathways. Urine was collected from 80 patients with metastatic renal cell carcinoma from 2002–2009, 40 at baseline and 40 while on VEGF inhibitors. Measured urinary biomarkers include albumin, metabolites of the nitric oxide pathway and its downstream effector, cGMP, and prostaglandin pathway biomarkers prostaglandin E2, 6-keto PGF 1α, and cAMP, all normalized to urinary creatinine. The mean age in both groups was 61.8 years, 76% were male, and urinary albumin was higher in patients receiving VEGF inhibitors (median 18.4mg/g vs. 4.6 mg/g; p=0.009). cGMP/Cr was suppressed in patients on VEGF inhibitors (0.28 pmol/ug vs. 0.39 pmol/ug; p=0.01), with a trend toward suppression of nitrate/Cr (0.46 umol/mg vs. 0.62 umol/mg; p=0.09). Both comparisons were strengthened when patients on bevacizumab were excluded and only those receiving small molecule tyrosine kinase inhibitors were analyzed (cGMP/Cr, p=0.003; Nitrate/Cr, p=0.01). Prostaglandin E2, 6-keto PGF1α, and cAMP did not differ between groups. These results suggest that hypertension induced by VEGF inhibitors is mediated by suppression of nitric oxide production. Prospective studies are needed to explore whether these biomarkers may be useful predictors of efficacy in patients receiving VEGF-targeted therapies. PMID:20956731

  17. Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers.

    PubMed

    Okazaki, Arimichi; Gameiro, Paulo A; Christodoulou, Danos; Laviollette, Laura; Schneider, Meike; Chaves, Frances; Stemmer-Rachamimov, Anat; Yazinski, Stephanie A; Lee, Richard; Stephanopoulos, Gregory; Zou, Lee; Iliopoulos, Othon

    2017-03-27

    Many cancer-associated mutations that deregulate cellular metabolic responses to hypoxia also reprogram carbon metabolism to promote utilization of glutamine. In renal cell carcinoma (RCC), cells deficient in the von Hippel-Lindau (VHL) tumor suppressor gene use glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate (αKG). Glutamine can also generate aspartate, the carbon source for pyrimidine biosynthesis, and glutathione for redox balance. Here we have shown that VHL-/- RCC cells rely on RC-derived aspartate to maintain de novo pyrimidine biosynthesis. Glutaminase 1 (GLS1) inhibitors depleted pyrimidines and increased ROS in VHL-/- cells but not in VHL+/+ cells, which utilized glucose oxidation for glutamate and aspartate production. GLS1 inhibitor-induced nucleoside depletion and ROS enhancement led to DNA replication stress and activation of an intra-S phase checkpoint, and suppressed the growth of VHL-/- RCC cells. These effects were rescued by administration of glutamate, αKG, or nucleobases with N-acetylcysteine. Further, we observed that the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib synergizes with GLS1 inhibitors to suppress the growth of VHL-/- cells in vitro and in vivo. This work describes a mechanism that explains the sensitivity of RCC tumor growth to GLS1 inhibitors and supports the development of therapeutic strategies for targeting VHL-deficient RCC.

  18. BET bromodomain inhibitors suppress EWS-FLI1-dependent transcription and the IGF1 autocrine mechanism in Ewing sarcoma

    PubMed Central

    Loganathan, Sudan N.; Tang, Nan; Fleming, Jonathan T.; Ma, Yufang; Guo, Yan; Borinstein, Scott C.; Chiang, Chin; Wang, Jialiang

    2016-01-01

    Ewing sarcoma is driven by characteristic chromosomal translocations between the EWSR1 gene with genes encoding ETS family transcription factors (EWS-ETS), most commonly FLI1. However, direct pharmacological inhibition of transcription factors like EWS-FLI1 remains largely unsuccessful. Active gene transcription requires orchestrated actions of many epigenetic regulators, such as the bromodomain and extra-terminal domain (BET) family proteins. Emerging BET bromodomain inhibitors have exhibited promising antineoplastic activities via suppression of oncogenic transcription factors in various cancers. We reasoned that EWS-FLI1-mediated transcription activation might be susceptible to BET inhibition. In this study, we demonstrated that small molecule BET bromodomain inhibitors repressed EWS-FLI1-driven gene signatures and downregulated important target genes. However, expression of EWS-FLI1 was not significantly affected. Repression of autocrine IGF1 by BET inhibitors led to significant inhibition of the IGF1R/AKT pathway critical to Ewing sarcoma cell proliferation and survival. Consistently, BET inhibitors impaired viability and clonogenic survival of Ewing sarcoma cell lines and blocked EWS-FLI1-induced transformation of mouse NIH3T3 fibroblast cells. Selective depletion of individual BET genes partially phenocopied the actions of BET inhibitors. Finally, the prototypical BET inhibitor, JQ1, significantly repressed Ewing sarcoma xenograft tumor growth. These findings suggest therapeutic potential of BET inhibitors in Ewing sarcoma and highlight an emerging paradigm of using epigenetic agents to treat cancers driven by fusion transcription factors. PMID:27259270

  19. BET bromodomain inhibitors suppress EWS-FLI1-dependent transcription and the IGF1 autocrine mechanism in Ewing sarcoma.

    PubMed

    Loganathan, Sudan N; Tang, Nan; Fleming, Jonathan T; Ma, Yufang; Guo, Yan; Borinstein, Scott C; Chiang, Chin; Wang, Jialiang

    2016-07-12

    Ewing sarcoma is driven by characteristic chromosomal translocations between the EWSR1 gene with genes encoding ETS family transcription factors (EWS-ETS), most commonly FLI1. However, direct pharmacological inhibition of transcription factors like EWS-FLI1 remains largely unsuccessful. Active gene transcription requires orchestrated actions of many epigenetic regulators, such as the bromodomain and extra-terminal domain (BET) family proteins. Emerging BET bromodomain inhibitors have exhibited promising antineoplastic activities via suppression of oncogenic transcription factors in various cancers. We reasoned that EWS-FLI1-mediated transcription activation might be susceptible to BET inhibition. In this study, we demonstrated that small molecule BET bromodomain inhibitors repressed EWS-FLI1-driven gene signatures and downregulated important target genes. However, expression of EWS-FLI1 was not significantly affected. Repression of autocrine IGF1 by BET inhibitors led to significant inhibition of the IGF1R/AKT pathway critical to Ewing sarcoma cell proliferation and survival. Consistently, BET inhibitors impaired viability and clonogenic survival of Ewing sarcoma cell lines and blocked EWS-FLI1-induced transformation of mouse NIH3T3 fibroblast cells. Selective depletion of individual BET genes partially phenocopied the actions of BET inhibitors. Finally, the prototypical BET inhibitor, JQ1, significantly repressed Ewing sarcoma xenograft tumor growth. These findings suggest therapeutic potential of BET inhibitors in Ewing sarcoma and highlight an emerging paradigm of using epigenetic agents to treat cancers driven by fusion transcription factors.

  20. Combination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice

    PubMed Central

    Hiromura, Munenori; Mori, Yusaku; Kohashi, Kyoko; Kushima, Hideki; Ohara, Makoto; Watanabe, Takuya; Andersson, Olov

    2017-01-01

    Dipeptidyl peptidase-4 inhibitors (DPP-4is), in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is) suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (ipragliflozin, 1.0 mg/kg/day) and DPP-4i (alogliptin, 8.0 mg/kg/day), either alone or in combination, were administered to db/db mice or streptozotocin-induced diabetic apolipoprotein E-null (Apoe−/−) mice. Ipragliflozin and alogliptin monotherapies improved glucose intolerance; however, combination therapy did not show further improvement. The foam cell formation of peritoneal macrophages was suppressed by both the ipragliflozin and alogliptin monotherapies and was further enhanced by combination therapy. Although foam cell formation was closely associated with HbA1c levels in all groups, DPP-4i alone or the combination group showed further suppression of foam cell formation compared with the control or SGLT2i group at corresponding HbA1c levels. Both ipragliflozin and alogliptin monotherapies decreased scavenger receptors and increased cholesterol efflux regulatory genes in peritoneal macrophages, and combination therapy showed additive changes. In diabetic Apoe−/− mice, combination therapy showed the greatest suppression of plaque volume in the aortic root. In conclusion, combination therapy with SGLT2i and DPP4i synergistically suppresses macrophage foam cell formation and atherosclerosis in diabetic mice. PMID:28408925

  1. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues.

    PubMed

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-02-09

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment.

  2. Plasminogen Activator Inhibitor-1 Suppresses Profibrotic Responses in Fibroblasts from Fibrotic Lungs*

    PubMed Central

    Marudamuthu, Amarnath S.; Shetty, Shwetha K.; Bhandary, Yashodhar P.; Karandashova, Sophia; Thompson, Michael; Sathish, Venkatachalem; Florova, Galina; Hogan, Taryn B.; Pabelick, Christina M.; Prakash, Y. S.; Tsukasaki, Yoshikazu; Fu, Jian; Ikebe, Mitsuo; Idell, Steven; Shetty, Sreerama

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive interstitial scarification. A hallmark morphological lesion is the accumulation of myofibroblasts or fibrotic lung fibroblasts (FL-fibroblasts) in areas called fibroblastic foci. We previously demonstrated that the expression of both urokinase-type plasminogen activator (uPA) and the uPA receptor are elevated in FL-fibroblasts from the lungs of patients with IPF. FL-fibroblasts isolated from human IPF lungs and from mice with bleomycin-induced pulmonary fibrosis showed an increased rate of proliferation compared with normal lung fibroblasts (NL-fibroblasts) derived from histologically “normal” lung. Basal expression of plasminogen activator inhibitor-1 (PAI-1) in human and murine FL-fibroblasts was reduced, whereas collagen-I and α-smooth muscle actin were markedly elevated. Conversely, alveolar type II epithelial cells surrounding the fibrotic foci in situ, as well as those isolated from IPF lungs, showed increased activation of caspase-3 and PAI-1 with a parallel reduction in uPA expression. Transduction of an adenovirus PAI-1 cDNA construct (Ad-PAI-1) suppressed expression of uPA and collagen-I and attenuated proliferation in FL-fibroblasts. On the contrary, inhibition of basal PAI-1 in NL-fibroblasts increased collagen-I and α-smooth muscle actin. Fibroblasts isolated from PAI-1-deficient mice without lung injury also showed increased collagen-I and uPA. These changes were associated with increased Akt/phosphatase and tensin homolog proliferation/survival signals in FL-fibroblasts, which were reversed by transduction with Ad-PAI-1. This study defines a new role of PAI-1 in the control of fibroblast activation and expansion and its role in the pathogenesis of fibrosing lung disease and, in particular, IPF. PMID:25648892

  3. Potentiated suppression of Dickkopf-1 in breast cancer by combined administration of the mevalonate pathway inhibitors zoledronic acid and statins.

    PubMed

    Göbel, Andy; Browne, Andrew J; Thiele, Stefanie; Rauner, Martina; Hofbauer, Lorenz C; Rachner, Tilman D

    2015-12-01

    The Wnt-inhibitor dickkopf-1 (DKK-1) promotes cancer-induced osteolytic bone lesions by direct inhibition of osteoblast differentiation and indirect activation of osteoclasts. DKK-1 is highly expressed in human breast cancer cells and can be suppressed by inhibitors of the mevalonate pathway such as statins and amino-bisphosphonates. However, supraphysiological concentrations are required to suppress DKK-1. We show that a sequential mevalonate pathway blockade using statins and amino-bisphosphonates suppresses DKK-1 more significantly than the individual agents alone. Thus, the reduction of the DKK-1 expression and secretion in the human osteotropic tumor cell lines MDA-MB-231, MDA-MET, and MDA-BONE by zoledronic acid was potentiated by the combination with low concentrations of statins (atorvastatin, simvastatin, and rosuvastatin) by up to 75% (p < 0.05). The specific rescue of prenylation using farnesyl pyrophosphate or geranylgeranyl pyrophosphate revealed that these effects were mediated by suppressed geranylgeranylation rather than by suppressed farnesylation. Moreover, combining low concentrations of statins (1 µM atorvastatin or 0.25 µM simvastatin) and zoledronic acid at low concentrations resulted in an at least 50% reversal of breast cancer-derived DKK-1-mediated inhibition of osteogenic markers in C2C12 cells (p < 0.05). Finally, the intratumoral injection of atorvastatin and zoledronic acid in as subcutaneous MDA-MB-231 mouse model reduced the serum level of human DKK-1 by 25% compared to untreated mice. Hence our study reveals that a sequential mevalonate pathway blockade allows for the combined use of low concentration of statins and amino-bisphosphonates. This combination still significantly suppresses breast cancer-derived DKK-1 to levels where it can no longer inhibit Wnt-mediated osteoblast differentiation.

  4. Targeting tumor-associated immune suppression with selective protein kinase A type I (PKAI) inhibitors may enhance cancer immunotherapy.

    PubMed

    Hussain, Muzammal; Shah, Zahir; Abbas, Nasir; Javeed, Aqeel; Mukhtar, Muhammad Mahmood; Zhang, Jiancun

    2016-01-01

    Despite the tremendous progress in last few years, the cancer immunotherapy has not yet improved disease-free because of the tumor-associated immune suppression being a major barrier. Novel trends to enhance cancer immunotherapy aims at harnessing the therapeutic manipulation of signaling pathways mediating the tumor-associated immune suppression, with the general aims of: (a) reversing the tumor immune suppression; (b) enhancing the innate and adaptive components of anti-tumor immunosurveillance, and (c) protecting immune cells from the suppressive effects of T regulatory cells (Tregs) and the tumor-derived immunoinhibitory mediators. A particular striking example in this context is the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A type I (PKAI) pathway. Oncogenic cAMP/PKAI signaling has long been implicated in the initiation and progression of several human cancers. Emerging data indicate that cAMP/PKAI signaling also contributes to tumor- and Tregs-derived suppression of innate and adaptive arms of anti-tumor immunosurveillance. Therapeutically, selective PKAI inhibitors have been developed which have shown promising anti-cancer activity in pre-clinical and clinical settings. Rp-8-Br-cAMPS is a selective PKAI antagonist that is widely used as a biochemical tool in signal transduction research. Collateral data indicate that Rp-8-Br-cAMPS has shown immune-rescuing potential in terms of enhancing the innate and adaptive anti-tumor immunity, as well as protecting adaptive T cells from the suppressive effects of Tregs. Therefore, this proposal specifically implicates that combining selective PKAI antagonists/inhibitors with cancer immunotherapy may have multifaceted benefits, such as rescuing the endogenous anti-tumor immunity, enhancing the efficacy of cancer immunotherapy, and direct anti-cancer effects.

  5. Peptidylarginine Deiminase Inhibitor Suppresses Neutrophil Extracellular Trap Formation and MPO-ANCA Production

    PubMed Central

    Kusunoki, Yoshihiro; Nakazawa, Daigo; Shida, Haruki; Hattanda, Fumihiko; Miyoshi, Arina; Masuda, Sakiko; Nishio, Saori; Tomaru, Utano; Atsumi, Tatsuya; Ishizu, Akihiro

    2016-01-01

    Myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA)-associated vasculitis is a systemic small-vessel vasculitis, wherein, MPO-ANCA plays a critical role in the pathogenesis. Neutrophil extracellular traps (NETs) released from activated neutrophils are composed of extracellular web-like DNA and antimicrobial proteins, including MPO. Diverse stimuli, such as phorbol myristate acetate (PMA) and ligands of toll-like receptors (TLR), induce NETs. Although TLR-mediated NET formation can occur with preservation of living neutrophilic functions (called vital NETosis), PMA-stimulated neutrophils undergo cell death with NET formation (called suicidal NETosis). In the process of suicidal NETosis, histones are citrullinated by peptidylarginine deiminase 4 (PAD4). Since this step is necessary for decondensation of DNA, PAD4 plays a pivotal role in suicidal NETosis. Although NETs are essential for elimination of microorganisms, excessive formation of NETs has been suggested to be implicated in MPO-ANCA production. This study aimed to determine if pan-PAD inhibitors could suppress MPO-ANCA production in vivo. At first, NETs were induced in peripheral blood neutrophils derived from healthy donors (1 × 106/ml) by stimulation with 20 nM PMA with or without 20 μM propylthiouracil (PTU), an anti-thyroid drug. We then determined that the in vitro NET formation was inhibited completely by 200 μM Cl-amidine, a pan-PAD inhibitor. Next, we established mouse models with MPO-ANCA production. BALB/c mice were given intraperitoneal (i.p.) injection of PMA (50 ng at days 0 and 7) and oral PTU (2.5 mg/day) for 2 weeks. These mice were divided into two groups; the first group was given daily i.p. injection of PBS (200 μl/day) (n = 13) and the other group with daily i.p. injection of Cl-amidine (0.3 mg/200 μl PBS/day) (n = 7). Two weeks later, citrullination as an indicator of NET formation in the peritoneum and serum MPO-ANCA titer was compared

  6. Pleiotropic effect of the proton pump inhibitor esomeprazole leading to suppression of lung inflammation and fibrosis.

    PubMed

    Ghebremariam, Yohannes T; Cooke, John P; Gerhart, William; Griego, Carol; Brower, Jeremy B; Doyle-Eisele, Melanie; Moeller, Benjamin C; Zhou, Qingtao; Ho, Lawrence; de Andrade, Joao; Raghu, Ganesh; Peterson, Leif; Rivera, Andreana; Rosen, Glenn D

    2015-08-01

    The beneficial outcome associated with the use of proton pump inhibitors (PPIs) in idiopathic pulmonary fibrosis (IPF) has been reported in retrospective studies. To date, no prospective study has been conducted to confirm these outcomes. In addition, the potential mechanism by which PPIs improve measures of lung function and/or transplant-free survival in IPF has not been elucidated. Here, we used biochemical, cell biological and preclinical studies to evaluate regulation of markers associated with inflammation and fibrosis. In our in vitro studies, we exposed primary lung fibroblasts, epithelial and endothelial cells to ionizing radiation or bleomycin; stimuli typically used to induce inflammation and fibrosis. In addition, we cultured lung fibroblasts from IPF patients and studied the effect of esomeprazole on collagen release. Our preclinical study tested efficacy of esomeprazole in a rat model of bleomycin-induced lung injury. Furthermore, we performed retrospective analysis of interstitial lung disease (ILD) databases to examine the effect of PPIs on transplant-free survival. The cell culture studies revealed that esomeprazole controls inflammation by suppressing the expression of pro-inflammatory molecules including vascular cell adhesion molecule-1, inducible nitric oxide synthase, tumor necrosis factor-alpha (TNF-α) and interleukins (IL-1β and IL-6). The antioxidant effect is associated with strong induction of the stress-inducible cytoprotective protein heme oxygenase-1 (HO1) and the antifibrotic effect is associated with potent inhibition of fibroblast proliferation as well as downregulation of profibrotic proteins including receptors for transforming growth factor β (TGFβ), fibronectin and matrix metalloproteinases (MMPs). Furthermore, esomeprazole showed robust effect in mitigating the inflammatory and fibrotic responses in a murine model of acute lung injury. Finally, retrospective analysis of two ILD databases was performed to assess the effect

  7. Suppression of Elongation and Growth of Tomato Seedlings by Auxin Biosynthesis Inhibitors and Modeling of the Growth and Environmental Response

    PubMed Central

    Higashide, Tadahisa; Narukawa, Megumi; Shimada, Yukihisa; Soeno, Kazuo

    2014-01-01

    To develop a growth inhibitor, the effects of auxin inhibitors were investigated. Application of 30 μM L-α-aminooxy-β-phenylpropionic acid (AOPP) or (S)-methyl 2-((1,3-dioxoisoindolin-2-yl)oxy)-3-phenylpropanoate (KOK1101), decreased the endogenous IAA levels in tomato seedlings at 8 days after sowing. Then, 10–1200 μM AOPP or KOK1101 were sprayed on the leaves and stem of 2–3 leaf stage tomato plants grown under a range of environmental conditions. We predicted plant growth and environmental response using a model based on the observed suppression of leaf enlargement. Spraying AOPP or KOK1101 decreased stem length and leaf area. Concentration-dependent inhibitions and dose response curves were observed. Although the effects of the inhibitors on dry weight varied according to the environmental conditions, the net assimilation rate was not influenced by the inhibitors. Accordingly, the observed decrease in dry weight caused by the inhibitors may result from decreased leaf area. Validation of the model based on observed data independent of the dataset showed good correlations between the observed and predicted values of dry weight and leaf area index. PMID:24690949

  8. Milnacipran, a serotonin and norepinephrine reuptake inhibitor, induces appetite-suppressing effects without inducing hypothalamic stress responses in mice.

    PubMed

    Nonogaki, Katsunori; Nozue, Kana; Kuboki, Tomifusa; Oka, Yoshitomo

    2007-05-01

    Milnacipran, a selective serotonin (5-HT) and norepinephrine (NE) reuptake inhibitor, increases extracellular 5-HT and NA levels equally in the central nervous system. Here, we report that systemic administration of milnacipran (20-60 mg/kg) significantly suppressed food intake after fasting in C57BL6J mice. The appetite-suppressing effects of milnacipran were sustained for 5 h. Neither SB242084, a selective 5-HT2C receptor antagonist, nor SB224289, a selective 5-HT1B receptor antagonist, reversed the appetite-suppressing effects of milnacipran. Milnacipran suppressed food intake and body weight in wild-type mice and in A(y) mice, which have ectopic expression of the agouti protein. Moreover, milnacipran significantly increased hypothalamic proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) mRNA levels, while having no effect on hypothalamic neuropeptide Y, ghrelin, corticotropin-releasing hormone (CRH), and suppressor of cytokine signaling-3 mRNA levels. Interestingly, milnacipran did not increase plasma corticosterone and blood glucose levels, whereas fenfluramine, which inhibits 5-HT reuptake and stimulates 5-HT release, significantly increased plasma corticosterone and blood glucose levels in association with increased hypothalamic CRH mRNA levels. The appetite-suppressing effects of milnacipran had no effects on food intake in food-restricted, wild-type mice and A(y) mice. On the other hand, fenfluramine suppressed food intake in food-restricted wild-type mice, but it had no effects in food-restricted A(y) mice. These results suggest that inhibition of 5-HT and NA reuptake induces appetite-suppressing effects independent of 5-HT2C and 5-HT1B receptors, and increases hypothalamic POMC and CART gene expression without increasing plasma corticosterone and blood glucose levels in mice.

  9. GM3 suppresses anchorage-independent growth via Rho GDP dissociation inhibitor beta in melanoma B16 cells.

    PubMed

    Wang, Pu; Xu, Su; Wang, Yinan; Wu, Peixing; Zhang, Jinghai; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2011-08-01

    Ly-GDI, Rho GTPase dissociation inhibitor beta, was found to be expressed parallel to the GM3 level in mouse B16 cells whose GM3 contents were modified by B4galt6 sense, B4galt6 antisense cDNA, or St3galt5 siRNA transfection. Ly-GDI expression was increased on GM3 addition to these cells and decreased with D-PDMP treatment, a glucosylceramide synthesis inhibitor. Suppression of GM3 or Ly-GDI by RNAi was concomitantly associated with an increase in anchorage-independent growth in soft agar. These results clearly indicate that GM3 suppresses anchorage-independent growth through Ly-GDI. GM3 signals regulating Ly-GDI expression was inhibited by LY294002, siRNA against Akt1 and Akt2 and rapamycin, showing that GM3 signals are transduced via the PI3K/Akt/mTOR pathway. Either siRNA towards Rictor or Raptor suppressed Ly-GDI expression. The Raptor siRNA suppressed the effects of GM3 on Ly-GDI expression and Akt phosphorylation at Thr(308) , suggesting GM3 signals to be transduced to mTOR-Raptor and Akt-Thr(308) , leading to Ly-GDI stimulation. siRNA targeting Pdpk1 reduced Akt phosphorylation at Thr(308) and rendered the cells insensitive to GM3 stimulation, indicating that Akt-Thr(308) plays a critical role in the pathway. The components aligned in this pathway showed similar effects on anchorage-independent growth as GM3 and Ly-GDI. Taken together, GM3 signals are transduced in B16 cells through PI3K, Pdpk1, Akt(Thr308) and the mTOR/Raptor pathway, leading to enhanced expression of Ly-GDI mRNA, which in turn suppresses anchorage-independent growth in melanoma B16 cells.

  10. Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer

    PubMed Central

    Chung, Suyoun; Suzuki, Hanae; Miyamoto, Takashi; Takamatsu, Naofumi; Tatsuguchi, Ayako; Ueda, Koji; Kijima, Kyoko; Nakamura, Yusuke; Matsuo, Yo

    2012-01-01

    We previously reported MELK (maternal embryonic leucine zipper kinase) as a novel therapeutic target for breast cancer. MELK was also reported to be highly upregulated in multiple types of human cancer. It was implied to play indispensable roles in cancer cell survival and indicated its involvement in the maintenance of tumor-initiating cells. We conducted a high-throughput screening of a compound library followed by structure-activity relationship studies, and successfully obtained a highly potent MELK inhibitor OTSSP167 with IC50 of 0.41 nM. OTSSP167 inhibited the phosphorylation of PSMA1 (proteasome subunit alpha type 1) and DBNL (drebrin-like), which we identified as novel MELK substrates and are important for stem-cell characteristics and invasiveness. The compound suppressed mammosphere formation of breast cancer cells and exhibited significant tumor growth suppression in xenograft studies using breast, lung, prostate, and pancreas cancer cell lines in mice by both intravenous and oral administration. This MELK inhibitor should be a promising compound possibly to suppress the growth of tumor-initiating cells and be applied for treatment of a wide range of human cancer. PMID:23283305

  11. Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens.

    PubMed

    Gutiérrez-Barranquero, José A; Reen, F Jerry; McCarthy, Ronan R; O'Gara, Fergal

    2015-04-01

    The rapid unchecked rise in antibiotic resistance over the last few decades has led to an increased focus on the need for alternative therapeutic strategies for the treatment and clinical management of microbial infections. In particular, small molecules that can suppress microbial virulence systems independent of any impact on growth are receiving increased attention. Quorum sensing (QS) is a cell-to-cell signalling communication system that controls the virulence behaviour of a broad spectrum of bacterial pathogens. QS systems have been proposed as an effective target, particularly as they control biofilm formation in pathogens, a key driver of antibiotic ineffectiveness. In this study, we identified coumarin, a natural plant phenolic compound, as a novel QS inhibitor, with potent anti-virulence activity in a broad spectrum of pathogens. Using a range of biosensor systems, coumarin was active against short, medium and long chain N-acyl-homoserine lactones, independent of any effect on growth. To determine if this suppression was linked to anti-virulence activity, key virulence systems were studied in the nosocomial pathogen Pseudomonas aeruginosa. Consistent with suppression of QS, coumarin inhibited biofilm, the production of phenazines and swarming motility in this organism potentially linked to reduced expression of the rhlI and pqsA quorum sensing genes. Furthermore, coumarin significantly inhibited biofilm formation and protease activity in other bacterial pathogens and inhibited bioluminescence in Aliivibrio fischeri. In light of these findings, coumarin would appear to have potential as a novel quorum sensing inhibitor with a broad spectrum of action.

  12. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  13. Thiol-Based Potent and Selective HDAC6 Inhibitors Promote Tubulin Acetylation and T-Regulatory Cell Suppressive Function.

    PubMed

    Segretti, Mariana C F; Vallerini, Gian Paolo; Brochier, Camille; Langley, Brett; Wang, Liqing; Hancock, Wayne W; Kozikowski, Alan P

    2015-11-12

    Several new mercaptoacetamides were synthesized and studied as HDAC6 inhibitors. One compound, 2b, bearing an aminoquinoline cap group, was found to show 1.3 nM potency at HDAC6, with >3000-fold selectivity over HDAC1. 2b also showed excellent efficacy at increasing tubulin acetylation in rat primary cortical cultures, inducing a 10-fold increase in acetylated tubulin at 1 μM. To assess possible therapeutic effects, compounds were assayed for their ability to increase T-regulatory (Treg) suppressive function. Some but not all of the compounds increased Treg function, and thereby decreased conventional T cell activation and proliferation in vitro.

  14. Thiol-Based Potent and Selective HDAC6 Inhibitors Promote Tubulin Acetylation and T-Regulatory Cell Suppressive Function

    PubMed Central

    2015-01-01

    Several new mercaptoacetamides were synthesized and studied as HDAC6 inhibitors. One compound, 2b, bearing an aminoquinoline cap group, was found to show 1.3 nM potency at HDAC6, with >3000-fold selectivity over HDAC1. 2b also showed excellent efficacy at increasing tubulin acetylation in rat primary cortical cultures, inducing a 10-fold increase in acetylated tubulin at 1 μM. To assess possible therapeutic effects, compounds were assayed for their ability to increase T-regulatory (Treg) suppressive function. Some but not all of the compounds increased Treg function, and thereby decreased conventional T cell activation and proliferation in vitro. PMID:26617971

  15. Concomitant Administration of a Histamine2 Receptor Antagonist and Proton Pump Inhibitor Enhances Gastric Acid Suppression.

    PubMed

    Abdul-Hussein, Mustafa; Freeman, Janice; Castell, Donald

    2015-12-01

    Because it has been hypothesized that histamine2 receptor antagonists (H2 RAs) might interfere with the action of proton pump inhibitors (PPIs) when the drugs are given concomitantly, we sought to compare the pharmacodynamic effects of simultaneous administration of a PPI and an H2 RA with the effects of each drug administered alone. Prospective, randomized, double-blind, three-way crossover study. Esophageal motility laboratory at a large teaching hospital. Twenty-one healthy volunteers. Subjects were randomized to one of three treatment arms: an H2 RA (ranitidine 300 mg) plus placebo, a PPI (omeprazole 40 mg) plus placebo, or ranitidine 300 mg plus omeprazole 40 mg, all given once/day at 8 a.m., 30 minutes before a standard breakfast, for 1 week. The subjects then received the other two treatments, with each treatment period separated by a 1-week washout period. The primary outcome was length of time that the gastric pH remained higher than 4. Secondary outcomes were median gastric pH higher than 4 and percentage of time that the gastric pH remained higher than 4. On day 7, ambulatory intragastric pH was recorded over an 8-hour period in each treatment arm. The combination of ranitidine and omeprazole resulted in a significantly longer time that the gastric pH remained higher than 4 (median 410.5 min [interquartile range (IQR) 298.5-454.25 min]) versus either omeprazole alone (median 356.7 min [IQR 254.9-419.2 min], p=0.023) or ranitidine alone (134.1 min [IQR 99.9-302.5 min], p<0.0001). Median gastric pH was also significantly higher when omeprazole and ranitidine were given in combination (pH 5.92 [IQR 4.75-6.46]) than either omeprazole alone (pH 4.88 [IQR 4.27-6.11], p=0.001) or ranitidine alone (pH 2.31 [IQR 2.04-5.27], p=0.0003). Likewise, the percentage of time that the gastric pH remained higher than 4 was significantly higher when omeprazole and ranitidine were given in combination (median 85.52%) than either omeprazole alone (74.31%, p=0.027) or

  16. Suppression of interferon β gene transcription by inhibitors of bromodomain and extra-terminal (BET) family members.

    PubMed

    Malik, Nazma; Vollmer, Stefan; Nanda, Sambit Kumar; Lopez-Pelaez, Marta; Prescott, Alan; Gray, Nathanael; Cohen, Philip

    2015-06-15

    PLK (Polo-like kinase) inhibitors, such as BI-2536, have been reported to suppress IFNB (encoding IFNβ, interferon β) gene transcription induced by ligands that activate TLR3 (Toll-like receptor 3) and TLR4. In the present study, we found that BI-2536 is likely to exert this effect by preventing the interaction of the transcription factors IRF3 (interferon-regulatory factor 3) and c-Jun with the IFNB promoter, but without affecting the TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor κB activator]-binding kinase 1}-catalysed phosphorylation of IRF3 at Ser³⁹⁶, the dimerization and nuclear translocation of IRF3 or the phosphorylation of c-Jun and ATF2 (activating transcription factor 2). Although BI-2536 inhibits few other kinases tested, it interacts with BET (bromodomain and extra-terminal) family members and displaces them from acetylated lysine residues on histones. We found that BET inhibitors that do not inhibit PLKs phenocopied the effect of BI-2536 on IFNB gene transcription. Similarly, BET inhibitors blocked the interaction of IRF5 with the IFNB promoter and the secretion of IFNβ induced by TLR7 or TLR9 ligands in the human plasmacytoid dendritic cell line GEN2.2, but without affecting the nuclear translocation of IRF5. We found that the BET family member BRD4 (bromodomain-containing protein 4) was associated with the IFNB promoter and that this interaction was enhanced by TLR3- or TLR4-ligation and prevented by BI-2536 and other BET inhibitors. Our results establish that BET family members are essential for TLR-stimulated IFNB gene transcription by permitting transcription factors to interact with the IFNB promoter. They also show that the interaction of the IFNB promoter with BRD4 is regulated by TLR ligation and that BI-2536 is likely to suppress IFNB gene transcription by targeting BET family members.

  17. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis

    PubMed Central

    Winter, Peter S.; Sarosiek, Kristopher A.; Lin, Kevin H.; Meggendorfer, Manja; Schnittger, Susanne; Letai, Anthony

    2015-01-01

    Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2V617F mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplastic cells. To identify potential mechanisms underlying this inherent resistance phenomenon, we performed pathway-centric, gain-of-function screens in JAK2V617F hematopoietic cells and found that the activation of the guanosine triphosphatase (GTPase) RAS or its effector pathways (mediated by the kinases AKT and ERK) renders cells insensitive to JAK inhibition. Resistant MPN cells became sensitized to JAK inhibitors when also exposed to inhibitors of the AKT or ERK pathways. Mechanistically, in JAK2V617F cells a JAK2-mediated inactivating phosphorylation of the pro-apoptotic protein BAD [B-cell lymphoma 2 (BCL-2)-associated death promoter] promoted cell survival. In sensitive cells, exposure to a JAK inhibitor resulted in dephosphorylation of BAD, enabling BAD to bind and sequester the pro-survival protein BCL-XL (also known as BCL2-like 1), thereby triggering apoptosis. In resistant cells, RAS effector pathways maintained BAD phosphorylation in the presence of JAK inhibitors, yielding a specific dependence on BCL-XL for survival. BCL-XL inhibitors potently induced apoptosis in JAK inhibitor-resistant cells. In patients with MPNs, activating mutations in RAS co-occur with the JAK2V617F mutation in the malignant cells, suggesting that RAS effector pathways likely play an important role in clinically observed resistance. PMID:25538080

  18. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    SciTech Connect

    Zhai, Yingying; Chen, Xi; Yu, Dehai; Li, Tao; Cui, Jiuwei; Wang, Guanjun; Hu, Ji-Fan; Li, Wei

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  19. Inflammation and bone erosion are suppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor.

    PubMed

    Pine, Polly R; Chang, Betty; Schoettler, Nathan; Banquerigo, Mona L; Wang, Su; Lau, Angela; Zhao, Feifei; Grossbard, Elliott B; Payan, Donald G; Brahn, Ernest

    2007-09-01

    Spleen tyrosine kinase (Syk), a key mediator of immunoreceptor signaling in inflammatory cells, is essential for immune complex-mediated signal transduction initiated by activated receptors for immunoglobulin G. In collagen-induced arthritis, R788/R406, a novel and potent small molecule Syk inhibitor suppressed clinical arthritis, bone erosions, pannus formation, and synovitis. Serum anti-collagen type II antibody levels were unaltered, while the half-life of exogenous antibody was extended when co-administered with R406. Expression of the targeted kinase (Syk) in synovial tissue correlated with the joint level of inflammatory cell infiltrates and was virtually undetectable in treated rats. Syk inhibition suppressed synovial cytokines and cartilage oligomeric matrix protein (COMP) in serum, suggesting a sensitive and reliable biomarker for R406 activity. These results highlight the role of activating Fcgamma receptors in inflammatory synovitis and suggest that interruption of the signaling cascade with a novel Syk inhibitor may be a useful addition to immunosuppressive disease-modifying anti-rheumatic drugs currently used in the treatment of human autoimmune diseases such as rheumatoid arthritis.

  20. Reversal of high dietary fructose-induced PPARalpha suppression by oral administration of lipoxygenase/cyclooxygenase inhibitors.

    PubMed

    Kelley, Glen L; Azhar, Salman

    2005-08-09

    High fructose feeding causes diet-induced alterations of lipid metabolism and decreased insulin sensitivity, hallmark of which is a rapid and profound hypertriglyceridemia. One of the mechanisms that contribute to serum hypertriglyceridemia in this model is suppression of hepatic PPARalpha. HMG-CoA inhibitors, which reduce serum triglycerides in these animals, also elevate/restore hepatic PPARalpha. Previously we demonstrated that two known lipoxygenase/cyclooxygenase inhibitors reversed diet-induced hypertriglyceridemia in this model and that reversal of certain inflammatory markers in the liver correlated with the metabolic benefit. In this paper we extended these studies by examining the impact of these compounds on expression of PPARalpha, both at the level of transcription and expression. Our data show that diet-induced suppression of hepaic PPARalpha is reversed upon treatment with lipoxygenase/cyclooxygenase compounds. We then tested one of these compounds, BW-755c, over a range of doses from 10 mg/kg to 100 mg/kg to establish a dose-response relationship with the reduction of serum hypertriglyceridemia in this model. These experiments support the concept of using anti-inflammatory medications as one method to correct metabolic dysfunction.

  1. Aromatase inhibitors: assessment of biochemical efficacy measured by total body aromatase inhibition and tissue estrogen suppression.

    PubMed

    Lønning, Per E; Geisler, Jürgen

    2008-02-01

    The implementation of aromatase inhibitors for treatment of early and metastatic breast cancer has been one of the major improvements in endocrine therapy of breast cancer. Measurement of endocrine effects of aromatase inhibition in vivo has been a major tool in the process of evaluating novel compounds. Biochemical efficacy of aromatase inhibitors in vivo may be determined from their effects on "total body aromatization" as well changes in plasma and tissue estrogen levels. Due to high sensitivity, tracer methods allowing calculation of whole body aromatase inhibition are still considered the gold standard. The method developed by our group in collaboration with the Royal Marsden Hospital and the results of this joint program are summarized and discussed. These studies allowed classification of the different aromatase inhibitors and their optimal dosage, selecting the best compounds for clinical evaluation. In vivo total body aromatase assessment is a work-consuming method, allowing such studies to be conducted in a limited number of patients only. In contrast, plasma estrogen measurement is a cruder but simpler method, allowing screening of larger groups of patients. As plasma estrogens arise through passive diffusion of estrogens synthesized in different body compartments, plasma estrogens, as well as total body aromatase assessment, present a rough estimate of total body tissue estrogen production, and changes associated with treatment with aromatase inhibitors reflect the effects on tissue estrogen production in general. However, plasma estrogen levels do not correlate to breast cancer tissue estrogen levels. This is due to the endocrine autonomy of breast cancer tissue with significant local estrogen production in some tumors. Thus, direct measurement of intratumor estrogens is demanded to evaluate the effects of aromatase inhibitors in malignant target tissues. Our group has developed a highly sensitive HPLC-RIA for the simultaneous measurement of estrone

  2. Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression.

    PubMed

    Jia, Lijun; Li, Hua; Sun, Yi

    2011-06-01

    Cullin-RING ubiquitin ligase (CRL), with its founding member of SKP1-Cullins-F-box proteins (SCF) E3 ubiquitin ligase, is the largest family of E3 ligases, which requires cullin neddylation for its activation. Recently, an inhibitor of NEDD8 activating enzyme (NAE), MLN4924, was reported to block cullin neddylation and inactivate CRL/SCF E3, resulting in apoptosis induction and tumor suppression both in vitro and in vivo. We report here that apoptosis is not the sole mechanism by which MLN4924 suppresses tumor cell growth because apoptosis is moderately induced by the drug in some cancer cell lines and drug-induced growth suppression is only partially blocked by a pan-caspase inhibitor, z-VAD. MLN4924 treatment induces the characteristics of senescence phenotypes as evidenced by enlarged and flattened cellular morphology and positive staining of senescence-associated β-Gal. MLN4924-induced senescence is associated with cellular response to DNA damage, triggered by accumulation of DNA-licensing proteins CDT1 and ORC1, as a result of inactivation of CRL/SCF E3s. The senescence occurs in the manner independent of pRB/p16 and p53, but dependent on p21, a known substrate of CRL/SCF E3s and a mediator of senescence, which accumulates on CRL/SCF inactivation by MLN4924. Furthermore, MLN4924-induced senescence is irreversible and coupled with persistent accumulation of p21 and sustained activation of DNA damage response. Our study reveals a novel mechanism of MLN4924 action and showed that MLN4924 could be further developed as an effective anticancer agent by inducing apoptosis and irreversible senescence.

  3. The dopamine β-hydroxylase inhibitor, nepicastat, suppresses chocolate self-administration and reinstatement of chocolate seeking in rats.

    PubMed

    Zaru, Alessandro; Maccioni, Paola; Colombo, Giancarlo; Gessa, Gian Luigi

    2013-10-01

    Craving for chocolate is a common phenomenon, which may evolve to an addictive-like behaviour and contribute to obesity. Nepicastat is a selective dopamine β-hydroxylase (DBH) inhibitor that suppresses cocaine-primed reinstatement of cocaine seeking in rats. We verified whether nepicastat was able to modify the reinforcing and motivational properties of a chocolate solution and to prevent the reinstatement of chocolate seeking in rats. Nepicastat (25, 50 and 100 mg/kg, intraperitoneal) produced a dose-related inhibition of operant self-administration of the chocolate solution in rats under fixed-ratio 10 (FR10) and progressive-ratio schedules of reinforcement, measures of the reinforcing and motivational properties of the chocolate solution, respectively. The effect of nepicastat on the reinstatement of chocolate seeking was studied in rats in which lever-responding had been extinguished by removing the chocolate solution for approximately 8 d. Nepicastat dose-dependently suppressed the reinstatement of lever-responding triggered by a 'priming' of the chocolate solution together with cues previously associated with the availability of the reward. In a separate group of food-restricted rats trained to lever-respond for regular food pellets, nepicastat reduced FR10 lever-responding with the same potency as for the chocolate solution. Spontaneous locomotor activity was not modified by nepicastat doses that reduced self-administration of the chocolate solution and regular food pellets and suppressed the reinstatement of chocolate seeking. The results indicate that nepicastat reduces motivation to food consumption sustained by appetite or palatability. Moreover, the results suggest that DBH inhibitors may be a new class of pharmacological agents potentially useful in the prevention of relapse to food seeking in human dieters.

  4. A selective inhibitor of intestinal ACAT, EAB309 suppresses both intestinal and hepatic cholesterol output and stimulates chylomicron removal.

    PubMed

    Umeda, Y; Hirano, T; Kako, Y; Kamagata, K; Okuyama, K; Suzuki, K

    1998-01-01

    The effect of a novel inhibitor of acylcoenzyme A:cholesterol acyltransferase (EC 2.3.1.26, ACAT), EAB309 (EAB) on plasma lipid metabolism was studied in cholesterol-fed rats. Orally administered EAB was not detected in the portal vein or the liver but distributed exclusively in the intestine, suggesting that this agent selectively inhibits intestinal ACAT. The rats were fed with either a cholesterol-diet or a cholesterol-diet containing 0.005% EAB (w/w) ad. libium for three weeks. ACAT activity in intestinal microsomes was significantly inhibited in EAB-treated rats. Hepatic ACAT activity was also decreased in EAB-treated rats, however, this was attenuated by the addition of excess cholesterol to the liver microsome, indicating that substrate availability is tightly associated with this enzyme's activity and the inhibition of hepatic ACAT by EAB is not direct. Incorporation of [3H]-cholesterol to cholesteryl ester (CE) in mesenteric lymph were markedly suppressed by EAB treatment. Chylomicrons (CMs) were doubly labeled with [3H]-vitamin A and [14C]-triglyceride (TG) in EAB-treated or non-treated rats and injected into normal chow-fed rats. The CMs from EAB-treated rats were cleared faster from the plasma and taken up more by the liver compared with the CMs from non-treated rats. The content of CE in newly secreted VLDL was remarkably decreased by EAB treatment without affecting TG output. These results demonstrate that EAB, a novel inhibitor of intestinal ACAT, significantly suppresses both intestinal and hepatic CE output and stimulates CM removal. This suggests that the inhibition of intestinal ACAT can subsequently suppress hepatic ACAT by decreased CE delivery from the intestine to the liver.

  5. Histone Deacetylase Inhibitors Inhibit the Proliferation of Gallbladder Carcinoma Cells by Suppressing AKT/mTOR Signaling.

    PubMed

    Zhang, Peng; Guo, Zhiyong; Wu, Ying; Hu, Ronglin; Du, Jun; He, Xiaoshun; Jiao, Xingyuan; Zhu, Xiaofeng

    2015-01-01

    Gallbladder carcinoma is an aggressive malignancy with high mortality mainly due to the limited potential for curative resection and its resistance to chemotherapeutic agents. Here, we show that the histone deacetylase inhibitors (HDACIs) trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA) reduce the proliferation and induce apoptosis of gallbladder carcinoma cells by suppressing the AKT/mammalian target of rapamycin (mTOR) signaling. Gallbladder carcinoma SGC-996 cells were treated with different concentrations of TSA and SAHA for different lengths of time. Cell proliferation and morphology were assessed with MTT assay and microscopy, respectively. Cell cycle distribution and cell apoptosis were analyzed with flow cytometry. Western blotting was used to detect the proteins related to apoptosis, cell cycle, and the AKT/mTOR signaling pathway. Our data showed that TSA and SAHA reduced SGC-996 cell viability and arrested cell cycle at the G1 phase in a dose- and time-dependent manner. TSA and SAHA promoted apoptosis of SGC-996 cells, down-regulated the expression of cyclin D1, c-Myc and Bmi1, and decreased the phosphorylation of AKT, mTOR p70S6K1, S6 and 4E-BP1. Additionally, the mTOR inhibitor rapamycin further reduced the cell viability of TSA- and SAHA-treated SGC-996 cells and the phosphorylation of mTOR, whereas the mTOR activator 1,2-dioctanoyl-sn-glycero-3-phosphate (C8-PA) exerted the opposite influence. Our results demonstrate that histone deacetylase inhibitors (HDACIs) suppress the proliferation of gallbladder carcinoma cell via inhibition of AKT/mTOR signaling. These findings offer a mechanistic rationale for the application of HDACIs in gallbladder carcinoma treatment.

  6. Suppression of granzyme B activity and caspase-3 activation in leukaemia cells constitutively expressing the protease inhibitor 9.

    PubMed

    Fritsch, Kristina; Finke, Jürgen; Grüllich, Carsten

    2013-12-01

    Immune surveillance against malignant cells is mediated by cytotoxic T-lymphocytes and NK-cells (CTL/NK) that induce apoptosis through the granzyme-B-dependent pathway. The serine protease inhibitor serpinB9/protease inhibitor-9 (PI-9) is a known inhibitor of granzyme B. Ectopic expression of PI-9 in tumour cells has been reported. However, the impact of PI-9 on granzyme-B-induced apoptosis in tumour cells remains unclear. The aim of this study was to investigate the influence of constitutive PI-9 expression in leukaemia cell lines on the activity of granzyme B and apoptosis induction. PI-9 negative (lymphoblastic Jurkat cells; myeloblastic U937 cells) and PI-9-expressing cell lines (myeloblastic K562 cells, EBV-transformed LCL-1 and LCL-2 B-cells, lymphoblastic Daudi cells, AML-R cells f leukaemia and the U937 subclone U937PI-9(+)). For accurate granzyme B activity determination a quantitative substrate (Ac-IEPD-pNA) cleavage assay was established and caspase-3 activation measured for apoptosis assessment. Cells were treated with a cytotoxic granule isolate that has previously been shown to induce apoptosis through granzyme B signalling. We found a robust correlation between constitutive PI-9 expression levels and the suppression of granzyme B activity. Further, inhibition of granzyme B translated into reduced caspase-3 activation. We conclude, suppression of granzyme B initiated apoptosis in PI-9-expressing cells could contribute to immune evasion and the measurement of granzyme B activity with our assay might be a useful predictive marker in immune-therapeutic approaches against cancer.

  7. Cholesterol biosynthesis inhibitor RO 48-8071 suppresses growth of hormone-dependent and castration-resistant prostate cancer cells

    PubMed Central

    Liang, Yayun; Mafuvadze, Benford; Aebi, Johannes D; Hyder, Salman M

    2016-01-01

    Standard treatment for primary prostate cancer includes systemic exposure to chemotherapeutic drugs that target androgen receptor or antihormone therapy (chemical castration); however, drug-resistant cancer cells generally emerge during treatment, limiting the continued use of systemic chemotherapy. Patients are then treated with more toxic standard therapies. Therefore, there is an urgent need for novel and more effective treatments for prostate cancer. The cholesterol biosynthetic pathway is an attractive therapeutic target for treating endocrine-dependent cancers because cholesterol is an essential structural and functional component of cell membranes as well as the metabolic precursor of endogenous steroid hormones. In this study, we have examined the effects of RO 48-8071 (4′-[6-(allylmethylamino)hexyloxy]-4-bromo-2′-fluorobenzophenone fumarate; Roche Pharmaceuticals internal reference: RO0488071) (RO), which is an inhibitor of 2, 3-oxidosqualene cyclase (a key enzyme in the cholesterol biosynthetic pathway), on prostate cancer cells. Exposure of both hormone-dependent and castration-resistant human prostate cancer cells to RO reduced prostate cancer cell viability and induced apoptosis in vitro. RO treatment reduced androgen receptor protein expression in hormone-dependent prostate cancer cells and increased estrogen receptor β (ERβ) protein expression in both hormone-dependent and castration-resistant prostate cancer cell lines. Combining RO with an ERβ agonist increased its ability to reduce castration-resistant prostate cancer cell viability. In addition, RO effectively suppressed the growth of aggressive castration-resistant human prostate cancer cell xenografts in vivo without any signs of toxicity to experimental animals. Importantly, RO did not reduce the viability of normal prostate cells in vitro. Our study is the first to demonstrate that the cholesterol biosynthesis inhibitor RO effectively suppresses growth of human prostate cancer cells

  8. Cholesterol biosynthesis inhibitor RO 48-8071 suppresses growth of hormone-dependent and castration-resistant prostate cancer cells.

    PubMed

    Liang, Yayun; Mafuvadze, Benford; Aebi, Johannes D; Hyder, Salman M

    2016-01-01

    Standard treatment for primary prostate cancer includes systemic exposure to chemotherapeutic drugs that target androgen receptor or antihormone therapy (chemical castration); however, drug-resistant cancer cells generally emerge during treatment, limiting the continued use of systemic chemotherapy. Patients are then treated with more toxic standard therapies. Therefore, there is an urgent need for novel and more effective treatments for prostate cancer. The cholesterol biosynthetic pathway is an attractive therapeutic target for treating endocrine-dependent cancers because cholesterol is an essential structural and functional component of cell membranes as well as the metabolic precursor of endogenous steroid hormones. In this study, we have examined the effects of RO 48-8071 (4'-[6-(allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate; Roche Pharmaceuticals internal reference: RO0488071) (RO), which is an inhibitor of 2, 3-oxidosqualene cyclase (a key enzyme in the cholesterol biosynthetic pathway), on prostate cancer cells. Exposure of both hormone-dependent and castration-resistant human prostate cancer cells to RO reduced prostate cancer cell viability and induced apoptosis in vitro. RO treatment reduced androgen receptor protein expression in hormone-dependent prostate cancer cells and increased estrogen receptor β (ERβ) protein expression in both hormone-dependent and castration-resistant prostate cancer cell lines. Combining RO with an ERβ agonist increased its ability to reduce castration-resistant prostate cancer cell viability. In addition, RO effectively suppressed the growth of aggressive castration-resistant human prostate cancer cell xenografts in vivo without any signs of toxicity to experimental animals. Importantly, RO did not reduce the viability of normal prostate cells in vitro. Our study is the first to demonstrate that the cholesterol biosynthesis inhibitor RO effectively suppresses growth of human prostate cancer cells. Our

  9. Suppressive effect of the angiogenesis inhibitor TNP-470 on the development of carcinogen-induced hepatic nodules in rats.

    PubMed

    Ikebe, T; Yamamoto, T; Kubo, S; Hirohashi, K; Kinoshita, H; Kaneda, K; Sakurai, M

    1998-02-01

    Tumor metastasis can be prevented by inhibiting angiogenesis. In the present study, we have demonstrated that the angiogenesis inhibitor TNP-470 also suppresses the development of primary hepatic nodules. Hepatocarcinogenesis was performed by the feeding of 2-acetylaminofluorene to hepatectomized rats during 8-14 weeks of age. Predominantly arterial-to-portal circulation and sinusoidal capillarization were determined by the staining of nodules with arterially infused ink and immunostaining for factor VIII-related antigen, respectively. Intraperitoneal administration of 30 mg/kg b.w. of TNP-470 twice a week significantly reduced the number of hepatic nodules. Among the nodules, hyperplastic nodules stained with ink, atypical hyperplastic nodules and hepatocellular carcinoma, all of which possess structurally altered sinusoidal endothelial cells or capillary-type endothelial cells, were dramatically decreased in number. Suppression was observed equally in nodules of all sizes. TNP-470 was more effective when administered during 8-20 weeks than during 14-26 weeks. In contrast, ink-non-stained hyperplastic nodules, which have normal sinusoidal endothelial cells, were not affected at all. The present results indicate that TNP-470 suppresses the development of primary hepatic nodules whose microvessels are capillaries or transitional forms from sinusoids to capillaries.

  10. Single administration of soluble epoxide hydrolase inhibitor suppresses neuroinflammation and improves neuronal damage after cardiac arrest in mice.

    PubMed

    Taguchi, Noriko; Nakayama, Shin; Tanaka, Makoto

    2016-10-01

    Cardiac arrest (CA) causes ischemia-reperfusion injury in the whole body among victims. Especially in the brain, inflammation and neuronal cell death can lead to irreversible dysfunction. Our goal was to determine whether a single administration of soluble epoxide hydrolase inhibitor (AS2586144-CL) has a neuroprotective effect and decreases the inflammatory response after CA and cardiopulmonary resuscitation (CPR). Global cerebral ischemia was induced in male C57BL/6 mice with 8min of CA. Thirty minutes after recovery of spontaneous circulation, the mice were randomly assigned to three groups and administered AS2586144-CL: 1mg/kg (n=25), 10mg/kg (n=25), or 0mg/kg (vehicle, n=25). At 6 and 7 days after CA/CPR, behavioral tests were conducted and brains were removed for histological evaluation. Analysis of histological damage 7 days after CA/CPR revealed that 10mg/kg of AS2586144-CL protected neurons, and suppressed cytokine production and microglial migration into the hippocampus. Two hours after CA/CPR, 10mg/kg of AS2586144-CL suppressed serum tumor necrosis factor-α and hippocampal nuclear factor κB expression. Our data show that 10mg/kg of AS2586144-CL administered following CA/CPR suppresses inflammation and decreases neuronal damage.

  11. MicroRNA-125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway.

    PubMed

    Koetz-Ploch, Lisa; Hanniford, Douglas; Dolgalev, Igor; Sokolova, Elena; Zhong, Judy; Díaz-Martínez, Marta; Bernstein, Emily; Darvishian, Farbod; Flaherty, Keith T; Chapman, Paul B; Tawbi, Hussein; Hernando, Eva

    2017-01-31

    Melanoma patients with BRAF(V)(600E) -mutant tumors display striking responses to BRAF inhibitors (BRAFi); however, almost all invariably relapse with drug-resistant disease. Here we report that microRNA-125a (miR-125a) expression is upregulated in human melanoma cells and patient tissues upon acquisition of BRAFi resistance. We show that miR-125a induction confers resistance to BRAF(V)(600E) melanoma cells to BRAFi by directly suppressing pro-apoptotic components of the intrinsic apoptosis pathway, including BAK1 and MLK3. Apoptotic suppression and prolonged survival favor reactivation of the MAPK and AKT pathways by drug-resistant melanoma cells. We demonstrate that miR-125a inhibition suppresses the emergence of resistance to BRAFi and, in a subset of resistant melanoma cell lines, leads to partial drug re-sensitization. Finally, we show that miR-125a upregulation is mediated by TGFβ signaling. In conclusion, the identification of this novel role for miR-125a in BRAFi resistance exposes clinically relevant mechanisms of melanoma cell survival that can be exploited therapeutically. This article is protected by copyright. All rights reserved.

  12. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora.

    PubMed

    Yang, Fan; Korban, Schuyler S; Pusey, P Lawrence; Elofsson, Michael; Sundin, George W; Zhao, Youfu

    2014-01-01

    The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease.

  13. JAK inhibitors suppress t(8;21) fusion protein-induced leukemia

    PubMed Central

    Lo, Miao-Chia; Peterson, Luke F.; Yan, Ming; Cong, Xiuli; Hickman, Justin H.; DeKelver, Russel C.; Niewerth, Denise; Zhang, Dong-Er

    2014-01-01

    Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via down-regulation of CD45, a negative regulator of this pathway. To investigate the therapeutic potential of targeting JAK/STAT in t(8;21) leukemia, we examined the effects of a JAK2-selective inhibitor TG101209 and a JAK1/2-selective inhibitor INCB18424 on t(8;21) leukemia cells. TG101209 and INCB18424 inhibited proliferation and promoted apoptosis of these cells. Furthermore, TG101209 treatment in AE9a leukemia mice reduced tumor burden and significantly prolonged survival. TG101209 also significantly impaired the leukemia-initiating potential of AE9a leukemia cells in secondary recipient mice. These results demonstrate the potential therapeutic efficacy of JAK inhibitors in treating t(8;21) AML. PMID:23812420

  14. Serine protease inhibitors suppress pancreatic endogenous proteases and modulate bacterial neutral proteases.

    PubMed

    Nduaguibe, Chikodili C; Bentsi-Barnes, Kwamina; Mullen, Yoko; Kandeel, Fouad; Al-Abdullah, Ismail

    2010-01-01

    Pefabloc, Trasylol and Urinary Trypsin Inhibitor (UTI) have been reported to be effective serine protease inhibitors that impair pancreatic endogenous proteases resulting in improved islet yield. Here we evaluated the effect of these inhibitors on endogenous proteases (trypsin, chymotrypsin and elastase), bacterial neutral proteases (thermolysin and neutral protease) and islet isolation digestion samples. Protease activity was measured using a fluorimetric assay and islet function was assessed by dynamic perifusion. Trypsin, chymotrypsin and elastase were significantly inhibited by Pefabloc and UTI. Trasylol showed strong inhibitory effects on trypsin and chymotrypsin but also decreased thermolysin activity. UTI was found to inhibit the activity of endogenous proteases and increase the activity of bacterial neutral proteases. Human islets exposed to Pefabloc had reduced insulin response, unlike Trasylol or UTI, which had no detrimental effect on insulin secretion. Although Trasylol was an effective inhibitor of endogenous proteases, FDA regulatory issues preclude its use in clinical application and thus in the isolation process. UTI has the greatest potential because it impairs endogenous pancreatic proteases and enhances digestion enzymes.

  15. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells.

    PubMed

    Sherman, Alexandra; Su, Jin; Lin, Shina; Wang, Xiaomei; Herzog, Roland W; Daniell, Henry

    2014-09-04

    Hemophilia A is the X-linked bleeding disorder caused by deficiency of coagulation factor VIII (FVIII). To address serious complications of inhibitory antibody formation in current replacement therapy, we created tobacco transplastomic lines expressing FVIII antigens, heavy chain (HC) and C2, fused with the transmucosal carrier, cholera toxin B subunit. Cholera toxin B-HC and cholera toxin B-C2 fusion proteins expressed up to 80 or 370 µg/g in fresh leaves, assembled into pentameric forms, and bound to GM1 receptors. Protection of FVIII antigen through bioencapsulation in plant cells and oral delivery to the gut immune system was confirmed by immunostaining. Feeding of HC/C2 mixture substantially suppressed T helper cell responses and inhibitor formation against FVIII in mice of 2 different strain backgrounds with hemophilia A. Prolonged oral delivery was required to control inhibitor formation long-term. Substantial reduction of inhibitor titers in preimmune mice demonstrated that the protocol could also reverse inhibitor formation. Gene expression and flow cytometry analyses showed upregulation of immune suppressive cytokines (transforming growth factor β and interleukin 10). Adoptive transfer experiments confirmed an active suppression mechanism and revealed induction of CD4(+)CD25(+) and CD4(+)CD25(-) T cells that potently suppressed anti-FVIII formation. In sum, these data support plant cell-based oral tolerance for suppression of inhibitor formation against FVIII.

  16. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis.

    PubMed

    Winter, Peter S; Sarosiek, Kristopher A; Lin, Kevin H; Meggendorfer, Manja; Schnittger, Susanne; Letai, Anthony; Wood, Kris C

    2014-12-23

    Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2(V617F) mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplastic cells. To identify potential mechanisms underlying this inherent resistance phenomenon, we performed pathway-centric, gain-of-function screens in JAK2(V617F) hematopoietic cells and found that the activation of the guanosine triphosphatase (GTPase) RAS or its effector pathways [mediated by the kinases AKT and ERK (extracellular signal-regulated kinase)] renders cells insensitive to JAK inhibition. Resistant MPN cells became sensitized to JAK inhibitors when also exposed to inhibitors of the AKT or ERK pathways. Mechanistically, in JAK2(V617F) cells, a JAK2-mediated inactivating phosphorylation of the proapoptotic protein BAD [B cell lymphoma 2 (BCL-2)-associated death promoter] promoted cell survival. In sensitive cells, exposure to a JAK inhibitor resulted in dephosphorylation of BAD, enabling BAD to bind and sequester the prosurvival protein BCL-XL (BCL-2-like 1), thereby triggering apoptosis. In resistant cells, RAS effector pathways maintained BAD phosphorylation in the presence of JAK inhibitors, yielding a specific dependence on BCL-XL for survival. In patients with MPNs, activating mutations in RAS co-occur with the JAK2(V617F) mutation in the malignant cells, suggesting that RAS effector pathways likely play an important role in clinically observed resistance.

  17. Abacavir/Lamivudine Versus Tenofovir/Emtricitabine in Virologically Suppressed Patients Switching from Ritonavir-Boosted Protease Inhibitors to Raltegravir

    PubMed Central

    d'Albuquerque, Polyana M.; Pérez, Ignacio; Pich, Judit; Gatell, José M.

    2013-01-01

    Abstract There are few clinical data on the combination abacavir/lamivudine plus raltegravir. We compared the outcomes of patients from the SPIRAL trial receiving either abacavir/lamivudine or tenofovir/emtricitabine at baseline who had taken at least one dose of either raltegravir or ritonavir-boosted protease inhibitors. For the purpose of this analysis, treatment failure was defined as virological failure (confirmed HIV-1 RNA ≥50 copies/ml) or discontinuation of abacavir/lamivudine or tenofovir/emtricitabine because of adverse events, consent withdrawal, or lost to follow-up. There were 143 (72.59%) patients with tenofovir/emtricitabine and 54 (27.41%) with abacavir/lamivudine. In the raltegravir group, there were three (11.11%) treatment failures with abacavir/lamivudine and eight (10.96%) with tenofovir/emtricitabine (estimated difference 0.15%; 95% CI −17.90 to 11.6). In the ritonavir-boosted protease inhibitor group, there were four (14.81%) treatment failures with abacavir/lamivudine and 12 (17.14%) with tenofovir/emtricitabine (estimated difference −2.33%; 95% CI −16.10 to 16.70). Triglycerides decreased and HDL cholesterol increased through the study more pronouncedly with abacavir/lamivudine than with tenofovir/emtricitabine and differences in the total-to-HDL cholesterol ratio between both combinations of nucleoside reverse transcriptase inhibitors (NRTIs) tended to be higher in the raltegravir group, although differences at 48 weeks were not significant. While no patient discontinued abacavir/lamivudine due to adverse events, four (2.80%) patients (all in the ritonavir-boosted protease inhibitor group) discontinued tenofovir/emtricitabine because of adverse events (p=0.2744). The results of this analysis do not suggest that outcomes of abacavir/lamivudine are worse than those of tenofovir/emtricitabine when combined with raltegravir in virologically suppressed HIV-infected adults. PMID:22916715

  18. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression

    SciTech Connect

    Gao, Yong; Luo, Ling-hui; Li, Shuai; Yang, Cao

    2014-02-07

    Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS.

  19. Secretory leukoprotease inhibitor is required for efficient quercetin-mediated suppression of TNFα secretion

    PubMed Central

    Serino, Grazia; Galleggiante, Vanessa; Caruso, Maria Lucia; Mastronardi, Mauro; Cavalcanti, Elisabetta; Ranson, Nicole; Pinto, Aldo; Campiglia, Pietro; Santino, Angelo

    2016-01-01

    Dendritic cells (DCs) are professional antigen presenting cells (APCs) that in response to microbial infections generate long-lasting adaptive immune response. Following microbial uptake, DCs undergo a cascade of cellular differentiation that ultimately leads to “mature” DCs. Mature DCs produce a variety of inflammatory cytokines, including tumor necrosis factor-α (TNFα) a key cytokine for the inflammatory cascade. In numerous studies, polyphenols, including quercetin, demonstrated their ability to suppress TNFα secretion and protect from the onset of chronic inflammatory disorders. We show that murine bone marrow derived DCs express Slpi following quercetin exposure. Slpi is known to suppress LPS mediated NFκB activation, thus, it was hypothesized that its expression could be the key step for polyphenol induced inflammatory suppression. Slpi-KO DCs poorly respond to quercetin administration failing to reduce TNFα secretion in response to quercetin exposure. Supernatant from quercetin exposed DCs could also reduce LPS-mediated TNFα secretion by unrelated DCs, but this property is lost using an anti-Slpi antibody. In vivo, oral administration of quercetin is able to induce Slpi expression. Human biopsies from inflamed tract of the intestine reveal the presence of numerous SLPI+ cells and the expression level could be further increased by quercetin administration. We propose that quercetin induces Slpi expression that in turn reduces the inflammatory response. Our data encourages the development of nutritional strategies to improve the efficiency of current therapies for intestinal chronic inflammatory syndrome and reduce the risks of colorectal cancer development. PMID:27716626

  20. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration

    PubMed Central

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P = 0.002), hepatic (39%, P < 0.001), and cardiac (42%, P = 0.005) cellular respiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR. PMID:26045804

  1. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    PubMed

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, P<0.001), and cardiac (42%, P=0.005) cellular respiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  2. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity

    PubMed Central

    Sulkowski, Parker L.; Corso, Christopher D.; Robinson, Nathaniel D.; Scanlon, Susan E.; Purshouse, Karin R.; Bai, Hanwen; Liu, Yanfeng; Sundaram, Ranjini K.; Hegan, Denise C.; Fons, Nathan R.; Breuer, Gregory A.; Song, Yuanbin; Mishra-Gorur, Ketu; De Feyter, Henk; de Graaf, Robin A.; Surovtseva, Yulia V.; Kachman, Maureen; Halene, Stephanie; Günel, Murat; Glazer, Peter M.; Bindra, Ranjit S.

    2017-01-01

    2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)-dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase-1 and -2 (IDH1/2) mutations, whereas the latter is produced under pathologic processes such as hypoxia. Here, we report that IDH1/2 mutations induce a homologous recombination (HR) defect that renders tumor cells exquisitely sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. This “BRCAness” phenotype of IDH mutant cells can be completely reversed by treatment with small molecule inhibitors of the mutant IDH1 enzyme, and, conversely, it can be entirely recapitulated by treatment with either 2HG enantiomer alone in cells with intact IDH1/2 proteins. We demonstrate IDH1-dependent PARP inhibitor sensitivity in a range of clinically relevant models, including primary patient-derived glioma cells in culture and genetically matched tumor xenografts in vivo. These findings provide the basis for a possible therapeutic strategy exploiting the biological consequences of mutant IDH, rather than attempting to block 2HG production, by targeting the 2HG-dependent HR-deficiency with PARP inhibition. Furthermore, our results uncover an unexpected link between oncometabolites, altered DNA repair, and genetic instability. PMID:28148839

  3. A novel role for the apoptosis inhibitor ARC in suppressing TNFα-induced regulated necrosis.

    PubMed

    Kung, G; Dai, P; Deng, L; Kitsis, R N

    2014-04-01

    TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis.

  4. Suppression of cytochrome P450 3A protein levels by proteasome inhibitors.

    SciTech Connect

    Zangar, Richard C. ); Kocarek, Thomas A.; Shen, Shang; Bollinger, Nikki ); Dahn, Michael S.; Lee, Donna W.

    2003-06-01

    We have previously reported that CYP3A cross-links with polyubiquitinated proteins in microsomes from nicardipine-treated rats in a process that is distinct from classical polyubiquitination. To further examine the role of the proteasome in CYP3A degradation, we investigated the effects of proteasome inhibitors lactacystin, MG132, proteasome inhibitor 1, and hemin in primary cultures of rat and human hepatocytes. With the exception of hemin, these agents increased the total pool of ubiquitinated proteins in microsomes isolated from rat hepatocytes, indicating that lactacystin, MG132, and proteasome inhibitor 1 effectively inhibited the proteasome in these cells. All four agents caused a reduction in the amount of the major approximately 55-kDa CYP3A band, opposite to what would be expected if the ubiquitin-proteasome pathway degraded CYP3A. Only hemin treatment caused an increase in high molecular mass (HMM) CYP3A bands. Because hemin treatment did not alter levels of ubiquitin in CYP3 A immunoprecipitates, the HMM CYP3A bands formed in response to hemin treatment clearly were not due to proteasome inhibition. Rather, because hemin treatment also caused an increase in HMM CYP3A in the detergent-insoluble fraction of the 10,000g pellet, the HMM CYP3A seems to represent a large protein complex that is unlikely to primarily represent ubiquitination.

  5. Low-dose spironolactone ameliorates insulin resistance and suppresses elevated plasminogen activator inhibitor-1 during gestational testosterone exposure.

    PubMed

    Olatunji, Lawrence A; Usman, Taofeek O; Akinade, Aminat I; Adeyanju, Oluwaseun A; Kim, InKyeom; Soladoye, Ayodele O

    2017-12-01

    Elevated gestational circulating testosterone has been associated with pathological pregnancies that increase the risk of development of cardiometabolic disorder in later life. We hypothesised that gestational testosterone exposure, in late pregnancy, causes glucose deregulation and atherogenic dyslipidaemia that would be accompanied by high plasminogen activator inhibitor-1 (PAI-1). The study also hypothesise that low-dose spironolactone treatment would ameliorate these effects. Pregnant Wistar rats received vehicle, testosterone (0.5 mg/kg; sc), spironolactone (0.5 mg/kg, po) or testosterone and spironolactone daily between gestational days 15 and 19. Gestational testosterone exposure led to increased HOMA-IR, circulating insulin, testosterone, 1-h post-load glucose, atherogenic dyslipidaemia, PLR, PAI-1 and MDA. However, all these effects, except that of circulating testosterone, were ameliorated by spironolactone. These results demonstrate that low-dose spironolactone ameliorates glucose deregulation and atherogenic dyslipidaemia during elevated gestational testosterone exposure, at least in part, by suppressing elevated PAI-1.

  6. Discovery and characterisation of hydrazines as inhibitors of the immune suppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1).

    PubMed

    Fung, Sai-Parng S; Wang, Haiyan; Tomek, Petr; Squire, Christopher J; Flanagan, Jack U; Palmer, Brian D; Bridewell, David J A; Tijono, Sofian M; Jamie, Joanne F; Ching, Lai-Ming

    2013-12-15

    Screening of a fragment library identified 2-hydrazinobenzothiazole as a potent inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme expressed by tumours that suppresses the immune system. Spectroscopic studies indicated that 2-hydrazinobenzothiazole interacted with the IDO1 haem and in silico docking predicted that the interaction was through hydrazine. Subsequent studies of hydrazine derivatives identified phenylhydrazine (IC50=0.25 ± 0.07 μM) to be 32-fold more potent than 2-hydrazinobenzothiazole (IC50=8.0 ± 2.3 μM) in inhibiting rhIDO1 and that it inhibited cellular IDO1 at concentrations that were noncytotoxic to cells. Here, phenylhydrazine is shown to inhibit IDO1 through binding to haem.

  7. Hypouricemic effects of novel concentrative nucleoside transporter 2 inhibitors through suppressing intestinal absorption of purine nucleosides.

    PubMed

    Hiratochi, Masahiro; Tatani, Kazuya; Shimizu, Kazuo; Kuramochi, Yu; Kikuchi, Norihiko; Kamada, Noboru; Itoh, Fumiaki; Isaji, Masayuki

    2012-09-05

    We have developed concentrative nucleoside transporter 2 (CNT2) inhibitors as a novel pharmacological approach for improving hyperuricemia by inhibiting intestinal absorption of purines. Dietary purine nucleosides are absorbed in the small intestines by CNTs expressed in the apical membrane. In humans, the absorbed purine nucleosides are rapidly degraded to their final end product, uric acid, by xanthine oxidase. Based on the expression profile of human CNTs in digestive tract tissues, we established a working hypothesis that mainly CNT2 contributes to the intestinal absorption of purine nucleosides. In order to confirm this possibility, we developed CNT2 inhibitors and found that (2R,3R,4S,5R)-2-(6-amino-8-{[3'-(3-aminopropoxy)-biphenyl-4-ylmethyl]-amino}-9H-purin-9-yl)-5-hydroxymethyl-tetrahydrofuran-3,4-diol (KGO-2142) and 1-[3-(5-{[1-((2R,3R,4S,5R)-3,4-dihydroxy-5-hydroxymethyl-tetrahydrofuran-2-yl)-1H-benzimidazol-2-ylamino]-methyl}-2-ethoxyphenoxy)-propyl]-piperidine-4-carboxylic acid amide (KGO-2173) were inhibitory. These CNT2 inhibitors had potent inhibitory activity against inosine uptake via human CNT2, but they did not potently interfere with nucleoside uptake via human CNT1, CNT3 or equilibrative nucleoside transporters (ENTs) in vitro. After oral administration of KGO-2173 along with [(14)C]-inosine, KGO-2173 significantly decreased the urinary excretion of radioactivity at 6 and 24h in rats. Since dietary purine nucleosides are not utilized in the body and are excreted into the urine rapidly, this decrease in radioactivity in the urine represented the inhibitory activity of KGO-2173 toward the absorption of [(14)C]-inosine in the small intestines. KGO-2142 almost completely inhibited dietary RNA-induced hyperuricemia and the increase in urinary excretion of uric acid in cebus monkeys. These novel CNT2 inhibitors, KGO-2142 and KGO-2173, could be useful therapeutic options for the treatment of hyperuricemia. Copyright © 2012 Elsevier B.V. All rights

  8. Compound 9a, a novel synthetic histone deacetylase inhibitor, protects against septic injury in mice by suppressing MAPK signalling.

    PubMed

    Kim, So-Jin; Baek, Ki Seon; Park, Hyun-Ju; Jung, Young Hoon; Lee, Sun-Mee

    2016-03-01

    Sepsis is a life-threatening clinical condition characterized by uncontrolled inflammatory responses and is a major cause of death in intensive care units. Histone deacetylase (HDAC) inhibitors have recently exhibited anti-inflammatory properties. MAPK phosphatase (MKP) suppresses MAPK signalling, which plays an important role in inflammatory responses. The purpose of this study was to investigate the protective mechanisms of Compound 9a, a newly synthetized HDAC inhibitor, against septic injury. The anti-inflammatory properties of Compound 9a were assayed in LPS-stimulated RAW264.7 cells. In vivo, polymicrobial sepsis was induced in C57BL/6 mice by caecal ligation and puncture (CLP). The mice were treated with Compound 9a (i.p., 10 mg∙kg(-1) ) 2 h before and immediately after CLP. Compound 9a inhibited the increased production of TNF-α, IL-6 and NO in LPS-stimulated RAW264.7 cells. In mice with CLP, Compound 9a improved survival rate, attenuated organ injuries and decreased serum TNF-α and IL-6 levels. CLP increased expression of toll-like receptor 4, phosphorylated (p)-p38, p-JNK and p-ERK proteins, which was attenuated by Compound 9a. Compound 9a decreased MKP-1 association with HDAC1 and enhanced MKP-1 acetylation and enhanced MKP-1 association with p-p38 and p-ERK. Moreover, the inhibitory effects of Compound 9a on serum cytokine levels and phosphorylation of MAPK were abolished by MKP-1 siRNA. Our findings suggest that Compound 9a protected against septic injury by suppressing MAPK-mediated inflammatory signalling. © 2015 The British Pharmacological Society.

  9. Compound 9a, a novel synthetic histone deacetylase inhibitor, protects against septic injury in mice by suppressing MAPK signalling

    PubMed Central

    Kim, So‐Jin; Baek, Ki Seon; Park, Hyun‐Ju; Jung, Young Hoon

    2016-01-01

    Background and Purpose Sepsis is a life‐threatening clinical condition characterized by uncontrolled inflammatory responses and is a major cause of death in intensive care units. Histone deacetylase (HDAC) inhibitors have recently exhibited anti‐inflammatory properties. MAPK phosphatase (MKP) suppresses MAPK signalling, which plays an important role in inflammatory responses. The purpose of this study was to investigate the protective mechanisms of Compound 9a, a newly synthetized HDAC inhibitor, against septic injury. Experimental Approach The anti‐inflammatory properties of Compound 9a were assayed in LPS‐stimulated RAW264.7 cells. In vivo, polymicrobial sepsis was induced in C57BL/6 mice by caecal ligation and puncture (CLP). The mice were treated with Compound 9a (i.p., 10 mg∙kg−1) 2 h before and immediately after CLP. Key Results Compound 9a inhibited the increased production of TNF‐α, IL‐6 and NO in LPS‐stimulated RAW264.7 cells. In mice with CLP, Compound 9a improved survival rate, attenuated organ injuries and decreased serum TNF‐α and IL‐6 levels. CLP increased expression of toll‐like receptor 4, phosphorylated (p)‐p38, p‐JNK and p‐ERK proteins, which was attenuated by Compound 9a. Compound 9a decreased MKP‐1 association with HDAC1 and enhanced MKP‐1 acetylation and enhanced MKP‐1 association with p‐p38 and p‐ERK. Moreover, the inhibitory effects of Compound 9a on serum cytokine levels and phosphorylation of MAPK were abolished by MKP‐1 siRNA. Conclusions and Implications Our findings suggest that Compound 9a protected against septic injury by suppressing MAPK‐mediated inflammatory signalling. PMID:26689981

  10. A specific inhibitor of p34(cdc2)/cyclin B suppresses fertilization-induced calcium oscillations in mouse eggs.

    PubMed

    Deng, M Q; Shen, S S

    2000-04-01

    Fertilization-induced Ca(2+) oscillations in mouse eggs cease at the time of pronuclear formation when maturation-promoting factor (MPF) is inactivated, but the Ca(2+) oscillations are ceaseless if eggs are arrested at metaphase by colcemid, which maintains the activity of MPF. To determine the possible role of MPF in regulation of cytoplasmic Ca(2+) excitability, roscovitine, a specific inhibitor of p34(cdc2)/cyclin B kinase, was used to inactivate MPF, and its effect on fertilization-induced Ca(2+) oscillations was investigated. Our results showed that roscovitine at >/= 50 microM suppressed fertilization-induced Ca(2+) oscillations in normal and colcemid-treated metaphase II (MII) eggs after the first 1-2 Ca(2+) spikes. Roscovitine inhibition of fertilization-induced Ca(2+) oscillations could be reversed by extensive washing of the eggs. Histone H1 kinase activity in colcemid-treated MII eggs was similarly inhibited by roscovitine, which suggested that the cessation of fertilization-induced Ca(2+) oscillations is due to the inactivation of MPF. Thimerosal-induced Ca(2+) oscillations in Ca(2+)-, Mg(2+)-free medium was also suppressed by roscovitine, suggesting a general inhibitory effect of roscovitine on Ca(2+) oscillations. The inhibition may be achieved by disruption of Ca(2+) release and refilling of the calcium store. Thapsigargin, an inhibitor of the endoplasmic reticulum Ca-ATPase, induced significantly less Ca(2+) release in roscovitine-treated eggs than in the non-drug-treated eggs. Taken together, our results suggest that MPF plays an important role in regulation of the cytoplasmic Ca(2+) excitability in mouse eggs.

  11. The xanthine oxidase inhibitor febuxostat suppresses development of nonalcoholic steatohepatitis in a rodent model.

    PubMed

    Nakatsu, Yusuke; Seno, Yasuyuki; Kushiyama, Akifumi; Sakoda, Hideyuki; Fujishiro, Midori; Katasako, Aya; Mori, Keiichi; Matsunaga, Yasuka; Fukushima, Toshiaki; Kanaoka, Ryuhei; Yamamotoya, Takeshi; Kamata, Hideaki; Asano, Tomoichiro

    2015-07-01

    Xanthine oxidase (XO) is an enzyme involved in the production of uric acid (UA) from purine nucleotides. Numerous recent studies have revealed the likelihood of metabolic syndrome including nonalcoholic fatty liver disease (NAFLD) or steatohepatitis (NASH) to be related to hyperuricemia. However, it remains unclear whether elevated serum UA during the development of NAFLD or NASH is a cause or a consequence of these diseases. In this study, the XO inhibitor febuxostat was administered to two types of NASH model mice. Febuxostat exerted a strong protective effect against NASH development induced by a high-fat diet containing trans fatty acid (HFDT). In contrast, methionine choline-deficient-diet-induced NASH development not accompanied by hyperuricemia showed no UA normalization, suggesting that the ameliorating effect of febuxostat occurs via the normalization of hyperuricemia itself and/or accompanying molecular mechanism(s) such as oxidative stress. In the HFDT-fed mice, hyperuricemia, elevated alanine aminotransferase, and increased Tunnel-positive cells in the liver were normalized by febuxostat administration. In addition, upregulation of fatty acid oxidation-related genes, fibrotic change, and increases in collagen deposition, inflammatory cytokine expressions, and lipid peroxidation in the HFDT-fed mice were also normalized by febuxostat administration. Taken together, these observations indicate that administration of febuxostat has a protective effect against HFDT-induced NASH development, suggesting the importance of XO in its pathogenesis. Thus XO inhibitors are potentially potent therapies for patients with NASH, particularly that associated with hyperuricemia. Copyright © 2015 the American Physiological Society.

  12. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max).

    PubMed

    Tang, Xiaofei; Su, Tao; Han, Mei; Wei, Lai; Wang, Weiwei; Yu, Zhiyuan; Xue, Yongguo; Wei, Hongbin; Du, Yejie; Greiner, Steffen; Rausch, Thomas; Liu, Lijun

    2017-01-01

    Cell wall invertase (CWI) and vacuolar invertase (VI) play multiple functions in plant growth. As well as depending on transcriptional and post-transcriptional regulation, there is growing evidence that CWI and VI are also subject to post-translational control by small inhibitory proteins. Despite the significance of this, genes encoding inhibitors, their molecular and biochemical properties, and their potential roles in regulating seed production have not been well documented in soybean (Glycine max). In this study, two invertase inhibitor isoforms, GmCIF1 and GmC/VIF2, were characterized to possess inhibitory activities in vitro via heterologous expression. Transcript analyses showed that they were predominantly expressed in developing seeds and in response to ABA. In accordance with this, surveys of primary targets showed subcellular localizations to the apoplast in tobacco epidermis after expressing YFP-fusion constructs. Investigations using RNAi transgenic plants demonstrated marked elevations of CWI activities and improvements in seed weight in conjunction with higher accumulations of hexoses, starch, and protein in mature seeds. Further co-expression analyses of GmCIF1 with several putative CWI genes corroborated the notion that GmCIF1 modulation of CWI that affects seed weight is mainly contingent on post-translational mechanisms. Overall, the results suggest that post-translational elevation of CWI by silencing of GmCIF1 expression orchestrates the process of seed maturation through fine-tuning sucrose metabolism and sink strength.

  13. Respiratory syncytial virus infection in macaques is not suppressed by intranasal sprays of pyrimidine biosynthesis inhibitors.

    PubMed

    Grandin, Clément; Hourani, Marianne-Lucas; Janin, Yves L; Dauzonne, Daniel; Munier-Lehmann, Hélène; Paturet, Adeline; Taborik, Fabrice; Vabret, Astrid; Contamin, Hugues; Tangy, Frédéric; Vidalain, Pierre-Olivier

    2016-01-01

    There is imperious need for efficient therapies against ubiquitous and life-threatening respiratory viruses, foremost among them being the human respiratory syncytial virus (hRSV). Several research groups who performed functional screens for broad-spectrum antivirals identified compounds targeting the de novo pyrimidine biosynthesis pathway. Despite their strong antiviral activity in vitro, whether such antimetabolites are effective in vivo remains highly controversial. Here, we evaluated two potent pyrimidine biosynthesis inhibitors developed in our laboratory, IPPA17-A04 and GAC50, in a model of mild hRSV-infection in cynomolgus macaques. In this model, hRSV replication is restricted to the epithelium of the upper respiratory tract, and is compatible with a topical treatment by intranasal sprays. The local administration of palivizumab, a neutralizing anti-hRSV antibody used in clinics, significantly reduced virus replication. In contrast, pyrimidine biosynthesis inhibitors did not show any inhibitory effect on hRSV growth when delivered topically as experimented in our model. Our results should help to better define the potential applications of this class of antimetabolites in the treatment of viral infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity

    PubMed Central

    Chen, Zhenghu; Wang, Zhenyu; Pang, Jonathan C.; Yu, Yang; Bieerkehazhi, Shayahati; Lu, Jiaxiong; Hu, Ting; Zhao, Yanling; Xu, Xin; Zhang, Hong; Yi, Joanna S.; Liu, Shangfeng; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, is responsible for approximately 15% of cancer-related mortality in children. Aberrant activation of cyclin-dependent kinases (CDKs) has been shown to contribute to tumor cell progression in many cancers including NB. Therefore, small molecule inhibitors of CDKs comprise a strategic option in cancer therapy. Here we show that a novel multiple-CDK inhibitor, dinaciclib (SCH727965, MK-7965), exhibits potent anti-proliferative effects on a panel of NB cell lines by blocking the activity of CDK2 and CDK9. Dinaciclib also significantly sensitized NB cell lines to the treatment of chemotherapeutic agents such as doxorubicin (Dox) and etoposide (VP-16). Furthermore, dinaciclib revealed in vivo antitumor efficacy in an orthotopic xenograft mouse model of two NB cell lines and blocked tumor development in the TH-MYCN transgenic NB mouse model. Taken together, this study suggests that CDK2 and CDK9 are potential therapeutic targets in NB and that abrogating CDK2 and CDK9 activity by small molecules like dinaciclib is a promising strategy and a treatment option for NB patients. PMID:27378523

  15. Suppression of collagen-induced arthritis with a serine proteinase inhibitor (serpin) derived from myxoma virus.

    PubMed

    Brahn, Ernest; Lee, Sarah; Lucas, Alexandra; McFadden, Grant; Macaulay, Colin

    2014-08-01

    Many viruses encode virulence factors to facilitate their own survival by modulating a host's inflammatory response. One of these factors, secreted from cells infected with myxoma virus, is the serine proteinase inhibitor (serpin) Serp-1. Because Serp-1 had demonstrated anti-inflammatory properties in arterial injury models and viral infections, it was cloned and evaluated for therapeutic efficacy in collagen-induced arthritis (CIA). Clinical severity was significantly lower in the Serp-1 protocols (p<0.0001) and blinded radiographs indicated that the Serp-1 group had significantly less erosions than the controls (p<0.01). Delayed-type hypersensitivity was lower in the Serp-1 group but antibody titers to type II collagen were not significantly altered. Recipients had minimal histopathologic synovial changes and did not develop neutralizing antibodies to Serp-1. These results indicate that Serp-1 impedes the pathogenesis of CIA and suggests that the therapeutic potential of serine proteinase inhibitors in inflammatory joint diseases, such as rheumatoid arthritis, should be investigated further.

  16. Auranofin Suppresses Plasminogen Activator Inhibitor-2 Expression through Annexin A5 Induction in Human Prostate Cancer Cells

    PubMed Central

    Shin, Dong-Won; Kwon, Yeo-Jung; Ye, Dong-Jin; Baek, Hyoung-Seok; Lee, Joo-Eun; Chun, Young-Jin

    2017-01-01

    Auranofin has been developed as antirheumatic drugs, which is currently under clinical development for the treatment of chronic lymphocytic leukemia. Previous report showed that auranofin induced apoptosis by enhancement of annexin A5 expression in PC-3 cells. To understand the role of annexin A5 in auranofin-mediated apoptosis, we performed microarray data analysis to study annexin A5-controlled gene expression in annexin A5 knockdown PC-3 cells. Of differentially expressed genes, plasminogen activator inhibitor (PAI)-2 was increased by annexin A5 siRNA confirmed by qRT-PCR and western blot. Treatment with auranofin decreased PAI-2 and increased annexin A5 expression as well as promoting apoptosis. Furthermore, auranofin-induced apoptosis was recovered by annexin A5 siRNA but it was promoted by PAI-2 siRNA. Interestingly, knockdown of annexin A5 rescued PAI-2 expression suppressed by auranofin. Taken together, our study suggests that induction of annexin A5 by auranofin may enhance apoptosis through suppression of PAI-2 expression in PC-3 cells. PMID:27956714

  17. Proteasome Inhibitor Bortezomib Suppresses Nuclear Factor-Kappa B Activation and Ameliorates Eye Inflammation in Experimental Autoimmune Uveitis

    PubMed Central

    Hsu, Sheng-Min; Yang, Chang-Hao; Shen, Fang-Hsiu; Chen, Shun-Hua; Lin, Chia-Jhen; Shieh, Chi-Chang

    2015-01-01

    Bortezomib is a proteasome inhibitor used for hematologic cancer treatment. Since it can suppress NF-κB activation, which is critical for the inflammatory process, bortezomib has been found to possess anti-inflammatory activity. In this study, we evaluated the effect of bortezomib on experimental autoimmune uveitis (EAU) in mice and investigated the potential mechanisms related to NF-κB inactivation. High-dose bortezomib (0.75 mg/kg), low-dose bortezomib (0.15 mg/kg), or phosphate buffered saline was given after EAU induction. We found that the EAU is ameliorated by high-dose bortezomib treatment when compared with low-dose bortezomib or PBS treatment. The DNA-binding activity of NF-κB was suppressed and expression of several key inflammatory mediators including TNF-α, IL-1α, IL-1β, IL-12, IL-17, and MCP-1 was lowered in the high-dose bortezomib-treated group. These results suggest that proteasome inhibition is a promising treatment strategy for autoimmune uveitis. PMID:25653480

  18. Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to suppress the proliferation of human ovarian cancer cells.

    PubMed

    Deng, Youlin; Zhang, Junhui; Wang, Zhongliang; Yan, Zhengjian; Qiao, Min; Ye, Jixing; Wei, Qiang; Wang, Jing; Wang, Xin; Zhao, Lianggong; Lu, Shun; Tang, Shengli; Mohammed, Maryam K; Liu, Hao; Fan, Jiaming; Zhang, Fugui; Zou, Yulong; Liao, Junyi; Qi, Hongbo; Haydon, Rex C; Luu, Hue H; He, Tong-Chuan; Tang, Liangdan

    2015-12-07

    Ovarian cancer is the most lethal gynecologic malignancy with an overall cure rate of merely 30%. Most patients experience recurrence within 12-24 months of cure and die of progressively chemotherapy-resistant disease. Thus, more effective anti-ovarian cancer therapies are needed. Here, we investigate the possibility of repurposing antibiotic monensin as an anti-ovarian cancer agent. We demonstrate that monensin effectively inhibits cell proliferation, migration and cell cycle progression, and induces apoptosis of human ovarian cancer cells. Monensin suppresses multiple cancer-related pathways including Elk1/SRF, AP1, NFκB and STAT, and reduces EGFR expression in ovarian cancer cells. Monensin acts synergistically with EGFR inhibitors and oxaliplatin to inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Xenograft studies confirm that monensin effectively inhibits tumor growth by suppressing cell proliferation through targeting EGFR signaling. Our results suggest monensin may be repurposed as an anti-ovarian cancer agent although further preclinical and clinical studies are needed.

  19. Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells.

    PubMed

    Kato, Taigo; Inoue, Hiroyuki; Imoto, Seiya; Tamada, Yoshinori; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke; Park, Jae-Hyun

    2016-04-05

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) and maternal embryonic leucine zipper kinase (MELK) have been reported to play critical roles in cancer cell proliferation and maintenance of stemness. In this study, we investigated possible roles of TOPK and MELK in kidney cancer cells and found their growth promotive effect as well as some feedback mechanism between these two molecules. Interestingly, the blockade of either of these two kinases effectively caused downregulation of forkhead box protein M1 (FOXM1) activity which is known as an oncogenic transcriptional factor in various types of cancer cells. Small molecular compound inhibitors against TOPK (OTS514) and MELK (OTS167) effectively suppressed the kidney cancer cell growth, and the combination of these two compounds additively worked and showed the very strong growth suppressive effect on kidney cancer cells. Collectively, our results suggest that both TOPK and MELK are promising molecular targets for kidney cancer treatment and that dual blockade of OTS514 and OTS167 may bring additive anti-tumor effects with low risk of side effects.

  20. Novel Src/Abl tyrosine kinase inhibitor bosutinib suppresses neuroblastoma growth via inhibiting Src/Abl signaling

    PubMed Central

    Bieerkehazhi, Shayahati; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Zhang, Huiyuan; Vasudevan, Sanjeev A.; Woodfield, Sarah E.; Tao, Ling; Yi, Joanna S.; Muscal, Jodi A.; Pang, Jonathan C.; Guan, Shan; Zhang, Hong; Nuchtern, Jed G.; Li, Hui; Li, Huiwu; Yang, Jianhua

    2017-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. Aberrant activation of the non-receptor tyrosine kinases Src and c-Abl contributes to the progression of NB. Thus, targeting these kinases could be a promising strategy for NB therapy. In this paper, we report that the potent dual Src/Abl inhibitor bosutinib exerts anti-tumor effects on NB. Bosutinib inhibited NB cell proliferation in a dose-dependent manner and suppressed colony formation ability of NB cells. Mechanistically, bosutinib effectively decreased the activity of Src/Abl and PI3K/AKT/mTOR, MAPK/ERK, and JAK/STAT3 signaling pathways. In addition, bosutinib enhanced doxorubicin (Dox)- and etoposide (VP-16)-induced cytotoxicity in NB cells. Furthermore, bosutinib demonstrated anti-tumor efficacy in an orthotopic xenograft NB mouse model in a similar mechanism as of that in vitro. In summary, our results reveal that Src and c-Abl are potential therapeutic targets in NB and that the novel Src/Abl inhibitor bosutinib alone or in combination with other chemotherapeutic agents may be a valuable therapeutic option for NB patients. PMID:27903968

  1. Novel Src/Abl tyrosine kinase inhibitor bosutinib suppresses neuroblastoma growth via inhibiting Src/Abl signaling.

    PubMed

    Bieerkehazhi, Shayahati; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Zhang, Huiyuan; Vasudevan, Sanjeev A; Woodfield, Sarah E; Tao, Ling; Yi, Joanna S; Muscal, Jodi A; Pang, Jonathan C; Guan, Shan; Zhang, Hong; Nuchtern, Jed G; Li, Hui; Li, Huiwu; Yang, Jianhua

    2017-01-03

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. Aberrant activation of the non-receptor tyrosine kinases Src and c-Abl contributes to the progression of NB. Thus, targeting these kinases could be a promising strategy for NB therapy. In this paper, we report that the potent dual Src/Abl inhibitor bosutinib exerts anti-tumor effects on NB. Bosutinib inhibited NB cell proliferation in a dose-dependent manner and suppressed colony formation ability of NB cells. Mechanistically, bosutinib effectively decreased the activity of Src/Abl and PI3K/AKT/mTOR, MAPK/ERK, and JAK/STAT3 signaling pathways. In addition, bosutinib enhanced doxorubicin (Dox)- and etoposide (VP-16)-induced cytotoxicity in NB cells. Furthermore, bosutinib demonstrated anti-tumor efficacy in an orthotopic xenograft NB mouse model in a similar mechanism as of that in vitro. In summary, our results reveal that Src and c-Abl are potential therapeutic targets in NB and that the novel Src/Abl inhibitor bosutinib alone or in combination with other chemotherapeutic agents may be a valuable therapeutic option for NB patients.

  2. [Experimental study of suppression of reactivation of herpes simplex virus type 1 by cyclooxygenase 2 inhibitor with acyclovir].

    PubMed

    Xia, Yuan; Huang, Zhen-Ping; Ma, Fei; Xue, Chun-yan

    2008-02-01

    To study whether the cyclooxygenase 2 (COX-2) inhibitor can block the herpes virus reactivation and whether the combination of COX-2 inhibitor with acyclovir can enhance the inhibition of virus reactivation. It was a experimental study. Mice were randomly divided into six groups. Five groups were HSV-1 infected mice, which included: group A, treated with lornoxicam and acyclovir; groups B and C, treated with lornoxicam or acyclovir, respectively; groups E and F were injected with saline as the untreated control groups. The sixth group was uninfected mice as the control group. All groups were undergone to reactivate the herpes virus by UV-B except group F. The shedding of the virus was determined by cultures of ocular swab or ganglion homogenates with indicator cells. The rates of corneas and ganglia containing the infectious virus in the groups A, B and C were significantly lower than those in the control group D, (cornea: 2XA-D = 36.88, XB-D = 22.43, X2C-D = 20.32, P < 0.05, ganglia : X2A-D = 49.91 X2B-D =29. 16,X2C.D = 24.89, P < 0.05). Combined use of these two drugs in group A showed no significant statistical difference as compared with using them separately in the cornea culture (X2A-B= 2.75, X2A-C = 3.66, 0. 05 < P < 0.1), but there was significant difference in trigeminal ganglia culture (X2A-B = 4.78, 2XA-c = 6. 97, P < 0.05). These experiments demonstrate that a selective COX-2 inhibitor can suppress UV-B-induced herpes virus reactivation in the cornea and nervous system. A combination of acyclovir does not significantly enhance the inhibition of virus reactivation by lornoxicam. These results provide a new method to prevent the recurrence of HSK.

  3. Trametinib, a novel MEK kinase inhibitor, suppresses lipopolysaccharide-induced tumor necrosis factor (TNF)-α production and endotoxin shock.

    PubMed

    Du, Shi-lin; Yuan, Xue; Zhan, Sun; Tang, Luo-jia; Tong, Chao-yang

    2015-03-13

    Lipopolysaccharide (LPS), one of the most prominent pathogen-associated molecular patterns (PAMPs), activates macrophages, causing release of toxic cytokines (i.e. tumor necrosis factor (TNF)-α) that may provoke inflammation and endotoxin shock. Here, we tested the potential role of trametinib, a novel and highly potent MAPK/ERK kinase (MEK) inhibitor, against LPS-induced TNF-α response in monocytes, and analyzed the underlying mechanisms. We showed that trametinib, at nM concentrations, dramatically inhibited LPS-induced TNF-α mRNA expression and protein secretion in transformed (RAW 264.7 cells) and primary murine macrophages. In ex-vivo cultured human peripheral blood mononuclear cells (PBMCs), this MEK inhibitor similarly suppressed TNF-α production by LPS. For the mechanism study, we found that trametinib blocked LPS-induced MEK-ERK activation in above monocytes, which accounted for the defective TNF-α response. Macrophages or PBMCs treated with a traditional MEK inhibitor PD98059 or infected with MEK1/2-shRNA lentivirus exhibited a similar defect as trametinib, and nullified the activity of trametinib. On the other hand, introducing a constitutively-active (CA) ERK1 restored TNF-α production by LPS in the presence of trametinib. In vivo, mice administrated with trametinib produced low levels of TNF-α after LPS stimulation, and these mice were protected from LPS-induced endotoxin shock. Together, these results show that trametinib inhibits LPS-induced TNF-α expression and endotoxin shock probably through blocking MEK-ERK signaling.

  4. Heat shock protein 70 inhibitors suppress androgen receptor expression in LNCaP95 prostate cancer cells.

    PubMed

    Kita, Kazuaki; Shiota, Masayuki; Tanaka, Masako; Otsuka, Asuka; Matsumoto, Masaki; Kato, Minoru; Tamada, Satoshi; Iwao, Hiroshi; Miura, Katsuyuki; Nakatani, Tatsuya; Tomita, Shuhei

    2017-09-01

    Androgen deprivation therapy is initially effective for treating patients with advanced prostate cancer; however, the prostate cancer gradually becomes resistant to androgen deprivation therapy, which is termed castration-resistant prostate cancer (CRPC). Androgen receptor splice variant 7 (AR-V7), one of the causes of CRPC, is correlated with resistance to a new-generation AR antagonist (enzalutamide) and poor prognosis. Heat shock protein 70 (Hsp70) inhibitor is known to decrease the levels of full-length AR (AR-FL), but little is known about its effects against CRPC cells expressing AR-V7. In this study, we investigated the effect of the Hsp70 inhibitors quercetin and VER155008 in the prostate cancer cell line LNCaP95 that expresses AR-V7, and explored the mechanism by which Hsp70 regulates AR-FL and AR-V7 expression. Quercetin and VER155008 decreased cell proliferation, increased the proportion of apoptotic cells, and decreased the protein levels of AR-FL and AR-V7. Furthermore, VER155008 decreased AR-FL and AR-V7 mRNA levels. Immunoprecipitation with Hsp70 antibody and mass spectrometry identified Y-box binding protein 1 (YB-1) as one of the molecules regulating AR-FL and AR-V7 at the transcription level through interaction with Hsp70. VER155008 decreased the phosphorylation of YB-1 and its localization in the nucleus, indicating that the involvement of Hsp70 in AR regulation might be mediated through the activation and nuclear translocation of YB-1. Collectively, these results suggest that Hsp70 inhibitors have potential anti-tumor activity against CRPC by decreasing AR-FL and AR-V7 expression through YB-1 suppression. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors.

    PubMed

    Venturelli, Sascha; Belz, Regina G; Kämper, Andreas; Berger, Alexander; von Horn, Kyra; Wegner, André; Böcker, Alexander; Zabulon, Gérald; Langenecker, Tobias; Kohlbacher, Oliver; Barneche, Fredy; Weigel, Detlef; Lauer, Ulrich M; Bitzer, Michael; Becker, Claude

    2015-11-01

    To secure their access to water, light, and nutrients, many plant species have developed allelopathic strategies to suppress competitors. To this end, they release into the rhizosphere phytotoxic substances that inhibit the germination and growth of neighbors. Despite the importance of allelopathy in shaping natural plant communities and for agricultural production, the underlying molecular mechanisms are largely unknown. Here, we report that allelochemicals derived from the common class of cyclic hydroxamic acid root exudates directly affect the chromatin-modifying machinery in Arabidopsis thaliana. These allelochemicals inhibit histone deacetylases both in vitro and in vivo and exert their activity through locus-specific alterations of histone acetylation and associated gene expression. Our multilevel analysis collectively shows how plant-plant interactions interfere with a fundamental cellular process, histone acetylation, by targeting an evolutionarily highly conserved class of enzymes. © 2015 American Society of Plant Biologists. All rights reserved.

  6. Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors[OPEN

    PubMed Central

    Venturelli, Sascha; Belz, Regina G.; Kämper, Andreas; Berger, Alexander; von Horn, Kyra; Wegner, André; Böcker, Alexander; Zabulon, Gérald; Barneche, Fredy; Lauer, Ulrich M.; Bitzer, Michael

    2015-01-01

    To secure their access to water, light, and nutrients, many plant species have developed allelopathic strategies to suppress competitors. To this end, they release into the rhizosphere phytotoxic substances that inhibit the germination and growth of neighbors. Despite the importance of allelopathy in shaping natural plant communities and for agricultural production, the underlying molecular mechanisms are largely unknown. Here, we report that allelochemicals derived from the common class of cyclic hydroxamic acid root exudates directly affect the chromatin-modifying machinery in Arabidopsis thaliana. These allelochemicals inhibit histone deacetylases both in vitro and in vivo and exert their activity through locus-specific alterations of histone acetylation and associated gene expression. Our multilevel analysis collectively shows how plant-plant interactions interfere with a fundamental cellular process, histone acetylation, by targeting an evolutionarily highly conserved class of enzymes. PMID:26530086

  7. Phosphodiesterase 3 inhibitors suppress oocyte maturation and consequent pregnancy without affecting ovulation and cyclicity in rodents.

    PubMed Central

    Wiersma, A; Hirsch, B; Tsafriri, A; Hanssen, R G; Van de Kant, M; Kloosterboer, H J; Conti, M; Hsueh, A J

    1998-01-01

    During each reproductive cycle, a preovulatory surge of gonadotropins induces meiotic maturation of the oocyte in the preovulatory follicle followed by ovulation. Although gonadotropins stimulate cAMP production in somatic cells of the follicle, a decrease in intra-oocyte cAMP levels is required for resumption of meiosis in oocytes. Based on the observed compartmentalization of the cAMP-degrading enzyme, phosphodiesterase, in follicular somatic and germ cells, inhibitors of phosphodiesterase 3 were used to block meiosis in ovulating oocytes in rodents. By this strategy, we demonstrated that fertilization and pregnancy could be prevented without disturbing follicle rupture and normal estrous cyclicity. In contrast to conventional contraceptive pills that disrupt ovarian steroidogenesis and reproductive cycles, the present strategy achieves effective contraception by selective blockage of oocyte maturation and development without alterations in ovulation and reproductive cyclicity. PMID:9691090

  8. Cyclopamine tartrate, an inhibitor of Hedgehog signaling, strongly interferes with mitochondrial function and suppresses aerobic respiration in lung cancer cells.

    PubMed

    Alam, Md Maksudul; Sohoni, Sagar; Kalainayakan, Sarada Preeta; Garrossian, Massoud; Zhang, Li

    2016-02-24

    Aberrant Hedgehog (Hh) signaling is associated with the development of many cancers including prostate cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, ovarian cancer, and basal cell carcinoma. The Hh signaling pathway has been one of the most intensely investigated targets for cancer therapy, and a number of compounds inhibiting Hh signaling are being tested clinically for treating many cancers. Lung cancer causes more deaths than the next three most common cancers (colon, breast, and prostate) combined. Cyclopamine was the first compound found to inhibit Hh signaling and has been invaluable for understanding the function of Hh signaling in development and cancer. To find novel strategies for combating lung cancer, we decided to characterize the effect of cyclopamine tartrate (CycT), an improved analogue of cyclopamine, on lung cancer cells and its mechanism of action. The effect of CycT on oxygen consumption and proliferation of non-small-cell lung cancer (NSCLC) cell lines was quantified by using an Oxygraph system and live cell counting, respectively. Apoptosis was detected by using Annexin V and Propidium Iodide staining. CycT's impact on ROS generation, mitochondrial membrane potential, and mitochondrial morphology in NSCLC cells was monitored by using fluorometry and fluorescent microscopy. Western blotting and fluorescent microscopy were used to detect the levels and localization of Hh signaling targets, mitochondrial fission protein Drp1, and heme-related proteins in various NSCLC cells. Our findings identified a novel function of CycT, as well as another Hh inhibitor SANT1, to disrupt mitochondrial function and aerobic respiration. Our results showed that CycT, like glutamine depletion, caused a substantial decrease in oxygen consumption in a number of NSCLC cell lines, suppressed NSCLC cell proliferation, and induced apoptosis. Further, we found that CycT increased ROS generation, mitochondrial membrane hyperpolarization, and

  9. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett's esophagus by increasing Mn-SOD expression

    SciTech Connect

    Thanan, Raynoo; Ma, Ning; Iijima, Katsunori; Abe, Yasuhiko; Koike, Tomoyuki; Shimosegawa, Tooru; Pinlaor, Somchai; Hiraku, Yusuke; Oikawa, Shinji; Murata, Mariko; Kawanishi, Shosuke

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the risk of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and nuclear translocation

  10. CSN5/JAB1 suppresses the WNT inhibitor DKK1 in colorectal cancer cells.

    PubMed

    Jumpertz, Sandra; Hennes, Thomas; Asare, Yaw; Schütz, Anke K; Bernhagen, Jürgen

    2017-02-14

    The COP9 signalosome (CSN) is a multi-protein complex that is highly conserved in eukaryotes. Due to its regulatory impact on processes such as cell cycle, DNA damage response and apoptosis, the CSN is essential for mammalian cells. One of the best-studied functions of the CSN is the deNEDDylation of cullin-RING ligases (CRLs) via its catalytically active subunit CSN5/JAB1, thereby triggering the degradation of various target proteins. CSN5 was found to be overexpressed in many human cancer entities, including colon adenocarcinoma. Overactivation of WNT signaling is known as a key step in colon cancer development. Recently, we found that depletion of CSN5 in colorectal cancer (CRC) cells affects WNT signaling by downregulation of β-catenin. To investigate changes in gene expression associated with the CSN5 knockdown, we performed a microarray using cDNA from the CRC cell line SW480. We found the WNT ligand WNT6 and the WNT inhibitors DKK1 and DKK4 differentially regulated in CSN5 knockdown cells. DKK1 expression and DKK1 protein levels depended on CSN5 in different CRC cell lines. In addition, DKK1 secretion was increased following CSN5 knockdown, affecting WNT signaling in SW480 cells. Consequently, blocking of secreted DKK1 in cell-conditioned media abolished β-catenin downregulation in SW480 cells, while treatment with recombinant DKK1 mimicked the CSN5 knockdown effect. Furthermore, knockdown of DKK1 was able to rescue the proliferative deficiency of CSN5 knockdown cells. We conclude that downregulation of WNT signaling in colorectal cancer cells resulting from CSN5 knockdown is mediated, at least in part, by elevated DKK1 secretion. Moreover, experiments with the NEDDylation inhibitor MLN-4924 indicated that DKK1 expression is regulated by a so far unidentified repressor, the stability of which could be controlled by a CSN-regulated CRL.

  11. AT9283, a novel aurora kinase inhibitor, suppresses tumor growth in aggressive B-cell lymphomas.

    PubMed

    Qi, Wenqing; Liu, Xiaobing; Cooke, Laurence S; Persky, Daniel O; Miller, Thomas P; Squires, Matthew; Mahadevan, Daruka

    2012-06-15

    Aurora kinases are oncogenic serine/threonine kinases that play key roles in regulating the mitotic phase of the eukaryotic cell cycle. Auroras are overexpressed in numerous tumors including B-cell non-Hodgkin's lymphomas and are validated oncology targets. AT9283, a pan-aurora inhibitor inhibited growth and survival of multiple solid tumors in vitro and in vivo. In this study, we demonstrated that AT9283 had potent activity against Aurora B in a variety of aggressive B-(non-Hodgkin lymphoma) B-NHL cell lines. Cells treated with AT9283 exhibited endoreduplication confirming the mechanism of action of an Aurora B inhibitor. Also, treatment of B-NHL cell lines with AT9283 induced apoptosis in a dose and time dependent manner and inhibited cell proliferation with an IC(50) < 1 μM. It is well known that inhibition of auroras (A or B) synergistically enhances the effects of microtubule targeting agents such as taxanes and vinca alkaloids to induce antiproliferation and apoptosis. We evaluated whether AT9283 in combination with docetaxel is more efficient in inducing apoptosis than AT9283 or docetaxel alone. At very low doses (5 nM) apoptosis was doubled in the combination (23%) compared to AT9283 or docetaxel alone (10%). A mouse xenograft model of mantle cell lymphoma demonstrated that AT9283 at 15 mg/kg and docetaxel (10 mg/kg) alone had modest anti-tumor activity. However, AT9283 at 20 mg/kg and AT9283 (15 or 20 mg/kg) plus docetaxel (10 mg/kg) demonstrated a statistically significant tumor growth inhibition and enhanced survival. Together, our results suggest that AT9283 plus docetaxel may represent a novel therapeutic strategy in B-cell NHL and warrant early phase clinical trial evaluation.

  12. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins

    PubMed Central

    Hoffstrom, Benjamin G.; Kaplan, Anna; Letso, Reka; Schmid, Ralf; Turmel, Gregory J.; Lo, Donald C.; Stockwell, Brent R.

    2010-01-01

    A hallmark of many neurodegenerative diseases is accumulation of misfolded proteins within neurons, leading to cellular dysfunction and cell death. Although several mechanisms have been proposed to link protein misfolding to cellular toxicity, the connection remains enigmatic. Here, we report a cell death pathway involving protein disulfide isomerase (PDI), a protein chaperone that catalyzes isomerization, reduction, and oxidation of disulfides. Through a small-molecule-screening approach, we discovered five structurally distinct compounds that prevent apoptosis induced by mutant huntingtin protein. Using modified Huisgen cycloaddition chemistry, we then identified PDI as the molecular target of these small molecules. Expression of polyglutamine-expanded huntingtin exon 1 in PC12 cells caused PDI to accumulate at mitochondrial-associated-ER-membranes and trigger apoptotic cell death, via mitochondrial outer membrane permeabilization. Inhibiting PDI in rat brain cells suppressed the toxicity of mutant huntingtin exon1 and Aβ peptides processed from the amyloid precursor protein. This pro-apoptotic function of PDI provides a new mechanism linking protein misfolding and apoptotic cell death. PMID:21079601

  13. Suppression of chronic lymphocytic leukemia progression by CXCR4 inhibitor WZ811

    PubMed Central

    Li, Shi Hui; Dong, Wen Chuan; Fan, Li; Wang, Guang Sheng

    2016-01-01

    CXCR4 is a chemokine and chemokine receptor pair playing critical roles in tumorigenesis. Overexpression of C-X-C chemokine receptor type 4 (CXCR4) is a hallmark of many hematological malignancies including acute myeloid leukemia, chronic lymphocytic leukemia and non-Hodgkin’s lymphoma, and generally correlates with a poor prognosis. A highly potent competitive antagonist of CXCR4, WZ811, recently has been identified with suppression of cancer cells aggressive in a variety of cancers. However, the effects of WZ811 on chronic lymphocytic leukemia cells have not yet been defined. The effect of WZ811 on chronic lymphocytic leukemia cells TF-1 and UT-7 cells in proliferation, colony formation, and cell migration in vitro were measured respectively. Decreased in cell viability, colony formation, migration, and survival with cell cycle arrest and higher sensitivity to docetaxel in vitro was observed upon WZ811 treatment. In mouse xenograft models developed with human leukemia cells, WZ811 exhibited tumor growth inhibition. Collectively, we have demonstrated that CXCR4 inhibition by WZ811 has the potential for the treatment of human hematological malignancies. This study demonstrated that WZ811 may be a novel approach in the treatment of chronic lymphocytic leukemia. PMID:27725861

  14. Everolimus as an mTOR Inhibitor Suppresses Endometriotic Implants: an Experimental Rat Study

    PubMed Central

    Kacan, T.; Yildiz, C.; Baloglu Kacan, S.; Seker, M.; Ozer, H.; Cetin, A.

    2017-01-01

    Introduction Mammalian target of rapamycin is a pathway to block apoptosis. Recent studies showed that the activity of mammalian target of rapamycin pathway increases in endometriotic lesions. Aim of the present study was to study the effect of everolimus agent, a rapamycin analog, in an experimental endometriosis model. Materials and Methods Endometriosis established by the autotransplantation of uterine tissue in the peritoneal cavity was confirmed in 24 rats. The animals were then randomly divided into three groups to receive either everolimus (1.5 mg/kg/day, p. o.), anastrozole (0.004 mg/day, p. o.), or normal saline (0.1 mL, i. p.) for 14 days. Endometriotic foci were excised, stained with hematoxylin and eosin, and endometriosis was scored semiquantitatively. In addition, immunohistochemical examination were performed using primary antibodies of vascular endothelial growth factor, CD117, and Bax. Results Both anastrozole and everolimus lowered endometriosis scores. Significant decreases in ovarian follicles were observed following anastrozole treatment but not everolimus treatment. Conclusion Through its apoptosis-promoting effect, everolimus suppressed endometriotic foci without negatively affecting ovarian reserve. These findings support the hypothesis that everolimus merits further study on the way to developing a new endometriosis drug. PMID:28190891

  15. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity

    PubMed Central

    Watanabe, Ryu; Shirai, Tsuyoshi; Namkoong, Hong; Zhang, Hui; Berry, Gerald J.; Wallis, Barbara B.; Schaefgen, Benedikt; Tremmel, Jennifer A.; Giacomini, John C.; Goronzy, Jörg J.

    2017-01-01

    Patients with coronary artery disease (CAD) are at high risk for reactivation of the varicella zoster virus (VZV) and development of herpes zoster (HZ). Here, we found that macrophages from patients with CAD actively suppress T cell activation and expansion, leading to defective VZV-specific T cell immunity. Monocyte-derived and plaque-infiltrating macrophages from patients with CAD spontaneously expressed high surface density of the immunoinhibitory ligand programmed death ligand-1 (PD-L1), thereby providing negative signals to programmed death-1+ (PD-1+) T cells. We determined that aberrant PD-L1 expression in patient-derived macrophages was metabolically controlled. Oversupply of the glycolytic intermediate pyruvate in mitochondria from CAD macrophages promoted expression of PD-L1 via induction of the bone morphogenetic protein 4/phosphorylated SMAD1/5/IFN regulatory factor 1 (BMP4/p-SMAD1/5/IRF1) signaling pathway. Thus, CAD macrophages respond to nutrient excess by activating the immunoinhibitory PD-1/PD-L1 checkpoint, leading to impaired T cell immunity. This finding indicates that metabolite-based immunotherapy may be a potential strategy for restoring adaptive immunity in CAD. PMID:28604383

  16. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity.

    PubMed

    Watanabe, Ryu; Shirai, Tsuyoshi; Namkoong, Hong; Zhang, Hui; Berry, Gerald J; Wallis, Barbara B; Schaefgen, Benedikt; Harrison, David G; Tremmel, Jennifer A; Giacomini, John C; Goronzy, Jörg J; Weyand, Cornelia M

    2017-06-30

    Patients with coronary artery disease (CAD) are at high risk for reactivation of the varicella zoster virus (VZV) and development of herpes zoster (HZ). Here, we found that macrophages from patients with CAD actively suppress T cell activation and expansion, leading to defective VZV-specific T cell immunity. Monocyte-derived and plaque-infiltrating macrophages from patients with CAD spontaneously expressed high surface density of the immunoinhibitory ligand programmed death ligand-1 (PD-L1), thereby providing negative signals to programmed death-1+ (PD-1+) T cells. We determined that aberrant PD-L1 expression in patient-derived macrophages was metabolically controlled. Oversupply of the glycolytic intermediate pyruvate in mitochondria from CAD macrophages promoted expression of PD-L1 via induction of the bone morphogenetic protein 4/phosphorylated SMAD1/5/IFN regulatory factor 1 (BMP4/p-SMAD1/5/IRF1) signaling pathway. Thus, CAD macrophages respond to nutrient excess by activating the immunoinhibitory PD-1/PD-L1 checkpoint, leading to impaired T cell immunity. This finding indicates that metabolite-based immunotherapy may be a potential strategy for restoring adaptive immunity in CAD.

  17. A Multikinase and DNA-PK Inhibitor Combination Immunomodulates Melanomas, Suppresses Tumor Progression, and Enhances Immunotherapies.

    PubMed

    Tsai, Alexander K; Khan, Asra Y; Worgo, Christina E; Wang, Lucy L; Liang, Yuanyuan; Davila, Eduardo

    2017-09-01

    Combination therapies have the potential to improve outcomes in melanoma patients but have not yet been clinically efficacious. Here, we used high-throughput flow cytometry-based screening to identify and characterize candidate therapies that might synergize with and augment T-cell immunotherapy efficacy. Two lead therapies, regorafenib (Reg) and NU7441, were selected based on their ability to alter a variety of immunomodulatory proteins, including CD55, CD73, CD155, programmed death-ligand 1 (PD-L1), nerve growth factor receptor (NGFR), and HLA class I in a heterogeneous panel of melanomas. The therapies also upregulated several melanoma antigens, inhibited proliferation, and perturbed activation of oncogenic signaling pathways in melanomas. T cells treated with the therapies proliferated normally and exhibited a favorably altered phenotype, including increased CD25, CD28, inducible T-cell costimulator (ICOS), and reduced expression of coinhibitory receptors. Cytokine production was also increased in treated T cells. When administered in mice, REg suppressed melanoma progression in a CD8(+) T cell-dependent manner when used alone and with various immunotherapies. Additionally, Reg altered the number, phenotype, and function of various T-cell subsets in the tumor microenvironment. These studies reveal that Reg and NU7441 influence the immunobiology of both tumor cells and T cells and enhance the efficacy of various immunotherapies. Cancer Immunol Res; 5(9); 790-803. ©2017 AACR. ©2017 American Association for Cancer Research.

  18. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors.

    PubMed

    Lou, Yuanmei; McDonald, Paul C; Oloumi, Arusha; Chia, Stephen; Ostlund, Christina; Ahmadi, Ardalan; Kyle, Alastair; Auf dem Keller, Ulrich; Leung, Samuel; Huntsman, David; Clarke, Blaise; Sutherland, Brent W; Waterhouse, Dawn; Bally, Marcel; Roskelley, Calvin; Overall, Christopher M; Minchinton, Andrew; Pacchiano, Fabio; Carta, Fabrizio; Scozzafava, Andrea; Touisni, Nadia; Winum, Jean-Yves; Supuran, Claudiu T; Dedhar, Shoukat

    2011-05-01

    Carbonic anhydrase IX (CAIX) is a hypoxia and HIF-1-inducible protein that regulates intra- and extracellular pH under hypoxic conditions and promotes tumor cell survival and invasion in hypoxic microenvironments. Interrogation of 3,630 human breast cancers provided definitive evidence of CAIX as an independent poor prognostic biomarker for distant metastases and survival. shRNA-mediated depletion of CAIX expression in 4T1 mouse metastatic breast cancer cells capable of inducing CAIX in hypoxia resulted in regression of orthotopic mammary tumors and inhibition of spontaneous lung metastasis formation. Stable depletion of CAIX in MDA-MB-231 human breast cancer xenografts also resulted in attenuation of primary tumor growth. CAIX depletion in the 4T1 cells led to caspase-independent cell death and reversal of extracellular acidosis under hypoxic conditions in vitro. Treatment of mice harboring CAIX-positive 4T1 mammary tumors with novel CAIX-specific small molecule inhibitors that mimicked the effects of CAIX depletion in vitro resulted in significant inhibition of tumor growth and metastasis formation in both spontaneous and experimental models of metastasis, without inhibitory effects on CAIX-negative tumors. Similar inhibitory effects on primary tumor growth were observed in mice harboring orthotopic tumors comprised of lung metatstatic MDA-MB-231 LM2-4(Luc+) cells. Our findings show that CAIX is vital for growth and metastasis of hypoxic breast tumors and is a specific, targetable biomarker for breast cancer metastasis.

  19. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    PubMed

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  20. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation.

    PubMed

    McKallip, Robert J; Hagele, Harriet F; Uchakina, Olga N

    2013-10-17

    Exposure to bacterial superantigens, such as staphylococcal enterotoxin B (SEB), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for SEB-induced inflammation. In the current study we investigated the potential use of the hyaluronic acid synthase inhibitor 4-methylumbelliferone (4-MU) on staphylococcal enterotoxin B (SEB) induced acute lung inflammation. Culturing SEB-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production as well as an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from SEB-induced lung injury. Specifically, 4-MU treatment led to a reduction in SEB-induced HA levels, reduction in lung permeability, and reduced pro-inflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target hyaluronic acid production may be an effective treatment for the inflammatory response following exposure to SEB.

  1. Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses SEB-Induced Lung Inflammation

    PubMed Central

    McKallip, Robert J.; Hagele, Harriet F.; Uchakina, Olga N.

    2013-01-01

    Exposure to bacterial superantigens, such as staphylococcal enterotoxin B (SEB), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for SEB-induced inflammation. In the current study we investigated the potential use of the hyaluronic acid synthase inhibitor 4-methylumbelliferone (4-MU) on staphylococcal enterotoxin B (SEB) induced acute lung inflammation. Culturing SEB-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production as well as an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from SEB-induced lung injury. Specifically, 4-MU treatment led to a reduction in SEB-induced HA levels, reduction in lung permeability, and reduced pro-inflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target hyaluronic acid production may be an effective treatment for the inflammatory response following exposure to SEB. PMID:24141285

  2. The PI3Kδ inhibitor idelalisib suppresses liver and lung cellular respiration

    PubMed Central

    Hammadi, Suleiman Al; Almarzooqi, Saeeda; Abdul-Kader, Hidaya Mohammed; Saraswathiamma, Dhanya; Souid, Abdul-Kader

    2015-01-01

    Idelalisib (an inhibitor of phosphatidylinositol-3-kinase-delta) is approved for treatment of B-cell malignancies, with a Boxed Warning concerning potentially fatal hepatic, lung, and intestinal toxicities. The mechanisms of these tissue-specific adverse events have yet to be elucidated. This in vitro study investigated whether these effects could be attributed, at least in part, to altered cellular bioenergetics. A phosphorescence analyzer was used to measure cellular mitochondrial O2 consumption (kc, µM O2 min-1 mg-1) in C57BL/6 mouse organs in the presence of 10 µM idelalisib or dimethyl-sulfoxide. Idelalisib significantly reduced the rate of cellular respiration in liver and lung fragments by 20% and 27%, respectively. Respiration in intestinal, thymic, and kidney fragments was unaffected. Idelalisib did not alter respiratory chain activities in mitochondria isolated from the liver and did not induce hepatocyte death. Thus, the drug mildly lowers liver and lung cellular respiration, an effect that may contribute to toxicities observed in these organs. PMID:26823960

  3. Suppression of the biosynthesis of guanosine triphosphate by protein synthesis inhibitors

    SciTech Connect

    Volkin, E.; Boling, M.E.; Jones, M.H.; Lee, W.H.; Pike, L.M.

    1980-10-10

    In a prior report it was observed that CTP synthesis and concomitant incorporation of CMP into RNA and dCMP into DNA were markedly reduced in cells cultured in the presence of cycloheximide and puromycin. Experiments described here with Novikoff hepatoma cells reveal that the purine biosynthetic pathway is similarly affected. When the cells are subjected to cycloheximide (30 or 60 ..mu..g/ml) or puromycin (100 ..mu..g/ml), there is a substantial reduction in the bioconversion of hypoxanthine, adenosine, and deoxyadenosine into guanylate compared to untreated cultures. Whereas synthesis (counts per min/nmol) of pool ATP was 70 to 100% of controls, that of pool GTP was 20 to 35% of controls. Incorporation of AMP into RNA was 40 to 60% of controls, but that of GMP was only 10 to 25% of controls. Incorporation of dAMP into DNA averaged 10% of controls, but that of dGMP was only 4% of controls. Synthesis of guanylates from formate by the de novo pathway was similarly reduced, but incorporation of guanosine, which enters via kinase action alone, was not disproportionately lowered. These results suggest that protein synthesis inhibitors cause a severely reduced availability of newly synthesized GTP and CTP as well as their deoxy counterparts, dGTP and dCTP, the proximal precursors for the synthesis of RNA and DNA. However, the nanomolar levels of all nucleoside triphosphates remain high, probably as a result of recycling of nucleic acid breakdown products. Thus, reduced synthesis of these compounds may restrict nucleic acid synthesis only of some sort of compartmentation leads to a limitation of these precursors at the site(s) of nucleic acid synthesis.

  4. The hederagenin saponin SMG-1 is a natural FMLP receptor inhibitor that suppresses human neutrophil activation.

    PubMed

    Hwang, Tsong-Long; Wang, Chien-Chiao; Kuo, Yao-Haur; Huang, Hui-Chi; Wu, Yang-Chang; Kuo, Liang-Mou; Wu, Yi-Hsiu

    2010-10-15

    The pericarp of Sapindus mukorossi Gaertn is traditionally used as an expectorant in Japan, China, and Taiwan. Activated neutrophils produce high concentrations of the superoxide anion (O(2)(-)) and elastase known to be involved in airway mucus hypersecretion. In the present study, the anti-inflammatory functions of hederagenin 3-O-(3,4-O-di-acetyl-alpha-L-arabinopyranoside)-(1-->3)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranoside (SMG-1), a saponin isolated from S. mukorossi, and its underlying mechanisms were investigated in human neutrophils. SMG-1 potently and concentration-dependently inhibited O(2)(*-) generation and elastase release in N-Formyl-Met-Leu-Phe (FMLP)-activated human neutrophils. Furthermore, SMG-1 reduced membrane-associated p47(phox) expression in FMLP-induced intact neutrophils, but did not alter subcellular NADPH oxidase activity in reconstituted systems. SMG-1 attenuated FMLP-induced increase of cytosolic calcium concentration and phosphorylation of p38 MAPK, ERK, JNK, and AKT. However, SMG-1 displayed no effect on cellular cAMP levels and activity of adenylate cyclase and phosphodiesterase. Significantly, receptor-binding analysis showed that SMG-1 inhibited FMLP binding to its receptor in a concentration-dependent manner. In contrast, neither phorbol myristate acetate-induced O(2)(*-) generation and MAPKs activation nor thapsigargin-caused calcium mobilization was altered by SMG-1. Taken together, our results demonstrate that SMG-1 is a natural inhibitor of the FMLP receptor, which may have the potential to be developed into a useful new therapeutic agent for treating neutrophilic inflammatory diseases.

  5. EGFR inhibitors prevent induction of cancer stem-like cells in esophageal squamous cell carcinoma by suppressing epithelial-mesenchymal transition.

    PubMed

    Sato, Fumiyuki; Kubota, Yoshimasa; Natsuizaka, Mitsuteru; Maehara, Osamu; Hatanaka, Yutaka; Marukawa, Katsuji; Terashita, Katsumi; Suda, Goki; Ohnishi, Shunsuke; Shimizu, Yuichi; Komatsu, Yoshito; Ohashi, Shinya; Kagawa, Shingo; Kinugasa, Hideaki; Whelan, Kelly A; Nakagawa, Hiroshi; Sakamoto, Naoya

    2015-01-01

    There exists a highly tumorigenic subset of esophageal squamous cell carcinoma (ESCC) cells defined by high expression of CD44. A novel therapy targeting these cancer stem-like cells (CSCs) is needed to improve prognosis of ESCC. CSCs of ESCC have a mesenchymal phenotype and epithelial-mesenchymal transition (EMT) is critical to enrich and maintain CSCs. EGFR, frequently overexpressed in ESCC, has pivotal roles in EMT induced by TGF-β in invasive fronts. Thus, EMT in invasive fronts of ESCC might be important for CSCs and EGFR could be a target of a novel therapy eliminating CSCs. However, effects of EGFR inhibitors on CSCs in ESCC have not been fully examined. EGFR inhibitors, erlotinib and cetuximab, significantly suppressed enrichment of CSCs via TGF-β1-mediated EMT. Importantly, EGFR inhibitors sharply suppressed ZEB1 that is essential for EMT in ESCC. Further, EGFR inhibitors activated Notch1 and Notch3, leading to squamous cell differentiation. EGFR inhibition may suppress expression of ZEB1 and induce differentiation, thereby blocking EMT-mediated enrichment of CSCs. In organotypic 3D culture, a form of human tissue engineering, tumor cells in invasive nests showed high expression of CD44. Erlotinib significantly blocked invasion into the matrix and CD44 high expressing CSCs were markedly suppressed by erlotinib in organotypic 3D culture. In conclusion, EMT is a critical process for generation of CSCs and the invasive front of ESCC, where EMT occurs, might form a CSC niche in ESCC. EGFR inhibitors could suppress EMT in invasive fronts and be one therapeutic option targeting against generation of CSCs in ESCC.

  6. HMG-CoA reductase inhibitors prevent migration of human coronary smooth muscle cells through suppression of increase in oxidative stress.

    PubMed

    Yasunari, K; Maeda, K; Minami, M; Yoshikawa, J

    2001-06-01

    In vitro and in vivo evidence of a decrease in vascular smooth muscle cell (SMC) migration induced by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors has been reported. When added to SMC cultures for 6 hours, the HMG-CoA reductase inhibitors fluvastatin, simvastatin, and pravastatin at 1 micromol/L resulted in a 48%, 50%, and 16% suppression, respectively, of human coronary SMC migration; these reductions mirrored the suppression in oxidative stress induced by 1 micromol/L lysophosphatidylcholine (lyso-PC) of 50%, 53% and 19%, respectively. The hydroxylated metabolites of fluvastatin, M(2) and M(3), at 1 micromol/L also suppressed the enhancement of SMC migration by 58% and 45% and the increase in oxidative stress induced by lyso-PC of 58% and 49%, respectively. Lyso-PC activated phospholipase D and protein kinase C (PKC), and this activation was also suppressed by HMG-CoA reductase inhibitors. The inhibition of phospholipase D and PKC was reversed by 100 micromol/L mevalonate, its isoprenoid derivative, farnesol, and geranylgeraniol but not by 10 micromol/L squalene. Antisense oligodeoxynucleotides at 5 micromol/L to PKC-alpha, but not those to the PKC-beta isoform, suppressed the lyso-PC-mediated increases in SMC migration and oxidative stress. These findings suggest that HMG-CoA reductase inhibitors have direct antimigratory effects on the vascular wall beyond their effects on plasma lipids and that they might exert such antimigratory effects via suppression of the phospholipase D- and PKC (possibly PKC-alpha)-induced increase in oxidative stress, which might in turn prevent significant coronary artery disease.

  7. Novel application of proton pump inhibitor for the prevention of colitis-induced colorectal carcinogenesis beyond acid suppression.

    PubMed

    Kim, Yoon Jae; Lee, Jeong Sang; Hong, Kyung Sook; Chung, Jun Won; Kim, Ju Hyun; Hahm, Ki Baik

    2010-08-01

    Colitis-associated cancers arise in the setting of chronic inflammation wherein an "inflammation-dysplasia-carcinoma" sequence prevails. Based on our previous findings in which the proton pump inhibitor could impose significant levels of anti-inflammatory, antiangiogenic, and selective apoptosis induction beyond gastric acid suppression, we investigated whether omeprazole could prevent the development of colitis-associated cancer in a mouse model induced by repeated bouts of colitis. Omeprazole, 10 mg/kg, was given i.p. all through the experimental periods for colitis-associated carcinogenesis. Molecular changes regarding inflammation and carcinogenesis were compared between control groups and colitis-associated cancer groups treated with omeprazole in addition to chemopreventive outcome. Nine of 12 (75.0%) mice in the control group developed multiple colorectal tumors, whereas tumors were noted in only 3 of 12 (25.0%) mice treated with daily injections of omeprazole. The cancer-preventive results of omeprazole treatment was based on significant decreases in the levels of nitric oxide, thiobarbituric acid-reactive substance, and interleukin-6 accompanied with attenuated expressions of tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenase-2. The expressions of matrix metalloproteinase (MMP)-9, MMP-11, and MT1-MMMP were significantly decreased in mice treated with omeprazole in accordance with significant decreases in the number of beta-catenin-accumulated crypts. A significant induction of apoptosis was observed in tumor tissue treated with omeprazole. Omeprazole could block the trophic effect of gastrin in colon epithelial cells. The significant anti-inflammatory, antioxidative, and antimutagenic activities of omeprazole played a cancer-preventive role against colitis-induced carcinogenesis, and our novel in vivo evidence is suggestive of chemopreventive action independent of gastric acid suppression.

  8. The pan-deacetylase inhibitor panobinostat suppresses the expression of oncogenic miRNAs in hepatocellular carcinoma cell lines.

    PubMed

    Henrici, Alexander; Montalbano, Roberta; Neureiter, Daniel; Krause, Michael; Stiewe, Thorsten; Slater, Emily Prentice; Quint, Karl; Ocker, Matthias; Di Fazio, Pietro

    2015-08-01

    Deacetylase inhibitors (DACi) are a new class of drugs with a broad spectrum of mechanisms that favor their application in cancer therapy. Currently, the exact mechanisms and cellular effects of DACi have not been fully elucidated. In addition to their effects on histone acetylation, DACi can interfere with gene expression via miRNA pathways. Treatment with panobinostat (LBH589), a novel potent DACi, led to the highly aberrant modulation of several miRNAs in hepatocellular carcinoma (HCC) cell lines as shown by miRNA array analysis. Among them, hsa-miR-19a, hsa-miR-19b1 and the corresponding precursors were down-regulated by panobinostat in TP53(-/-) Hep3B and TP53(+/+) HepG2 cell lines; hsa-miR30a-5p mature form only was suppressed in both HCC cell lines, as confirmed by further RT-qPCR analysis. In HCC cell lines, panobinostat caused the upregulation of the predicted miRNA targets APAF1 and Beclin1 protein levels. Transfection with oligonucleotides mimicking these miRNAs led to an increase in the viability rate of both cell lines as analyzed by impedance-based real-time cell analysis. In addition, transfecting miRNA mimicking oligonucleotides resulted in the decrease of APAF1, Beclin1 and PAK6 at the protein level, proving the regulating influence of the investigated miRNAs on gene final products. The overexpression of the above mentioned oncomiRs in Hep3B and HepG2 cell lines leads to cell proliferation and downregulation of cell death associated proteins. In our model, panobinostat exerts its anti-cancer effect by suppressing these miRNAs and restoring the expression of their corresponding tumor suppressor targets. © 2013 Wiley Periodicals, Inc.

  9. Histone deacetylase inhibitors promote eNOS expression in vascular smooth muscle cells and suppress hypoxia-induced cell growth.

    PubMed

    Tan, Xiaoling; Feng, Lan; Huang, Xiaoyong; Yang, Yidong; Yang, Chengzhong; Gao, Yuqi

    2017-03-07

    Hypoxia stimulates excessive growth of vascular smooth muscle cells (VSMCs) contributing to vascular remodelling. Recent studies have shown that histone deacetylase inhibitors (HDIs) suppress VSMC proliferation and activate eNOS expression. However, the effects of HDI on hypoxia-induced VSMC growth and the role of activated eNOS in VSMCs are unclear. Using an EdU incorporation assay and flow cytometry analysis, we found that the HDIs, butyrate (Bur) and suberoylanilide hydroxamic acid (SAHA) significantly suppressed the proliferation of hypoxic VSMC lines and induced apoptosis. Remarkable induction of cleaved caspase 3, p21 expression and reduction of PCNA expression were also observed. Increased eNOS expression and enhanced NO secretion by hypoxic VSMC lines were detected using Bur or SAHA treatment. Knockdown of eNOS by siRNA transfection or exposure of hypoxic VSMCs to NO scavengers weakened the effects of Bur and SAHA on the growth of hypoxic VSMCs. In animal experiments, administration of Bur to Wistar rats exposed to hypobaric hypoxia for 28 days ameliorated the thickness and collagen deposition in pulmonary artery walls. Although the mean pulmonary arterial pressure (mPAP) was not obviously decreased with Bur in hypoxic rats, right ventricle hypertrophy index (RVHI) was decreased and the oxygen partial pressure of arterial blood was elevated. Furthermore, cell viability was decreased and eNOS and cleaved caspase 3 were induced in HDI-treated rat pulmonary arterial SMCs. These findings imply that HDIs prevent hypoxia-induced VSMC growth, in correlation with activated eNOS expression and activity in hypoxic VSMCs.

  10. The Histone Deacetylase Inhibitor Vaproic Acid Induces Cell Growth Arrest in Hepatocellular Carcinoma Cells via Suppressing Notch Signaling

    PubMed Central

    Sun, Guangchun; Mackey, Lily V.; Coy, David H.; Yu, Cui-Yun; Sun, Lichun

    2015-01-01

    Hepatocellular carcinoma (HCC) is a type of malignant cancer. Notch signaling is aberrantly expressed in HCC tissues with more evidence showing that this signaling plays a critical role in HCCs. In the present study, we investigate the effects of the anti-convulsant drug valproic acid (VPA) in HCC cells and its involvement in modulating Notch signaling. We found that VPA, acting as a histone deacetylase (HDAC) inhibitor, induced a decrease in HDAC4 and an increase in acetylated histone 4 (AcH4) and suppressed HCC cell growth. VPA also induced down-regulation of Notch signaling via suppressing the expression of Notch1 and its target gene HES1, with an increase of tumor suppressor p21 and p63. Furthermore, Notch1 activation via overexpressing Notch1 active form ICN1 induced HCC cell proliferation and anti-apoptosis, indicating Notch signaling played an oncogenic role in HCC cells. Meanwhile, VPA could reverse Notch1-induced increase of cell proliferation. Interestingly, VPA was also observed to stimulate the expression of G protein-coupled somatostatin receptor type 2 (SSTR2) that has been used in receptor-targeting therapies. This discovery supports a combination therapy of VPA with the SSTR2-targeting agents. Our in vitro assay did show that the combination of VPA and the peptide-drug conjugate camptothecin-somatostatin (CPT-SST) displayed more potent anti-proliferative effects on HCC cells than did each alone. VPA may be a potential drug candidate in the development of anti-HCC drugs via targeting Notch signaling, especially in combination with receptor-targeting cytotoxic agents. PMID:26366213

  11. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth.

    PubMed

    Luo, Zhongguang; Yu, Guangyang; Lee, Hyuk Woo; Li, Lihui; Wang, Lingyan; Yang, Dongqin; Pan, Yongfu; Ding, Chan; Qian, Jing; Wu, Lijun; Chu, Yiwei; Yi, Jing; Wang, Xiangdong; Sun, Yi; Jeong, Lak Shin; Liu, Jie; Jia, Lijun

    2012-07-01

    Posttranslational neddylation of cullins in the Cullin-Ring E3 ligase (CRL) complexes is needed for proteolytic degradation of CRL substrates, whose accumulation induces cell-cycle arrest, apoptosis, and senescence. The Nedd8-activating enzyme (NAE) is critical for neddylation of CRL complexes and their growth-promoting function. Recently, the anticancer small molecule MLN4924 currently in phase I trials was determined to be an inhibitor of NAE that blocks cullin neddylation and inactivates CRL, triggering an accumulation of CRL substrates that trigger cell-cycle arrest, apoptosis, and senescence in cancer cells. Here, we report that MLN4924 also triggers autophagy in response to CRL inactivation and that this effect is important for the ability of MLN4924 to suppress the outgrowth of liver cancer cells in vitro and in vivo. MLN4924-induced autophagy was attributed partially to inhibition of mTOR activity, due to accumulation of the mTOR inhibitory protein Deptor, as well as to induction of reactive oxygen species stress. Inhibiting autophagy enhanced MLN4924-induced apoptosis, suggesting that autophagy is a survival signal triggered in response to CRL inactivation. In a xenograft model of human liver cancer, MLN4924 was well-tolerated and displayed a significant antitumor effect characterized by CRL inactivation and induction of autophagy and apoptosis in liver cancer cells. Together, our findings support the clinical investigation of MLN4924 for liver cancer treatment and provide a preclinical proof-of-concept for combination therapy with an autophagy inhibitor to enhance therapeutic efficacy.

  12. Glycolysis inhibitor 2-deoxy-D-glucose suppresses carcinogen-induced rat hepatocarcinogenesis by restricting cancer cell metabolism.

    PubMed

    Wang, Zhaofa; Zhang, Liming; Zhang, Dong; Sun, Rongsheng; Wang, Qingyan; Liu, Xinyi

    2015-03-01

    The abnormal metabolism of cancer cells is a crucial feature of tumors and provides promising therapeutic targets for cancer treatments. Aerobic glycolysis in cancer cells, termed the Warburg effect, is a highlighted characteristic of cancer‑specific metabolism. However, the effect of glycolysis inhibition on hepatocarcinogenesis remains to be elucidated. In the present study, the effects of the glycolysis inhibitor 2‑deoxy‑D‑glucose (2‑DG) on the N‑diethylnitrosamine (DEN)‑induced rat hepatocarcinoma model and its underlying mechanisms were investigated. It was observed that 2‑DG significantly delayed hepatocarcinogenesis and effectively prolonged survival time in the DEN‑treated rats. The glycolysis inhibitor, 2‑DG prominently decreased cell proliferation and increased cell apoptosis in the DEN‑induced rat hepatoma and had no evident impact on the pericarcinomatous liver tissues. Further investigation revealed that 2‑DG resulted in a reduction of glycolysis products, the compensatory increase of hexokinase 2 expression and a decrease in 6‑phosphofructo‑2‑kinase, pyruvate kinase M2 and lactate dehydrogenase A expression in the hepatoma tissues. The inhibition of glycolysis further suppressed the tricarboxylic acid cycle, fatty acid and cholesterol biosynthesis and ATP production, while it promoted autophagic activation. In addition, the in vitro study demonstrated that hypoxia, an important factor in the tumor microenvironment, may assist in increasing 2‑DG‑induced inhibition of cell viability, cell cycle retardation and the decrease of colony formation ability in hepatoma cells. Taken together, the present results suggested that 2‑DG may inhibit hepatocarcinogenesis in the DEN‑treated rats via restricting cancer cell metabolism. This finding provides a promising measure in the prevention and treatment of hepatoma.

  13. A phosphatidylinositol 3-kinase inhibitor strongly suppressed pulmonary vascular remodeling of allergic vasculitis in a murine model.

    PubMed

    Oikawa, Yuka; Sasaki, Nobuhito; Niisato, Miyuki; Nakamura, Yutaka; Yamauchi, Kohei

    2016-04-01

    We investigated the effects of pan-class I PI3K inhibitor, ZSTK474 on vascular remodeling using a murine model of allergic vasculitis with eosinophil infiltration. C57BL/6 mice were sensitized with OVA. The positive controls were exposed to aerosolized OVA daily for 7 days. The other group of mice were administered ZSTK474 (30 mg/kg, p.o. daily) in parallel with daily exposure to aerosolized OVA for 7 days. On the 3rd and 7th day, bronchoalveolar lavage (BAL) was performed and the lungs were excised for pathological analysis. Cell differentials were determined and the concentrations of IL-4, IL-5, IL-13 and TGF-βin BAL fluid were measured. The total cell numbers and eosinophil numbers in BALF were greatly reduced in the ZSTK474-treated group on the 3rd and 7th day after exposure to OVA. The numbers of total white blood cells and eosinophils in the peripheral blood were significantly reduced in the ZSTK474-treated group on the 3rd and 7th day after exposure to OVA. The concentrations of IL-4, IL-5, and IL-13 in BAL fluids were also reduced significantly on the 3rd day in the ZSTK474-treated group. The concentrations of TGF-β in BAL fluids were also reduced significantly on the 3rd and 7th day in the ZSTK474-treated group. The pathological scores reduced significantly in the ZSTK474-treated group compared to the control group. The PI3K inhibitor, ZSTK474 suppressed pulmonary vascular remodeling in the murine model of allergic vasculitis with eosinophil infiltration. PI3K signal transduction may have a critical role in the immunological process that induces allergic vasculitis.

  14. The Proteasome Inhibitor Carfilzomib Suppresses Parathyroid Hormone-induced Osteoclastogenesis through a RANKL-mediated Signaling Pathway*

    PubMed Central

    Yang, Yanmei; Blair, Harry C.; Shapiro, Irving M.; Wang, Bin

    2015-01-01

    Parathyroid hormone (PTH) induces osteoclast formation and activity by increasing the ratio of RANKL/OPG in osteoblasts. The proteasome inhibitor carfilzomib (CFZ) has been used as an effective therapy for multiple myeloma via the inhibition of pathologic bone destruction. However, the effect of combination of PTH and CFZ on osteoclastogenesis is unknown. We now report that CFZ inhibits PTH-induced RANKL expression and secretion without affecting PTH inhibition of OPG expression, and it does so by blocking HDAC4 proteasomal degradation in osteoblasts. Furthermore, we used different types of culture systems, including co-culture, indirect co-culture, and transactivation, to assess the effect of CFZ on PTH action to induce osteoclastogenesis. Our results demonstrated that CFZ blocks PTH-induced osteoclast formation and bone resorption by its additional effect to inhibit RANKL-mediated IκB degradation and NF-κB activation in osteoclasts. This study showed for the first time that CFZ targets both osteoblasts and osteoclasts to suppress PTH-induced osteoclast differentiation and bone resorption. These findings warrant further investigation of this novel combination in animal models of osteoporosis and in patients. PMID:25979341

  15. Suppressive Effects of the Site 1 Protease (S1P) Inhibitor, PF-429242, on Dengue Virus Propagation.

    PubMed

    Uchida, Leo; Urata, Shuzo; Ulanday, Gianne Eduard L; Takamatsu, Yuki; Yasuda, Jiro; Morita, Kouichi; Hayasaka, Daisuke

    2016-02-10

    Dengue virus (DENV) infection causes one of the most widespread mosquito-borne diseases in the world. Despite the great need, effective vaccines and practical antiviral therapies are still under development. Intracellular lipid levels are regulated by sterol regulatory elements-binding proteins (SREBPs), which are activated by serine protease, site 1 protease (S1P). Small compound PF-429242 is known as a S1P inhibitor and the antivirus effects have been reported in some viruses. In this study, we examined the anti-DENV effects of PF-429242 using all four serotypes of DENV by several primate-derived cell lines. Moreover, emergence of drug-resistant DENV mutants was assessed by sequential passages with the drug. DENV dependency on intracellular lipids during their infection was also evaluated by adding extracellular lipids. The addition of PF-429242 showed suppression of viral propagation in all DENV serotypes. We showed that drug-resistant DENV mutants are unlikely to emerge after five times sequential passages through treatment with PF-429242. Although the levels of intracellular cholesterol and lipid droplets were reduced by PF-429242, viral propagations were not recovered by addition of exogenous cholesterol or fatty acids, indicating that the reduction of LD and cholesterol caused by PF-429242 treatment is not related to its mechanism of action against DENV propagation. Our results suggest that PF-429242 is a promising candidate for an anti-DENV agent.

  16. The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation.

    PubMed

    Alao, John P; Sunnerhagen, Per

    2009-11-10

    The ataxia telangiectasia mutated (ATM) and the ATM- related (ATR) kinases play a central role in facilitating the resistance of cancer cells to genotoxic treatment regimens. The components of the ATM and ATR regulated signaling pathways thus provide attractive pharmacological targets, since their inhibition enhances cellular sensitivity to chemo- and radiotherapy. Caffeine as well as more specific inhibitors of ATM (KU55933) or ATM and ATR (CGK733) have recently been shown to induce cell death in drug-induced senescent tumor cells. Addition of these agents to cancer cells previously rendered senescent by exposure to genotoxins suppressed the ATM mediated p21 expression required for the survival of these cells. The precise molecular pharmacology of these agents however, is not well characterized. Herein, we report that caffeine, CGK733, and to a lesser extent KU55933, inhibit the proliferation of otherwise untreated human cancer and non-transformed mouse fibroblast cell lines. Exposure of human cancer cell lines to caffeine and CGK733 was associated with a rapid decline in cyclin D1 protein levels and a reduction in the levels of both phosphorylated and total retinoblastoma protein (RB). Our studies suggest that observations based on the effects of these compounds on cell proliferation and survival must be interpreted with caution. The differential effects of caffeine/CGK733 and KU55933 on cyclin D1 protein levels suggest that these agents will exhibit dissimilar molecular pharmacological profiles.

  17. Suppressive Effects of the Site 1 Protease (S1P) Inhibitor, PF-429242, on Dengue Virus Propagation

    PubMed Central

    Uchida, Leo; Urata, Shuzo; Ulanday, Gianne Eduard L.; Takamatsu, Yuki; Yasuda, Jiro; Morita, Kouichi; Hayasaka, Daisuke

    2016-01-01

    Dengue virus (DENV) infection causes one of the most widespread mosquito-borne diseases in the world. Despite the great need, effective vaccines and practical antiviral therapies are still under development. Intracellular lipid levels are regulated by sterol regulatory elements-binding proteins (SREBPs), which are activated by serine protease, site 1 protease (S1P). Small compound PF-429242 is known as a S1P inhibitor and the antivirus effects have been reported in some viruses. In this study, we examined the anti-DENV effects of PF-429242 using all four serotypes of DENV by several primate-derived cell lines. Moreover, emergence of drug-resistant DENV mutants was assessed by sequential passages with the drug. DENV dependency on intracellular lipids during their infection was also evaluated by adding extracellular lipids. The addition of PF-429242 showed suppression of viral propagation in all DENV serotypes. We showed that drug-resistant DENV mutants are unlikely to emerge after five times sequential passages through treatment with PF-429242. Although the levels of intracellular cholesterol and lipid droplets were reduced by PF-429242, viral propagations were not recovered by addition of exogenous cholesterol or fatty acids, indicating that the reduction of LD and cholesterol caused by PF-429242 treatment is not related to its mechanism of action against DENV propagation. Our results suggest that PF-429242 is a promising candidate for an anti-DENV agent. PMID:26875984

  18. Inhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent Antiviral State and Suppress Infection by Diverse Viral Pathogens.

    PubMed

    Arbuckle, Jesse H; Gardina, Paul J; Gordon, David N; Hickman, Heather D; Yewdell, Jonathan W; Pierson, Theodore C; Myers, Timothy G; Kristie, Thomas M

    2017-08-15

    Epigenetic regulation is based on a network of complexes that modulate the chromatin character and structure of the genome to impact gene expression, cell fate, and development. Thus, epigenetic modulators represent novel therapeutic targets used to treat a range of diseases, including malignancies. Infectious pathogens such as herpesviruses are also regulated by cellular epigenetic machinery, and epigenetic therapeutics represent a novel approach used to control infection, persistence, and the resulting recurrent disease. The histone H3K27 methyltransferases EZH2 and EZH1 (EZH2/1) are epigenetic repressors that suppress gene transcription via propagation of repressive H3K27me3-enriched chromatin domains. However, while EZH2/1 are implicated in the repression of herpesviral gene expression, inhibitors of these enzymes suppressed primary herpes simplex virus (HSV) infection in vitro and in vivo Furthermore, these compounds blocked lytic viral replication following induction of HSV reactivation in latently infected sensory ganglia. Suppression correlated with the induction of multiple inflammatory, stress, and antipathogen pathways, as well as enhanced recruitment of immune cells to in vivo infection sites. Importantly, EZH2/1 inhibitors induced a cellular antiviral state that also suppressed infection with DNA (human cytomegalovirus, adenovirus) and RNA (Zika virus) viruses. Thus, EZH2/1 inhibitors have considerable potential as general antivirals through the activation of cellular antiviral and immune responses.IMPORTANCE A significant proportion of the world's population is infected with herpes simplex virus. Primary infection and subsequent recurrent reactivation can result in diseases ranging from mild lesions to severe ocular or neurological damage. Herpesviruses are subject to epigenetic regulation that modulates viral gene expression, lytic replication, and latency-reactivation cycles. Thus, epigenetic pharmaceuticals have the potential to alter the course of

  19. NF-kappaB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor.

    PubMed

    Kubota, Tetsuo; Hoshino, Machiko; Aoki, Kazuhiro; Ohya, Keiichi; Komano, Yukiko; Nanki, Toshihiro; Miyasaka, Nobuyuki; Umezawa, Kazuo

    2007-01-01

    Inhibition of NF-kappaB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and ameliorates mouse arthritis. It remained unclear, however, whether DHMEQ directly affects osteoclast precursor cells to suppress their differentiation to mature osteoclasts in vivo. The effect of DHMEQ on human osteoclastogenesis also remained elusive. In the present study, we therefore examined the effect of DHMEQ on osteoclastogenesis using a mouse collagen-induced arthritis model, and using culture systems of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis, and of osteoclast precursor cells from peripheral blood of healthy volunteers. DHMEQ significantly suppressed formation of osteoclasts in arthritic joints, and also suppressed expression of NFATc1 along the inner surfaces of bone lacunae and the eroded bone surface, while serum levels of soluble receptor activator of NF-kappaB ligand (RANKL), osteoprotegerin and macrophage colony-stimulating factor were not affected by the treatment. DHMEQ also did not suppress spontaneous expression of RANKL nor of macrophage colony-stimulating factor in culture of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis. These results suggest that DHMEQ suppresses osteoclastogenesis in vivo, through downregulation of NFATc1 expression, without significantly affecting expression of upstream molecules of the RANKL/receptor activator of NF-kappaB/osteoprotegerin cascade, at least in our experimental condition. Furthermore, in the presence of RANKL and macrophage colony-stimulating factor, differentiation and activation of human osteoclasts were also suppressed by DHMEQ, suggesting the possibility of future application of NF-kappaB inhibitors to rheumatoid arthritis

  20. Suppression of inhibitor of differentiation 2, a target of mutant p53, is required for gain-of-function mutations.

    PubMed

    Yan, Wensheng; Liu, Gang; Scoumanne, Ariane; Chen, Xinbin

    2008-08-15

    Overexpression of mutant p53 is a common theme in human tumors, suggesting a tumor-promoting gain-of-function for mutant p53. To elucidate whether and how mutant p53 acquires its gain-of-function, mutant p53 is inducibly knocked down in the SW480 colon cancer cell line, which contains mutant p53(R273H/P309S), and the MIA PaCa-2 pancreatic cancer cell line, which contains mutant p53(R248W). We found that knockdown of mutant p53 markedly inhibits cell proliferation. In addition, knockdown of mutant p53 sensitizes tumor cells to growth suppression by various chemotherapeutic drugs. To determine whether a gene involved in cell growth and survival is regulated by mutant p53, gene expression profiling analysis was performed and showed that the expression level of Id2, a member of the inhibitor of differentiation (Id) family, was markedly increased upon knockdown of mutant p53. To confirm this, Northern blot analysis was performed and showed that the expression level of Id2 was regulated by various mutant p53s in multiple cell lines. In addition, we found that the Id2 promoter is responsive to mutant but not wild-type p53, and mutant p53 binds to the Id2 promoter. Consistent with these observations, expression of endogenous Id2 was found to be inhibited by exogenous mutant p53 in p53-null HCT116 cells. Finally, we showed that knockdown of Id2 can restore the proliferative potential of tumor cells inhibited by withdrawal of mutant p53. Together, these findings suggest that one mechanism by which mutant p53 acquires its gain-of-function is through the inhibition of Id2 expression.

  1. Association between self-report adherence measures and oestrogen suppression among breast cancer survivors on aromatase inhibitors.

    PubMed

    Brier, Moriah J; Chambless, Dianne; Gross, Robert; Su, H Irene; DeMichele, Angela; Mao, Jun J

    2015-09-01

    Poor adherence to oral adjuvant hormonal therapy for breast cancer is a common problem, but little is known about the relationship between self-report adherence measures and hormonal suppression. We evaluated the relationship of three self-report measures of medication adherence and oestrogen among patients on aromatase inhibitors (AIs). We recruited 235 women with breast cancer who were prescribed AI therapy. Participants self-reported AI adherence by completing the following: (1) a single item asking whether they took an AI in the last month, (2) a modified Morisky Medication Adherence Scale-8 (MMAS-8) and (3) the Visual Analog Scale (VAS). Serum estrone and estradiol were analysed using organic solvent extraction and Celite column partition chromatography, followed by radioimmunoassay. Ten percent of participants reported they had not taken an AI in the last month and among this group, median estrone (33.2 pg/ml [interquartile range (IQR)=22.3]) and estradiol levels (7.2 pg/mL [IQR=3.3]) were significantly higher than those in participants who reported AI use (median estrone=11.5 pg/mL [IQR=4.9]; median estradiol=3.4 pg/mL [IQR=2.1]; p<0.001). This relationship held when controlling for race and AI drug type. A single-item monthly-recall adherence measure for AIs was associated with oestrogen serum levels. This suggests that patient-reported monthly adherence may be a useful measure to identify early non-adherence behaviour and guide interventions to improve patient adherence to hormonal treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction.

    PubMed

    Kim, Ki Hyun; Kim, Dongyoung; Park, Ju Yeol; Jung, Hye Jin; Cho, Yong-Hee; Kim, Hyoung Kyu; Han, Jin; Choi, Kang-Yell; Kwon, Ho Jeong

    2015-05-01

    Mitochondrial respiration is required for hypoxia-inducible factor (HIF)-1α stabilization, which is important for tumor cell survival, proliferation, and angiogenesis. Herein, small molecules that inhibit HIF-1α protein stability by targeting mitochondrial energy production were screened using the Library of Pharmacologically Active Compounds and cell growth assay in galactose or glucose medium. NNC 55-0396, a T-type Ca(2+) channel inhibitor, was selected as a hit from among 1,280 small molecules. NNC 55-0396 suppressed mitochondrial reactive oxygen species-mediated HIF-1α expression as well as stabilization by inhibiting protein synthesis in a dose-dependent manner. NNC 55-0396 inhibited tumor-induced angiogenesis in vitro and in vivo by suppressing HIF-1α stability. Moreover, NNC 55-0396 significantly suppressed glioblastoma tumor growth in a xenograft model. Thus, NNC 55-0396, a small molecule targeting T-type Ca(2+) channel, was identified by the systemic cell-based assay and was shown to have antiangiogenic activity via the suppression of HIF-1α signal transduction. These results provide new insights into the biological network between ion channel and HIF-1α signal transduction. HIF-1α overexpression has been demonstrated in hypoxic cancer cells. NNC 55-0396, a T-type Ca(2+) channel inhibitor, inhibited HIF-1α expression via both proteasomal degradation and protein synthesis pathways. T-type Ca(2+) channel inhibitors block angiogenesis by suppressing HIF-1α stability and synthesis. NNC 55-0396 could be a potential therapeutic drug candidate for cancer treatment.

  3. TNF-α inhibitor protects against myocardial ischemia/reperfusion injury via Notch1-mediated suppression of oxidative/nitrative stress.

    PubMed

    Pei, Haifeng; Song, Xiaofeng; Peng, Chengfei; Tan, Yan; Li, Ying; Li, Xia; Ma, Shuangtao; Wang, Qiang; Huang, Rong; Yang, Dachun; Li, De; Gao, Erhe; Yang, Yongjian

    2015-05-01

    TNF-α inhibitor reportedly protects against myocardial ischemia/reperfusion (MI/R) injury. It can also increase Notch1 expression in inflammatory bowel disease, revealing the regulation of Notch1 signaling by TNF-α inhibitor. However, the interaction between TNF-α inhibitor and Notch1 signaling in MI/R remains unclear. This study aimed to determine the involvement of TNF-α inhibitor with Notch1 in MI/R and delineate the related mechanism. Notch1-specific small interfering RNA (20 μg) or Jagged1 (a Notch ligand, 12 μg) was delivered through intramyocardial injection. Forty-eight hours after injection, mice received 30 min of myocardial ischemia followed by 3 h (for cell apoptosis and oxidative/nitrative stress) or 24h (for infarct size and cardiac function) of reperfusion. Ten minutes before reperfusion, mice randomly received an intraperitoneal injection of vehicle, etanercept, diphenyleneiodonium, 1400W, or EUK134. Finally, downregulation of Notch1 significantly reversed the alleviation of MI/R injury induced by etanercept, as evidenced by enlarged myocardial infarct size, suppressed cardiac function, and increased myocardial apoptosis. Moreover, Notch1 blockade increased the expression of inducible NO synthase (iNOS) and gp(91)(phox), enhanced NO and superoxide production, and accelerated their cytotoxic reaction product, peroxynitrite. Furthermore, NADPH inhibition with diphenyleneiodonium or iNOS suppression with 1400W mitigated the aggravation of MI/R injury induced by Notch1 downregulation in mice treated with etanercept. Additionally, either Notch1 activation with Jagged1 or peroxynitrite decomposition with EUK134 reduced nitrotyrosine content and attenuated MI/R injury. These data indicate that MI/R injury can be attenuated by TNF-α inhibitor, partly via Notch1 signaling-mediated suppression of oxidative/nitrative stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Inhibitor SBFI26 suppresses the malignant progression of castration-resistant PC3-M cells by competitively binding to oncogenic FABP5.

    PubMed

    Al-Jameel, Waseem; Gou, Xiaojun; Forootan, Shiva S; Al Fayi, Majed Saad; Rudland, Philip S; Forootan, Farzad S; Zhang, Jiacheng; Cornford, Philip A; Hussain, Syed A; Ke, Youqiang

    2017-05-09

    Castration resistant-prostate cancer is largely impervious to feather hormonal therapy and hence the outlook for patients is grim. Here we use an approach to attach the recently discovered Achilles heel. The experimental treatment established in this study is based on the recent discovery that it is the FABP5-PPARγ-VEGF signalling axis, rather than the androgen receptor pathway, played a dominant role in promoting the malignant progression of castration resistant prostate cancer cells. Treatments have been established in mice by suppressing the biological activity of FABP5 using a chemical inhibitor SBFI26. The inhibitor significantly suppressed the proliferation, migration, invasiveness and colony formation of PC3-M cells in vitro. It also produced a highly significant suppression of both the metastases and the primary tumours developed from cancer cells implanted orthotopically into the prostate glands of the mice. The inhibitor SBFI26 interferes with the FABP5-PPARγ- signalling pathway at the initial stage of the signal transduction by binding competitively to FABP5 to inhibit cellular fatty acid uptake. This avoids the fatty-acid stimulation of PPARγ and prevents it activating the down-stream regulated cancer-promoting genes. This entirely novel experimental approach to treating castration- resistant prostate cancer is completely different from current treatments that are based on androgen-blockade therapy.

  5. MiR-21 inhibitor suppressed the progression of retinoblastoma via the modulation of PTEN/PI3K/AKT pathway.

    PubMed

    Gui, Fu; Hong, Zhengdong; You, Zhipeng; Wu, Hongxi; Zhang, Yulan

    2016-12-01

    MicroRNA-21 (miR-21) was reported to act as an oncogene during the development of many human tumors. However, little was revealed about the function of miR-21 in retinoblastoma (RB). In this study, we examined the expression of miR-21 in RB tissues and explored the relationship between miR-21 and phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3-OH kinase (PI3K)/AKT signal. Quantitative real-time PCR (qRT-PCR) results showed that the level of miR-21 in RB tissues was higher than that in retinal normal tissues. In Weri-Rb-1 cells, miR-21 inhibitor suppressed the expression of miR-21 and cell viability, but improved cell apoptotic rates by modulating the levels of PDCD4, Bax, and Bcl-2. Meanwhile, miR-21 inhibitor suppressed cell migration and invasion via inhibiting the protein levels of MMP2 and MMP9 and significantly affected the expression of PTEN, PI3K, and p-AKT. Taken together, miR-21 inhibitor suppressed cell proliferation, migration, and invasion via the PTEN/PI3K/AKT signal. These findings revealed the molecular basis of miR-21 functioning in the progression of RB and provided a new means for cell therapy in RB.

  6. Bax-inhibitor-1 knockdown phenotypes are suppressed by Buffy and exacerbate degeneration in a Drosophila model of Parkinson disease

    PubMed Central

    2017-01-01

    Background Bax inhibitor-1 (BI-1) is an evolutionarily conserved cytoprotective transmembrane protein that acts as a suppressor of Bax-induced apoptosis by regulation of endoplasmic reticulum stress-induced cell death. We knocked down BI-1 in the sensitive dopa decarboxylase (Ddc) expressing neurons of Drosophila melanogaster to investigate its neuroprotective functions. We additionally sought to rescue the BI-1-induced phenotypes by co-expression with the pro-survival Buffy and determined the effect of BI-1 knockdown on the neurodegenerative α-synuclein-induced Parkinson disease (PD) model. Methods We used organismal assays to assess longevity of the flies to determine the effect of the altered expression of BI-1 in the Ddc-Gal4-expressing neurons by employing two RNAi transgenic fly lines. We measured the locomotor ability of these RNAi lines by computing the climbing indices of the climbing ability and compared them to a control line that expresses the lacZ transgene. Finally, we performed biometric analysis of the developing eye, where we counted the number of ommatidia and calculated the area of ommatidial disruption. Results The knockdown of BI-1 in these neurons was achieved under the direction of the Ddc-Gal4 transgene and resulted in shortened lifespan and precocious loss of locomotor ability. The co-expression of Buffy, the Drosophila anti-apoptotic Bcl-2 homologue, with BI-1-RNAi resulted in suppression of the reduced lifespan and impaired climbing ability. Expression of human α-synuclein in Drosophila dopaminergic neurons results in neuronal degeneration, accompanied by the age-dependent loss in climbing ability. We exploited this neurotoxic system to investigate possible BI-1 neuroprotective function. The co-expression of α-synuclein with BI-1-RNAi results in a slight decrease in lifespan coupled with an impairment in climbing ability. In supportive experiments, we employed the neuron-rich Drosophila compound eye to investigate subtle phenotypes

  7. The Broad Spectrum Receptor Tyrosine Kinase Inhibitor Dovitinib Suppresses Growth of BRAF Mutant Melanoma Cells in Combination with Other Signaling Pathway Inhibitors

    PubMed Central

    Langdon, Casey G.; Held, Matthew A.; Platt, James T.; Meeth, Katrina; Iyidogan, Pinar; Mamillapalli, Ramanaiah; Koo, Andrew B.; Klein, Michael; Liu, Zongzhi; Bosenberg, Marcus W.; Stern, David F.

    2016-01-01

    Summary BRAF inhibitors have revolutionized treatment of mutant BRAF metastatic melanomas. However, resistance develops rapidly following BRAF inhibitor treatment. We have found that BRAF-mutant melanoma cell lines are more sensitive than wild-type BRAF cells to the small molecule tyrosine kinase inhibitor dovitinib. Sensitivity is associated with inhibition of a series of known dovitinib targets. Dovitinib in combination with several agents inhibits growth more effectively than either agent alone. These combinations inhibit BRAF-mutant melanoma and colorectal carcinoma cell lines, including cell lines with intrinsic or selected BRAF inhibitor resistance. Hence, combinations of dovitinib with second agents are potentially effective therapies for BRAF-mutant melanomas, regardless of their sensitivity to BRAF inhibitors. PMID:25854919

  8. Discovery of an Orally Bioavailable Benzimidazole Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitor That Suppresses Body Weight Gain in Diet-Induced Obese Dogs and Postprandial Triglycerides in Humans.

    PubMed

    Nakajima, Katsumasa; Chatelain, Ricardo; Clairmont, Kevin B; Commerford, Renee; Coppola, Gary M; Daniels, Thomas; Forster, Cornelia J; Gilmore, Thomas A; Gong, Yongjin; Jain, Monish; Kanter, Aaron; Kwak, Youngshin; Li, Jingzhou; Meyers, Charles D; Neubert, Alan D; Szklennik, Paul; Tedesco, Vivienne; Thompson, James; Truong, David; Yang, Qing; Hubbard, Brian K; Serrano-Wu, Michael H

    2017-06-08

    Modification of a gut restricted class of benzimidazole DGAT1 inhibitor 1 led to 9 with good oral bioavailability. The key structural changes to 1 include bioisosteric replacement of the amide with oxadiazole and α,α-dimethylation of the carboxylic acid, improving DGAT1 potency and gut permeability. Since DGAT1 is expressed in the small intestine, both 1 and 9 can suppress postprandial triglycerides during acute oral lipid challenges in rats and dogs. Interestingly, only 9 was found to be effective in suppressing body weight gain relative to control in a diet-induced obese dog model, suggesting the importance of systemic inhibition of DGAT1 for body weight control. 9 has advanced to clinical investigation and successfully suppressed postprandial triglycerides during an acute meal challenge in humans.

  9. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    SciTech Connect

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul; Lee, Mee-Hee; Lee, Yoo-Hyun; Lee, Jeongmin; Jun, Woojin; Kim, Sunoh; Yoon, Ho-Geun

    2011-07-08

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  10. Bortezomib induces apoptosis and growth suppression in human medulloblastoma cells, associated with inhibition of AKT and NF-ĸB signaling, and synergizes with an ERK inhibitor.

    PubMed

    Yang, Fan; Jove, Veronica; Chang, Shirley; Hedvat, Michael; Liu, Lucy; Buettner, Ralf; Tian, Yan; Scuto, Anna; Wen, Wei; Yip, M L Richard; Van Meter, Timothy; Yen, Yun; Jove, Richard

    2012-04-01

    Medulloblastoma is the most common brain tumor in children. Here, we report that bortezomib, a proteasome inhibitor, induced apoptosis and inhibited cell proliferation in two established cell lines and a primary culture of human medulloblastomas. Bortezomib increased the release of cytochrome c to cytosol and activated caspase-9 and caspase-3, resulting in cleavage of PARP. Caspase inhibitor (Z-VAD-FMK) could rescue medulloblastoma cells from the cytotoxicity of bortezomib. Phosphorylation of AKT and its upstream regulator mTOR were reduced by bortezomib treatment in medulloblastoma cells. Bortezomib increased the expression of Bad and Bak, pro-apoptotic proteins, and p21Cip1 and p27Kip1, negative regulators of cell cycle progression, which are associated with the growth suppression and induction of apoptosis in these tumor cells. Bortezomib also increased the accumulation of phosphorylated IĸBα, and decreased nuclear translocation of NF-ĸB. Thus, NF-ĸB signaling and activation of its downstream targets are suppressed. Moreover, ERK inhibitors or downregulating ERK with ERK siRNA synergized with bortezomib on anticancer effects in medulloblastoma cells. Bortezomib also inhibited the growth of human medulloblastoma cells in a mouse xenograft model. These findings suggest that proteasome inhibitors are potentially promising drugs for treatment of pediatric medulloblastomas.

  11. Inhibition of the Proteasome β2 Site Sensitizes Triple-Negative Breast Cancer Cells to β5 Inhibitors and Suppresses Nrf1 Activation.

    PubMed

    Weyburne, Emily S; Wilkins, Owen M; Sha, Zhe; Williams, David A; Pletnev, Alexandre A; de Bruin, Gerjan; Overkleeft, Hermann S; Goldberg, Alfred L; Cole, Michael D; Kisselev, Alexei F

    2017-02-16

    The proteasome inhibitors carfilzomib (Cfz) and bortezomib (Btz) are used successfully to treat multiple myeloma, but have not shown clinical efficacy in solid tumors. Here we show that clinically achievable inhibition of the β5 site of the proteasome by Cfz and Btz does not result in loss of viability of triple-negative breast cancer cell lines. We use site-specific inhibitors and CRISPR-mediated genetic inactivation of β1 and β2 to demonstrate that inhibiting a second site of the proteasome, particularly the β2 site, sensitizes cell lines to Btz and Cfz in vitro and in vivo. Inhibiting both β5 and β2 suppresses production of the soluble, active form of the transcription factor Nrf1 and prevents the recovery of proteasome activity through induction of new proteasomes. These findings provide a strong rationale for the development of dual β5 and β2 inhibitors for the treatment of solid tumors.

  12. Cyclin E-Mediated Human Proopiomelanocortin Regulation as a Therapeutic Target for Cushing Disease

    PubMed Central

    Liu, Ning-Ai; Araki, Takako; Cuevas-Ramos, Daniel; Hong, Jiang; Ben-Shlomo, Anat; Tone, Yukiko; Tone, Masahide

    2015-01-01

    Context: Cushing disease, due to pituitary corticotroph tumor ACTH hypersecretion, drives excess adrenal cortisol production with adverse morbidity and mortality. Loss of glucocorticoid negative feedback on the hypothalamic-pituitary-adrenal axis leads to autonomous transcription of the corticotroph precursor hormone proopiomelanocortin (POMC), consequent ACTH overproduction, and adrenal hypercortisolism. We previously reported that R-roscovitine (CYC202, seliciclib), a 2,6,9-trisubstituted purine analog, suppresses cyclin-dependent-kinase 2/cyclin E and inhibits ACTH in mice and zebrafish. We hypothesized that intrapituitary cyclin E signaling regulates corticotroph tumor POMC transcription independently of cell cycle progression. The aim was to investigate whether R-roscovitine inhibits human ACTH in corticotroph tumors by targeting the cyclin-dependent kinase 2/cyclin E signaling pathway. Methods: Primary cell cultures of surgically resected human corticotroph tumors were treated with or without R-roscovitine, ACTH measured by RIA and quantitative PCR, and/or Western blot analysis performed to investigate ACTH and lineage-specific transcription factors. Cyclin E and E2F transcription factor 1 (E2F1) small interfering RNA (siRNA) transfection was performed in murine corticotroph tumor AtT20 cells to elucidate mechanisms for drug action. POMC gene promoter activity in response to R-roscovitine treatment was analyzed using luciferase reporter and chromatin immunoprecipitation assays. Results: R-roscovitine inhibits human corticotroph tumor POMC and Tpit/Tbx19 transcription with decreased ACTH expression. Cyclin E and E2F1 exhibit reciprocal positive regulation in corticotroph tumors. R-roscovitine disrupts E2F1 binding to the POMC gene promoter and suppresses Tpit/Tbx19 and other lineage-specific POMC transcription cofactors via E2F1-dependent and -independent pathways. Conclusion: R-roscovitine inhibits human pituitary corticotroph tumor ACTH by targeting the

  13. Cyclin E-Mediated Human Proopiomelanocortin Regulation as a Therapeutic Target for Cushing Disease.

    PubMed

    Liu, Ning-Ai; Araki, Takako; Cuevas-Ramos, Daniel; Hong, Jiang; Ben-Shlomo, Anat; Tone, Yukiko; Tone, Masahide; Melmed, Shlomo

    2015-07-01

    Cushing disease, due to pituitary corticotroph tumor ACTH hypersecretion, drives excess adrenal cortisol production with adverse morbidity and mortality. Loss of glucocorticoid negative feedback on the hypothalamic-pituitary-adrenal axis leads to autonomous transcription of the corticotroph precursor hormone proopiomelanocortin (POMC), consequent ACTH overproduction, and adrenal hypercortisolism. We previously reported that R-roscovitine (CYC202, seliciclib), a 2,6,9-trisubstituted purine analog, suppresses cyclin-dependent-kinase 2/cyclin E and inhibits ACTH in mice and zebrafish. We hypothesized that intrapituitary cyclin E signaling regulates corticotroph tumor POMC transcription independently of cell cycle progression. The aim was to investigate whether R-roscovitine inhibits human ACTH in corticotroph tumors by targeting the cyclin-dependent kinase 2/cyclin E signaling pathway. Primary cell cultures of surgically resected human corticotroph tumors were treated with or without R-roscovitine, ACTH measured by RIA and quantitative PCR, and/or Western blot analysis performed to investigate ACTH and lineage-specific transcription factors. Cyclin E and E2F transcription factor 1 (E2F1) small interfering RNA (siRNA) transfection was performed in murine corticotroph tumor AtT20 cells to elucidate mechanisms for drug action. POMC gene promoter activity in response to R-roscovitine treatment was analyzed using luciferase reporter and chromatin immunoprecipitation assays. R-roscovitine inhibits human corticotroph tumor POMC and Tpit/Tbx19 transcription with decreased ACTH expression. Cyclin E and E2F1 exhibit reciprocal positive regulation in corticotroph tumors. R-roscovitine disrupts E2F1 binding to the POMC gene promoter and suppresses Tpit/Tbx19 and other lineage-specific POMC transcription cofactors via E2F1-dependent and -independent pathways. R-roscovitine inhibits human pituitary corticotroph tumor ACTH by targeting the cyclin E/E2F1 pathway. Pituitary cyclin E

  14. Heat shock protein 90 inhibitors suppress aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation.

    PubMed

    Hughes, Duncan; Guttenplan, Joseph B; Marcus, Craig B; Subbaramaiah, Kotha; Dannenberg, Andrew J

    2008-11-01

    The aryl hydrocarbon receptor (AhR), a client protein of heat shock protein 90 (HSP90), plays a significant role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. Tobacco smoke, a source of PAHs, activates the AhR, leading to enhanced transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to genotoxic metabolites. The main objectives of this study were to determine whether HSP90 inhibitors suppress PAH-mediated induction of CYP1A1 and CYP1B1 or block benzo(a)pyrene [B(a)P]-induced formation of DNA adducts. Treatment of cell lines derived from oral leukoplakia (MSK-Leuk1) or esophageal squamous cell carcinoma (KYSE450) with a saline extract of tobacco smoke, B(a)P, or dioxin induced CYP1A1 and CYP1B1 transcription, resulting in enhanced levels of message and protein. Inhibitors of HSP90 [17-allylamino-17-demethoxygeldanamycin (17-AAG); celastrol] suppressed these inductive effects of PAHs. Treatment with 17-AAG and celastrol also caused a rapid and marked decrease in amounts of AhR protein without modulating levels of HSP90. The formation of B(a)P-induced DNA adducts in MSK-Leuk1 cells was inhibited by 17-AAG, celastrol, and alpha-naphthoflavone, a known AhR antagonist. The reduction in B(a)P-induced DNA adducts was due, at least in part, to reduced metabolic activation of B(a)P. Collectively, these results suggest that 17-AAG and celastrol, inhibitors of HSP90, suppress the activation of AhR-dependent gene expression, leading, in turn, to reduced formation of B(a)P-induced DNA adducts. Inhibitors of HSP90 may have a role in chemoprevention in addition to cancer therapy.

  15. Tofogliflozin, A Highly Selective Inhibitor of SGLT2 Blocks Proinflammatory and Proapoptotic Effects of Glucose Overload on Proximal Tubular Cells Partly by Suppressing Oxidative Stress Generation.

    PubMed

    Ishibashi, Y; Matsui, T; Yamagishi, S

    2016-03-01

    Ninety percent of glucose filtered by the glomerulus is reabsorbed by a sodium-glucose cotransporter 2 (SGLT2), which is mainly expressed on S1 and S2 segment of renal proximal tubules. Since SGLT-2-mediated glucose reabsorption is increased under diabetic conditions, selective inhibition of SGLT2 is a potential therapeutic target for the treatment of diabetes. We have recently shown that an inhibitor of SGLT2 has anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing advanced glycation end products formation and oxidative stress generation in the kidney. However, the direct effects of SGLT2 inhibitor on tubular cell damage remain unclear. In this study, we investigated the effects of tofogliflozin, a highly selective inhibitor of SGLT2 on oxidative stress generation, inflammatory and proapoptotic reactions in cultured human proximal tubular cells exposed to high glucose. Tofogliflozin dose-dependently suppressed glucose entry into tubular cells. High glucose exposure (30 mM) for 4 and 24 h significantly increased oxidative stress generation in tubular cells, which were suppressed by the treatment of tofogliflozin or an antioxidant N-acetylcysteine (NAC). Monocyte chemoattractant protein-1 (MCP-1) gene expression and apoptotic cell death were induced by 4 h- and 8 day-exposure to high glucose, respectively, both of which were also blocked by tofogliflozin or NAC. The present study suggests that SGLT2-mediated glucose entry into tubular cells could stimulate oxidative stress and evoke inflammatory and proapoptotic reactions in this cell type. Blockade of glucose reabsorption in tubular cells by SGLT2 inhibitor might exert beneficial effects on tubulointerstitial damage in diabetic nephropathy.

  16. Fluvoxamine, a selective serotonin reuptake inhibitor, and 5-HT2C receptor inactivation induce appetite-suppressing effects in mice via 5-HT1B receptors.

    PubMed

    Nonogaki, Katsunori; Nozue, Kana; Takahashi, Yukiko; Yamashita, Nobuyuki; Hiraoka, Shuichi; Kumano, Hiroaki; Kuboki, Tomifusa; Oka, Yohsitomo

    2007-10-01

    Serotonin (5-hydroxytryptamine; 5-HT) 2C receptors and the downstream melanocortin pathway are suggested to mediate the appetite-suppressing effects of 5-HT drugs such as m-chlorophenylpiperazine (mCPP) and fenfluramine. Here, we report that fluvoxamine (3-30 mg/kg), a selective serotonin reuptake inhibitor (SSRI), in the presence of SB 242084 (1-2 mg/kg), a selective 5-HT2C receptor antagonist, exerts appetite-suppressing effects while fluvoxamine or SB 242084 alone has no effect. The appetite-suppressing effects were attenuated in the presence of SB 224289 (5 mg/kg), a selective 5-HT1B receptor antagonist. Moreover, CP 94253 (5-10 mg/kg), a selective 5-HT1B receptor agonist, exerted appetite-suppressing effects and significantly increased hypothalamic pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) gene expression and decreased hypothalamic orexin gene expression. These results suggest that fluvoxamine and inactivation of 5-HT2C receptors exert feeding suppression through activation of 5-HT1B receptors, and that 5-HT1B receptors up-regulate hypothalamic POMC and CART gene expression and down-regulate hypothalamic orexin gene expression in mice.

  17. Effects of Treatment with Suppressive Combination Antiretroviral Drug Therapy and the Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid; (SAHA) on SIV-Infected Chinese Rhesus Macaques

    PubMed Central

    Ling, Binhua; Piatak, Michael; Rogers, Linda; Johnson, Ann-Marie; Russell-Lodrigue, Kasi; Hazuda, Daria J.; Lifson, Jeffrey D.; Veazey, Ronald S.

    2014-01-01

    Objectives Viral reservoirs–persistent residual virus despite combination antiretroviral therapy (cART)–remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM) treated with intensive combination antiretroviral therapy (cART) and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA). Methods SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations. Results Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters. Conclusions The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations. PMID:25033210

  18. Cellular prostatic acid phosphatase (cPAcP) serves as a useful biomarker of histone deacetylase (HDAC) inhibitors in prostate cancer cell growth suppression.

    PubMed

    Chou, Yu-Wei; Lin, Fen-Fen; Muniyan, Sakthivel; Lin, Frank C; Chen, Ching-Shih; Wang, Jue; Huang, Chao-Cheng; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the most commonly diagnosed solid tumor and the second leading cancer death in the United States, and also one of the major cancer-related deaths in Chinese. Androgen deprivation therapy (ADT) is the first line treatment for metastatic PCa. PCa ultimately relapses with subsequent ADT treatment failure and becomes castrate-resistant (CR). It is important to develop effective therapies with a surrogate marker towards CR PCa. Histone deacetylase (HDAC) inhibitors were examined to determine their effects in androgen receptor (AR)/cellular prostatic acid phosphatase (cPAcP)-positive PCa cells, including LNCaP C-33, C-81, C4-2 and C4-2B and MDA PCa2b androgen-sensitive and androgen-independent cells, and AR/cPAcP-negative PCa cells, including PC-3 and DU 145 cells. Cell growth was determined by cell number counting. Western blot analyses were carried out to determine AR, cPAcP and PSA protein levels. cPAcP protein level was increased by HDAC inhibitor treatment. Valproic acid, a HDAC inhibitor, suppressed the growth of AR/cPAcP-positive PCa cells by over 50% in steroid-reduced conditions, higher than on AR/cPAcP-negative PCa cells. Further, HDAC inhibitor pretreatments increased androgen responsiveness as demonstrated by PSA protein level quantitation. Our results clearly demonstrate that HDAC inhibitors can induce cPAcP protein level, increase androgen responsiveness, and exhibit higher inhibitory activities on AR/cPAcP-positive PCa cells than on AR/cPAcP-negative PCa cells. Upon HDAC inhibitor pretreatment, PSA level was greatly elevated by androgens. This data indicates the potential clinical importance of cPAcP serving as a useful biomarker in the identification of PCa patient sub-population suitable for HDAC inhibitor treatment.

  19. Anagliptin, a dipeptidyl peptidase-4 inhibitor, decreases macrophage infiltration and suppresses atherosclerosis in aortic and coronary arteries in cholesterol-fed rabbits.

    PubMed

    Hirano, Tsutomu; Yamashita, Satoko; Takahashi, Masaki; Hashimoto, Hiroyuki; Mori, Yusaku; Goto, Moritaka

    2016-06-01

    Several studies have demonstrated suppression of aortic atherosclerosis by dipeptidyl peptidase-4 (DPP-4) inhibitors in hypercholesterolemic mice. However, it remains unknown whether DPP-4 inhibitors also exert anti-atherogenic effects in coronary arteries. We examined the effect of anagliptin, a DPP-4 inhibitor, on atherosclerosis development in the aorta and coronary arteries in a high-cholesterol diet-fed rabbits. Japanese white rabbits were fed either normal chow (n=8) or a diet containing 0.5% cholesterol (n=34) for 14weeks. Cholesterol-fed rabbits were given 0.3% anagliptin or not in drinking water (each n=16 and 18) for 12weeks. Dietary cholesterol intake markedly increased serum total cholesterol (TC) levels (1464±150mg/dL, mean±SE), and the most striking increase was observed among the major lipoproteins in very low-density lipoprotein (VLDL) as determined by high-performance liquid chromatography. No significant changes were observed in body weight, water intake, hemoglobin A1c, or glucose response to intravenous glucose loading following anagliptin administration. Anagliptin decreased TC and VLDL-cholesterol as well as cholesterol absorption markers sitosterol and campesterol slightly, although not significantly. Serum DPP-4 activity was suppressed by 82%, and active glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide levels were increased 2- to 3-fold by anagliptin treatment. Severe hypercholesterolemia resulted in the development of atherosclerosis in the aorta, and the ratio of atherosclerotic lesions to the total aortic surface area was 22±2%. Anagliptin suppressed the lesion ratio to 9±2% (p<0.001). Atherosclerotic lesions were clearly observed in the coronary arteries, where the mean intima-media area was enlarged, and intimal formation was developed. Anagliptin treatment attenuated the intima-media area and the intimal area by 43%. Alpha-smooth muscle actin-positive and macrophage-positive areas in the coronary arteries

  20. Glycogen synthase kinase-3 inhibitors suppress the AR-V7-mediated transcription and selectively inhibit cell growth in AR-V7-positive prostate cancer cells.

    PubMed

    Nakata, Daisuke; Koyama, Ryokichi; Nakayama, Kazuhide; Kitazawa, Satoshi; Watanabe, Tatsuya; Hara, Takahito

    2017-06-01

    Recent evidence suggests that androgen receptor (AR) splice variants, including AR-V7, play a pivotal role in resistance to androgen blockade in prostate cancer treatment. The development of new therapeutic agents that can suppress the transcriptional activities of AR splice variants has been anticipated as the next generation treatment of castration-resistant prostate cancer. High-throughput screening of AR-V7 signaling inhibitors was performed using an AR-V7 reporter system. The effects of a glycogen synthase kinase-3 (GSK3) inhibitor, LY-2090314, on endogenous AR-V7 signaling were evaluated in an AR-V7-positive cell line, JDCaP-hr, by quantitative reverse transcription polymerase chain reaction. The relationship between AR-V7 signaling and β-catenin signaling was assessed using RNA interference. The effect of LY-2090314 on cell growth in various prostate cancer cell lines was also evaluated. We identified GSK3 inhibitors as transcriptional suppressors of AR-V7 using a high-throughput screen with an AR-V7 reporter system. LY-2090314 suppressed the reporter activity and endogenous AR-V7 activity in JDCaP-hr cells. Because silencing of β-catenin partly rescued the suppression, it was evident that the suppression was mediated, at least partially, via the activation of β-catenin signaling. AR-V7 signaling and β-catenin signaling reciprocally regulate each other in JDCaP-hr cells, and therefore, GSK3 inhibition can repress AR-V7 transcriptional activity by accumulating intracellular β-catenin. Notably, LY-2090314 selectively inhibited the growth of AR-V7-positive prostate cancer cells in vitro. Our findings demonstrate the potential of GSK3 inhibitors in treating advanced prostate cancer driven by AR splice variants. In vivo evaluation of AR splice variant-positive prostate cancer models will help illustrate the overall significance of GSK3 inhibitors in treating prostate cancer. © 2017 Wiley Periodicals, Inc.

  1. Evidence that cyclic AMP phosphodiesterase inhibitors suppress interleukin-2 release from murine splenocytes by interacting with a ‘low-affinity' phosphodiesterase 4 conformer

    PubMed Central

    Souness, John E; Houghton, Clare; Sardar, Nughat; Withnall, Michael T

    1997-01-01

    We have investigated the suppressive effects of rolipram, RP 73401 (piclamilast) and other structurally diverse inhibitors of cyclic AMP-specific phosphodiesterase 4 (PDE4) on interleukin (IL)-2 generation from Balb/c mouse splenocytes exposed to the superantigen, Staphylococcocal enterotoxin-A (Staph. A). The purpose was to determine whether their potencies are more closely correlated with inhibition of PDE4 from CTLL cells, against which rolipram displays weak potency (low-affinity PDE4), or displacement of [3H]-(±)-rolipram from its high-affinity binding site (HARBS) in mouse brain cytosol. RP 73401 (IC50 0.46±0.07 nM, n=4) was a very potent inhibitor of Staph. A-induced IL-2 release from Balb/c mouse splenocytes, being >1100 fold more potent than (±)-rolipram (IC50 540±67 nM, n=3). A close correlation (r=0.95) was observed between suppression of IL-2 release by PDE inhibitors and inhibition of PDE4. In contrast, little correlation (r=0.39) was observed between suppression of IL-2 release and their affinities for the high-affinity rolipram binding site (HARBS). RP 73401 only inhibited partially (30–40%) Staph. A-induced incorporation of [3H]-thymidine into splenocyte DNA. The PDE3 inhibitor, siguazodan (10 μM), had little or no effect on IL-2 release or DNA synthesis. This concentration of siguazodan did not enhance the inhibitory action of RP 73401 on IL-2 release but potentiated its effect on DNA synthesis, increasing potency and efficacy. Staph. A-induced DNA synthesis was only partially inhibited by anti-IL-2 neutralizing antibody, whereas dexamethazone (100 nM) and cyclosporine A (100 nM) completely blocked the response. RP 73401 (IC50 6.3±1.9 nM, n=4) was 140 fold more potent than rolipram (IC50 900±300 nM, n=3) in inhibiting Staph. A-induced [3H]-thymidine incorporation into splenocyte DNA. The results implicate a low-affinity form of PDE4 in the suppression of Staph. A-induced IL-2 release from murine splenocytes by PDE inhibitors

  2. Identification of a novel polyprenylated acylphloroglucinol‑derived SIRT1 inhibitor with cancer‑specific anti-proliferative and invasion-suppressing activities.

    PubMed

    Zhu, Lijia; Qi, Ji; Chiao, Christine Ya-Chi; Zhang, Qiang; Porco, John A; Faller, Douglas V; Dai, Yan

    2014-11-01

    SIRT1, a class III histone deacetylase, plays a critical role in regulating cancer cell growth, migration and invasion, which makes it a potential target for cancer therapeutics. In this study, we screened derivatives of several groups of natural products and identified a novel SIRT1 inhibitor JQ-101, a synthetic derivative of the polyprenylated acylphloroglucinol (PPAP) natural products, with an IC(50) for SIRT1 of 30 µM in vitro, with 5-fold higher activity for SIRT1 vs. SIRT2. Exposure of tumor cells to JQ-101 significantly enhanced acetylation of p53 and histone H4K16 at known sites of SIRT1 deacetylation, validating SIRT1 as its cellular target. JQ-101 suppressed cancer cell growth and survival by targeting SIRT1, and also exhibited selective cytotoxicity towards a panel of human tumor cell lines, while producing no toxicity in two normal human cell types at comparable concentrations. JQ-101 induced both apoptosis and cell senescence, and suppressed cancer cell invasion in vitro. In summary, we have identified JQ-101 as a new SIRT1 inhibitor which may have potential application in cancer treatment through its ability to induce tumor cell apoptosis and senescence and suppress cancer cell invasion.

  3. Cyclooxygenase-2 or tumor necrosis factor-α inhibitors attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cell homing to healthy and dystrophic muscle.

    PubMed

    Tebebi, Pamela A; Burks, Scott R; Kim, Saejeong J; Williams, Rashida A; Nguyen, Ben A; Venkatesh, Priyanka; Frenkel, Victor; Frank, Joseph A

    2015-04-01

    Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (nonspecific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients, and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine.

  4. Cyclooxygenase-2 or tumor necrosis factor-α inhibitors attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cell homing to healthy and dystrophic muscle

    PubMed Central

    Tebebi, Pamela A.; Burks, Scott R.; Kim, Saejeong J.; Williams, Rashida A.; Nguyen, Ben A.; Venkatesh, Priyanka; Frenkel, Victor; Frank, Joseph A.

    2014-01-01

    Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (non-specific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically-induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine. PMID:25534849

  5. Peripheral Inhibitor of AChE, Neostigmine, Prevents the Inflammatory Dependent Suppression of GnRH/LH Secretion during the Follicular Phase of the Estrous Cycle

    PubMed Central

    Skipor, Janina; Krawczyńska, Agata; Bochenek, Joanna; Wojtulewicz, Karolina; Antushevich, Hanna; Paczesna, Kamila; Romanowicz, Katarzyna

    2017-01-01

    The study was designed to test the hypothesis that the inhibition of acetylcholinesterase (AChE) activity at the periphery by Neostigmine (0.5 mg/animal) will be sufficient to prevent inflammatory dependent suppression of the gonadotropin-releasing hormone (GnRH)/luteinising hormone (LH) secretion in ewes in the follicular phase of the estrous cycle, and this effect will be comparable with the systemic AChE inhibitor, Donepezil (2.5 mg/animal). An immune/inflammatory challenge was induced by peripheral administration of lipopolysaccharide (LPS; 400 ng/kg). Peripheral treatment with Donepezil and Neostigmine prevented the LPS-induced decrease (P < 0.05) in LHβ gene expression in the anterior pituitary gland (AP) and in LH release. Moreover, Donepezil completely abolished (P < 0.05) the suppressory effect of inflammation on GnRH synthesis in the preoptic area, when pretreatment with Neostigmine reduced (P < 0.05) the decrease in GnRH content in this hypothalamic structure. Moreover, administration of both AChE inhibitors diminished (P < 0.05) the inhibitory effect of LPS treatment on the expression of GnRH receptor in the AP. Our study shows that inflammatory dependent changes in the GnRH/LH secretion may be eliminated or reduced by AChE inhibitors suppressing inflammatory reaction only at the periphery such as Neostigmine, without the need for interfering in the central nervous system. PMID:28894751

  6. The blood-brain barrier-permeable catechol-O-methyltransferase inhibitor dinitrocatechol suppresses experimental autoimmune encephalomyelitis.

    PubMed

    Polak, Paul E; Lin, Shao Xia; Pelligrino, Dale; Feinstein, Douglas L

    2014-11-15

    Reduced levels of noradrenaline (NA) in CNS of multiple sclerosis patients could be due to metabolism by catechol-O-methyltransferase (COMT). In mice immunized with myelin oligodendrocyte glycoprotein peptide, the BBB-permeable COMT inhibitor dinitrocatechol (DNC) reduced clinical signs, while entacapone, a non-BBB-permeable inhibitor, had no effect. Spinal cord NA levels were slightly increased by DNC, and there was an inverse correlation between NA levels and average clinical signs. Spinal cord COMT mRNA levels were not increased during EAE, but were found increased in the frontal cortex of MS patients. These results suggest that COMT inhibitors could provide benefit to MS patients.

  7. Connective tissue growth factor increases matrix metalloproteinase-2 and suppresses tissue inhibitor of matrix metalloproteinase-2 production by cultured renal interstitial fibroblasts.

    PubMed

    Yang, Min; Huang, Haichang; Li, Jingzi; Huang, Wen; Wang, Haiyan

    2007-01-01

    The involvement of gelatinase (matrix metalloproteinase-2 [MMP-2] and MMP-9) in the matrix remodeling and development of tubulointerstitial fibrosis has been studied recently, but relatively little is known about the regulators and the mechanisms controlling the activation and expression of gelatinase in renal fibroblasts. In these studies, the production and underlying signaling pathway for gelatinase by exogenous connective tissue growth factor (CTGF) treatment were investigated. Here, we show that CTGF acts as a potent promoter of the activation and expression of MMP-2, but not MMP-9 in normal rat kidney fibroblasts cell line (NRK-49F). We found that CTGF significantly increased the activity of MMP-2, as well as MMP-2 protein in conditioned medium and MMP-2 mRNA levels in cells. In studies to address the mechanisms involved in the regulation of MMP-2 activity, we found that the tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), the inhibitor of MMP-2, decreased significantly when cells were treated with CTGF. Further studies showed that extracellular signal-regulated kinase (ERK) signaling is responsible for most of the CTGF-induced MMP-2 expression and TIMP-2 suppression. When NRK-49F fibroblasts were incubated with CTGF, activation of ERK1/2 signaling was observed. Suppression of ERK1/2 activation with nontoxic concentrations of PD98059, a specific inhibitor of ERK activation, was associated with a reduction of CTGF-stimulated MMP-2 activity and protein expression. In addition, the CTGF-mediated reduction of TIMP-2 activity and protein expression was prevented when ERK1/2 activation was inhibited by PD98059. These results provide evidence that CTGF augments activation of MMP-2 through an effect on MMP-2 protein expression and TIMP-2 suppression, and that these effects are dependent on the activation of the ERK1/2 pathway.

  8. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level.

    PubMed Central

    Yamagoe, S; Kohda, T; Oishi, M

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed. Images PMID:1828533

  9. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level

    SciTech Connect

    Yamagoe, S.; Kohda, T.; Oishi, M. )

    1991-07-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed.

  10. Localization of cyclooxygenase-2 in mice vas deferens and its effects on fertility upon suppression using nimesulide: a preferential cyclooxygenase-2 inhibitor.

    PubMed

    Balaji, Thotakura; Ramanathan, Manickam; Menon, Venugopal Padmanabhan

    2007-05-05

    Accumulating evidence on constitutive expression of cyclooxygenase-2 (COX-2), one of the isoforms of enzyme cyclooxygenase (COX) the other isoform being cyclooxygenase-1 (COX-1), questions the safety profile of non-steroidal anti-inflammatory drugs (NSAIDs). This COX-2 isoform which is induced not only during inflammation but also by factors such as cytokines, steroid hormones and mitogenic stimuli is constitutively expressed in brain, kidney and reproductive organs. Present NSAIDs, particularly COX-2 inhibitors is no longer considered safe since suppression of COX-2 in tissues which it is constitutively expressed may lead to adverse effects. Though intense expression of COX-2 in vas deferens is proved, lack of information with respect to its function has attracted a wide scope for research as to whether COX-2 in vas deferens contributes to male fertility. In the present study, the authors investigated the localization of COX-2 as well as COX-1 in mice vas deferens and also assessed the activity of COX-2 and total prostaglandin (PG) levels in vas deferens. Further they suppressed the expression of COX-2 using a preferential COX-2 inhibitor nimesulide and analyzed the sperm from vas deferens for any defects. COX-2 was intensely expressed in the epithelial cells of mice vas deferens and nimesulide was able to effectively suppress most of COX-2 expression. A decrease in PG levels was observed initially but interestingly, the levels tend to rise on sustained suppression of COX-2. The motility of sperm was affected severely after 6h of nimesulide administration that suggested a crucial role of COX-2 towards fertility of mice sperm.

  11. Statins suppress glucose-induced plasminogen activator inhibitor-1 expression by regulating RhoA and nuclear factor-κB activities in cardiac microvascular endothelial cells.

    PubMed

    Ni, Xiao-Qing; Zhu, Jian-Hua; Yao, Ning-Hua; Qian, Juan; Yang, Xiang-Jun

    2013-01-01

    The aim of this study was to investigate the possible proinflammatory signaling pathways involved in statin inhibition of glucose-induced plasminogen activator inhibitor-1 (PAI-1) expression in cardiac microvascular endothelial cells (CMECs). Primary rat CMECs were grown in the presence of 5.7 or 23 mmol/L glucose. PAI-1 mRNA and protein expression levels were measured by realtime polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay, respectively. A pull-down assay was performed to determine RhoA activity. IκBα protein expression was measured by Western blotting, nuclear factor (NF)-κB activation was detected by electrophoretic mobility shift assay and its transcription activity was determined by a dual luciferase reporter gene assay. PAI-1 mRNA and protein expression levels were both increased with high glucose concentrations, but they were significantly suppressed by simvastatin and atorvastatin treatment (P < 0.01) and the effects were reversed by mevalonate (100 μmol/L) and geranylgeranyl pyrophosphate (10 μmol/L) but not farnesyl pyrophosphate (10 μmol/L). Such effects were similar to those of a RhoA inhibitor, C3 exoenzyme (5 μg/mL), inhibitors of RhoA kinase (ROCK), Y-27632 (10 μmol/L) and hydroxyfasudil (10 μmol/L) and an NF-κB inhibitor, BAY 11-7082 (5 μmol/L). High glucose-induced RhoA and NF-κB activations in CMECs were both significantly inhibited by statins (P < 0.01). Simvastatin and atorvastatin equally suppress high glucose-induced PAI-1 expression. These effects of statins may occur partly by regulating the RhoA/ROCK-NF-κB pathway. The multifunctional roles of statins may be particularly beneficial for patients with metabolic syndrome.

  12. The Antiproliferative and Colony-suppressive Activities of STAT3 Inhibitors in Human Cancer Cells Is Compromised Under Hypoxic Conditions.

    PubMed

    Tian, Jilai; Xiao, Hui; Wu, Ruohan; Cao, Yang; Li, Chenglong; Xu, Ronald; Pierson, Christopher R; Finlay, Jonathan L; Yang, Fang; Gu, Ning; Lin, Jiayuh

    2017-02-01

    Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been indicated as a novel cancer drug target, since it plays an important role in diverse oncogenic processes including survival, cell proliferation and migration. Emerging STAT3 inhibitors have demonstrated efficacy in cancer cells and animal tumor models. It is well known that most solid tumors are characterized by hypoxia, but it is not clear if hypoxic conditions affect activity of STAT3 inhibitors. To examine this, two STAT3 inhibitors were tested to investigate their inhibitory efficacy in cancer cells grown under hypoxic conditions compared with those without hypoxia. Cell proliferation, colony formation and western blot assays were performed to examine the differences in the cell viability, proliferation and proteins in the STAT3 pathway. Under hypoxic conditions, the half-maximal inhibitory concentration values for both STAT3 inhibitors were increased compared to normoxic conditions in human pancreatic cancer, medulloblastoma and sarcoma cell lines. In addition, the ability of both STAT3 inhibitors to inhibit colony formation in pancreatic cancer, medulloblastoma and sarcoma cell lines was reduced under hypoxic conditions when compared to cells under normoxic conditions. Furthermore, there was an increase in phosphorylated STAT3 levels in cancer cells under hypoxic conditions, suggesting this may be one of the mechanisms of resistance. In summary, the results presented here provide a novel finding of STAT3 inhibitor activity under hypoxic conditions and indicate that under such low oxygen conditions, the anticancer efficacy of STAT3 inhibitors was indeed hampered. These results highlight the need to develop new therapeutic strategies to overcome the resistance of cancer cells to STAT3 inhibitors under hypoxic conditions. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Suppression of Ammonia Volatilization from Urea-Based Fertilizers Using Urease Inhibitors: A Reasonably Available Control Technology for Agriculture?

    NASA Astrophysics Data System (ADS)

    Robarge, W. P.

    2015-12-01

    Ammonia loss from fertilizers can impact formation of atmospheric aerosols, as well as contribute to nitrogen (N) deposition in terrestrial and aquatic ecosystems. Urea is the predominant form of N fertilizer used worldwide due to its high N content (46.6% N) and low cost. Once in contact with soil or vegetation, urea is hydrolyzed to ammonium via naturally occurring urease enzymes. Losses of N from surface applied urea as ammonia can exceed 30%. To address this issue, various physical and chemical mechanisms have been incorporated into granular urea. The most common approach is incorporation of urease inhibitors such as N-(n-butyl) thiophosphoric triamide (NBPT). We have been investigating ammonia volatilization from urea granules (+/- urease inhibitors) in various field and laboratory controlled experiments for the past several years. Laboratory experiments are conducted with a customized growth chamber system designed to continuously measure ammonia volatilization. Field measurements are conducted using a passive sampler technology with an acid-coated trap in PVC cylinders, or annular denuder technology using flow-through PVC chambers. Daily exchanges of acid-coated denuder tubes enhance the sensitivity of ammonia volatilization measurements for the urease-inhibitor treated product. Loss of N from commercial urea granules has ranged from 6 - ~ 35%, depending on ambient temperature. This loss typically occurs within the first 5-10 days under field conditions. Some urease-inhibitors can minimize loss of N via volatilization (< 5%) for up to 20+ days in the absence of a rainfall event. Visual observations have confirmed that on bare soil, treated or untreated urea granules quickly "dissolve" and move into the soil. The accompanying urease-inhibitor formulation moves with the urea continuing to provide protection against reaction with naturally occurring urease enzymes. Use of urease-inhibitors does not guarantee increased crop yields or NUE, but the consistency of

  14. Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha1

    PubMed Central

    Shen, Jiang-Cheng; Unoki, Motoko; Ythier, Damien; Duperray, Alain; Varticovski, Lyuba; Kumamoto, Kensuke; Pedeux, Remy; Harris, Curtis C.

    2007-01-01

    ING4 is a candidate tumor suppressor that plays a major role in gene regulation, cell cycle control, apoptosis, and angiogenesis. ING4 expression is downregulated in glioblastoma cells, and head and neck squamous cell carcinoma. Here, we identified liprin α1/PPFIA1, a cytoplasmic protein necessary for focal adhesion formation and axon guidance, as a novel interacting protein with ING4. ING4 and liprin α1 colocalized at lamellipodia in the vicinity of vinculin. Overexpressed ING4 suppressed cell spreading and cell migration. In contrast, overexpressed liprin α1 enhanced cell spreading and cell migration. Knockdown of endogenous ING4 with RNA interference induced cell motility, whereas knockdown of endogenous liprin α1 suppressed cell motility. ING4 also suppressed cell motility that was enhanced by liprin α1. However, ING4 did not further suppress cell motility when liprin α1 was suppressed with RNA interference, suggesting a functional and mechanistic interdependence between these proteins. In addition to its nuclear functions, cytoplasmic ING4 interacts with liprin α1 to regulate cell migration, and with its known anti-angiogenic function, may prevent invasion and metastasis. PMID:17363573

  15. Growth-suppressive effect of the α-amylase inhibitor of Triticum aestivum on stored-product mites varies by the species and type of diet.

    PubMed

    Hubert, Jan; Nesvorna, Marta; Erban, Tomas

    2014-01-01

    A naturally occurring α-amylase inhibitor (α-AI) of Triticum aestivum protects wheat grain from gramnivorous arthropod pests. The α-AI (Type-I) was incorporated into carbohydrate and protein diets to test its inhibitory activity on the stored-product mites Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae (Acari: Astigmata). Growth tests of mites fed the various diets were used to compare the suppressive effects. The final population size of mites attained from an initial population of 50 specimens maintained under controlled conditions (85 % relative humidity and 25 °C) was compared after 21 days of cultivation. The results showed that α-AI in the concentration in the range of 0.01-1 mg g(-1) did not suppress the growth of the tested stored-product mites. α-AI at a concentration of 10 mg g(-1) exerted a growth-suppressive effect that depended on the diet and species of the mites. The growth rate of A. siro was affected by the type of diet and was higher on carbohydrate diet than on the protein diet, the suppressive effect of α-AI was on the both diets. The growth-suppressive effect of α-AI on L. destructor and T. putrescentiae was significant when they were fed the protein diet but not when they were fed the carbohydrate diet. The higher resistance of tested mites to α-AI (proteinaceous) compared to non-proteinaceous acarbose corresponds to a powerful proteotolytic system in the mite gut. The results are discussed in terms of the adaptability of mites to utilize the starch from food sources.

  16. Suppression of Tumor Growth and Muscle Wasting in a Transgenic Mouse Model of Pancreatic Cancer by the Novel Histone Deacetylase Inhibitor AR-42.

    PubMed

    Henderson, Sally E; Ding, Li-Yun; Mo, Xiaokui; Bekaii-Saab, Tanios; Kulp, Samuel K; Chen, Ching-Shih; Huang, Po-Hsien

    2016-12-01

    Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. This study was aimed at evaluating the efficacy of AR-42 (formerly OSU-HDAC42), a novel histone deacetylase (HDAC) inhibitor currently in clinical trials, in suppressing tumor growth and/or cancer-induced muscle wasting in murine models of PDAC. The in vitro antiproliferative activity of AR-42 was evaluated in six human pancreatic cancer cell lines (AsPC-1, COLO-357, PANC-1, MiaPaCa-2, BxPC-3, SW1990). AsPC-1 subcutaneous xenograft and transgenic KP(fl/fl)C (LSL-Kras(G12D);Trp53(flox/flox);Pdx-1-Cre) mouse models of pancreatic cancer were used to evaluate the in vivo efficacy of AR-42 in suppressing tumor growth and/or muscle wasting. Growth suppression in AR-42-treated cells was observed in all six human pancreatic cancer cell lines with dose-dependent modulation of proliferation and apoptotic markers, which was associated with the hallmark features of HDAC inhibition, including p21 upregulation and histone H3 hyperacetylation. Oral administration of AR-42 at 50 mg/kg every other day resulted in suppression of tumor burden in the AsPC-1 xenograft and KP(fl/fl)C models by 78% and 55%, respectively, at the end of treatment. Tumor suppression was associated with HDAC inhibition, increased apoptosis, and inhibition of proliferation. Additionally, AR-42 as a single agent preserved muscle size and increased grip strength in KP(fl/fl)C mice. Finally, the combination of AR-42 and gemcitabine in transgenic mice demonstrated a significant increase in survival than either agent alone. These results suggest that AR-42 represents a therapeutically promising strategy for the treatment of pancreatic cancer. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. LDL suppresses angiogenesis through disruption of the HIF pathway via NF-κB inhibition which is reversed by the proteasome inhibitor BSc2118

    PubMed Central

    Doeppner, Thorsten R.; Niu, Feng; Li, Qiaochuan; Yang, Yanping; Kuckelkorn, Ulrike; Hagemann, Nina; Li, Wei; Hermann, Dirk M.; Dai, Yun; Zhou, Wen; Jin, Fengyan

    2015-01-01

    Since disturbance of angiogenesis predisposes to ischemic injuries, attempts to promote angiogenesis have been made to improve clinical outcomes of patients with many ischemic disorders. While hypoxia inducible factors (HIFs) stimulate vascular remodeling and angiogenesis, hyperlipidemia impairs angiogenesis in response to various pro-angiogenic factors. However, it remains uncertain how HIFs regulate angiogenesis under hyperlipidemia. Here, we report that exposure to low-density lipoprotein (LDL) suppressed in vitro angiogenesis of human brain microvascular endothelial cells. Whereas LDL exposure diminished expression of HIF-1α and HIF-2α induced by hypoxia, it inhibited DMOG- and TNFα-induced HIF-1α and HIF-2α expression in normoxia. Notably, in both hypoxia and normoxia, LDL markedly reduced expression of HIF-1β, a constitutively stable HIF subunit, an event associated with NF-κB inactivation. Moreover, knockdown of HIF-1β down-regulated HIF-1α and HIF-2α expression, in association with increased HIF-1α hydroxylation and 20S proteasome activity after LDL exposure. Significantly, the proteasome inhibitor BSc2118 prevented angiogenesis attenuation by LDL through restoring expression of HIFs. Together, these findings argue that HIF-1β might act as a novel cross-link between the HIF and NF-κB pathways in suppression of angiogenesis by LDL, while proteasome inhibitors might promote angiogenesis by reactivating this signaling cascade under hyperlipidemia. PMID:26388611

  18. LDL suppresses angiogenesis through disruption of the HIF pathway via NF-κB inhibition which is reversed by the proteasome inhibitor BSc2118.

    PubMed

    Yao, Gang; Zhang, Qi; Doeppner, Thorsten R; Niu, Feng; Li, Qiaochuan; Yang, Yanping; Kuckelkorn, Ulrike; Hagemann, Nina; Li, Wei; Hermann, Dirk M; Dai, Yun; Zhou, Wen; Jin, Fengyan

    2015-10-06

    Since disturbance of angiogenesis predisposes to ischemic injuries, attempts to promote angiogenesis have been made to improve clinical outcomes of patients with many ischemic disorders. While hypoxia inducible factors (HIFs) stimulate vascular remodeling and angiogenesis, hyperlipidemia impairs angiogenesis in response to various pro-angiogenic factors. However, it remains uncertain how HIFs regulate angiogenesis under hyperlipidemia. Here, we report that exposure to low-density lipoprotein (LDL) suppressed in vitro angiogenesis of human brain microvascular endothelial cells. Whereas LDL exposure diminished expression of HIF-1α and HIF-2α induced by hypoxia, it inhibited DMOG- and TNFα-induced HIF-1α and HIF-2α expression in normoxia. Notably, in both hypoxia and normoxia, LDL markedly reduced expression of HIF-1β, a constitutively stable HIF subunit, an event associated with NF-κB inactivation. Moreover, knockdown of HIF-1β down-regulated HIF-1α and HIF-2α expression, in association with increased HIF-1α hydroxylation and 20S proteasome activity after LDL exposure. Significantly, the proteasome inhibitor BSc2118 prevented angiogenesis attenuation by LDL through restoring expression of HIFs. Together, these findings argue that HIF-1β might act as a novel cross-link between the HIF and NF-κB pathways in suppression of angiogenesis by LDL, while proteasome inhibitors might promote angiogenesis by reactivating this signaling cascade under hyperlipidemia.

  19. Selective class I histone deacetylase inhibitors suppress persistent spontaneous nociception and thermal hypersensitivity in a rat model of bee venom-induced inflammatory pain.

    PubMed

    Yang, Fan; Yang, Yan; Wang, Yan; Yang, Fei; Li, Chun-Li; Wang, Xiao-Liang; Li, Zhen; Chen, Jun

    2015-10-25

    To confirm whether class I histone deacetylase inhibitors (HDACIs) are effective in relief of peripheral inflammatory pain, the effects of two selective inhibitors, MS-275 and MGCD0103, were studied in rats inflamed by subcutaneous (s.c.) injection of bee venom (BV). The BV test is characterized by displaying both persistent spontaneous nociception (PSN) and primary hypersensitivity. Intrathecal (i.t.) pre-treatment of either MS-275 or MGCD0103 with a single dose of 60 nmol/20 μL resulted in profound suppression of both PSN and primary thermal hypersensitivity but without significant influence upon the primary mechanical hypersensitivity and mirror-image thermal hypersensitivity. Moreover, the up-regulation of both HDAC1 and HDAC2 induced by s.c. BV injection was completely suppressed by i.t. pre-treatment of MS-275. The present results provide with another new line of evidence showing involvement of epigenetic regulation of chromatin structure by HDAC1/2-mediated histone hypoacetylation in the BV-induced PSN and thermal hypersensitivity and demonstrate the beneficial effects of class I HDACIs in prevention of peripheral inflammatory pain from occurring.

  20. Suppression of asymmetric acid efflux and gravitropism in maize roots treated with auxin transport inhibitors of sodium orthovanadate

    NASA Technical Reports Server (NTRS)

    Mulkey, T. J.; Evans, M. L.

    1982-01-01

    In gravitropically stimulated roots of maize (Zea mays L., hybrid WF9 x 38MS), there is more acid efflux on the rapidly growing upper side than on the slowly growing lower side. In light of the Cholodny/Went hypothesis of gravitropism which states that gravitropic curvature results from lateral redistribution of auxin, the effects of auxin transport inhibitors on the development of acid efflux asymmetry and curvature in gravistimulated roots were examined. All the transport inhibitors tested prevented both gravitropism and the development of asymmetric acid efflux in gravistimulated roots. The results indicate that auxin redistribution may cause the asymmetry of acid efflux, a finding consistent with the Cholodny/Went hypothesis of gravitropism. As further evidence that auxin-induced acid efflux asymmetry may mediate gravitropic curvature, sodium orthovanadate, an inhibitor of auxin-induced H+ efflux was found to prevent both gravitropism and the development of asymmetric acid efflux in gravistimulated roots.

  1. Switching regimens in virologically suppressed HIV-1-infected patients: evidence base and rationale for integrase strand transfer inhibitor (INSTI)-containing regimens.

    PubMed

    Raffi, F; Esser, S; Nunnari, G; Pérez-Valero, I; Waters, L

    2016-10-01

    In an era when most individuals with treated HIV infection can expect to live into old age, clinicians should proactively review their patients' current and future treatment needs and challenges. Clinical guidelines acknowledge that, in the setting of virological suppression, treatment switch may yield benefits in terms of tolerability, regimen simplification, adherence, convenience and long-term health considerations, particularly in the context of ageing. In this paper, we review evidence from six key clinical studies on switching virologically suppressed patients to regimens based on integrase strand transfer inhibitors (INSTIs), the antiretroviral class increasingly preferred as initial therapy in clinical guidelines. We review these studies and focus on the virological efficacy, safety, and tolerability of switching to INSTI-based regimens in suppressed HIV-positive individuals. We review the early switch studies SWITCHMRK and SPIRAL [assessing a switch from a ritonavir-boosted protease inhibitor (PI/r) to raltegravir (RAL)-containing regimens], together with data from STRATEGY-PI [assessing a switch to elvitegravir (EVG)-containing regimens; EVG/cobicistat (COBI)/emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF) vs. remaining on a PI/r-containing regimen], STRATEGY-NNRTI [assessing a switch to EVG/COBI/FTC/TDF vs. continuation of a nonnucleoside reverse transcriptase inhibitor (NNRTI) and two nucleoside reverse transcriptase inhibitors (NRTIs)], STRIIVING [assessing a switch to a dolutegravir (DTG)-containing regimen (abacavir (ABC)/lamivudine (3TC)/DTG) vs. staying on the background regimen], and GS study 109 [assessing a switch to EVG/COBI/FTC/tenofovir alafenamide fumarate (TAF) vs. continuation of FTC/TDF-based regimens]. Switching to INSTI-containing regimens has been shown to support good virological efficacy, with evidence from two studies demonstrating superior virological efficacy for a switch to EVG-containing regimens. In addition, switching

  2. Imiquimod-induced psoriasis-like skin inflammation is suppressed by BET bromodomain inhibitor in mice through RORC/IL-17A pathway modulation.

    PubMed

    Nadeem, Ahmed; Al-Harbi, Naif O; Al-Harbi, Mohamed M; El-Sherbeeny, Ahmed M; Ahmad, Sheikh F; Siddiqui, Nahid; Ansari, Mushtaq A; Zoheir, Khairy M A; Attia, Sabry M; Al-Hosaini, Khaled A; Al-Sharary, Shakir D

    2015-09-01

    Psoriasis is one of the most common skin disorders characterized by erythematous plaques that result from hyperproliferative keratinocytes and infiltration of inflammatory leukocytes into dermis and epidermis. Recent studies suggest that IL-23/IL-17A/IL-22 cytokine axis plays an important role in the pathogenesis of psoriasis. The small molecule bromodomain and extraterminal domain (BET) inhibitors, that disrupt interaction of BET proteins with acetylated histones have recently demonstrated efficacy in various models of inflammation through suppression of several pathways, one of them being synthesis of IL-17A/IL-22 which primarily depends on transcription factor, retinoic acid receptor-related orphan receptor C (RORC). However, the efficacy and mechanistic aspect of a BET inhibitor in mouse model of skin inflammation has not been explored previously. Therefore, this study investigated the role of BET inhibitor, JQ-1 in mouse model of psoriasis-like inflammation. Mice were topically applied imiquimod (IMQ) to develop psoriasis-like inflammation on the shaved back and ear followed by assessment of skin inflammation (myeloperoxidase activity, ear thickness, and histopathology), RORC and its signature cytokines (IL-17A/IL-22). JQ-1 suppressed IMQ-induced skin inflammation as reflected by a decrease in ear thickness/myeloperoxidase activity, and RORC/IL-17A/IL-22 expression. Additionally, a RORα/γ agonist SR1078 was utilized to investigate the role of RORC in BET-mediated skin inflammation. SR1078 reversed the protective effect of JQ-1 on skin inflammation at both histological and molecular levels in the IMQ model. The current study suggests that BET bromodomains are involved in psoriasis-like inflammation through induction of RORC/IL-17A pathway. Therefore, inhibition of BET bromodomains may provide a new therapy against skin inflammation.

  3. Switching from suppressive protease inhibitor-based regimens to nevirapine-based regimens: a meta-analysis of randomized controlled trials.

    PubMed

    Ena, J; Leach, A; Nguyen, P

    2008-10-01

    We performed a meta-analysis to assess the efficacy and safety of switching from protease inhibitor (PI)- to nevirapine (NVP)-based regimens in HIV-infected patients in whom virological suppression had been achieved. Six trials (550 patients) were analysed. The demographics showed that 11-48% of participants were female and 40-53% had hepatitis C or B virus infection, and the mean CD4 lymphocyte count was >500 cells/microL at study entry. NVP-based regimens showed noninferiority compared with continuation of PI therapy to maintain virological suppression in 'intention to treat' (80 vs. 78%; P=0.35) and 'on treatment' analyses (91 vs. 89%; P=0.10). Overall rates of discontinuation because of adverse events were similar in the two groups (11 vs. 10%; P=0.79). However, NVP-based therapies caused more discontinuations because of liver toxicity than PI-based therapies (7 vs. 0%; P=0.0009). At the end of follow-up there was no statistical difference in CD4, cholesterol, triglyceride and body shape measurements between the two groups. Two studies reported greater improvement in quality of life in patients who were switched to the NVP group. Switching from suppressive PI- to NVP-based regimens is virologically and immunologically safe; however, the risk of liver toxicity requires monitoring of clinical symptoms and liver chemistry during NVP therapy.

  4. Combination of vitamin K2 and the angiotensin-converting enzyme inhibitor, perindopril, attenuates the liver enzyme-altered preneoplastic lesions in rats via angiogenesis suppression.

    PubMed

    Yoshiji, Hitoshi; Kuriyama, Shigeki; Noguchi, Ryuichi; Yoshii, Junichi; Ikenaka, Yasuhide; Yanase, Koji; Namisaki, Tadashi; Kitade, Mitsuteru; Yamazaki, Masaharu; Masaki, Tsutomu; Fukui, Hiroshi

    2005-05-01

    Chemoprevention should be a promising approach to improve the prognosis of the patients with hepatocellular carcinoma (HCC). Angiogenesis is now recognized as a crucial step not only in tumor growth, but also in early carcinogenesis. The aim of this study was to elucidate the combination effect of the clinically used vitamin K(2) (VK) and the angiotensin-converting enzyme inhibitor, perindopril (PE), on hepatocarcinogenesis, especially in conjunction with angiogenesis. In a diethylnitrosamine-induced rat hepatocarcinogenesis model, the effects of VK and PE on the development of liver enzyme-altered preneoplastic lesions and angiogenesis were examined. Treatment with both VK and PE markedly inhibited the development of preneoplastic lesions in association with suppression of neovascularization in the liver. The combination treatment with VK and PE exerted a more potent inhibitory effect as compared with the single agent treatments. The in vitro study demonstrated that VK and PE inhibited the endothelial cell (EC) tubular formation. VK also suppressed the EC proliferation in a dose-dependent manner. The combination of VK and PE exerted a chemopreventive effect against rat liver carcinogenesis via suppression of angiogenesis. Since both agents are widely used in the clinical practice, this combination therapy may represent a potential new strategy for chemoprevention against HCC in the future.

  5. Development of Multiwell-Plate Methods Using Pure Cultures of Methanogens To Identify New Inhibitors for Suppressing Ruminant Methane Emissions.

    PubMed

    Weimar, M R; Cheung, J; Dey, D; McSweeney, C; Morrison, M; Kobayashi, Y; Whitman, W B; Carbone, V; Schofield, L R; Ronimus, R S; Cook, G M

    2017-08-01

    Hydrogenotrophic methanogens typically require strictly anaerobic culturing conditions in glass tubes with overpressures of H2 and CO2 that are both time-consuming and costly. To increase the throughput for screening chemical compound libraries, 96-well microtiter plate methods for the growth of a marine (environmental) methanogen Methanococcus maripaludis strain S2 and the rumen methanogen Methanobrevibacter species AbM4 were developed. A number of key parameters (inoculum size, reducing agents for medium preparation, assay duration, inhibitor solvents, and culture volume) were optimized to achieve robust and reproducible growth in a high-throughput microtiter plate format. The method was validated using published methanogen inhibitors and statistically assessed for sensitivity and reproducibility. The Sigma-Aldrich LOPAC library containing 1,280 pharmacologically active compounds and an in-house natural product library (120 compounds) were screened against M. maripaludis as a proof of utility. This screen identified a number of bioactive compounds, and MIC values were confirmed for some of them against M. maripaludis and M. AbM4. The developed method provides a significant increase in throughput for screening compound libraries and can now be used to screen larger compound libraries to discover novel methanogen-specific inhibitors for the mitigation of ruminant methane emissions.IMPORTANCE Methane emissions from ruminants are a significant contributor to global greenhouse gas emissions, and new technologies are required to control emissions in the agriculture technology (agritech) sector. The discovery of small-molecule inhibitors of methanogens using high-throughput phenotypic (growth) screening against compound libraries (synthetic and natural products) is an attractive avenue. However, phenotypic inhibitor screening is currently hindered by our inability to grow methanogens in a high-throughput format. We have developed, optimized, and validated a high

  6. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma

    PubMed Central

    Peng, Hsuan-Yu; Cheng, Yun-Ching; Hsu, Yuan-Ming; Wu, Guan-Hsun; Kuo, Ching-Chuan; Liou, Jing-Ping; Chang, Jang-Yang

    2016-01-01

    Microtubule inhibitors have been shown to inhibit Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signal transduction pathway in various cancer cells. However, little is known of the mechanism by which the microtubule inhibitors inhibit STAT3 activity. In the present study, we examined the effect of a novel small-molecule microtubule inhibitor, MPT0B098, on STAT3 signaling in oral squamous cell carcinoma (OSCC). Treatment of various OSCC cells with MPT0B098 induced growth inhibition, cell cycle arrest and apoptosis, as well as increased the protein level of SOCS3. The accumulation of SOCS3 protein enhanced its binding to JAK2 and TYK2 which facilitated the ubiquitination and degradation of JAK2 and TYK2, resulting in a loss of STAT3 activity. The inhibition of STAT3 activity led to sensitization of OSCC cells to MPT0B098 cytotoxicity, indicating that STAT3 is a key mediator of drug resistance in oral carcinogenesis. Moreover, the combination of MPT0B098 with the clinical drug cisplatin or 5-FU significantly augmented growth inhibition and apoptosis in OSCC cells. Taken together, our results provide a novel mechanism for the action of MPT0B098 in which the JAK2/STAT3 signaling pathway is suppressed through the modulation of SOCS3 protein level. The findings also provide a promising combinational therapy of MPT0B098 for OSCC. PMID:27367272

  7. MLN4924, an NAE inhibitor, suppresses AKT and mTOR signaling via upregulation of REDD1 in human myeloma cells.

    PubMed

    Gu, Yanyan; Kaufman, Jonathan L; Bernal, Leon; Torre, Claire; Matulis, Shannon M; Harvey, R Donald; Chen, Jing; Sun, Shi-Yong; Boise, Lawrence H; Lonial, Sagar

    2014-05-22

    The function and survival of normal and malignant plasma cells depends on the elaborately regulated ubiquitin proteasome system. Proteasome inhibitors such as bortezomib have proved to be highly effective in the treatment of multiple myeloma (MM), and their effects are related to normal protein homeostasis which is critical for plasma cell survival. Many ubiquitin ligases are regulated by conjugation with NEDD8. Therefore, neddylation may also impact survival and proliferation of malignant plasma cells. Here, we show that MLN4924, a potent NEDD8 activating enzyme (NAE) inhibitor, induced cytotoxicity in MM cell lines, and its antitumor effect is associated with suppression of the AKT and mammalian target of rapamycin (mTOR) signaling pathways through increased expression of REDD1. Combining MLN4924 with the proteasome inhibitor bortezomib induces synergistic apoptosis in MM cell lines which can overcome the prosurvival effects of growth factors such as interleukin-6 and insulin-like growth factor-1. Altogether, our findings demonstrate an important function for REDD1 in MLN4924-induced cytotoxicity in MM and also provide a promising therapeutic combination strategy for myeloma.

  8. Mung bean trypsin inhibitor is effective in suppressing the degradation of myofibrillar proteins in the skeletal muscle of blue scad (Decapterus maruadsi).

    PubMed

    Sun, Le-Chang; Yoshida, Asami; Cai, Qiu-Feng; Liu, Guang-Ming; Weng, Ling; Tachibana, Katsuyasu; Su, Wen-Jin; Cao, Min-Jie

    2010-12-22

    Mung bean trypsin inhibitor (MBTI) of the Bowman-Birk family was purified to homogeneity with a molecular mass of approximately 9 kDa on tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 8887.25 Da as determined by matrix-assisted laser desorption/ionization-quadrupole ion trap-time-of-flight mass spectrometry (MALDI-QIT-TOF MS). Using blue scad myofibrillar proteins as targets, it was found that, in the absence of MBTI, proteolysis of myofibrillar proteins, especially myosin heavy chain (MHC), could be identified after incubation at 55 °C for 2 h, while in the presence of MBTI, with a final concentration of 25 ng/mL, proteolysis of these proteins was greatly suppressed even after incubation for 3 h. Although cysteine proteinase inhibitor E-64 was also effective in preventing protein degradation, inhibitors for metallo- and asparatic proteinases did not reveal obvious inhibitory effects. Our present results strongly suggested that the naturally occurring legume bean seed protein MBTI can be used as an effective additive in preventing marine fish blue scad surimi gel softening, which is quite possibly caused by myofibril-bound serine proteinase (MBSP).

  9. HMG-CoA reductase inhibitors pravastatin, lovastatin and simvastatin suppress delayed rectifier K(+)-channel currents in murine thymocytes.

    PubMed

    Kazama, Itsuro; Baba, Asuka; Maruyama, Yoshio

    2014-08-01

    Since lymphocytes predominantly express delayed rectifier K(+)-channels (Kv1.3) that trigger lymphocyte activation, statins, which exert immunosuppressive effects, would affect the channel currents. Employing the patch-clamp technique in murine thymocytes, we examined the effects of statins on Kv1.3-channel currents and the membrane capacitance (Cm). Pravastatin significantly suppressed the pulse-end currents of the channels. Lovastatin and simvastatin also suppressed the peak currents, significantly decreasing the Cm. This study demonstrated for the first time that statins inhibit thymocyte Kv1.3-channels. The slow inactivation patterns induced by lovastatin and simvastatin may be associated with their accumulation in the plasma membranes. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies.

    PubMed

    Ozao-Choy, Junko; Ma, Ge; Kao, Johnny; Wang, George X; Meseck, Marcia; Sung, Max; Schwartz, Myron; Divino, Celia M; Pan, Ping-Ying; Chen, Shu-Hsia

    2009-03-15

    In tumor-bearing hosts, myeloid-derived suppressor cells (MDSC) and T regulatory cells (Treg) play important roles in immune suppression, the reversal of which is vitally important for the success of immune therapy. We have shown that ckit ligand is required for MDSC accumulation and Treg development. We hypothesized that sunitinib malate, a receptor tyrosine kinase inhibitor, could reverse MDSC-mediated immune suppression and modulate the tumor microenvironment, thereby improving the efficacy of immune-based therapies. Treatment with sunitinib decreased the number of MDSC and Treg in advanced tumor-bearing animals. Furthermore, it not only reduced the suppressive function of MDSCs but also prevented tumor-specific T-cell anergy and Treg development. Interestingly, sunitinib treatment resulted in reduced expression of interleukin (IL)-10, transforming growth factor-beta, and Foxp3 but enhanced expression of Th1 cytokine IFN-gamma and increased CTL responses in isolated tumor-infiltrating leukocytes. A significantly higher percentage and infiltration of CD8 and CD4 cells was detected in tumors of sunitinib-treated mice when compared with control-treated mice. More importantly, the expression of negative costimulatory molecules CTLA4 and PD-1 in both CD4 and CD8 T cells, and PDL-1 expression on MDSC and plasmacytoid dendritic cells, was also significantly decreased by sunitinib treatment. Finally, sunitinib in combination with our immune therapy protocol (IL-12 and 4-1BB activation) significantly improves the long-term survival rate of large tumor-bearing mice. These data suggest that sunitinib can be used to reverse immune suppression and as a potentially useful adjunct for enhancing the efficacy of immune-based cancer therapy for advanced malignancies.

  11. Tissue inhibitor of matrix metalloproteinase-1 suppresses apoptosis of mouse bone marrow stromal cell line MBA-1.

    PubMed

    Guo, L-J; Luo, X-H; Xie, H; Zhou, H-D; Yuan, L-Q; Wang, M; Liao, E-Y

    2006-05-01

    We investigated the action of tissue inhibitor of metalloproteinase-1 (TIMP-1) on apoptosis and differentiation of mouse bone marrow stromal cell line MBA-1. TIMP-1 did not affect alkaline phosphatase (ALP) activity, suggesting that it is not involved in osteoblastic differentiation in MBA-1 cells. However, TIMP-1 inhibited MBA-1 apoptosis induced by serum deprivation in a dose-dependent manner. Our study also showed increased Bcl-2 protein expression and decreased Bax protein expression with TIMP-1 treatment. TIMP-1 decreased cytochrome c release and caspase-3 activation in MBA-1 cells. TIMP-1 activated phosphatidylinositol 3-kinase (PI3-kinase) and c-Jun N-terminal kinase (JNK), and the PI3-kinase inhibitor LY294002 or the JNK inhibitor SP600125 abolished its antiapoptotic activity. To investigate whether antiapoptotic action of TIMP-1 was mediated through its inhibition on MMP activities, we constructed mutant TIMP-1 by side-directed mutagenesis, which abolished the inhibitory activity of MMPs by deletion of Cys1 to Ala4. Wild-type TIMP-1 and mutant TIMP-1 expression plasmids were transfected in MBA-1 cells, and results showed that mutant TIMP-1 still protected the induced MBA-1 cell against apoptosis. These data suggest that TIMP-1 antiapoptotic actions are mediated via the PI3-kinase and JNK signaling pathways and independent of TIMP-1 inhibition of MMP activities.

  12. Multi-level suppression of receptor-PI3K-mTORC1 by fatty acid synthase inhibitors is crucial for their efficacy against ovarian cancer cells.

    PubMed

    Wagner, Renate; Stübiger, Gerald; Veigel, Daniel; Wuczkowski, Michael; Lanzerstorfer, Peter; Weghuber, Julian; Karteris, Emmanouil; Nowikovsky, Karin; Wilfinger-Lutz, Nastasia; Singer, Christian F; Colomer, Ramón; Benhamú, Bellinda; López-Rodríguez, María Luz; Valent, Peter; Grunt, Thomas W

    2017-01-10

    Receptor-PI3K-mTORC1 signaling and fatty acid synthase (FASN)-regulated lipid biosynthesis harbor numerous drug targets and are molecularly connected. We hypothesize that unraveling the mechanisms of pathway cross-talk will be useful for designing novel co-targeting strategies for ovarian cancer (OC). The impact of receptor-PI3K-mTORC1 onto FASN is already well-characterized. However, reverse actions-from FASN towards receptor-PI3K-mTORC1-are still elusive. We show that FASN-blockade impairs receptor-PI3K-mTORC1 signaling at multiple levels. Thin-layer chromatography and MALDI-MS/MS reveals that FASN-inhibitors (C75, G28UCM) augment polyunsaturated fatty acids and diminish signaling lipids diacylglycerol (DAG) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) in OC cells (SKOV3, OVCAR-3, A2780, HOC-7). Western blotting and micropatterning demonstrate that FASN-blockers impair phosphorylation/expression of EGF-receptor/ERBB/HER and decrease GRB2-EGF-receptor recruitment leading to PI3K-AKT suppression. FASN-inhibitors activate stress response-genes HIF-1α-REDD1 (RTP801/DIG2/DDIT4) and AMPKα causing mTORC1- and S6-repression. We conclude that FASN-inhibitor-mediated blockade of receptor-PI3K-mTORC1 occurs due to a number of distinct but cooperating processes. Moreover, decrease of PI3K-mTORC1 abolishes cross-repression of MEK-ERK causing ERK activation. Consequently, the MEK-inhibitor selumetinib/AZD6244, in contrast to the PI3K/mTOR-inhibitor dactolisib/NVP-BEZ235, increases growth inhibition when given together with a FASN-blocker. We are the first to provide deep insight on how FASN-inhibition blocks ERBB-PI3K-mTORC1 activity at multiple molecular levels. Moreover, our data encourage therapeutic approaches using FASN-antagonists together with MEK-ERK-inhibitors.

  13. Novel multiple tyrosine kinase inhibitor ponatinib inhibits bFGF-activated signaling in neuroblastoma cells and suppresses neuroblastoma growth in vivo

    PubMed Central

    Lu, Jiaxiong; Pan, Jessie; Yu, Yang; Zhao, Yanling; Zhang, Huiyuan; Hu, Ting; Liu, Qing; Yang, Jianhua

    2017-01-01

    Neuroblastoma (NB) is one of the most common pediatric malignancies in children. Abnormal activation of receptor tyrosine kinases contributes to the pathological development of NB. Therefore, targeting tyrosine kinase receptors to cure NB is a promising strategy. Here, we report that a multi-targeted tyrosine kinase inhibitor ponatinib inhibited NB cell proliferation and induced NB cell apoptosis in a dose-dependent manner. In addition, ponatinib suppressed the colony formation ability of NB cells. Mechanistically, ponatinib effectively inhibited the FGFR1-activated signaling pathway. Ponatinib also enhanced the cytotoxic effects of doxorubicin on NB cells. Furthermore, ponatinib demonstrated anti-tumor efficacy in vivo by inhibiting tumor growth in an orthotopic xenograft NB mouse model. In summary, our results showed that ponatinib inhibited NB growth both in vitro and in vivo. PMID:27564113

  14. Dasatinib suppression of medulloblastoma survival and migration is markedly enhanced by combining treatment with the aurora kinase inhibitor AT9283.

    PubMed

    Petersen, William; Liu, Jingbo; Yuan, Liangping; Zhang, Hongying; Schneiderjan, Matthew; Cho, Yoon-Jae; MacDonald, Tobey J

    2014-11-01

    Medulloblastoma (MB) expresses Src kinase, while aurora kinase A overexpression correlates with poor survival. We thus investigated novel combination treatment with dasatinib and AT9283, inhibitors of Src and aurora kinase, respectively, on MB growth in vitro and in vivo. Treatment with each drug significantly reduced cell viability and combined treatment markedly potentiated this response. AT9283 induced p53 expression, autophagy, and G2/M cell-cycle arrest, while combined treatment induced S phase arrest. Dasatinib treatment caused tumor regression in vivo. Activated Src was detected in 44% MB analyzed. We conclude that further evaluation of this combination therapy for MB is highly warranted.

  15. L-F001, a novel multifunctional ROCK inhibitor, suppresses neuroinflammation in vitro and in vivo: Involvement of NF-κB inhibition and Nrf2 pathway activation.

    PubMed

    Chen, Jingkao; Yin, Wei; Tu, Yalin; Wang, Shengnan; Yang, Xiaohong; Chen, Qiuhe; Zhang, Xiao; Han, Yifan; Pi, Rongbiao

    2017-03-16

    Microglia and astrocytes are largely responsible for inflammatory injury in the brain of Alzheimer's disease (AD). Increasing evidence has indicated that Rho kinase (ROCK) plays an important role in the regulation of neuroinflammation. Previously, we synthesized a new chemical entity L-F001 and proved its potential inhibitory effects on ROCK and oxidative stress. Here, we investigated the anti-inflammatory effects and the molecular mechanisms of L-F001 in vitro and in vivo. L-F001 remarkably suppressed lipopolysaccharides (LPS)-elevated expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as LPS-induced production of nitric oxide (NO), reactive oxygen species, interleukin-6 (IL-6) and tumor necreactive oxygen speciesis factor-α (TNF-α) in microglial BV-2 cells and in cultured astrocytes. Furthermore, L-F001 inhibited the degradation of IκB and nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit. Moreover, L-F001 induced the upregulation of heme-oxygenase-1 (HO-1) and glutamate cysteine ligase modifier subunit (GCLM) expression, two downstream effectors of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). It was interesting that L-F001 also activated phosphatidylinositol 3-kinase (PI3K) pathway and induced M1 (CD16/32, M1 marker)/ M2 (CD206, M2 maker) transition in BV-2 cells which was significantly blocked by a PI3K inhibitor, wortmannin. Finally, L-F001 markedly attenuated the level of pro-inflammatory mediators in a murine model of systemic acute brain inflammation induced by LPS. Taken together, these results indicate that the novel multifunctional ROCK inhibitor L-F001 suppresses neuroinflammation in vitro and in vivo via NF-κB inhibition and Nrf2 activation, suggesting that L-F001 may be a promising drug candidate for treating neuroinflammation-associated CNS diseases, including AD.

  16. Thrombomodulin suppresses invasiveness of HT1080 tumor cells by reducing plasminogen activation on the cell surface through activation of thrombin-activatable fibrinolysis inhibitor.

    PubMed

    Higuchi, Toshiyuki; Nakamura, Takashi; Kakutani, Hideki; Ishii, Hidemi

    2009-02-01

    Cell malignancy is negatively correlated with the expression of thrombomodulin (TM), a thrombin receptor expressed on the surface of various cells, including tumor cells. TM accelerates thrombin-activatable fibrinolysis inhibitor (TAFI) activation catalyzed by thrombin. The active form of TAFI (TAFIa) contributes to inhibition of plasmin formation through its carboxypeptidase B (CPB)-like activity. Here, we examined whether TM- and tumor cell-dependent TAFI activation participates in controlling pericellular fibrinolysis and cell invasion. Human fibrosarcoma HT1080 cells retained the ability to activate both prothrombin and plasminogen, but did not express TM. HT1080 cells mediated activation of TAFI in plasma in the presence of soluble-type TM (sTM) through cell-dependent prothrombin activation. HT1080 cells stably expressing TM (TM-HT1080) mediated plasma TAFI activation without added sTM, but HT1080 (wild-type) and Mock-transfected HT1080 cells (Mock) did not. Production of TAFIa suppressed cell-mediated plasminogen activation. Matrigel invasion by wild-type and Mock cells was enhanced two-fold by diluted plasma (10%), whereas the plasma-induced invasion of TM-HT1080 cells (65% of wild-type invasion) was lower than those of wild-type and Mock cells. Cell invasion by TM-HT1080 was partially enhanced by addition of a TAFIa/CPB inhibitor. These results suggest that TM suppresses pericellular fibrinolysis and plasma-induced tumor cell invasion, and that it is mediated, at least in part, by plasma TAFI activation.

  17. PR-957, a selective inhibitor of immunoproteasome subunit low-MW polypeptide 7, attenuates experimental autoimmune neuritis by suppressing Th17 cell differentiation and regulating cytokine production.

    PubMed

    Liu, Haijie; Wan, Chunxiao; Ding, Yanan; Han, Ranran; He, Yating; Xiao, Jinting; Hao, Junwei

    2017-01-17

    Experimental autoimmune neuritis (EAN) is a CD4(+) T cell-mediated autoimmune inflammatory demyelinating disease of the peripheral nervous system. It has been replicated in an animal model of human inflammatory demyelinating polyradiculoneuropathy, Guillain-Barré syndrome. In this study, we evaluated the therapeutic efficacy of a selective inhibitor of the immunoproteasome subunit, low-MW polypeptide 7 (PR-957) in rats with EAN. Our results showed that PR-957 significantly delayed onset day, reduced severity and shortened duration of EAN, and alleviated demyelination and inflammatory infiltration in sciatic nerves. In addition to significantly regulating expression of the cytokine profile, PR-957 treatment down-regulated the proportion of proinflammatory T helper (Th)17 cells in sciatic nerves and spleens of rats with EAN. Data presented show the role of PR-957 in the signal transducer and activator of transcription 3 (STAT3) pathway. PR-957 not only decreased expression of IL-6 and IL-23 but also led to down-regulation of STAT3 phosphorylation in CD4(+) T cells. Regulation of the STAT3 pathway led to a reduction in retinoid-related orphan nuclear receptor γ t and IL-17 production. Furthermore, reduction of STAT3 phosphorylation may have directly suppressed Th17 cell differentiation. Therefore, our study demonstrates that PR-957 could potently alleviate inflammation in rats with EAN and that it may be a likely candidate for treating Guillain-Barré syndrome.-Liu, H., Wan, C., Ding, Y., Han, R., He, Y., Xiao, J., Hao, J. PR-957, a selective inhibitor of immunoproteasome subunit low-MW polypeptide 7, attenuates experimental autoimmune neuritis by suppressing Th17 cell differentiation and regulating cytokine production.

  18. Targeted suppression of AR-V7 using PIP5K1α inhibitor overcomes enzalutamide resistance in prostate cancer cells.

    PubMed

    Sarwar, Martuza; Semenas, Julius; Miftakhova, Regina; Simoulis, Athanasios; Robinson, Brian; Gjörloff Wingren, Anette; Mongan, Nigel P; Heery, David M; Johnsson, Heather; Abrahamsson, Per-Anders; Dizeyi, Nishtman; Luo, Jun; Persson, Jenny L

    2016-09-27

    One mechanism of resistance of prostate cancer (PCa) to enzalutamide (MDV3100) treatment is the increased expression of AR variants lacking the ligand binding-domain, the best characterized of which is AR-V7. We have previously reported that Phosphatidylinositol-4-phosphate 5-kinase alpha (PIP5Kα), is a lipid kinase that links to CDK1 and AR pathways. The discovery of PIP5Kα inhibitor highlight the potential of PIP5K1α as a drug target in PCa. In this study, we show that AR-V7 expression positively correlates with PIP5K1α in tumor specimens from PCa patients. Overexpression of AR-V7 increases PIP5K1α, promotes rapid growth of PCa in xenograft mice, whereas inhibition of PIP5K1α by its inhibitor ISA-2011B suppresses the growth and invasiveness of xenograft tumors overexpressing AR-V7. PIP5K1α is a key co-factor for both AR-V7 and AR, which are present as protein-protein complexes predominantly in the nucleus of PCa cells. In addition, PIP5K1α and CDK1 influence AR-V7 expression also through AKT-associated mechanism dependent on PTEN-status. ISA-2011B disrupts protein stabilization of AR-V7 which is dependent on PIP5K1α, leading to suppression of invasive growth of AR-V7-high tumors in xenograft mice. Our study suggests that combination of enzalutamide and PIP5K1α may have a significant impact on refining therapeutic strategies to circumvent resistance to antiandrogen therapies.

  19. Targeted suppression of AR-V7 using PIP5K1α inhibitor overcomes enzalutamide resistance in prostate cancer cells

    PubMed Central

    Sarwar, Martuza; Semenas, Julius; Miftakhova, Regina; Simoulis, Athanasios; Robinson, Brian; Wingren, Anette Gjörloff; Mongan, Nigel P.; Heery, David M.; Johnsson, Heather; Abrahamsson, Per-Anders; Dizeyi, Nishtman; Luo, Jun; Persson, Jenny L.

    2016-01-01

    One mechanism of resistance of prostate cancer (PCa) to enzalutamide (MDV3100) treatment is the increased expression of AR variants lacking the ligand binding-domain, the best characterized of which is AR-V7. We have previously reported that Phosphatidylinositol-4-phosphate 5-kinase alpha (PIP5Kα), is a lipid kinase that links to CDK1 and AR pathways. The discovery of PIP5Kα inhibitor highlight the potential of PIP5K1α as a drug target in PCa. In this study, we show that AR-V7 expression positively correlates with PIP5K1α in tumor specimens from PCa patients. Overexpression of AR-V7 increases PIP5K1α, promotes rapid growth of PCa in xenograft mice, whereas inhibition of PIP5K1α by its inhibitor ISA-2011B suppresses the growth and invasiveness of xenograft tumors overexpressing AR-V7. PIP5K1α is a key co-factor for both AR-V7 and AR, which are present as protein-protein complexes predominantly in the nucleus of PCa cells. In addition, PIP5K1α and CDK1 influence AR-V7 expression also through AKT-associated mechanism dependent on PTEN-status. ISA-2011B disrupts protein stabilization of AR-V7 which is dependent on PIP5K1α, leading to suppression of invasive growth of AR-V7-high tumors in xenograft mice. Our study suggests that combination of enzalutamide and PIP5K1α may have a significant impact on refining therapeutic strategies to circumvent resistance to antiandrogen therapies. PMID:27588408

  20. Several human cyclin-dependent kinase inhibitors, structurally related to roscovitine, are new anti-malarial agents.

    PubMed

    Houzé, Sandrine; Hoang, Nha-Thu; Lozach, Olivier; Le Bras, Jacques; Meijer, Laurent; Galons, Hervé; Demange, Luc

    2014-09-23

    In Africa, malaria kills one child each minute. It is also responsible for about one million deaths worldwide each year. Plasmodium falciparum, is the protozoan responsible for the most lethal form of the disease, with resistance developing against the available anti-malarial drugs. Among newly proposed anti-malaria targets, are the P. falciparum cyclin-dependent kinases (PfCDKs). There are involved in different stages of the protozoan growth and development but share high sequence homology with human cyclin-dependent kinases (CDKs). We previously reported the synthesis of CDKs inhibitors that are structurally-related to (R)-roscovitine, a 2,6,9-trisubstituted purine, and they showed activity against neuronal diseases and cancers. In this report, we describe the synthesis and the characterization of new CDK inhibitors, active in reducing the in vitro growth of P. falciparum (3D7 and 7G8 strains). Six compounds are more potent inhibitors than roscovitine, and three exhibited IC50 values close to 1 µM for both 3D7 and 7G8 strains. Although, such molecules do inhibit P. falciparum growth, they require further studies to improve their selectivity for PfCDKs.

  1. GSKJ4, an H3K27me3 demethylase inhibitor, effectively suppresses the breast cancer stem cells.

    PubMed

    Yan, Ningning; Xu, Liang; Wu, Xiaobo; Zhang, Le; Fei, Xiaochun; Cao, Yali; Zhang, Fengchun

    2017-10-15

    Recently, studies have been suggested that H3K27me3 is implicated with maintenance of cancer stem cells (CSCs), however, the roles of H3K27me3 in Breast cancer stem cells (BCSCs) remain poorly investigated. Here we explore the functionallities of H3K27me3 on BCSCs, we identify H3K27me3 as a negative modulator of BCSCs and suggest GSKJ4 is a promising drug targeting BCSCs. We show that the H3K27me3 level is decreased in mammosphere-derived BCSCs. In breast cancer cells, we demonstrate that GSKJ4 could markedly inhibit the proliferation. Strikingly, we show that GSKJ4 could effectively suppress BCSCs including expansion, self-renewal capacity, and the expression of stemness-related markers. Additionally, our xenograft model confirms that GSKJ4 is able to effectively inhibit the tumorigenicity of MDA-MB-231. Mechanistically, the inhibition effects of GSKJ4 on BCSCs are via inhibiting demethylases JMJD3 and UTX with methyltransferase EZH2 unchanged, which enhances H3K27me3 level. H3K27me3 activating leads to reduction of BCSCs expansion, self-renewal and global level of stemness factors. Collectively, our results provide strong supports that H3K27me3 exerts a suppressive influence on BCSCs and reveal that GSKJ4 is capable to be a prospective agent targeting BCSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Synergistic suppression of t(8;21)-positive leukemia cell growth by combining oridonin and MAPK1/ERK2 inhibitors

    PubMed Central

    Morozov, Alexey; Poymenova, Nadezhda; Dmitriev, Sergey E.; Buzdin, Anton; Stocking, Carol; Kovalchuk, Olga; Prassolov, Vladimir

    2017-01-01

    One of the most common chromosomal translocations in acute myeloid leukemia is t(8;21)(q22;q22), which results in the appearance of abnormal transcripts encoding for the fusion protein RUNX1-ETO. Therefore, this oncoprotein is considered to be a pertinent and promising target for treating t(8;21) leukemia. Previously, we have shown that downregulation of RUNX1-ETO leads to activation of intracellular signaling pathways enhancing cell survival and determined that the protein ERK2 can mediate activation of most of these pathways. Here we used a combination of oridonin (natural tetracycline diterpenoid), which has been shown to exhibit anti-RUNX1-ETO activity, and ERK2 kinase inhibitors. We found that treatment of leukemic t(8;21)-positive Kasumi-1 cells with oridonin cause decrease of phosphorylated ERK1/2. Treatment of these cells with ERK2 inhibitors makes them more sensitive to RUNX1-ETO inhibition with oridonin. Therefore we postulate that simultaneous inhibition of RUNX1-ETO and ERK2 cause synergistic effect on survival of leukemic cells. PMID:28915648

  3. CRM1 inhibitor S109 suppresses cell proliferation and induces cell cycle arrest in renal cancer cells.

    PubMed

    Liu, Xuejiao; Chong, Yulong; Liu, Huize; Han, Yan; Niu, Mingshan

    2016-03-01

    Abnormal localization of tumor suppressor proteins is a common feature of renal cancer. Nuclear export of these tumor suppressor proteins is mediated by chromosome region maintenance-1 (CRM1). Here, we investigated the antitumor eff ects of a novel reversible inhibitor of CRM1 on renal cancer cells. We found that S109 inhibits the CRM1-mediated nuclear export of RanBP1 and reduces protein levels of CRM1. Furthermore, the inhibitory eff ect of S109 on CRM1 is reversible. Our data demonstrated that S109 signifi cantly inhibits proliferation and colony formation of renal cancer cells. Cell cycle assay showed that S109 induced G1-phase arrest, followed by the reduction of Cyclin D1 and increased expression of p53 and p21. We also found that S109 induces nuclear accumulation of tumor suppressor proteins, Foxo1 and p27. Most importantly, mutation of CRM1 at Cys528 position abolished the eff ects of S109. Taken together, our results indicate that CRM1 is a therapeutic target in renal cancer and the novel reversible CRM1 inhibitor S109 can act as a promising candidate for renal cancer therapy.

  4. A novel small-molecule inhibitor of influenza A virus acts by suppressing PA endonuclease activity of the viral polymerase

    PubMed Central

    Yuan, Shuofeng; Chu, Hin; Singh, Kailash; Zhao, Hanjun; Zhang, Ke; Kao, Richard Y. T.; Chow, Billy K. C.; Zhou, Jie; Zheng, Bo-Jian

    2016-01-01

    The RNA-dependent RNA polymerase of influenza A virus comprises conserved and independently-folded subdomains with defined functionalities. The N-terminal domain of the PA subunit (PAN) harbors the endonuclease function so that it can serve as a desired target for drug discovery. To identify a class of anti-influenza inhibitors that impedes PAN endonuclease activity, a screening approach that integrated the fluorescence resonance energy transfer based endonuclease inhibitory assay with the DNA gel-based endonuclease inhibitory assay was conducted, followed by the evaluation of antiviral efficacies and potential cytotoxicity of the primary hits in vitro and in vivo. A small-molecule compound ANA-0 was identified as a potent inhibitor against the replication of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2, in cell cultures. Combinational treatment of zanamivir and ANA-0 exerted synergistic anti-influenza effect in vitro. Intranasal administration of ANA-0 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. In summary, ANA-0 shows potential to be developed to novel anti-influenza agents. PMID:26956222

  5. Soluble inhibitors generated during hydrothermal pretreatment of oil palm mesocarp fiber suppressed the catalytic activity of Acremonium cellulase.

    PubMed

    Zakaria, Mohd Rafein; Hirata, Satoshi; Fujimoto, Shinji; Ibrahim, Izzudin; Hassan, Mohd Ali

    2016-01-01

    Oil palm mesocarp fiber was subjected to hydrothermal pretreatment under isothermal and non-isothermal conditions. The pretreated slurries were separated by filtration, pretreated liquids and solids were characterized. An enzymatic digestibility study was performed for both pretreated slurries and solids to understand the effect of soluble inhibitors generated during the pretreatment process. The highest glucose yield obtained from pretreated slurries was 70.1%, and gradually decreased with higher pretreatment severities. The highest glucose yield obtained in pretreated solids was 100%, after pretreatment at 210°C for 20min. In order to study the inhibitory effects of compounds generated during pretreatment with cellulase, technical grade solutions that mimic the pretreated liquid were prepared and their effect on Acremonium cellulase activity was monitored using Avicel. Xylo-oligomers and tannic acid were identified as powerful inhibitors of Acremonium cellulase, and the lowest hydrolysis rate of Avicel of 0.18g/g-glucose released/L/h was obtained from tannic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo.

    PubMed

    Raab, Marc S; Breitkreutz, Iris; Anderhub, Simon; Rønnest, Mads H; Leber, Blanka; Larsen, Thomas O; Weiz, Ludmila; Konotop, Gleb; Hayden, Patrick J; Podar, Klaus; Fruehauf, Johannes; Nissen, Felix; Mier, Walter; Haberkorn, Uwe; Ho, Anthony D; Goldschmidt, Hartmut; Anderson, Kenneth C; Clausen, Mads H; Krämer, Alwin

    2012-10-15

    In contrast to normal cells, malignant cells are frequently aneuploid and contain multiple centrosomes. To allow for bipolar mitotic division, supernumerary centrosomes are clustered into two functional spindle poles in many cancer cells. Recently, we have shown that griseofulvin forces tumor cells with supernumerary centrosomes to undergo multipolar mitoses resulting in apoptotic cell death. Here, we describe the characterization of the novel small molecule GF-15, a derivative of griseofulvin, as a potent inhibitor of centrosomal clustering in malignant cells. At concentrations where GF-15 had no significant impact on tubulin polymerization, spindle tension was markedly reduced in mitotic cells upon exposure to GF-15. Moreover, isogenic cells with conditional centrosome amplification were more sensitive to GF-15 than parental controls. In a wide array of tumor cell lines, mean inhibitory concentrations (IC(50)) for proliferation and survival were in the range of 1 to 5 μmol/L and were associated with apoptotic cell death. Importantly, treatment of mouse xenograft models of human colon cancer and multiple myeloma resulted in tumor growth inhibition and significantly prolonged survival. These results show the in vitro and in vivo antitumor efficacy of a prototype small molecule inhibitor of centrosomal clustering and strongly support the further evaluation of this new class of molecules.

  7. Src family tyrosine kinase inhibitors suppress Nav1.1 expression in cultured rat spiral ganglion neurons.

    PubMed

    Chen, Huiying; Zeng, Qingjiao; Yao, Chen; Cai, Zheng; Wei, Tingjia; Huang, Zhihui; Su, Jiping

    2016-03-01

    Src family kinases regulate neuronal voltage-gated Na(+) channels, which generate action potentials. The mechanisms of action, however, remain poorly understood. The aim of the present study was to further elucidate the effects of Src family kinases on Nav1.1 mRNA and protein expression in spiral ganglion neurons. Immunofluorescence staining techniques detected Nav1.1 expression in the spiral ganglion neurons. Additionally, quantitative PCR and western blot techniques were used to analyze Nav1.1 mRNA and protein expression, respectively, in spiral ganglion neurons following exposure to Src family kinase inhibitors PP2 (1 and 10 μM) and SU6656 (0.1 and 1 μM) for different lengths of time (6 and 24 h). In the spiral ganglion neurons, Nav1.1 protein expression was detected in the somas and axons. The Src family kinase inhibitors PP2 and SU6665 significantly decreased Nav1.1 mRNA and protein expression (p < 0.05), respectively, in the spiral ganglion neurons, and changes in expression were not dependent on time or dose (p > 0.05).

  8. The 5-lipoxygenase inhibitor RF-22c potently suppresses leukotriene biosynthesis in cellulo and blocks bronchoconstriction and inflammation in vivo.

    PubMed

    Schaible, Anja M; Filosa, Rosanna; Krauth, Verena; Temml, Veronika; Pace, Simona; Garscha, Ulrike; Liening, Stefanie; Weinigel, Christina; Rummler, Silke; Schieferdecker, Sebastian; Nett, Markus; Peduto, Antonella; Collarile, Selene; Scuotto, Maria; Roviezzo, Fioretina; Spaziano, Giuseppe; de Rosa, Mario; Stuppner, Hermann; Schuster, Daniela; D'Agostino, Bruno; Werz, Oliver

    2016-07-15

    5-Lipoxygenase (5-LO) catalyzes the first two steps in leukotriene (LT) biosynthesis. Because LTs play pivotal roles in allergy and inflammation, 5-LO represents a valuable target for anti-inflammatory drugs. Here, we investigated the molecular mechanism, the pharmacological profile, and the in vivo effectiveness of the novel 1,2-benzoquinone-featured 5-LO inhibitor RF-22c. Compound RF-22c potently inhibited 5-LO product synthesis in neutrophils and monocytes (IC50⩾22nM) and in cell-free assays (IC50⩾140nM) without affecting 12/15-LOs, cyclooxygenase (COX)-1/2, or arachidonic acid release, in a specific and reversible manner, supported by molecular docking data. Antioxidant or iron-chelating properties were not evident for RF-22c and 5-LO-regulatory cofactors like Ca(2+) mobilization, ERK-1/2 activation, and 5-LO nuclear membrane translocation and interaction with 5-LO-activating protein (FLAP) were unaffected. RF-22c (0.1mg/kg; i.p.) impaired (I) bronchoconstriction in ovalbumin-sensitized mice challenged with acetylcholine, (II) exudate formation in carrageenan-induced paw edema, and (III) zymosan-induced leukocyte infiltration in air pouches. Taken together, RF-22c is a highly selective and potent 5-LO inhibitor in intact human leukocytes with pronounced effectiveness in different models of inflammation that warrants further preclinical analysis of this agent as anti-inflammatory drug. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Conformational flexibility of the glycosidase NagZ allows it to bind structurally diverse inhibitors to suppress β-lactam antibiotic resistance.

    PubMed

    Vadlamani, Grishma; Stubbs, Keith A; Désiré, Jérôme; Blériot, Yves; Vocadlo, David J; Mark, Brian L

    2017-03-28

    NagZ is an N-acetyl-β-d-glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram-negative bacteria by removing N-acetyl-glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6-anhydromuramoyl-peptide products generated by NagZ activate β-lactam resistance in many Gram-negative bacteria by inducing the expression of AmpC β-lactamase. Blocking NagZ activity can thereby suppress β-lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X-ray structures of NagZ bound to the potent yet non-selective N-acetyl-β-glucosaminidase inhibitor PUGNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate), and two NagZ-selective inhibitors - EtBuPUG, a PUGNAc derivative bearing a 2-N-ethylbutyryl group, and MM-156, a 3-N-butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM-156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N-acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.

  10. Anti-apoptotic effect of caspase inhibitors on H₂O₂-treated HeLa cells through early suppression of its oxidative stress.

    PubMed

    Park, Woo Hyun

    2014-05-01

    Oxidative stress-induced cytotoxicity in cervical cancer cells may be of toxicological interest. In the present study, the effects of exogenous H2O2 on cell growth and death in HeLa cervical cancer cells were investigated, and the anti-apoptotic effects of various caspase (pan-caspase, caspase-3, -8 or -9) inhibitors on H2O2-treated HeLa cells were also evaluated with regard to reactive oxygen species (ROS) and glutathione (GSH) levels. Based on MTT assays, H2O2 inhibited the growth of HeLa cells with an IC50 value of ~75 µM at 24 h. H2O2 increased the number of dead cells and Annexin V-FITC-positive cells in the HeLa cells, which was accompanied by the activation of caspase-3 and the loss of mitochondrial membrane potential (MMP; ΔΨm). However, relatively higher doses of H2O2 induced necrosis in HeLa cells. Caspase inhibitors significantly prevented H2O2-induced HeLa cell death. H2O2 increased ROS including O2•- at 24 h and increased the activity of catalase in HeLa cells. H2O2 also increased the ROS level at 1 h, and several caspase inhibitors attenuated the increased level at 1 h but not at 6, 12 and 24 h. H2O2 decreased the GSH level in HeLa cells at 1 h, and several caspase inhibitors attenuated the decreased level of GSH at this time. H2O2 induced GSH depletion at 24 h. In conclusion, H2O2 inhibited the growth of HeLa cells via apoptosis and/or necrosis, which was accompanied by intracellular increases in ROS levels and GSH depletion. Caspase inhibitors are suggested to suppress H2O2-induced oxidative stress to rescue HeLa cells at the early time point of 1 h.

  11. The Stilbenoid Tyrosine Kinase Inhibitor, G6, Suppresses Jak2-V617F-mediated Human Pathological Cell Growth in Vitro and in Vivo*

    PubMed Central

    Kirabo, Annet; Embury, Jennifer; Kiss, Róbert; Polgár, Tímea; Gali, Meghanath; Majumder, Anurima; Bisht, Kirpal S.; Cogle, Christopher R.; Keserű, György M.; Sayeski, Peter P.

    2011-01-01

    Using structure-based virtual screening, we previously identified a novel stilbenoid inhibitor of Jak2 tyrosine kinase named G6. Here, we hypothesized that G6 suppresses Jak2-V617F-mediated human pathological cell growth in vitro and in vivo. We found that G6 inhibited proliferation of the Jak2-V617F expressing human erythroleukemia (HEL) cell line by promoting marked cell cycle arrest and inducing apoptosis. The G6-dependent increase in apoptosis levels was concomitant with increased caspase 3/7 activity and cleavage of PARP. G6 also selectively inhibited phosphorylation of STAT5, a downstream signaling target of Jak2. Using a mouse model of Jak2-V617F-mediated hyperplasia, we found that G6 significantly decreased the percentage of blast cells in the peripheral blood, reduced splenomegaly, and corrected a pathologically low myeloid to erythroid ratio in the bone marrow by eliminating HEL cell engraftment in this tissue. In addition, drug efficacy correlated with the presence of G6 in the plasma, marrow, and spleen. Collectively, these data demonstrate that the stilbenoid compound, G6, suppresses Jak2-V617F-mediated aberrant cell growth. As such, G6 may be a potential therapeutic lead candidate against Jak2-mediated, human disease. PMID:21127060

  12. Proton pump inhibitor pantoprazole abrogates adriamycin-resistant gastric cancer cell invasiveness via suppression of Akt/GSK-β/β-catenin signaling and epithelial-mesenchymal transition.

    PubMed

    Zhang, Bin; Yang, Yan; Shi, Xiaoting; Liao, Wanyu; Chen, Min; Cheng, Alfred Sze-Lok; Yan, Hongli; Fang, Cheng; Zhang, Shu; Xu, Guifang; Shen, Shanshan; Huang, Shuling; Chen, Guangxia; Lv, Ying; Ling, Tingsheng; Zhang, Xiaoqi; Wang, Lei; Zhuge, Yuzheng; Zou, Xiaoping

    2015-01-28

    The effect of proton pump inhibitor (PPI) on cancer risk has received much attention recently. In this study, we investigated the mechanism underlying multidrug resistance and the effect of a PPI pantoprazole using an adriamycin-resistant gastric cancer cell model (SGC7901/ADR). Compared with the parental cell line, SGC7901/ADR cells showed reduced proliferation rate, but higher resistance to adriamycin under both anchorage-dependent and -independent conditions. Notably, SGC7901/ADR cells underwent epithelial to mesenchymal transition (EMT) and showed increased migrating and invading capabilities. At molecular level, SGC7901/ADR cells showed strong activation of Wnt/β-catenin signaling pathway compared with parental sensitive cells. Interestingly, we found that a PPI pantoprazole can effectively reverse the aggressiveness and EMT marker expression of SGC7901/ADR cells. Furthermore, pantoprazole treatment resulted in a profound reduction of both total and phosphorylated forms of Akt and GSK-3β, which in turn suppressed the adriamycin-induced Wnt/β-catenin signaling in SGC7901/ADR cells. Taken together, we demonstrate that the aggressive phenotype of adriamycin-resistant SGC7901/ADR cells is mediated by induction of EMT and activation of the canonical Wnt/β-catenin signaling pathway. And for the first time, we show that it is possible to suppress the invasiveness of SGC7901/ADR cells by pantoprazole which targets the EMT and Akt/GSK-3β/β-catenin signaling.

  13. Surfactants, Aromatic and Isoprenoid Compounds, and Fatty Acid Biosynthesis Inhibitors Suppress Staphylococcus aureus Production of Toxic Shock Syndrome Toxin 1▿

    PubMed Central

    McNamara, Peter J.; Syverson, Rae Ellen; Milligan-Myhre, Kathy; Frolova, Olga; Schroeder, Sarah; Kidder, Joshua; Hoang, Thanh; Proctor, Richard A.

    2009-01-01

    Menstrual toxic shock syndrome is a rare but potentially life-threatening illness manifest through the actions of Staphylococcus aureus toxic shock syndrome toxin 1 (TSST-1). Previous studies have shown that tampon additives can influence staphylococcal TSST-1 production. We report here on the TSST-1-suppressing activity of 34 compounds that are commonly used additives in the pharmaceutical, food, and perfume industries. Many of the tested chemicals had a minimal impact on the growth of S. aureus and yet were potent inhibitors of TSST-1 production. The TSST-1-reducing compounds included surfactants with an ether, amide, or amine linkage to their fatty acid moiety (e.g., myreth-3-myristate, Laureth-3, disodium lauroamphodiacetate, disodium lauramido monoethanolamido, sodium lauriminodipropionic acid, and triethanolamine laureth sulfate); aromatic compounds (e.g. phenylethyl and benzyl alcohols); and several isoprenoids and related compounds (e.g., terpineol and menthol). The membrane-targeting and -altering effects of the TSST-1-suppressing compounds led us to assess the activity of molecules that are known to inhibit fatty acid biosynthesis (e.g., cerulenin, triclosan, and hexachlorophene). These compounds also reduced S. aureus TSST-1 production. This study suggests that more additives than previously recognized inhibit the production of TSST-1. PMID:19223628

  14. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    SciTech Connect

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  15. GZD856, a novel potent PDGFRα/β inhibitor, suppresses the growth and migration of lung cancer cells in vitro and in vivo.

    PubMed

    Zhang, Zhang; Ren, Xiaomei; Lu, Xiaoyun; Wang, Deping; Hu, Xianjing; Zheng, Yi; Song, Liyan; Pang, Hongwen; Yu, Rongmin; Ding, Ke

    2016-05-28

    Platelet-derived growth factor receptors (PDGFRα/β) play critical roles in the autocrine-stimulated growth and recruitment of cancer-associated fibroblasts (CAFs) of human lung cancer cells. We have identified GZD856 as a new PDGFR inhibitor that potently inhibits PDGFRα/β kinase activity and blocks this signaling pathway in lung cancer cells both in vitro and in vivo. GZD856 strongly suppresses the proliferation of PDGFRα-amplified H1703 (PDGFRβ(-)) human lung cancer cells and demonstrates significant in vivo antitumor efficacy in a xenograft mouse model. Although GZD856 displays only limited in vitro antiproliferative efficiency against PDGFRα(-)/PDGFRβ(+) A549 lung cancer cells, it efficiently inhibits the in vivo growth and metastasis of A549 cancer cells in xenograft and orthotopic models, respectively. The promising in vivo antitumor activity of GZD856 in A549 models may result from its suppression of PDGFR-related microenvironment factors, such as recruitment of CAFs and collagen content in stromal cells. GZD856 may be considered as a promising new candidate for anti-lung cancer drug development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Fluvastatin, a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, suppresses very low-density lipoprotein secretion in puromycin aminonucleoside-nephrotic rats.

    PubMed

    Moritomo, Y; Hirano, T; Ebara, T; Kurokawa, M; Naito, H; Furukawa, S; Nagano, S

    1994-01-01

    The effects of fluvastatin, a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on the hyperlipidemia associated with nephrosis were studied. Nephrotic rats, induced by a single intraperitoneal injection of puromycin aminonucleoside (100 mg/kg body weight), had significantly higher plasma triglyceride (TG), total cholesterol and apoprotein (apo) B concentrations than controls. Fluvastatin was administrated as a 0.01% solution in drinking water for 14 days to either normal control or nephrotic rats. Concentrations of TG and apo B in plasma, and very low-density lipoprotein (VLDL) in nephrosis were completely normalized by the treatment with fluvastatin, but concentrations of cholesterol in plasma and each lipoprotein fraction were not altered by the treatment. The ratio of apo E to C in VLDL was significantly decreased in nephrotic rats, but the fluvastatin treatment increased this ratio. TG secretion rate estimated by the Triton WR1339 method was significantly increased in nephrotic rats, but was normalized by fluvastatin. Percent composition of TG in newly secreted VLDL particles in post-Triton plasma was not decreased by fluvastatin treatment, suggesting that the number of newly secreted VLDL particles was reduced by the treatment. Postheparin plasma lipolytic activities were not affected by the fluvastatin treatment. These results demonstrate that fluvastatin can effectively ameliorate the high concentration of VLDL by suppressing the hepatic secretion in nephrotic rats, and suggest that an inhibition of cholesterol biosynthesis suppresses VLDL secretion from the liver.

  17. Icariside II, a natural mTOR inhibitor, disrupts aberrant energy homeostasis via suppressing mTORC1-4E-BP1 axis in sarcoma cells

    PubMed Central

    Zhang, Chao; Yang, Lei; Geng, Ya-di; An, Fa-liang; Xia, Yuan-zheng; Guo, Chao; Luo, Jian-guang; Zhang, Lu-yong; Guo, Qing-long; Kong, Ling-yi

    2016-01-01

    The aberrant energy homeostasis that characterized by high rate of energy production (glycolysis) and energy consumption (mRNA translation) is associated with the development of cancer. As mammalian target of rapamycin (mTOR) is a critical regulator of aberrant energy homeostasis, it is an attractive target for anti-tumor intervention. The flavonoid compound Icariside II (IS) is a natural mTOR inhibitor derived from Epimedium. Koreanum. Herein, we evaluate the effect of IS on aberrant energy homeostasis. The reduction of glycolysis and mRNA translation in U2OS (osteosarcoma), S180 (fibrosarcoma) and SW1535 (chondrosarcoma) cells observed in our study, indicate that, IS inhibits aberrant energy homeostasis. This inhibition is found to be due to suppression of mammalian target of rapamycin complex 1 (mTORC1)-eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) axis through blocking the assembly of mTORC1. Furthermore, IS inhibits the cap-dependent translation of c-myc through mTORC1-4E-BP1 axis which links the relationship between mRNA translation and glycolysis. Inhibition of aberrant energy homeostasis by IS, contributes to its in vitro and in vivo anti-proliferation activity. These data indicate that IS disrupts aberrant energy homeostasis of sarcoma cells through suppression of mTORC1-4E-BP1 axis, providing a novel mechanism of IS to inhibit cell proliferation in sarcoma cells. PMID:27056897

  18. Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo E-deficient mice.

    PubMed

    Ervinna, Nasib; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Tanaka, Rica; Fujimura, Satoshi; Sukmawati, Dewi; Nomiyama, Takashi; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Watada, Hirotaka

    2013-03-01

    Dipeptyl peptidase-4 (DPP-4) inhibitors modulate the progression of atherosclerosis. To gain insights into their mechanism of action, 9-wk-old male apolipoprotein E (apoE)-deficient mice were fed a DPP-4 inhibitor, anagliptin-containing diet. The effects of anagliptin were investigated in, a monocyte cell line, human THP-1 cells, and rat smooth muscle cells (SMCs). Treatment with anagliptin for 16 wk significantly reduced accumulation of monocytes and macrophages in the vascular wall, SMC content in plaque areas, and oil red O-stained area around the aortic valve without affecting glucose tolerance or body weight. Serum DPP-4 concentrations were significantly higher in apoE-deficient mice than control mice, and the levels increased with aging, suggesting the involvement of DPP-4 in the progression of atherosclerosis. Indeed, soluble DPP-4 augmented cultured SMC proliferation, and anagliptin suppressed the proliferation by inhibiting ERK phosphorylation. In THP-1 cells, anagliptin reduced lipopolysaccharide-induced TNF-α production with inhibiting ERK phosphorylation and nuclear translocation of nuclear factor-κB. Quantitative analysis also showed that anagliptin reduced the area of atherosclerotic lesion in apoE-deficient mice. These results indicated that the anti-atherosclerotic effect of anagliptin is mediated, at least in part, through its direct inhibition of SMC proliferation and inflammatory reaction of monocytes.

  19. Febuxostat, an Inhibitor of Xanthine Oxidase, Suppresses Lipopolysaccharide-Induced MCP-1 Production via MAPK Phosphatase-1-Mediated Inactivation of JNK

    PubMed Central

    Nomura, Johji; Busso, Nathalie; Ives, Annette; Tsujimoto, Syunsuke; Tamura, Mizuho; So, Alexander; Yamanaka, Yoshihiro

    2013-01-01

    Excess reactive oxygen species (ROS) formation can trigger various pathological conditions such as inflammation, in which xanthine oxidase (XO) is one major enzymatic source of ROS. Although XO has been reported to play essential roles in inflammatory conditions, the molecular mechanisms underlying the involvement of XO in inflammatory pathways remain unclear. Febuxostat, a selective and potent inhibitor of XO, effectively inhibits not only the generation of uric acid but also the formation of ROS. In this study, therefore, we examined the effects of febuxostat on lipopolysaccharide (LPS)-mediated inflammatory responses. Here we show that febuxostat suppresses LPS-induced MCP-1 production and mRNA expression via activating MAPK phosphatase-1 (MKP-1) which, in turn, leads to dephosphorylation and inactivation of JNK in macrophages. Moreover, these effects of febuxostat are mediated by inhibiting XO-mediated intracellular ROS production. Taken together, our data suggest that XO mediates LPS-induced phosphorylation of JNK through ROS production and MKP-1 inactivation, leading to MCP-1 production in macrophages. These studies may bring new insights into the novel role of XO in regulating inflammatory process through MAPK phosphatase, and demonstrate the potential use of XO inhibitor in modulating the inflammatory processes. PMID:24086554

  20. Reactivating p53 functions by suppressing its novel inhibitor iASPP: a potential therapeutic opportunity in p53 wild-type tumors

    PubMed Central

    Dong, Peixin; Ihira, Kei; Hamada, Junichi; Watari, Hidemichi; Yamada, Takahiro; Hosaka, Masayoshi; Hanley, Sharon J.B.; Kudo, Masataka; Sakuragi, Noriaki

    2015-01-01

    Although mutational inactivation of p53 is found in 50% of all human tumors, a subset of tumors display defective p53 function, but retain wild-type (WT) p53. Here, direct and indirect mechanisms leading to the loss of WT p53 activities are discussed. We summarize the oncogenic roles of iASPP, an inhibitor of WT p53, in promoting proliferation, invasion, drug or radiation-resistance and metastasis. From the therapeutic view, we highlight promising perspectives of microRNA-124, peptide and small molecules that reduce or block iASPP for the treatment of cancer. High iASPP expression enhances proliferation, aggressive behavior, the resistance to radiation/chemotherapy and correlates with poor prognosis in a range of human tumors. Overexpression of iASPP accelerates tumorigenesis and invasion through p53-dependent and p53-independent mechanisms. MicroRNA-124 directly targets iASPP and represses the growth and invasiveness of cancer cells. The disruption of iASPP-p53 interaction by a p53-derived peptide A34 restores p53 function in cancer cells. The inhibition of iASPP phosphorylation with small molecules induces p53-dependent apoptosis and growth suppression. The mechanisms underlying aberrant expression of iASPP in human tumors should be further investigated. Reactivating WT p53 functions by targeting its novel inhibitor iASPP holds promise for potential therapeutic interventions in the treatment of WT p53-containing tumors. PMID:26343523

  1. Bromodomain and Extra Terminal (BET) Inhibitor Suppresses Macrophage-Driven Steroid-Resistant Exacerbations of Airway Hyper-Responsiveness and Inflammation

    PubMed Central

    Nguyen, Thi Hiep; Maltby, Steven; Eyers, Fiona; Foster, Paul S.; Yang, Ming

    2016-01-01

    Background Exacerbations of asthma are linked to significant decline in lung function and are often poorly controlled by corticosteroid treatment. Clinical investigations indicate that viral and bacterial infections play crucial roles in the onset of steroid-resistant inflammation and airways hyperresponsiveness (AHR) that are hallmark features of exacerbations. We have previously shown that interferon γ (IFNγ) and lipopolysaccharide (LPS) cooperatively activate pulmonary macrophages and induce steroid-resistant airway inflammation and AHR in mouse models. Furthermore, we have established a mouse model of respiratory syncytial virus (RSV)-induced exacerbation of asthma, which exhibits macrophage-dependent, steroid-resistant lung disease. Emerging evidence has demonstrated a key role for bromo- and extra-terminal (BET) proteins in the regulation of inflammatory gene expression in macrophages. We hypothesised that BET proteins may be involved in the regulation of AHR and airway inflammation in our steroid-resistant exacerbation models. Methodology/Principal Findings We investigated the effects of a BET inhibitor (I-BET-762) on the development of steroid-resistant AHR and airway inflammation in two mouse models. I-BET-762 administration decreased macrophage and neutrophil infiltration into the airways, and suppressed key inflammatory cytokines in both models. I-BET treatment also suppressed key inflammatory cytokines linked to the development of steroid-resistant inflammation such as monocyte chemoattractant protein 1 (MCP-1), keratinocyte-derived protein chemokine (KC), IFNγ, and interleukin 27 (IL-27). Attenuation of inflammation was associated with suppression of AHR. Conclusions/Significance Our results suggest that BET proteins play an important role in the regulation of steroid-resistant exacerbations of airway inflammation and AHR. BET proteins may be potential targets for the development of future therapies to treat steroid-resistant inflammatory components

  2. Bromodomain and Extra Terminal (BET) Inhibitor Suppresses Macrophage-Driven Steroid-Resistant Exacerbations of Airway Hyper-Responsiveness and Inflammation.

    PubMed

    Nguyen, Thi Hiep; Maltby, Steven; Eyers, Fiona; Foster, Paul S; Yang, Ming

    Exacerbations of asthma are linked to significant decline in lung function and are often poorly controlled by corticosteroid treatment. Clinical investigations indicate that viral and bacterial infections play crucial roles in the onset of steroid-resistant inflammation and airways hyperresponsiveness (AHR) that are hallmark features of exacerbations. We have previously shown that interferon γ (IFNγ) and lipopolysaccharide (LPS) cooperatively activate pulmonary macrophages and induce steroid-resistant airway inflammation and AHR in mouse models. Furthermore, we have established a mouse model of respiratory syncytial virus (RSV)-induced exacerbation of asthma, which exhibits macrophage-dependent, steroid-resistant lung disease. Emerging evidence has demonstrated a key role for bromo- and extra-terminal (BET) proteins in the regulation of inflammatory gene expression in macrophages. We hypothesised that BET proteins may be involved in the regulation of AHR and airway inflammation in our steroid-resistant exacerbation models. We investigated the effects of a BET inhibitor (I-BET-762) on the development of steroid-resistant AHR and airway inflammation in two mouse models. I-BET-762 administration decreased macrophage and neutrophil infiltration into the airways, and suppressed key inflammatory cytokines in both models. I-BET treatment also suppressed key inflammatory cytokines linked to the development of steroid-resistant inflammation such as monocyte chemoattractant protein 1 (MCP-1), keratinocyte-derived protein chemokine (KC), IFNγ, and interleukin 27 (IL-27). Attenuation of inflammation was associated with suppression of AHR. Our results suggest that BET proteins play an important role in the regulation of steroid-resistant exacerbations of airway inflammation and AHR. BET proteins may be potential targets for the development of future therapies to treat steroid-resistant inflammatory components of asthma.

  3. The anti-inflammatory effect of cyclooxygenase inhibitors in fibroblast-like synoviocytes from the human temporomandibular joint results from the suppression of PGE2 production

    PubMed Central

    Kawashima, Mutsumi; Ogura, Naomi; Akutsu, Miwa; Ito, Ko; Kondoh, Toshirou

    2013-01-01

    Background Non-steroidal anti-inflammatory drugs (NSAIDs) have been widely used for the management of pain and inflammation. However, little remains known about the effects of NSAIDs on synovitis of the human temporomandibular joint (TMJ). The aims of this study were to investigate the potential anti-inflammatory effects of NSAIDs on synovitis of the TMJ and the inflammatory effects of PGE2 on fibroblast-like synoviocytes (FLS) derived from the TMJ. Methods Human synovial tissue was obtained from patients with internal derangement who underwent arthroscopy of the TMJ. FLSs were prepared from the tissues using the outgrowth method. A COX inhibitor (indomethacin or celecoxib) was added to the IL-1β-stimulated cells in culture. The cells were also stimulated with PGE2 or an EP agonist. The PGE2 production and COX-2 and IL-6 expression levels were examined using enzyme-linked immunosorbent assays, real-time PCR, and a microarray analysis. Results COX inhibitors decreased not only PGE2 production, but also the expression of COX-2 and IL-6 in FLS stimulated with IL-1β. EP2 and EP4 were both expressed in the FLS, and the treatment with EP2 and EP4 agonists induced IL-6 production in these cells. Conclusion The COX inhibitors indomethacin and celecoxib reduce the expression of inflammatory factors, such as COX-2 and IL-6, in FLS from the TMJ via suppression of PGE2 production. EP2 and EP4 were the main receptors for PGE2 present in the FLS. The approach used in this study may be useful for revealing how drugs such as NSAIDs affect the cellular functions of FLS from the TMJ. PMID:23331485

  4. Induction of CYP1A and cyp2-mediated arachidonic acid epoxygenation and suppression of 20-hydroxyeicosatetraenoic acid by imidazole derivatives including the aromatase inhibitor vorozole.

    PubMed

    Diani-Moore, Silvia; Papachristou, Fotini; Labitzke, Erin; Rifkind, Arleen B

    2006-08-01

    Cytochrome P450 (P450) enzymes metabolize the membrane lipid arachidonic acid to stable biologically active epoxides [eicosatrienoic acids (EETs)] and 20-hydroxyeicosatetraenoic acid (20-HETE). These products have cardiovascular activity, primarily acting as vasodilators and vasoconstrictors, respectively. EET formation can be increased by the prototype CYP1A or CYP2 inducers, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or phenobarbital (PB), respectively. We report here that imidazole derivative drugs: the anthelminthics, albendazole and thiabendazole; the proton pump inhibitor, omeprazole; the thromboxane synthase inhibitor, benzylimidazole; and the aromatase (CYP19) inhibitor vorozole (R76713, racemate; and R83842, (+) enantiomer) increased hepatic microsomal EET formation in a chick embryo model. Albendazole increased EETs by transcriptional induction of CYP1A5 and the others by combined induction of CYP1A5 and CYP2H, the avian orthologs of mammalian CYP1A2 and CYP2B, respectively. All inducers increased formation of the four EET regioisomers, but TCDD and albendazole had preference for 5,6-EET and PB and omeprazole for 14,15-EET. Vorozole, benzylimidazole, and TCDD also suppressed 20-HETE formation. Vorozole was a remarkably effective and potent inducer of multiple hepatic P450s at a dose range which overlapped its inhibition of ovarian aromatase. Increased CYP1A activity in mouse Hepa 1-6 and human HepG2 cells by vorozole and other imidazole derivatives demonstrated applicability of the findings to mammalian cells. The findings suggest that changes in P450-dependent arachidonic acid metabolism may be a new source of side effects for drugs that induce CYP1A or CYP2. They demonstrate further that in vivo induction of multiple hepatic P450s produces additive increases in arachidonic acid epoxygenase activity and can occur concurrently with inhibition of ovarian aromatase activity.

  5. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo

    PubMed Central

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-01-01

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting “oncogene addiction” could be a promising strategy for combatting p53 mutant tumors. PMID:27765910

  6. PKM2 inhibitor shikonin suppresses TPA-induced mitochondrial malfunction and proliferation of skin epidermal JB6 cells.

    PubMed

    Li, Wenjuan; Liu, Joan; Zhao, Yunfeng

    2014-05-01

    Chemoprevention has been a pivotal and effective strategy during the skin cancer treatment. Using human skin normal and tumor samples, we demonstrated that both the expression and activity levels of pyruvate kinase M2 (PKM2) were higher in skin tumor tissues than normal tissues, suggesting that PKM2, one of important metabolic enzyme, might serve as a target for skin cancer prevention and/or therapy. Shikonin, a small-molecule active chemical, has been studied as an anti-cancer drug candidate in human cancer models. However, the mechanism of action and the chemopreventive potential of shikonin are unclear. Herein, we used the skin epidermal JB6 P+ cells and demonstrated that shikonin suppressed the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) induced neoplastic cell transformation and PKM2 activation in the early stage of carcinogenesis. Mitochondrial functions were inhibited by TPA treatment, as indicated by reduced mitochondrial membrane potential and mitochondrial respiration, which were restored by shikonin. We also examined the levels of lactate as a glycolysis marker, and shikonin suppressed its increase caused by tumor promoter treatment. Modulation of cell metabolism by shikonin was associated with G2-M phase accumulation, and Fra-1 (a major subunit of activator protein 1 in skin tumorigenesis) downregulation. In addition, we demonstrated that AMP-activated protein kinase (AMPK), an energy sensor, which is inactivated by TPA, shikonin could reverse AMPK activity. These results suggest that shikonin bears chemopreventive potential for human skin cancers in which PKM2 is upregulated, which might be mediated by inhibiting oncogenic activation, PKM2 activation, and mitochondrial dysfunction.

  7. Germline genetic predictors of aromatase inhibitor concentrations, estrogen suppression and drug efficacy and toxicity in breast cancer patients.

    PubMed

    Hertz, Daniel L; Henry, N Lynn; Rae, James M

    2017-04-01

    The third-generation aromatase inhibitors (AIs), anastrozole, letrozole and exemestane, are highly effective for the treatment of estrogen receptor-positive breast cancer in postmenopausal women. AIs inhibit the aromatase (CYP19A1)-mediated production of estrogens. Most patients taking AIs achieve undetectable blood estrogen concentrations resulting in drug efficacy with tolerable side effects. However, some patients have suboptimal outcomes, which may be due, in part, to inherited germline genetic variants. This review summarizes published germline genetic associations with AI treatment outcomes including systemic AI concentrations, estrogenic response to AIs, AI treatment efficacy and AI treatment toxicities. Significant associations are highlighted with commentary about prioritization for future validation to identify pharmacogenetic predictors of AI treatment outcomes that can be used to inform personalized treatment decisions in patients with estrogen receptor-positive breast cancer.

  8. DC120, a novel AKT inhibitor, preferentially suppresses nasopharyngeal carcinoma cancer stem-like cells by downregulating Sox2

    PubMed Central

    Tang, Jun; Yang, Fen; Feng, Gong-Kan; Chen, Wen-Dan; Wu, Xiao-Qi; Qian, Xiao-Jun; Ding, Ke; Zhu, Xiao-Feng

    2015-01-01

    Side population (SP) contains cancer stem-like cells (CSLCs). In this study, we characterized SP cells from nasopharyngeal carcinoma (NPC) cell lines and found that SP cells had a higher self-renewal ability in vitro and greater tumorigenicity in vivo. The AKT pathway was activated in NPC SP cells. DC120, a 2-pyrimidyl-5-amidothiazole inhibitor of the ATP binding site of AKT, inhibited phosphorylation of FKHRL1 and GSK-3β. DC120 inhibited SP fraction, the sphere-forming ability in vitro and growth of primary xenografts as well as secondary xenografts’ tumor recurrence. This inhibition was accompanied by reduced expression of stem-related gene Sox2 due to induction of p27 and miR-30a. A combination of DC120 and CDDP more effectively inhibited NPC cells compared with monotherapy in vitro and in vivo. Clinical evaluation of DC120 is warranted. PMID:25749514

  9. Histone deacetylase inhibitors suppress TF-kappaB-dependent agonist-driven tissue factor expression in endothelial cells and monocytes.

    PubMed

    Wang, Jianguo; Mahmud, Shawn A; Bitterman, Peter B; Huo, Yuqing; Slungaard, Arne

    2007-09-28

    Histone deacetylase inhibitors (HDACi), such as trichostatin A (TSA), can regulate gene expression by promoting acetylation of histones and transcription factors. Human tissue factor (TF) expression is partly governed by a unique, NF-kappaB-related "TF-kappaB" promoter binding site. We find that TSA and four other HDACi (apicidin, MS-275, sodium butyrate, and valproic acid) all inhibit by approximately 90% TF activity and protein level induction in human umbilical vein endothelial cells stimulated by the physiologic agonists tumor necrosis factor (TNF)-alpha, interleukin-1beta, lipopolysaccharide, and HOSCN without affecting expression of the NF-kappaB-regulated adhesion molecules ICAM-1 and E-selectin. TSA and butyrate also blunt TF induction approximately 50% in vitro in peripheral blood mononuclear cells and in vivo in thioglycolate-elicited murine peritoneal macrophages. In human umbilical vein endothelial cells, TSA attenuates by approximately 70% TNF-alpha stimulation of TF mRNA transcription without affecting that of ICAM-1. By electrophoretic mobility shift assay analyses, TNF-alpha and lipopolysaccharide induce strong p65/p50 and p65/c-Rel heterodimer binding to both NF-kappaB and TF-kappaB probes. TSA nearly abolishes TF-kappaB binding without affecting NF-kappaB binding. A chromatin immunoprecipitation assay and a promoter-luciferase reporter system confirm that TSA inhibits TF-kappaB but not NF-kappaB activation. Chromatin immunoprecipitation and small interfering RNA inhibitor studies demonstrate that HDAC3 plays a significant role in TNF-alpha-mediated TF induction. Thus, HDACi transcriptionally inhibit agonist-induced TF expression in endothelial cells and monocytes by a TF-kappaB- and HDAC3-dependent mechanism. We conclude that histone deacetylases, particularly HDAC3, play a hitherto unsuspected role in regulating TF expression and raise the possibility that HDACi might be a novel therapy for thrombotic disorders.

  10. BI2536--A PLK inhibitor augments paclitaxel efficacy in suppressing tamoxifen induced senescence and resistance in breast cancer cells.

    PubMed

    Prashanth Kumar, B N; Rajput, Shashi; Bharti, Rashmi; Parida, Sheetal; Mandal, Mahitosh

    2015-08-01

    Tamoxifen resistance is a multifaceted phenomenon, characterized by the constitutive activation of multiple signaling cascades that provide an additional survival advantage to cells. Ground studies related to reverse the tamoxifen resistance by employing chemotherapeutic drugs that specifically inhibit proteins, those of aberrantly expressed, are required. Seminal studies showed that p38 signaling and VEGF play crucial role in acquiring resistance to tamoxifen. In this view, we had chosen paclitaxel, a mitotic inhibitor with anti-proliferative effects against a wide array of cancers in this study. Further to mitigate the undesirable complications of paclitaxel (PAC), we employed this drug in combination along with BI2536 (BI), a PLK inhibitor for this study to sensitize the tamoxifen resistant cells to apoptosis. MCF 7/TAM and T-47D/TAM cells were treated with PAC, BI and in combination (BI-PAC) evaluated for its anticancer activity through apoptotic and western blot analysis. Modulatory effects of BI-PAC on p38 inactivation were affirmed through immunofluorescence and drug potential studies. Results reveal that cells were subjected to apoptosis on drug(s) treatment which was confirmed through cytotoxicity, annexin studies. Further, the anti-proliferative effects of the drug(s) were affirmed through nuclear morphological and TUNEL assays. Immunoblot results revealed the upregulation of proapoptotic Bax, cleaved caspase 9 along with Bcl-2, MDM2, Cox-2, and P-Gly down regulation after 24h drug treatments. Moreover, phospho studies further construed the rationale behind the apoptosis and deduced the inactivation of p38 and NF-κB role in inducing apoptosis in drug treated cells. The efficacy of drug combinations in inactivating p38 was evaluated through drug potential studies. Further, BI-PAC treatments showed inhibition of p38 mediated senescence in tamoxifen resistant cells. Overall, our observations provide a new therapeutic combination that sensitizes tamoxifen

  11. Cinnamon and its Components Suppress Vascular Smooth Muscle Cell Proliferation by Up-Regulating Cyclin-Dependent Kinase Inhibitors.

    PubMed

    Kwon, Hyeeun; Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Gu, Min Jung; Lee, Kwang Jin; Ma, Jin Yeul

    2015-01-01

    Cinnamomum cassia bark has been used in traditional herbal medicine to treat a variety of cardiovascular diseases. However, the antiproliferative effect of cinnamon extract on vascular smooth muscle cells (VSMCs) and the corresponding restenosis has not been explored. Hence, after examining the effect of cinnamon extract on VSMC proliferation, we investigated the possible involvement of signal transduction pathways associated with early signal and cell cycle analysis, including regulatory proteins. Besides, to identify the active components, we investigated the components of cinnamon extract on VSMC proliferation. Cinnamon extract inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation and suppressed the PDGF-stimulated early signal transduction. In addition, cinnamon extract arrested the cell cycle and inhibited positive regulatory proteins. Correspondingly, the protein levels of p21 and p27 not only were increased in the presence of cinnamon extract, also the expression of proliferating cell nuclear antigen (PCNA) was inhibited by cinnamon extract. Besides, among the components of cinnamon extract, cinnamic acid (CA), eugenol (EG) and cinnamyl alcohol significantly inhibited the VSMC proliferation. Overall, the present study demonstrates that cinnamon extract inhibited the PDGF-BB-induced proliferation of VSMCs through a G0/G1 arrest, which down-regulated the expression of cell cycle positive regulatory proteins by up-regulating p21 and p27 expression.

  12. Hypericin biosynthesis in Hypericum hookerianum Wight and Arn: investigation on biochemical pathways using metabolite inhibitors and suppression subtractive hybridization.

    PubMed

    Pillai, Padmesh P; Nair, Aswati R

    2014-10-01

    The biochemical pathway to hypericin biosynthesis is presumed to be polyketide synthase (PKS) mediated, but it has not been experimentally validated, and no alternate route (chorismate/o-succinylbenzoate pathway) has been analyzed. We report here our earlier developed auxin inducible culture systems of Hypericum hookerianum as a model, to study the metabolic pathway to hypericin synthesis. Inhibitors of the alternate pathway at varying concentrations showed steady synthesis of total hypericins with means of 2.80±0.22, 18.75±0.01; 16.39±3.75, 29.60±1.90 (mevinolin) 2.53±0.10, 18.12±0.56; 0.14±0.01, 14.28±1.11 (fosmidomycin) and 2.7±0.35, 18.75±0.61; 0.14±0.01, 12.80±1.09 mg g(-1) DW (glyphosate) in the control and auxin-induced shoot and shoot-forming callus cultures, respectively. SSH analysis classified the differentially expressed sequences into protein synthesis (38%), modification (20%), electron transport (9%) and remaining as unclassified (11%) and unknown proteins (22%). Functional annotation of sequences indicates the presence of additional protein components besides PKS activity. Our results demonstrate direct biochemical and molecular evidence of PKS hypothesis of hypericin biosynthesis for the first time.

  13. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors

    PubMed Central

    Cayrol, Florencia; Praditsuktavorn, Pannee; Fernando, Tharu M.; Kwiatkowski, Nicholas; Marullo, Rosella; Calvo-Vidal, M. Nieves; Phillip, Jude; Pera, Benet; Yang, Shao Ning; Takpradit, Kaipol; Roman, Lidia; Gaudiano, Marcello; Crescenzo, Ramona; Ruan, Jia; Inghirami, Giorgio; Zhang, Tinghu; Cremaschi, Graciela; Gray, Nathanael S.; Cerchietti, Leandro

    2017-01-01

    Peripheral T-cell lymphomas (PTCL) are aggressive diseases with poor response to chemotherapy and dismal survival. Identification of effective strategies to target PTCL biology represents an urgent need. Here we report that PTCL are sensitive to transcription-targeting drugs, and, in particular, to THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7). The STAT-signalling pathway is highly vulnerable to THZ1 even in PTCL cells that carry the activating STAT3 mutation Y640F. In mutant cells, CDK7 inhibition decreases STAT3 chromatin binding and expression of highly transcribed target genes like MYC, PIM1, MCL1, CD30, IL2RA, CDC25A and IL4R. In surviving cells, THZ1 decreases the expression of STAT-regulated anti-apoptotic BH3 family members MCL1 and BCL-XL sensitizing PTCL cells to BH3 mimetic drugs. Accordingly, the combination of THZ1 and the BH3 mimetic obatoclax improves lymphoma growth control in a primary PTCL ex vivo culture and in two STAT3-mutant PTCL xenografts, delineating a potential targeted agent-based therapeutic option for these patients. PMID:28134252

  14. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells.

    PubMed

    Vultur, Adina; Buettner, Ralf; Kowolik, Claudia; Liang, Wei; Smith, David; Boschelli, Frank; Jove, Richard

    2008-05-01

    Src family kinase activity is elevated in many human tumors, including breast cancer, and is often associated with aggressive disease. We examined the effects of SKI-606 (bosutinib), a selective Src family kinase inhibitor, on human cancer cells derived from breast cancer patients to assess its potential for breast cancer treatment. Our results show that SKI-606 caused a decrease in cell motility and invasion of breast cancer cell lines with an IC50 of approximately 250 nmol/L, which was also the IC50 for inhibition of cellular Src kinase activity in intact tumor cells. These changes were accompanied by an increase in cell-to-cell adhesion and membrane localization of beta-catenin. By contrast, cell proliferation and survival were unaffected by SKI-606 at concentrations sufficient to block cell migration and invasion. Analysis of downstream effectors of Src revealed that SKI-606 inhibits the phosphorylation of focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), and Crk-associated substrate (p130Cas), with an IC50 similar to inhibition of cellular Src kinase. Our findings indicate that SKI-606 inhibits signaling pathways involved in controlling tumor cell motility and invasion, suggesting that SKI-606 is a promising therapeutic for breast cancer.

  15. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells

    PubMed Central

    Vultur, Adina; Buettner, Ralf; Kowolik, Claudia; Liang, Wei; Smith, David; Boschelli, Frank; Jove, Richard

    2009-01-01

    Src family kinase (SFK) activity is elevated in many human tumors, including breast cancer, and is often associated with aggressive disease. We examined the effects of SKI-606 (bosutinib), a selective SFK inhibitor, on human cancer cells derived from breast cancer patients in order to assess its potential for breast cancer treatment. Our results show that SKI-606 caused a decrease in cell motility and invasion of breast cancer cell lines with an IC50 of ~250 nM, which was also the IC50 for inhibition of c-Src kinase activity in intact tumor cells. These changes were accompanied by an increase in cell-to-cell adhesion and membrane localization of beta-catenin. By contrast, cell proliferation and survival were unaffected by SKI-606 at concentrations sufficient to block cell migration and invasion. Analysis of downstream effectors of Src revealed that SKI-606 inhibits the phosphorylation of focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2) and Crk-associated substrate (p130Cas) with an IC50 similar to inhibition of c-Src kinase. Our findings indicate that SKI-606 inhibits signaling pathways involved in controlling tumor cell motility and invasion, suggesting that SKI-606 is a promising therapeutic for breast cancer. PMID:18483306

  16. Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer

    PubMed Central

    Inoue, Hiroyuki; Kato, Taigo; Olugbile, Sope; Tamura, Kenji; Chung, Suyoun; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke; Park, Jae-Hyun

    2016-01-01

    Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC. PMID:26871945

  17. Identification of Tetraazacyclic Compounds as Novel Potent Inhibitors Antagonizing RORγt Activity and Suppressing Th17 Cell Differentiation

    PubMed Central

    Ding, Qingfeng; Zhao, Mei; Yu, Bolan; Bai, Chuan; Huang, Zhaofeng

    2015-01-01

    CD4+ T-helper cells that produce interleukin-17 (Th17 cells) are characterized as pathological T-helper cells in autoimmune diseases. Differentiation of human and mouse Th17 cells requires a key transcription regulator, retinoic acid receptor-related orphan receptor γt (RORγt), which is a potential therapeutic target for autoimmune diseases. To develop a therapeutic agent for Th17-mediated autoimmune diseases, we have established a high-throughput screening (HTS) assay for candidate screening, in which the luciferase activity in RORγt-LBD positive and negative Jurkat cells were analyzed to evaluate induction of RORγt activity by compounds. This technique was applied to screen a commercially-available drug-like chemical compound library (Enamine) which contains 20155 compounds. The screening identified 17 compounds that can inhibit RORγt function in the HTS screen system. Of these, three tetraazacyclic compounds can potently inhibit RORγt activity, and suppress Th17 differentiation and IL-17 production. These three candidate compounds could significantly attenuate the expression of the Il17a by 65%- 90%, and inhibit IL-17A secretion by 47%, 63%, and 74%, respectively. These compounds also exhibited a potent anti-RORγt activity, with EC50 values of 0.25 μM, 0.67 μM and 2.6 μM, respectively. Our data demonstrated the feasibility of targeting the RORγt to inhibit Th17 cell differentiation and function with these tetraazacyclic compounds, and the potential to improve the structure of these compounds for autoimmune diseases therapeutics. PMID:26368822

  18. Small molecule inhibitor of c-Met (PHA665752) suppresses the growth of ovarian cancer cells and reverses cisplatin resistance.

    PubMed

    Li, Enze; Hu, Zheng; Sun, Yi; Zhou, Qi; Yang, Bin; Zhang, Zhiguo; Cao, Wenwu

    2016-06-01

    c-Met as a tyrosine-kinase receptor plays a major role in tumorigenesis, invasion, and metastatic spread of human tumors, including ovarian cancer. Expressing high levels of c-Met proteins is often associated with resistance to chemotherapy and an adverse prognosis. In this study, we have determined the effect of PHA665752, a small molecule inhibitor of c-Met proteins, with and without cisplatin and the role of c-Met in several ovarian cancer cell lines having high c-Met expression. The methyl thiazolyl tetrazolium (MTT) assay was used to detect cell proliferation, and apoptosis was evaluated by flow cytometry. Western blotting was carried out to determine protein expression levels. Gene silencing was used to detect the influence of c-Met gene silence on the resistance to cisplatin. Compared to more sensitive ovarian cancer cell lines SKOV3 and 3AO, we found that the expression of c-Met was significantly increased in SKOV3(DDP), OVCAR3, and OV-90 ovarian cancer cell lines, which were resistant to cisplatin. Our data indicated that cisplatin sustained activated phosphor-Met in SKOV3(DDP), OVCAR3, and OV-90 cell lines. We also observed a significant transient activation of c-Met phosphorylation in SKOV3 and 3AO cells. Treatment with PHA665752 inhibited c-Met expression inhibited cell growth, induced apoptosis, and enhanced cisplatin-induced proliferation inhibition and apoptosis in c-Met over-expressed cell lines. In addition, blocking c-Met expression with small interfering RNA (siRNA) overcame the resistance of cancer cells to cisplatin. Thus, blocking c-Met expression presents a promising therapeutic approach for ovarian cancer.

  19. The histone deacetylase inhibitor belinostat (PXD101) suppresses bladder cancer cell growth in vitro and in vivo

    PubMed Central

    Buckley, Michael T; Yoon, Joanne; Yee, Herman; Chiriboga, Luis; Liebes, Leonard; Ara, Gulshan; Qian, Xiaozhong; Bajorin, Dean F; Sun, Tung-Tien; Wu, Xue-Ru; Osman, Iman

    2007-01-01

    Background Treatment options for patients with recurrent superficial bladder cancer are limited, necessitating aggressive exploration of new treatment strategies that effectively prevent recurrence and progression to invasive disease. We assessed the effects of belinostat (previously PXD101), a novel histone deacetylase inhibitor, on a panel of human bladder cancer cell lines representing superficial and invasive disease, and on a transgenic mouse model of superficial bladder cancer. Methods Growth inhibition and cell cycle distribution effect of belinostat on 5637, T24, J82, and RT4 urothelial lines were assessed. Ha-ras transgenic mice with established superficial bladder cancer were randomized to receive either belinostat or vehicle alone, and assessed for bladder weight, hematuria, gene expression profiling, and immunohistochemistry (IHC). Results Belinostat had a significant linear dose-dependent growth inhibition on all cell lines (IC50 range of 1.0–10.0 μM). The 5637 cell line, which was derived from a superficial papillary tumor, was the most sensitive to treatment. Belinostat (100 mg/kg, intraperitoneal, 5 days each week for 3 weeks) treated mice had less bladder weight (p < 0.05), and no hematuria compared with 6/10 control mice that developed at least one episode. IHC of bladder tumors showed less cell proliferation and a higher expression of p21WAF1 in the belinostat-treated mice. Gene expression profile analysis revealed 56 genes significantly different in the treated group; these included the upregulation of p21WAF1, induction of core histone deacetylase (HDAC), and cell communication genes. Conclusion Our data demonstrate that belinostat inhibits bladder cancer and supports the clinical evaluation of belinostat for the treatment of patients with superficial bladder cancer. PMID:17935615

  20. Preclinical investigation of ibrutinib, a Bruton's kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes.

    PubMed

    Wei, Li; Su, Yu-Kai; Lin, Chien-Min; Chao, Tsu-Yi; Huang, Shang-Pen; Huynh, Thanh-Tuan; Jan, Hsun-Jin; Whang-Peng, Jacqueline; Chiou, Jeng-Fong; Wu, Alexander T H; Hsiao, Michael

    2016-10-25

    Standard interventions for glioma include surgery, radiation and chemotherapies but the prognosis for malignant cases such as glioblastoma multiforme remain grim. Even with targeted therapeutic agent, bevacitumab, malignant glioma often develops resistance and recurrence. Thus, developing alternative interventions (therapeutic targets, biomarkers) is urgently required. Bruton's tyrosine kinase (Btk) has been long implicated in B cell malignancies but surprisingly it has recently been shown to also play a tumorigenic role in solid tumors such as ovarian and prostate cancer. Bioinformatics data indicates that Btk is significantly higher in clinical glioma samples as compared to normal brain cells and Btk expression level is associated with stage progression. This prompts us to investigate the potential role of Btk as a therapeutic target for glioma. Here, we demonstrate Btk expression is associated with GBM tumorigenesis. Down-regulation of Btk in GBM cell lines showed a significantly reduced abilities in colony formation, migration and GBM sphere-forming potential. Mechanistically, Btk-silenced cells showed a concomitant reduction in the expression of CD133 and Akt/mTOR signaling. In parallel, Ibrutinib (a Btk inhibitor) treatment led to a similar anti-tumorigenic response. Using xenograft mouse model, tumorigenesis was significantly reduced in Btk-silenced or ibrutinib-treated mice as compared to control counterparts. Finally, our glioma tissue microarray analysis indicated a higher Btk staining in the malignant tumors than less malignant and normal brain tissues. Collectively, Btk may represent a novel therapeutic target for glioma and ibrunitib may be used as an adjuvant treatment for malignant GBM.

  1. Inhibitor of growth-4 mediates chromatin modification and has a suppressive effect on tumorigenesis and innate immunity.

    PubMed

    Mathema, Vivek Bhakta; Koh, Young-Sang

    2012-02-01

    Inhibitor of growth-4 (ING4) is a member of the ING family and acts as a tumor suppressor protein. ING4 is a promising candidate for cancer research due to its anti-angiogenic function and its role in the inhibition of cell migration, cell cycle, and induction of apoptosis. Interaction of this protein with the histone acetyl transferase complex plays a vital role in the regulation of multiple nuclear factor kappa light chain enhancer of activated B cells response elements and thus in the regulation of innate immunity. Splice variants of ING4 have different binding affinities to target sites, which results in the enhancement of its functional diversity. ING4 is among the few known regulatory proteins that can directly interact with chromatin as well as with transcription factors. The influence of ING4 on tumor necrosis factor-α, keratinocyte chemoattractant, interleukin (IL)-6, IL-8, matrix metalloproteinases, cyclooxygenase-2, and IκBα expression clearly demonstrates its critical role in the regulation of inflammatory mediators. Its interaction with liprin α1 and p53 contribute to mitigate cell spreading and induce apoptosis of cancer cells. Multiple factors including breast cancer melanoma suppressor-1 are upstream regulators of ING4 and are frequently deactivated in tumor cells. In the present review, the different properties of ING4 are discussed, and its activities are correlated with different aspects of cell physiology. Special emphasis is placed on our current understanding of ING4 with respect to its influence on chromatin modification, tumorigenesis, and innate immunity.

  2. A dopamine transport inhibitor with markedly low abuse liability suppresses cocaine self-administration in the rat.

    PubMed

    Ferragud, Antonio; Velázquez-Sánchez, Clara; Hernández-Rabaza, Vicente; Nácher, Amparo; Merino, Virginia; Cardá, Miguel; Murga, Juan; Canales, Juan J

    2009-12-01

    N-substituted benztropine analogs are potent dopamine uptake inhibitors that display pharmacokinetic/dynamic properties consistent with the profile of a substitute medication for cocaine addiction. The purpose of the present experiments was to characterize in rats the addictive-like properties of one such analog, 3 alpha-[bis(4'-fluorophenyl)methoxy]-tropane (AHN-1055), incorporating probes of its stimulant and incentive/motivational effects and of its ability to influence cocaine self-administration. We used open field activity and drug self-administration assays. To examine the effects of AHN-1055 on locomotor behavior, the analog was administered alone (0, 1, 3, and 10 mg/kg intraperitoneally) and in combination with cocaine (15 mg/kg i.p.). The influence of AHN-1055 on cocaine's intake was studied by administering the analog (0, 3, and 10 mg/kg i.p.) before the start of the self-administration sessions. To compare the addictive-like properties of AHN-1055 and cocaine, progressive ratio performance and abstinence-induced context-conditioned relapse were evaluated. AHN-1055 evoked robust and sustained locomotor activity when administered alone and increased cocaine-induced locomotor stimulation. Notably, the analog showed by comparison to cocaine weak reinforcing efficacy in a modified progressive ratio schedule of drug reinforcement, and contrary to cocaine, it showed no ability to promote context-conditioned relapse to drug seeking following stable self-administration and abstinence. Further, AHN-1055 treatment blocked cocaine intake dose-dependently in rats with a steady history of cocaine self-administration without reducing responding for sucrose, a natural reward. These findings demonstrate essential psychopharmacological differences between AHN-1055 and cocaine and highlight important properties of the analog as a possible pharmacotherapy in cocaine addiction.

  3. Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a 'low-affinity' phosphodiesterase 4 conformer.

    PubMed Central

    Souness, J. E.; Griffin, M.; Maslen, C.; Ebsworth, K.; Scott, L. C.; Pollock, K.; Palfreyman, M. N.; Karlsson, J. A.

    1996-01-01

    (+/-)-rolipram (IC50: 490 +/- 260 nM, n = 4) in inhibiting LPS-induced TNF alpha release from monocytes. R-(-)-rolipram (IC50: 397 +/- 178 nM, n = 3) was 5.2-fold more potent than its S-(+)- enantiomer (IC50: 2067 +/- 659 nM, n = 3). As with cyclic AMP, accumulation a closer, linear correlation existed between the potency of structurally distinct compounds in suppressing TNF alpha with PDE4 inhibition (r = 0.93, P < 0.01, n = 13) than with displacement of [3H]-rolipram binding (r = 0.65, P < 0.01, n = 13). 6. RP 73401 (IC50: 2 nM) was 180 fold more potent than rolipram (IC50: 360 nM) in suppressing LPS (10 ng ml-1)-induced TNF alpha mRNA. 7. The results demonstrate that RP 73401 is a very potent inhibitor of TNF alpha release from human monocytes suggesting that it may have therapeutic potential in the many pathological conditions associated with over-production of this pro-inflammatory cytokine. Furthermore, PDE inhibitor actions on functional responses are better correlated with inhibition of PDE4 catalytic activity than displacement of [3H]-rolipram from its high-affinity binding site, suggesting that the native PDE4 in human monocytes exists predominantly in a 'low-affinity' state. Images Figure 6 Figure 7 PMID:8762090

  4. Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing

    PubMed Central

    Wei, Datsen George; Chiang, Vicki; Fyne, Elizabeth; Balakrishnan, Mini; Barnes, Tiffany; Graupe, Michael; Hesselgesser, Joseph; Irrinki, Alivelu; Murry, Jeffrey P.; Stepan, George; Stray, Kirsten M.; Tsai, Angela; Yu, Helen; Spindler, Jonathan; Kearney, Mary; Spina, Celsa A.; McMahon, Deborah; Lalezari, Jacob; Sloan, Derek; Mellors, John; Geleziunas, Romas; Cihlar, Tomas

    2014-01-01

    Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART. PMID:24722454

  5. Chronic administration of phosphodiesterase type 5 inhibitor suppresses renal production of endothelin-1 in dogs with congestive heart failure.

    PubMed

    Yamamoto, Takashi; Wada, Atsuyuki; Ohnishi, Masato; Tsutamoto, Takayoshi; Fujii, Masanori; Matsumoto, Takehiro; Takayama, Tomoyuki; Wang, Xinwen; Kurokawa, Kiyoshi; Kinoshita, Masahiko

    2002-08-01

    Endothelin-1 (ET-1) and atrial natriuretic peptide (ANP) play important roles in the regulation of body fluid balance in congestive heart failure (CHF). Renal production of ET-1 increases in CHF and it is a significant independent predictor of sodium excretion. ANP inhibits the ET system through cGMP, a second messenger of ANP. However, in severe CHF, plasma cGMP levels reached a plateau despite the activation of ANP secretion. Thus, ANP does not seem to sufficiently oppose exaggerated ET-1 actions in severe CHF, partially due to the accelerated degradation of cGMP, through phosphodiesterase type 5 (PDE5). We examined the chronic effects of a PDE5 inhibitor, T-1032 (1 mg/kg per day, n=5), on renal function and renal production of ET-1 in dogs with CHF induced by rapid ventricular pacing (270 beats/min). Vehicle dogs were given a placebo (n=5) and normal dogs (n=5) served as normal controls without pacing. In this experimentally produced CHF, plasma levels of ET-1, ANP and cGMP were elevated and renal production of cGMP was increased compared with the normal group, associated with increases in renal expression of preproET-1 mRNA and the number of ET-1-positive cells in glomeruli. In the T-1032 group, systemic and renal production of cGMP were further increased compared with the vehicle group despite no significant difference in plasma ANP levels between the two groups. Subsequently, the agent significantly improved urine flow rate, sodium excretion rate and glomerular filtration rate (GFR) associated with reductions in renal expression of preproET-1 mRNA and the number of ET-1-positive cells compared with the vehicle group. Moreover, there was a significant negative correlation between the number of ET-1-positive cells and GFR (r=-0.802 and P<0.001 respectively). Our results indicate that chronic PDE5 inhibition ameliorates the antagonistic relationship between renal ANP and ET-1 through the cGMP pathway, subsequently preventing renal dysfunction during the

  6. A role for protein inhibitor of activated STAT1 (PIAS1) in lipogenic regulation through SUMOylation-independent suppression of liver X receptors.

    PubMed

    Zhang, Yongliang; Gan, Zhenji; Huang, Ping; Zhou, Luting; Mao, Ting; Shao, Mengle; Jiang, Xiaomeng; Chen, Yan; Ying, Hao; Cao, Meina; Li, Jingya; Li, Jia; Zhang, Weiping J; Yang, Liu; Liu, Yong

    2012-11-02

    Liver X receptors (LXRs) are nuclear receptors that function to modulate lipid metabolism as well as immune and inflammatory responses. Upon activation by their ligands, LXRs up-regulate a spectrum of gene transcription programs involved in cholesterol and fatty acid homeostasis. However, the mechanisms by which LXR-mediated transcriptional activation is regulated remain incompletely understood. Here, we show that PIAS1, a member of the protein inhibitor of the activated STAT family of proteins with small ubiquitin-like modifier (SUMO) E3 ligase activity, acts to suppress LXR ligand-dependent transcriptional activation of the lipogenic program in hepatocytes. We found that liver mRNA expression levels of Pias1 and Pias3 were inversely associated with those of genes involved in lipogenesis in mouse models with diet-induced or genetic obesity. Overexpression of PIAS1 in primary hepatocytes resulted in a reduction of LXR ligand-induced fatty acid synthesis and suppression of the expression of lipogenic genes, including Srebp1c and Fas. Moreover, PIAS1 was able to interact with LXRβ and repress its transcriptional activity upon ligand stimulation, which did not require PIAS1-promoted SUMO modification of LXRβ. In addition, PIAS1 could also interact with PGC-1β and attenuate its association with LXRβ, blunting the ability of PGC-1β to co-activate LXRβ. Importantly, PIAS1 impaired LXRβ binding to its target DNA sequence. Taken together, our results suggest that PIAS1 may serve as a lipogenic regulator by negatively modulating LXRs in a SUMOylation-independent manner.

  7. Viral resuppression and detection of drug resistance following interruption of a suppressive non-nucleoside reverse transcriptase inhibitor-based regimen.

    PubMed

    Fox, Zoe; Phillips, Andrew; Cohen, Cal; Neuhaus, Jacquie; Baxter, John; Emery, Sean; Hirschel, Bernard; Hullsiek, Kathy Huppler; Stephan, Christoph; Lundgren, Jens

    2008-11-12

    Interruption of a non-nucleoside reverse transcriptase inhibitor (NNRTI)-regimen is often necessary, but must be performed with caution because NNRTIs have a low genetic barrier to resistance. Limited data exist to guide clinical practice on the best interruption strategy to use. Patients in the drug-conservation arm of the Strategies for Management of Antiretroviral Therapy (SMART) trial who interrupted a fully suppressive NNRTI-regimen were evaluated. From 2003, SMART recommended interruption of an NNRTI by a staggered interruption, in which the NNRTI was stopped before the NRTIs, or by replacing the NNRTI with another drug before interruption. Simultaneous interruption of all antiretrovirals was discouraged. Resuppression rates 4-8 months after reinitiating NNRTI-therapy were assessed, as was the detection of drug-resistance mutations within 2 months of the treatment interruption in a subset (N = 141). Overall, 601/688 (87.4%) patients who restarted an NNRTI achieved viral resuppression. The adjusted odds ratio (95% confidence interval) for achieving resuppression was 1.94 (1.02-3.69) for patients with a staggered interruption and 3.64 (1.37-9.64) for those with a switched interruption compared with patients with a simultaneous interruption. At least one NNRTI-mutation was detected in the virus of 16.4% patients with simultaneous interruption, 12.5% patients with staggered interruption and 4.2% patients with switched interruption. Fewer patients with detectable mutations (i.e. 69.2%) achieved HIV-RNA of 400 copies/ml or less compared with those in whom no mutations were detected (i.e. 86.7%; P = 0.05). In patients who interrupt a suppressive NNRTI-regimen, the choice of interruption strategy may influence resuppression rates when restarting a similar regimen. NNRTI drug-resistance mutations were observed in a relatively high proportion of patients. These data provide additional support for a staggered or switched interruption strategy for NNRTI drugs.

  8. Viral suppression rates in salvage treatment with raltegravir improved with the administration of genotypic partially active or inactive nucleoside/tide reverse transcriptase inhibitors.

    PubMed

    Scherrer, Alexandra U; von Wyl, Viktor; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Bürgisser, Philippe; Garzoni, Christian; Hirschel, Bernard; Cavassini, Matthias; Battegay, Manuel; Vernazza, Pietro L; Bernasconi, Enos; Ledergerber, Bruno; Günthard, Huldrych F

    2011-05-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) are often administered in salvage therapy even if genotypic resistance tests (GRTs) indicate high-level resistance, but little is known about the benefit of these additional NRTIs. The effect of <2 compared with 2 NRTIs on viral suppression (HIV-1 RNA < 50 copies/mL) at week 24 was studied in salvage patients receiving raltegravir. Intent-to-treat and per-protocol analyses were performed; last observation carried forward imputation was used to deal with missing information. Logistic regressions were weighted to create a pseudopopulation in which the probability of receiving <2 and 2 NRTIs was unrelated to baseline factors predicting treatment response. One-hundred thirty patients were included, of whom 58.5% (n = 76) received <2 NRTIs. NRTIs were often replaced by other drug classes. Patients with 2 NRTIs received less additional drug classes compared with patients with <2 NRTIs [median (IQR): 1 (1-2) compared with 2 (1-2), P Wilcoxon < 0.001]. The activity of non-NRTI treatment components was lower in the 2 NRTIs group compared with the <2 NRTIs group [median (IQR) genotypic sensitivity score: 2 (1.5-2.5) compared with 2.5 (2-3), P Wilcoxon < 0.001]. The administration of <2 NRTIs was associated with a worse viral suppression rate at week 24. The odds ratios were 0.34 (95% confidence interval: 0.13 to 0.89, P = 0.027) and 0.19 (95% confidence interval: 0.05 to 0.79, P = 0.023) when performing the last observation carried forward and the per-protocol approach, respectively. Our findings showed that partially active or inactive NRTIs contribute to treatment response, and thus the use of 2 NRTIs in salvage regimens that include raltegravir seems warranted.

  9. Glycogen synthase kinase-3 inhibitor AR-A014418 suppresses pancreatic cancer cell growth via inhibition of GSK-3-mediated Notch1 expression

    PubMed Central

    Kunnimalaiyaan, Selvi; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2015-01-01

    Background Glycogen synthase kinase-3 (GSK-3) can act as either a tumour promoter or suppressor by its inactivation depending on the cell type. There are conflicting reports on the roles of GSK-3 isoforms and their interaction with Notch1 in pancreatic cancer. It was hypothesized that GSK-3α stabilized Notch1 in pancreatic cancer cells thereby promoting cellular proliferation. Methods The pancreatic cancer cell lines MiaPaCa2, PANC-1 and BxPC-3, were treated with 0–20 μM of AR-A014418 (AR), a known GSK-3 inhibitor. Cell viability was determined by the MTT assay and Live-Cell Imaging. The levels of Notch pathway members (Notch1, HES-1, survivin and cyclinD1), phosphorylated GSK-3 isoforms, and apoptotic markers were determined by Western blot. Immunoprecipitation was performed to identify the binding of GSK-3 specific isoform to Notch1. Results AR-A014418 treatment had a significant dose-dependent growth reduction (P < 0.001) in pancreatic cancer cells compared with the control and the cytotoxic effect is as a result of apoptosis. Importantly, a reduction in GSK-3 phosphorylation lead to a reduction in Notch pathway members. Overexpression of active Notch1 in AR-A014418-treated cells resulted in the negation of growth suppression. Immunoprecipitation analysis revealed that GSK-3α binds to Notch1. Conclusions This study demonstrates for the first time that the growth suppressive effect of AR-A014418 on pancreatic cancer cells is mainly mediated by a reduction in phosphorylation of GSK-3α with concomitant Notch1 reduction. GSK-3α appears to stabilize Notch1 by binding and may represent a target for therapeutic development. Furthermore, downregulation of GSK-3 and Notch1 may be a viable strategy for possible chemosensitization of pancreatic cancer cells to standard therapeutics. PMID:26147011

  10. ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells and increases their cloning efficiency.

    PubMed

    Zhang, Li; Valdez, Joseph M; Zhang, Boyu; Wei, Lei; Chang, Jiang; Xin, Li

    2011-03-28

    Activation of the RhoA/ROCK signaling pathway has been shown to contribute to dissociation-induced apoptosis of embryonic and neural stem cells. We previously demonstrated that approximately 1 out of 40 Lin(-)Sca-1(+)CD49f(high) (LSC) prostate basal epithelial cells possess the capacities of stem cells for self-renewal and multi-lineage differentiation. We show here that treating LSC cells with the ROCK kinase inhibitor Y-27632 increases their cloning efficiency by 8 fold in an in vitro prostate colony assay. Y-27632 treatment allows prostate colony cells to replate efficiently, which does not occur otherwise. Y-27632 also increases the cloning efficiency of prostate stem cells in a prostate sphere assay and a dissociated prostate cell regeneration assay. The increased cloning efficiency is due to the suppression of the dissociation-induced, RhoA/ROCK activation-mediated apoptosis of prostate stem cells. Dissociation of prostate epithelial cells from extracellular matrix increases PTEN activity and attenuates AKT activity. Y-27632 treatment alone is sufficient to suppress cell dissociation-induced activation of PTEN activity. However, this does not contribute to the increased cloning efficiency, because Y-27632 treatment increases the sphere-forming unit of wild type and Pten null prostate cells to a similar extent. Finally, knocking down expression of both ROCK kinases slightly increases the replating efficiency of prostate colony cells, corroborating that they play a major role in the Y-27632 mediated increase in cloning efficiency. Our study implies that the numbers of prostate cells with stem/progenitor activity may be underestimated based on currently employed assays, supports that dissociation-induced apoptosis is a common feature of embryonic and somatic stem cells with an epithelial phenotype, and highlights the significance of environmental cues for the maintenance of stem cells.

  11. HIV-Protease Inhibitors Suppress Skeletal Muscle Fatty Acid Oxidation by Reducing CD36 and CPT-I Fatty Acid Transporters

    PubMed Central

    Richmond, Scott R.; Carper, Michael J.; Lei, Xiaoyong; Zhang, Sheng; Yarasheski, Kevin E.; Ramanadham, Sasanka

    2010-01-01

    Infection with human immunodeficiency virus (HIV) and treatment with HIV-protease inhibitor (PI)-based highly active antiretroviral therapies (HAART) is associated with dysregulated fatty acid and lipid metabolism. Enhanced lipolysis, increased circulating fatty acid levels, and hepatic and intramuscular lipid accumulation appear to contribute to insulin resistance in HIV-infected people treated with PI-based HAART. However, it is unclear whether currently prescribed HIV-PIs directly alter skeletal muscle fatty acid transport, oxidation, and storage. We find that ritonavir (r, 5 μmol/l) plus 20 μmol/l of atazanavir (ATV), lopinavir (LPV), or darunavir (DRV) reduce palmitate oxidation(16-21%) in differentiated C2C12 myotubes. Palmitate oxidation was increased following exposure to high fatty acid media but this effect was blunted when myotubes were pre-exposed to the HIV-PIs. However, LPV/r and DRV/r, but not ATV/r suppressed palmitate uptake into myotubes. We found no effect of the HIV-PIs on FATP1, FATP4, or FABPpm but both CD36/FAT and carnitine palmitoyltransferase I (CPTI) were reduced by all three regimens though ATV/r caused only a small decrease in CPT1, relative to LPV/r or DRV/r. In contrast, sterol regulatory element binding protein-1 was increased by all 3 HIV-PIs. These findings suggest that HIV-PIs suppress fatty acid oxidation in murine skeletal muscle cells and that this may be related to decreases in cytosolic- and mitochondrial-associated fatty acid transporters. HIV-PIs may also directly impair fatty acid handling and partitioning in skeletal muscle, and this may contribute to the cluster of metabolic complications that occur in people living with HIV. PMID:20117238

  12. PDE10A inhibitors stimulate or suppress motor behavior dependent on the relative activation state of the direct and indirect striatal output pathways

    PubMed Central

    Megens, Anton A H P; Hendrickx, Herman M R; Mahieu, Michel M A; Wellens, Annemie L Y; de Boer, Peter; Vanhoof, Greet

    2014-01-01

    The enzyme phosphodiesterase 10A (PDE10A) regulates the activity of striatal, medium spiny neurons (MSNs), which are divided into a behaviorally stimulating, Gs-coupled D1 receptor-expressing “direct” pathway and a behaviorally suppressant, Gi-coupled D2 receptor-expressing “indirect” pathway. Activating both pathways, PDE10A inhibitors (PDE10AIs) combine functional characteristics of D2 antagonists and D1 agonists. While the effects of PDE10AIs on spontaneous and stimulated behavior have been extensively reported, the present study investigates their effects on suppressed behavior under various conditions of reduced dopaminergic neurotransmission: blockade of D1 receptors with SCH-23390, blockade of D2 receptors with haloperidol, or depletion of dopamine with RO-4-1284 or reserpine. In rats, PDE10AIs displayed relatively low cataleptic activity per se. After blocking D1 receptors, however, they induced pronounced catalepsy at low doses close to those required for inhibition of apomorphine-induced behavior; slightly higher doses resulted in behavioral stimulant effects, counteracting the catalepsy. PDE10AIs also counteracted catalepsy and related behaviors induced by D2 receptor blockade or dopamine depletion; catalepsy was replaced by behavioral stimulant effects under the latter but not the former condition. Similar interactions were observed at the level of locomotion in mice. At doses close to those inhibiting d-amphetamine-induced hyperlocomotion, PDE10AIs reversed hypolocomotion induced by D1 receptor blockade or dopamine depletion but not hypolocomotion induced by D2 receptor blockade. It is concluded that PDE10AIs stimulate or inhibit motor behavior dependent on the relative activation state of the direct and indirect striatal output pathways. PMID:25505601

  13. The DPP-IV inhibitor linagliptin and GLP-1 induce synergistic effects on body weight loss and appetite suppression in the diet-induced obese rat.

    PubMed

    Hansen, Henrik H; Hansen, Gitte; Paulsen, Sarah; Vrang, Niels; Mark, Michael; Jelsing, Jacob; Klein, Thomas

    2014-10-15

    Linagliptin is a dipeptidyl peptidase (DPP)-IV inhibitor approved for the treatment of type 2 diabetes. DPP-IV inhibitors are considered weight neutral, suggesting that elevation of endogenous incretin levels is not sufficient to promote weight loss per se. Here we evaluated the effect of linagliptin in combination with subcutaneous treatment of GLP-1(7-36) on body weight regulation in diet-induced obese (DIO) rats. Linagliptin administered perorally (1.5mg/kg, b.i.d.), but not subcutaneously (0.5mg/kg, b.i.d.), evoked a very modest body weight loss (2.2%) after 28 days of treatment. GLP-1 (0.5mg/kg, s.c.) treatment alone induced a body weight loss of 4.1%. In contrast, combined linagliptin (1.5mg/kg, p.o., or 0.5mg/kg, s.c.) and GLP-1 (0.5mg/kg) treatment evoked a marked anorectic response with both routes of linagliptin administration being equally effective on final body weight loss (7.5-8.0%). In comparison, liraglutide monotherapy (0.2mg/kg, s.c., b.i.d.) reduced body weight by 10.1%. Interestingly, the weight lowering effect of combined linagliptin and GLP-1 treatment was associated with a marked increase in chow preference, being more pronounced as compared to liraglutide treatment. In addition, linagliptin and GLP-1 co-treatment, but not liraglutide, specifically increased prepro-dynorphin mRNA levels in the caudate-putamen, an effect not obtained with administration of the compounds individually. In conclusion, co-treatment with linagliptin and GLP-1 synergistically reduces body weight in obese rats. The anti-obesity effect was caused by appetite suppression with a concomitant change in diet preference, which may potentially be associated with increased dynorphin activity in forebrain regions involved in reward anticipation and habit learning.

  14. 2,4,5-TMBA, a natural inhibitor of cyclooxygenase-2, suppresses adipogenesis and promotes lipolysis in 3T3-L1 adipocytes.

    PubMed

    Wu, Man-Ru; Hou, Ming-Hon; Lin, Ya-Lin; Kuo, Chia-Feng

    2012-07-25

    Obesity is a global health problem. Because of the high costs and side effects of obesity-treatment drugs, the potential of natural products as alternatives for treating obesity is under exploration. 2,4,5-Trimethoxybenzaldehyde (2,4,5-TMBA) present in plant roots, seeds, and leaves was reported to be a significant inhibitor of cyclooxygenase-2 (COX-2) activity at the concentration of 100 μg/mL. Because COX-2 is associated with differentiation of preadipocytes, the murine 3T3-L1 cells were cultured with 100 μg/mL of 2,4,5-TMBA during differentiation and after the cells were fully differentiated to study the effect of 2,4,5-TMBA on adipogenesis and lipolysis. Oil Red O staining and triglyceride assay revealed that 2,4,5-TMBA inhibited the formation of lipid droplets during differentiation; moreover, 2,4,5-TMBA down-regulated the protein levels of adipogenic signaling molecules and transcription factors MAP kinase kinase (MEK), extracellular signal-regulated kinase (ERK), CCAAT/enhancer binding protein (C/EBP)α, β, and δ, peroxisome proliferator-activated receptor (PPAR)γ, adipocyte determination and differentiation-dependent factor 1 (ADD1), and the rate-limiting enzyme for lipid synthesis acetyl-CoA carboxylase (ACC). In fully differentiated adipocytes, treatment with 2,4,5-TMBA for 72 h significantly decreased lipid accumulation by increasing the hydrolysis of triglyceride through suppression of perilipin A (lipid droplet coating protein) and up-regulation of hormone-sensitive lipase (HSL). The results of this in vitro study will pioneer future in vivo studies on antiobesity effects of 2,4,5-TMBA and selective COX-2 inhibitors.

  15. Suppressive effects of the NADPH oxidase inhibitor apocynin on intestinal tumorigenesis in obese KK-A(y) and Apc mutant Min mice.

    PubMed

    Komiya, Masami; Fujii, Gen; Miyamoto, Shingo; Takahashi, Mami; Ishigamori, Rikako; Onuma, Wakana; Ishino, Kousuke; Totsuka, Yukari; Fujimoto, Kyoko; Mutoh, Michihiro

    2015-11-01

    Obesity is a risk factor for colorectal cancer. The accumulation of abdominal fat tissue causes abundant reactive oxygen species production through the activation of NADPH oxidase due to excessive insulin stimulation. The enzyme NADPH oxidase catalyzes the production of reactive oxygen species and evokes the initiation and progression of tumorigenesis. Apocynin is an NADPH oxidase inhibitor that blocks the formation of the NADPH oxidase complex (active form). In this study, we investigated the effects of apocynin on the development of azoxymethane-induced colonic aberrant crypt foci in obese KK-A(y) mice and on the development of intestinal polyps in Apc mutant Min mice. Six-week-old KK-A(y) mice were injected with azoxymethane (200 μg/mouse once per week for 3 weeks) and given 250 mg/L apocynin or 500 mg/L apocynin in their drinking water for 7 weeks. Six-week-old Min mice were also treated with 500 mg/L apocynin for 6 weeks. Treatment with apocynin reduced the number of colorectal aberrant crypt foci in KK-A(y) mice by 21% and the number of intestinal polyps in Min mice by 40% compared with untreated mice. Both groups of mice tended to show improved oxidation of serum low-density lipoprotein and 8-oxo-2'-deoxyguanosine adducts in their adipose tissues. In addition, the inducible nitric oxide synthase mRNA levels in polyp tissues decreased. Moreover, apocynin was shown to suppress nuclear factor-κB transcriptional activity in vitro. These results suggest that apocynin and other NADPH oxidase inhibitors may be effective colorectal cancer chemopreventive agents. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  16. The clinically used PARP inhibitor olaparib improves organ function, suppresses inflammatory responses and accelerates wound healing in a murine model of third-degree burn injury.

    PubMed

    Ahmad, Akbar; Olah, Gabor; Herndon, David N; Szabo, Csaba

    2017-02-01

    The PARP inhibitor olaparib has recently been approved for human use for the therapy of cancer. Considering the role of PARP in critical illness, we tested the effect of olaparib in a murine model of burn injury, in order to begin exploring the feasibility of repurposing olaparib for the therapy of burn patients. Mice were subjected to scald burn injury and randomized into vehicle or olaparib (10 mg·kg(-1) ·day(-1) i.p.) groups. Outcome variables included indices of organ injury, clinical chemistry parameters, plasma levels of inflammatory mediators (at 24 h, 7 and 21 days) and burn wound size (at 21 days). Olaparib reduced myeloperoxidase levels in heart and lung homogenates and reduced malondialdehyde levels in all tissues 24 h post-burn. Olaparib also reduced circulating alkaline aminotransferase, amylase and blood urea nitrogen and creatinine levels, indicative of protection against hepatic, pancreatic and renal dysfunction. Pro-inflammatory mediator (TNF-α, IL-1β, IFN-γ, GCSF, GM-CSF, eotaxin, KC, MIP-1-α and IL-3, 6 and 12) levels as well as the levels of several mediators that are generally considered anti-inflammatory (IL-4, 10 and 13) were reduced by olaparib. Plasma troponin-I levels (an indicator of skeletal muscle damage) was also attenuated by olaparib. Finally, olaparib stimulated wound healing. The clinically approved PARP inhibitor olaparib improves organ function, suppresses inflammatory responses and accelerates wound healing in murine burn injury. The data raise the potential utility of olaparib for severe burn injury. © 2017 The British Pharmacological Society.

  17. External application of NF-κB inhibitor DHMEQ suppresses development of atopic dermatitis-like lesions induced with DNCB/OX in BALB/c mice.

    PubMed

    Jiang, Xiaoxue; Lan, Yi; Wei, Bing; Dai, Cailing; Gu, Yaru; Ma, Jun; Liu, Xiaoyan; Umezawa, Kazuo; Zhang, Yuyang

    2017-06-01

    Dehydroxymethylepoxyquinomicin (DHMEQ) which is originally developed as an analog of antibiotic epoxyquinomicin C is a specific and potent inhibitor of NF-κB and has been shown to possess promising potential as an anti-inflammatory and anti-tumor agent. This study examines DHMEQ's effect on therapeutic potential for atopic dermatitis (AD)-like lesions. AD lesions were chronically induced by the repetitive and alternative application of 2,4-dinitrochlorobenzene (DNCB) and oxazolone (OX) on ears in BALB/c mice. The mice were then externally treated with DHMEQ ointment. Macroscopic and microscopic changes of the skin lesions were observed and recorded. DHMEQ inhibited ear swelling and relieved clinical symptoms of the AD-like lesions induced by DNCB/OX in BALB/c mice. Histopathology examination illustrated that it significantly decreased DNCB/OX-induced epidermal thickness, the infiltration of inflammatory cells, and the count of mast cell. The elevated level of immunoglobulin E (IgE) in serum and the mRNA levels of interferon γ (IFN-γ), interleukin 4 (IL-4) and IL-13 in the ear tissues, were also suppressed by DHMEQ. This study indicated that DHMEQ would be useful for the treatment of AD.

  18. Structure-based derivation of peptide inhibitors to target TGF-β1 receptor for the suppression of hypertrophic scarring fibroblast activation.

    PubMed

    Hu, Huan; Yang, Songlin; Zheng, Jianghong; Mao, Guangyu

    2017-01-25

    The intermolecular recognition and interaction between human transforming growth factor β-1 (TGF-β1) and its cognate receptor TβRII have been implicated in the pathological condition of hypertrophic scarring (HS). Here, we attempted to rationally derive peptide inhibitors from the complex interface of TGF-β1 with TβRII to disrupt such interaction for the suppression of fibroblast activation involved in HS. A synthetic strategy that integrated computational design and fluorescence-based assay was described to examine the structural basis and energetic property of TGF-β1-TβRII crystal structure, from which a small peptide segment in the complex binding site was stripped artificially. Molecular dynamics simulations revealed that the linear peptide possesses a large intrinsic disorder that would incur considerable entropy penalty upon binding to TβRII; the peptide segment was then extended and cyclized by introducing a disulfide bond across its terminal residues that were premutated to cysteine. Normal mode analysis indicated that, as expected, the peptide flexibility was largely reduced upon the cyclization, and thus, the entropy penalty was minimized substantially, consequently promoting the spontaneous binding of peptide to TβRII. Fluorescence polarization assay confirmed that all linear peptides are typical non-binders of TβRII (Kd  = ND), while the designed cyclic peptides exhibit moderate or high affinity with Kd at micromolar level.

  19. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells.

    PubMed

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Protein Inhibitor of Activated STAT3 Suppresses Oxidized LDL-induced Cell Responses during Atherosclerosis in Apolipoprotein E-deficient Mice

    PubMed Central

    Wang, Rong; Zhang, Yanjin; Xu, Liran; Lin, Yan; Yang, Xiaofeng; Bai, Liang; Chen, Yulong; Zhao, Sihai; Fan, Jianglin; Cheng, Xianwu; Liu, Enqi

    2016-01-01

    Atherosclerosis is a serious public health concern. Excessive inflammatory responses of vascular cells are considered a pivotal pathogenesis mechanism underlying atherosclerosis development. It is known that Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signalling plays an important role in atherosclerosis progression. Protein inhibitor of activated STAT3 (PIAS3) is the key negative regulator of JAK/STAT3 signalling. However, its effect on atherogenesis is unknown. Here, we observed that PIAS3 levels are reduced in atherosclerotic lesions and that PIAS3 expression decreases in conjunction with increases in interleukin-6 expression and atherosclerosis severity. Oxidized low-density lipoprotein (ox-LDL), an atherogenic stimulus, reduced PIAS3 expression, an effect that may be attributed to nitric oxide synthesis upregulation. In turn, PIAS3 overexpression effectively suppressed ox-LDL-induced inflammation, lipid accumulation and vascular smooth muscle cell proliferation. These results indicate that PIAS3 is a critical repressor of atherosclerosis progression. The findings of this study have contributed to our understanding on the pathogenesis of atherosclerosis and have provided us with a potential target through which we can inhibit atherosclerosis-related cellular responses. PMID:27845432

  1. A novel JAK-STAT inhibitor, 2-[(3-Carbamoyl-2-thienyl)amino]-2-oxoethyl(2,6-dichlorophenyl)acetate, suppresses helper T cell differentiation in vitro and collagen-induced arthritis in vivo.

    PubMed

    Asakawa, Mayako; Yoshida, Hideyuki; Sakai, Ryota; Saeki, Keita; Okada, Masahiro; Kanamori, Mitsuhiro; Kotani, Hitoshi; Wei, Xuetao; Yoshimura, Akihiko

    2015-12-25

    Th17 cells, which have been implicated in autoimmune diseases including rheumatoid arthritis (RA), require the JAK-STAT3 pathway for their differentiation and functions. Recently, JAK inhibitors have been developed as a therapeutic drug for RA. However, the current JAK inhibitors are not optimized to STAT3 compared with other STATs. In this study, we found a new lead compound of a small molecule JAK-STAT inhibitor, 2-[(3-Carbamoyl-2-thienyl)amino]-2-oxoethyl (2,6-dichlorophenyl)acetate, which inhibits STAT3 as efficiently as other STATs. This compound, named JI069, was selected by STAT3 reporter assay in combination with an in silico docking model. JI069 inhibited gp130 signaling by inducing dissociation between gp130 and JAK1. In HEK293T cells and primary T cells, JI069 suppressed STAT3 activation as efficiently as other STATs, including STAT1, STAT5, and STAT6. JI069 effectively suppressed Th1, Th2, and Th17 differentiation while strongly promoted iTreg differentiation. JI069 suppressed symptoms of the collagen-induced arthritis (CIA) model in mice, and inhibited the cytokine production from T cells as well as the STAT3 phosphorylation of synovial cells. These data suggest that JI069 is a new type of JAK inhibitor which has potential for the treatment of immunological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells.

    PubMed

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Zhou, Zhi-Wei; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Pan, Si-Yuan; Duan, Wei; He, Shu-Ming; Chen, Xiao-Wu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition

  3. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells

    PubMed Central

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Zhou, Zhi-Wei; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Pan, Si-Yuan; Duan, Wei; He, Shu-Ming; Chen, Xiao-Wu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition

  4. The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Klein, Kerstin; Kabala, Pawel A; Grabiec, Aleksander M; Gay, Renate E; Kolling, Christoph; Lin, Lih-Ling; Gay, Steffen; Tak, Paul P; Prinjha, Rab K; Ospelt, Caroline; Reedquist, Kris A

    2016-02-01

    To investigate the effects of BET bromodomain protein inhibition on inflammatory activation and functional properties of rheumatoid arthritis synovial fibroblasts (RASF). The expression of the BET bromodomain proteins BRD2, BRD3 and BRD4 was analysed in synovial tissue by immunohistochemistry. RASF were stimulated with tumour necrosis factor (TNF)-α, interleukin (IL)-1β and toll-like receptor (TLR) ligands (Pam3, pIC and lipopolysaccharide (LPS)) in the presence or absence of the BET inhibitor I-BET151, or siRNA targeting BRD2, BRD3 and BRD4. RASF expression of inflammatory mediators, including MMP1, MMP3, IL-6 and IL-8, was measured by q-PCR, q-PCR array and ELISA. Cellular viability, apoptosis, proliferation and chemoattractive properties of RASF were investigated using MTT, cell apoptosis ELISA, BrdU-based proliferation and transwell migration assays. BRD2, BRD3 and BRD4 proteins were detected in rheumatoid arthritis (RA) synovial tissue, expressed in both RASF and macrophages. I-BET151 suppressed cytokine and TLR ligand-induced secretion of MMP1, MMP3, IL-6 and IL-8, and mRNA expression of more than 70% of genes induced by TNF-α and IL-1β. Combined silencing of BRD2, BRD3 and BRD4 significantly reduced cytokine and TLR ligand-induced expression of a subset of gene products targeted by I-BET151, including MMP1, CXCL10 and CXCL11. I-BET151 treatment of RASF reduced RASF proliferation, and the chemotactic potential for peripheral blood leucocytes of RASF conditioned medium. Inhibition of BET family proteins suppresses the inflammatory, matrix-degrading, proliferative and chemoattractive properties of RASF and suggests a therapeutic potential in the targeting of epigenetic reader proteins in RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Inhibitor of growth 4 (ING4) is up-regulated by a low K intake and suppresses renal outer medullary K channels (ROMK) by MAPK stimulation.

    PubMed

    Zhang, Xin; Lin, Dao-Hong; Jin, Yan; Wang, Ke-Sheng; Zhang, Yan; Babilonia, Elisa; Wang, Zhijian; Wang, Zhiqin; Giebisch, Gerhard; Han, Ze-Guang; Wang, Wen-Hui

    2007-05-29

    Dietary K intake plays an important role in the regulation of renal K secretion: a high K intake stimulates whereas low K intake suppresses renal K secretion. Our previous studies demonstrated that the Src family protein-tyrosine kinase and mitogen-activated protein kinase (MAPK) are involved in mediating the effect of low K intake on renal K channels and K secretion. However, the molecular mechanism by which low K intake stimulates MAPK is not completely understood. Here we show that inhibitor of growth 4 (ING4), a protein with a highly conserved plant homeodomain finger motif, is involved in mediating the effect of low K intake on MAPK. K restriction stimulates the expression of ING4 in the kidney and superoxide anions, and its related products are involved in mediating the effect of low K intake on ING4 expression. We used HEK293 cells to express ING4 and observed that expression of ING4 increased the phosphorylation of p38 and ERK MAPK, whereas down-regulation of ING4 with small interfering RNA decreased the phosphorylation of p38 and ERK. Immunocytochemistry showed that ING4 was expressed in the renal outer medullary potassium (ROMK)-positive tubules. Moreover, ING4 decreased K currents in Xenopus oocytes injected with ROMK channel cRNA. This inhibitory effect was reversed by blocking p38 and ERK MAPK. These data provide evidence for the role of ING4 in mediating the effect of low K intake on ROMK channel activity by stimulation of p38 and ERK MAPK.

  6. Inhibitor of growth 4 (ING4) is up-regulated by a low K intake and suppresses renal outer medullary K channels (ROMK) by MAPK stimulation

    PubMed Central

    Zhang, Xin; Lin, Dao-Hong; Jin, Yan; Wang, Ke-Sheng; Zhang, Yan; Babilonia, Elisa; Wang, ZhiJian; Wang, Zhiqin; Giebisch, Gerhard; Han, Ze-Guang; Wang, Wen-Hui

    2007-01-01

    Dietary K intake plays an important role in the regulation of renal K secretion: a high K intake stimulates whereas low K intake suppresses renal K secretion. Our previous studies demonstrated that the Src family protein-tyrosine kinase and mitogen-activated protein kinase (MAPK) are involved in mediating the effect of low K intake on renal K channels and K secretion. However, the molecular mechanism by which low K intake stimulates MAPK is not completely understood. Here we show that inhibitor of growth 4 (ING4), a protein with a highly conserved plant homeodomain finger motif, is involved in mediating the effect of low K intake on MAPK. K restriction stimulates the expression of ING4 in the kidney and superoxide anions, and its related products are involved in mediating the effect of low K intake on ING4 expression. We used HEK293 cells to express ING4 and observed that expression of ING4 increased the phosphorylation of p38 and ERK MAPK, whereas down-regulation of ING4 with small interfering RNA decreased the phosphorylation of p38 and ERK. Immunocytochemistry showed that ING4 was expressed in the renal outer medullary potassium (ROMK)-positive tubules. Moreover, ING4 decreased K currents in Xenopus oocytes injected with ROMK channel cRNA. This inhibitory effect was reversed by blocking p38 and ERK MAPK. These data provide evidence for the role of ING4 in mediating the effect of low K intake on ROMK channel activity by stimulation of p38 and ERK MAPK. PMID:17517644

  7. Heat shock protein 72 suppresses apoptosis by increasing the stability of X-linked inhibitor of apoptosis protein in renal ischemia/reperfusion injury

    PubMed Central

    ZHANG, BAIYU; RONG, RONG; LI, HUIYAN; PENG, XUAN; XIONG, LIPING; WANG, YIHAN; YU, XUEQING; MAO, HAIPING

    2015-01-01

    X-linked inhibitor of apoptosis protein (XIAP) negatively regulates apoptotic pathways at a post-mitochondrial level. XIAP functions by directly binding and inhibiting activation of specific caspases. Upon apoptotic stimuli, mitochondrial second mitochondria-derived activator of caspases (Smac)/direct IAP-binding protein with low PI (DIABLO) is released into the cytosol, which results in displacement of XIAP from caspases. Heat shock protein 72 (HSP72), an anti-apoptotic protein, prevents mitochondrial injury resulting from acute renal ischemia/reperfusion (I/R), its role in Smac/DIABLO and XIAP signaling remains to be elucidated. In the present study, the hypothesis that HSP72 prevents XIAP degradation in vivo and in vitro was assessed. To this purpose, a rat model of I/R injury was used to investigate the renoprotective role of HSP72 by treatment with geranylgeranylacetone (GGA), a specific inducer of HSP72. The mechanism of the cytoprotective properties of HSP72 was also investigated in vitro using adenovirus-mediated overexpression of HSP72 in adenosine triphosphate (ATP)-depleted human kidney 2 (HK-2) cells. Pre-conditioning rats with GGA attenuated renal tubular cell damage, reduced cell apoptosis, preserved XIAP protein content and improved renal function following I/R injury. An in vitro study was performed in which cells were transiently exposed to 5 mM sodium cyanide in a glucose-free medium in order to induce apoptosis. Compared with the control, overexpression of HSP72 inhibited Smac/DIABLO release from the mitochondria and increased levels of XIAP and pro-caspase 3 in ATP-depleted HK-2 cells. In addition, HSP72 interacted with Smac/DIABLO. The present data demonstrates that HSP72 preserves renal function in I/R injury through its anti-apoptotic effects, which act by suppressing mitochondrial Smac/DIABLO release and preserving XIAP protein content. PMID:25394481

  8. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ

    PubMed Central

    Tsujimoto, Shunsuke; Kishina, Manabu; Koda, Masahiko; Yamamoto, Yasutaka; Tanaka, Kohei; Harada, Yusuke; Yoshida, Akio; Hisatome, Ichiro

    2016-01-01

    Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)-induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP-1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity. PMID:27431935

  9. Effect of holding equine oocytes in meiosis inhibitor-free medium before in vitro maturation and of holding temperature on meiotic suppression and mitochondrial energy/redox potential.

    PubMed

    Martino, Nicola A; Dell'Aquila, Maria E; Filioli Uranio, Manuel; Rutigliano, Lucia; Nicassio, Michele; Lacalandra, Giovanni M; Hinrichs, Katrin

    2014-10-11

    Evaluation of mitochondrial function offers an alternative to evaluate embryo development for assessment of oocyte viability, but little information is available on the relationship between mitochondrial and chromatin status in equine oocytes. We evaluated these parameters in immature equine oocytes either fixed immediately (IMM) or held overnight in an Earle's/Hank's' M199-based medium in the absence of meiotic inhibitors (EH treatment), and in mature oocytes. We hypothesized that EH holding may affect mitochondrial function and that holding temperature may affect the efficiency of meiotic suppression. Experiment 1 - Equine oocytes processed immediately or held in EH at uncontrolled temperature (22 to 27°C) were evaluated for initial chromatin configuration, in vitro maturation (IVM) rates and mitochondrial energy/redox potential. Experiment 2 - We then investigated the effect of holding temperature (25°C, 30°C, 38°C) on initial chromatin status of held oocytes, and subsequently repeated mitochondrial energy/redox assessment of oocytes held at 25°C vs. immediately-evaluated controls. EH holding at uncontrolled temperature was associated with advancement of germinal vesicle (GV) chromatin condensation and with meiotic resumption, as well as a lower maturation rate after IVM. Holding did not have a significant effect on mitochondrial distribution within chromatin configurations. Independent of treatment, oocytes having condensed chromatin had a significantly higher proportion of perinuclear/pericortical mitochondrial distribution than did other GV configurations. Holding did not detrimentally affect oocyte energy/redox parameters in viable GV-stage oocytes. There were no significant differences in chromatin configuration between oocytes held at 25°C and controls, whereas holding at higher temperature was associated with meiosis resumption and loss of oocytes having the condensed chromatin GV configuration. Holding at 25°C was not associated with progression

  10. miR-30b, Down-Regulated in Gastric Cancer, Promotes Apoptosis and Suppresses Tumor Growth by Targeting Plasminogen Activator Inhibitor-1

    PubMed Central

    Zhu, En-Dong; Li, Na; Li, Bo-Sheng; Li, Wei; Zhang, Wei-Jun; Mao, Xu-Hu; Guo, Gang; Zou, Quan-Ming; Xiao, Bin

    2014-01-01

    Background Gastric cancer is one of the most common malignant diseases worldwide. Emerging evidence has shown that microRNAs (miRNAs) are associated with tumor development and progression. Our previous studies have revealed that H. pylori infection was able to induce the altered expression of miR-30b in gastric epithelial cells. However, little is known about the potential role of miR-30b in gastric cancer. Methods We analyzed the expression of miR-30b in gastric cancer cell lines and human gastric cancer tissues. We examined the effect of miR-30b mimics on the apoptosis of gastric cancer cells in vitro by flow cytometry (FCM) and caspase-3/7 activity assays. Nude mouse xenograft model was used to determine whether miR-30b is involved in tumorigenesis of gastric cancer. The target of miR-30b was identified by bioinformatics analysis, luciferase assay and Western blot. Finally, we performed the correlation analysis between miR-30b and its target expression in gastric cancer. Results miR-30b was significantly down-regulated in gastric cancer cells and human gastric cancer tissues. Enforced expression of miR-30b promoted the apoptosis of gastric cancer cells in vitro, and miR-30b could significantly inhibit tumorigenicity of gastric cancer by increasing the apoptosis proportion of cancer cells in vivo. Moreover, plasminogen activator inhibitor-1 (PAI-1) was identified as the potential target of miR-30b, and miR-30b level was inversely correlated with PAI-1 expression in gastric cancer. In addition, silencing of PAI-1 was able to phenocopy the effect of miR-30b overexpression on apoptosis regulation of cancer cells, and overexpression of PAI-1 could suppressed the effect of promoting cell apoptosis by miR-30b, indicating PAI-1 is potentially involved in miR-30b-induced apoptosis on cancer cells. Conclusion miR-30b may function as a novel tumor suppressor gene in gastric cancer by targeting PAI-1 and regulating the apoptosis of cancer cells. miR-30b could serve as a

  11. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells.

    PubMed

    Gaisina, Irina N; Gallier, Franck; Ougolkov, Andrei V; Kim, Ki H; Kurome, Toru; Guo, Songpo; Holzle, Denise; Luchini, Doris N; Blond, Sylvie Y; Billadeau, Daniel D; Kozikowski, Alan P

    2009-04-09

    Recent studies have demonstrated that glycogen synthase kinase 3beta (GSK-3beta) is overexpressed in human colon and pancreatic carcinomas, contributing to cancer cell proliferation and survival. Here, we report the design, synthesis, and biological evaluation of benzofuran-3-yl-(indol-3-yl)maleimides, potent GSK-3beta inhibitors. Some of these compounds show picomolar inhibitory activity toward GSK-3beta and an enhanced selectivity against cyclin-dependent kinase 2 (CDK-2). Selected GSK-3beta inhibitors were tested in the pancreatic cancer cell lines MiaPaCa-2, BXPC-3, and HupT3. We determined that some of these compounds, namely compounds 5, 6, 11, 20, and 26, demonstrate antiproliferative activity against some or all of the pancreatic cancer cells at low micromolar to nanomolar concentrations. We found that the treatment of pancreatic cancer cells with GSK-3beta inhibitors 5 and 26 resulted in suppression of GSK-3beta activity and a distinct decrease of the X-linked inhibitor of apoptosis (XIAP) expression, leading to significant apoptosis. The present data suggest a possible role for GSK-3beta inhibitors in cancer therapy, in addition to their more prominent applications in CNS disorders.

  12. Mitochondrial respiration inhibitors suppress protein translation and hypoxic signaling via the hyperphosphorylation and inactivation of translation initiation factor eIF2α and elongation factor eEF2.

    PubMed

    Li, Jun; Mahdi, Fakhri; Du, Lin; Datta, Sandipan; Nagle, Dale G; Zhou, Yu-Dong

    2011-09-23

    Over 20,000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 and 0.068 μM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods.

  13. Mitochondrial Respiration Inhibitors Suppress Protein Translation and Hypoxic Signaling via the Hyperphosphorylation and Inactivation of Translation Initiation Factor eIF2α and Elongation Factor eEF2

    PubMed Central

    Li, Jun; Mahdi, Fakhri; Du, Lin; Datta, Sandipan; Nagle, Dale G.; Zhou, Yu-Dong

    2011-01-01

    Over 20000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 µM and 0.068 µM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods. PMID:21875114

  14. Effective and safe proton pump inhibitor therapy in acid-related diseases - A position paper addressing benefits and potential harms of acid suppression.

    PubMed

    Scarpignato, Carmelo; Gatta, Luigi; Zullo, Angelo; Blandizzi, Corrado

    2016-11-09

    The introduction of proton pump inhibitors (PPIs) into clinical practice has revolutionized the management of acid-related diseases. Studies in primary care and emergency settings suggest that PPIs are frequently prescribed for inappropriate indications or for indications where their use offers little benefit. Inappropriate PPI use is a matter of great concern, especially in the elderly, who are often affected by multiple comorbidities and are taking multiple medications, and are thus at an increased risk of long-term PPI-related adverse outcomes as well as drug-to-drug interactions. Herein, we aim to review the current literature on PPI use and develop a position paper addressing the benefits and potential harms of acid suppression with the purpose of providing evidence-based guidelines on the appropriate use of these medications. The topics, identified by a Scientific Committee, were assigned to experts selected by three Italian Scientific Societies, who independently performed a systematic search of the relevant literature using Medline/PubMed, Embase, and the Cochrane databases. Search outputs were distilled, paying more attention to systematic reviews and meta-analyses (where available) representing the best evidence. The draft prepared on each topic was circulated amongst all the members of the Scientific Committee. Each expert then provided her/his input to the writing, suggesting changes and the inclusion of new material and/or additional relevant references. The global recommendations were then thoroughly discussed in a specific meeting, refined with regard to both content and wording, and approved to obtain a summary of current evidence. Twenty-five years after their introduction into clinical practice, PPIs remain the mainstay of the treatment of acid-related diseases, where their use in gastroesophageal reflux disease, eosinophilic esophagitis, Helicobacter pylori infection, peptic ulcer disease and bleeding as well as, and Zollinger-Ellison syndrome is

  15. Induction of granzyme B expression in T-cell receptor/CD28-stimulated human regulatory T cells is suppressed by inhibitors of the PI3K-mTOR pathway

    PubMed Central

    2009-01-01

    Background Regulatory T cells (Tregs) can employ a cell contact- and granzyme B-dependent mechanism to mediate suppression of bystander T and B cells. Murine studies indicate that granzyme B is involved in the Treg-mediated suppression of anti-tumor immunity in the tumor microenvironment and in the Treg-mediated maintenance of allograft survival. In spite of its central importance, a detailed study of granzyme B expression patterns in human Tregs has not been performed. Results Our data demonstrated that natural Tregs freshly isolated from the peripheral blood of normal adults lacked granzyme B expression. Tregs subjected to prolonged TCR and CD28 triggering, in the presence of IL-2, expressed high levels of granzyme B but CD3 stimulation alone or IL-2 treatment alone failed to induce granzyme B. Treatment of Tregs with the mammalian target of rapamycin (mTOR) inhibitor, rapamycin or the PI3 kinase (PI3K) inhibitor LY294002 markedly suppressed granzyme B expression. However, neither rapamycin, as previously reported by others, nor LY294002 inhibited Treg proliferation or induced significant cell death in TCR/CD28/IL-2 stimulated cells. The proliferation rate of Tregs was markedly higher than that of CD4+ conventional T cells in the setting of rapamycin treatment. Tregs expanded by CD3/CD28/IL-2 stimulation without rapamycin demonstrated increased in vitro cytotoxic activity compared to Tregs expanded in the presence of rapamycin in both short term (6 hours) and long term (48 hours) cytotoxicity assays. Conclusion TCR/CD28 mediated activation of the PI3K-mTOR pathway is important for granyzme B expression but not proliferation in regulatory T cells. These findings may indicate that suppressive mechanisms other than granzyme B are utilized by rapamycin-expanded Tregs. PMID:19930596

  16. Omega-3 Fatty Acids and a Novel Mammary Derived Growth Inhibitor Fatty Acid Binding Protein MRG in Suppression of Mammary Tumor

    DTIC Science & Technology

    2003-07-01

    suppressing effect of n-3 fatty acid DHA on mammary tumors. MRG induces differentiation of mammary epithelial cells in vitro and its expression is...expression of MRG also increased milk protein beta-casein expression in the gland. Treatment of human breast cancer cells with w-3 PUFA DHA resulted...differentiating effect of pregnancy on breast epithelial cells and may play a major role in w-3 PUFA -mediated tumor suppression.

  17. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties

    SciTech Connect

    Lawrence, C.P.; Chow, S.C.

    2012-11-15

    The caspase inhibitors, benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) and benzyloxycarbonyl (Cbz)-Ile-Glu (OMe)-Thr-Asp (OMe)-FMK (z-IETD-FMK) at non-toxic doses were found to be immunosuppressive and inhibit human T cell proliferation induced by mitogens and IL-2 in vitro. Both caspase inhibitors were shown to block NF-κB in activated primary T cells, but have little inhibitory effect on the secretion of IL-2 and IFN-γ during T cell activation. However, the expression of IL-2 receptor α-chain (CD25) in activated T cells was inhibited by both z-VAD-FMK and z-IETD-FMK, whereas the expression of the early activated T cell marker, CD69 was unaffected. During primary T cell activation via the antigen receptor, both caspase-8 and caspase-3 were activated and processed to their respective subunits, but neither caspase inhibitors had any effect on the processing of these two caspases. In sharp contrast both caspase inhibitors readily blocked apoptosis and the activation of caspases during FasL-induced apoptosis in activated primary T cells and Jurkat T cells. Collectively, the results demonstrate that both z-VAD-FMK and z-IETD-FMK are immunosuppressive in vitro and inhibit T cell proliferation without blocking the processing of caspase-8 and caspase-3. -- Highlights: ► Caspase-8 and caspase-3 were activated during T cell activation and proliferation. ► T cell proliferation was blocked by caspase inhibitors. ► Caspase activation during T cell proliferation was not block by caspase inhibitors.

  18. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ.

    PubMed

    Tsujimoto, Shunsuke; Kishina, Manabu; Koda, Masahiko; Yamamoto, Yasutaka; Tanaka, Kohei; Harada, Yusuke; Yoshida, Akio; Hisatome, Ichiro

    2016-09-01

    Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)‑induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d‑PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP‑1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity.

  19. Growth inhibition of pancreatic cancer cells by histone deacetylase inhibitor belinostat through suppression of multiple pathways including HIF, NFkB, and mTOR signaling in vitro and in vivo.

    PubMed

    Chien, Wenwen; Lee, Dhong Hyun; Zheng, Yun; Wuensche, Peer; Alvarez, Rosie; Wen, Ding Ling; Aribi, Ahmed M; Thean, Su Ming; Doan, Ngan B; Said, Jonathan W; Koeffler, H Phillip

    2014-09-01

    Pancreatic ductal adenocarcinoma is a devastating disease with few therapeutic options. Histone deacetylase inhibitors are a novel therapeutic approach to cancer treatment; and two new pan-histone deacetylase inhibitors (HDACi), belinostat and panobinostat, are undergoing clinical trials for advanced hematologic malignancies, non-small cell lung cancers and advanced ovarian epithelial cancers. We found that belinostat and panobinostat potently inhibited, in a dose-dependent manner, the growth of six (AsPc1, BxPc3, Panc0327, Panc0403, Panc1005, MiaPaCa2) of 14 human pancreatic cancer cell lines. Belinostat increased the percentage of apoptotic pancreatic cancer cells and caused prominent G2 /M growth arrest of most pancreatic cancer cells. Belinostat prominently inhibited PI3K-mTOR-4EBP1 signaling with a 50% suppression of phorphorylated 4EBP1 (AsPc1, BxPc3, Panc0327, Panc1005 cells). Surprisingly, belinostat profoundly blocked hypoxia signaling including the suppression of hypoxia response element reporter activity; as well as an approximately 10-fold decreased transcriptional expression of VEGF, adrenomedullin, and HIF1α at 1% compared to 20% O2 . Treatment with this HDACi decreased levels of thioredoxin mRNA associated with increased levels of its endogenous inhibitor thioredoxin binding protein-2. Also, belinostat alone and synergistically with gemcitabine significantly (P = 0.0044) decreased the size of human pancreatic tumors grown in immunodeficiency mice. Taken together, HDACi decreases growth, increases apoptosis, and is associated with blocking the AKT/mTOR pathway. Surprisingly, it blocked hypoxic growth related signals. Our studies of belinostat suggest it may be an effective drug for the treatment of pancreatic cancers when used in combination with other drugs such as gemcitabine. © 2014 Wiley Periodicals, Inc.

  20. JAK2 tyrosine kinase inhibitor AG490 suppresses cell growth and invasion of gallbladder cancer cells via inhibition of JAK2/STAT3 signaling.

    PubMed

    Fu, L X; Lian, Q W; Pan, J D; Xu, Z L; Zhou, T M; Ye, B

    2017-01-01

    The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) have displayed a critical role in tumor development and progression in multiple malignancies. Previous studies showed that inhibition of JAK/STAT signaling blocked cell growth and metastasis in cancer cells, however, the antitumor effects of JAK inhibitor AG490 on gallbladder cancer (GBC) have not been reported. Our present study aimed to investigate the effects and associated mechanisms of JAK inhibitor AG490 on cell growth, invasive potential and apoptosis in GBC cells (GBC-SD and SGC-996) indicated by MTT, cell colony formation, Transwell and flow cytometry. As a consequence, we found that JAK2 inhibitor AG490 inhibited cell growth and invasion, and induced cell apoptosis and cycle arrest in GBC-SD and SGC-996 cells. Furthermore, the expression levels of p-JAK2, p-STAT3, VEGFC-/-D and cyclinD1 were downregulated, while p53 expression was upregulated in AG490-treated GBC cells indicated by Western blot assay. Therefore, our findings demonstrate that JAK inhibitor AG490 inhibits growth and invasion of GBC cells via blockade of JAK2/STAT3 signaling and provides the potential therapeutic strategy for the treatment of GBC patients.

  1. The IRE1/bZIP60 pathway and Bax inhibitor 1 suppress systemic accumulation of potyviruses and potexviruses in Arabidopsis and Nicotiana benthamiana plants

    USDA-ARS?s Scientific Manuscript database

    The inositol requiring enzyme (IRE1) is an endoplasmic reticulum (ER) stress sensor and when activated it splices the bZIP60 mRNA producing a truncated transcription factor that upregulates expression of genes involved in the unfolded protein response (UPR). Bax inhibitor 1 (BI-1) is another ER stre...

  2. Secretory leukocyte protease inhibitor reverses inhibition by CNS myelin, promotes regeneration in the optic nerve, and suppresses expression of the TGFβ signaling protein Smad2

    PubMed Central

    Hannila, Sari S.; Siddiq, Mustafa M.; Carmel, Jason B.; Hou, Jianwei; Chaudhry, Nagarathnamma; Bradley, Peter M.J.; Hilaire, Melissa; Richman, Erica L.; Hart, Ronald P.; Filbin, Marie T.

    2013-01-01

    Following CNS injury, axonal regeneration is limited by myelin-associated inhibitors; however, this can be overcome through elevation of intracellular cyclic AMP, as occurs with conditioning lesions of the sciatic nerve. This study reports that expression of secretory leukocyte protease inhibitor (SLPI) is strongly upregulated in response to elevation of cyclic AMP. We also show that SLPI can overcome inhibition by CNS myelin and significantly enhance regeneration of transected retinal ganglion cell axons in rats. Furthermore, regeneration of dorsal column axons does not occur after a conditioning lesion in SLPI null mutant mice, indicating that expression of SLPI is required for the conditioning lesion effect. Mechanistically, we demonstrate that SLPI localizes to the nuclei of neurons, binds to the Smad2 promoter, and reduces levels of Smad2 protein. Adenoviral overexpression of Smad2 also blocked SLPI-induced axonal regeneration. SLPI and Smad2 may therefore represent new targets for therapeutic intervention in CNS injury. PMID:23516280

  3. Pyrazolo-pyrimidine-derived c-Src inhibitor reduces angiogenesis and survival of squamous carcinoma cells by suppressing vascular endothelial growth factor production and signaling.

    PubMed

    Donnini, Sandra; Monti, Martina; Castagnini, Cinzia; Solito, Raffaella; Botta, Maurizio; Schenone, Silvia; Giachetti, Antonio; Ziche, Marina

    2007-03-01

    Src tyrosine kinase family cooperates with activated growth factor receptors to regulate growth, invasion and metastasis. The authors examined the influence of a novel c-Src inhibitor, 1l, derived from 4-amino-substituted-pyrazolo-pyrimidines, on tumor angiogenesis and on the angiogenic output of squamous carcinoma cells, A431 and SCC-4. The effect of 1l was assessed on growth and microvessel density in A431 tumors and its effect compared with the established c-Src inhibitor PP-1. The effects of c-Src inhibition were investigated on vascular endothelial growth factor (VEGF) expression and activity in tumor cells grown in vivo and in vitro, as well as on VEGF mediated signaling and on endothelial cell functions. Nanomolar concentrations of 1l decreased tumor volume promoted by A431 implanted in nude mice, without affecting in vitro cell tumor survival. This effect was related to 1l inhibition of VEGF production, and secondary to an effect on tumor microvessel density. The rabbit cornea assay confirmed that 1l markedly decreased neovessel growth induced by VEGF. In cultured endothelial cells, 1l inhibited the VEGF-induced phosphorylation on tyr416 of c-Src, resulting in a reduced cell proliferation and invasion. Consistently, 1l dowregulated endothelial nitric oxide synthase, MAPK-extracellular receptor kinase 1-2 (ERK1-2) activity and matrix metalloproteinases (MMP-2/MMP-9), while the tissue inhibitors of metalloproteinases (TIMP2/TIMP-1) were upregulated. These results demonstrate that nM concentrations of c-Src kinase inhibitors (1l and PP-1), by reducing the production of VEGF released by tumor cell and its endothelial cell responses, have a highly selective antiangiogenesis effect, which might be useful in combination therapies.

  4. Combining TRAIL with PI3 Kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signaling

    PubMed Central

    Saturno, Grazia; Valenti, Melanie; De Haven Brandon, Alexis; Thomas, George V.; Eccles, Suzanne; Clarke, Paul A.; Workman, Paul

    2013-01-01

    TRAIL has been shown to induce apoptosis in cancer cells, but in some cases they fail to respond to this ligand. We explored the ability of representative phosphatidylinositol-3-kinase (PI3 Kinase)/mTOR and HSP90 inhibitors to overcome TRAIL resistance by increasing apoptosis in colorectal cancer models. We determined the sensitivity of 27 human colorectal cancer and 2 non-transformed colon epithelial cell lines to TRAIL treatment. A subset of the cancer cell lines with a range of responses to TRAIL was selected from the panel for treatment with TRAIL combined with the PI3 Kinase/mTOR inhibitor PI-103 or the HSP90 inhibitor 17-AAG (tanespimycin). Two TRAIL-resistant cell lines were selected for in vivo combination studies with TRAIL and 17-AAG. We found that 13 colorectal cancer cell lines and the 2 non-transformed colon epithelial cell lines were resistant to TRAIL. We demonstrated that co-treatment of TRAIL and PI-103 or 17-AAG was synergistic or additive and significantly enhanced apoptosis in colorectal cancer cells. This was associated with decreased expression or activity of survival protein biomarkers such as ERBB2, AKT, IKKα and XIAP. In contrast, the effect of the combination treatments in non-transformed colon cells was minimal. We show here for the first time that co-treatment in vivo with TRAIL and 17-AAG in two TRAIL-resistant human colorectal cancer xenograft models resulted in significantly greater tumor growth inhibition compared to single treatments. We propose that combining TRAIL with PI3 Kinase/mTOR or HSP90 inhibitors has therapeutic potential in the treatment of TRAIL-resistant colorectal cancers. PMID:23852390

  5. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways.

    PubMed

    Chang, L; Graham, P H; Hao, J; Ni, J; Bucci, J; Cozzi, P J; Kearsley, J H; Li, Y

    2014-10-02

    The PI3K/Akt/mTOR pathway has a central role in cancer metastasis and radiotherapy. To develop effective therapeutics to improve radiosensitivity, understanding the possible pathways of radioresistance involved and the effects of a combination of the PI3K/Akt/mTOR inhibitors with radiotherapy on prostate cancer (CaP) radioresistant cells is needed. We found that compared with parent CaP cells, CaP-radioresistant cells demonstrated G0/G1 and S phase arrest, activation of cell cycle check point, autophagy and DNA repair pathway proteins, and inactivation of apoptotic proteins. We also demonstrated that compared with combination of single PI3K or mTOR inhibitors (BKM120 or Rapamycin) and radiation, low-dose of dual PI3K/mTOR inhibitors (BEZ235 or PI103) combined with radiation greatly improved treatment efficacy by repressing colony formation, inducing more apoptosis, leading to the arrest of the G2/M phase, increased double-strand break levels and less inactivation of cell cycle check point, autophagy and non-homologous end joining (NHEJ)/homologous recombination (HR) repair pathway proteins in CaP-radioresistant cells. This study describes the possible pathways associated with CaP radioresistance and demonstrates the putative mechanisms of the radiosensitization effect in CaP-resistant cells in the combination treatment. The findings from this study suggest that the combination of dual PI3K/Akt/mTOR inhibitors (BEZ235 or PI103) with radiotherapy is a promising modality for the treatment of CaP to overcome radioresistance.

  6. A novel inhibitor of Chlamydophila pneumoniae protein kinase D (PknD) inhibits phosphorylation of CdsD and suppresses bacterial replication

    PubMed Central

    2009-01-01

    Background We have shown previously that Chlamydophila pneumoniae contains a dual-specific Ser/Thr protein kinase that phosphorylates CdsD, a structural component of the type III secretion apparatus. To further study the role of PknD in growth and development we sought to identify a PknD inhibitor to determine whether PknD activity is required for replication. Results Using an in vitro kinase assay we screened 80 known eukaryotic protein kinase inhibitors for activity against PknD and identified a 3'-pyridyl oxindole compound that inhibited PknD autophosphorylation and phosphorylation of CdsD. The PknD inhibitor significantly retarded the growth rate of C. pneumoniae as evidenced by the presence of very small inclusions with a reduced number of bacteria as seen by electron microscopy. These inclusions contained the normal replicative forms including elementary bodies (EB), intermediate bodies (IB) and reticulate bodies (RB), but lacked persistent bodies (PB), indicating that induction of persistence was not the cause of reduced chlamydial growth. Blind passage of C. pneumoniae grown in the presence of this PknD inhibitor for 72 or 84 hr failed to produce inclusions, suggesting this compound blocks an essential step in the production of infectious chlamydial EB. The compound was not toxic to HeLa cells, did not block activation of the MEK/ERK pathway required for chlamydial invasion and did not block intracellular replication of either Chlamydia trachomatis serovar D or Salmonella enterica sv. Typhimurium suggesting that the inhibitory effect of the compound is specific for C. pneumoniae. Conclusion We have identified a 3'-pyridyl oxindole compound that inhibits the in vitro kinase activity of C. pneumoniae PknD and inhibits the growth and production of infectious C. pneumoniae progeny in HeLa cells. Together, these results suggest that PknD may play a key role in the developmental cycle of C. pneumoniae. PMID:19828035

  7. Combining trail with PI3 kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signaling.

    PubMed

    Saturno, Grazia; Valenti, Melanie; De Haven Brandon, Alexis; Thomas, George V; Eccles, Suzanne; Clarke, Paul A; Workman, Paul

    2013-08-01

    TRAIL has been shown to induce apoptosis in cancer cells, but in some cases they fail to respond to this ligand. We explored the ability of representative phosphatidylinositol-3-kinase (PI3 Kinase)/mTOR and HSP90 inhibitors to overcome TRAIL resistance by increasing apoptosis in colorectal cancer models. We determined the sensitivity of 27 human colorectal cancer and 2 non-transformed colon epithelial cell lines to TRAIL treatment. A subset of the cancer cell lines with a range of responses to TRAIL was selected from the panel for treatment with TRAIL combined with the PI3 Kinase/mTOR inhibitor PI-103 or the HSP90 inhibitor 17-AAG (tanespimycin). Two TRAIL-resistant cell lines were selected for in vivo combination studies with TRAIL and 17-AAG. We found that 13 colorectal cancer cell lines and the 2 non-transformed colon epithelial cell lines were resistant to TRAIL. We demonstrated that co-treatment of TRAIL and PI-103 or 17-AAG was synergistic or additive and significantly enhanced apoptosis in colorectal cancer cells. This was associated with decreased expression or activity of survival protein biomarkers such as ERBB2, AKT, IKKα and XIAP. In contrast, the effect of the combination treatments in non-transformed colon cells was minimal. We show here for the first time that co-treatment in vivo with TRAIL and 17-AAG in two TRAIL-resistant human colorectal cancer xenograft models resulted in significantly greater tumor growth inhibition compared to single treatments. We propose that combining TRAIL with PI3 Kinase/mTOR or HSP90 inhibitors has therapeutic potential in the treatment of TRAIL-resistant colorectal cancers.

  8. The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3

    PubMed Central

    Ni, Lulu; Wang, Lixin; Yao, Chao; Ni, Zhongya; Liu, Fei; Gong, Chenyuan; Zhu, Xiaowen; Yan, Xuewei; Watowich, Stephanie S.; Lee, Dean A.; Zhu, Shiguo

    2017-01-01

    NKG2D is a major activating receptor of NK cells and plays a critical role in tumor immunosurveillance. NKG2D expression in NK cells is inhibited by the histone deacetylase (HDAC) inhibitor valproic acid (VPA) and enhanced by the narrow-spectrum HDAC inhibitor entinostat. We previously demonstrated that entinostat enhanced NKG2D transcription by increasing acetylation of Histones H3 and H4. However, the mechanism by which VPA reduces NKG2D expression in NK cells is not known. We have also shown that NKG2D transcription is regulated by STAT3 phosphorylation. In this study, we investigated regulation of NKG2D expression in NK cells by VPA and entinostat by assessing protein expression, phosphorylation, and interaction of HDACs and STAT3. We find that VPA selectively inhibits STAT3 tyrosine705 phosphorylation, but entinostat does not. STAT3 complexes with HDAC3, and HDAC3 inhibition represses STAT3 phosphorylation and therefore NKG2D expression. NK cells from STAT3 wild-type mice downregulate NKG2D in response to VPA, but not NK cells from STAT3 knockout mice. These results show that VPA is a potent inhibitor of STAT3 phosphorylation and demonstrate that histone acetylation and STAT3 tyrosine705 phosphorylation cooperate in regulating NKG2D expression in NK cells. PMID:28338101

  9. Suppression of c-Myc and RRM2 expression in pancreatic cancer cells by the sphingosine kinase-2 inhibitor ABC294640

    PubMed Central

    Lewis, Clayton S.; Voelkel-Johnson, Christina; Smith, Charles D.

    2016-01-01

    Pancreatic cancer remains extremely difficult to treat, with the average lifespan following diagnosis being only 3-6 months, resulting in a death to incidence ratio of 0.94. A major reason for this high mortality rate is resistance to the main chemotherapeutic agent used to treat this disease, gemcitabine. Alterations in nucleoside and gemcitabine metabolism, specifically over-expression of ribonucleotide reductase, have been implicated as a major mechanism of resistance to this drug. Here, we show that inhibition of sphingosine kinase-2 by the specific inhibitor ABC294640 is synergistically cytotoxic with gemcitabine toward three human pancreatic cancer cell lines. Treatment with ABC294640 results in decreased expression of both RRM2 and MYC in all three cell lines. Additionally, expression of c-Myc protein and phosphorylation of Rb at S780 both decrease in a dose-dependent manner in response to ABC294640, while acetylation of H3-K9 and p21 levels increase. Pretreatment with the protein phosphatase 1 inhibitor okadaic acid or the ceramide synthase inhibitor fumonisin B1 fails to prevent the effects of ABC294640 on Rb phosphorylation. These data indicate a role for sphingosine kinase-2 in E2F and c-Myc mediated transcription through alteration of histone acetylation and p21 expression. These effects of ABC294640 suggest that it may be an effective agent for pancreatic cancer, particularly in combination with gemcitabine. PMID:27517489

  10. KR-33028, a potent inhibitor of the Na(+)/H(+) exchanger NHE1, suppresses metastatic potential of triple-negative breast cancer cells.

    PubMed

    Amith, Schammim Ray; Wilkinson, Jodi Marie; Fliegel, Larry

    2016-10-15

    Hyper-activation of the Na(+)/H(+) exchanger NHE1 occurs at the onset of oncogenic transformation and plays a critical role in breast cancer carcinogenesis. Dysregulation of NHE1 activity results in intracellular alkalinization and the acidification of the extracellular tumor microenvironment that promotes metastasis. Hence, the use of chemical inhibitors of NHE1 as chemotherapeutic agents is an alluring prospect. We previously demonstrated that two structurally different NHE1 inhibitors, EMD87580 [(2-methyl-4,5-di-(methylsulfonyl)-benzoyl)-guanidine], and HMA [5-(N,N-hexamethylene)-amiloride], were effective as co-adjuvants to potentiate paclitaxel-mediated cytotoxic chemotherapy in triple-negative breast cancer (TNBC) cells. Both these drugs, however, had reduced or minimal anti-cancer effects when used alone. Here, we tested KR-33028 (4-cyano (benzo[b]thiophene-2-carbonyl)guanidine), a potent and selective inhibitor of NHE1, to determine its efficacy in inhibition of metastatic potential of TNBC cells. In highly invasive MDA-MB-231, moderately invasive MDA-MB-468, and lowly invasive Hs578T TNBC cells, KR-33028 considerably reduced rates of cell migration and anchorage-independent colony growth. Invasion of MDA-MB-231 and MDA-MB-468 cells through extracellular matrix was also dramatically decreased in response to KR-33028. We further tested the effect of KR-33028 on MDA-MB-231 cells lacking NHE1 expression (231koNHE1); no differences were observed between untreated control and KR-33028-treated 231koNHE1 cells. Taken together, our results highlight the in vitro efficacy of KR-33028-mediated NHE1 inhibition on limiting cellular functions that are predictive of metastasis in vivo. We suggest that targeting NHE1 in the development of novel chemotherapeutics could be highly effective in combatting triple-negative breast cancer and that KR-33028 is potentially useful in prevention of metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators.

    PubMed

    Rhodes, Lyndsay V; Tate, Chandra R; Segar, H Chris; Burks, Hope E; Phamduy, Theresa B; Hoang, Van; Elliott, Steven; Gilliam, Diari; Pounder, F Nell; Anbalagan, Muralidharan; Chrisey, Douglas B; Rowan, Brian G; Burow, Matthew E; Collins-Burow, Bridgette M

    2014-06-01

    Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. We previously showed the pan-deacetylase inhibitor LBH589 induces CDH1 expression in TNBC cells, suggesting regulation of EMT. The purpose of this study was to examine the effects of LBH589 on the metastatic qualities of TNBC cells and the role of EMT in this process. A panel of breast cancer cell lines (MCF-7, MDA-MB-231, and BT-549), drugged with LBH589, was examined for changes in cell morphology, migration, and invasion in vitro. The effect on in vivo metastasis was examined using immunofluorescent staining of lung sections. EMT gene expression profiling was used to determine LBH589-induced changes in TNBC cells. ZEB overexpression studies were conducted to validate requirement of ZEB in LBH589-mediated proliferation and tumorigenesis. Our results indicate a reversal of EMT by LBH589 as demonstrated by altered morphology and altered gene expression in TNBC. LBH589 was shown to be a more potent inhibitor of EMT than other HDAC inhibitors, SAHA and TMP269. Additionally, we found that LBH589 inhibits metastasis of MDA-MB-231 cells in vivo. These effects of LBH589 were mediated in part by inhibition of ZEB, as overexpression of ZEB1 or ZEB2 mitigated the effects of LBH589 on MDA-MB-231 EMT-associated gene expression, migration, invasion, CDH1 expression, and tumorigenesis. These data indicate therapeutic potential of LBH589 in targeting EMT and metastasis of TNBC.

  12. Peptidomimetic Src/pretubulin inhibitor KX-01 alone and in combination with paclitaxel suppresses growth, metastasis in human ER/PR/HER2-negative tumor xenografts

    PubMed Central

    Anbalagan, Muralidharan; Ali, Alaa; Jones, Ryan K; Marsden, Carolyn G; Sheng, Mei; Carrier, Latonya; Bu, Yahao; Hangauer, David; Rowan, Brian G

    2012-01-01

    Src kinase is elevated in breast tumors that are ER/PR negative and do not overexpress HER2 but clinical trials with Src inhibitors have demonstrated little activity. The present study evaluated preclinical efficacy of a novel peptidomimetic compound, KX-01 (KX2-391), that exhibits dual action as a Src and pretubulin inhibitor. KX-01 was evaluated as a single agent and in combination with paclitaxel in MDA-MB-231, MDA-MB-157, and MDA-MB-468 human ER/PR/HER2-negative breast cancer cells. Treatments were evaluated by growth/apoptosis, isobologram analysis, migration/invasion assays, tumor xenograft volume, metastasis, and measurement of Src, FAK, microtubules, Ki67, and microvessel density. KX-01 inhibited cell growth in vitro and in combination with paclitaxel resulted in synergistic growth inhibition. KX-01 resulted in a dose dependent inhibition of MDA-MB-231 and MDA-MB-157 tumor xenografts (1 and 5 mg/kg, BID). KX-01 inhibited activity of Src and downstream mediator FAK in tumors that was coincident with reduced proliferation and angiogenesis, and increased apoptosis. KX01 also resulted in microtubule disruption in tumors. Combination of KX-01 with paclitaxel resulted in significant regression of MDA-MB-231 tumors and reduced metastasis to mouse lung and liver. KX-01 is a potently active Src/pretubulin inhibitor that inhibits breast tumor growth and metastasis. As ER/PR/HER2-negative patients are candidates for paclitaxel therapy, combination with KX-01 may potentiate antitumor efficacy in management of this aggressive breast cancer subtype. PMID:22784709

  13. The src-family kinase inhibitor PP2 suppresses the in vitro invasive phenotype of bladder carcinoma cells via modulation of Akt.

    PubMed

    Chiang, George J; Billmeyer, Brian R; Canes, David; Stoffel, John; Moinzadeh, Alireza; Austin, Christina A; Kosakowski, Monika; Rieger-Christ, Kimberly M; Libertino, John A; Summerhayes, Ian C

    2005-08-01

    To evaluate PP2 as a modulator of the cadherin/catenin complex in late-stage bladder carcinoma cells, and to assess its potential invasion-suppressor activity in this model. A panel of five human bladder carcinoma cells, characterizing late-stage disease, was used to determine the concentration for 50% inhibition of PP2 in cell-proliferation assays. Modulation of cadherin/catenin expression by PP2 was determined in Western blot analysis, with an assessment of the activation status of mitogen-activated protein kinase and Akt signalling pathways. Altered invasive capacity linked to these variables was determined in standard in vitro invasion assays. PP2 elicited concentration-dependent growth inhibition in all bladder cell lines within the panel, with growth suppression recorded at 10-35 micromol/L PP2. Distinct morphological changes were recorded in cell lines exposed to PP2, accompanied by up-regulation of plakoglobin expression in a subset of lines. Exposure of cells to PP2 resulted in inactivation of Akt in all cells and a concomitant reduction in in vitro invasive capacity. These results show that PP2 inhibits bladder carcinoma cell growth and can modulate plakoglobin expression in a subset of cell lines. In addition, PP2 can suppress the in vitro invasive capacity of bladder carcinoma cells by modulating the activation status of Akt.

  14. Tumstatin, the NC1 domain of {alpha}3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth

    SciTech Connect

    Hamano, Yuki; Kalluri, Raghu . E-mail: rkalluri@bidmc.harvard.edu

    2005-07-29

    Angiogenesis, the formation of new blood vessels, is required for physiological development of vertebrates and repair of damaged tissue, but in the pathological setting contributes to progression of cancer. During tumor growth, angiogenesis is supported by up-regulation of angiogenic stimulators (pro-angiogenic) and down-regulation of angiogenic inhibitors (anti-angiogenic). The switch to the angiogenic phenotype (angiogenic switch) allows the tumors to grow and facilitate metastasis. The bioactive NC1 domain of type IV collagen {alpha}3 chain, called tumstatin, imparts anti-tumor activity by inducing apoptosis of proliferating endothelial cells. Tumstatin binds to {alpha}V{beta}3 integrin via a mechanism independent of the RGD-sequence recognition and inhibits cap-dependent protein synthesis in the proliferating endothelial cells. The physiological level of tumstatin is controlled by matrix metalloproteinase-9, which most effectively cleaves it from the basement membrane and its physiological concentration in the circulation keeps pathological angiogenesis and tumor growth in check. These findings suggest that tumstatin functions as an endogenous inhibitor of pathological angiogenesis and functions as a novel suppressor of proliferating endothelial cells and growth of tumors.

  15. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells.

    PubMed

    Lin, Hui-Ping; Kuo, Li-Kuo; Chuu, Chih-Pin

    2012-01-01

    Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clinical application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 µM) with a low concentration (0.1-2.5 µM) of small molecule inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-κB signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients.

  16. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    PubMed

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  17. Histone deacetylase inhibitor-temozolomide co-treatment inhibits melanoma growth through suppression of Chemokine (C-C motif) ligand 2-driven signals

    PubMed Central

    Cesare, Michelandrea De; Arrighetti, Noemi; Manenti, Giacomo; Ciusani, Emilio; Verderio, Paolo; Ciniselli, Chiara M.; Cominetti, Denis; Carenini, Nives; Corna, Elisabetta; Zaffaroni, Nadia; Rodolfo, Monica; Rivoltini, Licia

    2014-01-01

    Target-specific agents used in melanoma are not curative, and chemokines are being implicated in drug-resistance to target-specific agents. Thus, the use of conventional agents in rationale combinations may result in optimization of therapy. Because histone deacetylases participate in tumor development and progression, the combination of the pan-inhibitor SAHA and temozolomide might provide a therapeutic advantage. Here, we show synergism between the two drugs in mutant BRAF cell lines, in association with decreased phosphorylation of cell survival proteins (e.g., C-Jun-N-terminal-kinase, JNK). In the spontaneous ret transgenic mouse melanoma model, combination therapy produced a significant disease onset delay and down-regulation of Chemokine (C-C motif) ligand 2 (CCL2), JNK, and of Myeloid-derived suppressor cell recruitment. Co-incubation with a CCL2-blocking-antibody enhanced in vitro cell sensitivity to temozolomide. Conversely, recombinant CCL2 activated JNK in human tumor melanoma cells. In keeping with these results, the combination of a JNK-inhibitor with temozolomide was synergistic. By showing that down-regulation of CCL2-driven signals by SAHA and temozolomide via JNK contributes to reduce melanoma growth, we provide a rationale for the therapeutic advantage of the drug combination. This combination strategy may be effective because of interference both with tumor cell and tumor microenvironment. PMID:24980831

  18. Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions.

    PubMed

    Pabla, Navjotsingh; Gibson, Alice A; Buege, Mike; Ong, Su Sien; Li, Lie; Hu, Shuiying; Du, Guoqing; Sprowl, Jason A; Vasilyeva, Aksana; Janke, Laura J; Schlatter, Eberhard; Chen, Taosheng; Ciarimboli, Giuliano; Sparreboom, Alex

    2015-04-21

    Acute kidney injury (AKI) is a potentially fatal syndrome characterized by a rapid decline in kidney function caused by ischemic or toxic injury to renal tubular cells. The widely used chemotherapy drug cisplatin accumulates preferentially in the renal tubular cells and is a frequent cause of drug-induced AKI. During the development of AKI the quiescent tubular cells reenter the cell cycle. Strategies that block cell-cycle progression ameliorate kidney injury, possibly by averting cell division in the presence of extensive DNA damage. However, the early signaling events that lead to cell-cycle activation during AKI are not known. In the current study, using mouse models of cisplatin nephrotoxicity, we show that the G1/S-regulating cyclin-dependent kinase 4/6 (CDK4/6) pathway is activated in parallel with renal cell-cycle entry but before the development of AKI. Targeted inhibition of CDK4/6 pathway by small-molecule inhibitors palbociclib (PD-0332991) and ribociclib (LEE011) resulted in inhibition of cell-cycle progression, amelioration of kidney injury, and improved overall survival. Of additional significance, these compounds were found to be potent inhibitors of organic cation transporter 2 (OCT2), which contributes to the cellular accumulation of cisplatin and subsequent kidney injury. The unique cell-cycle and OCT2-targeting activities of palbociclib and LEE011, combined with their potential for clinical translation, support their further exploration as therapeutic candidates for prevention of AKI.

  19. Milnacipran, a serotonin and noradrenaline reuptake inhibitor, suppresses long-term potentiation in the rat hippocampal CA1 field via 5-HT1A receptors and alpha 1-adrenoceptors.

    PubMed

    Tachibana, Kaori; Matsumoto, Machiko; Togashi, Hiroko; Kojima, Taku; Morimoto, Yuji; Kemmotsu, Osamu; Yoshioka, Mitsuhiro

    2004-03-04

    Pharmacological characteristics of a serotonin (5-HT) and noradrenaline reuptake inhibitor (SNRI), milnacipran, in modulation of the synaptic plasticity were investigated. Milnacipran (30 mg/kg, i.p.) suppressed the long-term potentiation (LTP) in the hippocampal CA1 field of anesthetized rats. Milnacipran-induced suppression was reversed by pretreatment with the selective 5-HT1A receptor antagonist WAY 100635 (0.1 mg/kg, i.v.) or the alpha1-adrenoceptor antagonist prazosin (1 and 10 microg/rat, i.c.v.). The alpha2-adrenoceptor antagonist idazoxan (5 mg/kg, i.p.) did not influence the milnacipran-induced synaptic responses. These data suggest that the inhibitory effects of milnacipran on LTP induction are mediated via both 5-HT1A receptors and alpha1-adrenoceptors. In other words, functional interaction between the serotonergic and noradrenergic neuronal systems is involved in alteration of the hippocampal synaptic plasticity, which may be implicated in the SNRI-induced therapeutic effect on psychiatric disorders.

  20. The PI3K/mTOR dual inhibitor BEZ235 suppresses proliferation and migration and reverses multidrug resistance in acute myeloid leukemia

    PubMed Central

    Deng, Lan; Jiang, Ling; Lin, Xiang-hua; Tseng, Kuo-Fu; Liu, Yuan; Zhang, Xing; Dong, Rui-hong; Lu, Zhi-gang; Wang, Xiu-ju

    2017-01-01

    Aberrant activation of the PI3K/Akt/mTOR pathway contributes to the proliferation of malignant cells, and may confer resistance to chemotherapy in various malignancies, including acute myeloid leukemia (AML). Chemoresistance is the major reason for relapse in AML. RAD001 (everolimus) has been used at d1 and d7 of an induction chemotherapy regimen for AML, which has acceptable toxicity and may improve conventional chemotherapeutic treatment. Dual inhibitors of PI3K and mTOR overcome some of the intrinsic disadvantages of rapamycin and its derivatives. In this study, we evaluated the effects of BEZ235, a PI3K/mTOR dual inhibitor, on the multidrug-resistant AML cell lines HL-60/VCR and K562/ADR in vitro. BEZ235 dose-dependently inhibited the viability of HL-60/VCR and K562/ADR cells with the IC50 values of 66.69 and 71.44 nmol/L, respectively. BEZ235 (25–100 nmol/L) dose-dependently inhibited the migration of the two AML cell lines, and it also significantly sensitized the two AML cell lines to VCR and ADR. After treatment with BEZ235, the miR-1-3p levels were markedly increased in HL-60/VCR cells. Using TargetScan analysis and luciferase assays, we showed that miR-1-3p targeted BAG4, EDN1 and ABCB1, the key regulators of cell apoptosis, migration and multidrug resistance, and significantly decreased their levels in the two AML cell lines. Transfection of HL-60/VCR and K562/ADR cells with miR-1-3p-AMO to inhibit miR-1-3p could reverse the anti-proliferation effects of BEZ235. In conclusion, the PI3K/mTOR dual inhibitor BEZ235 effectively chemosensitizes AML cells via increasing miR-1-3p and subsequently down-regulating BAG4, EDN1 and ABCB1. PMID:28042875

  1. Raf Kinase Inhibitor Protein (RKIP) Inhibits Tumor Necrosis Factor-α (TNF-α) Induced Adhesion Molecules Expression in Vascular Smooth Muscle Bells by Suppressing (Nuclear Transcription Factor-κB (NF-kappaB) Pathway.

    PubMed

    Jing, Shen-Hong; Gao, Xuan; Yu, Bo; Qiao, Hong

    2017-10-06

    BACKGROUND Raf kinase inhibitor protein (RKIP) regulates growth and differentiation and plays a role in key signal transduction cascades in mammalian cells. Nevertheless, the underlying mechanism for which RKIP regulates cell-cell adhesion remains unknown. Our study investigated the function of the RKIP overexpression on adhesion molecules expression induced by tumor necrosis factor (TNF)-α in cultured mouse vascular smooth muscle cells (MOVACs). MATERIAL AND METHODS The expression levels of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were detected by ELISA kit, reverse transcription-PCR, and western blot assays. The protein expression of RKIP, p65, and inhibitor of nuclear factor (NF)-κBα (IκBα) were detected by western blot analysis. The activity of NF-kappaB was determined using a Dual-Luciferase Reporter assay. RESULTS The results showed that MOVACs transfected with pCMV5-HA-RKIP significantly inhibited TNF-α induced mRNA and protein expression of ICAM-1 and VCAM-1. The adhesion of THP-1 cells was also detected and inhibited by pCMV5-HA-RKIP in TNF-α-treated MOVACs. RKIP also suppressed the TNF-α-induced activation of NF-kappaB and the protein expression of phosphorylated IκB-α, and promoted the protein expression of IkB-α and nuclear translocation of p65 NF-kappaB. Furthermore, RKIP and the inhibitor of NF-kappaB (BAY11-7082) reduced the upregulation of ICAM-1 and VACM-1 induced by TNF-α. CONCLUSIONS Taken together, these results suggested that RKIP may inhibit the TNF-α-induced expression of adhesion molecules in MOVACs through inactivation of the NF-kappaB pathway.

  2. miR-21 inhibitor suppresses proliferation and migration of nasopharyngeal carcinoma cells through down-regulation of BCL2 expression.

    PubMed

    Li, Yumei; Yan, Limei; Zhang, Wenyu; Wang, Hui; Chen, Wei; Hu, Nan; Ou, Hesheng

    2014-01-01

    This study is to investigate the expression of miR-21 in nasopharyngeal carcinoma (NPC) cells, and the effect of miR-21 in the biological behavior and expression of B-cell lymphoma 2 (BCL2) in NPC cells. Paired NPC and adjacent non-tumor tissues were obtained from 53 patients who underwent primary surgical resection of NPC tissues. Luciferase reporter assay was performed to test whether BCL2 is a direct target of miR-21. Methylthiazolyl blue tetrazolium assay and colony assay were used to evaluate the effect of miR-21 on NPC cell proliferation. Transwell and wound-healing assays were carried out to test the effect of low expression of miR-21 on cancer cell migration and invasion. QRT-PCR and Western blotting were used to measure the levels of mRNA and protein expression, respectively. Tumor tissues showed a positive correlation between the levels of miR-21 and BCL2 protein expression. Cells transfected with miR-21 inhibitor healed slower compared the control (P < 0.05). In addition, cell migration was notably inhibited by the down-regulation of miR-21 in vitro (P < 0.05). The reduction in miR-21 expression showed a remarkable effect on the biological behavior of NPC cell clone formation (P < 0.05). Low expression of miR-21 by transfection with miRNA expression plasmid led to a decrease in BCL2 expression, which was accompanied by reduced migration and proliferation of the cancer cells. Our results demonstrated that miR-21 inhibitor down-regulated BCL2 expression level, suggesting that BCL2 might be a target gene for the initiation and development of NPC cells.

  3. Viral Suppression Following Switch to Second-line Antiretroviral Therapy: Associations With Nucleoside Reverse Transcriptase Inhibitor Resistance and Subtherapeutic Drug Concentrations Prior to Switch

    PubMed Central

    Johnston, Victoria; Cohen, Karen; Wiesner, Lubbe; Morris, Lynn; Ledwaba, Johanna; Fielding, Katherine L.; Charalambous, Salome; Churchyard, Gavin; Phillips, Andrew; Grant, Alison D.

    2014-01-01

    Background. High rates of second-line antiretroviral treatment (ART) failure are reported. The association with resistance and nonadherence on switching to second-line ART requires clarification. Methods. Using prospectively collected data from patients in South Africa, we constructed a cohort of patients switched to second-line ART (1 January 2003 through 31 December 2008). Genotyping and drug concentrations (lamivudine, nevirapine, and efavirenz) were measured on stored samples preswitch. Their association with viral load (VL) <400 copies/mL by 15 months was assessed using modified Poisson regression. Results. One hundred twenty-two of 417 patients (49% male; median age, 36 years) had genotyping (n = 115) and/or drug concentrations (n = 80) measured. Median CD4 count and VL at switch were 177 cells/µL (interquartile range [IQR], 77–263) and 4.3 log10 copies/mL (IQR, 3.8–4.7), respectively. Fifty-five percent (n = 44/80) had subtherapeutic drug concentrations preswitch. More patients with therapeutic vs subtherapeutic ART had resistance (n = 73): no major mutations (3% vs 51%), nonnucleoside reverse transcriptase inhibitor (94% vs 44%), M184V/I (94% vs 26%), and ≥1 thymidine analogue mutations (47% vs 18%), all P = .01; and nucleoside reverse transcriptase inhibitor (NRTI) cross-resistance mutations (26% vs 13%, P = .23). Following switch, 68% (n = 83/122) achieved VL <400 copies/mL. Absence of NRTI mutations and subtherapeutic ART preswitch were associated with failure to achieve VL <400 copies/mL. Conclusions. Nonadherence, suggested by subtherapeutic ART with/without major resistance mutations, significantly contributed to failure when switching regimen. Unresolved nonadherence, not NRTI resistance, drives early second-line failure. PMID:23943851

  4. Cis- and Trans-gnetin H from Paeonia suffruticosa suppress inhibitor kappa B kinase phosphorylation in LPS-stimulated human THP-1 cells.

    PubMed

    Park, Hyo S; Vick, Eric J; Gao, Ying; He, Chunnian; Almosnid, Nadin Marwan; Farone, Mary; Farone, Anthony L

    2016-08-02

    The inflammatory response is an important mechanism in host defense; however, overstimulation and chronic inflammation are involved in many important human diseases. Currently, tumor necrosis factor-alpha blockers such as infliximab and adalimumab along with methotrexate are used in cases of severe and chronic disease. However, there are severe side effects and limitations associated with these treatments. Cis- and trans-gnetin H are compounds isolated from the seeds of Paeonia suffruticosa, a medicinal plant used in traditional Chinese medicine for the treatment of many conditions, including inflammatory diseases. In this study, we investigated possible anti-inflammatory mechanisms of cis- and trans-gnetin H against LPS-stimulated human THP-1 cells. PMA-differentiated THP-1 cells were pretreated with increasing concentrations of cis- and trans-gnetin H with or without LPS. Following treatment, cytotoxicity and the TNF-α, IL-1β, and IL-8 response were measured. We also characterized the nuclear translocation of NF-κB subunit p65 (RelA) by immunofluorescence and then investigated NF-κB activation by measuring the phosphorylation of NF-κB mediators, IKK-β, IκB α, and p65 by western blotting. We found that cis- and trans-gnetin H significantly inhibited the cytokine response in a concentration-dependent manner without affecting cell viability. Cis- and trans-gnetin H effectively inhibited nuclear translocation of p65 and phosphorylation of IKK-β, IκB α, and p65. While both compounds showed promising anti-inflammatory effects, trans-gnetin H was determined to be more effective in suppressing cytokine responses. We demonstrated that cis- and trans-gnetin H suppress cytokine response in LPS-stimulated THP-1 cells by preventing activation of key signaling molecules, IKK-β, IκB α, and p65, involved in the NF-κB pathway and suggest the use of cis- and trans-gnetin H in potential therapies for conditions and diseases associated with chronic inflammation

  5. The selective dopamine uptake inhibitor, D-84, suppresses cocaine self-administration, but does not occasion cocaine-like levels of generalization

    PubMed Central

    Batman, Angela M.; Dutta, Aloke K.; Reith, Maarten E. A.; Beardsley, Patrick M.

    2010-01-01

    A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED50 value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED50 value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine lever responding, while reducing response rates with lower potency than cocaine (ED50=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pre-treatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine abusing patients. PMID:20840845

  6. The selective dopamine uptake inhibitor, D-84, suppresses cocaine self-administration, but does not occasion cocaine-like levels of generalization.

    PubMed

    Batman, Angela M; Dutta, Aloke K; Reith, Maarten E A; Beardsley, Patrick M

    2010-12-01

    A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED(50) value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED(50) value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine-lever responding, while reducing response rates with lower potency than cocaine (ED(50)=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pretreatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine-abusing patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. BGP-15, a PARP-inhibitor, prevents imatinib-induced cardiotoxicity by activating Akt and suppressing JNK and p38 MAP kinases.

    PubMed

    Sarszegi, Zsolt; Bognar, Eszter; Gaszner, Balazs; Kónyi, Attila; Gallyas, Ferenc; Sumegi, Balazs; Berente, Zoltan

    2012-06-01

    In this study, we investigate the cardiotoxic effects of the well-known cytostatic agent imatinib mesylate (Gleevec), and presented evidence for the cardioprotective effect of BGP-15 which is a novel insulin sensitizer. The cardiotoxic effect of imatinib mesylate was assessed in Langendorff rat heart perfusion system. The cardiac high-energy phosphate levels (creatine phosphate (PCr) and ATP) were monitored in situ by (31)P NMR spectroscopy. The protein oxidation, lipid peroxidation, and the activation of signaling pathways were determined from the freeze-clamped hearts. Prolonged treatment of the heart with imatinib mesylate (20 mg/kg) resulted in cardiotoxicity, which were characterized by the depletion of high-energy phosphates (PCr and ATP), and significantly increased protein oxidation and lipid peroxidation. Imatinib mesylate treatment-induced activation of MAP kinases (including ERK1/2, p38, and JNK) and the phosphorylation of Akt and GSK-3beta. BGP-15 (200 μM) prevented the imatinib mesylate-induced oxidative damages, attenuated the depletion of high-energy phosphates, altered the signaling effect of imatinib mesylate by preventing p38 MAP kinase and JNK activation, and induced the phosphorylation of Akt and GSK-3beta. The suppressive effect of BGP-15 on p38 and JNK activation could be significant because these kinases contribute to the cell death and inflammation in the isolated perfused heart.

  8. CK2 inhibitor CX-4945 suppresses DNA repair response triggered by DNA-targeted anticancer drugs and augments efficacy: mechanistic rationale for drug combination therapy.

    PubMed

    Siddiqui-Jain, Adam; Bliesath, Joshua; Macalino, Diwata; Omori, Mayuko; Huser, Nanni; Streiner, Nicole; Ho, Caroline B; Anderes, Kenna; Proffitt, Chris; O'Brien, Sean E; Lim, John K C; Von Hoff, Daniel D; Ryckman, David M; Rice, William G; Drygin, Denis

    2012-04-01

    Drug combination therapies are commonly used for the treatment of cancers to increase therapeutic efficacy, reduce toxicity, and decrease the incidence of drug resistance. Although drug combination therapies were originally devised primarily by empirical methods, the increased understanding of drug mechanisms and the pathways they modulate provides a unique opportunity to design combinations that are based on mechanistic rationale. We have identified protein kinase CK2 as a promising therapeutic target for combination therapy, because CK2 regulates not just one but many oncogenic pathways and processes that play important roles in drug resistance, including DNA repair, epidermal growth factor receptor signaling, PI3K/AKT/mTOR signaling, Hsp90 machinery activity, hypoxia, and interleukin-6 expression. In this article, we show that CX-4945, a clinical stage selective small molecule inhibitor of CK2, blocks the DNA repair response induced by gemcitabine and cisplatin and synergizes with these agents in models of ovarian cancer. Mechanistic studies show that the enhanced activity is a result of inactivation of XRCC1 and MDC1, two mediator/adaptor proteins that are essential for DNA repair and that require phosphorylation by CK2 for their function. These data position CK2 as a valid pharmacologic target for intelligent drug combinations and support the evaluation of CX-4945 in combination with gemcitabine and platinum-based chemotherapeutics in the clinical setting. ©2012 AACR.

  9. HM71224, a novel Bruton's tyrosine kinase inhibitor, suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model: a potential drug for rheumatoid arthritis.

    PubMed

    Park, Jin Kyun; Byun, Joo-Yun; Park, Ji Ah; Kim, Yu-Yon; Lee, Ye Ji; Oh, Jeong In; Jang, Sun Young; Kim, Young Hoon; Song, Yeong Wook; Son, Jeewoong; Suh, Kwee Hyun; Lee, Young-Mi; Lee, Eun Bong

    2016-04-18

    Bruton's tyrosine kinase (Btk) is critical for activation of B cells and myeloid cells. This study aimed to characterize the effects of HM71224, a novel Btk inhibitor, both in vitro and in a mouse model of experimental arthritis. The kinase inhibition profile of HM71224 was analyzed. The in vitro effects of HM71224 on B cells and monocytes were analyzed by examining phosphorylation of Btk and its downstream signaling molecules, along with cytokine production and osteoclast formation. The in vivo effects of HM71224 were investigated in a mouse model of collagen-induced arthritis (CIA). HM71224 irreversibly bound to and inhibited Btk (IC50 = 1.95 nM). The compound also inhibited the phosphorylation of Btk and its downstream molecules such as PLCγ2, in activated Ramos B lymphoma cells and primary human B cells in a dose-dependent manner. Furthermore, HM71224 effectively inhibited the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β by human monocytes, and osteoclast formation by human monocytes. Finally, HM71224 improved experimental arthritis and prevented joint destruction in a murine model of CIA. HM71224 inhibits Btk in B cells and monocytes and ameliorates experimental arthritis in a mouse model. Thus, HM71224 is a potential novel therapeutic agent for rheumatoid arthritis in humans.

  10. Ochratoxin A inhibits the production of tissue factor and plasminogen activator inhibitor-2 by human blood mononuclear cells: Another potential mechanism of immune-suppression

    SciTech Connect

    Rossiello, Maria R.; Rotunno, Crescenzia; Coluccia, Addolorata; Carratu, Maria R.; Di Santo, Angelomaria; Evangelista, Virgilio; Semeraro, Nicola; Colucci, Mario

    2008-06-01

    The mycotoxin ochratoxin A (OTA), an ubiquitous contaminant of food products endowed with a wide spectrum of toxicity, affects several functions of mononuclear leukocytes. Monocytes/macrophages play a major role in fibrin accumulation associated with immune-inflammatory processes through the production of tissue factor (TF) and plasminogen activator inhibitor 2 (PAI-2). We studied the effect of OTA on TF and PAI-2 production by human blood mononuclear cells (MNC). The cells were incubated for 3 or 18 h at 37 deg. C with non toxic OTA concentrations in the absence and in the presence of lipopolysaccharide (LPS) or other inflammatory agents. TF activity was measured by a one-stage clotting test. Antigen assays were performed by specific ELISAs in cell extracts or conditioned media and specific mRNAs were assessed by RT-PCR. OTA had no direct effect on TF and PAI-2 production by MNC. However, OTA caused a dose-dependent reduction in LPS-induced TF (activity, antigen and mRNA) and PAI-2 (antigen and mRNA) production with > 85% inhibition at 1 {mu}g/ml. Similar results were obtained when monocyte-enriched preparations were used instead of MNC. TF production was also impaired by OTA (1 {mu}g/ml) when MNC were stimulated with phorbol myristate acetate (98% inhibition), IL-1{beta} (83%) or TNF-{alpha} (62%). The inhibition of TF and PAI-2 induction might represent a hitherto unrecognized mechanism whereby OTA exerts immunosuppressant activity.

  11. A peptide derived from the parasite receptor, complement C2 receptor inhibitor trispanning, suppresses immune complex-mediated inflammation in mice.

    PubMed

    Inal, Jameel M; Schneider, Brigitte; Armanini, Marta; Schifferli, Jürg A

    2003-04-15

    Complement C2 receptor inhibitor trispanning (CRIT) is a Schistosoma protein that binds the human complement protein, C2. We recently showed that peptides based on the ligand binding region of CRIT inhibit the classical pathway (CP) of complement activation in human serum, using hemolytic assays and so speculated that on the parasite surface CRIT has the function of evading human complement. We now show that in vitro the C2-binding 11-aa C terminus of the first extracellular domain of CRIT, a 1.3-kDa peptide termed CRIT-H17, inhibits CP activation in a species-specific manner, inhibiting mouse and rat complement but not that from guinea pig. Hitherto, the ability of CRIT to regulate complement in vivo has not been assessed. In this study we show that by inhibiting the CP, CRIT-H17 is able to reduce immune complex-mediated inflammation (dermal reversed passive Arthus reaction) in BALB/c mice. Upon intradermal injection of CRIT-H17, and similarly with recombinant soluble complement receptor type 1, there was a 41% reduction in edema and hemorrhage, a 72% reduction in neutrophil influx, and a reduced C3 deposition. Furthermore, when H17 was administered i.v. at a 1 mg/kg dose, inflammation was reduced by 31%. We propose that CRIT-H17 is a potential therapeutic agent against CP complement-mediated inflammatory tissue destruction.

  12. MYCL is a target of a BET bromodomain inhibitor, JQ1, on growth suppression efficacy in small cell lung cancer cells

    PubMed Central

    Kato, Fuyumi; Fiorentino, Francesco Paolo; Alibés, Andreu; Perucho, Manuel; Sánchez-Céspedes, Montse; Kohno, Takashi; Yokota, Jun

    2016-01-01

    We aimed to elucidate the effect of JQ1, a BET inhibitor, on small cell lung cancers (SCLCs) with MYCL amplification and/or expression. Fourteen SCLC cell lines, including four with MYCL amplification, were examined for the effects of JQ1 on protein and gene expression by Western blot and mRNA microarray analyses. The sensitivity of SCLC cells to JQ1 was assessed by cell growth and apoptosis assays. MYCL was expressed in all the 14 cell lines, whereas MYC/MYCN expression was restricted mostly to cell lines with gene amplification. ASCL1, a transcription factor shown to play a role in SCLC, was also expressed in 11/14 cell lines. All SCLC cell lines were sensitive to JQ1 with GI50 values ≤1.23 μM, with six of them showing GI50 values <0.1 μM. Expression of MYCL as well as MYCN, ASCL1 and other driver oncogenes including CDK6 was reduced by JQ1 treatment, in particular in the cell lines with high expression of the respective genes; however, no association was observed between the sensitivity to JQ1 and the levels of MYCL, MYCN and ASCL1 expression. In contrast, levels of CDK6 expression and its reduction rates by JQ1 were associated with JQ1 sensitivity. Therefore, we concluded that CDK6 is a novel target of JQ1 and predictive marker for JQ1 sensitivity in SCLC cells. PMID:27764802

  13. Tumor-suppressive p53 Signaling Empowers Metastatic Inhibitor KLF17-dependent Transcription to Overcome Tumorigenesis in Non-small Cell Lung Cancer.

    PubMed

    Ali, Amjad; Bhatti, Muhammad Zeeshan; Shah, Abdus Saboor; Duong, Hong-Quan; Alkreathy, Huda Mohammad; Mohammad, Shah Faisal; Khan, Rahmat Ali; Ahmad, Ayaz

    2015-08-28

    Metastasis, which is controlled by concerted action of multiple genes, is a complex process and is an important cause of cancer death. Krüppel-like factor 17 (KLF17) is a negative regulator of metastasis and epithelial-mesenchymal transition (EMT) during cancer progression. However, the underlying molecular mechanism and biological relevance of KLF17 in cancer cells are poorly understood. Here, we show that tumor suppressor protein p53 plays an integral role to induce KLF17 expression in non-small cell lung cancer (NSCLC). p53 is recruited to the KLF17 promoter and results in the formation of p53-DNA complex. p53 enhances binding of p300 and favors histone acetylation on the KLF17 promoter. Mechanistically, p53 physically interacts with KLF17 and thereby enhances the anti-metastatic function of KLF17. p53 empowers KLF17-mediated EMT genes transcription via enhancing physical association of KLF17 with target gene promoters. Nutlin-3 recruits KLF17 to EMT target gene promoters and results in the formation of KLF17-DNA complex via a p53-dependent pathway. p53 depletion abrogates DNA binding affinity of KLF17 to EMT target gene promoters. KLF17 is critical for p53 cellular activities in NSCLC. Importantly, KLF17 enhances p53 transcription to generate a novel positive feedback loop. KLF17 depletion accelerates lung cancer cell growth in response to chemotherapy. Mechanistically, we found that KLF17 increases the expression of tumor suppressor genes p53, p21, and pRB. Functionally, KLF17 required p53 to suppress cancer cell invasion and migration in NSCLC. In conclusion, our study highlights a novel insight into the anti-EMT effect of KLF17 via a p53-dependent pathway in NSCLC, and KLF17 may be a new therapeutic target in NSCLC with p53 status.

  14. An angiogenesis inhibitor, 2-methoxyestradiol, involutes rat collagen-induced arthritis and suppresses gene expression of synovial vascular endothelial growth factor and basic fibroblast growth factor.

    PubMed

    Brahn, Ernest; Banquerigo, Mona L; Lee, John K; Park, Eun J; Fogler, William E; Plum, Stacy M

    2008-11-01

    Rheumatoid arthritis (RA) pannus may be dependent on angiogenesis and several critical growth factors including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). 2-Methoxyestradiol (2ME2), an endogenous metabolite with low estrogen receptor affinity, has both antiangiogenic and antiproliferative activity. 2ME2 was assessed in the rat collagen-induced arthritis (CIA) model to determine if it could prevent or involute established synovitis. Rats were immunized on Day 0 with collagen and randomized to a vehicle control or two 2ME2 prevention arms. In additional studies, multiple parallel treatment arms were initiated at Day 10 after arthritis onset. 2ME2 in preventive protocols at 30 or 100 mg/kg significantly delayed the onset and reduced the severity of clinical and radiographic CIA. In established CIA, oral 2ME2 at 50 mg/kg/bid, 100 mg/kg/day, and 300 mg/kg/day reduced severity compared to vehicle controls. Efficacy of 2ME2 delivery by osmotic pumps at 60 mg/kg/day was equivalent to 300 mg/kg/day by daily gavage. The 3 oral treatment protocols all significantly reduced radiographic scores in a dose-dependent fashion, with the greatest benefit at 300 mg/kg. 2ME2 showed marked suppression of synovial gene expression of proangiogenic bFGF and VEGF, with parallel reduction of synovial blood vessels. Serum antibody levels to native type II collagen were not reduced, suggesting that 2ME2 did not influence humoral immunity. Our results indicate that 2ME2 may represent a novel agent for the treatment of inflammatory autoimmune diseases such as RA.

  15. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival

    PubMed Central

    Scuto, Anna; Krejci, Pavel; Popplewell, Leslie; Wu, Jun; Wang, Yan; Kujawski, Maciej; Kowolik, Claudia; Xin, Hong; Chen, Linling; Wang, Yafan; Kretzner, Leo; Yu, Hua; Wilcox, William R.; Yen, Yun; Forman, Stephen; Jove, Richard

    2011-01-01

    IL-6 and downstream JAK-dependent signaling pathways have critical roles in the pathophysiology of multiple myeloma. We investigated the effects of a novel small-molecule JAK inhibitor (AZD1480) on IL-6/JAK signal transduction and its biological consequences on the human myeloma-derived cell lines U266 and Kms.11. At low micromolar concentrations, AZD1480 blocks cell proliferation and induces apoptosis of myeloma cell lines. These biological responses to AZD1480 are associated with concomitant inhibition of phosphorylation of JAK2, STAT3 and MAPK signaling proteins. In addition, there is inhibition of expression of STAT3 target genes, particularly Cyclin D2. Examination of a wider variety of myeloma cells (RPMI 8226, OPM-2, NCI-H929, Kms.18, MM1.S, IM-9) as well as primary myeloma cells showed that AZD1480 has broad efficacy. By contrast, viability of normal PBMCs and CD138+ cells derived from healthy controls was not significantly inhibited. Importantly, AZD1480 induces cell death of Kms.11 cells grown in the presence of HS-5 bone marrow-derived stromal cells and inhibits tumor growth in a Kms.11 xenograft mouse model, accompanied with inhibition of phospho-FGFR3, phospho-JAK2, phospho-STAT3 and Cyclin D2 levels. In sum, AZD1480 blocks proliferation, survival, FGFR3 and JAK/STAT3 signaling in myeloma cells cultured alone or co-cultured with bone marrow stromal cells and in vivo. Thus, AZD1480 represents a potential new therapeutic agent for patients with multiple myeloma. PMID:21164517

  16. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy.

    PubMed

    Shao, Fang-Yuan; Du, Zhi-Yun; Ma, Dong-Lei; Chen, Wen-Bo; Fu, Wu-Yu; Ruan, Bi-Bo; Rui, Wen; Zhang, Jia-Xuan; Wang, Sheng; Wong, Nai Sum; Xiao, Hao; Li, Man-Mei; Liu, Xiao; Liu, Qiu-Ying; Zhou, Xiao-Dong; Yan, Hai-Zhao; Wang, Yi-Fei; Chen, Chang-Yan; Liu, Zhong; Chen, Hong-Yuan

    2015-10-13

    The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy.

  17. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    SciTech Connect

    Lou, Hai-zhou; Weng, Xiao-chuan; Pan, Hong-ming; Pan, Qin; Sun, Peng; Liu, Li-li; Chen, Bin

    2014-07-25

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.

  18. MLN4924, a novel protein neddylation inhibitor, suppresses proliferation and migration of human urothelial carcinoma: In vitro and in vivo studies.

    PubMed

    Kuo, Kuan Lin; Ho, I Lin; Shi, Chung Sheng; Wu, June Tai; Lin, Wei Chou; Tsai, Yu Chieh; Chang, Hong Chiang; Chou, Chien Tso; Hsu, Chen Hsun; Hsieh, Ju Ton; Chang, Shih Chen; Pu, Yeong Shiau; Huang, Kuo How

    2015-07-28

    MLN4924, a small molecule inhibitor of NEDD8 activating enzyme (NAE), has been reported to elicit an anti-tumor effect on various malignancies. In this study, we investigated the anti-tumor effect of MLN4924 in human urothelial carcinoma (UC) in vitro and in vivo by using three human UC cell lines of various grading (T24, NTUB1 and RT4). The impact of MLN4924 on UC cells was determined by measuring viability (MTT), proliferation (BrdU incorporation), cell cycle progression (flow cytometry with propidium iodide staining) and apoptosis (flow cytometry with annexin V-FITC labeling). The cell cycle regulatory molecules, apoptosis-related molecules, and cell stress-related proteins were examined by Western blotting. The influence of tumor cell migration and invasion was analyzed by Transwell and wound healing assays. We also evaluated the effects of MLN4924 on tumor growth by a SCID xenograft mouse model. The data show that MLN4924 induced dose-dependent cytotoxicity, anti-proliferation, anti-migration, anti-invasion and apoptosis in human UC cells, accompanied by activations of Bad, phospho-histone H2A.X, caspase-3, 7 and PARP, decreased level of phospho-Bcl2, and caused cell cycle retardation at the G2M phase. Moreover, MLN4924 activated endoplasmic reticulum stress-related molecules (caspase-4, phospho-eIF2α, ATF-4 and CHOP) and other stress responses (JNK and c-Jun activations). Finally, we confirmed MLN4924 inhibited tumor growth in a UC xenograft mouse model with minimal general toxicity. We concluded that MLN4924 induces apoptosis and cell cycle arrest, as well as activation of cell stress responses in human UC. These findings imply MLN4924 provides a novel strategy for the treatment of UC.

  19. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    SciTech Connect

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung; Park, Yoorim; Bang, Jung-Wook; Kim, Tae Sung; Park, Hyunjeong; Kim, Cherl-hyun; Yang, Yool-hee; Bang, Sa Ik; Cho, Daeho

    2008-09-12

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-{gamma} inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-{gamma} production, we measured IL-18-induced IFN-{gamma} production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-{gamma} expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-{gamma} production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-{gamma} production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-{gamma} production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-{gamma} production via p38 MAPK.

  20. Diclofenac, a selective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF.

    PubMed

    Kaur, Jasmeet; Sanyal, S N

    2011-09-01

    Angiogenesis is a physiological process involving growth of new blood vessels from pre-existing ones; however, it also plays a critical role in tumor progression. It favors the transition from hyperplasia to neoplasia, that is, from a state of cellular multiplication to uncontrolled proliferation. Therefore targeting angiogenesis will be profitable as a mechanism to inhibit tumor's lifeline. Further, it is important to understand the cross-communication between vascular endothelial growth factor (VEGF)-master switch in angiogenesis and other molecules in the neoplastic and pro-inflammatory milieu. We studied the role of two important chemokines [monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory protein (MIP)-lα] alongwith VEGF and matrix metalloproteinases (MMPs) in non-steroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effect in experimental colon cancer in rat. 1,2-Dimethylhydrazine (DMH, 30 mg/kg body weight, subcutaneously (s.c.) once-a-week) for 18 wk was used as pro-carcinogen and diclofenac (8 mg/kg body weight, orally daily) as the preferential cyclooxygenase-2 (COX-2) inhibitor. Expression of COX-2 and VEGF was found to be significantly elevated in the DMH-treated group as compared to the control, which was lowered notably by Diclofenac co-administration with DMH. Gelatin zymography showed prominent MMP-9 activity in the DMH-treated rats, while the activity was nearly absent in all the other groups. Expression of MCP-1 was found to be markedly increased whereas MIP-1α expression was found to be decreased in colonic mucosa from DMH-treated rats, which was reversed in the DMH + Diclofenac group. Our results indicate potential role of chemokines alongwith VEGF in angiogenesis in DMH-induced cancer and its chemoprevention with diclofenac.

  1. Olanzapine augments the effect of selective serotonin reuptake inhibitors by suppressing GABAergic inhibition via antagonism of 5-HT₆ receptors in the dorsal raphe nucleus.

    PubMed

    Asaoka, Nozomi; Nagayasu, Kazuki; Nishitani, Naoya; Yamashiro, Mayumi; Shirakawa, Hisashi; Nakagawa, Takayuki; Kaneko, Shuji

    2015-08-01

    The combination of the selective serotonin reuptake inhibitors (SSRIs) and atypical antipsychotic drugs shows better therapeutic efficacy than SSRI monotherapy in the treatment of depression. However, the underlying mechanisms responsible for the augmenting effects of olanzapine are not fully understood. Here, we report that olanzapine enhances the SSRI-induced increase in extracellular serotonin (5-HT) levels and antidepressant-like effects by inhibiting GABAergic neurons through 5-HT6 receptor antagonism in the dorsal raphe nucleus (DRN). In organotypic raphe slice cultures, treatment with olanzapine (1-100 μM) enhanced the increase in extracellular 5-HT levels in the presence of fluoxetine (10 μM) or citalopram (1 μM). The enhancing effect of olanzapine was not further augmented by the GABAA receptor antagonist bicuculline. Electrophysiological analysis revealed that olanzapine (50 μM) decreased the firing frequency of GABAergic neurons in acute DRN slices. Among many serotonergic agents, the 5-HT6 receptor antagonist SB399885 (1-100 μM) mimicked the effects of olanzapine by enhancing the SSRI-induced increase in extracellular 5-HT levels, which was not further augmented by bicuculline or olanzapine. SB399885 (50 μM) also decreased the firing frequency of GABAergic neurons in the DRN. In addition, an intraperitoneal administration of SB399885 (10 mg/kg) to mice significantly enhanced the antidepressant-like effect of a subeffective dose of citalopram (3 mg/kg) in the tail-suspension test. These results suggest that olanzapine decreases local inhibitory GABAergic tone in the DRN through antagonism of 5-HT6 receptors, thereby increasing the activity of at least part of serotonergic neurons, which may contribute to the augmentation of the efficacy of SSRIs.

  2. Down-regulation of the PTTG1 proto-oncogene contributes to the melanoma suppressive effects of the cyclin-dependent kinase inhibitor PHA-848125.

    PubMed

    Caporali, Simona; Alvino, Ester; Levati, Lauretta; Esposito, Alessia I; Ciomei, Marina; Brasca, Maria G; Del Bufalo, Donatella; Desideri, Marianna; Bonmassar, Enzo; Pfeffer, Ulrich; D'Atri, Stefania

    2012-09-01

    We previously demonstrated that PHA-848125, a cyclin-dependent kinase inhibitor presently under Phase II clinical investigation, impairs melanoma cell growth. In this study, gene expression profiling showed that PHA-848125 significantly modulated the expression of 128 genes, predominantly involved in cell cycle control, in the highly drug-sensitive GL-Mel (p53 wild-type) melanoma cells. Up-regulation of 4 selected genes (PDCD4, SESN2, DDIT4, DEPDC6), and down-regulation of 6 selected genes (PTTG1, CDC25A, AURKA, AURKB, PLK1, BIRC5) was confirmed at protein levels. The same protein analysis performed in PHA-848125-treated M10 melanoma cells - p53 mutated and less sensitive to the drug than GL-Mel cells - revealed no DEPDC6 expression and no changes of PTTG1, PDCD4 and BIRC5 levels. Upon PHA-848125 treatment, a marked PTTG1 down-modulation was also observed in A375 cells (p53 wild-type) but not in CN-Mel cells (p53 mutated). PTTG1 silencing significantly inhibited melanoma cell proliferation and induced senescence, with effects less pronounced in p53 mutated cells. PTTG1 silencing increased PHA-848125 sensitivity of p53 mutated cells but not that of A375 or GL-Mel cells. Accordingly, in M10 but not in A375 cells a higher level of senescence was detected in PHA-848125-treated/PTTG1-silenced cells with respect to PHA-848125-treated controls. In A375 and GL-Mel cells, TP53 silencing attenuated PHA-848125-induced down-modulation of PTTG1 and decreased cell sensitivity to the drug. These findings indicate that PHA-848125-induced down-regulation of PTTG1 depends, at least in part, on p53 function and contributes to the antiproliferative activity of the drug. Our study provides further molecular insight into the antitumor mechanism of PHA-848125. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Suppression of Human T Cell Proliferation Mediated by the Cathepsin B Inhibitor, z-FA-FMK Is Due to Oxidative Stress.

    PubMed

    Rajah, Tanuja; Chow, Sek Chuen

    2015-01-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK) readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK) had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.

  4. Treatment with the PI3K inhibitor buparlisib (NVP-BKM120) suppresses the growth of established patient-derived GBM xenografts and prolongs survival in nude rats.

    PubMed

    Netland, I A; Førde, H E; Sleire, L; Leiss, L; Rahman, M A; Skeie, B S; Miletic, H; Enger, P Ø; Goplen, D

    2016-08-01

    Glioblastomas (GBMs) are aggressive brain tumours with a dismal prognosis, despite combined surgery, radio- and chemotherapy. Close to 90 % of all GBMs harbour a deregulated PI3K pathway, which is essential in regulating central cellular functions such as proliferation, cell growth, motility and survival. Thus, PI3K represents a potential target for molecular therapy in GBM. We investigated the anti-tumour efficacy of the PI3K inhibitor buparlisib (NVP-BKM120) in GBM cell lines in vitro and in vivo, when treatment was initiated after MRI-confirmed tumour engraftment. We found that buparlisib inhibited glioma cell proliferation in a dose dependent manner, demonstrated by MTS assay, manual cell count and BrdU incorporation. A dose dependent increase in apoptosis was observed through flow cytometric analysis. Furthermore, by immunocytochemistry and western blot, we found a dose dependent inhibition of Akt phosphorylation. Moreover, buparlisib prolonged survival of nude rats harboring human GBM xenografts in three independent studies and reduced the tumours' volumetric increase, as determined by MRI. In addition, histological analyses of xenograft rat brains showed necrotic areas and change in tumour cell nuclei in buparlisib-treated animals. The rats receiving buparlisib maintained their weight, activity level and food- and water intake. In conclusion, buparlisib effectively inhibits glioma cell proliferation in vitro and growth of human GBM xenografts in nude rats. Moreover, the compound is well tolerated when administered at doses providing anti-tumour efficacy. Thus, buparlisib may have a future role in glioma therapy, and further studies are warranted to validate this compound for human use.

  5. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: Effects on peripheral sensory nerve function, structure and molecular changes.

    PubMed

    Tsuboi, Kentaro; Mizukami, Hiroki; Inaba, Wataru; Baba, Masayuki; Yagihashi, Soroku

    2015-11-25

    Incretin-related therapy was found to be beneficial for experimental diabetic neuropathy, but its mechanism is obscure. The purpose of this study is to explore the mechanism through which dipeptidyl peptidase IV inhibitor, vildagliptin (VG), influences neuropathy in diabetic rodents. To this end, non-obese type 2 diabetic Goto-Kakizaki rats (GK) and streptozotocin (STZ)-induced diabetic mice were treated with VG orally. Neuropathy was evaluated by nerve conduction velocity (NCV) in both GK and STZ-diabetic mice, whereas calcitonin-gene-related peptide (CGRP) expressions, neuronal cell size of dorsal root ganglion (DRG) and intraepidermal nerve fiber density (IENFD) were examined in GK. DRG from GK and STZ-diabetic mice served for analyses of GLP-1 and insulin signaling. As results, VG-treatment improved glucose intolerance and increased serum insulin and GLP-1 in GK accompanied by the amelioration of delayed NCV and neuronal atrophy, reduced CGRP expressions and IENFD. Diet restriction alone did not significantly influence these measures. Impaired GLP-1 signals such as CREB, PKB/Akt and S6RP in DRG of GK were restored in VG-treated group, but the effect was equivocal in diet-treated GK. Concurrently, decreased phosphorylation of insulin receptor substrate-2 (IRS2) in GK was corrected by VG-treatment. Consistent with the effect on GK, VG-treatment improved NCV in diabetic mice without influence on hyperglycemia. DRG of VG-treated diabetic mice were characterized by correction of GLP-1 signals and IRS2 phosphorylation without effects on insulin receptor-β expression. The results suggest close association of neuropathy development with impaired signaling of insulin and GLP-1 in diabetic rodents. This article is protected by copyright. All rights reserved.

  6. Suppression of eosinophil function by RP 73401, a potent and selective inhibitor of cyclic AMP-specific phosphodiesterase: comparison with rolipram.

    PubMed Central

    Souness, J. E.; Maslen, C.; Webber, S.; Foster, M.; Raeburn, D.; Palfreyman, M. N.; Ashton, M. J.; Karlsson, J. A.

    1995-01-01

    1. We have investigated the inhibitory potency of RP 73401, a novel, highly selective and potent inhibitor of cyclic AMP-specific phosphodiesterase (PDE IV), against partially-purified PDE isoenzymes from smooth muscle and the particulate PDE IV from guinea-pig eosinophils. The inhibitory effects of RP 73401 on the generation of superoxide (.O2-), major basic protein (MBP) and eosinophil cationic protein (ECP) from guinea-pig eosinophils have also been studied. 2. RP 73401 potently inhibited partially-purified cyclic AMP-specific phosphodiesterase (PDE IV) from pig aortic smooth muscle (IC50 = 1.2 nM); it was similarly potent against the particulate PDE IV from guinea-pig peritoneal eosinophils (IC50 = 0.7 nM). It displayed at least a 19000 fold selectivity for PDE IV compared to its potencies against other PDE isoenzymes. Rolipram was approximately 2600 fold less potent than RP 73401 against pig aortic smooth muscle PDE IV (IC50 = 3162 nM) and about 250 times less potent against eosinophil PDE IV (IC50 = 186 nM). 3. Solubilization of the eosinophil particulate PDE IV increased the potency of rolipram 10 fold but did not markedly affect the potency of RP 73401. A similar (10 fold) increase in the PDE IV inhibitory potency of rolipram, but not RP 73401, was observed when eosinophil membranes were exposed to vanadate/glutathione complex (V/GSH). 4. Reverse transcription polymerase chain reaction (RT-PCR), using primer pairs designed against specific sequences in four distinct rat PDE IV subtype cDNA clones (PDE IVA-D), showed only mRNA for PDE IVD in guinea-pig eosinophils. PDE IVD was also the predominant subtype expressed in pig aortic smooth muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 6 PMID:7647982

  7. CpG in Combination with an Inhibitor of Notch Signaling Suppresses Formalin-Inactivated Respiratory Syncytial Virus-Enhanced Airway Hyperresponsiveness and Inflammation by Inhibiting Th17 Memory Responses and Promoting Tissue-Resident Memory Cells in Lungs.

    PubMed

    Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing; Zeng, Ruihong; Wei, Lin

    2017-05-15

    Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8(+) lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs.IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and

  8. Low-dose paclitaxel ameliorates renal fibrosis by suppressing transforming growth factor-β1-induced plasminogen activator inhibitor-1 signaling.

    PubMed

    Jung, Eun Sook; Lee, Jeonghwan; Heo, Nam Ju; Kim, Sejoong; Kim, Dong Ki; Joo, Kwon Wook; Han, Jin Suk

    2016-07-01

    To investigate the effect of microtubule stabilization with low-dose paclitaxel on renal fibrosis, focusing on the transforming growth factor-β1 (TGF-β1)-induced plasminogen activator inhibitor-1 (PAI-1) signaling cascade. Forty-eight rats were randomly assigned to four groups: sham/vehicle, sham/paclitaxel, unilateral ureteral obstruction (UUO)/vehicle and UUO/paclitaxel. Rats were treated with a 0.3 mg/kg intraperitoneal dose of paclitaxel or vehicle twice per week for 14 days. Half of the rats in each group were sacrificed respectively on day 7 and 14 after operation. Inner medullar collecting duct (IMCD) cells stimulated with TGF-β1 were incubated with 0, 1 and 2 nM paclitaxel for 24 and 72 hours. Histological changes were assessed using periodic acid-Schiff and Masson's trichrome. The TGF-β1-induced PAI-1 signaling and status of extracellular matrix proteins were evaluated by western blot analysis. In the UUO kidneys, paclitaxel significantly attenuated tubular damage and interstitial collagen deposition, as well as α-smooth muscle actin (α-SMA), TGF-β1 and PAI-1 protein expression. Paclitaxel also inhibited the UUO-induced activation of Smad2/3 and c-Jun N-terminal kinase (JNK). However, paclitaxel treatment did not inhibit extracellular signal-regulated kinase 1/2 (ERK1/2) or p38 expression. In TGF-β1-treated IMCD cells, treatment with 1 and 2 nM paclitaxel for 72 h reduced fibronectin, α-SMA and PAI-1 protein expression. Moreover, a 2 nM dose of paclitaxel for 24 h significantly inhibited the TGF-β1-stimulated activation of Smad2/3, JNK and ERK1/2 in IMCD cells. Paclitaxel at low non-cytotoxic doses ameliorates renal fibrosis by inhibiting multiple steps in the TGF-β1-induced PAI-1 signaling including Smads and mitogen-activated protein kinases. © 2016 Asian Pacific Society of Nephrology.

  9. The IRE1/bZIP60 Pathway and Bax Inhibitor 1 Suppress Systemic Accumulation of Potyviruses and Potexviruses in Arabidopsis and Nicotiana benthamiana Plants.

    PubMed

    Gaguancela, Omar Arias; Zúñiga, Lizbeth Peña; Arias, Alexis Vela; Halterman, Dennis; Flores, Francisco Javier; Johansen, Ida Elisabeth; Wang, Aiming; Yamaji, Yasuyuki; Verchot, Jeanmarie

    2016-10-01

    The inositol requiring enzyme (IRE1) is an endoplasmic reticulum (ER) stress sensor. When activated, it splices the bZIP60 mRNA, producing a truncated transcription factor that upregulates genes involved in the unfolded protein response. Bax inhibitor 1 (BI-1) is another ER stress sensor that regulates cell death in response to environmental assaults. The potyvirus 6K2 and potexvirus TGB3 proteins are known to reside in the ER, serving, respectively, as anchors for the viral replicase and movement protein complex. This study used green fluorescent protein (GFP)-tagged Turnip mosaic virus (TuMV), Plantago asiatica mosaic virus (PlAMV), Potato virus Y (PVY), and Potato virus X (PVX) to determine that the IRE1/bZIP60 pathway and BI-1 machinery are induced early in virus infection in Arabidopsis thaliana, Nicotiana benthamiana, and Solanum tuberosum. Agrodelivery of only the potyvirus 6K2 or TGB3 genes into plant cells activated bZIP60 and BI-1 expression in Arabidopsis thaliana, N. benthamiana, and S. tuberosum. Homozygous ire1a-2, ire1b-4, and ire1a-2/ire1b-4 mutant Arabidopsis plants were inoculated with TuMV-GFP or PlAMV-GFP. PlAMV accumulates to a higher level in ire1a-2 or ire1a-2/ire1b-4 mutant plants than in ire1b-4 or wild-type plants. TuMV-GFP accumulates to a higher level in ire1a-2, ire1b-4, or ire1a-2/ire1b-4 compared with wild-type plants, suggesting that both isoforms contribute to TuMV-GFP infection. Gene silencing was used to knock down bZIP60 and BI-1 expression in N. benthamiana. PVX-GFP and PVY-GFP accumulation was significantly elevated in these silenced plants compared with control plants. This study demonstrates that two ER stress pathways, namely IRE1/bZIP60 and the BI-1 pathway, limit systemic accumulation of potyvirus and potexvirus infection. Silencing BI-1 expression also resulted in systemic necrosis. These data suggest that ER stress-activated pathways, led by IRE1 and BI-1, respond to invading potyvirus and potexviruses to restrict virus

  10. In vitro suppression of the lipogenic pathway by the nonnucleoside reverse transcriptase inhibitor efavirenz in 3T3 and human preadipocytes or adipocytes.

    PubMed

    El Hadri, Khadija; Glorian, Martine; Monsempes, Christelle; Dieudonné, Marie-Noëlle; Pecquery, René; Giudicelli, Yves; Andreani, Marise; Dugail, Isabelle; Fève, Bruno

    2004-04-09

    A serious metabolic syndrome combining insulin-resistance, dyslipidemia, central adiposity, and peripheral lipoatrophy has arisen in HIV-infected patients receiving highly active antiretroviral therapy. The aim of this work was to examine the effects of the nonnucleoside reverse transcriptase inhibitor (NNRTI) efavirenz on adipocyte differentiation and metabolism. When induced to differentiate in the presence of efavirenz (5-50 microm), 3T3-F442A preadipocytes failed to accumulate cytoplasmic triacylglycerol droplets. This phenomenon was rapidly reversible and was also readily detectable in the 3T3-L1 preadipose cell line and in primary cultures of human preadipocytes. When applied to mature 3T3-F442A adipocytes, efavirenz induced a delayed and moderate reduction in cell triglyceride content. Measurement of [(3)H]deoxyglucose uptake, basal and agonist-stimulated lipolysis, and cell viability indicated that these pathways are not involved in efavirenz effects on triacylglycerol accumulation. By contrast, we found that the NNRTI induced a dramatic dose- and time-dependent decrease in gene and protein expression of the lipogenic transcription factor sterol regulatory element-binding protein-1c (SREBP-1c). Adipose conversion was only altered at the highest efavirenz concentrations, as suggested by the mild reduction in peroxisome proliferator-activated receptor-gamma and CCAAT/enhancer-binding protein-alpha. CCAAT/enhancer-binding protein-beta remained unchanged. The inhibition of SREBP-1c expression was accompanied by a sharp reduction in the expression of SREBP-1c target genes and in the adipocyte lipogenic activity in efavirenz-treated cells. Finally, the inhibitory effect of efavirenz on cell triglyceride accumulation was prevented by directly providing free fatty acids to the cells and was reversed by overexpression of a dominant positive form of SREBP-1c, reinforcing the implication of this transcription factor in the antilipogenic effect of the drug. When

  11. Nuclear factor κB inhibitor BAY 11-7082 suppresses oxidative stress induced by endothelin-1 (ET-1) in rat kidney.

    PubMed

    Kowalczyk, Agata; Kołodziejczyk, Michał; Gorąca, Anna

    2015-12-31

    The aim of the study was to evaluate the effect of BAY 11-7082, an NF-κB inhibitor, on basal and ET-1-induced production of reactive oxygen species (ROS), TNF-α and p65 protein in rat kidney. The experimental animals were divided into five groups (n=7) receiving: 1) saline (control); 2 and 3) ET-1 in a dose of 3 μg/kg body weight (b.w.) or 12.5 μg/kg b.w.; 4) BAY 11-7082 (10 mg/kg b.w.); 5) BAY 11-7082 (10 mg/kg b.w.) and ET-1 (12.5 μg/kg b.w.), respectively. In kidney homogenates the concentration of thiobarbituric acid reactive substances (TBARS), H2O2, TNF-α, p65 protein and GSH/GSSG ratio were determined. ET-1 resulted in a dose-dependent increase in TBARS and hydrogen peroxide (H2O2) levels, and a decrease in GSH/GSSG ratio when compared to the controls. BAY 11-7082 administered 1 h before ET-1 administration at a dose of 12.5 μg/kg resulted in a decrease (P<0.001) in TBARS and H2O2 levels and an increase (P<0.001) in GSH/GSSG ratio compared to the ET-1 groups. The level of TNF-α was increased (P<0.001) in the presence of ET-1, while BAY 11-7082 reduced the TNF-α level (P<0.001). The rats receiving BAY 11-7082 showed a decrease in NF-κB p65 protein level in the nuclear fraction and an increase in the cytoplasmic fraction. The results suggest that BAY 11-7082 plays a protective role against ET-1 induced oxidative stress in kidney tissue. These actions of BAY 11-7082 may result from reduced activity of NF-κB signaling pathways. Inhibition of the NF-κB pathway may be a promising strategy for preventing the progression of kidney damage.

  12. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, potentiate the anti-angiogenic effects of bevacizumab by suppressing angiopoietin2, BiP, and Hsp90α in human colorectal cancer.

    PubMed

    Lee, S J; Lee, I; Lee, J; Park, C; Kang, W K

    2014-07-29

    Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are commonly prescribed because of their therapeutic and preventive effects on cardiovascular diseases. Even though they have been occasionally reported to have antitumour activity, it is unknown whether statins have anti-angiogenic effect in human colorectal cancer (CRC). A total of 11 human CRC cell lines were used to test the effects of bevacizumab, statins, and bevacizumab plus statins on human umbilical vein endothelial cell (HUVEC) viability and invasion in vitro. To determine the molecular mechanism of statins as anti-angiogenic agents, we performed an angiogenesis antibody array and proteomics analysis and confirmed the results using immunoblot assay, HUVEC invasion rescue assay, and siRNA assay. The antitumoural effects of bevacizumab and statins were evaluated in xenograft models. A conventional dose of statins (simvastatin 0.2 μM, lovastatin 0.4 μM, atorvastatin 0.1 μM, and pravastatin 0.4 μM) in combination with bevacizumab directly reduced the cell viability, migration, invasion, and tube formation of HUVECs. The culture media of the CRC cells treated with bevacizumab or statins were also found to inhibit HUVEC invasion by suppressing angiogenic mediators, such as angiopoietin2, binding immunoglobulin protein (BiP), and Hsp90α. The combined treatment with bevacizumab and simvastatin significantly reduced the growth and metastases of xenograft tumours compared with treatment with bevacizumab alone. The addition of simvastatin at a dose used in patients with cardiovascular diseases (40-80 mg once daily) may potentiate the anti-angiogenic effects of bevacizumab on CRC by suppressing angiopoietin2, BiP, and Hsp90α in cancer cells. A clinical trial of simvastatin in combination with bevacizumab in patients with CRC is needed.

  13. Endotoxin Tolerance Inhibits Degradation of Tumor Necrosis Factor Receptor-Associated Factor 3 by Suppressing Pellino 1 Expression and the K48 Ubiquitin Ligase Activity of Cellular Inhibitor of Apoptosis Protein 2.

    PubMed

    Li, Peizhi; Liu, Hongxiang; Zhang, Yiyin; Liao, Rui; He, Kun; Ruan, Xiongzhong; Gong, Jianping

    2016-09-15

    Pellino 1 positively regulates Toll-like receptor 4 signaling by regulating tumor necrosis factor receptor-associated factor 3 (TRAF3) degradation and is suppressed with the induction of endotoxin tolerance. However, the role of TRAF3 in endotoxin tolerance is largely unknown. In this study, we found that lipopolysaccharide (LPS) stimulation decreased TARF3 protein expression in mouse Kupffer cells (KCs) and liver tissues, whereas endotoxin tolerization abrogated this effect. Degradative TRAF3 K48-linked ubiquitination and the cytoplasmic translocation of the MYD88-associated multiprotein complex were significantly inhibited in tolerized KCs, which led to markedly impaired activation of MYD88-dependent JNK and p38 and downregulation of inflammatory cytokines. TRAF3 ablation failed to induce a fully endotoxin-tolerant state in RAW264.7 cells. Pellino 1 knockdown in Raw264.7 cells did not impair induction of cIAP2 in response to LPS but inhibited the K63-linked ubiquitination of cellular inhibitor of apoptosis protein 2 (cIAP2) and K48-linked ubiquitination of TRAF3 protein. We also found upregulation of Pellino 1 and downregulation of TRAF3 in liver tissues of patients with cholangitis. Our findings reveal a novel mechanism that endotoxin tolerance reprograms mitogen-activated protein kinase signaling by suppressing Pellino 1-mediated K63-linked ubiquitination of cIAP2, K48-linked ubiquitination, and degradation of TRAF3. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  14. A novel ligand-independent peptide inhibitor of TREM-1 suppresses tumor growth in human lung cancer xenografts and prolongs survival of mice with lipopolysaccharide-induced septic shock

    PubMed Central

    Sigalov, Alexander B.

    2014-01-01

    Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the inflammatory response and plays a role in cancer and sepsis. Inhibition of TREM-1 by short hairpin RNA (shRNA) in macrophages suppresses cancer cell invasion in vitro. In the clinical setting, high levels of TREM-1 expression on tumor-associated macrophages are associated with cancer recurrence and poor survival of patients with non-small cell lung cancer (NSCLC). TREM-1 upregulation on peritoneal neutrophils has been found in human sepsis patients and in mice with experimental lipopolysaccharide (LPS)-induced septic shock. However, the precise function of TREM-1 and the nature of its ligand are not yet known. In this study, we used the signaling chain homooligomerization (SCHOOL) model of immune signaling to design a novel, ligand-independent peptide-based TREM-1 inhibitor and demonstrated that this peptide specifically silences TREM-1 signaling in vitro and in vivo. Utilizing two human lung tumor xenograft nude mouse models (H292 and A549) and mice with LPS-induced sepsis, we show for the first time that blockade of TREM-1 function using non-toxic and non-immunogenic SCHOOL peptide inhibitors: 1) delays tumor growth in xenograft models of human NSCLC, 2) prolongs survival of mice with LPS-induced septic shock, and 3) substantially decreases cytokine production in vitro and in vivo. In addition, targeted delivery of SCHOOL peptides to macrophages utilizing lipoprotein-mimicking nanoparticles significantly increased peptide half-life and dosage efficacy. Together, the results suggest that ligand-independent modulation of TREM-1 function using small synthetic peptides might be a suitable treatment for sepsis and NSCLC and possibly other types of inflammation-associated disorders. PMID:24836682

  15. In vivo suppression of vein graft disease by nonviral, electroporation-mediated, gene transfer of tissue inhibitor of metalloproteinase-1 linked to the amino terminal fragment of urokinase (TIMP-1.ATF), a cell-surface directed matrix metalloproteinase inhibitor.

    PubMed

    Eefting, Daniel; de Vries, Margreet R; Grimbergen, Jos M; Karper, Jacco C; van Bockel, J Hajo; Quax, Paul H A

    2010-02-01

    Smooth muscle cell (SMC) migration and proliferation are important in the development of intimal hyperplasia, the major cause of vein graft failure. Proteases of the plasminogen activator (PA) system and of the matrix metalloproteinase (MMP) system are pivotal in extracellular matrix degradation and, by that, SMC migration. Previously, we demonstrated that inhibition of both protease systems simultaneously with viral gene delivery of the hybrid protein TIMP-1.ATF, consisting of the tissue inhibitor of metalloproteinase-1 (TIMP-1) and the receptor-binding amino terminal fragment (ATF) of urokinase, reduces SMC migration and neointima formation in an in vitro restenosis model using human saphenous vein cultures more efficiently than both protease systems separately. Because use of viral gene delivery is difficult in clinical application, this study used nonviral delivery of TIMP-1.ATF plasmid to reduce vein graft disease in a murine bypass model. Nonviral gene transfer by electroporation was used to avert major disadvantages of viral gene delivery, such as immune responses and short-term expression. Plasmids encoding ATF, TIMP-1, TIMP-1.ATF, or luciferase, as a control, were injected and electroporated in both calf muscles of hypercholesterolemic apolipoprotein E3-Leiden (APOE*3Leiden) mice (n = 8). One day after electroporation, a venous interposition of a donor mouse was placed into the carotid artery of a recipient mouse. In this model, vein graft thickening develops with features of accelerated atherosclerosis. Vein grafts were harvested 4 weeks after electroporation and surgery, and histologic analysis of the vessel wall was performed. Electroporation-mediated overexpression of the plasmid vectors resulted in a prolonged expression of the transgenes and resulted in a significant reduction of vein graft thickening (ATF: 36% +/- 9%, TIMP-1: 49% +/- 5%, TIMP-1.ATF: 58% +/- 5%; P < .025). Although all constructs reduced vein graft thickening compared with the

  16. Shikonin, a constituent of Lithospermum erythrorhizon exhibits anti-allergic effects by suppressing orphan nuclear receptor Nr4a family gene expression as a new prototype of calcineurin inhibitors in mast cells.

    PubMed

    Wang, Xiaoyu; Hayashi, Shusaku; Umezaki, Masahito; Yamamoto, Takeshi; Kageyama-Yahara, Natsuko; Kondo, Takashi; Kadowaki, Makoto

    2014-12-05

    Over the last few decades, food allergy (FA) has become a common disease in infants in advanced countries. However, anti-allergic medicines available in the market have no effect on FA, and consequently effective drug therapies for FA are not yet available. We have already demonstrated that mucosal mast cells play an essential role in the development of FA in a murine model. Thus, we screened many constituents from medicinal herbs for the ability to inhibit rat basophilic leukemia-2H3 mast-like cell degranulation, and found that shikonin, a naphthoquinone dye from Lithospermum erythrorhizon, exhibited the most potent inhibitory effect among them. Furthermore, shikonin extremely inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of tumor necrosis factor (TNF)-α mRNA expression in mucosal-type bone marrow-derived mast cells (mBMMCs). Global gene expression analysis confirmed by real-time PCR revealed that shikonin drastically inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of mRNA expression of the nuclear orphan receptor 4a family (Nr4a1, Nr4a2 and Nr4a3) in mBMMCs, and knockdown of Nr4a1 or Nr4a2 suppressed the IgE/antigen-induced upregulation of TNF-α mRNA expression. Computational docking simulation of a small molecule for a target protein is a useful technique to elucidate the molecular mechanisms underlying the effects of drugs. Therefore, the simulation revealed that the predicted binding sites of shikonin to immunophilins (cyclophilin A and FK506 binding protein (FKBP) 12) were almost the same as the binding sites of immunosuppressants (cyclosporin A and FK506) to immunophilins. Indeed, shikonin inhibited the calcineurin activity to a similar extent as cyclosporin A that markedly suppressed the IgE/antigen-enhanced mRNA expression of TNF-α and the Nr4a family in mBMMCs. These findings suggest that shikonin suppresses mucosal mast cell activation by reducing Nr4a family gene expression through the

  17. Cutting Edge: Nanogel-Based Delivery of an Inhibitor of CaMK4 to CD4+ T Cells Suppresses Experimental Autoimmune Encephalomyelitis and Lupus-like Disease in Mice.

    PubMed

    Otomo, Kotaro; Koga, Tomohiro; Mizui, Masayuki; Yoshida, Nobuya; Kriegel, Christina; Bickerton, Sean; Fahmy, Tarek M; Tsokos, George C

    2015-12-15

    Treatment of autoimmune diseases is still largely based on the use of systemically acting immunosuppressive drugs, which invariably cause severe side effects. Calcium/calmodulin-dependent protein kinase IV is involved in the suppression of IL-2 and the production of IL-17. Its pharmacologic or genetic inhibition limits autoimmune disease in mice. In this study, we demonstrate that KN93, a small-molecule inhibitor of calcium/calmodulin-dependent protein kinase IV, targeted to CD4(+) T cells via a nanolipogel delivery system, markedly reduced experimental autoimmune encephalomyelitis and was 10-fold more potent than the free systemically delivered drug in the lupus mouse models. The targeted delivery of KN93 did not deplete T cells but effectively blocked Th17 cell differentiation and expansion as measured in the spinal cords and kidneys of mice developing experimental autoimmune encephalomyelitis or lupus, respectively. These results highlight the promise of cell-targeted inhibition of molecules involved in the pathogenesis of autoimmunity as a means of advancing the treatment of autoimmune diseases.

  18. Obg-like ATPase 1 regulates global protein serine/threonine phosphorylation in cancer cells by suppressing the GSK3β-inhibitor 2-PP1 positive feedback loop.

    PubMed

    Xu, Dong; Song, Renduo; Wang, Guohui; Jeyabal, Prince V S; Weiskoff, Amanda M; Ding, Kefeng; Shi, Zheng-Zheng

    2016-01-19

    OLA1 is an Obg family P-loop NTPase that possesses both GTP- and ATP-hydrolyzing activities. Here we report that OLA1 is a GSK3β interacting protein, and through its ATPase activity, inhibits the GSK3β-mediated activation of protein serine/threonine phosphatase 1 (PP1). It is hypothesized that GSK3β phosphorylates inhibitor 2 (I-2) of PP1 at Thr-72 and activates the PP1 · I-2 complex, which in turn dephosphorylates and stimulates GSK3β, thus forming a positive feedback loop. We revealed that the positive feedback loop is normally suppressed by OLA1, and becomes over-activated under OLA1 deficiency, resulting in increased cellular PP1 activity and dephosphorylation of multiple Ser/Thr phosphoproteins, and more strikingly, decreased global protein threonine phosphorylation. Furthermore, using xenograft models of colon cancer (H116) and ovarian cancer (SKOV3), we established a correlation among downregulation of OLA1, over-activation of the positive feedback loop as indicated by under-phosphorylation of I-2, and more aggressive tumor growth. This study provides the first evidence for the existence of a GSK3β-I-2-PP1 positive feedback loop in human cancer cells, and identifies OLA1 as an endogenous suppressor of this signaling motif.

  19. The Role of Pharmacokinetics and Pharmacodynamics in Early Drug Development with reference to the Cyclin-dependent Kinase (Cdk) Inhibitor - Roscovitine.

    PubMed

    Hassan, Moustapha; Sallam, Hatem; Hassan, Zuzana

    2011-05-01

    Pharmacokinetics, pharmacodynamics and pharmacogenetics play an important role in drug discovery and contribute to treatment success. This is an essential issue in cancer treatment due to its high toxicity. During the last decade, cyclin-dependent kinase inhibitors were recognised as a new class of compounds that was introduced for the treatment of several diseases including cancer. Cyclin-dependent kinases (Cdks) play a key role in the regulation of cell cycle progression and ribonucleic acid transcription. Deregulation of Cdks has been associated with several malignancies, neurodegenerative disorders, viral and protozoa infections, glomerulonephritis and inflammatory diseases. (R)-roscovitine is a synthetic tri-substituted purine that inhibits selectively Cdk1, 2, 5, 7 and 9. Roscovitine has shown promising cytotoxicity in cell lines and tumor xenografts. In this paper, we present several aspects of pharmacokinetics (PK) and pharmacodynamics (PD) of roscovitine. We present also some of our investigations including bioanalysis, haematotoxicity, age dependent kinetics, PK and effects on Cdks in the brain. Unfavourable kinetic parameters in combination with poor distribution to the bone marrow compartment could explain the absence of myelosuppression in vivo despite the efficacy in vitro. Higher plasma and brain exposure and longer elimination half-life found in rat pups compared to adult rats may indicate that roscovitine can be a potential candidate for the treatment of brain tumours in children. Cdk5 inhibition and Erk1/2 activation that was detected in brain of rat pups may suggest the use of roscovitine in neurodegenerative diseases. Early pharmacokinetic/pharmacodynamic studies are important issues in drug discovery and may affect further development of promising drug candidates.

  20. [Trypsin inhibitor from Gleditsia triacanthos L. seeds].

    PubMed

    Mosolov, V V; Kolosova, G V; Valueva, T A; Dronova, L A

    1982-05-01

    The trypsin inhibitor from Gleditsia triacanthos (L.) seeds was purified by affinity chromatography on a column with trypsin-Sepharose 4B. The isolated inhibitor is a single-chain protein with molecular weight of about 20 000. The inhibitor suppresses bovine trypsin at a molar rate of 1 : 1, but weakly inhibits chymotrypsin in a non-stoichiometric manner. Some properties of the isolated inhibitor closely resembled those of soybean trypsin inhibitor (Kunitz).

  1. Sustained and selective suppression of intestinal cholesterol synthesis by Ro 48-8071, an inhibitor of 2,3-oxidosqualene:lanosterol cyclase, in the BALB/c mouse.

    PubMed

    Chuang, Jen-Chieh; Valasek, Mark A; Lopez, Adam M; Posey, Kenneth S; Repa, Joyce J; Turley, Stephen D

    2014-04-01

    The small intestine plays a fundamentally important role in regulating whole body cholesterol balance and plasma lipoprotein composition. This is articulated through the interplay of a constellation of genes that ultimately determines the net amount of chylomicron cholesterol delivered to the liver. Major advances in our insights into regulation of the cholesterol absorption pathway have been made using genetically manipulated mouse models and agents such as ezetimibe. One unresolved question is how a sustained pharmacological inhibition of intestinal cholesterol synthesis in vivo may affect cholesterol handling by the absorptive cells. Here we show that the lanosterol cyclase inhibitor, Ro 48-8071, when fed to BALB/c mice in a chow diet (20 mg/day/kg body weight), leads to a rapid and sustained inhibition (>50%) of cholesterol synthesis in the whole small intestine. Sterol synthesis was also reduced in the large intestine and stomach. In contrast, hepatic cholesterol synthesis, while markedly suppressed initially, rebounded to higher than baseline rates within 7 days. Whole body cholesterol synthesis, fractional cholesterol absorption, and fecal neutral and acidic sterol excretion were not consistently changed with Ro 48-8071 treatment. There were no discernible effects of this agent on intestinal histology as determined by H&E staining and the level of Ki67, an index of proliferation. The mRNA expression for multiple genes involved in intestinal cholesterol regulation including NPC1L1 was mostly unchanged although there was a marked rise in the mRNA level for the PXR target genes CYP3A11 and CES2A.

  2. Breast Cancer Suppression by IDO Inhibitors

    DTIC Science & Technology

    2006-05-01

    protecting the allo- geneic fetus from rejection by the maternal immune system has stimulated a radical shift in thinking about the role of IDO in cancer...catalysis of the conversion of Trp to N- formyl -kynurenine all begin with nucleophilic attack of the pyrrole ring of Trp, electron with- drawing groups on...Chem. Rev. (1996) 96(7):2841-2888. • Ionic and radical mechanism for IDO reaction proposed. 124. TERENTIS AC, THOMAS SR, TAKIKAWA O et al.: The heme

  3. Drug Insight: appetite suppressants.

    PubMed

    Bray, George A

    2005-02-01

    The term 'appetite suppressant' is used to denote drugs that act primarily on the neurochemical transmitters of the central nervous system to reduce food intake. In addition to drugs that release or mimic the effect of norepinephrine (noradrenaline), this could include drugs that inhibit: reuptake of norepinephrine or 5-hydroxytryptamine (also known as serotonin); bind to the gamma-aminobutyric acid receptors or the cannabinoid receptors; and some peptides that reduce food intake. The sympathomimetic drugs phentermine, diethylpropion, benzphetamine, and phendimetrazine--so named because they mimic many effects of norepinephrine--are only approved in a few countries, and then only for short-term use. Sibutramine, a norepinephrine-5-hydroxytryptamine reuptake inhibitor, is approved for long-term use. Several new mechanisms for drug action are under investigation. Appetite suppressants should be viewed as useful adjuncts to diet and physical activity and might help selected patients to achieve and maintain weight loss.

  4. Effect of roscovitine on intracellular calcium dynamics: differential enantioselective responses.

    PubMed

    Tamma, Grazia; Ranieri, Marianna; Di Mise, Annarita; Spirlì, Alessia; Russo, Annamaria; Svelto, Maria; Valenti, Giovanna

    2013-12-02

    Cyclin-dependent kinases (CDKs) inhibitors have emerged as interesting therapeutic candidates. Of these, (S)-roscovitine has been proposed as potential neuroprotective molecule for stroke while (R)-roscovitine is currently entering phase II clinical trials against cancers and phase I clinical tests against glomerulonephritis. In addition, (R)-roscovitine has been suggested as potential antihypertensive and anti-inflammatory drug. Dysfunction of intracellular calcium balance is a common denominator of these diseases, and the two roscovitine enantiomers (S and R) are known to modulate calcium voltage channel activity differentially. Here, we provide a detailed description of short- and long-term responses of roscovitine on intracellular calcium handling in renal epithelial cells. Short-term exposure to (S)-roscovitine induced a cytosolic calcium peak, which was abolished after stores depletion with cyclopiazonic acid (CPA). Instead, (R)-roscovitine caused a calcium peak followed by a small calcium plateau. Cytosolic calcium response was prevented after stores depletion. Bafilomycin, a selective vacuolar H(+)-ATPase inhibitor, abolished the small calcium plateau. Long-term exposure to (R)-roscovitine significantly reduced the basal calcium level compared to control and (S)-roscovitine treated cells. However, both enantiomers increased calcium accumulation in the endoplasmic reticulum (ER). Consistently, cells treated with (R)-roscovitine showed a significant increase in SERCA activity, whereas (S)-roscovitine incubation resulted in a reduced PMCA expression. We also found a tonic decreased ability to release calcium from the ER, likely via IP3 signaling, under treatment with (S)- or (R)-roscovitine. Together our data revealed that (S)-roscovitine and (R)-roscovitine exert distinct enantiospecific effects on intracellular calcium signaling in renal epithelial cells. This distinct pharmacological profile can be relevant for roscovitine clinical use.

  5. Bharangin, a Diterpenoid Quinonemethide, Abolishes Constitutive and Inducible Nuclear Factor-κB (NF-κB) Activation by Modifying p65 on Cysteine 38 Residue and Reducing Inhibitor of Nuclear Factor-κB α Kinase Activation, Leading to Suppression of NF-κB-Regulated Gene Expression and Sensitization of Tumor Cells to Chemotherapeutic Agents

    PubMed Central

    Gupta, Subash C.; Kannappan, Ramaswamy; Kim, Jihye; Rahman, Ghazi M.; Francis, Sajin K.; Raveendran, Reshma; Nair, Mangalam S.; Das, Joydip

    2011-01-01

    Although inflammatory pathways have been linked with various chronic diseases including cancer, identification of an agent that can suppress these pathways has therapeutic potential. Herein we describe the identification of a novel compound bharangin, a diterpenoid quinonemethide that can suppress pro-inflammatory pathways specifically. We found that bharangin suppresses nuclear factor (NF)-κB activation induced by pro-inflammatory cytokine, tumor promoter, cigarette smoke, and endotoxin. Inhibition of NF-κB activation was mediated through the suppression of phosphorylation and degradation of inhibitor of nuclear factor-κB (IκBα); inhibition of IκBα kinase activation; and suppression of p65 nuclear translocation, and phosphorylation. The diterpenoid inhibited binding of p65 to DNA. A reducing agent reversed the inhibitory effect, and mutation of the Cys38 of p65 to serine abrogated the effect of bharangin on p65-DNA binding. Molecular docking revealed strong interaction of the ligand with the p65 via two hydrogen bonds one with Lys37 (2.204 Å) and another with Cys38 (2.023 Å). The inhibitory effect of bharangin on NF-κB activation was specific, inasmuch as binding of activator protein-1 and octameric transcription factor 1 to DNA was not affected. Suppression of NF-κB activation by this diterpenoid caused the down-regulation of the expression of proteins involved in tumor cell survival, proliferation, invasion, and angiogenesis, leading to potentiation of apoptosis, suppression of proliferation, and invasion of tumor cells. Furthermore, the genetic deletion of p65 and mutation of p65Cys38 residue to Ser abolished the affect of bharangin. Overall, our results demonstrate that bharangin specifically inhibits the NF-κB activation pathway by modifying p65 and inhibiting IκBα kinase activation and potentiates apoptosis in tumor cells. PMID:21795584

  6. ACE inhibitors

    MedlinePlus

    ... ACE inhibitors There are many different names and brands of ACE inhibitors. Most work as well as ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  7. HTP Nutraceutical Screening for Histone Deacetylase Inhibitors and Effects of HDACis on Tumor-suppressing miRNAs by Trichostatin A and Grapeseed (Vitis vinifera) in HeLa cells

    PubMed Central

    MAZZIO, ELIZABETH A.; SOLIMAN, KARAM F.A.

    2016-01-01

    Background/Aim: Aggressive tumor malignancies are a consequence of delayed diagnosis, epigenetic/phenotype changes and chemo-radiation resistance. Histone deacetylases (HDACs) are a major epigenetic regulator of transcriptional repression, which are highly overexpressed in advanced malignancy. While original chemotherapy drugs were modeled after phytochemicals elucidated by botanical screenings, HDAC inhibitors (HDACi) such as apicidin, trichostatin A (TSA) and butyrate were discovered as products of fungus and microbes, in particular, gut microbiota. Therefore, a persistent question remains as to the inherent existence of HDACis in raw undigested dietary plant material. In this study, we conduct a high-throughput (HTP) screening of ~1,600 non-fermented commonly used nutraceuticals (spices, herbs, teas, vegetables, fruits, seeds, rinds etc.) at (<600 μg/ml) and food-based polyphenolics (<240 μg/ml) for evidence of HDAC activity inhibition in nuclear HeLa cell lysates. Materials and Methods: Human HDAC kinetic validation was performed using a standard fluorometric activity assay, followed by an enzymatic-linked immuno-captured ELISA. Both methods were verified using HDACi panel drugs: TSA, apicidin, suberohydroxamic acid, M344, CL-994, valproic acid and sodium phenylbutyrate. The HTP screening was then conducted, followed by a study comparing biological effects of HDACis in HeLa cells, including analysis of whole-transcriptome non-coding RNAs using Affymetrix miRNA 4.1-panel arrays. Results: The HTP screening results confirmed 44/1600 as potential HDACis to which 31 were further eliminated as false-positives. Methodological challenges/concerns are addressed regarding plant product false-positives that arise from the signal reduction of commercial lysine development reagents. Only 13 HDACis were found having an IC50 under <200 μg/ml: Grapeseed extract (Vitis vinifera), Great burnet root (Sanguisorba Officinalis), Babul (Acacia arabica), Chinese gallnut (Melaphis

  8. HTP Nutraceutical Screening for Histone Deacetylase Inhibitors and Effects of HDACis on Tumor-suppressing miRNAs by Trichostatin A and Grapeseed (Vitis vinifera) in HeLa cells.

    PubMed

    Mazzio, Elizabeth A; Soliman, Karam F A

    2017-01-02

    Aggressive tumor malignancies are a consequence of delayed diagnosis, epigenetic/phenotype changes and chemo-radiation resistance. Histone deacetylases (HDACs) are a major epigenetic regulator of transcriptional repression, which are highly overexpressed in advanced malignancy. While original chemotherapy drugs were modeled after phytochemicals elucidated by botanical screenings, HDAC inhibitors (HDACi) such as apicidin, trichostatin A (TSA) and butyrate were discovered as products of fungus and microbes, in particular, gut microbiota. Therefore, a persistent question remains as to the inherent existence of HDACis in raw undigested dietary plant material. In this study, we conduct a high-throughput (HTP) screening of ~1,600 non-fermented commonly used nutraceuticals (spices, herbs, teas, vegetables, fruits, seeds, rinds etc.) at (<600 μg/ml) and food-based polyphenolics (<240 μg/ml) for evidence of HDAC activity inhibition in nuclear HeLa cell lysates. Human HDAC kinetic validation was performed using a standard fluorometric activity assay, followed by an enzymatic-linked immuno-captured ELISA. Both methods were verified using HDACi panel drugs: TSA, apicidin, suberohydroxamic acid, M344, CL-994, valproic acid and sodium phenylbutyrate. The HTP screening was then conducted, followed by a study comparing biological effects of HDACis in HeLa cells, including analysis of whole-transcriptome non-coding RNAs using Affymetrix miRNA 4.1-panel arrays. The HTP screening results confirmed 44/1600 as potential HDACis to which 31 were further eliminated as false-positives. Methodological challenges/concerns are addressed regarding plant product false-positives that arise from the signal reduction of commercial lysine development reagents. Only 13 HDACis were found having an IC50 under <200 μg/ml: Grapeseed extract (Vitis vinifera), Great burnet root (Sanguisorba Officinalis), Babul (Acacia arabica), Chinese gallnut (Melaphis chinensis), Konaberry extract (Coffea arabica

  9. [Development of new antiatherosclerotic agents--ACAT inhibitors and CETP inhibitors].

    PubMed

    Miyazaki, A; Horiuchi, S

    1999-12-01

    Development of new antiatherosclerotic agents were reviewed focusing on ACAT inhibitors and CETP inhibitors. ACAT inhibitors enhance intracellular degradation of VLDL in hepatocytes. Cholesterol absorption in small intestine is inhibited by ACAT inhibitors. Thus, ACAT inhibitors reduce plasma cholesterol levels. In atherosclerotic lesions, ACAT inhibitors suppress foam cell formation (cholesteryl ester accumulation) in macrophages. Since ACAT inhibitors have multiple anti-atherogenic effects, they are considered future drugs controlling hypercholesterolemia and atherosclerosis. CETP inhibitors are expected to increase HDL and decrease LDL. Although the patients with CETP deficiency show high level of HDL, recent studies showed that they are not necessarily resistant to atherosclerosis. The strategy to inhibit CETP for suppressing atherosclerosis has not been established.

  10. High temperature suppression of dioxins.

    PubMed

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Measurement of myeloid cell immune suppressive activity.

    PubMed

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  12. Identification of beta-escin as a novel inhibitor of signal transducer and activator of transcription 3/Janus-activated kinase 2 signaling pathway that suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells.

    PubMed

    Tan, Sandra Min-Li; Li, Feng; Rajendran, Peramaiyan; Kumar, Alan Prem; Hui, Kam M; Sethi, Gautam

    2010-07-01

    The activation of signal transducer and activator of transcription 3 (STAT3) has been linked with the proliferation, survival, invasion, and angiogenesis of a variety of human cancer cells, including hepatocellular carcinoma (HCC). Agents that can suppress STAT3 activation have potential for the prevention and treatment of HCC. In this study, we tested an agent, beta-escin, for its ability to suppress STAT3 activation. We found that beta-escin, a pentacyclic triterpenoid, inhibited both constitutive and interleukin-6-inducible STAT3 activation in a dose- and time-dependent manner in HCC cells. The suppression was mediated through the inhibition of activation of upstream kinases c-Src, Janus-activated kinase 1, and Janus-activated kinase 2. Vanadate treatment reversed the beta-escin-induced down-regulation of STAT3, suggesting the involvement of a tyrosine phosphatase. Indeed, we found that beta-escin induced the expression of tyrosine phosphatase Src homology phosphatase 1 that correlated with the down-regulation of constitutive STAT3 activation. beta-Escin also down-regulated the expression of STAT3-regulated gene products, such as cyclin D1, Bcl-2, Bcl-xL, survivin, Mcl-1, and vascular endothelial growth factor. Finally, beta-escin inhibited proliferation and also substantially potentiated the apoptotic effects of paclitaxel and doxorubicin in HCC cells. Overall, these results suggest that beta-escin is a novel blocker of STAT3 activation that may have potential in the suppression of proliferation and chemosensitization in HCC.

  13. Co-Targeting IGF-1R and Autophagy Enhances the Effects of Cell Growth Suppression and Apoptosis Induced by the IGF-1R Inhibitor NVP-AEW541 in Triple-Negative Breast Cancer Cells

    PubMed Central

    Shao, Nan; Shi, Yawei; Liu, Ruiming; Li, Wen; Lin, Yin; Wang, Shenming

    2017-01-01

    Background Triple-negative breast cancer (TNBC) is the most intractable type of breast cancer, and there is a lack of effective targeted therapy. Insulin-like growth factor-1 receptor (IGF-1R) is reportedly a potential target for TNBC treatment. However, satisfying treatment outcomes in breast cancer patients have yet to be achieved with IGF-1R-targeted agents. Methods To confirm whether inhibiting IGF-1R could induce autophagy, we detected autophagy-related proteins by western blotting and immunofluorescence staining of LC3-II. The IGF-1R inhibitor NVP-AEW541, autophagy inhibitor 3-methyladenine (3-MA) and Atg7 small interfering RNA (siRNA) were used to further investigate the effects of autophagy induced by IGF-1R inhibition in TNBC cells. The CCK8 assay, EdU assay, apoptosis and cell cycle analyses were applied to test cell function after treatment. Results NVP-AEW541 markedly induced autophagy in TNBC cells by increasing the levels of the autophagy-related protein Beclin-1 and the LC3-II/LC-I ratio and reducing the selective autophagy substrate p62. Joint application of 3-MA or Atg7 siRNA enhanced the cell growth inhibition and apoptosis effects of NVP-AEW541 by arresting cells at G1/G0 phase and increasing Bax expression and decreasing that of Bcl-2. Conclusion Targeting IGF-1R in TNBC induces cell-protective autophagy, thereby weakening the therapeutic effect of agents directed toward IGF-1R. Our findings reveal that combined use autophagy-disrupting agents can enhance the therapeutic efficacy of IGF-1R inhibitors in TNBC cells and may provide a valuable treatment strategy for IGF-1R inhibitor-based therapies for TNBC and other IGF-1 signaling-associated tumors. PMID:28046018

  14. Development of HIV-1 fusion inhibitors targeting gp41.

    PubMed

    Lu, K; Asyifah, M R; Shao, F; Zhang, D

    2014-06-01

    The HIV-1 envelope protein glycoprotein 41 (gp41) is crucial in the HIV-1 infection process, therefore gp41 has emerged as an attractive target for drug design against AIDS. During the past few decades, tremendous efforts have been made on developing inhibitors that can prevent the HIV-1 entry process via suppressing functional gp41. In this review, the development of HIV-1 fusion inhibitors targeting gp41 including peptide inhibitors, small molecule inhibitors, vaccines and neutralized antibodies will be discussed.

  15. Progesterone-induced stimulation of mammary tumorigenesis is due to the progesterone metabolite, 5α-dihydroprogesterone (5αP) and can be suppressed by the 5α-reductase inhibitor, finasteride.

    PubMed

    Wiebe, John P; Rivas, Martin A; Mercogliano, Maria F; Elizalde, Patricia V; Schillaci, Roxana

    2015-05-01

    Progesterone has long been linked to breast cancer but its actual role as a cancer promoter has remained in dispute. Previous in vitro studies have shown that progesterone is converted to 5α-dihydroprogesterone (5αP) in breast tissue and human breast cell lines by the action of 5α-reductase, and that 5αP acts as a cancer-promoter hormone. Also studies with human breast cell lines in which the conversion of progesterone to 5αP is blocked by a 5α-reductase inhibitor, have shown that the in vitro stimulation in cell proliferation with progesterone treatments are not due to progesterone itself but to the metabolite 5αP. No similar in vivo study has been previously reported. The objective of the current studies was to determine in an in vivo mouse model if the presumptive progesterone-induced mammary tumorigenesis is due to the progesterone metabolite, 5αP. BALB/c mice were challenged with C4HD murine mammary cells, which have been shown to form tumors when treated with progesterone or the progestin, medroxyprogesterone acetate. Cells and mice were treated with various doses and combinations of progesterone, 5αP and/or the 5α-reductase inhibitor, finasteride, and the effects on cell proliferation and induction and growth of tumors were monitored. Hormone levels in serum and tumors were measured by specific RIA and ELISA tests. Proliferation of C4HD cells and induction and growth of tumors was stimulated by treatment with either progesterone or 5αP. The progesterone-induced stimulation was blocked by finasteride and reinstated by concomitant treatment with 5αP. The 5αP-induced tumors expressed high levels of ER, PR and ErbB-2. Hormone measurements showed significantly higher levels of 5αP in serum from mice with tumors than from mice without tumors, regardless of treatments, and 5αP levels were significantly higher (about 4-fold) in tumors than in respective sera, while progesterone levels did not differ between the compartments. The results indicate that

  16. A simplification trial switching from nucleoside reverse transcriptase inhibitors to once-daily fixed-dose abacavir/lamivudine or tenofovir/emtricitabine in HIV-1-infected patients with vir