Science.gov

Sample records for inhibitor sodium butyrate

  1. The inhibitor of histone deacetylases sodium butyrate enhances the cytotoxicity of mitomycin C.

    PubMed

    Gospodinov, Anastas; Popova, Stanislava; Vassileva, Ivelina; Anachkova, Boyka

    2012-10-01

    The use of histone deacetylase inhibitors has been proposed as a promising approach to increase the cell killing effect of DNA damage-inducing drugs in chemotherapy. However, the molecular mechanism of their action remains understudied. In the present article, we have assessed the effect of the histone deacetylase inhibitor sodium butyrate on the DNA damage response induced by the crosslinking agent mitomycin C. Sodium butyrate increased mitomycin C cytotoxicity, but did not impair the repair pathways required to remove mitomycin C-induced lesions as neither the rate of nucleotide excision repair nor the homologous recombination repair rate were diminished. Sodium butyrate treatment abrogated the S-phase cell-cycle checkpoint in mitomycin C-treated cells and induced the G(2)-M checkpoint. However, sodium butyrate treatment alone resulted in accumulation of reactive oxygen species, double-strand breaks in DNA, and apoptosis. These results imply that the accumulation of reactive oxygen species-mediated increase in DNA lesion burden may be the major mechanism by which sodium butyrate enhances the cytotoxicity of mitomycin C.

  2. Enhancement of memory consolidation by the histone deacetylase inhibitor sodium butyrate in aged rats.

    PubMed

    Blank, Martina; Werenicz, Aline; Velho, Luciana Azevedo; Pinto, Diana F; Fedi, Ana Cláudia; Lopes, Mark William; Peres, Tanara Vieira; Leal, Rodrigo Bainy; Dornelles, Arethuza S; Roesler, Rafael

    2015-05-06

    Here we show that a systemic injection of the histone deacetylase inhibitor (HDACi) sodium butyrate (NaB) immediately after training in a step-down inhibitory avoidance task produced an enhancement of memory consolidation that persisted across consecutive retention tests during 14 days in aged rats, while it did not significantly affect memory in young adults. Control aged and young adult rats showed comparable basal levels of memory retention. Our results suggest that HDACis can display memory-enhancing effects specific for aged animals, even in the absence of age-related memory impairment.

  3. Histone deacetylase inhibitor sodium butyrate promotes the osteogenic differentiation of rat adipose-derived stem cells.

    PubMed

    Hu, Xiaoqing; Fu, Yutuo; Zhang, Xin; Dai, Linghui; Zhu, Jingxian; Bi, Zhenggang; Ao, Yingfang; Zhou, Chunyan

    2014-04-01

    Adult stem cells hold great promise for use in tissue repair and regeneration. Recently, adipose tissue-derived stem cells (ADSCs) were found to be an appealing alternative to bone marrow stem cells (BMSCs) for bone tissue engineering. The main benefit of ADSCs is that they can be easily and abundantly available from adipose tissue. However, our prior study discovered an important phenomenon that BMSCs have greater osteogenic potential than ADSCs in vitro and epigenetic regulation plays a critical role in runt-related transcription factor 2 (Runx2) expression and thus osteogenesis. In this study, we aimed to improve the osteogenic potential of ADSCs by histone deacetylase inhibitor sodium butyrate (NaBu). We found that NaBu promoted rat ADSC osteogenic differentiation by altering the epigenetic modifications on the Runx2 promoter.

  4. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse.

    PubMed

    Schroeder, Frederick A; Lin, Cong Lily; Crusio, Wim E; Akbarian, Schahram

    2007-07-01

    Chromatin remodeling, including changes in histone acetylation, might play a role in the pathophysiology and treatment of depression. We investigated whether the histone deacetylase inhibitor sodium butyrate (SB) administered as single drug or in combination with the selective serotonin reuptake inhibitor (SSRI) fluoxetine exerts antidepressant-like effects in mice. Mice (C57BL/6J) received injections of SB, fluoxetine, or a combination of both drugs either acutely or chronically for a period of 28 days and were subjected to a battery of tests to measure anxiety and behavioral despair. Histone acetylation and expression of brain-derived neurotrophic factor (BDNF) were monitored in hippocampus and frontal cortex. Co-treatment with SB and fluoxetine resulted in a significant 20%-40% decrease in immobility scores in the tail suspension test (TST), a measure for behavioral despair, both acutely and chronically. In contrast, decreased immobility after single drug regimens was limited either to the acute (fluoxetine) or chronic (SB) paradigm. Systemic injection of SB induced short-lasting histone hyperacetylation in hippocampus and frontal cortex. Among the four treatment paradigms that resulted in improved immobility scores in the TST, three were associated with a transient, at least 50% increase in BDNF transcript in frontal cortex, whereas changes in hippocampus were less consistent. The histone deacetylase inhibitor SB exerts antidepressant-like effects in the mouse. The therapeutic benefits and molecular actions of histone modifying drugs, including co-treatment with SSRIs and other newer generation antidepressant medications, warrant further exploration in experimental models.

  5. Therapeutic Effect of Histone Deacetylase Inhibitor, Sodium Butyrate, on Allergic Rhinitis In Vivo.

    PubMed

    Wang, Jie; Wen, Liting; Wang, Ye; Chen, Fuquan

    2016-04-01

    Despite the well-documented therapeutic effects of histone deacetylase inhibitor (HDACi) on various diseases, including arthritis and asthma, the therapeutic effect of HDACi on allergic rhinitis remains unmentioned in the literature. This study investigated the therapeutic effect of sodium butyrate (SoB), a form of HDACi, on mice with allergic rhinitis. The results showed that the expression levels of histone deacetylase 1 (HDAC1), histone deacetylase 3 (HDAC3), and thymic stromal lymphopoietin (TSLP) were significantly upregulated in mice with allergic rhinitis, whereas H3 acetylation at lysine 9 (H3AcK9) was decreased. The intranasal application of SoB inhibited the expression levels of TSLP levels and upregulated the expression of H3AcK9 in a mouse model of allergic rhinitis. Furthermore, SoB treatment significantly decreased the increased levels of ovalbumin-specific IgE and improved clinical symptoms and nasal mucosa epithelial morphology in the mouse model of allergic rhinitis. In addition, we further demonstrated that SoB treatment significantly increased the serum levels of IL-2 and IFN-γ and decreased the serum levels of IL-4 and IL-10, correcting the Th1/Th2 imbalance in the mouse model of allergic rhinitis. Taken together, our study suggests that SoB has the potential to treat allergic rhinitis.

  6. Chlorambucil-sensitive and -resistant lymphoid cells display different responses to the histone deacetylase inhibitor, sodium butyrate.

    PubMed

    Kwa, Faith A A; Cole-Sinclair, Merrole; Kapuscinski, Miroslav

    2010-12-17

    Clinical chemoresistance is a frequent complication of alkylating agent treatment of malignant tumours. Chromatin remodelling using histone deacetylase inhibitors (e.g., sodium butyrate, NaBu) may increase target cell chemosensitivity. Apoptotic responses and expression of chromatin modifying enzymes in lymphoid cell lines, LP-1 and NCI-H929, to chlorambucil (CLB) and/or NaBu were examined in this study. NaBu augmented the apoptotic response in CLB-resistant LP-1 cells but antagonised it in CLB-sensitive NCI-H929 cells. CLB increased expression of methyltransferase I and histone acetyltransferase I in both cell lines while NaBu had only small effect. CLB-induced increased gene expression was attenuated by NaBu in CLB-sensitive NCI-H929 cells but not in resistant LP-1 cells. These results suggest that chromatin modifying agents may have differential effects on cells depending on their chemosensitivity.

  7. Effects of histone deacetylase inhibitor sodium butyrate on heroin seeking behavior in the nucleus accumbens in rats.

    PubMed

    Chen, Wei-Sheng; Xu, Wen-Jin; Zhu, Hua-Qiang; Gao, Lei; Lai, Miao-Jun; Zhang, Fu-Qiang; Zhou, Wen-Hua; Liu, Hui-Fen

    2016-12-01

    Histone acetylation and other modifications of the chromatin are important regulators of gene expression and may contribute to drug-induced behaviors and neuroplasticity. Inhibition of histone deacetylases (HDAC) activity results in the change of some drug-induced behaviors,however, relatively little is known about the effects of HDAC inhibitors on heroin-seeking behavior. In the present study, male rats were trained to self-administer heroin under a FR1 schedule for consecutive 14 days, followed by 14 daily 2h extinction session in the operant chamber. After training, the heroin priming (250μg/kg) was introduced for the reinstatement of heroin-seeking behavior. Pretreatment with sodium butyrate (NaB) (200 or 400mg/kg, i.p.), an inhibitor of HDAC, failed to affect heroin self-administration. Additionally,systemic administration of NaB (400mg/kg, i.p.)increased significantly the reinstatement of heroin-seeking induced by heroin priming when NaB administered 12h, but not 6h before the reinstatement test. The same effect was observed after the intracerebroventricular injection of NaB (5μL, 100μg/μL). Moreover, the levels of histone H3 acetylation at lysine 18(H3K18)and H4 acetylation at lysine 5 or lysine 8(H4K5 or H4K8)in the accumbens nucleus core and shell were remarkably increased during the reinstatement and were further strengthened after intracerebroventricular injection of NaB. These results demonstrated that activation of histone acetylation may be involved in the heroin-seeking behavior, and identifying these epigenetic changes will be critical in proposing a novel pharmacological strategy for treating heroin addiction. Copyright © 2016. Published by Elsevier B.V.

  8. Sodium Butyrate, a Histone Deacetylase Inhibitor, Exhibits Neuroprotective/Neurogenic Effects in a Rat Model of Neonatal Hypoxia-Ischemia.

    PubMed

    Ziemka-Nalecz, Malgorzata; Jaworska, Joanna; Sypecka, Joanna; Polowy, Rafał; Filipkowski, Robert K; Zalewska, Teresa

    2017-09-01

    Neonatal hypoxic-ischemic (HI) injury still remains an important issue as it is a major cause of neonatal death and neurological dysfunctions. Currently, there are no well-established treatments to reduce brain damage and its long-term sequel in infants. Recently, reported data show that histone deacetylase inhibitors provide neuroprotection in adult stroke models. However, the proof of their relevance in vivo after neonatal HI brain injury remains particularly limited. In the present study, we show neuroprotective/neurogenic effect of sodium butyrate (SB), one of histone deacetylase inhibitors (HDACis), in the dentate gyrus of HI-injured immature rats. Postnatal day 7 (P7) rats underwent left carotid artery ligation followed by 7.6 % O2 exposure for 1 h. SB (300 mg/kg) was administered in a 5-day regime with the first injection given immediately after the onset of HI. The damage of the ipsilateral hemisphere was evaluated by weight deficit. Newly produced cells were labeled with BrdU, at 50 mg/kg, injected twice daily for 3 consecutive days. Subsequent differentiation of the newborn cells was investigated 2 and 4 weeks after the insult by immunohistochemistry using neuronal and glial cell-lineage markers and BrdU incorporation. Finally, we performed several behavioral tests to evaluate functional outcome. In summary, SB led to a remarkable reduction of the brain damage caused by HI. Moreover, the application of this HDACi protected against HI-induced loss of neuroblasts and oligodendrocyte precursor cells, as well as against neuroinflammation. The observed neuroprotective action suggests that SB may serve as a potential candidate for future treatment of HI-evoked injury in neonates.

  9. Butyrate Histone Deacetylase Inhibitors

    PubMed Central

    Boosalis, Michael S.; Perrine, Susan P.; Sangerman, José

    2012-01-01

    Abstract In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition. PMID:23514803

  10. Colonic mucin synthesis is increased by sodium butyrate.

    PubMed

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis.

  11. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    PubMed

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  12. Sodium Butyrate Controls Cardiac Hypertrophy in Experimental Models of Rats.

    PubMed

    Patel, Bhoomika M

    2017-04-07

    The aim of the present research was to study the effect of sodium butyrate (SB) on partial abdominal aorta constriction (PAAC)-induced cardiac hypertrophy and determine its mechanism of action. Healthy Wistar rats were exposed to PAAC for eight weeks. After eight weeks, we carried out hypertrophic and hemodynamic evaluation and measured oxidative stress parameters and mitochondrial DNA concentration. PAAC control animals exhibited cardiac hypertrophy, decreased hemodynamic functions and oxidative stress. Treatment with SB reduced hypertrophic indices, LV wall thickness, LV collagen levels, cardiomyocyte diameter, serum lipid levels and serum cardiac biomarkers. Treatment with SB also improved hemodynamic functions, prevented oxidative stress and increased mitochondrial DNA concentration. Improvement in hypertrophy due to HDAC inhibition was further confirmed by HDAC mRNA expression studies which revealed that SB decreases expression of prohypertrophic HDAC, i.e., HDAC2, without altering the expression of anti-hypertrophic HDAC5. Sodium butyrate produces beneficial effect on cardiac hypertrophy as is evident, specifically from reduction in hypertrophic parameters including collagen levels, improvement in mitochondrial DNA concentration and preservation of LV systolic and diastolic dysfunction. This beneficial effect of sodium butyrate is mediated through downregulation of class I HDACs, specifically HDAC2 without any effect on class II HDAC, i.e., HDAC5. Thus, selective class I HDAC inhibition is required for controlling cardiac hypertrophy. Newer HDAC inhibitors which are class I inhibitor and class II promoter can be designed to obtain a 'pan' or 'dual' natural HDAC 'regulators.'

  13. Improvement of the boron neutron capture therapy (BNCT) by the previous administration of the histone deacetylase inhibitor sodium butyrate for the treatment of thyroid carcinoma.

    PubMed

    Perona, M; Rodríguez, C; Carpano, M; Thomasz, L; Nievas, S; Olivera, M; Thorp, S; Curotto, P; Pozzi, E; Kahl, S; Pisarev, M; Juvenal, G; Dagrosa, A

    2013-08-01

    We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated thyroid carcinoma (PDTC). Histone deacetylase inhibitors (HDACI) like sodium butyrate (NaB) cause hyperacetylation of histone proteins and show capacity to increase the gamma irradiation effect. The purpose of these studies was to investigate the use of the NaB as a radiosensitizer of the BNCT for PDTC. Follicular thyroid carcinoma cells (WRO) and rat thyroid epithelial cells (FRTL-5) were incubated with 1 mM NaB and then treated with boronophenylalanine ¹⁰BPA (10 μg ¹⁰B ml⁻¹) + neutrons, or with 2, 4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ¹⁰BOPP (10 μg ¹⁰B ml⁻¹) + neutrons, or with a neutron beam alone. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux = (1.0 ± 0.1) × 10¹⁰ n cm⁻² s⁻¹). Cell survival decreased as a function of the physical absorbed dose in both cell lines. Moreover, the addition of NaB decreased cell survival (p < 0.05) in WRO cells incubated with both boron compounds. NaB increased the percentage of necrotic and apoptotic cells in both BNCT groups (p < 0.05). An accumulation of cells in G2/M phase at 24 h was observed for all the irradiated groups and the addition of NaB increased this percentage. Biodistribution studies of BPA (350 mg kg⁻¹ body weight) 24 h after NaB injection were performed. The in vivo studies showed that NaB treatment increases the amount of boron in the tumor at 2-h post-BPA injection (p < 0.01). We conclude that NaB could be used as a radiosensitizer for the treatment of thyroid carcinoma by BNCT.

  14. HDAC inhibitor sodium butyrate sensitizes E1A+Ras-transformed cells to DNA damaging agents by facilitating formation and persistence of γH2AX foci.

    PubMed

    Abramova, Maria V; Svetlikova, Svetlana B; Kukushkin, Alexander N; Aksenov, Nikolai D; Pospelova, Tatiana V; Pospelov, Valery A

    2011-12-15

    HDAC inhibitors (HDACi) suppress the growth of tumor cells due to induction of cell cycle arrest, senescence or apoptosis. Recent data demonstrate that HDACi can interfere with DNA Damage Response (DDR) thereby sensitizing the cells to DNA damaging agents. Here, we show that HDACi sodium butyrate (NaBut) potentiates the formation of γH2AX foci predominantly in S-phase E1A+Ras cells. Accumulation of γH2AX foci sensitizes the cells toward such DNA damaging agents as irradiation (IR) and adriamycin. In fact, NaBut potentiates the persistence of γH2AX foci induced by genotoxic agents. The synergizing effects depend on DNA damaging factors and on the order of NaBut treatment. Indeed, NaBut treatment for 24 h leads to an accumulation of G 1-phase cells and a lack of S-phase cells, therefore, adriamycin, a powerful S-phase-specific inhibitor, when added to NaBut-treated cells, is unable to substantially add γH2AX foci. In contrast, IR produces both single- and double-strand DNA breaks at any stage of the cell cycle and was shown to increase γH2AX foci in NaBut-treated cells. Further, a lifetime of IR-induced γH2AX foci depends on the subsequent presence of HDACi. Correspondingly, NaBut withdrawal leads to the extinction of IR-induced γH2AX foci. This necessitates HDACi to hold the IR-induced γH2AX foci unrepaired. However, the IR-induced γH2AX foci persist after long-term NaBut treatment (72 h) even after washing the drug. Thus, although signaling pathways regulating H2AX phosphorylation in NaBut-treated cells remain to be investigated, the obtained results show that NaBut potentiates effects of DNA damaging agents by facilitating formation and persistence of γH2AX foci.

  15. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis

    PubMed Central

    Zhang, Jintao; Yi, Man; Zha, Longying; Chen, Siqiang; Li, Zhijia; Li, Cheng; Gong, Mingxing; Deng, Hong; Chu, Xinwei; Chen, Jiehua; Zhang, Zheqing; Mao, Limei; Sun, Suxia

    2016-01-01

    Purpose Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells. Methods Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5–5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot. Results Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin

  16. Sodium Butyrate Protects against Severe Burn-Induced Remote Acute Lung Injury in Rats

    PubMed Central

    Liu, Sheng; Guo, Feng; Sun, Li; Wang, Yong-Jie; Sun, Ye-Xiang; Chen, Xu-Lin

    2013-01-01

    High-mobility group box 1 protein (HMGB1), a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI). Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague–Dawley rats were divided into three groups: 1) sham group, sham burn treatment; 2) burn group, third-degree burns over 30% total body surface area (TBSA) with lactated Ringer’s solution for resuscitation; 3) burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer’s solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D) ratio. Tumor necrosis factor (TNF)-α and interleukin (IL)-8 protein concentrations in bronchoalveolar lavage fluid (BALF) and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO) activity and malondialdehyde (MDA) concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  17. Sodium Butyrate Stimulates Expression of Fibroblast Growth Factor 21 in Liver by Inhibition of Histone Deacetylase 3

    PubMed Central

    Li, Huating; Gao, Zhanguo; Zhang, Jin; Ye, Xin; Xu, Aimin; Ye, Jianping; Jia, Weiping

    2012-01-01

    Fibroblast growth factor 21 (FGF21) stimulates fatty acid oxidation and ketone body production in animals. In this study, we investigated the role of FGF21 in the metabolic activity of sodium butyrate, a dietary histone deacetylase (HDAC) inhibitor. FGF21 expression was examined in serum and liver after injection of sodium butyrate into dietary obese C57BL/6J mice. The role of FGF21 was determined using antibody neutralization or knockout mice. FGF21 transcription was investigated in liver and HepG2 hepatocytes. Trichostatin A (TSA) was used in the control as an HDAC inhibitor. Butyrate was compared with bezafibrate and fenofibrate in the induction of FGF21 expression. Butyrate induced FGF21 in the serum, enhanced fatty acid oxidation in mice, and stimulated ketone body production in liver. The butyrate activity was significantly reduced by the FGF21 antibody or gene knockout. Butyrate induced FGF21 gene expression in liver and hepatocytes by inhibiting HDAC3, which suppresses peroxisome proliferator–activated receptor-α function. Butyrate enhanced bezafibrate activity in the induction of FGF21. TSA exhibited a similar set of activities to butyrate. FGF21 mediates the butyrate activity to increase fatty acid use and ketogenesis. Butyrate induces FGF21 transcription by inhibition of HDAC3. PMID:22338096

  18. Inhibition of mouse B16 melanoma by sodium butyrate correlated to tumor associated macrophages differentiation suppression

    PubMed Central

    Xiong, Fen; Mou, Yun-Zhu; Xiang, Xiao-Yan

    2015-01-01

    Objective: As one member of the histone deacetylase inhibitor (HDACi) family, Sodium butyrate (NaB) was found out that could be used as a differentiation inducer of much cancer cell. But its effects on tumor microenvironment cells are not well recognized. The goal of this research is to investigate the effect of NaB on B16 melanoma and analysis its relevant mechanism. Methods: We observed the effect of sodium butyrate on B16 melanoma in vivo and in vitro. MTT method was performed to detect cell apoptosis rate after treatment. Tumor associated macrophage infiltration condition was detected by flow cytometry. Western-blotting and immunohistochemical method were used to detect the expression of tumor associated macrophage cytokines. Results: A certain concentration of sodium butyrate could effectively inhibit B16 melanoma growth in vivo and in vitro, and this inhibition effects related to the suppression of tumor associated macrophage differentiation. At the same time we observed the relevant macrophage factors were down-regulated compared to the control. Conclusion: Sodium butyrate could effectively inhibit B16 melanoma growth through suppressing tumor associated macrophage proliferation and reduce relevant pro-tumor macrophage factors expression, which may help to promote the clinical study of melanoma epigenetic therapy. PMID:26064327

  19. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation

    PubMed Central

    Kumar, Priyadarsini; Thirkill, Twanda L.; Ji, Jennifer; Monte, Louise H.; Douglas, Gordon C.

    2015-01-01

    Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator) induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion). Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNFα production. The

  20. Effects of sodium bicarbonate on butyric acid-induced epithelial cell damage in vitro.

    PubMed

    Takigawa, Satoko; Sugano, Naoyuki; Ochiai, Kuniyasu; Arai, Noriyuki; Ota, Noriko; Ito, Koichi

    2008-12-01

    Butyric acid is detected in periodontal pockets and is thought to be involved in the initiation and progression of periodontal disease. We examined the effects of sodium bicarbonate on the butyric acid-induced epithelial cell damage. The human gingival carcinoma cell line Ca9-22 was cultured in medium that contained butyric acid with or without sodium bicarbonate. The viability of cells treated with sodium bicarbonate was significantly higher than that of cells treated with butyric acid alone. The effects of butyric acid on ICAM-1 expression were significantly improved by sodium bicarbonate. Within the limitations of this in vitro study, sodium bicarbonate was indicated to be a useful therapeutic agent to reduce the butyric acid-induced periodontal tissue damage.

  1. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat.

    PubMed

    Khan, S; Jena, G B

    2014-04-25

    Type 1 diabetes (T1D) also known as juvenile diabetes is a chronic autoimmune disorder that precipitates in genetically susceptible individuals by environmental factors particularly during early age. Both genetic and epigenetic factors are implicated in the beta-cell development, proliferation, differentiation and function. Recent evidences suggested that there is a link between diabetes and histone deacetylases (HDACs), because HDAC inhibitors promote beta-cell development, proliferation and function as well as improve glucose homeostasis. Sodium butyrate (NaB) is a short chain fatty acid having HDAC inhibition activity. The present study was aimed to investigate the protective role of NaB treatment on the beta-cell proliferation, function and glucose homeostasis as well as apoptosis in juvenile diabetic rat. Diabetes was induced by single injection of STZ (60 mg/kg, i.p.) in chilled citrate buffer, while NaB (500 mg/kg/day) was administrated by i.p. route for 21 days as pre- and post-treatment schedule. Plasma glucose and insulin levels, HbA1c, glucose tolerance, apoptosis, and expression of proliferating cell nuclear antigen (PCNA), p38, p53, caspase-3, extracellular signal-regulated kinase-1/2 (ERK-1/2), forkhead box protein O1 (FOXO1) and insulin receptor substrate-1 (IRS-1) as well as histone acetylation were evaluated. NaB treatment decreased plasma glucose, HbA1c, beta-cell apoptosis and improved plasma insulin level and glucose homeostasis through HDAC inhibition and histone acetylation in diabetic animal as compared to control. NaB treatment improved the beta-cell proliferation, function and glucose homeostasis as well as reduced beta-cell apoptosis in juvenile diabetic rat by the modulation of p38/ERK MAPK and apoptotic pathway.

  2. The Short-Chain Fatty Acid Sodium Butyrate Functions as a Regulator of the Skin Immune System.

    PubMed

    Schwarz, Agatha; Bruhs, Anika; Schwarz, Thomas

    2017-04-01

    There is evidence that gut commensal microbes affect the mucosal immune system via expansion of regulatory T cells (Tregs) in the colon. This is mediated via short-chain fatty acids, bacterial metabolites generated during fiber fermentation, which include butyrate, propionate, and acetate. We postulated that short-chain fatty acids produced by commensal skin bacteria may also activate resident skin Tregs, the activity of which is diminished in certain inflammatory dermatoses. Sodium butyrate (SB) either injected subcutaneously or applied topically onto the ears of hapten-sensitized mice significantly reduced the contact hypersensitivity reaction. This effect was histone acetylation-dependent because suppression was abrogated by anacardic acid, a histone acetyltransferase inhibitor. The genes encoding for the Treg-specific transcription factor foxp3 and for IL-10 were up-regulated upon treatment with sodium butyrate, as determined by quantitative real-time reverse transcription-PCR. Immunofluorescence analysis showed enhanced numbers of Foxp3-positive cells in sodium butyrate-treated skin. Additionally, CD4(+)CD25(-) nonregulatory human T cells exerted suppressive features upon incubation with sodium butyrate. This indicates that Tregs can be induced by short-chain fatty acids, suggesting (i) that resident skin microbes may prevent exaggerated inflammatory responses by exerting a down-regulatory function and thereby maintaining a stable state under physiologic conditions and (ii) that short-chain fatty acids may be used therapeutically to mitigate inflammatory skin reactions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Effect of Sodium Butyrate on Growth Performance and Response to Lipopolysaccharide in Weanling Pigs

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to determine the effects of dietary sodium butyrate on growth performance and response to E. coli. lipopolysaccharide (LPS) in weanling pigs. In the first 28 d experiment, 180 pigs (initial BW 6.3 kg) were fed 0, 0.05, 0.1, 0.2, and 0.4% sodium butyrate, or 110 mg/kg d...

  4. AMPK synergizes with the combined treatment of 1'-acetoxychavicol acetate and sodium butyrate to upregulate phase II detoxifying enzyme activities.

    PubMed

    Yaku, Keisuke; Matsui-Yuasa, Isao; Konishi, Yotaro; Kojima-Yuasa, Akiko

    2013-07-01

    Phase II enzymes play important roles in detoxifying xenobiotics. We previously reported that both 1'-acetoxychavicol acetate (ACA) and sodium butyrate individually increased phase II enzyme activities. Here, we determined the combined action of ACA and sodium butyrate on phase II enzyme activities in intestinal epithelial cells (IEC 6). ACA and sodium butyrate synergistically increased phase II enzyme activities. Protein levels of intranuclear transcription factor NF-E2-related factor 2 (Nrf2) were increased by ACA or sodium butyrate treatment, but treatment with both did not produce a synergistic effect. Intranuclear p53 protein levels were increased by ACA but decreased by sodium butyrate alone or combined treatment with ACA and sodium butyrate. In contrast, p53 acetylation was promoted by sodium butyrate and the ACA and sodium butyrate combination. Inhibition of AMPK activity decreased phase II enzyme activities that were upregulated by treatment with ACA plus sodium butyrate or other phytochemicals, including kaempferol, quercetin, and epigallocatechin-3-gallate. Combined treatment with ACA and sodium butyrate increased phosphorylated AMPK levels. These results suggest that ACA and sodium butyrate synergistically contribute to xenobiotics metabolism. The combined ACA and sodium butyrate treatment synergistically upregulated phase II enzyme activities through AMPK activation and p53 acetylation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Combined treatment with sodium butyrate and PD153035 enhances keratinocyte differentiation

    PubMed Central

    Carrion, Sandra Leon; Sutter, Carrie Hayes; Sutter, Thomas R.

    2014-01-01

    Epidermal growth factor (EGF) receptor (EGFR) signaling is a critical determinant of keratinocyte proliferation and differentiation in both normal and diseased skin. Here we explore the effects of combined treatment with the differentiation-promoting agent sodium butyrate (SB) and the EGFR inhibitor (EGFRI) PD153035 on terminal differentiation of normal human epidermal keratinocytes (NHEKs). Cells treated with SB showed increased expression of the levels of mRNA and protein of the differentiation markers filaggrin and transglutaminase 1. Co-treatment with EGF significantly blunted these effects of SB. Combined treatment with SB and PD153035 alleviated these inhibitory actions of EGF, resulting in improved effects of decreased cell growth and increased terminal differentiation, relative to the individual treatments. These results indicate that the combined use of a differentiation-promoting agent and an EGFR inhibitor may offer an additional approach to the management of hyperproliferative skin diseases. PMID:24451036

  6. Sodium butyrate mitigates in vitro ammonia generation in cecal content of laying hens.

    PubMed

    Wang, Anping; Wang, Yan; Di Liao, Xin; Wu, Yinbao; Liang, Juan Boo; Laudadio, Vito; Tufarelli, Vincenzo

    2016-08-01

    One of the environmental challenges that modern poultry industry faced is odor pollution caused by ammonia emission. The objectives of the study were to determine the effect of sodium butyrate on the production of ammonia in the cecal contents of laying hens using in vitro gas production study and to elucidate the mechanism behind it. The study consisted of a control (without sodium butyrate), and three experimental groups added with 10, 15, and 20 mg of sodium butyrate, respectively. Results showed that ammonia production in headspace of the syringe decreased by 8.2, 23, and 23 %, respectively, while ammonium production from the fermentation broth decreased by 6.3, 14.4, and 13.7 %, respectively. Sodium butyrate had no significant effect on the contents of uric acid and urea, nitrate-N, or total N in all treatments. However, sodium butyrate decreased the urease and uricase activities (P < 0.05) in the fermentation broth. Sodium butyrate also altered volatile fatty acids profile of the fermentation broth by decreasing the production of isovalerate (P < 0.05) and increasing those of acetate, butyrate, and isobutyrate (P < 0.05). The MiSeq System Sequencing results showed that sodium butyrate increased the relative abundance of Bacteroides and Faecalibacterium (P < 0.05) and decreased the relative abundance of Desulfovibrio, Helicobacter, and Campylobacter (P < 0.05).Our results concluded that sodium butyrate changes the diversity and relative abundance of the microbes which altered the fermentation characteristics leading to reduction in ammonia production.

  7. Sirtuin-2 inhibition affects hippocampal functions and sodium butyrate ameliorates the reduction in novel object memory, cell proliferation, and neuroblast differentiation

    PubMed Central

    Jung, Hyo Young; Yoo, Dae Young; Kim, Jong Whi; Kim, Dae Won; Choi, Jung Hoon; Chung, Jin Young; Won, Moo-Ho; Yoon, Yeo Sung

    2016-01-01

    We investigated the effects of the sirtuin-2 (SIRT2) inhibitor AK-7 on novel object memory, cell proliferation, and neuroblast differentiation in the dentate gyrus. In addition, we also observed the relationships with sodium butyrate, a histone deacetylase inhibitor, on the hippocampal functions. To investigate the effects of AK-7 on hippocampal functions, 10-week-old C57BL/6 mice were daily injected intraperitoneally with 20 mg/kg AK-7 alone or in combination with subcutaneous administration of 300 mg/kg sodium butyrate, a histone deacetylase inhibitor, for 21 days. A novel object recognition test was conducted on days 20 (training) and 21 (testing) of treatment. Thereafter, the animals were sacrificed for immunohistochemistry for Ki67 (cell proliferation) and doublecortin (DCX, neuroblast differentiation). AK-7 administration significantly reduced the time spent exploring new objects, while treatment in combination with sodium butyrate significantly alleviated this reduction. Additionally, AK-7 administration significantly reduced the number of Ki67-positive cells and DCX-immunoreactive neuroblasts in the dentate gyrus, while the treatment in combination with sodium butyrate ameliorated these changes. This result suggests that the reduction of SIRT2 may be closely related to age-related phenotypes including novel object memory, as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, sodium butyrate reverses SIRT2-related age phenotypes. PMID:28053616

  8. Effects of Sodium Butyrate on Methamphetamine-Sensitized Locomotor Activity

    PubMed Central

    Harkness, John H.; Hitzemann, Robert J.; Edmunds, Stephanie; Phillips, Tamara J.

    2012-01-01

    Neuroadaptations associated with behavioral sensitization induced by repeated exposure to methamphetamine (MA) appear to be involved in compulsive drug pursuit and use. Increased histone acetylation, an epigenetic effect resulting in altered gene expression, may promote sensitized responses to psychostimulants. The role of histone acetylation in the expression and acquisition of MA-induced locomotor sensitization was examined by measuring the effect of histone deacetylase inhibition by sodium butyrate (NaB). For the effect on expression, vehicle or NaB (630 mg/kg, intraperitoneally) was administered 30 min prior to MA challenge in mice treated repeatedly with MA (10 days of 2 mg/kg MA) or saline (10 days), and then locomotor response to MA challenge was measured. NaB treatment increased the locomotor response to MA in both acutely MA treated and sensitized animals. For acquisition, NaB was administered 30 min prior to each MA exposure (10 days of 1 or 2 mg/kg), but not prior to the MA challenge test. Treatment with NaB during the sensitization acquisition period significantly increased locomotor activation by MA in sensitized mice only. NaB alone did not significantly alter locomotor activity. Acute NaB or MA, but not the combination, appeared to increase striatal acetylation at histone H4. Repeated treatment with MA, but not NaB or MA plus NaB, increased striatal acetylation at histone H3. Although increased histone acetylation may alter the expression of genes involved in acute locomotor response to MA and in the acquisition of MA-induced sensitization, results for acetylation at H3 and H4 showed little correspondence with behavior. PMID:23137698

  9. Two cytotoxic cell proteinase genes are differentially sensitive to sodium butyrate.

    PubMed Central

    Frégeau, C J; Helgason, C D; Bleackley, R C

    1992-01-01

    The 5'-flanking regions of two cytotoxic cell protease genes, CCP1 and 2, are sufficient to confer cytotoxic T lymphocyte-specific expression when fused to a reporter gene. The two regulatory regions are, however, differentially sensitive to treatment of the recipient cell, MTL 2.8.2, with sodium butyrate. With CCP1 a six-fold increase in cat expression was observed, whereas CCP2 was insensitive to the butyrate treatment. One major butyrate-sensitive regions was defined in the CCP1 5'-flanking sequence between -243 to -112 and another less effective one between-682 to -427. These fragments of DNA were also able to confer responsiveness to butyrate when ligated to a heterologous fos promoter. These sequences within the 5' flank of CCP1 share homology with other elements that have been defined as butyrate-responsive. We believe that our results argue against a pleiotropic affect of butyrate such as histone acetylation. More likely sodium butyrate is mediating a specific stimulation of transcription through modification of the activities of selected transcriptional regulatory proteins that in turn affect their interactions with proteins bound to the promoter. Images PMID:1620608

  10. Effects of dietary sodium butyrate on hepatic biotransformation and pharmacokinetics of erythromycin in chickens.

    PubMed

    Csikó, G; Nagy, G; Mátis, G; Neogrády, Z; Kulcsár, Á; Jerzsele, A; Szekér, K; Gálfi, P

    2014-08-01

    Butyrate, a commonly applied feed additive in poultry nutrition, can modify the expression of certain genes, including those encoding cytochrome P450 (CYP) enzymes. In comparative in vitro and in vivo experiments, the effect of butyrate on hepatic CYP genes was examined in primary cultures of chicken hepatocytes and in liver samples of chickens collected from animals that had been given butyrate as a feed additive. Moreover, the effect of butyrate on the biotransformation of erythromycin, a marker substance for the activity of enzymes of the CYP3A family, was investigated in vitro and in vivo. Butyrate increased the expression of the avian-specific CYP2H1 both in vitro and in vivo. In contrast, the avian CYP3A37 expression was decreased in hepatocytes following butyrate exposure, but not in the in vivo model. CYP1A was suppressed by butyrate in the in vitro experiments, and overexpressed in vivo in butyrate-fed animals. The concomitant incubation of hepatocytes with butyrate and erythromycin led to an increased CYP2H1 expression and a less pronounced inhibition of CYP3A37. In in vivo pharmacokinetic experiments, butyrate-fed animals given a single i.m. injection of erythromycin, a slower absorption phase (longer T(half-abs) and delayed T(max)) but a rapid elimination phase of this marker substrate was observed. Although these measurable differences were detected in the pharmacokinetics of erythromycin, it is unlikely that a concomitant application of sodium butyrate with erythromycin or other CYP substrates will cause clinically significant feed-drug interaction in chickens.

  11. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism.

    PubMed

    Takuma, Kazuhiro; Hara, Yuta; Kataoka, Shunsuke; Kawanai, Takuya; Maeda, Yuko; Watanabe, Ryo; Takano, Erika; Hayata-Takano, Atsuko; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2014-11-01

    We recently showed that prenatal exposure to valproic acid (VPA) in mice causes autism-like behavioral abnormalities, including social interaction deficits, anxiety-like behavior and spatial learning disability, in male offspring. In the present study, we examined the effect of prenatal VPA on cognitive function and whether the effect is improved by chronic treatment with VPA and sodium butyrate, histone deacetylase inhibitors. In addition, we examined whether the cognitive dysfunction is associated with hippocampal dendritic morphological changes. Mice given prenatal exposure to VPA exhibited novel object recognition deficits at 9 weeks of age, and that the impairment was blocked by chronic (5-week) treatment with VPA (30 mg/kg/d, i.p.) or sodium butyrate (1.2g/kg/d, i.p.) starting at 4 weeks of age. In agreement with the behavioral findings, the mice prenatally exposed to VPA showed a decrease in dendritic spine density in the hippocampal CA1 region, and the spine loss was attenuated by chronic treatment with sodium butyrate or VPA. Furthermore, acute treatment with sodium butyrate, but not VPA, significantly increased acetylation of histone H3 in the hippocampus at 30 min, suggesting the difference in the mechanism for the effects of chronic VPA and sodium butyrate. These findings suggest that prenatal VPA-induced cognitive dysfunction is associated with changes in hippocampal dendritic spine morphology.

  12. Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain.

    PubMed

    Valvassori, Samira S; Calixto, Karen V; Budni, Josiane; Resende, Wilson R; Varela, Roger B; de Freitas, Karolina V; Gonçalves, Cinara L; Streck, Emilio L; Quevedo, João

    2013-12-01

    There is increasing interest in the possibility that mitochondrial impairment may play an important role in bipolar disorder (BD). The Krebs cycle is the central point of oxidative metabolism, providing carbon for biosynthesis and reducing agents for generation of ATP. Recently, studies have suggested that histone deacetylase (HDAC) inhibitors may have antimanic effects. The present study aims to investigate the effects of sodium butyrate (SB), a HDAC inhibitor, on Krebs cycle enzymes activity in the brain of rats subjected to an animal model of mania induced by D-amphetamine (D-AMPH). Wistar rats were first given D-AMPH or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with SB or Sal. The citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were evaluated in the prefrontal cortex, hippocampus, and striatum of rats. The D-AMPH administration inhibited Krebs cycle enzymes activity in all analyzed brain structures and SB reversed D-AMPH-induced dysfunction analyzed in all brain regions. These findings suggest that Krebs cycle enzymes' inhibition can be an important link for the mitochondrial dysfunction seen in BD and SB exerts protective effects against the D-AMPH-induced Krebs cycle enzymes' dysfunction.

  13. Effects of sodium butyrate on aversive memory in rats submitted to sepsis.

    PubMed

    Steckert, Amanda V; Comim, Clarissa M; Igna, Dhébora M Dall; Dominguini, Diogo; Mendonça, Bruna P; Ornell, Felipe; Colpo, Gabriela D; Gubert, Carolina; Kapczinski, Flávio; Barichello, Tatiana; Quevedo, João; Dal-Pizzol, Felipe

    2015-05-19

    Epigenetic mechanisms are involved in normal behavior and are implicated in several brain neurodegenerative conditions, psychiatric and inflammatory diseases as well. Moreover, it has been demonstrated that sepsis lead to an imbalance in acetylation of histones and that histone deacetylase inhibitors (HDACi) can reverse this condition. In the present study, we evaluated the effects of a microinjection of sodium butyrate (SB, HDACi) into cerebral ventricle on aversive memory in rats submitted to the sepsis. Rats were given a single intraventricular injection of artificial cerebrospinal fluid (ACSF) or SB and immediately after the stereotaxic surgery and the drug infusion, the animals were subjected to cecal ligation and perforation (CLP). The animals were killed twenty four hours or ten days after sepsis induction and the prefrontal cortex, hippocampus, striatum and cortex were obtained to the determination of histone deacetylase activity. In a separate cohort of animals 10 days after sepsis induction, it was performed the inhibitory avoidance task. SB administration was able to reverse the impairment in aversive memory and inhibited the HDAC activity in prefrontal cortex and hippocampus 10 days after CLP. These support a role for an epigenetic mechanism in the long-term cognitive impairments observed in sepsis survivors animals.

  14. Sodium Butyrate Reduces Colitogenic Immunoglobulin A-Coated Bacteria and Modifies the Composition of Microbiota in IL-10 Deficient Mice.

    PubMed

    Zhang, Tenghui; Ding, Chao; Zhao, Mingli; Dai, Xujie; Yang, Jianbo; Li, Yi; Gu, Lili; Wei, Yao; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou

    2016-11-24

    High levels of immunoglobulin A (IgA)-coated bacteria may have a role in driving inflammatory bowel disease (IBD). We therefore investigated the effect of sodium butyrate on microbiota in IBD prone interleukin (IL)-10(-/-) mice. At 8 weeks of age, mice were allocated into three groups (n = 4/group): normal (C57BL/6), IL-10(-/-), and IL-10(-/-) treated with sodium butyrate (100 mM). Severity of colitis, inflammatory cytokine and short-chain fatty acid (SCFA) concentration in proximal colon contents, the percentage of IgA-coated bacteria and microbiota composition by 16S ribosomal RNA assessment of stool were measured after 4 weeks of treatment. Sodium butyrate ameliorated histological colitis and decreased levels of tumor necrosis factor (TNF)-α and IL-6 in IL-10(-/-) mice compared with those without treatment. At the phylum level, a reduction in Bacteroidetes and an increase in Firmicutes in IL-10(-/-) mice treated with sodium butyrate were observed. Additionally, Prevotellaceae species were reduced in IL-10(-/-) mice treated with sodium butyrate as compared with those without treatment. The level of biodiversity was slightly increased and the amount of IgA-coated bacteria decreased in IL-10(-/-) mice treated with sodium butyrate compared with those without treatment. Our results indicate that sodium butyrate protects against colitis, possibly through modifying the gut microbiota, enriching biodiversity and reducing the amount of colitogenic IgA-coated bacteria in IL-10(-/-) mice.

  15. The induction of vimentin gene expression by sodium butyrate in human promonocytic leukemia U937 cells

    SciTech Connect

    Rius, C.; Aller, P. ); Cabanas, C. Universidad Complutense, Madrid )

    1990-05-01

    The administration of 1 mM sodium butyrate induced the phenotypic differentiation of human promonocytic leukemia U937 cells, as judged by the expression of cD11b and cD11c antigens, two differentiation-specific surface markers. At the same time, butyrate greatly induced the expression at the mRNA level of the vimentin gene. The increase in the level of this RNA started at 6 hours of treatment and reached the maximum at Hour 24. Such an increase was caused at least in part by a stimulation in the rate of gene transcription, as suggested by transcription assays in isolated nuclei. Experiments in the presence of cycloheximide suggested that vimentin induction is probably a direct response to the action of butyrate, not mediated by the prior induction of other gene products. Unlike the case the vimentin, the levels of other RNAs, namely {beta}-actin ornithine decarboxylase, and c-myc, were not enhanced, but they decreased at different times of treatment with butyrate. Finally, the authors observed that butyrate induced also the differentiation of HL60 cells, another human myeloid cell type. Nevertheless, the drug failed to stimulate the expression of vimentin in this cell line.

  16. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  17. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  18. Sodium Butyrate Improves Locomotor Impairment and Early Mortality in a Rotenone-Induced Drosophila Model of Parkinson’s Disease

    PubMed Central

    St. Laurent, Robyn; O’Brien, Liam M.; Ahmad, S. Tariq

    2013-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder primarily affecting the dopaminergic neurons in the nigrastriatal pathway resulting in debilitating motor impairment in both familial and sporadic cases. Histone deacetylase (HDAC) inhibitors have been recently implicated as a therapeutic candidate because of their ability to correct the disrupted HDAC activity in PD and other neurodegenerative diseases. Sodium butyrate (SB), an HDAC inhibitor, reduces degeneration of dopaminergic neurons in a mutant alpha-synuclein Drosophila transgenic model of familial PD. Chronic exposure to the pesticide rotenone also causes selective degeneration of dopaminergic neurons and causes locomotor impairment and early mortality in a Drosophila model of chemically-induced PD. This study investigated the effects of sodium butyrate on locomotor impairment and early mortality in a rotenone-induced PD model. We show that treatment with 10 mM SB-supplemented food rescued the rotenone-induced locomotor impairment and early mortality in flies. Additionally, flies with the genetic knockdown of HDAC activity through Sin3A loss-of-function mutation (Sin3Alof) were resistant to rotenone-induced locomotor impairment and early mortality. Furthermore, SB-supplemented Sin3Alof flies had a modest additive effect for improving locomotor impairment. We also show SB-mediated improvement of rotenone-induced locomotor impairment was associated with elevated dopamine levels in the brain. However, the possibility of SB-mediated protective role through mechanisms independent from dopamine system is also discussed. These findings demonstrate that HDAC inhibitors like SB can ameliorate locomotor impairment in a rotenone-induced PD model. PMID:23623990

  19. Epigenetically Reprogramming of Human Embryonic Stem Cells by 3-Deazaneplanocin A and Sodium Butyrate

    PubMed Central

    Azghadi, Soheila; Clark, Amander T.

    2011-01-01

    Objectives: Infertility affects about 6.1 million women aged 15-44 in the United States. The leading cause of infertility in women is quantitative and qualitative defects in human germ-cell development (these sentences are not mentioned in introduction so it is not correct to mention in abstract, you can omit). Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of developing blastocysts and have a broad clinical potential. hESCs have been classified into three classes based on their epigenetic state. The goal of this study was to epigenetically reprogram Class II and Class III cell lines to Class I (naïve state), and to in vitro differentiation of potent hESCs to primordial germ cells (PGCs). Methods: Recent evidence suggests that 3-deazaneplanocin A (DZNep) is a global histone methylation inhibitor which selectively inhibits trimethylation of lysine 27 on histone H3K27, and it is an epigenetic therapeutic for cancer. The characteristics of DZNep lead us to hypothesize that it is a good candidate to epigenetically reprogram hESCs to the Class I. Additionally, we used sodium butyrate (NaBu) shown in previous studies to up-regulate the expression of germ cell specific markers (these sentences should be come in introduction). Results: We used these two drugs to produce epigenetically stable hESC lines. hESC lines are an appropriate system for disease modeling and understanding developmental stages, therefore producing stable stem cell lines may have an outstanding impact in different research fields such as preventive medicine. Conclusions: X-Chromosome inactivation has been used as a tool to follow the reprogramming process. We have used immunostaining and western blot as methods to follow this reprogramming qualitatively and quantitatively. PMID:21603011

  20. Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells.

    PubMed

    Tailor, Dhanir; Hahm, Eun-Ryeong; Kale, Raosaheb K; Singh, Shivendra V; Singh, Rana P

    2014-05-01

    Sodium butyrate (NaBt) is the byproduct of anaerobic microbial fermentation inside the gastro-intestinal tract that could reach up to 20mM, and has been shown to inhibit the growth of various cancers. Herein, we evaluated its effect on mitochondrial fusion and associated induction of apoptosis in colorectal cancer cells (CRC). NaBt treatment at physiological (1-5mM) concentrations for 12 and 24h decreased the cell viability and induced G2-M phase cell cycle arrest in HCT116 (12h) and SW480 human CRC cells. This cell cycle arrest was associated with mitochondria-mediated apoptosis accompanied by a decrease in survivin and Bcl-2 expression, and generation of reactive oxygen species (ROS). Furthermore, NaBt treatment resulted in a significant decrease in the mitochondrial mass which is an indicator of mitochondrial fusion. Level of dynamin-related protein 1 (DRP1), a key regulator of mitochondrial fission and fusion where its up-regulation correlates with fission, was found to be decreased in CRC cells. Further, at early treatment time, DRP1 down-regulation was noticed in mitochondria which later became drastically reduced in both mitochondria as well as cytosol. DRP1 is activated by cyclin B1-CDK1 complex by its ser616 phosphorylation in which both cyclin B1-CDK1 complex and phospho-DRP1 (ser616) were strongly reduced by NaBt treatment. DRP1 was observed to be regulated by apoptosis as pan-caspase inhibitor showing rescue from NaBt-induced apoptosis also caused the reversal of DRP1 to the normal level as in control proliferating cells. Together, these findings suggest that NaBt can modulate mitochondrial fission and fusion by regulating the level of DRP1 and induce cell cycle arrest and apoptosis in human CRC cells.

  1. The synergistic effect of 1'-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells.

    PubMed

    Kato, Rie; Matsui-Yuasa, Isao; Azuma, Hideki; Kojima-Yuasa, Akiko

    2014-04-05

    It has been suggested that the combined effect of natural products may improve the effect of treatment against the proliferation of cancer cells. In this study, we evaluated the combination of 1'-acetoxychavicol acetate (ACA), obtained from Alpinia galangal, and sodium butyrate, a major short chain fatty acid, on the growth of HepG2 human hepatocellular carcinoma cells and found that treatment had a synergistic inhibitory effect. The number of HepG2 cells was synergistically decreased via apoptosis induction when cells were treated with both ACA and sodium butyrate. In ACA- and sodium butyrate-treated cells, intracellular reactive oxygen species (ROS) levels and NADPH oxidase activities were increased significantly. The decrease in cell number after combined treatment of ACA and sodium butyrate was diminished when cells were pretreated with catalase. These results suggest that an increase in intracellular ROS levels is involved in cancer cell death. AMP-activated protein kinase (AMPK), a cellular energy sensor, plays an essential role in controlling processes related to tumor development. In ACA- and sodium butyrate-treated cells, AMPK phosphorylation was induced significantly, and this induction improved when cells were pretreated with catalase. These results suggest that the increase in intracellular ROS is involved in the increase of AMPK phosphorylation. In normal hepatocyte cells, treatment with ACA and sodium butyrate did not decrease cell numbers or increase ROS levels. In conclusion, combined treatment with ACA and sodium butyrate synergistically induced apoptotic cell death via an increase in intracellular ROS and phosphorylation of AMPK. Our findings may provide new insight into the development of novel combination therapies against hepatocellular carcinoma. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Sodium Butyrate Reduces Colitogenic Immunoglobulin A-Coated Bacteria and Modifies the Composition of Microbiota in IL-10 Deficient Mice

    PubMed Central

    Zhang, Tenghui; Ding, Chao; Zhao, Mingli; Dai, Xujie; Yang, Jianbo; Li, Yi; Gu, Lili; Wei, Yao; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou

    2016-01-01

    High levels of immunoglobulin A (IgA)-coated bacteria may have a role in driving inflammatory bowel disease (IBD). We therefore investigated the effect of sodium butyrate on microbiota in IBD prone interleukin (IL)-10−/− mice. At 8 weeks of age, mice were allocated into three groups (n = 4/group): normal (C57BL/6), IL-10−/−, and IL-10−/− treated with sodium butyrate (100 mM). Severity of colitis, inflammatory cytokine and short-chain fatty acid (SCFA) concentration in proximal colon contents, the percentage of IgA-coated bacteria and microbiota composition by 16S ribosomal RNA assessment of stool were measured after 4 weeks of treatment. Sodium butyrate ameliorated histological colitis and decreased levels of tumor necrosis factor (TNF)-α and IL-6 in IL-10−/− mice compared with those without treatment. At the phylum level, a reduction in Bacteroidetes and an increase in Firmicutes in IL-10−/− mice treated with sodium butyrate were observed. Additionally, Prevotellaceae species were reduced in IL-10−/− mice treated with sodium butyrate as compared with those without treatment. The level of biodiversity was slightly increased and the amount of IgA-coated bacteria decreased in IL-10−/− mice treated with sodium butyrate compared with those without treatment. Our results indicate that sodium butyrate protects against colitis, possibly through modifying the gut microbiota, enriching biodiversity and reducing the amount of colitogenic IgA-coated bacteria in IL-10−/− mice. PMID:27886121

  3. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  4. Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial

    PubMed Central

    2012-01-01

    Background Treatment of shigellosis in rabbits with butyrate reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18) in the large intestinal epithelia. Here, we aimed to evaluate whether butyrate can be used as an adjunct to antibiotics in the treatment of shigellosis in patients. Methods A randomized, double-blind, placebo-controlled, parallel-group designed clinical trial was conducted. Eighty adult patients with shigellosis were randomized to either the Intervention group (butyrate, n = 40) or the Placebo group (normal saline, n = 40). The Intervention group was given an enema containing sodium butyrate (80 mM), twice daily for 3 days, while the Placebo group received the same dose of normal saline. The primary endpoint of the trial was to assess the efficacy of butyrate in improving clinical, endoscopic and histological features of shigellosis. The secondary endpoint was to study the effect of butyrate on the induction of antimicrobial peptides in the rectum. Clinical outcomes were assessed and concentrations of antimicrobial peptides (LL-37, human beta defensin1 [HBD-1] and human beta defensin 3 [HBD-3]) and pro-inflammatory cytokines (interleukin-1β [IL-1β] and interleukin-8 [IL-8]) were measured in the stool. Sigmoidoscopic and histopathological analyses, and immunostaining of LL-37 in the rectal mucosa were performed in a subgroup of patients. Results Compared with placebo, butyrate therapy led to the early reduction of macrophages, pus cells, IL-8 and IL-1β in the stool and improvement in rectal histopathology. Butyrate treatment induced LL-37 expression in the rectal epithelia. Stool concentration of LL-37 remained significantly higher in the Intervention group on days 4 and 7. Conclusion Adjunct therapy with butyrate during shigellosis led to early reduction of inflammation and enhanced LL-37 expression in the rectal epithelia with prolonged release of LL-37 in the stool. Trial Registration Clinical

  5. Potentiated antitumor effects of a combination therapy with a farnesyltransferase inhibitor L-744,832 and butyrate in vitro.

    PubMed

    Kopec, Maciej; Strusinska, Katarzyna; Legat, Magdalena; Makowski, Marcin; Jakobisiak, Marek; Golab, Jakub

    2004-05-01

    Farnesyltransferase inhibitors, butyrate and butyric acid derivatives have previously been reported to exert anti-tumor activity in experimental models in vitro and in vivo and have recently gained acceptance as potential anticancer agents. In our study, we examined antitumor effects of a combination of a farnesyltransferase inhibitor L-744,832 and butyrate in vitro against MDA-MB-231 and MIA PaCa-2 human cancer cells. This combination therapy showed synergistic antitumor activity against MDA-MB-231 cells, which was at least in part due to induction of p27KIP1 expression. Both drugs increased intracellular levels of p53 as well but there was no significant difference between the groups treated with single drugs and the group treated with their combination. In MIA PaCa-2 cells, the combination therapy exerted additive antitumor activity. Our results illustrate possible application of the farnesyltransferase inhibitor L-744,832 and butyrate as a combination therapy of cancer.

  6. Sodium Butyrate Ameliorates High-Concentrate Diet-Induced Inflammation in the Rumen Epithelium of Dairy Goats.

    PubMed

    Dai, Hongyu; Liu, Xinxin; Yan, Jinyu; Aabdin, Zain Ul; Bilal, Muhammad Shahid; Shen, Xiangzhen

    2017-01-25

    To investigate the effect of sodium butyrate on high-concentrate diet-induced local inflammation of the rumen epithelium, 18 midlactating dairy goats were randomly assigned to 3 groups: a low-concentrate diet group as the control (concentrate:forage = 4:6), a high-concentrate (HC) diet group (concentrate:forage = 6:4), and a sodium butyrate (SB) group (concentrate:forage = 6:4, with 1% SB by weight). The results showed that, with the addition of sodium butyrate, the concentration of lipopolysaccharide (LPS) in rumen fluid (2.62 × 10(4) ± 2.90 × 10(3) EU/mL) was significantly lower than that in the HC group (4.03 × 10(4) ± 2.77 × 10(3) EU/mL). The protein abundance of pp65, gene expression of proinflammatory cytokines, and activity of myeloperoxidase (MPO) and matrix metalloproteinase (MMP)-2,9 in the rumen epithelium were significantly down-regulated by SB compared with those in the HC group. With sodium butyrate administration, the concentration of NH3-N (19.2 ± 0.890 mM) in the rumen fluid was significantly higher than that for the HC group (12.7 ± 1.38 mM). Severe disruption of the rumen epithelium induced by HC was also ameliorated by dietary SB. Therefore, local inflammation and disruption of the rumen epithelium induced by HC were alleviated with SB administration.

  7. Effect of sodium butyrate on pro-matrix metalloproteinase-9 and -2 differential secretion in pediatric tumors and cell lines.

    PubMed

    Rodríguez-Salvador, J; Armas-Pineda, C; Perezpeña-Diazconti, M; Chico-Ponce de León, F; Sosa-Sáinz, G; Lezama, P; Recillas-Targa, F; Arenas-Huertero, F

    2005-09-01

    Matrix metalloproteinases (MMPs) are enzymes responsible for extracellular matrix degradation and contribute to local and distant cell invasion during cancer progression or metastasis. The effects of chromatin structure on gene expression and the use of histone deacetylase inhibitors such as sodium butyrate (NaBu) may directly influence pro-MMPs secretion. In the present study, we evaluated the effect of NaBu on pro-MMP-9 and pro-MMP-2 secretion in human Jurkat and HT1080 cells, and in 36 pediatric solid tumors. Cell lines and samples were exposed to 8 mM of NaBu and proteinase activity was evaluated in the supernatant by gelatin zymograms. Our results showed, for Jurkat cells treated with NaBu, increases of 2-fold and 1.5-fold in pro-MMP-9 and pro-MMP-2 secretion, respectively. A 50% decrease in pro-MMP-9 secretion due to NaBu was observed in HT1080 cells. NaBu induced a 0.62 reduction in levels of pro-MMP-9 secretion in untreated tumors. For cell lines and some NaBu-treated tumors we found histone H4 hyperacetylation. We conclude that pro-MMPs gene expression and their secretion can be epigenetically mis-regulated in tumoral processes.

  8. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  9. Inhibition of store-operated Ca2+ entry counteracts the apoptosis of nasopharyngeal carcinoma cells induced by sodium butyrate

    PubMed Central

    Huang, Wei; Ren, Caiping; Huang, Guoling; Liu, Jie; Liu, Weidong; Wang, Lei; Zhu, Bin; Feng, Xiangling; Shi, Jia; Li, Jinlong; Xia, Xiaomeng; Jia, Wei; Chen, Jiawen; Chen, Yuxiang; Jiang, Xingjun

    2017-01-01

    Sodium butyrate (NaBu), a histone deacetylase inhibitor, has demonstrated anti-tumor effects in several cancers, and is a promising candidate chemotherapeutic agent. However, its roles in nasopharyngeal carcinoma (NPC), an endemic malignant disease in Southern China and Southeast Asia, has rarely been studied. In the present study, MTT assay, colony formation assay, flow cytometry analysis and western blotting were performed to explore the influence of NaBu on NPC cells and its underlying mechanism. NaBu induced morphological changes and inhibited proliferation in 5–8F and 6–10B cells. MTT assay revealed that NaBu was cytotoxic to 5–8F and 6–10B cells in a dose- and time-dependent manner. Furthermore, flow cytometry analysis revealed that NaBu induced obvious cell apoptosis in 5–8F and 6–10B cells due to the activation of the mitochondrial apoptosis axis. In addition, flow cytometry analysis and western blotting demonstrated that NaBu could enhance the Ca2+ influx by promoting store-operated Ca2+ entry (SOCE) in 5–8F and 6–10B cells. Inhibition of SOCE by specific inhibitors or downregulated expression of calcium release-activated calcium channel protein 1 and stromal interaction molecule 1 could counteract the apoptosis of NPC cells induced by NaBu. Thus, the current study revealed that enhanced SOCE and activated mitochondrial apoptosis axis may account for the mechanisms of cytotoxicity of NaBu in NPC cells, and that NaBu serves as a promising chemotherapeutic agent in NPC therapy. PMID:28356979

  10. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  11. Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets

    PubMed Central

    Xu, Jumei; Chen, Xue; Yu, Shuiqing; Su, Yong; Zhu, Weiyun

    2016-01-01

    Butyrate in the gut of animals has potential properties including regulating the innate immune, modulating the lipid metabolism, and protecting gut healthy. So far, only limited information on the impact of butyrate on the neonatal is available. This study aimed to investigate effects of oral administration of sodium butyrate (SB) on gut microbiota and the expression of inflammatory cytokine in neonatal piglets. Ten litters of crossbred newborn piglets were randomly allocated to the SB and control (CO) groups, each group consisted of five litters (replicates). Piglets in the SB group were orally administrated with 7 to 13 ml sodium butyrate solution (150 mmol/l) per day from the age of 1 to 7 days, respectively; piglets in the CO group were treated with the same dose of physiological saline. On days 8 and 21 (of age), gut digesta and tissues were collected for the analysis of microbiota, butyrate concentration and gene expression of inflammatory cytokine. Results showed that there was no difference in the butyrate concentration in the gut of piglets on days 8 and 21 between two groups. Real-time PCR assay showed that SB had no effect on the numbers of total bacteria in the stomach, ileum, and colon. MiSeq sequencing of the V3-V4 region of the 16S rRNA gene revealed that SB increased the richness in the stomach and colon, and the diversity of colonic microbiota on day 8 (P < 0.05). Genera Acinetobacter, Actinobacillus, Facklamia, Globicatella, Kocuria, Rothia, unclassified Leptotrichiaceae, unclassified Neisseriaceae, and unclassified Prevotellaceae in the stomach were increased in relative abundance by SB treatment, whereas the abundances of Lactobacillus decreased on day 8 (P < 0.05). At the genus and operational taxonomic unit (OTU) levels, SB had low impact on bacterial community in the ileum and colon on days 8 and 21. SB treatment decreased the expression of IL-6, IL-8, IFN-γ, IL-10, TGF-β, and histone deacetylase 1 (HDAC1) in the ileum of piglets on day 8

  12. Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets.

    PubMed

    Xu, Jumei; Chen, Xue; Yu, Shuiqing; Su, Yong; Zhu, Weiyun

    2016-01-01

    Butyrate in the gut of animals has potential properties including regulating the innate immune, modulating the lipid metabolism, and protecting gut healthy. So far, only limited information on the impact of butyrate on the neonatal is available. This study aimed to investigate effects of oral administration of sodium butyrate (SB) on gut microbiota and the expression of inflammatory cytokine in neonatal piglets. Ten litters of crossbred newborn piglets were randomly allocated to the SB and control (CO) groups, each group consisted of five litters (replicates). Piglets in the SB group were orally administrated with 7 to 13 ml sodium butyrate solution (150 mmol/l) per day from the age of 1 to 7 days, respectively; piglets in the CO group were treated with the same dose of physiological saline. On days 8 and 21 (of age), gut digesta and tissues were collected for the analysis of microbiota, butyrate concentration and gene expression of inflammatory cytokine. Results showed that there was no difference in the butyrate concentration in the gut of piglets on days 8 and 21 between two groups. Real-time PCR assay showed that SB had no effect on the numbers of total bacteria in the stomach, ileum, and colon. MiSeq sequencing of the V3-V4 region of the 16S rRNA gene revealed that SB increased the richness in the stomach and colon, and the diversity of colonic microbiota on day 8 (P < 0.05). Genera Acinetobacter, Actinobacillus, Facklamia, Globicatella, Kocuria, Rothia, unclassified Leptotrichiaceae, unclassified Neisseriaceae, and unclassified Prevotellaceae in the stomach were increased in relative abundance by SB treatment, whereas the abundances of Lactobacillus decreased on day 8 (P < 0.05). At the genus and operational taxonomic unit (OTU) levels, SB had low impact on bacterial community in the ileum and colon on days 8 and 21. SB treatment decreased the expression of IL-6, IL-8, IFN-γ, IL-10, TGF-β, and histone deacetylase 1 (HDAC1) in the ileum of piglets on day 8

  13. Modulation of microRNAs expression in hematopoietic stem cells treated with sodium butyrate in inducing fetal hemoglobin expression.

    PubMed

    Tayebi, Behnoosh; Abrishami, Fatemeh; Alizadeh, Shaban; Minayi, Neda; Mohammadian, Mozhdeh; Soleimani, Masoud; Dehghanifard, Ali; Atwan, Hossein; Ajami, Monireh; Ajami, Mansoureh

    2017-02-01

    Context Inherited hemoglobin diseases are the most common single-gene disorders. Induction of fetal hemoglobin in beta hemoglobin disorders compensate for abnormal chain and ameliorate the clinical complications. Sodium butyrate is used conventionally for fetal hemoglobin induction; it can be replaced by safer therapeutic tools like microRNAs, small non-coding RNAs that control number of epigenetic mechanisms. Objective In this study, we compared the changes in the microRNAs of differentiated erythroid cells between control and sodium butyrate treated groups. The objective is to find significant association between these changes and gamma chain up regulation. Materials and methods First, CD133(+ ) hematopoietic stem cells were isolated from cord blood by magnetic cell sorting (MACS) technique. After proliferation, the cells were differentiated to erythroid lineage in culture medium by EPO, SCF, and IL3. Meanwhile, the test group was treated with sodium butyrate. Then, gamma chain upregulation was verified by qPCR technique. Finally, microRNA profiling was performed through microarray assay and some of them confirmed by qPCR. Result Results demonstrated that gamma chain was 5.9-fold upregulated in the treated group. Significant changes were observed at 76 microRNAs, in which 20 were up-regulated and 56 were down-regulated. Discussion Five of these microRNAs including U101, hsa-miR-4726-5p, hsa-miR7109 5p, hsa-miR3663, and hsa-miR940 had significant changes in expression and volume. Conclusion In conclusion, it can be assumed that sodium butyrate can up-regulate gamma chain gene, and change miRNAs expression. These results can be profitable in future studies to find therapeutic goal suitable for such disorders.

  14. The enhancement of phase 2 enzyme activities by sodium butyrate in normal intestinal epithelial cells is associated with Nrf2 and p53.

    PubMed

    Yaku, Keisuke; Enami, Yuka; Kurajyo, Chika; Matsui-Yuasa, Isao; Konishi, Yotaro; Kojima-Yuasa, Akiko

    2012-11-01

    Dietary fiber fermentation by the colonic bacterial flora produces short-chain fatty acids, acetate, propionate and butyrate. Among them, butyrate is considered to be the major energy substrate for colonocytes and, at least in rats, seems to protect against colonic carcinogenesis. In this study, we examined the effect and the mechanisms of short-chain fatty acids on the activity of phase 2 enzymes. Sodium butyrate increased phase 2 enzyme activities in normal rat small intestine epithelial cells, Glutathione S-transferase and NAD(P)H:quinone oxidoreductase (NQO) in a dose-dependent manner(;) however, other short-chain fatty acids did not increase them. The mechanism of the induction of phase 2 enzymes with sodium butyrate sodium butyrate, but not other short-chain fatty acids was related to the increase of NF-E2-related factor 2 (Nrf2) nuclear translocation and the decrease in the levels of nuclear fraction p53. Sodium butyrate also caused enhancement of Nrf2 mRNA levels and suppression of p53 mRNA levels. Sodium butyrate enhances the activities of phase 2 enzymes via an increase in the Nrf2 protein levels in the nucleus and a decrease in the mRNA and protein levels of p53.

  15. Effect of feeding sodium butyrate in the late finishing period on Salmonella carriage, seroprevalence, and growth of finishing pigs.

    PubMed

    Walia, Kavita; Argüello, Hector; Lynch, Helen; Leonard, Finola C; Grant, Jim; Yearsley, Dermot; Kelly, Sinead; Duffy, Geraldine; Gardiner, Gillian E; Lawlor, Peadar G

    2016-09-01

    Pork is an important source of human salmonellosis and low-cost on-farm control measures may provide a useful element in reducing the prevalence of this pathogen in food. This study investigated the effectiveness of dietary supplementation with sodium butyrate administered to finisher pigs for ∼4-weeks prior to slaughter to control Salmonella shedding on highly contaminated farms. Two trials (A and B) were conducted on two commercial pig farms, which had a history of high Salmonella seroprevalence. In both trials, pens (14 pens of 12 pigs/pen in Trial A and 12 pens of 12-17 pigs/pen in Trial B) were randomly assigned to a control (finisher feed without additive) or a treatment group (the same feed with 3kg sodium butyrate/t) for 24-28days, depending on the trial. Faeces were collected from each pig on days 0, 12 and 24/28, and blood, caecal digesta and ileocaecal/mesenteric lymph nodes were collected from the slaughterhouse. Pigs were weighed at the start and end of the trials, feed intake was recorded, and carcass quality parameters were recorded at slaughter. In Trial A, Salmonella shedding was reduced in the treatment compared to the control group at the end of the trial (30% versus 57% probability of detecting Salmonella in faeces, respectively; p<0.001). This reflected the serology results, with detection of a lower seroprevalence in the treatment compared to the control group using the 20% optical density cut-off (69.5% versus 89%; p=0.001). However, no effect on faecal shedding or seroprevalance was observed in Trial B, which may be explained by the detection of a concomitant infection with Lawsonia intracellularis. No significant differences in Salmonella recovery rates were observed in the caecal digesta or lymph nodes in either trial. Furthermore, feed intake, weight gain, and feed conversion efficiency (FCE) did not differ between groups (p>0.05) in either trial. Numerical improvements in weight gain and FCE were found with sodium butyrate treatment

  16. Effect of sodium butyrate on induction of cellular and viral DNA syntheses in polyoma virus-infected mouse kidney cells.

    PubMed Central

    Wawra, E; Pöckl, E; Müllner, E; Wintersberger, E

    1981-01-01

    Sodium butyrate inhibited initiation of viral and cellular DNA replication in polyoma virus-infected mouse kidney cells. Ongoing viral or cellular DNA replication, however, was not affected by the presence of the substance. Butyrate had no effect on T-antigen synthesis and on the stimulation of transcription, one of the earliest reactions of the infected cells to the appearance of T-antigen, nor did it inhibit expression of late viral genes (synthesis of viral capsid proteins). In addition to blocking the onset of DNA synthesis, butyrate also inhibited stimulation of the activities of enzymes involved in DNA synthesis. When butyrate was removed, viral and cellular DNA syntheses were induced in parallel after a lag period of approximately 4 h. At the same time, the activities of enzymes involved in DNA synthesis increase. If protein synthesis was inhibited during part of the lag period, the initiation of DNA synthesis was retarded for the same time interval, suggesting that the proteins involved in the initiation of DNA replication had to be made. We have developed an in vitro system for measuring DNA synthesis in crude nuclear preparations which mimics the status of DNA replication in intact cells and may help in future experiments to study the requirements for initiation of cellular and viral DNA synthesis and the possible involvement of T-antigens in this reaction. Images PMID:6264167

  17. Sodium butyrate down-regulation of indoleamine 2, 3-dioxygenase at the transcriptional and post-transcriptional levels.

    PubMed

    Jiang, Guan-Min; He, Yu-Wen; Fang, Rui; Zhang, Ge; Zeng, Jun; Yi, Yan-Mei; Zhang, Shu; Bu, Xian-Zhang; Cai, Shao-Hui; Du, Jun

    2010-11-01

    The clinical outcomes of most immunotherapeutic strategies have been less effective than anticipated partially because of the tumor immune tolerance induced by many immune tolerance factors, which originate from the tumor and tumor microenvironment. Indoleamine 2, 3-dioxygenase (IDO) is an interferon-γ (IFN-γ)-inducible enzyme and is one of main immune tolerance factors during tumor development. Sodium butyrate (NaB) has received much attention as a potential chemopreventive agent for cancer treatment due to its protective action against intracellular events including IFN-γ-mediated signaling transduction. Therefore, the question remains whether IDO is a target of the anti-tumor action of NaB. In this study, we demonstrate for the first time that NaB down-regulated IDO via both transcriptional and post-transcriptional mechanisms. NaB repressed the activity of STAT1 to inhibit STAT1-driven transcriptional activity of IDO. These mechanisms included inhibiting STAT1 701 tyrosine phosphorylation, nuclear translocation, and repression of STAT1 binding to γ-activated sites (GAS). Moreover, immunoprecipitation and immunoblotting assays showed that treatment of cells with NaB caused dramatic ubiquitination of total intracellular proteins, including IDO. Blocking 26S proteasome activity by addition of its specific inhibitor, bortezomib, reversed the ubiquitination and down-regulation of IDO. These results suggest that NaB-induced STAT1 activity inhibition and ubiquitin/proteasome-dependent proteolysis are involved in the down-regulation of IDO. The discoveries in this study represent a new mechanism in the anti-tumor action of NaB and may have implications for development of clinical cancer immunotherapy.

  18. Blockade of ethanol-induced behavioral sensitization by sodium butyrate: descriptive analysis of gene regulations in the striatum.

    PubMed

    Legastelois, Rémi; Botia, Béatrice; Naassila, Mickaël

    2013-07-01

    Behavioral sensitization induced by repeated ethanol (EtOH) exposure may play a critical role in the development of alcohol dependence. Because recent data demonstrate that histone deacetylase inhibitor (HDACi) may be of interest in the treatment of addiction, we explored the effect of the HDACi sodium butyrate (NaB) on EtOH-induced behavioral sensitization (EIBS) in DBA/2J mice. We also investigated gene regulations in the striatum of sensitized mice using epigenetic- and signal transduction-related PCR arrays. Mice were injected with saline or EtOH (0.5 to 2.5 g/kg) once a day for 10 days. Mice received NaB (200 to 600 mg/kg) 30 minutes before each injection (prevention protocol) or once daily between days 11 and 16 (reversal protocol). At day 17, brains were removed 30 minutes after a saline or EtOH challenge to assess gene and proteins levels. Only the intermediate EtOH doses (1.0 and 2.0 g/kg) were effective in inducing EIBS, and both doses were associated with specific gene regulations in the striatum. The induction of sensitization by 1.0 g/kg (but not 2.0 g/kg) EtOH was dose-dependently prevented or reversed by NaB. Among the 168 studied genes, EIBS blockade was associated with specific gene regulations (bcl-2, bdnf, hdac4, pak1, penk, tacr1, vip…) and changes in brain-derived neurotrophic factor in both striatum and prefrontal cortex. These results indicate that EIBS is associated with specific gene regulations in the striatum depending on the EtOH dose and that NaB can be useful in blocking some long-lasting neuro-adaptations to repeated EtOH administrations. Copyright © 2013 by the Research Society on Alcoholism.

  19. Sodium Butyrate Protects Against High Fat Diet-induced Cardiac Dysfunction and Metabolic Disorders in Type II Diabetic Mice.

    PubMed

    Zhang, Ling; Du, Jianfeng; Yano, Naohiro; Wang, Hao; Zhao, Yu Tina; Patricia, Dubielecka-Szczerba; Zhuang, Shougang; Chin, Eugene Y; Qin, Gangjian; Zhao, Ting C

    2017-01-21

    Histone deacetylases are recently identified to act as key regulators for cardiac pathophysiology and metabolic disorders. However, the function of histone deacetylase (HDAC) in controlling cardiac performance in type II diabetes and obesity remains unknown. Here we determine whether HDAC inhibition attenuates high fat diet (HFD)-induced cardiac dysfunction and improves metabolic features. Adult mice were fed with either HFD or standard chow food for 24 weeks. Starting at 12 weeks, mice were divided into four groups randomly, in which sodium butyrate (1%), a potent HDAC inhibitor, was provided to chow and HFD-fed mice in drinking water, respectively. Glucose intolerance, metabolic parameters, cardiac function, and remodeling were assessed. Histological analysis and cellular signaling were examined at 24 weeks following euthanization of mice. HFD-fed mice demonstrated myocardial dysfunction and profound interstitial fibrosis, which were attenuated by HDAC inhibition. HFD-induced metabolic syndrome features insulin resistance, obesity, hyperinsulinemia, hyperglycemia, lipid accumulations, and cardiac hypertrophy, these effects were prevented by HDAC inhibition. Furthermore, HDAC inhibition attenuated myocyte apoptosis, reduced production of reactive oxygen species, and increased angiogenesis in the HFD-fed myocardium. Notably, HFD induced decreases in MKK3, p38, p38 regulated/activated protein kinase (PRAK) and Akt-1, but not p44/42 phosphorylation, which were prevented by HDAC inhibition. These results suggest that HDAC inhibition plays a critical role to preserve cardiac performance and mitigate metabolic disorders in obesity and diabetes, which is associated with MKK3/p38/PRAK pathway. The study holds promise in developing a new therapeutic strategy in the treatment of type II diabetic-induced heart failure and metabolic disorders. This article is protected by copyright. All rights reserved.

  20. An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis.

    PubMed

    Simeoli, Raffaele; Mattace Raso, Giuseppina; Pirozzi, Claudio; Lama, Adriano; Santoro, Anna; Russo, Roberto; Montero-Melendez, Trinidad; Berni Canani, Roberto; Calignano, Antonio; Perretti, Mauro; Meli, Rosaria

    2017-06-01

    Butyrate has shown benefits in inflammatory bowel diseases. However, it is not often administered orally because of its rancid smell and unpleasant taste. The efficacy of a more palatable butyrate-releasing derivative, N-(1-carbamoyl-2-phenylethyl) butyramide (FBA), was evaluated in a mouse model of colitis induced by dextran sodium sulphate (DSS). Male 10 week-old BALB/c mice received DSS (2.5%) in drinking water (for 5 days) followed by DSS-free water for 7 days (DSS group). Oral FBA administration (42.5 mg·kg(-1) ) was started 7 days before DSS as preventive (P-FBA), or 2 days after DSS as therapeutic (T-FBA); both treatments lasted 19 days. One DSS-untreated group received only tap water (CON). FBA treatments reduced colitis symptoms and colon damage. P-FBA and T-FBA significantly decreased polymorphonuclear cell infiltration score compared with the DSS group. FBA reversed the imbalance between pro- and anti-inflammatory cytokines (reducing inducible NOS protein expression, CCL2 and IL-6 transcripts in colon and increasing TGFβ and IL-10). Morever, P-FBA and T-FBA limited neutrophil recruitment (by expression and localization of the neutrophil granule protease Ly-6G), restored deficiency of the butyrate transporter and improved intestinal epithelial integrity, preventing tight-junction impairment (zonulin-1 and occludin). FBA, similar to its parental compound sodium butyrate, inhibited histone deacetylase-9 and restored H3 histone acetylation, exerting an anti-inflammatory effect through NF-κB inhibition and the up-regulation of PPARγ. FBA reduces inflammatory intestinal damage in mice indicating its potential as a postbiotic derivative without the problems associated with the oral administration of sodium butyrate. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British

  1. Effects of sodium butyrate supplementation on reproductive performance and colostrum composition in gilts.

    PubMed

    He, B; Wang, M; Guo, H; Jia, Y; Yang, X; Zhao, R

    2016-10-01

    Nutrients are essential for the health and survival of human beings and animals. Also, they play a major role in enhancing reproductive efficiency. The aim of the current study was to investigate the effects of sodium butyrate (SB) on reproductive performance and colostrum composition in gilts. A total of 40 Large White×Landrace replacement gilts (at the age of 160 to 175 days) were fed either a standard diet (control group, n=20) or standard diet top dressed with encapsulated SB at the level of 500 mg/kg (SB group, n=20) from 1 month before mating to 7 days after farrowing. The rate of gilts regular return to estrus after insemination was lower in SB group than the control group. The total number of piglets born (P=0.179) and the litter weight at birth (P=0.063) did not differ between the two treatment groups. However, the mean BW at day 7 tended to be greater in SB group (P=0.051) and average daily gain of piglets was greater (P=0.011) compared with control group. Colostrum samples were collected at parturition and the concentrations of total protein (P=0.197), cholesterol (P=0.161) and lactose (P=0.923) were not influenced by SB supplementation. However, compared with control gilts, colostrum from SB-treated gilts contained lower triglyceride (P=0.050). Moreover, colostrum concentrations of prolactin (P=0.005) and leptin (P=0.006) were significantly lower in SB group. No significant differences were noted for the colostral concentrations of cortisol (P=0.899), thyroxine (P=0.891) or triiodothyronine (P=0.194). The concentration of lipopolysaccharide in colostrum was not influenced by SB supplementation (P=0.972). However, colostrum from SB-treated gilts had significantly lower tumor necrosis factor α (TNFα) (P=0.030) and higher immunoglobulin A (IgA) (P=0.042). Collectively, SB supplementation could reduce the rate of gilts return to estrus, alter the composition of colostrum and enhance the growth rate of piglets. Moreover, SB could alter the immune function

  2. Management of traveller's diarrhoea with a combination of sodium butyrate, organic acids, and A-300 silicon dioxide.

    PubMed

    Krokowicz, Lukasz; Mackiewicz, Jacek; Wejman-Matela, Anna; Krokowicz, Piotr; Drews, Michal; Banasiewicz, Tomasz

    2014-01-01

    Traveller's diarrhoea (TD), defined by UNICEF/WHO as three or more unformed stools with or without other symptoms, imposes a considerable burden on travellers from developed countries. Various efforts have focused on decreasing the prevalence and severity of this condition. To assess the efficacy of a combination of sodium butyrate, organic acids, and A-300 silicon dioxide in treatment providing symptomatic relief of TD. The study was conducted in accordance with a protocol presented to the Bioethical committee of Poznan University of Medical Sciences. A total of 278 patients travelling to countries with higher risk of diarrhoea for at least 10 days were divided into a study arm being administered, in case of TD, a combination of sodium butyrate, organic acids, and A-300 silicon dioxide (n = 139) and a placebo arm (n = 139) with placebo administration. Forty-seven patients completed the study (22 in the study arm and 25 in the placebo arm). The diarrhoea occurrence after initiation of treatment at first symptoms was significantly lower in the study arm as compared to the placebo arm (9% vs. 36%, p = 0.041). Also, subjects from the study arm more frequently reported that the regimen administered had been efficient for their symptoms in comparison to the placebo arm (72.7% vs. 32%, p = 0.008). No adverse effects of the administered medication were noted during the study. Sodium butyrate, organic acids, and A-300 silicon dioxide can be successful in decreasing symptoms of TD. Because of its efficacy and lack of observed side effects it has a strong potential in the treatment of patients with TD.

  3. Management of traveller's diarrhoea with a combination of sodium butyrate, organic acids, and A-300 silicon dioxide

    PubMed Central

    Mackiewicz, Jacek; Wejman-Matela, Anna; Krokowicz, Piotr; Drews, Michal; Banasiewicz, Tomasz

    2014-01-01

    Introduction Traveller's diarrhoea (TD), defined by UNICEF/WHO as three or more unformed stools with or without other symptoms, imposes a considerable burden on travellers from developed countries. Various efforts have focused on decreasing the prevalence and severity of this condition. Aim To assess the efficacy of a combination of sodium butyrate, organic acids, and A-300 silicon dioxide in treatment providing symptomatic relief of TD. Material and methods The study was conducted in accordance with a protocol presented to the Bioethical committee of Poznan University of Medical Sciences. A total of 278 patients travelling to countries with higher risk of diarrhoea for at least 10 days were divided into a study arm being administered, in case of TD, a combination of sodium butyrate, organic acids, and A-300 silicon dioxide (n = 139) and a placebo arm (n = 139) with placebo administration. Results Forty-seven patients completed the study (22 in the study arm and 25 in the placebo arm). The diarrhoea occurrence after initiation of treatment at first symptoms was significantly lower in the study arm as compared to the placebo arm (9% vs. 36%, p = 0.041). Also, subjects from the study arm more frequently reported that the regimen administered had been efficient for their symptoms in comparison to the placebo arm (72.7% vs. 32%, p = 0.008). No adverse effects of the administered medication were noted during the study. Conclusions Sodium butyrate, organic acids, and A-300 silicon dioxide can be successful in decreasing symptoms of TD. Because of its efficacy and lack of observed side effects it has a strong potential in the treatment of patients with TD. PMID:25396003

  4. Impact of sodium butyrate on the network of adhesion/growth-regulatory galectins in human colon cancer in vitro.

    PubMed

    Katzenmaier, Eva-Maria; André, Sabine; Kopitz, Jürgen; Gabius, Hans-Joachim

    2014-10-01

    The physiological compound sodium butyrate can induce differentiation in colon cancer cells in vitro. Due to the role of galectins in growth control we explored its effect on this network beyond galectins-1 and -3, with deliberate consideration of the status of microsatellite stability, for nine cell lines. Microscopical monitoring and measurement of alkaline phosphatase activity ascertained butyrate's impact on cells. Monitoring by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting with galectin-type-specific probes characterized galectin expression. Controlled by expectable strong up-regulation of galectin-1 and comparatively small effects on galectin-3 regulation for galectins-4, -7, -8 and -9 were reported with no obvious association to microsatellite stability status. Neoexpression of the GAL-12 gene was observed in eight out of nine tested lines. Butyrate affects the galectin network beyond galectins-1 and -3, warranting further cell biological and histochemical studies. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers.

    PubMed

    Jerzsele, A; Szeker, K; Csizinszky, R; Gere, E; Jakab, C; Mallo, J J; Galfi, P

    2012-04-01

    Necrotic enteritis caused by Clostridium perfringens leads to serious economical losses to the poultry industry. There is a growing need to find effective, nontoxic, antibiotic alternatives to prevent and cure the disease. In our study, the efficacy of protected sodium butyrate at 1.5 g/kg (BP70), a Bacillus amyloliquefaciens spore suspension with 10(9) cfu/g (BAL; Ecobiol), a protected blend of essential oils (1%) at 1.5 g/kg (EO), and a combination of sodium butyrate with essential oils (1%) protected with vegetable fat at 1.5 g/kg (BP70+EO; Natesse) was investigated in an artifical C. perfringens-infection model. Body weight gain, gross pathological and histopathological lesion scores, villus lengths, and villus length:crypt depth ratio was determined and compared with the control group. Broilers infected with C. perfringens and treated with essential oils or the combination of sodium butyrate and essential oils showed significantly better BW gain (P < 0.05), increased villus length and villus length:crypt depth ratio (P < 0.001), and decreased gross pathological and histopathological lesion scores (P < 0.05) compared with the control. Sodium butyrate alone and B. amyloliquefaciens spore suspension had no beneficial effects on the course of the disease in this study. According to our results, the protected combination of sodium butyrate and essential oils, as well as the protected essential oils, can be potential candidates for the prevention and treatment of necrotic enteritis in broiler chickens.

  6. All-Trans Retinoic Acid and Sodium Butyrate Enhance Natriuretic Peptide Receptor A Gene Transcription: Role of Histone Modification

    PubMed Central

    Kumar, Prerna; Periyasamy, Ramu; Das, Subhankar; Neerukonda, Smitha; Mani, Indra

    2014-01-01

    The objective of the present study was to delineate the mechanisms of GC-A/natriuretic peptide receptor-A (GC-A/NPRA) gene (Npr1) expression in vivo. We used all-trans retinoic acid (ATRA) and histone deacetylase (HDAC) inhibitor, sodium butyrate (NaBu) to examine the expression and function of Npr1 using gene-disrupted heterozygous (1-copy; +/−), wild-type (2-copy; +/+), and gene-duplicated heterozygous (3-copy; ++/+) mice. Npr1+/− mice exhibited increased renal HDAC and reduced histone acetyltransferase (HAT) activity; on the contrary, Npr1++/+ mice showed decreased HDAC and enhanced HAT activity compared with Npr1+/+ mice. ATRA and NaBu promoted global acetylation of histones H3-K9/14 and H4-K12, reduced methylation of H3-K9 and H3-K27, and enriched accumulation of active chromatin marks at the Npr1 promoter. A combination of ATRA-NaBu promoted recruitment of activator-complex containing E26 transformation–specific 1, retinoic acid receptor α, and HATs (p300 and p300/cAMP response element–binding protein-binding protein–associated factor) at the Npr1 promoter, and significantly increased renal NPRA expression, GC activity, and cGMP levels. Untreated 1-copy mice showed significantly increased systolic blood pressure and renal expression of α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) compared with 2- and 3-copy mice. Treatment with ATRA and NaBu synergistically attenuated the expression of α-SMA and PCNA and reduced systolic blood pressure in Npr1+/− mice. Our findings demonstrate that epigenetic upregulation of Npr1 gene transcription by ATRA and NaBu leads to attenuation of renal fibrotic markers and systolic blood pressure in mice with reduced Npr1 gene copy number, which will have important implications in prevention and treatment of hypertension-related renal pathophysiological conditions. PMID:24714214

  7. Pretranslational regulation of ectopic hCG alpha production in ChaGo lung cancer cells by sodium butyrate.

    PubMed

    Nagelberg, S B; Burnside, J; Maniatis, A; Lippman, S S; Weintraub, B D

    1985-12-31

    Ectopic production of hCG and its free alpha subunit by ChaGo lung cancer cells is stimulated by sodium butyrate. To investigate pretranslational regulation in this system, we examined the response of the hCG alpha and beta subunit mRNAs in ChaGo-K1 cells, a clone that produces free hCG alpha but no hCG or hCG beta in the basal state. When a Northern blot of total RNA from ChaGo cells was hybridized to a [32P]- labeled hCG alpha cDNA probe, a single band was detected that was identical in size (approximately 850 bases) to placental hCG alpha mRNA. RNA from butyrate-stimulated (5 mM, 24 h) ChaGo cells contained 7.7 times as much hCG alpha mRNA as RNA from control ChaGo cells. This increase appeared to be relatively selective since no difference in total polyA-containing mRNA levels was detected between butyrate-treated and control cells by [32P]oligo(dT) hybridization. In addition, no hCG beta mRNA was detected when Northern and dot blots were hybridized to an hCG beta cDNA probe. In a time course experiment, hCG alpha mRNA accumulation in butyrate-treated cells increased significantly by 8 h with a maximum increase of 6.1-fold at 24 h compared to control values. Major differences in immunoactive hCG alpha accumulation were not apparent, however, until after 24 h. These studies show that stimulation of ChaGo hCG alpha production by butyrate can be completely accounted for by pretranslational events and that failure to detect hCG or free hCG beta production by these cells is not due to poorly translatable RNA or post-translational protein degradation. Thus, exclusive ectopic production of only one of the hCG subunits is likely to be due to selective genomic expression.

  8. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier.

    PubMed

    Zhou, Da; Pan, Qin; Xin, Feng-Zhi; Zhang, Rui-Nan; He, Chong-Xin; Chen, Guang-Yu; Liu, Chang; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-01-07

    To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. Male C57BL/6J mice were divided into three groups, normal control were fed standard chow and model group were fed a high-fat diet (HFD) for 16 wk, the intervention group were fed HFD for 16 wk and treated with NaB for 8 wk. Gut microbiota from each group were detected at baseline and at 16 wk, liver histology were evaluated and gastrointestinal barrier indicator such as zonula occluden-1 (ZO-1) were detected by immunohistochemistry and realtime-PCR, further serum or liver endotoxin were determined by ELISA and inflammation- or metabolism-associated genes were quantified by real-time PCR. NaB corrected the HFD-induced gut microbiota imbalance in mice, while it considerably elevated the abundances of the beneficial bacteria Christensenellaceae, Blautia and Lactobacillus. These bacteria can produce butyric acid in what seems like a virtuous circle. And butyrate restored HFD induced intestinal mucosa damage, increased the expression of ZO-1 in small intestine, further decreased the levels of gut endotoxin in serum and liver compared with HF group. Endotoxin-associated genes such as TLR4 and Myd88, pro-inflammation genes such as MCP-1, TNF-α, IL-1, IL-2, IL-6 and IFN-γ in liver or epididymal fat were obviously downregulated after NaB intervention. Liver inflammation and fat accumulation were ameliorated, the levels of TG and cholesterol in liver were decreased after NaB intervention, NAS score was significantly decreased, metabolic indices such as FBG and HOMA-IR and liver function indicators ALT and AST were improved compared with HF group. NaB may restore the dysbiosis of gut microbiota to attenuate steatohepatitis, which is suggested to be a potential gut microbiota modulator and therapeutic substance for NAFLD.

  9. Sodium butyrate functions as an antidepressant and improves cognition with enhanced neurotrophic expression in models of maternal deprivation and chronic mild stress.

    PubMed

    Valvassori, Samira Silva; Varela, Roger Bitencourt; Arent, Camila Orlandi; Dal-Pont, Gustavo Colombo; Bobsin, Tamara Sarate; Budni, Josiane; Reus, Gislaine Zilli; Quevedo, Joao

    2014-01-01

    It is known that cognitive processes, such as learning and memory, are affected in depression. Several authors have described histone deacetylase (HDAC) inhibitors as a class of drugs that improves long-term memory formation. The current study examined the effects of maternal deprivation (MD) and chronic mild stress (CMS), which have been shown as animal models of depression, and the effects of sodium butyrate (SB), a HDAC inhibitor, on recognition memory. Considering that neurotrophic factors has been pointed as a key event involved with cognition and depressive disorder, levels of neurotrophic factors (BDNF, NGF and GDNF) were also investigated. MD and CMS induced depressive-like behavior in the forced swimming test (FST) and memory impairment in the object recognition (OR) test, without altering locomotor activity of rats. In addition, SB was able to reverse the stress-induced neurotrophic factors decrease and reversed memory impairment. The results indicate that the stress both at early and later stage of life may induce cognitive impairment in animals and neurotrofic factors (BDNF, NGF and GDNF) levels decrease. SB treatment improved the recognition memory and reversed the neurotrophins levels decreased in the hippocampus of rats submitted to the MD and CMS models. Together, our results reinforce the notion that SB displays a specific antidepressant profile and improve cognition in MD and CMS rats that may be, at least in part, due to its upregulation of neurotrophic factors.

  10. Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism.

    PubMed

    Intlekofer, Karlie A; Berchtold, Nicole C; Malvaez, Melissa; Carlos, Anthony J; McQuown, Susan C; Cunningham, Michael J; Wood, Marcelo A; Cotman, Carl W

    2013-09-01

    We demonstrate that exercise enables hippocampal-dependent learning in conditions that are normally subthreshold for encoding and memory formation, and depends on hippocampal induction of brain-derived neurotrophic factor (BDNF) as a key mechanism. Using a weak training paradigm in an object location memory (OLM) task, we show that sedentary mice are unable to discriminate 24 h later between familiar and novel object locations. In contrast, 3 weeks of prior voluntary exercise enables strong discrimination in the spatial memory task. Cognitive benefits of exercise match those attained with post-training sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor previously shown to enable subthreshold learning. We demonstrate that the enabling effects of exercise and NaB on subthreshold OLM learning are dependent on hippocampal BDNF upregulation, and are blocked by hippocampal infusion of BDNF short-interfering RNA. Exercise and NaB increased bdnf transcripts I and IV, and the increases were associated with BDNF promoter acetylation on H4K8 but not H4K12. These data provide support for the concept that exercise engages epigenetic control mechanisms and serves as a natural stimulus that operates in part like NaB and potentially other HDAC inhibitors, placing the brain into a state of readiness for plasticity.

  11. Sodium butyrate improved intestinal immune function associated with NF-κB and p38MAPK signalling pathways in young grass carp (Ctenopharyngodon idella).

    PubMed

    Tian, Li; Zhou, Xiao-Qiu; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Xie, Fei; Feng, Lin

    2017-07-01

    The present study evaluated the effect of dietary sodium butyrate (SB) supplementation on the growth and immune function in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of young grass carp (Ctenopharyngodon idella). The fish were fed one powdery sodium butyrate (PSB) diet (1000.0 mg kg(-1) diet) and five graded levels of microencapsulated sodium butyrate (MSB) diets: 0.0 (control), 500.0, 1000.0, 1500.0 and 2000.0 mg kg(-1) diet for 60 days. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila. The results indicated that optimal SB supplementation improved the fish growth performance (percent weight gain, specific growth rate, feed intake and feed efficiency) and intestinal growth and function (intestine weight, intestine length, intestinal somatic index, folds height, trypsin, chymotrypsin, lipase and amylase activities), increased beneficial bacteria lactobacillus amount and butyrate concentration, decreased baneful bacteria Aeromonas and Escherichia coli amounts, reduced acetate and propionate concentrations, elevated lysozyme and acid phosphatase activities, increased complement (C3 and C4) and immunoglobulin M contents, and up-regulated β-defensin-1 (rather than DI), hepcidin, liver expressed antimicrobial peptide 2B (LEAP-2B) (except LEAP-2A), Mucin2, interleukin 10 (IL-10), IL-11 (rather than PI), transforming growth factor β1 (rather than PI), transforming growth factor β2 (rather than PI), IL-4/13A, IL-4/13B and inhibitor of κBα (IκBα) mRNA levels, whereas it down-regulated tumor necrosis factor α, interferon γ2, IL-1β (rather than PI), IL-6, IL-8, IL-15 (rather than PI), IL-17D (rather than PI), IL-12p35, IL-12p40 (rather than PI or MI), nuclear factor kappa B p65 (NF-κB p65) (except NF-κB p52), c-Rel (rather than PI or MI), IκB kinase β (IKKβ) (rather than PI), IKKγ (except IKKα), p38 mitogen-activated protein kinase (p38MAPK) and MAPK kinase 6 mRNA levels in three

  12. Radio-sensitizing Effects of Novel Histone De-Acetylase Inhibitors in Prostate Cancer

    DTIC Science & Technology

    2007-03-01

    Two of these inhibitors (VAD-18 and VAD-20) having phenylacetic acid and butyric acid respectively as the lead compound (Fig. 1) have been used in the...combination with radiation to augment clinical efficacy and/or to reduce toxicity. The HDAC inhibitors- phenyl butyrate (40), sodium butyrate (41...cancer cell lines. However, since sodium butyrate and trichostatin A have limitations as mentioned above and in addition the mechanisms of radio

  13. Epigenetic modulation of AR gene expression in prostate cancer DU145 cells with the combination of sodium butyrate and 5'-Aza-2'-deoxycytidine.

    PubMed

    Fialova, Barbora; Luzna, Petra; Gursky, Jan; Langova, Katerina; Kolar, Zdenek; Trtkova, Katerina Smesny

    2016-10-01

    The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. Castration-resistant prostate cancer (CRPC) is a consequence of androgen deprivation therapy. Unchecked CRPC followed by metastasis is lethal. Some CRPCs show decreased AR gene expression due to epigenetic mechanisms such as DNA methylation and histone deacetylation. The aim of this study was to epigenetically modulate the methylated state of the AR gene leading to targeted demethylation and AR gene expression in androgen-independent human prostate cancer DU145 cell line, representing the CRPC model with very low or undetectable AR levels. The cell treatment was based on single and combined applications of two epigenetic inhibitors, sodium butyrate (NaB) as histone deacetylases inhibitor and 5'-Aza-2'-deoxycytidine (Aza-dC) as DNA methyltransferases inhibitor. We found that the Aza-dC in combination with NaB may help reduce the toxicity of higher NaB concentrations in cancer cells. In normal RWPE-1 cells and even stronger in cancer DU145 cells, the combined treatment induced both AR gene expression on the mRNA level and increased histone H4 acetylation in AR gene promoter. Also activation and maintenance of G2/M cell cycle arrest and better survival in normal RWPE-1 cells compared to cancer DU145 cells were observed after the treatments. These results imply the selective toxicity effect of both inhibitors used and their potentially more effective combined use in the epigenetic therapy of prostate cancer patients.

  14. Study of liquid-solid catalytic reaction of epichlorohydrin with sodium butyrate in the presence of tetrabutylammonium bromide

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Meng, Qingyi; Ban, Chunlan; Zhang, Rui; Gao, Yingyu

    2016-08-01

    The liquid-solid catalytic reaction of epichlorohydrin and sodium butyrate with tetrabutylammonium bromide as a phase transfer catalyst was studied in this paper. The shrinking core model was applied. The analysis of the reaction based on the kinetic model showed a reaction-controlled regime at temperatures varying from 90 to 100°C. The exterior diffusivity was removed between 300 and 400 rpm. The internal diffusivity was removed when the particle size was 2 × 10-4 m. Reaction rate constants were calculated at different temperatures. The correlation was obtained when the proposed kinetic model was applied to all the experimental data for predictive evaluations and the activation energy was 37.01 kJ mol-1.

  15. Diclofenac sodium loaded-cellulose acetate butyrate: effect of processing variables on microparticles properties, drug release kinetics and ulcerogenic activity.

    PubMed

    Barakat, Nahla S; Ahmad, Amany A E

    2008-02-01

    The aim of this study was to develop and characterize diclofenac sodium loaded-cellulose acetate butyrate microparticles in order to obtain a controlled-release system. The influence of the type of polymer, the volume and composition of the internal phase, drug loading, surfactant concentration and additive added on microparticles characteristics (particle size, encapsulation efficiency, surface morphology and in vitro release profiles) was studied to optimize the microparticles system. The resultant microparticles were evaluated for the recovery, average particle size, drug loading and incorporation efficiency. The microparticles exhibited good flowing nature and compressibility index when compared to pure drug. Dissolution rate of diclofenac sodium in phosphate buffer (pH 6.8) increased with increases in initial drug loading, surfactant concentration and addition of alcohol as co-solvent but decreased with increases in the concentration of additives such as Gantrez AN or Eudragit S100 in the internal phase. The dissolution data showed a Higuchi diffusion pattern for most of the formulations. About 56-81% reduction in ulcerogenic activity was observed with microparticles containing Eudragit S100 17-25%, based on total polymer concentration, when compared with pure diclofenac sodium.

  16. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis*

    PubMed Central

    Rajendran, Vazhaikkurichi M.; Nanda Kumar, Navalpur S.; Tse, Chung M.; Binder, Henry J.

    2015-01-01

    Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na+ absorption. Although colonic Na+ absorption is mediated by both epithelial Na+ channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na+ absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na+ absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na+ fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3−-dependent and butyrate-dependent Na+ absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3−-dependent Na+ absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3−-dependent and butyrate-dependent Na+ absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3−-dependent) Na+ absorption. In in vivo loop studies HCO3−-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3−-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na+ absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea. PMID:26350456

  17. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet

    PubMed Central

    Mattace Raso, Giuseppina; Simeoli, Raffaele; Russo, Roberto; Iacono, Anna; Santoro, Anna; Paciello, Orlando; Ferrante, Maria Carmela; Canani, Roberto Berni; Calignano, Antonio; Meli, Rosaria

    2013-01-01

    Background & Aims Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Insulin resistance (IR) appears to be critical in its pathogenesis. We evaluated the effects of sodium butyrate (butyrate) and its synthetic derivative N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA) in a rat model of insulin resistance and steatosis induced by high-fat diet (HFD). Methods After weaning, young male Sprague-Dawley rats were divided into 4 groups receiving different diets for 6 weeks: 1. control group (standard diet); 2. HFD; 3. HFD plus butyrate (20 mg/kg/die) and 4. HFD plus FBA (42.5 mg/Kg/die, the equimolecular dose of butyrate). Liver tissues of the rats were analyzed by Western blot and real-time PCR. Insulin resistance, liver inflammation and Toll-like pattern modifications were determined. Results Evaluation of these two preparations of butyrate showed a reduction of liver steatosis and inflammation in HFD fed animals. The compounds showed a similar potency in the normalisation of several variables, such as transaminases, homeostasis model assessment for insulin resistance index, and glucose tolerance. Both treatments significantly reduced hepatic TNF-α expression and restored GLUTs and PPARs, either in liver or adipose tissue. Finally, FBA showed a higher potency in reducing pro-inflammatory parameters in the liver, via suppression of Toll-like receptors and NF-κB activation. Conclusions Our results demonstrated a protective effect of butyrate in limiting molecular events underlying the onset of IR and NAFLD, suggesting a potential clinical relevance for this substance. In particular, its derivative, FBA, could represent an alternative therapeutic option to sodium butyrate, sharing a comparable efficacy, but a better palatability and compliance. PMID:23861927

  18. Butyrate: A dietary inhibitor of histone deacetylases and an epigenetic regulator

    USDA-ARS?s Scientific Manuscript database

    The short-chain fatty acids (SCFAs) acetate, propionate and butyrate, also known as volatile fatty acids (VFA), are produced in the gastrointestinal tract by microbial fermentation. Consumption of dietary fibers has been shown to have positive metabolic health effects, such as increasing satiety, an...

  19. Low Concentration of Sodium Butyrate from Ultrabraid+NaBu suture, Promotes Angiogenesis and Tissue Remodelling in Tendon-bones Injury

    PubMed Central

    Liu, Donghui; Andrade, Silvia Passos; Castro, Pollyana Ribeiro; Treacy, John; Ashworth, Jason; Slevin, Mark

    2016-01-01

    Sodium butyrate (NaBu), a form of short-chain fatty acid (SCFA), acts classically as a potent anti-angiogenic agent in tumour angiogenesis models, some authors demonstrated that low concentrations of NaBu may contribute to healing of tendon-bone injury in part at least through promotion of tissue remodelling. Here, we investigated the effects of low-range concentrations of NaBu using in vitro and in vivo assays using angiogenesis as the primary outcome measure and the mechanisms through which it acts. We demonstrated that NaBu, alone or perfused from the UltraBraid+NaBu suture was pro-angiogenic at very low-range doses promoting migration, tube formation and cell invasion in bovine aortic endothelial cells (BAECs). Furthermore, cell exposure to low NaBu concentrations increased expression of proteins involved in angiogenic cell signalling, including p-PKCβ1, p-FAK, p-ERK1/2, p-NFκβ, p-PLCγ1 and p-VEGFR2. In addition, inhibitors of both VEGFR2 and PKCβ1 blocked the angiogenic response. In in vivo assays, low concentrations of NaBu induced neovascularization in sponge implants in mice, evidenced by increased numbers of vessels and haemoglobin content in these implants. The findings in this study indicate that low concentrations of NaBu could be an important compound to stimulate angiogenesis at a site where vasculature is deficient and healing is compromised. PMID:27694930

  20. Potential anti-genotoxic effect of sodium butyrate to modulate induction of DNA damage by tamoxifen citrate in rat bone marrow cells.

    PubMed

    El-Shorbagy, Haidan M

    2017-02-01

    Sodium butyrate (SB) is one of the histone deacetylase inhibitors (HDACi's) that is recently evidenced to have a prooxidant activity and an ability to reduce hydrogen peroxide-induced DNA damage. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen citrate (TC), which exerts well established oxidative and genotoxic effects, thus the basic objective of this study is to determine whether SB could ameliorate or curate tamoxifen citrate-induced oxidative DNA damage and genotoxic effect in vivo through up-regulation of some antioxidant enzymes. The individual and combined effects of SB and TC have been examined on rat bone marrow cells, using Micronucleus assays (MN), Comet assay, DNA fragmentation, expression of some antioxidant genes using Real time-PCR and finally, oxidative stress analysis. SB significantly increased the mitotic activity (P < 0.05), while TC induced marked micronuclei and oxidative DNA damage, in the SB post-treatment group, the combination of SB (300 mg/kg) and TC (40 mg/kg) was able to decrease the induction of MN and oxidative DNA damage through up-regulation of Cat, Sod and Gpx1 genes significantly at (P < 0.05) more efficiently than that in the SB pre-treatment one. Therefore, we postulate that SB can be used therapeutically in combination with TC treatment to modulate TC genotoxic effect by reducing its oxidative stress, and thus being an appropriate agonist agent to combine with TC than each compound alone.

  1. Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene.

    PubMed

    Wei, Yabin; Melas, Philippe A; Wegener, Gregers; Mathé, Aleksander A; Lavebratt, Catharina

    2014-10-31

    Epigenetic drugs like sodium butyrate (NaB) show antidepressant-like effects in preclinical studies, but the exact molecular mechanisms of the antidepressant effects remain unknown. While research using NaB has mainly focused on its role as a histone deacetylase inhibitor (HDACi), there is also evidence that NaB affects DNA methylation. The purpose of this study was to examine NaB's putative antidepressant-like efficacy in relation to DNA methylation changes in the prefrontal cortex of an established genetic rat model of depression (the Flinders Sensitive Line [FSL]) and its controls (the Flinders Resistant Line). The FSL rats had lower levels of ten-eleven translocation methylcytosine dioxygenase 1 (TET1), which catalyzes the conversion of DNA methylation to hydroxymethylation. As indicated by the behavioral despair test, chronic administration of NaB had antidepressant-like effects in the FSL and was accompanied by increased levels of TET1. The TET1 upregulation was also associated with an increase of hydroxymethylation and a decrease of methylation in brain-derived neurotrophic factor (Bdnf), a gene associated with neurogenesis and synaptic plasticity. These epigenetic changes were associated with a corresponding BDNF overexpression. Our data support the antidepressant efficacy of HDACis and suggest that their epigenetic effects may also include DNA methylation changes that are mediated by demethylation-facilitating enzymes like TET1. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  2. Antidepressant-Like Effect of Sodium Butyrate is Associated with an Increase in TET1 and in 5-Hydroxymethylation Levels in the Bdnf Gene

    PubMed Central

    Wei, Ya Bin; Melas, Philippe A.; Wegener, Gregers; Mathé, Aleksander A.; Lavebratt, Catharina

    2015-01-01

    Background: Epigenetic drugs like sodium butyrate (NaB) show antidepressant-like effects in preclinical studies, but the exact molecular mechanisms of the antidepressant effects remain unknown. While research using NaB has mainly focused on its role as a histone deacetylase inhibitor (HDACi), there is also evidence that NaB affects DNA methylation. Methods: The purpose of this study was to examine NaB’s putative antidepressant-like efficacy in relation to DNA methylation changes in the prefrontal cortex of an established genetic rat model of depression (the Flinders Sensitive Line [FSL]) and its controls (the Flinders Resistant Line). Results: The FSL rats had lower levels of ten-eleven translocation methylcytosine dioxygenase 1 (TET1), which catalyzes the conversion of DNA methylation to hydroxymethylation. As indicated by the behavioral despair test, chronic administration of NaB had antidepressant-like effects in the FSL and was accompanied by increased levels of TET1. The TET1 upregulation was also associated with an increase of hydroxymethylation and a decrease of methylation in brain-derived neurotrophic factor (Bdnf), a gene associated with neurogenesis and synaptic plasticity. These epigenetic changes were associated with a corresponding BDNF overexpression. Conclusions: Our data support the antidepressant efficacy of HDACis and suggest that their epigenetic effects may also include DNA methylation changes that are mediated by demethylation-facilitating enzymes like TET1. PMID:25618518

  3. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain.

    PubMed

    Valvassori, Samira S; Dal-Pont, Gustavo C; Steckert, Amanda V; Varela, Roger B; Lopes-Borges, Jéssica; Mariot, Edemilson; Resende, Wilson R; Arent, Camila O; Carvalho, André F; Quevedo, João

    2016-01-30

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidence indicates that epigenetic regulations have been implicated in the pathophysiology of mood disorders. Considering these evidences, the present study aimed to investigate the effects of sodium butyrate (SB), a histone deacetylase (HDAC)inhibitor, on manic-like behavior and oxidative stress parameters (TBARS and protein carbonyl content and SOD and CAT activities) in frontal cortex and hippocampus of rats subjected to the animal model of mania induced by intracerebroventricular (ICV) ouabain administration.The results showed that SB reversed ouabain-induced hyperactivity, which represents a manic-like behavior in rats. In addition, the ouabain ICV administration induced oxidative damage to lipid and protein and alters antioxidant enzymes activity in all brain structures analyzed. The treatment with SB was able to reversesboth behavioral and oxidative stress parameters alteration induced by ouabain.In conclusion, we suggest that SB can be considered a potential new mood stabilizer by acts on manic-like behavior and regulatesthe antioxidant enzyme activities, protecting the brain against oxidative damage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier

    PubMed Central

    Zhou, Da; Pan, Qin; Xin, Feng-Zhi; Zhang, Rui-Nan; He, Chong-Xin; Chen, Guang-Yu; Liu, Chang; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-01-01

    AIM To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. METHODS Male C57BL/6J mice were divided into three groups, normal control were fed standard chow and model group were fed a high-fat diet (HFD) for 16 wk, the intervention group were fed HFD for 16 wk and treated with NaB for 8 wk. Gut microbiota from each group were detected at baseline and at 16 wk, liver histology were evaluated and gastrointestinal barrier indicator such as zonula occluden-1 (ZO-1) were detected by immunohistochemistry and realtime-PCR, further serum or liver endotoxin were determined by ELISA and inflammation- or metabolism-associated genes were quantified by real-time PCR. RESULTS NaB corrected the HFD-induced gut microbiota imbalance in mice, while it considerably elevated the abundances of the beneficial bacteria Christensenellaceae, Blautia and Lactobacillus. These bacteria can produce butyric acid in what seems like a virtuous circle. And butyrate restored HFD induced intestinal mucosa damage, increased the expression of ZO-1 in small intestine, further decreased the levels of gut endotoxin in serum and liver compared with HF group. Endotoxin-associated genes such as TLR4 and Myd88, pro-inflammation genes such as MCP-1, TNF-α, IL-1, IL-2, IL-6 and IFN-γ in liver or epididymal fat were obviously downregulated after NaB intervention. Liver inflammation and fat accumulation were ameliorated, the levels of TG and cholesterol in liver were decreased after NaB intervention, NAS score was significantly decreased, metabolic indices such as FBG and HOMA-IR and liver function indicators ALT and AST were improved compared with HF group. CONCLUSION NaB may restore the dysbiosis of gut microbiota to attenuate steatohepatitis, which is suggested to be a potential gut microbiota modulator and therapeutic substance for NAFLD. PMID:28104981

  5. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells.

    PubMed

    Mathew, Omana P; Ranganna, Kasturi; Yatsu, Frank M

    2010-12-01

    HDACs and HATs regulate histone acetylation, an epigenetic modification that controls chromatin structure and through it, gene expression. Butyrate, a dietary HDAC inhibitor, inhibits VSMC proliferation, a crucial factor in atherogenesis, and the principle mechanism in arterial and in-stent restenosis. Here, the link between antiproliferation action of butyrate and the portraits of global covalent modifications of histone H3 that it induces are characterized to understand the mechanics of butyrate-arrested VSMC proliferation. Analysis of histone H3 modifications specific to butyrate arrested VSMC proliferation display induction of histone H3-Lysine9 acetylation, inhibition of histone H3-Serine10 phosphorylation, reduction of histone H3-Lysine9 dimethylation and stimulation of histone H3-Lysine4 di-methylation, which is linked to transcriptional activation, cell cycle/mitosis, transcriptional suppression and activation, respectively. Conversely, untreated VSMCs exhibit inhibition of H3-Lysine9 acetylation, induction of H3-Serine10 phosphorylation, stimulation of H3-Lysine9 di-methylation and reduction in H3-Lysine4 di-methylation. Butyrate's cooperative effects on H3-Lysine9 acetylation and H3-Serine10 phosphorylation, and contrasting effects on di-methylation of H3-Lysine9 and H3-Lysine4 suggests that the interplay between these site-specific modifications cause distinct chromatin alterations that allow cyclin D1 and D3 induction, G1-specific cdk4, cdk6 and cdk2 downregulation, and upregulation of cdk inhibitors, p15INK4b and p21Cip1. Regardless of butyrate's effect on D-type cyclins, downregulation of G1-specific cdks and upregulation of cdk inhibitors by butyrate prevents cell cycle progression by failing to inactivate Rb. Overall, through chromatin remodeling, butyrate appears to differentially alter G1-specific cell cycle proteins to ensure proliferation arrest of VSMCs, a crucial cellular component of blood vessel wall.

  6. Effects of Sodium Butyrate Treatment on Histone Modifications and the Expression of Genes Related to Epigenetic Regulatory Mechanisms and Immune Response in European Sea Bass (Dicentrarchus Labrax) Fed a Plant-Based Diet

    PubMed Central

    Díaz, Noelia; Rimoldi, Simona; Ceccotti, Chiara; Gliozheni, Emi; Piferrer, Francesc

    2016-01-01

    Bacteria that inhabit the epithelium of the animals’ digestive tract provide the essential biochemical pathways for fermenting otherwise indigestible dietary fibers, leading to the production of short-chain fatty acids (SCFAs). Of the major SCFAs, butyrate has received particular attention due to its numerous positive effects on the health of the intestinal tract and peripheral tissues. The mechanisms of action of this four-carbon chain organic acid are different; many of these are related to its potent regulatory effect on gene expression since butyrate is a histone deacetylase inhibitor that play a predominant role in the epigenetic regulation of gene expression and cell function. In the present work, we investigated in the European sea bass (Dicentrarchus labrax) the effects of butyrate used as a feed additive on fish epigenetics as well as its regulatory role in mucosal protection and immune homeostasis through impact on gene expression. Seven target genes related to inflammatory response and reinforcement of the epithelial defense barrier [tnfα (tumor necrosis factor alpha) il1β, (interleukin 1beta), il-6, il-8, il-10, and muc2 (mucin 2)] and five target genes related to epigenetic modifications [dicer1(double-stranded RNA-specific endoribonuclease), ehmt2 (euchromatic histone-lysine-N-methyltransferase 2), pcgf2 (polycomb group ring finger 2), hdac11 (histone deacetylase-11), and jarid2a (jumonji)] were analyzed in fish intestine and liver. We also investigated the effect of dietary butyrate supplementation on histone acetylation, by performing an immunoblotting analysis on liver core histone extracts. Results of the eight-week-long feeding trial showed no significant differences in weight gain or SGR (specific growth rate) of sea bass that received 0.2% sodium butyrate supplementation in the diet in comparison to control fish that received a diet without Na-butyrate. Dietary butyrate led to a twofold increase in the acetylation level of histone H4 at

  7. Effect of microencapsulated sodium butyrate in the close-up diet on performance of dairy cows in the early lactation period.

    PubMed

    Kowalski, Z M; Górka, P; Flaga, J; Barteczko, A; Burakowska, K; Oprządek, J; Zabielski, R

    2015-05-01

    Two trials were conducted to determine the effect of sodium butyrate microencapsulated within triglyceride matrix (Na-butyrate) in the close-up period on performance of dairy cows and rumen papillae development. In trial 1, 26 Holstein-Friesian cows were randomly allocated to 2 groups (13 cows/group) and fed prepartum a total mixed ration (TMR) without or with 300g of Na-butyrate/d from 30 d before expecting calving to parturition. After calving, the same lactational TMR without Na-butyrate was offered to both treatments. Dry matter intake and milk yield were monitored daily to 60 d in milk, and body condition of cows was scored on d 30, 21, and 4 before parturition and d 14, 31, and 60 after parturition. On d 15, 10, and 5 before parturition blood samples were collected from 6 cows randomly chosen from each group and analyzed for plasma β-hydroxybutyrate and nonesterified fatty acids concentrations. No differences in dry matter (DM) intake, milk yield, body condition score, or plasma β-hydroxybutyrate and nonesterified fatty acids concentrations was observed between treatments; however, in the last 5 d before parturition the cows receiving Na-butyrate ate 1.7kg of DM/d more, on average, as compared with control cows. In trial 2, 12 Holstein-Friesian growing bulls (404±48; body weight ± SD) were used to determine the effect of Na-butyrate inclusion in the diet on rumen papillae development. Bulls were randomly allocated to 2 groups (6 bulls/group) and fed TMR without or with 2% (on a dry matter basis) of Na-butyrate for 21 d. At the end of the study, bulls were killed and rumen fluid and rumen tissue samples from dorsal and ventral sac of the rumen were collected. No effect of Na-butyrate supplementation on BW of bulls and DMI during the trial period was observed. Sodium butyrate supplementation increased total short-chain fatty acid concentration in the rumen but had no effect on rumen pH, molar proportions of short-chain fatty acids, and NH3-N concentration

  8. Sodium butyrate enhances STAT 1 expression in PLC/PRF/5 hepatoma cells and augments their responsiveness to interferon-alpha.

    PubMed

    Hung, W C; Chuang, L Y

    1999-05-01

    Although interferon-alpha (IFN-alpha) has shown great promise in the treatment of chronic viral hepatitis, the anti-tumour effect of this agent in the therapy of liver cancer is unclear. Recent studies have demonstrated that differentiation-inducing agents could modulate the responsiveness of cancer cells to IFN-alpha by regulating the expression of signal transducers and activators of transcription (STAT) proteins, a group of transcription factors which play important roles in the IFN signalling pathway. We have reported that sodium butyrate is a potent differentiation inducer for human hepatoma cells. In this study, we investigated whether this drug could regulate the expression of STAT proteins and enhance the anti-tumour effect of IFN-alpha in hepatoma cells. We found that sodium butyrate specifically activated STAT1 gene expression and enhanced IFN-alpha-induced phosphorylation and activation of STAT1 proteins. Co-treatment with these two drugs led to G1 growth arrest, accompanied by down-regulation of cyclin D1 and up-regulation of p21WAF-1, and accumulation of hypophosphorylated retinoblastoma protein in hepatoma cells. Additionally, internucleosomal DNA fragmentation, a biological hallmark of apoptosis, was detected in hepatoma cells after continuous incubation with a combination of these two drugs for 72 h. Our results show that sodium butyrate potently enhances the anti-tumour effect of IFN-alpha in vitro and suggest that a rational combination of these two drugs may be useful for the treatment of liver cancer.

  9. Butyrate metabolism upstream and downstream acetyl-CoA synthesis and growth control of human colon carcinoma cells.

    PubMed

    Leschelle, X; Delpal, S; Goubern, M; Blottière, H M; Blachier, F

    2000-11-01

    Butyrate is a short chain fatty acid (SCFA) produced by bacterial fermentation of dietary fibers in the colon lumen which severely affects the proliferation of colon cancer cells in in vitro experiments. Although butyrate is able to interfere with numerous cellular targets including cell cycle regulator expression, little is known about butyrate metabolism and its possible involvement in its effect upon colon carcinoma cell growth. In this study, we found that HT-29 Glc-/+ cells strongly accumulated and oxidized sodium butyrate without producing ketone bodies, nor modifying oxygen consumption nor mitochondrial ATP synthesis. HT-29 cells accumulated and oxidized sodium acetate at a higher level than butyrate. However, sodium butyrate, but not sodium acetate, reduced cell growth and increased the expression of the cell cycle effector cyclin D3 and the inhibitor of the G1/S cdk-cyclin complexes p21/WAF1/Cip1, demonstrating that butyrate metabolism downstream of acetyl-CoA synthesis is not required for the growth-restraining effect of this SCFA. Furthermore, HT-29 cells modestly incorporated the 14C-labelled carbon from sodium butyrate into cellular triacylglycerols and phospholipids. This incorporation was greatly increased when D-glucose was present in the incubation medium, corresponding to the capacity of hexose to circulate in the pentose phosphate pathway allowing NADPH synthesis required for lipogenesis. Interestingly, when HT-29 cells were cultured in the presence of sodium butyrate, their capacity to incorporate 14C-labelled sodium butyrate into triacylglycerols and phospholipids was increased more than twofold. In such experimental conditions, HT-29 cells when observed under an electronic microscope, were found to be characterized by an accumulation of lipid droplets in the cytosol. Our data strongly suggest that butyrate acts upon colon carcinoma cells upstream of acetyl-CoA synthesis. In contrast, the metabolism downstream of acetyl-CoA [i.e. oxidation in

  10. Sodium butyrate blocks interferon-gamma (IFN-γ)-induced biosynthesis of MHC class III gene products (complement C4 and factor B) in human fetal intestinal epithelial cells

    PubMed Central

    Kitamura, K; Andoh, A; Inoue, T; Amakata, Y; Hodohara, K; Fujiyama, Y; Bamba, T

    1999-01-01

    Human intestinal epithelial cells have been established as local sites for complement biosynthesis. In this study, we investigated the effects of IFN-γ and sodium butyrate on biosynthesis of MHC class III gene products (complement C4 and factor B) in the human fetal intestinal epithelial cell line INT-407. IFN-γ induced a dose- and time-dependent increase in C4 and factor B secretion. However, sodium butyrate dose-dependently inhibited IFN-γ-induced C4 and factor B secretion. These effects were also observed at the mRNA level. Immunoblotting indicated that IFN-γ induced a rapid activation of Stat1α, and fluorescence immunohistochemistry detected a translocation of Stat1α into the nucleus within 1 h. However, the translocation of Stat1α was not affected by the addition of sodium butyrate. Nuclear run-on assay indicated that IFN-γ induced a weak increase in the transcription rate of factor B gene, and sodium butyrate did not affect this response. IFN-γ and sodium butyrate induced a counter-regulatory effect on C4 and factor B secretion: IFN-γ acted as a potent inducer, but sodium butyrate potently abrogated these responses. These are mainly regulated through the post-transcriptional mechanism. PMID:10540154

  11. Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: A comparative study with metformin.

    PubMed

    Khan, Sabbir; Jena, Gopabandhu

    2016-07-25

    Recent evidences highlighted that histone deacetylases (HDACs) can deacetylate the histone, various transcription factors and regulatory proteins, which directly or indirectly affect glucose metabolism. The present study aimed to evaluate the comparative effects of sodium butyrate (NaB) and metformin on the glucose homeostasis, insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet (HFD) and low dose streptozotocin (STZ, 35 mg/kg). NaB at the doses of 200 and 400 mg/kg twice daily as well as metformin (as a positive control) 150 mg/kg twice daily for 10 consecutive weeks were administered by i.p. and oral route, respectively. NaB treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, dyslipidemia and gluconeogenesis, which are comparable to metformin treatment. Further, NaB treatment ameliorated the micro- and macro-vesicular steatosis in liver and fat deposition in brown adipose tissue, white adipose tissue (adipocytes hypertrophy) as well as pancreatic beta-cell damage. In the present study, both NaB and metformin inhibited the diabetes-associated increased HDACs activity, thereby increased the acetylation of histone H3 in liver. The present findings demonstrated that NaB and metformin reduced insulin-resistance, dyslipidemia, fat accumulation and gluconeogenesis thereby improved the glucose homeostasis in rat. Thus, NaB might be a promising molecule for the prevention and treatment of type-2 diabetes and dyslipidemia.

  12. [Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice].

    PubMed

    Gong, Quan; Chen, Mao-Jian; Wang, Chao; Nie, Hao; Zhang, Yan-Xiang; Shu, Ke-Gang; Li, Gang

    2014-10-25

    The purpose of the present study is to explore the protective effects of sodium butyrate (SB) pretreatment on concanavalin A (Con A)-induced acute liver injury in mice. The model animals were first administered intraperitoneally with SB. Half an hour later, acute liver injury mouse model was established by caudal vein injection with Con A (15 mg/kg). Then, levels of serous alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using standard clinical method by an automated chemistry analyzer, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were measured by ELISA, and pathological changes in hepatic tissue were observed by using HE staining and light microscopy. The expression and release of high-mobility group box 1 (HMGB1) were assessed by using reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry and ELISA. The results showed that the pretreatment of SB significantly protected Con A-treated mice from liver injury as evidenced by the decrease of serum ALT, AST (P < 0.01) and reduction of hepatic tissues necrosis. SB also decreased levels of serous TNF-α and IFN-γ (P < 0.01). Furthermore, the expression and release of HMGB1 were markedly inhibited by SB pretreatment (P < 0.05 or P < 0.01). These results suggest that the attenuating effect of SB on Con A-induced acute liver injury may be due to its role of reducing the TNF-α and IFN-γ production, and inhibiting HMGB1 expression and release.

  13. Effects of ultra-high dilutions of sodium butyrate on viability and gene expression in HEK 293 cells.

    PubMed

    Olsen, Steven

    2017-02-01

    Several recent studies reported the capability of high diluted homeopathic medicines to modulate gene expression in cell cultures. In line with these studies, we examined whether ultra-high dilutions (30C and 200C) of sodium butyrate (SB) can affect the expression levels of genes involved in acquisition of a senescence-associated secretory phenotype (SASP) in human embryonic kidney (HEK) 293 cells. Cell viability was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of TNF-α, interleukin (IL)-2, IL-4, IL-6 and IL-10 genes were determined by real-time PCR assay. Exposure to both 30C and 200C during 48 h led to a significant decrease of the level of expression of TNF-α gene, while expression of IL-2 gene was increased when exposed to 30C, and expression of IL-10 gene was decreased when exposed to 200C. No changes in expression levels of all genes studied were observed in cells treated with both 30C and 200C remedies of SB during the 24 h. Observed changes in gene expression levels after exposure to 30C and 200C remedies of SB during 48 h suggest that extremely low concentrations of this agent can modulate the transcriptome of HEK 293 cells. These results are in line with findings from other studies confirming the ability of homeopathic remedies to modulate gene expression in cell cultures. Copyright © 2017 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  14. Evaluation of encapsulated sodium butyrate on growth performance, energy digestibility, gut development, and Salmonella colonization in broilers.

    PubMed

    Liu, J D; Bayir, H O; Cosby, D E; Cox, N A; Williams, S M; Fowler, J

    2017-10-01

    Two experiments were conducted to determine the effect of an encapsulated sodium butyrate (Na-B) with targeted releasing times on broiler performance, energy digestibility, intestinal morphology, and ceca Salmonella colonization. In experiment 1, 3 different Na-B products (CMA, CMP, and CMS) were evaluated following a challenge with a nalidixic acid-resistant Salmonella typhimurium (STNAR). Cobb-Cobb male birds were placed 8 per pen into 6 replicates for each treatment. Treatments included 6 Na-B treatments (500 and 1,000 ppm of each product) plus 2 control (non-challenged and challenged). Birds were orally gavaged with 0.1 mL of 107 cfu/mL STNAR on d 4. Ceca and ileal samples were collected on d 11. In experiment 2, CMA and CMP products were evaluated for a full grow-out period without an external challenge. Cobb-Cobb male birds were distributed among 45 floor pens with 24 birds per pen. Treatments included 4 product treatments (500 and 1,000 ppm of each product) plus one control. Feed intake and pen weight were obtained on d 14, 28, and 42. Experiment 1 showed that CMP at 1,000 ppm had the highest value for BW and BWG on d 4 (P = 0.07). Adding CMA and CMP at 500 ppm increased ileal digestibility energy (IDE) compared to the challenged control (P ≤ 0.05). The Salmonella recovery data indicated that the challenge had a significant but mild impact, since it did not affect the performance variables but did result in a significant increase in log10 cfu/g cecal material between the non-challenged and challenged control (1.42 vs 3.72). Experiment 2 showed that both products improved the villus height in the duodenum on d 21 (P = 0.08) and IDE on d 42, relative to the control (P ≤ 0.05). This study demonstrates that Na-B has the potential to improve growth in broilers at an early age. The beneficial effects on intestinal morphology and IDE are affected not only by dosage level, but also by the product's releasing time. © 2017 Poultry Science Association Inc.

  15. Expression and up-regulation of interleukin-6 in oesophageal carcinoma cells by n-sodium butyrate

    PubMed Central

    Wang, L-S; Chow, K-C; Wu, C-W

    1999-01-01

    Recently, the serum level of interleukin (IL)-6 has been shown to correlate with disease progression and prognosis of cancer patients. However, the available information about the source and the pathophysiological regulation of IL-6 in cancer cells is limited. Thus, in this study, we tried to identify the source and the clinical roles of serum IL-6 in patients with oesophageal squamous cell carcinoma (ESCC), and then further to characterize the biological regulation of IL-6 in ESCC cell lines. Sera and tissue specimens from 80 consecutive patients with ESCC were collected between 1993 and 1997. Additionally, three ESCC cell lines were used for in vitro study. The concentration of serum IL-6 was measured by enzyme-linked immunosorbent assay (ELISA), and correlated the survival time with measured IL-6 level. Expressions of IL-6, IL-6Rα (IL-6 receptor alpha) and gp130 in pathological sections and cell lines were characterized by immunological staining. Detection of IL-6 mRNA was determined by in situ hybridization (ISH) and reverse transcription-polymerase chain reaction (RT-PCR). Up-regulation of IL-6 by n-sodium butyrate (n-BT) was studied in ESCC cell lines. The levels of serum IL-6 in patients with ESCC were significantly higher than those in the healthy controls. Serum levels of IL-6 were also shown to correlate with disease progression and survival. However, sCD8 levels and lymphocyte counts in the peripheral blood were not parallel to the changed pattern of serum IL-6. In pathological sections and ESCC cell lines, message of IL-6 was identified by ISH in cancer cells. Expression of IL-6 mRNA was further confirmed with RT-PCR in ESCC cell lines. Although IL-6 was detected in some ESCC cell lines, IL-6 gene expression and protein production could be induced or enhanced by n-BT treatment in all three cell lines. The serum levels of IL-6 are frequently elevated at diagnosis of ESCC, and are associated with poor prognosis. IL-6 that could be produced by cancer

  16. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    SciTech Connect

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  17. The impact of a specific blend of essential oil components and sodium butyrate in feed on growth performance and Salmonella counts in experimentally challenged broilers.

    PubMed

    Cerisuelo, A; Marín, C; Sánchez-Vizcaíno, F; Gómez, E A; de la Fuente, J M; Durán, R; Fernández, C

    2014-03-01

    Essential oils (EO) and short-chain fatty acids have potential antimicrobial activity in broilers. This study aimed to investigate the effect of a specific blend of EO and a combination of this blend of EO with sodium-butyrate on growth performance and Salmonella colonization in broilers. A total of 480 one-day-old male broilers were distributed into 5 treatments (8 pens per treatment and 12 birds per pen) and reared during 42 d in experimental conditions. Dietary treatments consisted of the addition of different doses of EO (0 mg/kg, control; 50 mg/kg, EO50 and 100 mg/kg, EO100) or a combination of EO with 1 g/kg of sodium-butyrate (B; EO50 + B, EOB50 and EO100 + B, EOB100) to a basal diet. All birds were orally infected with 10(8) cfu of Salmonella Enteritidis on d 7 of study. Individual BW and feed intake per pen were measured at arrival and on a weekly basis. The prevalence and enumeration of Salmonella in feces was determined per treatment at 72 h postinfection and on d 23 and 37 of study. At slaughter, cecal content and liver samples from 16 birds per treatment were cultured for Salmonella and cecal pH was measured. No differences were observed on growth performance among treatments. All fecal samples analyzed were positive for Salmonella from d 10 to the end of the rearing period. At slaughter, Salmonella contamination (positive samples) in cecum was lower in birds fed EOB50 compared with the other treatments (P < 0.05), whereas birds fed the control diet showed the highest colonization rates. The pH of the cecal content was not different among treatments. Thus, EO or its combination with sodium-butyrate did not affect growth performance. However, a clear effectiveness of these products was observed in Salmonella control, especially when low doses of EO were combined with sodium-butyrate (EOB50).

  18. Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCβ2.

    PubMed

    Miao, Wei; Wu, Xiujuan; Wang, Kang; Wang, Wenjing; Wang, Yumei; Li, Zhigang; Liu, Jingjing; Li, Li; Peng, Luying

    2016-10-10

    As a physiological small molecular product from the microbial fermentation of dietary fibers, butyrate plays an important role in maintaining intestinal health. Our previous works have proved that the effect of sodium butyrate (NaB) on the intestinal barrier function is mediated by activation of AMP-activated protein kinase (AMPK). However, the detailed pathway involved remains unknown. Using the calcium switch assay in the Caco-2 cell monolayer model, we found here that NaB activated AMPK mainly by increasing the calcium level, but not the ATP concentration, via promoting store-operated calcium entry (SOCE). Upon the activation of AMPK, NaB promoted the reassembly of tight junctions (TJs) based on reducing the phosphorylation of myosin II regulatory light chain (MLC2) at Ser19 and increasing phosphorylation of protein kinase C β2 (PKCβ2) at Ser660. Inhibiting (protein kinase C β) PKCβ blocked the reassembly of TJs induced by NaB in the barrier monolayer model. These results indicated that NaB could activate the calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) pathway to mediate AMPK phosphorylating, which then inhibited the phosphorylation of MLC2 and promoted the phosphorylation of PKCβ2, respectively, so that the downstream molecules of AMPK coordinately contributed to the reassembly of TJs in the Caco-2 barrier model. These results suggested a potential mechanism of butyrate for intestine homeostasis and protection.

  19. Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCβ2

    PubMed Central

    Miao, Wei; Wu, Xiujuan; Wang, Kang; Wang, Wenjing; Wang, Yumei; Li, Zhigang; Liu, Jingjing; Li, Li; Peng, Luying

    2016-01-01

    As a physiological small molecular product from the microbial fermentation of dietary fibers, butyrate plays an important role in maintaining intestinal health. Our previous works have proved that the effect of sodium butyrate (NaB) on the intestinal barrier function is mediated by activation of AMP-activated protein kinase (AMPK). However, the detailed pathway involved remains unknown. Using the calcium switch assay in the Caco-2 cell monolayer model, we found here that NaB activated AMPK mainly by increasing the calcium level, but not the ATP concentration, via promoting store-operated calcium entry (SOCE). Upon the activation of AMPK, NaB promoted the reassembly of tight junctions (TJs) based on reducing the phosphorylation of myosin II regulatory light chain (MLC2) at Ser19 and increasing phosphorylation of protein kinase C β2 (PKCβ2) at Ser660. Inhibiting (protein kinase C β) PKCβ blocked the reassembly of TJs induced by NaB in the barrier monolayer model. These results indicated that NaB could activate the calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) pathway to mediate AMPK phosphorylating, which then inhibited the phosphorylation of MLC2 and promoted the phosphorylation of PKCβ2, respectively, so that the downstream molecules of AMPK coordinately contributed to the reassembly of TJs in the Caco-2 barrier model. These results suggested a potential mechanism of butyrate for intestine homeostasis and protection. PMID:27735862

  20. Cromolyn sodium for ACE inhibitor-induced cough.

    PubMed

    Allen, T L; Gora-Harper, M L

    1997-06-01

    There are several theories on the cause of ACE inhibitor-induced cough, but the exact mechanism is not known. In many patients, if cough develops, the ACE inhibitor can be discontinued and a drug in another therapeutic class used in its place. However, in patients with CHF, diabetic nephropathy, and patients who have experienced a myocardial infarction, discontinuing the ACE inhibitor may not be in the best interest of the patient. In this patient population it would be reasonable to try cromolyn sodium to treat cough, while continuing the ACE inhibitor. Data are not available to support the efficacy of cromolyn sodium to treat cough in patients with diabetic nephropathy, but these patients clearly benefit from the use of an ACE inhibitor. Other factors not addressed in the case reports and the clinical trial such as patient adherence, cost, and quality of life should also play a role in the decision to use cromolyn sodium. Cromolyn sodium has been effective for the treatment of ACE inhibitor-induced cough in many case reports and has had mild success in one small clinical trial. Although none of the reports adequately assessed adverse effects, studies examining cromolyn for other indications have demonstrated a relatively benign adverse effect profile. It is difficult to recommend an exact dose to use because of the dosing variability in the case reports. The majority of the case reports and the one clinical trial used dosages similar to recommendations for bronchial asthma (i.e., 2 puffs [1.6 mg] 4 times daily via MDI or 20-mg capsules 4 times daily via breath-activated inhalation). At this time, the use of cromolyn sodium is a viable option, but more controlled studies are needed to fully elucidate its role in the treatment of ACE inhibitor-induced cough.

  1. Use of Sodium Butyrate as an Alternative to Dietary Fiber: Effects on the Embryonic Development and Anti-Oxidative Capacity of Rats

    PubMed Central

    Lin, Yan; Fang, Zheng-feng; Che, Lian-qiang; Xu, Sheng-yu; Wu, De; Wu, Cai-mei; Wu, Xiu-qun

    2014-01-01

    In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets—(1) control diet (C group), (2) high fat + high fiber diet (HF group), (3) high-fat +5% sodium butyrate diet (SB group), and (4) HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group)—intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF) and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF. PMID:24852604

  2. Sodium ascorbate as a quorum sensing inhibitor of Pseudomonas aeruginosa.

    PubMed

    El-Mowafy, S A; Shaaban, M I; Abd El Galil, K H

    2014-11-01

    Quorum sensing circuits regulate virulence factors in Pseudomonas aeruginosa and coordinate bacterial pathogenicity. We are interested in exploring available medications for their antiquorum sensing activity. First, we determined the MIC of ascorbate against Ps. aeruginosa strain PAO1, and all further experiments used concentrations below the MIC so that results could not be caused by reduced viability. Tests of subinhibitory concentrations of sodium ascorbate on cell signals were performed using a reporter strain assay. Sub-MICs of sodium ascorbate resulted in significant reduction of the signalling molecules C4-HSL and 3-oxo-C12-HSL (P < 0·01). The influence of sub-MIC of sodium ascorbate on virulence factors was also determined and ascorbate treatment led to significant depression of elastase, protease and haemolysin activities. In addition, inhibition of pyocyanin production, attenuation of biofilm formation and alteration of Pseudomonas motility was observed. Analysis by RT-PCR tested the effect of ascorbate on the expression of QS regulatory genes. Expression of QS regulatory genes, lasI, lasR, rhlI, rhlR, pqsR and pqsA, was repressed compared to untreated Ps. aeruginosa PAO1, confirming that ascorbate QS inhibition works on gene expression at the molecular level. Sodium ascorbate, even at low concentrations, inhibited QS and related virulence factors of Ps. aeruginosa PAO1. This study demonstrated that sodium ascorbate could function as signal modulator and virulence inhibitor in Ps. aeruginosa. © 2014 The Society for Applied Microbiology.

  3. The enigmatic drug binding site for sodium channel inhibitors.

    PubMed

    Mike, Arpad; Lukacs, Peter

    2010-11-01

    Local anesthetics have been in clinical use since 1884, and different aspects of the local anesthetic binding site have been studied in enormous detail. In spite of all these efforts, some of the most fundamental questions--such as which exact residues constitute the binding site, how many binding sites exist, do local anesthetics share their binding site(s) with other sodium channel inhibitors, and what are the mechanisms of inhibition--are still largely unanswered. We review accumulated data on the "local anesthetic receptor"and discuss controversial points, such as possible mechanisms of inhibition, the possibility of additional binding sites, the orientation of S6 helices, and the internal vs. external position of the anticonvulsant binding site. We describe the four following specific groups of functionally important residues: i) conserved asparagines six residues below the hinge residues; we propose that they are oriented toward the external surface of S6 helices, and have a critical role in the coupling of voltage sensors to gating, ii) residues lining the inner vestibule and constructing the "orthodox" binding site, iii) residues around the outer vestibule, which have been proposed to constitute an alternative external binding site, and iv) residues determining external access for quaternary amine inhibitors, such as QX314. We conclude that sodium channel inhibitors must be heterogenous in terms of binding sites and inhibition mechanisms, and propose that this heterogeneity should be taken into consideration during drug development.

  4. MUC2 Mucin and Butyrate Contribute to the Synthesis of the Antimicrobial Peptide Cathelicidin in Response to Entamoeba histolytica- and Dextran Sodium Sulfate-Induced Colitis.

    PubMed

    Cobo, Eduardo R; Kissoon-Singh, Vanessa; Moreau, France; Holani, Ravi; Chadee, Kris

    2017-03-01

    Embedded in the colonic mucus are cathelicidins, small cationic peptides secreted by colonic epithelial cells. Humans and mice have one cathelicidin-related antimicrobial peptide (CRAMP) each, LL-37/hCAP-18 and Cramp, respectively, with related structure and functions. Altered production of MUC2 mucin and antimicrobial peptides is characteristic of intestinal amebiasis. The interactions between MUC2 mucin and cathelicidins in conferring innate immunity against Entamoeba histolytica are not well characterized. In this study, we quantified whether MUC2 expression and release could regulate the expression and secretion of cathelicidin LL-37 in colonic epithelial cells and in the colon. The synthesis of LL-37 was enhanced with butyrate (a product of bacterial fermentation) and interleukin-1β (IL-1β) (a proinflammatory cytokine in colitis) in the presence of exogenously added purified MUC2. The LL-37 responses to butyrate and IL-1β were higher in high-MUC2-producing cells than in lentivirus short hairpin RNA (shRNA) MUC2-silenced cells. Activation of cyclic adenylyl cyclase (AMP) and mitogen-activated protein kinase (MAPK) signaling pathways was necessary for the simultaneous expression of MUC2 and cathelicidins. In Muc2 mucin-deficient (Muc2(-/-)) mice, murine cathelicidin (Cramp) was significantly reduced compared to that in Muc2(+/-) and Muc2(+/+) littermates. E. histolytica-induced acute inflammation in colonic loops stimulated high levels of cathelicidin in Muc2(+/+) but not in Muc2(-/-) littermates. In dextran sodium sulfate (DSS)-induced colitis in Muc2(+/+) mice, which depletes the mucus barrier and goblet cell mucin, Cramp expression was significantly enhanced during restitution. These studies demonstrate regulatory mechanisms between MUC2 and cathelicidins in the colonic mucosa where an intact mucus barrier is essential for expression and secretion of cathelicidins in response to E. histolytica- and DSS-induced colitis. Copyright © 2017 American Society

  5. Expression of beta-catenin is regulated by PI-3 kinase and sodium butyrate in colorectal cancer cells.

    PubMed

    Turecková, Jolana; Kucerová, Dana; Vojtechová, Martina; Sloncová, Eva; Tuhácková, Zdena

    2006-01-01

    beta-catenin has a dual function; it is implicated in intercellular junctions and transcriptional co-activation. Here we examined the regulation of the expression and localization of beta-catenin in HT29 colorectal adenocarcinoma cells. Our results showed that inhibition of PI-3 kinase with wortmannin was accompanied by a considerably reduced expression of beta-catenin. This effect was overcome by butyrate and occurred at the protein level, not at the level of mRNA. Moreover, NaBT significantly increased the phosphorylation of the ribosomal protein, S6, known to participate in the translational control of gene expression. This was accompanied by the increased phosphorylation of p70 S6K and MAPKs, the effector proteins that are upstream of protein S6 in the distinct signaling pathways. These facts indicate that different signaling pathways may be involved in the regulation of beta-catenin synthesis. Modulation of beta-catenin expression induced by NaBT appeared to occur at the level of protein translation, suggesting that NaBT may act as a translational regulator.

  6. Comparison of the butyrate effects on neurotransmitter receptors in neurohybrids NG108-15 and NCB-20 cells

    SciTech Connect

    Zhu, X.Z.; Chuang, D.M.

    1987-08-31

    The authors previous study demonstrated that long term treatment of NCB-20 cells with sodium butyrate resulted in a marked increase in the density of delta-opioid receptors with a much lesser effect on muscarinic cholinergic and no effect on alpha/sub 2/-adrenergic receptors. In the present study the authors investigated the effect of sodium butyrate on these three types of receptors in NG108-15 cells whose neuroblastoma parent is the same as that of NCB-20 cells. Long term treatment of NG108-15 cells with sodium butyrate (0.5 mM) induced a 2-fold increase in the density of the specific binding of /sup 3/H-clonidine. A comparable increase in the number of binding sites was detected when /sup 3/H-yohimbine was used as the receptor ligand. The butyrate-induced increase in the alpha/sub 2/-adrenergic receptor binding could be totally abolished by treatment with a protein synthesis inhibitor, cycloheximide, suggesting that synthesis of receptor protein is involved. The same butyrate treatment had no significant effect on opioid and muscarinic cholinergic receptor bindings. Thus, butyrate effects on the expression of these three types of receptors in NG108-15 and NCB-20 cells are dramatically different. These data suggest that induction by butyrate of neurotransmitter receptors requires concerted action of genetic factors of both parents of the neurohybrids. 22 references, 2 figures, 2 tables.

  7. Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D

    SciTech Connect

    Xiao, Min; Liu, Yungang; Zou, Fei

    2012-01-01

    Sphingosine kinases (SphKs) have been recognized as important proteins regulating cell proliferation and apoptosis. Of the two isoforms of SphK (SphK1 and SphK2), little is known about the functions of SphK2. Sodium butyrate (NaBT) has been established as a promising chemotherapeutic agent, but the precise mechanism for its effects is unknown. In this study, we investigated the role of SphK2 in NaBT-induced apoptosis of HCT116 colon cancer cells. The results indicated that following NaBT treatment SphK2 was translocated from the nucleus to the cytoplasm, leading to its accumulation in the cytoplasm; in the meantime, only mild apoptosis occurred. However, downregulation of SphK2 resulted in sensitized apoptosis, and overexpression of SphK2 led to even lighter apoptosis; these strongly indicate an inhibitory role of SphK2 in cell apoptosis induced by NaBT. After knocking down protein kinase D (PKD), another protein reported to be critical in cell proliferation/apoptosis process, by using siRNA, blockage of cytoplasmic accumulation of SphK2 and sensitized apoptosis following NaBT treatment were observed. The present study suggests that PKD and SphK2 may form a mechanism for the resistance of cancer cells to tumor chemotherapies, such as HCT116 colon cancer cells to NaBT, and these two proteins may become molecular targets for designation of new tumor-therapeutic drugs. -- Highlights: Black-Right-Pointing-Pointer In the present study sodium butyrate (10 mM) induced mild apoptosis of cancer cells. Black-Right-Pointing-Pointer The apoptosis was negatively regulated by cytoplasmic Sphingosine Kinase 2 (SphK2). Black-Right-Pointing-Pointer Translocation of SphK2 from nucleus to cytoplasm was mediated by protein kinase D. Black-Right-Pointing-Pointer Downregulation of SphK2 or protein kinase D leads to sensitized cell apoptosis.

  8. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Digital mRNA profiling of N-glycosylation gene expression in recombinant Chinese hamster ovary cells treated with sodium butyrate.

    PubMed

    Lee, Sang Min; Kim, Yeon-Gu; Lee, Eun Gyo; Lee, Gyun Min

    2014-02-10

    To understand the effects of sodium butyrate (NaBu) on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing Fc-fusion glycoprotein were subjected to 3mM NaBu. The addition of NaBu to the cultures reduced the relative proportion of acidic isoforms and sialic acid content of the glycoprotein. Fifty-two N-glycosylation-related gene expressions were also assessed by the NanoString nCounter system, which can provide a direct digital readout using custom-designed color-coded probes. Among them, ten genes (ugp, slc35a2, ganc, man1a, man1c, mgat5a, st3gal5, glb1, neu1, and neu3) were up-regulated and three genes (b4galt2, st3gal3, and neu2) were down-regulated significantly. Altered expression patterns in st3gal3, neu1, and neu3, which have roles in the sialic acid biosynthesis pathway, correlated with reduced sialic acid content of the glycoprotein by NaBu. Taken together, the results obtained in this study provide a better understanding of the detrimental effect of NaBu on N-glycosylation in rCHO cells.

  10. Changes in X-ray sensitivity and glutathione content of human colon tumor cells after exposure to the differentiation-inducing agent sodium butyrate

    SciTech Connect

    Leith, J.T.; Hallows, K.T.; Arundel, C.M.; Bliven, S.F.

    1988-06-01

    Clone A human colon cancer cells were exposed to concentrations of sodium butyrate (NAB, 0-2 mM) for three passages in vitro, and responses to either graded single doses or split doses of 250 kVp X rays were determined. The survival data were fit to the single-hit, multitarget model of inactivation. For the graded single dose experiments, we found that NAB produced a decrease in the magnitude of the quasi-threshold (Dq) parameter after a concentration of about 0.9 mM was exceeded. Similarly, in split dose experiments, the amount of sublethal damage recovery (SLDR) was reduced in a concentration-dependent manner as shown by a decrease in the Dq parameter. However, the inhibition of SLDR occurred with no apparent threshold NAB concentration. NAB did not affect potentially lethal damage recovery. Paradoxically, increasing concentrations of NAB produced an exponential increase in the intracellular glutathione content, which could be blocked by exposure of the cells to buthionine sulfoximine (BSO). BSO treatment of NAB-adapted cells led to additional cell killing, again most noted by changes in the Dq parameter. We postulate that these responses are associated with NAB-induced changes in chromatin structure, particularly the association between DNA and nucleosomal histones H3 and H4.

  11. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells

    SciTech Connect

    Hallows, K.R.; Bliven, S.F.; Leith, J.T.

    1988-01-01

    We have previously shown that chronic adaptation of human tumor cells to the differentiation-inducing agents N-methylformamide (NMF) and sodium butyrate (NAB) increases the sensitivity of oxic cells to graded single doses of X rays. These studies were carried out to define the sensitivity of hypoxic cells after adaptation. Clone A colon tumor cells were grown for three passages in medium containing 170 mM NMF or 2 mM NAB and irradiated in suspension culture, after gassing with either oxygen (60 min) or ultrapure nitrogen (90 min), and complete survival curves were generated. Using the linear-quadratic equation to describe the data, it was found that NMF and NAB produced increased X-ray killing of hypoxic cells. At the 10% level of survival, the dose-modifying factors were about 1.20 and 1.25 for NMF- and NAB-adapted hypoxic cells, respectively, as compared to hypoxic control cells. However, since both oxic and hypoxic cells exhibited increased sensitivity after NMF and NAB adaptation, there was no major change in the oxygen enhancement ratio.

  12. Sodium butyrate increases the effect of the photodynamic therapy: a mechanism that involves modulation of gene expression and differentiation in astrocytoma cells.

    PubMed

    Bueno-Carrazco, José; Castro-Leyva, Violeta; García-Gomez, Fanny; Solís-Paredes, Mario; Ramon-Gallegos, Eva; Cruz-Orea, Alfredo; Eguía-Aguilar, Pilar; Arenas-Huertero, Francisco

    2012-10-01

    In order to evaluate the improvement of the photodynamic therapy (PDT) due to sodium butyrate (NaBu), its effectiveness in U373-MG and D54-MG astrocytoma cell lines was evaluated. Cells were exposed to delta-aminolevulinic acid (δ-ALA) as a precursor to endogenous photosensitizer protoporphyrin IX (PpIX). In both astrocytoma cells, an important increase by ALA was observed in uroporphyrinogen synthetase gene expression: 1.8- and 52-fold for D54-MG and U373-MG cells, respectively. After irradiation, they showed 16.67 and 28.9% of mortality in U373-MG and D54-MG, respectively. These mortalities increased to 70.62 and 96.7% when U373-MG and D54-MG cells, respectively, were exposed 24 h to 8 mM NaBu, before to PpIX induction. NaBu induced expression of caspase-3, caspase-9, and Bcl-2 and increased Bax in U373-MG cells. ALA-induced morphological changes are compatible to differentiation. Genes and differentiation induced mainly by NaBu improve cell death performed by PDT in astrocytoma cells. These facts prove the synergistic effect of NaBu on cytotoxic damage induced by PDT.

  13. Short-term infusion of sodium butyrate, but not lactose, increases plasma ß-hydroxybutyrate and insulin in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    Several previous studies have identified beneficial effects of butyrate on rumen development and intestinal health in pre-ruminants. These encouraging findings have led to further investigations related to butyrate supplementation in the mature ruminant. However, the maximum tolerable dosage rate of...

  14. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning.

    PubMed

    Henagan, Tara M; Stefanska, Barbara; Fang, Zhide; Navard, Alexandra M; Ye, Jianping; Lenard, Natalie R; Devarshi, Prasad P

    2015-06-01

    Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the -1 nucleosome in association with altered gene expression. NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing -1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype. © 2015 The British Pharmacological Society.

  15. Regulation of the beta-adrenergic receptor-adenylate cyclase complex of 3T3-L1 fibroblasts by sodium butyrate

    SciTech Connect

    Stadel, J.M.; Poksay, K.S.; Nakada, M.T.; Crooke, S.T.

    1986-05-01

    Mouse 3T3-L1 fibroblasts contain beta-adrenergic receptors (BAR), predominantly of the B/sub 1/ subtype. Incubation of these cells with 2-10 mM sodium butyrate (SB) for 24-48 hr results in a switch in the BAR subtype from B/sub 1/ to B/sub 2/ and promotes a 1.5 to 2.5 fold increase in total BAR number. Other short chain acids were not as effective as SB in promoting changes in BAR. BAR were assayed in membranes prepared from the 3T3-L1 cells using the radiolabeled antagonist (/sup 125/I)-cyanopindolol and the B/sub 2/ selective antagonist ICI 118.551. BAR subtype switch was confirmed functionally by measuring cellular cAMP accumulation in response to agonists. The structure and amount of the alpha subunits of the guanine nucleotide regulatory proteins N/sub s/ and N/sub i/ were determined by ADP-ribosylation using /sup 32/P-NAD and either cholera toxin or pertussis toxin for labeling of the respective subunits. Preincubation of cells with 5 mM SB for 48 hr resulted in a 2-3 fold increase in the labeling of the alpha subunits of both N/sub s/ and N/sub i/. A protein of M/sub r/ = 44,000 showed enhanced labeling by cholera toxin following SB treatment of the cells. These data indicate SB concomitantly regulates expression of BAR subtype and components of the adenylate cyclase in 3T3-L1 cells.

  16. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning

    PubMed Central

    Henagan, Tara M; Stefanska, Barbara; Fang, Zhide; Navard, Alexandra M; Ye, Jianping; Lenard, Natalie R; Devarshi, Prasad P

    2015-01-01

    Background and Purpose Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. Experimental Approach The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. Key Results NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the −1 nucleosome in association with altered gene expression. Conclusions and Implications NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing −1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype. PMID:25559882

  17. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors

    PubMed Central

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-01-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy. PMID:12153511

  18. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors.

    PubMed

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-08-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy.

  19. Effects of seasonal changes in food quality and food intake on the transport of sodium and butyrate across ruminal epithelium of reindeer.

    PubMed

    Storeheier, P V; Sehested, J; Diernaes, L; Sundset, M A; Mathiesen, S D

    2003-07-01

    Transport of 22Na and 14C-butyrate across the ruminal epithelium of captive reindeer fed a concentrate diet in summer (n=5) and in winter (n=5) and from free-ranging reindeer taken from summer (n=3) and winter pasture (n=5) was measured in vitro in Ussing chambers. Significant amounts of both Na+ and butyrate were transported across the isolated epithelium without any external driving force. The ruminal transport of Na+ and butyrate were interacting, as evidenced by both the observed amiloride-induced reduction of net butyrate-transport and by the positive correlation between net transport of butyrate and Na+. Amiloride also reduced the net transport of Na+ without significantly affecting the short-circuit current, indicating the presence of an apical Na+/H+ exchanger in the ruminal epithelium of reindeer. The captive reindeer increased the dry matter intake of a constant quality concentrate from winter to summer, but this neither affected their ruminal transport capacity nor their ruminal surface enlargement factor (SEF). Free-ranging reindeer increased their ruminal transport capacity for Na+ and butyrate from summer to winter but simultaneously reduced their ruminal SEF. The present data indicate that this food-induced increase in transport capacity was attributed to changes in the nutrient composition of the diet.

  20. Indoxacarb, Metaflumizone, and Other Sodium Channel Inhibitor Insecticides: Mechanism and Site of Action on Mammalian Voltage-Gated Sodium Channels.

    PubMed

    von Stein, Richard T; Silver, Kristopher S; Soderlund, David M

    2013-07-01

    Sodium channel inhibitor (SCI) insecticides were discovered almost four decades ago but have only recently yielded important commercial products (eg., indoxacarb and metaflumizone). SCI insecticides inhibit sodium channel function by binding selectively to slow-inactivated (non-conducting) sodium channel states. Characterization of the action of SCI insecticides on mammalian sodium channels using both biochemical and electrophysiological approaches demonstrates that they bind at or near a drug receptor site, the "local anesthetic (LA) receptor." This mechanism and site of action on sodium channels differentiates SCI insecticides from other insecticidal agents that act on sodium channels. However, SCI insecticides share a common mode of action with drugs currently under investigation as anticonvulsants and treatments for neuropathic pain. In this paper we summarize the development of the SCI insecticide class and the evidence that this structurally diverse group of compounds have a common mode of action on sodium channels. We then review research that has used site-directed mutagenesis and heterologous expression of cloned mammalian sodium channels in Xenopus laevis oocytes to further elucidate the site and mechanism of action of SCI insecticides. The results of these studies provide new insight into the mechanism of action of SCI insecticides on voltage-gated sodium channels, the location of the SCI insecticide receptor, and its relationship to the LA receptor that binds therapeutic SCI agents.

  1. Synthesis, molecular modeling and biological evaluation of novel 2-allyl amino 4-methyl sulfanyl butyric acid as α-amylase and α-glucosidase inhibitor

    NASA Astrophysics Data System (ADS)

    Balan, Kannan; Perumal, Perumal; Sundarabaalaji, Narayanan; Palvannan, Thayumanavan

    2015-02-01

    In the present study 2-allyl amino 4-methyl sulfanyl butyric acid (AMSB) was synthesized in good yield. AMSB was characterized by Fourier transforms infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR) (1H and 13C) and Liquid chromatography mass spectrometry (LCMS). The radical scavenging activity and reducing power assay of AMSB was assessed using 1-1-diphenyl 2-picryl hydrazyl (DPPH), 2,2‧-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power assay (FRAP) and was found to be 44.1, 34.71 and 41.7 μg/ml respectively. The compound showed effective inhibition against α-amylase and α-glucosidase. AMSB was identified to be a reversible mixed noncompetitive inhibitor of α-amylase and α-glucosidase. The molecular docking study was carried out to evaluate the specific groove binding properties and affords valuable information of AMSB binding mode in the active site of α-glucosidase the study may lead to the which leads to the rational design of new class of antidiabetic drugs targeting α-glucosidase based on AMSB in near future.

  2. A novel strategy for the treatment of diabetes mellitus - sodium glucose co-transport inhibitors.

    PubMed

    Niazi, Asfandyar Khan; Niazi, Saad Hameed

    2010-12-01

    Diabetes is one of the most common chronic diseases, affecting almost 3 million in Canada alone and is characterized by increased blood glucose levels. Treatment varies from lifestyle changes to oral anti-diabetics and/or insulin. Sodium glucose co-transport inhibitors may offer promising treatment for patients suffering from diabetes. The inhibitors act by increasing the loss of glucose in urine by decreasing the reabsorption of glucose from the proximal tubules of nephrons. The aim of this review was to assess the efficacy of sodium glucose co-transport inhibitors in the treatment of diabetes as well as any adverse effects. Databases such as MEDLINE, COCHRANE and EMBASE were systematically searched for literature on the efficacy of sodium glucose co-transport inhibitors in improving the glycemic control of patients with diabetes. Research showed that sodium glucose co-transport inhibitors significantly decreased blood glucose levels by increasing glucosuria. Due to the diuretic effects of these inhibitors, diabetic patients who were suffering from hypertension showed a decrease in blood pressure. The caloric loss associated with these inhibitors resulted in weight loss as well. The most common adverse effect seen in patients on these medications was mycotic infection of the urinary or genital tract. Sodium glucose co-transport inhibitors may be an effective line of treatment for diabetes. Although short-term research has shown these drugs to be safe and well-tolerated, studies should be conducted to assess the long-term effects of these drugs.

  3. The activation of the TLR2/p38 pathway by sodium butyrate in bovine mammary epithelial cells is involved in the reduction of Staphylococcus aureus internalization.

    PubMed

    Alva-Murillo, Nayeli; Medina-Estrada, Ivan; Báez-Magaña, Marisol; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2015-12-01

    Staphylococcus aureus is an etiological agent of human and animal diseases, and it is able to internalize into non-professional phagocytic cells (i.e. bovine mammary epithelial cells, bMECs), which is an event that is related to chronic and recurrent infections. bMECs contribute to host innate immune responses (IIR) through TLR pathogen recognition, whereby TLR2 is the most relevant for S. aureus. In a previous report, we showed that sodium butyrate (NaB, 0.5mM), which is a short chain fatty acid (SCFA), reduced S. aureus internalization into bMECs by modulating their IIR. However, the molecular mechanism of this process has not been described, which was the aim of this study. The results showed that the TLR2 membrane abundance (MA) and mRNA expression were induced by 0.5mM NaB ∼1.6-fold and ∼1.7-fold, respectively. Additionally, 0.5mM NaB induced p38 phosphorylation, but not JNK1/2 or ERK1/2 phosphorylation in bMECs, which reached the baseline when the bMECs were S. aureus-challenged. Additionally, bMECs that were treated with 0.5mM NaB (24h) showed activation of 8 transcriptional factors (AP-1, E2F-1, FAST-1, MEF-1, EGR, PPAR, ER and CBF), which were partially reverted when the bMECs were S. aureus-challenged. Additionally, 0.5mM NaB (24h) up-regulated mRNA expression of the antimicrobial peptides, TAP (∼4.8-fold), BNBD5 (∼3.2-fold) and BNBD10 (∼2.6-fold). Notably, NaB-treated and S. aureus-challenged bMECs increased the mRNA expression of all of the antimicrobial peptides that were evaluated, and this was evident for LAP and BNBD5. In the NaB-treated bMECs, we did not detect significant expression changes for IL-1β and IL-6 and only TNF-α, IL-10 and IL-8 were induced. Interestingly, the NaB-treated and S. aureus-challenged bMECs maintained the anti-inflammatory response that was induced by this SCFA. In conclusion, our results suggest that 0.5mM NaB activates bMECs via TLR2/p38, which leads to improved antimicrobial defense before/after pathogen

  4. The human clotting factor VIII cDNA contains an autonomously replicating sequence consensus- and matrix attachment region-like sequence that binds a nuclear factor, represses heterologous gene expression, and mediates the transcriptional effects of sodium butyrate.

    PubMed Central

    Fallaux, F J; Hoeben, R C; Cramer, S J; van den Wollenberg, D J; Briët, E; van Ormondt, H; van Der Eb, A J

    1996-01-01

    Expression of the human blood-clotting factor VIII (FVIII) cDNA is hampered by the presence of sequences located in the coding region that repress transcription. We have previously identified a 305-bp fragment within the FVIII cDNA that is involved in the repression (R.C. Hoeben, F.J. Fallaux, S.J. Cramer, D.J.M. van den Wollenberg, H. van Ormondt, E. Briet, and A.J. van der Eb, Blood 85:2447-2454, 1995). Here, we show that this 305-bp region of FVIII cDNA contains sequences that resemble the yeast (Saccharomyces cerevisiae) autonomously replicating sequence consensus. Two of these DNA elements coincide with AT-rich sequences that are often found in matrix attachment regions or scaffold-attached regions. One of these elements, consisting of nucleotides 1569 to 1600 of the FVIII cDNA (nucleotide numbering is according to the system of Wood et al. (W.I. Wood, D.J. Capon, C.C. Simonsen, D.L. Eaton, J. Gitschier, D. Keyt, P.H. Seeburg, D.H. Smith, P. Hollingshead, K.L. Wion, et al., Nature [London] 312:330-337,1984), binds a nuclear factor in vitro but loses this capacity after four of its base pairs have been changed. A synthetic heptamer of this segment can repress the expression of a chloramphenicol acetyltransferase (CAT) reporter gene and also loses this capacity upon mutation. Furthermore, we demonstrate that repression by FVIII sequences can be relieved by sodium butyrate. We demonstrate that the synthetic heptamer (FVIII nucleotides 1569 to 1600), when placed upstream of the Moloney murine leukemia virus long terminal repeat promoter that drives the CAT reporter, can render the CAT reporter inducible by butyrate. This effect was absent when the same element was mutated. The stimulatory effect of butyrate could not be attributed to butyrate-responsive elements in the studied long terminal repeat promoters. Our data provide a functional characterization of the sequences that repress expression of the FVIII cDNA. These data also suggest a link between

  5. Natriuretic Hormones, Endogenous Ouabain, and Related Sodium Transport Inhibitors

    PubMed Central

    Hamlyn, John M.

    2014-01-01

    The work of deWardener and colleagues stimulated longstanding interest in natriuretic hormones (NHs). In addition to the atrial peptides (APs), the circulation contains unidentified physiologically relevant NHs. One NH is controlled by the central nervous system (CNS) and likely secreted by the pituitary. Its circulating activity is modulated by salt intake and the prevailing sodium concentration of the blood and intracerebroventricular fluid, and contributes to postprandial and dehydration natriuresis. The other NH, mobilized by atrial stretch, promotes natriuresis by increasing the production of intrarenal dopamine and/or nitric oxide (NO). Both NHs have short (<35 min) circulating half lives, depress renotubular sodium transport, and neither requires the renal nerves. The search for NHs led to endogenous cardiotonic steroids (CTS) including ouabain-, digoxin-, and bufadienolide-like materials. These CTS, given acutely in high nanomole to micromole amounts into the general or renal circulations, inhibit sodium pumps and are natriuretic. Among these CTS, only bufalin is cleared sufficiently rapidly to qualify for an NH-like role. Ouabain-like CTS are cleared slowly, and when given chronically in low daily nanomole amounts, promote sodium retention, augment arterial myogenic tone, reduce renal blood flow and glomerular filtration, suppress NO in the renal vasa recta, and increase sympathetic nerve activity and blood pressure. Moreover, lowering total body sodium raises circulating endogenous ouabain. Thus, ouabain-like CTS have physiological actions that, like aldosterone, support renal sodium retention and blood pressure. In conclusion, the mammalian circulation contains two non-AP NHs. Identification of the CNS NH should be a priority. PMID:25520702

  6. Antiepileptic Activity of Preferential Inhibitors of Persistent Sodium Current

    PubMed Central

    Anderson, Lyndsey L.; Thompson, Christopher H.; Hawkins, Nicole A.; Nath, Ravi D.; Petersohn, Adam A.; Rajamani, Sridharan; Bush, William S.; Frankel, Wayne N.; Vanoye, Carlos G.; Kearney, Jennifer A.; George, Alfred L.

    2014-01-01

    Objective Evidence from basic neurophysiology and molecular genetics has implicated persistent sodium current conducted by voltage-gated sodium (NaV) channels as a contributor to the pathogenesis of epilepsy. Many antiepileptic drugs target NaV channels and modulate neuronal excitability mainly by a use-dependent block of transient sodium current, although suppression of persistent current may also contribute to the efficacy of these drugs. We hypothesized that a drug or compound capable of preferential inhibition of persistent sodium current would have antiepileptic activity. Methods We examined the antiepileptic activity of two selective persistent sodium current blockers ranolazine, an FDA-approved drug for treatment of angina pectoris, and GS967, a novel compound with more potent effects on persistent current, in the epileptic Scn2aQ54 mouse model. We also examined the effect of GS967 in the maximal electroshock model and evaluated effects of the compound on neuronal excitability, propensity for hilar neuron loss, development of mossy fiber sprouting and survival of Scn2aQ54 mice. Results We found that ranolazine was capable of reducing seizure frequency by ~50% in Scn2aQ54 mice. The more potent persistent current blocker GS967 reduced seizure frequency by greater than 90% in Scn2aQ54 mice and protected against induced seizures in the maximal electroshock model. GS967 greatly attenuated abnormal spontaneous action potential firing in pyramidal neurons acutely isolated from Scn2aQ54 mice. In addition to seizure suppression in vivo, GS967 treatment greatly improved the survival of Scn2aQ54 mice, prevented hilar neuron loss, and suppressed the development of hippocampal mossy fiber sprouting. Significance Our findings indicate that the selective persistent sodium current blocker GS967 has potent antiepileptic activity and this compound could inform development of new agents. PMID:24862204

  7. A novel strategy for the treatment of diabetes mellitus - sodium glucose co-transport inhibitors

    PubMed Central

    Niazi, Asfandyar Khan; Niazi, Saad Hameed

    2010-01-01

    Background: Diabetes is one of the most common chronic diseases, affecting almost 3 million in Canada alone and is characterized by increased blood glucose levels. Treatment varies from lifestyle changes to oral anti-diabetics and/or insulin. Sodium glucose co-transport inhibitors may offer promising treatment for patients suffering from diabetes. The inhibitors act by increasing the loss of glucose in urine by decreasing the reabsorption of glucose from the proximal tubules of nephrons. Aims: The aim of this review was to assess the efficacy of sodium glucose co-transport inhibitors in the treatment of diabetes as well as any adverse effects. Materials and Methods: Databases such as MEDLINE, COCHRANE and EMBASE were systematically searched for literature on the efficacy of sodium glucose co-transport inhibitors in improving the glycemic control of patients with diabetes. Results: Research showed that sodium glucose co-transport inhibitors significantly decreased blood glucose levels by increasing glucosuria. Due to the diuretic effects of these inhibitors, diabetic patients who were suffering from hypertension showed a decrease in blood pressure. The caloric loss associated with these inhibitors resulted in weight loss as well. The most common adverse effect seen in patients on these medications was mycotic infection of the urinary or genital tract. Conclusion: Sodium glucose co-transport inhibitors may be an effective line of treatment for diabetes. Although short-term research has shown these drugs to be safe and well-tolerated, studies should be conducted to assess the long-term effects of these drugs. PMID:22558567

  8. Radio-Sensitizing Effects of Novel Histone De-Acetylase Inhibitors in Prostate Cancer

    DTIC Science & Technology

    2005-09-01

    phenylacetic acid and butyric acid respectively as the lead compound (Fig. 1) have been used in the present study. Since, these inhibitors have aromatic chain...compoundinhibitors ONOH butyrylamino)ben an tide N-[:ý Phenylacetic F1 HDAC inhibifion: IC0. 16 nNM VAD-18 acid H DU- 14,5 growth inhibition. ICu, 110 ntM...combination with radiation to augment clinical efficacy and/or to reduce toxicity. The HDAC inhibitors- phenyl butyrate (38), sodium butyrate (39

  9. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  10. Daily Sodium Butyrate Enema for the Prevention of Radiation Proctitis in Prostate Cancer Patients Undergoing Radical Radiation Therapy: Results of a Multicenter Randomized Placebo-Controlled Dose-Finding Phase 2 Study

    SciTech Connect

    Maggio, Angelo; Magli, Alessandro; Rancati, Tiziana; Fiorino, Claudio; Valvo, Francesca; Fellin, Giovanni; Ricardi, Umberto; Munoz, Fernando; Cosentino, Dorian; Cazzaniga, Luigi Franco; Valdagni, Riccardo; Vavassori, Vittorio

    2014-07-01

    Purpose: To evaluate the efficacy of sodium butyrate enemas (NABUREN) in prostate cancer radiation therapy (RT) in reducing the incidence, severity, and duration of acute RT-induced proctitis. Methods and Materials: 166 patients, randomly allocated to 1 of 4 groups (rectal sodium butyrate 1 g, 2 g, or 4 g daily or placebo), were treated with NABUREN during and 2 weeks after RT. The grade of proctitis was registered in a daily diary. The correlation between NABUREN and proctitis was investigated through χ{sup 2} statistics. The toxicity endpoints considered were as follows: total number of days with grade ≥1 proctitis (≥G1); total number of days with grade ≥2 proctitis (≥G2); ≥G1 and ≥G2 proctitis lasting at least 3 and 5 consecutive days starting from week 4 (≥G1+3d, ≥G2+3d); damaging effects of RT on rectal mucosa as measured by endoscopy. The relationship between endpoints and pretreatment morbidities, hormonal therapy, presence of diabetes or hypertension, abdominal surgery, or hemorrhoids was investigated by univariate analysis. Results: The patients were randomly allocated to the 4 arms. No difference in the distribution of comorbidities among the arms was observed (P>.09). The mean ≥G1 and ≥G2 proctitis were 7.8 and 4.9 for placebo and 8.9 and 4.7 for the NABUREN group, respectively. No favorable trend in reduction of incidence, severity, and duration of ≥G1 and ≥G2 proctitis was observed with NABUREN use. In univariate analysis, ≥G1+3d toxicity was found to be related to hemorrhoids (P=.008), and a slight correlation was found between ≥G2 proctitis and hormonal therapy (P=.06). The RT effects on rectal mucosa as based on endoscopic assessment were mainly related to diabetes (P<.01). Endoscopy data at 6 week showed no significant difference between the placebo and butyrate arms. The other investigated endpoints were not correlated with any of the clinical risk factors analyzed. Conclusion: There was no evidence of efficacy

  11. Butyrate-Induced Apoptosis in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2001-09-01

    butyrate-induced apoptosis was independent of cell cycle phase. 14. SUBJECT TERMS 15. NUMBER OF PAGES prostate cancer, histone deacetylase inhibitors, bone...of cells plated) HDI histone deacetylase inhibitor SBHA suberoylbishydroxamate PKC protein kinase C activator SDS-PAGE SDS polyacrylamide gel...cancer cell lines 1. Summary of goals and findings Histone deacetylase inhibitors (HDI) such as butyrate and suberoylbishydroxamate (SBHA) have

  12. [Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors in CKD].

    PubMed

    Insalaco, Monica; Zanoli, Luca; Rastelli, Stefania; Lentini, Paolo; Rapisarda, Francesco; Fatuzzo, Pasquale; Castellino, Pietro; Granata, Antonio

    2015-01-01

    Among the new drugs used for the treatment of Diabetes Mellitus type 2, sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a promising therapeutic option. Since their ability to lower glucose is proportional to GFR, their effect is reduced in patients with chronic kidney disease (CKD). The antidiabetic mechanism of these drugs is insulin-independent and, therefore, complimentary to that of others antihyperglicaemic agents. Moreover, SGLT2 inhibitors are able to reduce glomerular hyperfiltration, systemic and intraglomerular pressure and uric acid levels, with consequent beneficial effects on the progression of kidney disease in non diabetic patients as well. Only few studies have been performed to evaluate the effects of SGLT2 inhibitors in patients with CKD. Therefore, safety and efficacy of SGLT2 inhibitors should be better clarified in the setting of CKD. In this paper, we will review the use of SGLT2 inhibitors in diabetic patients, including those with CKD.

  13. ENDOGENOUS SODIUM PUMP INHIBITORS, DIABETES MELLITUS AND PREECLAMPSIA

    PubMed Central

    Bagrov, Yakov Y.; Manusova, Natalia B.; Frolova, Elena V.; Egorova, Irina A.; Kashkin, Vladimir A.; Tapilskaya, Natalia I.; Fedorova, Olga V.; Bagrov, Alexei Y.

    2007-01-01

    Endogenous inhibitors of the Na/K-ATPase (NKA) and diabetes mellitus (DM) are both risk factors for preeclampsia and NaCl sensitive hypertension. Our goal was to test the hypothesis that NaCl supplementation, induces preeclampsia-like symptoms in pregnant rats with DM via stimulation of marinobufagenin (MBG), a natriuretic and vasoconstrictor inhibitor of the NKA. Type 2 DM in female Sprague-Dawley rats was induced by administration of 65 mg/kg streptozotocin at day 4 post partum. In intact rats, pregnancy was associated with a 2-fold increase in MBG levels and a mild impairment in glucose tolerance. Pregnant rats with DM exhibited fetal macrosomia, greater impairment of glucose tolerance, and higher levels of MBG as compared to that in normal pregnant rats. As compared to intact pregnant rats, NaCl supplementation of diabetic pregnant rats (drinking 1.8% NaCl during days 12-19 of pregnancy) was associated with an increase in systolic blood pressure, decreased fetal and placental weight, five-fold elevation of MBG excretion, and 42% inhibition of NKA in erythrocytes. In nonpregnant rats, in vivo pretreatment with anti-MBG antibody produced an exaggerated response of plasma levels of glucose and insulin in oral glucose tolerance test. These results suggest that MBG is a common factor in the pathogenesis of DM and preeclampsia, and that regulation of glucose tolerance may be one of the physiological functions of endogenous cardiotonic steroids. PMID:17942287

  14. Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors.

    PubMed

    Butterworth, Michael B; Zhang, Liang; Liu, Xiaoning; Shanks, Robert M; Thibodeau, Patrick H

    2014-01-01

    The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP) from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC), leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  15. Modulation of the Epithelial Sodium Channel (ENaC) by Bacterial Metalloproteases and Protease Inhibitors

    PubMed Central

    Butterworth, Michael B.; Zhang, Liang; Liu, Xiaoning; Shanks, Robert M.; Thibodeau, Patrick H.

    2014-01-01

    The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP) from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC), leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions. PMID:24963801

  16. Inhibitors of voltage-gated sodium channel Nav1.7: patent applications since 2010.

    PubMed

    Sun, Shaoyi; Cohen, Charles J; Dehnhardt, Christoph M

    2014-09-01

    There has been intense interest in developing inhibitors of the sodium channel Nav1.7 because genetic studies have established very strong validation for the efficacy to alleviate both inflammatory and neuropathic pain. This review summarizes patent applications targeting Nav1.7 since 2010 until May, 2014. We have classified the patents into three categories as follows: small molecules with well-defined molecular selectivity among sodium channel isoforms; biologicals with well-defined molecular selectivity; and, small molecules that inhibit Nav1.7 with unknown molecular selectivity. Most of the review is dedicated to small molecule selective compounds.

  17. The Role of Sodium-Glucose Cotransporter 2 Inhibitors in the Management of Type 2 Diabetes.

    PubMed

    Steen, Oren; Goldenberg, Ronald M

    2017-10-01

    Sodium-glucose cotransporter 2 (SGTL2) inhibitors are a novel class of antihyperglycemic agents that work in an insulin-independent manner by promoting urinary glucose excretion. In addition to efficacious glucose lowering, they exert beneficial effects on blood pressure and weight while avoiding hypoglycemia unless combined with insulin or insulin secretagogues. This review explores the mechanism of action of SGLT2 inhibitors, their effects on glycated hemoglobin, weight, blood pressure and hypoglycemia, potential adverse effects, renal considerations and cardiovascular outcomes. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  18. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors and Cardiovascular Disease: A Systematic Review.

    PubMed

    Kalra, Sanjay

    2016-12-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of drugs that have been extensively investigated for the treatment of hyperglycemia in type 2 diabetes mellitus (T2DM). These drugs reduce hyperglycemia by blocking renal glucose reabsorption, thereby promoting increased renal glucose excretion. Beyond glycemic control, these drugs have other beneficial effects on cardiovascular (CV) risk factors. The present review discusses the potential role of SGLT2 inhibitors in treating CV complications (acute and chronic) associated with T2DM.

  19. Suppression of caspase-11 expression by histone deacetylase inhibitors

    SciTech Connect

    Heo, Hyejung; Yoo, Lang; Shin, Ki Soon; Kang, Shin Jung

    2009-01-02

    It has been well documented that histone deacetylase inhibitors suppress inflammatory gene expression. Therefore, we investigated whether histone deacetylase inhibitors modulate the expression of caspase-11 that is known as an inducible caspase regulating both inflammation and apoptosis. In the present study, we show that sodium butyrate and trichostatin A, two structurally unrelated inhibitors of histone deacetylase (HDAC), effectively suppressed the induction of caspase-11 in mouse embryonic fibroblasts stimulated with lipopolysaccharides. Sodium butyrate inhibited the activation of upstream signaling events for the caspase-11 induction such as activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, degradation of inhibitor of {kappa}B, and activation of nuclear factor-{kappa}B. These results suggest that the HDAC inhibitor suppressed cytosolic signaling events for the induction of caspase-11 by inhibiting the deacetylation of non-histone proteins.

  20. A selectivity study of sodium-dependent glucose cotransporter 2/sodium-dependent glucose cotransporter 1 inhibitors by molecular modeling.

    PubMed

    Xu, Jinxing; Yuan, Haoliang; Ran, Ting; Zhang, Yanmin; Liu, Haichun; Lu, Shuai; Xiong, Xiao; Xu, Anyang; Jiang, Yulei; Lu, Tao; Chen, Yadong

    2015-08-01

    Sodium-dependent glucose cotransporters (SGLTs) play an important role in glucose reabsorption in the kidney and have been identified as promising targets to treat diabetes. Because of the side effects like glucose and galactose malabsorption by targeting SGLT1, highly selective SGLT2 inhibitors are more promising in the treatment of diabetes. To understand the mechanism of selectivity, we conducted selectivity-based three-dimensional quantitative structure-activity relationship studies to highlight the structure requirements for highly selective SGLT2 inhibitors. The best comparative molecular field analysis and comparative molecular similarity indices analysis models showed the noncross-validated coefficient (r(2) ) of 0.967 and 0.943, respectively. The predicted correlation coefficients (r(2) pred ) of 0.974 and 0.938 validated the reliability and predictability of these models. Besides, homology models of SGLT2 and SGLT1 were also constructed to investigate the selective mechanism from structure-based perspective. Molecular dynamics simulation and binding free energy calculation were performed on the systems of a potent and selective compound interacting with SGLT2 and SGLT1 to compare the different binding modes. The simulation results showed that the stretch of the methylthio group on Met241 had an essential effect on the different binding modes between SGLT1 and SGLT2, which was consistent with the three-dimensional quantitative structure-activity relationship analysis. Hydrogen bond analysis and binding free energy calculation revealed that SGLT2 binding complex was more stable and favorable than SGLT1 complex, which was highly correlated with the experimental results. Our obtained results give useful information for the investigation of the inhibitors' selectivity between SGLT2 and SGLT1 and will help for further development of highly selective SGLT2 inhibitors.

  1. Protective effects of the sodium/calcium exchanger inhibitor on endothelial dysfunction induced by high glucose.

    PubMed

    Liu, D; Cui, K Z; Sun, Y M; Liu, J W; Li, Y B; Su, Y

    2015-01-01

    This study was designed to investigate the protective effects of KB-R7943, an inhibitor of sodium/calcium exchanger (NCX) on endothelial dysfunction induced by high glucose in endothelial cells. NCX expression, NCX activity and oxidative stress index were determined after endothelial cells were exposed to high glucose in the absence and presence of KB-R7943. Coincubation of endothelial cells with high glucose for 6, 12, 24 and 48 h resulted in a significant decrease in NCX expression, superoxide dismutase (SOD) activity and the release of nitric oxide (NO), and increased NCX activity and malondialdehyde (MDA) production. These effects were abolished by KB-R7943. A similar effect was observed after treatment of endothelial cells with H-7, a protein kinase C (PKC) inhibitor and NADPH oxidase inhibitor (DPI). These results suggest that the sodium/calcium exchanger inhibitor exerts beneficial effects on high glucose-induced endothelial dysfunction, which may be related to PKC signal pathway. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  2. Role of Rho GDP dissociation inhibitor α in control of epithelial sodium channel (ENaC)-mediated sodium reabsorption.

    PubMed

    Pavlov, Tengis S; Levchenko, Vladislav; Staruschenko, Alexander

    2014-10-10

    The epithelial sodium channel (ENaC) is expressed in the aldosterone-sensitive distal nephron where it performs sodium reabsorption from the lumen. We have recently shown that ENaC activity contributes to the development of salt-induced hypertension as a result of deficiency of EGF level. Previous studies revealed that Rho GDP-dissociation inhibitor α (RhoGDIα) is involved in the control of salt-sensitive hypertension and renal injury via Rac1, which is one of the small GTPases activating ENaC. Here we investigated the intracellular mechanism mediating the involvement of the RhoGDIα/Rac1 axis in the control of ENaC and the effect of EGF on ENaC in this pathway. We demonstrated that RhoGDIα is highly expressed in the cortical collecting ducts of mice and rats, and its expression is down-regulated in Dahl salt-sensitive rats fed a high salt diet. Knockdown of RhoGDIα in cultured cortical collecting duct principal cells increased ENaC subunits expression and ENaC-mediated sodium reabsorption. Furthermore, RhoGDIα deficiency causes enhanced response to EGF treatment. Patch clamp analysis reveals that RhoGDIα significantly decreases ENaC current density and prevents its up-regulation by RhoA and Rac1. Inhibition of Rho kinase with Y27632 had no effects on ENaC response to EGF either in control or RhoGDIα knocked down cells. However, EGF treatment increased levels of active Rac1, which was further enhanced in RhoGDIα-deficient cells. We conclude that changes in the RhoGDIα-dependent pathway have a permissive role in the Rac1-mediated enhancement of ENaC activity observed in salt-induced hypertension.

  3. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors.

    PubMed

    Tang, Chunlei; Zhu, Xiaoyun; Huang, Dandan; Zan, Xin; Yang, Baowei; Li, Ying; Du, Xiaoyong; Qian, Hai; Huang, Wenlong

    2012-06-01

    Sodium-dependent glucose co-transporter 2 (SGLT2) plays a pivotal role in maintaining glucose equilibrium in the human body, emerging as one of the most promising targets for the treatment of diabetes mellitus type 2. Pharmacophore models of SGLT2 inhibitors have been generated with a training set of 25 SGLT2 inhibitors using Discovery Studio V2.1. The best hypothesis (Hypo1(SGLT2)) contains one hydrogen bond donor, five excluded volumes, one ring aromatic and three hydrophobic features, and has a correlation coefficient of 0.955, cost difference of 68.76, RMSD of 0.85. This model was validated by test set, Fischer randomization test and decoy set methods. The specificity of Hypo1(SGLT2) was evaluated. The pharmacophore features of Hypo1(SGLT2) were different from the best pharmacophore model (Hypo1(SGLT1)) of SGLT1 inhibitors we developed. Moreover, Hypo1(SGLT2) could effectively distinguish selective inhibitors of SGLT2 from those of SGLT1. These results indicate that a highly predictive and specific pharmacophore model of SGLT2 inhibitors has been successfully obtained. Then Hypo1(SGLT2) was used as a 3D query to screen databases including NCI and Maybridge for identifying new inhibitors of SGLT2. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five. And several compounds selected from the top ranked hits have been suggested for further experimental assay studies.

  4. Sodium channel inhibitor drug discovery using automated high throughput electrophysiology platforms.

    PubMed

    Castle, Neil; Printzenhoff, David; Zellmer, Shannon; Antonio, Brett; Wickenden, Alan; Silvia, Christopher

    2009-01-01

    Voltage dependent sodium channels are widely recognized as valuable targets for the development of therapeutic interventions for neuroexcitatory disorders such as epilepsy and pain as well as cardiac arrhythmias. An ongoing challenge for sodium channel drug discovery is the ability to readily evaluate state dependent interactions, which are known to underlie inhibition by many clinically used local anesthetic, antiepileptic and antiarrhythmic sodium channel blockers. While patch-clamp electrophysiology is still considered the most effective way of measuring ion channel function and pharmacology, it does not have the throughput to be useful in early stages of drug discovery in which there is often a need to evaluate many thousands to hundreds of thousands of compounds. Fortunately over the past five years, there has been significant progress in developing much higher throughput electrophysiology platforms like the PatchXpress and IonWorks, which are now widely used in drug discovery. This review highlights the strengths and weaknesses of these two high throughput devices for use in sodium channel inhibitor drug discovery programs. Overall, the PatchXpress and IonWorks electrophysiology platforms have individual strengths that make them complementary to each other. Both platforms are capable of measuring state dependent modulation of sodium channels. IonWorks has the throughput to allow for effective screening of libraries of tens of thousands of compounds whereas the PatchXpress has more flexibility to provide quantitative voltage clamp, which is useful in structure activity evaluations for the hit-to-lead and lead optimization stages of sodium channel drug discovery.

  5. Sodium-glucose cotransporter 2 inhibitors with insulin in type 2 diabetes: Clinical perspectives

    PubMed Central

    John, Mathew; Gopinath, Deepa; Jagesh, Rejitha

    2016-01-01

    The treatment of type 2 diabetes is a challenging problem. Most subjects with type 2 diabetes have progression of beta cell failure necessitating the addition of multiple antidiabetic agents and eventually use of insulin. Intensification of insulin leads to weight gain and increased risk of hypoglycemia. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of antihyperglycemic agents which act by blocking the SGLT2 in the proximal tubule of the kidney. They have potential benefits in terms of weight loss and reduction of blood pressure in addition to improvements in glycemic control. Further, one of the SGLT2 inhibitors, empagliflozin has proven benefits in reducing adverse cardiovascular (CV) outcomes in a CV outcome trial. Adding SGLT2 inhibitors to insulin in subjects with type 2 diabetes produced favorable effects on glycemic control without the weight gain and hypoglycemic risks associated with insulin therapy. The general risks of increased genital mycotic infections, urinary tract infections, volume, and osmosis-related adverse effects in these subjects were similar to the pooled data of individual SGLT2 inhibitors. There are subsets of subjects with type 2 diabetes who may have insulin deficiency, beta cell autoimmunity, or is prone to diabetic ketoacidosis. In these subjects, SGLT2 inhibitors should be used with caution to prevent the rare risks of ketoacidosis. PMID:26904465

  6. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    PubMed

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  7. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents.

    PubMed

    Vivian, Eva M

    2014-01-01

    Although several treatment options are available to reduce hyperglycemia, only about half of individuals with diagnosed diabetes mellitus (DM) achieve recommended glycemic targets. New agents that reduce blood glucose concentrations by novel mechanisms and have acceptable safety profiles are needed to improve glycemic control and reduce the complications associated with type 2 diabetes mellitus (T2DM). The renal sodium-glucose co-transporter 2 (SGLT2) is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors of SGLT2 lower blood glucose independent of the secretion and action of insulin by inhibiting renal reabsorption of glucose, thereby promoting the increased urinary excretion of excess glucose. Canagliflozin, dapagliflozin, and empagliflozin are SGLT2 inhibitors approved as treatments for T2DM in the United States, Europe, and other countries. Canagliflozin, dapagliflozin, and empagliflozin increase renal excretion of glucose and improve glycemic parameters in patients with T2DM when used as monotherapy or in combination with other antihyperglycemic agents. Treatment with SGLT2 inhibitors is associated with weight reduction, lowered blood pressure, and a low intrinsic propensity to cause hypoglycemia. Overall, canagliflozin, dapagliflozin, and empagliflozin are well tolerated. Cases of genital infections and, in some studies, urinary tract infections have been more frequent in canagliflozin-, dapagliflozin-, and empagliflozin-treated patients compared with those receiving placebo. Evidence from clinical trials suggests that SGLT2 inhibitors are a promising new treatment option for T2DM.

  8. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective.

    PubMed

    Madaan, Tushar; Akhtar, Mohd; Najmi, Abul Kalam

    2016-10-10

    Diabetes mellitus is a disease that affects millions of people worldwide and its prevalence is estimated to rise in the future. Billions of dollars are spent each year around the world in health expenditure related to diabetes. There are several anti-diabetic drugs in the market for the treatment of non-insulin dependent diabetes mellitus. In this article, we will be talking about a relatively new class of anti-diabetic drugs called sodium glucose co-transporter 2 (SGLT2) inhibitors. This class of drugs has a unique mechanism of action focusing on inhibition of glucose reabsorption that separates it from other classes. This article covers the mechanism of glucose reabsorption in the kidneys, the mechanism of action of SGLT2 inhibitors, several SGLT2 inhibitors currently available in the market as well as those in various phases of development, their individual pharmacokinetics as well as the discussion about the future role of SGLT2 inhibitors, not only for the treatment of diabetes, but also for various other diseases like obesity, hepatic steatosis, and cardiovascular disorders.

  9. Sodium-glucose cotransporter-2 inhibitors and genital and urinary tract infections in type 2 diabetes.

    PubMed

    Arakaki, Richard F

    2016-05-01

    Coincident with the high and increasing worldwide prevalence of type 2 diabetes (T2D), a growing armamentarium of antidiabetes medications has been introduced to target different organ systems that play a role in the pathophysiology of T2D. Among these, the sodium-glucose cotransporter-2 (SGLT-2) inhibitors were introduced in the United States in 2013 as a new treatment option to address the hyperglycemia associated with T2D. SGLT-2 inhibitors decrease renal glucose reabsorption, resulting in glucosuria, alleviation of hyperglycemia, and modest weight loss and are associated with a low risk of hypoglycemia. The SGLT-2 inhibitors have been linked to an increased incidence of genital mycotic infections and, to a lesser extent, urinary tract infections, which may limit their utility in some patients. This review examines the prevalence, recurrence rates, treatment options, and responses to treatment of genital and urinary tract infections in patients with T2D receiving SGLT-2 inhibitors, with the aim of guiding clinicians in the most effective use of these agents for the treatment of hyperglycemia.

  10. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents

    PubMed Central

    Vivian, Eva M

    2014-01-01

    Although several treatment options are available to reduce hyperglycemia, only about half of individuals with diagnosed diabetes mellitus (DM) achieve recommended glycemic targets. New agents that reduce blood glucose concentrations by novel mechanisms and have acceptable safety profiles are needed to improve glycemic control and reduce the complications associated with type 2 diabetes mellitus (T2DM). The renal sodium-glucose co-transporter 2 (SGLT2) is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors of SGLT2 lower blood glucose independent of the secretion and action of insulin by inhibiting renal reabsorption of glucose, thereby promoting the increased urinary excretion of excess glucose. Canagliflozin, dapagliflozin, and empagliflozin are SGLT2 inhibitors approved as treatments for T2DM in the United States, Europe, and other countries. Canagliflozin, dapagliflozin, and empagliflozin increase renal excretion of glucose and improve glycemic parameters in patients with T2DM when used as monotherapy or in combination with other antihyperglycemic agents. Treatment with SGLT2 inhibitors is associated with weight reduction, lowered blood pressure, and a low intrinsic propensity to cause hypoglycemia. Overall, canagliflozin, dapagliflozin, and empagliflozin are well tolerated. Cases of genital infections and, in some studies, urinary tract infections have been more frequent in canagliflozin-, dapagliflozin-, and empagliflozin-treated patients compared with those receiving placebo. Evidence from clinical trials suggests that SGLT2 inhibitors are a promising new treatment option for T2DM. PMID:25598831

  11. Emerging roles of sodium-glucose cotransporter 2 inhibitors in cardiology.

    PubMed

    Tanaka, Atsushi; Node, Koichi

    2017-03-01

    The ultimate goal of treatment in people with diabetes mellitus is to prevent development of cardiovascular (CV) disease, resulting in prolongation of healthy life expectancy. Although impaired glycemic metabolism has a central role in its pathology, a number of studies have demonstrated that remedy for its imbalance cannot necessarily be accomplished as a therapeutic goal. A comprehensive medical approach against multi-factorial pathologies in diabetes, such as insulin resistance, obesity, hypertension, and dyslipidemia, in addition to diet and exercise therapy should be rather performed in the routine clinical setting. Along with such conceptual transition, what is required in anti-diabetes agents has also changed, and several anti-diabetes agents have been newly placed on the market in this decade. Such agents are required to undergo global pre- or post-marketing clinical trials assessing CV safety. A growing body of clinical evidence from those trials is now accumulating, and empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has first demonstrated significant risk reduction, relative to placebo, in CV death, overall mortality, and hospitalization for worsened heart failure in high-risk patients with diabetes mellitus. An SGLT2 inhibitor is a unique glucose-lowering agent and at the same time has multifaceted effects on hemodynamic and metabolic parameters beyond glycemic control. A major mode of action of SGLT2 inhibitors appears to be 'glycosuria' and 'natriuresis,' leading to amelioration of systemic glycemic homeostasis and potential cardio-renal protection. However, the precise mechanisms by which SGLT2 inhibitors affect benefits on the CV systems are yet to be fully elucidated. Thus, although we are now facing several unanswered concerns lurking behind the successful trial, SGLT2 inhibitors surely play several important roles in high-quality management of not only diabetes, but also CV medicine. This review summarizes our current

  12. Effects of dietary microencapsulated sodium butyrate on growth, intestinal mucosal morphology, immune response and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidised oil.

    PubMed

    Liu, Wenshu; Yang, Yanou; Zhang, Jianli; Gatlin, Delbert M; Ringø, Einar; Zhou, Zhigang

    2014-07-14

    The aim of the present study was to investigate the effects of different dietary sustained-release microencapsulated sodium butyrate (MSB) products (0 (non-supplement), 1·5 and 3·0 h) for a control or oxidised soyabean oil (SBO) diet on fish production, intestinal mucosal condition, immunity and intestinal bacteria in juvenile common carp (Cyprinus carpio). Dietary MSB increased weight gain and reduced the feed conversion ratio within the control and oxidised SBO groups. Gut mucosa was damaged in the oxidised SBO group fed without MSB, in contrast to a normal appearance found in fish fed the MSB1·5 and MSB3·0 diets in the oxidised SBO group. Microvillus density increased in fish fed the MSB1·5 and MSB3·0 diets in the oxidised SBO group (P< 0·001); however, microvillus density was affected by the different pre-fed diets in the midgut (P< 0·001) and by the different sustained-release times of MSB in the distal gut (DG) (P= 0·003). The interaction between the pre-fed diets and the sustained-release times of dietary MSB was significant for the relative gene expression levels of gut heat shock protein-70 (HSP70), pro-inflammatory cytokines (IL-1β and TNF-α) and anti-inflammatory cytokines (transforming growth factor-β) within each gut segment, except for HSP70 in the DG and IL-1β in the foregut. Modulation of adherent bacterial communities within each gut segment investigated was not obvious when the common carp were fed the diets with MSB, as similarity coefficients of >0·79 were observed. These results indicated that MSB can be used as a dietary supplement to repair or prevent intestinal damage in carp fed oxidised SBO.

  13. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET

    PubMed Central

    Kim, Sung Won; Hooker, Jacob M.; Otto, Nicola; Win, Khaing; Muench, Lisa; Shea, Colleen; Carter, Pauline; King, Payton; Reid, Alicia E.; Volkow, Nora D.; Fowler, Joanna S.

    2013-01-01

    The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profile. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min. The carbon-11 labeled carboxylic acids were prepared by using 11CO2 and the appropriate Grignard reagents. [11C]BA was metabolized rapidly (only 20% of the total carbon-11 in plasma was parent compound at 5 min post injection) whereas for VPA and PBA 98% and 85% of the radioactivity was the unmetabolized compound at 30 min after their administration respectively. The brain uptake of all three carboxylic acids was very low (<0.006%ID/cc, BA>VPA>PBA), which is consistent with the need for very high doses for therapeutic efficacy. Most of the radioactivity was excreted through the kidneys and accumulated in the bladder. However, the organ biodistribution between the drugs differed. [11C]BA showed relatively high uptake in spleen and pancreas whereas [11C]PBA showed high uptake in liver and heart. Notably, [11C]VPA showed exceptionally high heart uptake possibly due to its involvement in lipid metabolism. The unique biodistribution of each of these drugs may be of relevance in understanding their therapeutic and side effect profile including their teratogenic effects. PMID:23906667

  14. Effects of oral butyrate application on insulin signaling in various tissues of chickens.

    PubMed

    Mátis, G; Kulcsár, A; Turowski, V; Fébel, H; Neogrády, Zs; Huber, K

    2015-01-01

    The influence of butyrate on insulin signaling in chickens was studied because butyrate is produced during microbial fermentation in the large intestine of birds, and butyrate is widely used as a feed additive in animal production. Ross 308 broiler chickens received a daily intraingluvial bolus of sodium butyrate (0.25 g/kg body weight) on days 20-24 of life (n = 10). Plasma butyrate concentration increased after receiving oral butyrate treatment (P < 0.001). Oral butyrate application was associated with decreased protein expression of insulin receptor β subunit (IRβ) in liver (P = 0.008) and both abdominal (P = 0.003) and subcutaneous adipose tissue (P < 0.001), but with elevated IRβ expression in muscle (P = 0.045), assessed by Western blotting. The quantity of hepatic phosphatidyl-inositol-3-kinase was reduced in the butyrate-treated group (P = 0.007); further, mammalian target of rapamycin was downregulated by butyrate in liver (P < 0.001) and subcutaneous adipose tissue (P = 0.038). Oral butyrate application provoked reduced systemic insulin sensitivity in chickens, indicated by elevated fasting blood glucose and subsequently, insulin level. However, responses of insulin signaling cascade to butyrate were tissue specific, suggesting that butyrate could act on glucose shifting among tissues by selectively increasing the glucose uptake of skeletal muscle via IRβ upregulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Sodium

    MedlinePlus

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  16. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells.

    PubMed

    Pant, Kishor; Yadav, Ajay K; Gupta, Parul; Islam, Rakibul; Saraya, Anoop; Venugopal, Senthil K

    2017-03-07

    Butyrate is one of the short chain fatty acids, produced by the gut microbiota during anaerobic fermentation of dietary fibres. It has been shown that it can inhibit tumor progression via suppressing histone deacetylase and can induce apoptosis in cancer cells. However, the comprehensive pathway by which butyrate mediates apoptosis and growth arrest in cancer cells still remains unclear. In this study, the role of miR-22 in butyrate-mediated ROS release and induction of apoptosis was determined in hepatic cells. Intracellular expression of miR-22 was increased when the Huh 7 cells were incubated with sodium butyrate. Over-expression of miR-22 or addition of sodium butyrate inhibited SIRT-1 expression and enhanced the ROS production. Incubation of cells with anti-miR-22 reversed the effects of butyrate. Butyrate induced apoptosis via ROS production, cytochrome c release and activation of caspase-3, whereas addition of N-acetyl cysteine or anti-miR-22 reversed these butyrate-induced effects. Furthermore, sodium butyrate inhibited cell growth and proliferation, whereas anti-miR-22 inhibited these butyrate-mediated changes. The expression of PTEN and gsk-3 was found to be increased while p-akt and β-catenin expression was decreased significantly by butyrate. These data showed that butyrate modulated both apoptosis and proliferation via miR-22 expression in hepatic cells.

  17. Quantitative structure-activity relationship and molecular docking studies of a series of quinazolinonyl analogues as inhibitors of gamma amino butyric acid aminotransferase.

    PubMed

    Abdulfatai, Usman; Uzairu, Adamu; Uba, Sani

    2017-01-01

    Quantitative structure-activity relationship and molecular docking studies were carried out on a series of quinazolinonyl analogues as anticonvulsant inhibitors. Density Functional Theory (DFT) quantum chemical calculation method was used to find the optimized geometry of the anticonvulsants inhibitors. Four types of molecular descriptors were used to derive a quantitative relation between anticonvulsant activity and structural properties. The relevant molecular descriptors were selected by Genetic Function Algorithm (GFA). The best model was validated and found to be statistically significant with squared correlation coefficient (R(2)) of 0.934, adjusted squared correlation coefficient (R(2)adj) value of 0.912, Leave one out (LOO) cross validation coefficient (Q(2)) value of 0.8695 and the external validation (R(2)pred) of 0.72. Docking analysis revealed that the best compound with the docking scores of -9.5 kcal/mol formed hydrophobic interaction and H-bonding with amino acid residues of gamma aminobutyric acid aminotransferase (GABAAT). This research has shown that the binding affinity generated was found to be better than the commercially sold anti-epilepsy drug, vigabatrin. Also, it was found to be better than the one reported by other researcher. Our QSAR model and molecular docking results corroborate with each other and propose the directions for the design of new inhibitors with better activity against GABAAT. The present study will help in rational drug design and synthesis of new selective GABAAT inhibitors with predetermined affinity and activity and provides valuable information for the understanding of interactions between GABAAT and the anticonvulsants inhibitors.

  18. Caffeine intake enhances the benefits of sodium glucose transporter 2 inhibitor.

    PubMed

    Hashimoto, Yoshitaka; Tanaka, Muhei; Yamazaki, Masahiro; Nakano, Koji; Ushigome, Emi; Okada, Hiroshi; Oda, Yohei; Nakamura, Naoto; Fukui, Michiaki

    2016-10-01

    The effect of sodium glucose transporter 2 (SGLT-2) inhibitors is dependent on the glomerular filtration rate. It has been reported that caffeine intake increases glomerular filtration rate. However, the effect of caffeine intake on urinary glucose excretion in patients who take SGLT-2 inhibitors is unclear. Six patients with type 2 diabetes took part in a randomized, open-label, crossover pilot study. The patients took SGLT-2 inhibitors (ipragliflozin) for 9 days. On day 3, 6 and 9, the patients were assigned to one of three studies: Water 500, patients drank 500 mL of water in 3 h; Water 1500, patients drank 1500 mL of water in 3 h; and Caffeine 500, patients drank 500 mL of water with 400 mg of caffeine in 3 h. In all of the studies, the patients' urine was collected over a 6-h period. In addition, we enrolled 60 patients with type 2 diabetes who newly took SGLT-2 inhibitors in a 3-month follow-up cohort study to investigate the effect of caffeine intake on glucose control. Caffeine intake was evaluated using questionnaires. The 6-h median (interquartile range) urinary glucose excretion was 9.5 (8.5-9.7) g in Water 500, 12.2 (10.3-27.2) g in Water 1500 and 15.7 (11.4-21.4) g in Caffeine 500 (p = 0.005 vs Water 500). In the cohort study, multiple regression analysis demonstrated that log (caffeine intake) was associated with a change in HbA1c (β = -0.299, p = 0.043) after adjusting for covariates. Caffeine intake enhanced the effect of SGLT-2 inhibitors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Studies of Potential Inhibitors of Sodium Aluminosilicate Scales in High-Level Waste Evaporation

    SciTech Connect

    Oji, L.N.; Fellinger, T.L.; Hobbs, D.T.; Badheka, N.P.; Wilmarth, W.R.

    2008-07-01

    The Savannah River Site (SRS) has 49 underground storage tanks used to store High Level Waste (HLW). The tank space in these tanks must be managed to support the continued operation of key facilities. The reduction of the tank volumes in these tanks are accomplished through the use of three atmospheric pressure HLW evaporators. For a decade, evaporation of highly alkaline HLW containing dissolved aluminate and silicate has produced sodium aluminosilicate scales causing both operation and criticality hazards in the 2H Evaporator System. Segregation of aluminum-rich wastes from silicate-rich wastes minimizes the amount of scale produced and reduces cleaning expenses, but does not eliminate the scaling nor increases operation flexibility in waste process. Similar issues have affected the aluminum refining industry for many decades. Over the past several years, successful commercial products have been identified to eliminate aluminosilicate fouling in the aluminum industry, but have not been utilized in a nuclear environment. Laboratory quantities of three proprietary aluminosilicate scale inhibitors have been produced and been shown to prevent formation of scales. SRNL has been actively testing these potential inhibitors to examine their radiation stability, radiolytic degradation behaviors, and downstream impacts to determine their viability within the HLW system. One of the tested polymers successfully meets the established criteria for application in the nuclear environment. This paper will describe a summary of the methodology used to prioritize laboratory testing protocols based on potential impacts/risks identified for inhibitor deployment at SRS. (authors)

  20. STUDIES OF POTENTIAL INHIBITORS OF SODIUM ALUMINOSILICATE SCALES IN HIGH-LEVEL WASTE EVAPORATION

    SciTech Connect

    Wilmarth, B; Lawrence Oji, L; Terri Fellinger, T; David Hobbs, D; Nilesh Badheka, N

    2008-02-27

    The Savannah River Site (SRS) has 49 underground storage tanks used to store High Level Waste (HLW). The tank space in these tanks must be managed to support the continued operation of key facilities. The reduction of the tank volumes in these tanks are accomplished through the use of three atmospheric pressure HLW evaporators. For a decade, evaporation of highly alkaline HLW containing aluminum and silicates has produced sodium aluminosilicate scales causing both operation and criticality hazards in the 2H Evaporator System. Segregation of aluminum-rich wastes from silicate-rich wastes minimizes the amount of scale produced and reduces cleaning expenses, but does not eliminate the scaling nor increases operation flexibility in waste process. Similar issues have affected the aluminum refining industry for many decades. Over the past several years, successful commercial products have been identified to eliminate aluminosilicate fouling in the aluminum industry, but have not been utilized in a nuclear environment. Laboratory quantities of three proprietary aluminosilicate scale inhibitors have been produced and been shown to prevent formation of scales. SRNL has been actively testing these potential inhibitors to examine their radiation stability, radiolytic degradation behaviors, and downstream impacts to determine their viability within the HLW system. One of the tested polymers successfully meets the established criteria for application in the nuclear environment. This paper will describe a summary of the methodology used to prioritize laboratory testing protocols based on potential impacts/risks identified for inhibitor deployment at SRS.

  1. Perchlorate versus other environmental sodium/iodide symporter inhibitors: potential thyroid-related health effects.

    PubMed

    De Groef, Bert; Decallonne, Brigitte R; Van der Geyten, Serge; Darras, Veerle M; Bouillon, Roger

    2006-07-01

    Perchlorate is a known competitive inhibitor of the sodium/iodide symporter (NIS). Possible thyroid-related effects of environmental perchlorate have created great health concerns, especially in the US, resulting in a debated reference dose (RfD) of 0.0007 mg/kg per day in drinking water recommended by the National Academy of Sciences (NAS). However, the impact of other environmental NIS inhibitors and the role of iodine seem to have received little attention in the whole debate. We performed a PubMed search for articles published up to February 2006, using the key terms perchlorate, nitrate, thiocyanate, iodine, NIS, RfD, thyroid (alone or in combinations), with particular attention for human studies. In parallel, we critically analysed the January 2005 NAS' report, entitled 'Health implications of perchlorate ingestion'. The relative potencies of prevalent environmental NIS inhibitors (nitrate, thiocyanate and perchlorate) to inhibit iodine uptake have been estimated repeatedly with robust results. Our calculations show that nitrate and thiocyanate, acquired through drinking water or food, account for a much larger proportion of iodine uptake inhibition than perchlorate. Furthermore, the iodine uptake inhibitory effects of nitrate and thiocyanate - as defined by their legally accepted maximal contaminant levels in drinking water - exceed the potential effect of the proposed RfD for perchlorate by far. Iodine uptake inhibition and any potential downstream effect by perchlorate are highly dependent on the presence of other environmental NIS inhibitors and iodine intake itself. These potential confounders should therefore be considered in future studies and calculations for risk assessment.

  2. Design, synthesis and biological evaluation of a phenyl butyric acid derivative, N-(4-chlorophenyl)-4-phenylbutanamide: A HDAC6 inhibitor with anti-proliferative activity on cervix cancer and leukemia cells.

    PubMed

    Alberto, Rodríguez-Fonseca Rolando; Yudibeth, Sixto-López; Jonathan, Fragoso-Vázquez M; Raúl, Flores-Mejía; Cristina, Cabrera-Pérez Laura; Ismael, Vázquez-Moctezuma; Cecilia, Rosales-Hernández Martha; Martiniano, Bello; Martínez-Archundia, M; Guadalupe, Trujillo-Ferrara José; Elvia, Becerra-Martínez; José, Correa-Basurto

    2017-01-02

    The epigenetic regulation of genes in cancer could be targeted by inhibiting Histone deacetylase 6 (HDAC6), an enzyme involved in several types of cancer such as lymphoma, leukemia, ovarian cancer, etc. Through in silico methods, a set of Phenyl butyric acid derivatives with possible HDAC6 inhibitory activity were designed, rendering monophenylamides and biphenylamides using tubacin (HDAC6 selective inhibitor) as reference. The target compounds were submitted to theoretical ADMET analyses and their binding properties on different HDAC6 conformers were evaluated through docking calculations. These in silico studies allowed us to identify a compound named B-R2B. In order to have more information about the B-R2B binding recognition properties on HDAC6, the B-R2B-HDAC6 complex was submitted through 100 ns-long Molecular Dynamics (MD) simulation coupled to MMGBSA approach, revealing that B-R2B is located at the entrance of HDAC6 active pocket, blocking the passage of the substrate without reaching the HDAC6 binding site. Based on these results, B-R2B was synthesized, characterized and biologically tested. The HDAC6 fluorometric drug discovery kit Fluor-de-Lys (ENZO Life Sciences Inc.) was used to determine the HDAC6 human inhibitory activity (IC50 value) of B-R2B compound. In addition, B-R2B show IC50 values on cancer cell lines (HeLa; IC50 = 72.6 µM), acute myeloid leukemia (THP-1; IC50 = 16.5 µM), human mast leukemia (HMC; IC50 = 79.29 µM) and chronic myelogenous leukemia (Kasumi; IC50 = 101 µM). In conclusion, these results show that B-R2B is a HDAC6 inhibitor, specifically a non-competitive type in a similar way that tubacin does, according to MD simulations.

  3. Acidification of blood is superior to sodium fluoride alone as an inhibitor of glycolysis.

    PubMed

    Gambino, Raymond; Piscitelli, Janet; Ackattupathil, Tomy A; Theriault, Judy L; Andrin, Reynaldo D; Sanfilippo, Michael L; Etienne, Monina

    2009-05-01

    Sodium fluoride is the preferred agent to inhibit glycolysis. Its action is not immediate, however, and complete inhibition is delayed for up to 4 hours. A more effective method is needed. Acidification of blood combined with the addition of NaF and EDTA appears to be such a method. We studied whether acidification was indeed more effective than NaF. We conducted 6 independent studies over a 10-month period at 3 Quest Diagnostics laboratory sites. In each study, we drew venous blood from 6-24 nonfasting employee volunteers into 3 or 4 different serum- or plasma-collection tubes, which were stored under different conditions and aliquoted at different times. We analyzed the aliquots in duplicate by means of a hexokinase-based enzymatic method. The mean glucose concentration decreased by 0.3% at 2 h and by 1.2% at 24 h when blood was drawn into tubes containing citrate buffer, NaF, and EDTA. In contrast, the mean glucose concentration decreased by 4.6% at 2 h and by 7.0% at 24 h when blood was drawn into tubes containing NaF and sodium oxalate. Acidification should replace NaF alone as the recommended method for obtaining an accurate glucose concentration. Diagnostic cut points based on blood samples collected into tubes containing NaF as the only inhibitor of glycolysis are likely to be too low.

  4. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside.

    PubMed

    Mudaliar, Sunder; Polidori, David; Zambrowicz, Brian; Henry, Robert R

    2015-12-01

    Type 2 diabetes is a chronic disease with disabling micro- and macrovascular complications that lead to excessive morbidity and premature mortality. It affects hundreds of millions of people and imposes an undue economic burden on populations across the world. Although insulin resistance and insulin secretory defects play a major role in the pathogenesis of hyperglycemia, several other metabolic defects contribute to the initiation/worsening of the diabetic state. Prominent among these is increased renal glucose reabsorption, which is maladaptive in patients with diabetes. Instead of an increase in renal glucose excretion, which could ameliorate hyperglycemia, there is an increase in renal glucose reabsorption, which helps sustain hyperglycemia in patients with diabetes. The sodium-glucose cotransporter (SGLT) 2 inhibitors are novel antidiabetes agents that inhibit renal glucose reabsorption and promote glucosuria, thereby leading to reductions in plasma glucose concentrations. In this article, we review the long journey from the discovery of the glucosuric agent phlorizin in the bark of the apple tree through the animal and human studies that led to the development of the current generation of SGLT2 inhibitors.

  5. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: Wisdom of hindsight

    PubMed Central

    Singh, Awadhesh Kumar

    2015-01-01

    Sodium-glucose co-transporter-2 inhibitors (SGLT-2i) are newly approved class of oral anti-diabetic drugs, in the treatment of type 2 diabetes, which reduces blood glucose through glucouresis via the kidney, independent, and irrespective of available pancreatic beta-cells. Studies conducted across their clinical development program found, a modest reduction in glycated hemoglobin ranging from −0.5 to −0.8%, without any significant hypoglycemia. Moreover, head-to-head studies versus active comparators yielded comparable efficacy. Interestingly, weight and blood pressure reduction were additionally observed, which was not only consistent but significantly superior to active comparators, including metformin, sulfonylureas, and dipeptydylpeptide-4 inhibitors. Indeed, these additional properties makes this class a promising oral anti-diabetic drug. Surprisingly, a potentially fatal unwanted side effect of diabetic ketoacidosis has been noted with its widespread use, albeit rarely. Nevertheless, this has created a passé among the clinicians. This review is an attempt to pool those ketosis data emerging with SGLT-2i, and put a perspective on its implicated mechanism. PMID:26693421

  6. The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Cardiomyopathy in a Diabetic Lipodystrophic Mouse Model.

    PubMed

    Joubert, Michael; Jagu, Benoît; Montaigne, David; Marechal, Xavier; Tesse, Angela; Ayer, Audrey; Dollet, Lucile; Le May, Cédric; Toumaniantz, Gilles; Manrique, Alain; Charpentier, Flavien; Staels, Bart; Magré, Jocelyne; Cariou, Bertrand; Prieur, Xavier

    2017-04-01

    Type 2 diabetes mellitus (T2DM) is a well-recognized independent risk factor for heart failure. T2DM is associated with altered cardiac energy metabolism, leading to ectopic lipid accumulation and glucose overload, the exact contribution of these two parameters remaining unclear. To provide new insight into the mechanism driving the development of diabetic cardiomyopathy, we studied a unique model of T2DM: lipodystrophic Bscl2(-/-) (seipin knockout [SKO]) mice. Echocardiography and cardiac magnetic resonance imaging revealed hypertrophic cardiomyopathy with left ventricular dysfunction in SKO mice, and these two abnormalities were strongly correlated with hyperglycemia. Surprisingly, neither intramyocardial lipid accumulation nor lipotoxic hallmarks were detected in SKO mice. [(18)F]Fludeoxyglucose positron emission tomography showed increased myocardial glucose uptake. Consistently, the O-GlcNAcylated protein levels were markedly increased in an SKO heart, suggesting a glucose overload. To test this hypothesis, we treated SKO mice with the hypoglycemic sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin and the insulin sensitizer pioglitazone. Both treatments reduced the O-GlcNAcylated protein levels in SKO mice, and dapagliflozin successfully prevented the development of hypertrophic cardiomyopathy. Our data demonstrate that glucotoxicity by itself can trigger cardiac dysfunction and that a glucose-lowering agent can correct it. This result will contribute to better understanding of the potential cardiovascular benefits of SGLT2 inhibitors. © 2017 by the American Diabetes Association.

  7. Improved Amplification of Microbial DNA from Blood Cultures by Removal of the PCR Inhibitor Sodium Polyanetholesulfonate

    PubMed Central

    Fredricks, David N.; Relman, David A.

    1998-01-01

    Molecular methods are increasingly used to identify microbes in clinical samples. A common technical problem with PCR is failed amplification due to the presence of PCR inhibitors. Initial attempts at amplification of the bacterial 16S rRNA gene from inoculated blood culture media failed for this reason. The inhibitor persisted, despite numerous attempts to purify the DNA, and was identified as sodium polyanetholesulfonate (SPS), a common additive to blood culture media. Like DNA, SPS is a high-molecular-weight polyanion that is soluble in water but insoluble in alcohol. Accordingly, SPS tends to copurify with DNA. An extraction method was designed for purification of DNA from blood culture media and removal of SPS. Blood culture media containing human blood and spiked with Escherichia coli was subjected to an organic extraction procedure with benzyl alcohol, and removal of SPS was documented spectrophotometrically. Successful amplification of the extracted E. coli 16S rRNA gene was achieved by adding 5 μl of undiluted processed sample DNA to a 50-μl PCR mixture. When using other purification methods, the inhibitory effect of SPS could be overcome only by dilution of these samples. By our extraction technique, even uninoculated blood culture media were found to contain bacterial DNA when they were subjected to broad-range 16S rRNA gene consensus PCR. We conclude that the blood culture additive SPS is a potent inhibitor of PCR, is resistant to removal by traditional DNA purification methods, but can be removed by a benzyl alcohol extraction protocol that results in improved PCR performance. PMID:9738025

  8. Efficacy and safety of dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in diabetes mellitus.

    PubMed

    Fioretto, Paola; Giaccari, Andrea; Sesti, Giorgio

    2015-10-17

    Although antidiabetic agents have been developed to target one or more of the core defects of type 2 diabetes mellitus (T2DM), many patients do not achieve glycemic goals. Inhibition of the sodium-glucose cotransporter 2 (SGLT2) induces glycosuria, reduces glucose toxicity and improves insulin sensitivity and β-cell function. As the mechanism of action of SGLT2 inhibitors is different from other agents and completely insulin-independent, the use of these drugs might potentially be efficacious alone or in combination with any other antidiabetic drug, including insulin. Dapagliflozin is a highly selective and reversible SGLT2 inhibitor approved for use in adult patients with T2DM as monotherapy in patients intolerant of metformin or as adjunctive therapy in patients inadequately controlled on existing antidiabetic medications, including insulin. A literature search conducted using PubMed identified key publications related to the use of dapagliflozin in the treatment of patients with diabetes mellitus. No date limits were applied. This review focuses on the safety and efficacy of this SGLT2 inhibitor. Dapagliflozin produces dose-related reductions in glycosylated hemoglobin (HbA1c) as monotherapy and as add-on to other antidiabetic agents, with significant reductions in body weight. Hypoglycemia is uncommon. Preliminary data from a phase 2 pharmacokinetic/pharmacodynamic study suggest that dapagliflozin may also improve glycemic control in patients with type 1 diabetes mellitus. Clinical trials published to date show that dapagliflozin is safe and effective as monotherapy or as an add-on to insulin or oral antidiabetic agents in patients with T2DM.

  9. Electrochemical screening of organic and inorganic inhibitors for the corrosion of ASTM A-470 steel in concentrated sodium hydroxide solution

    SciTech Connect

    Moccari, A.; MacDonald, D.D.

    1985-05-01

    The corrosion of ASTM A-470 turbine disk steel in concentrated sodium hydroxide solution (10 mol/kg) containing sodium silicate, sodium dihydrogen phosphate, sodium chromate, aniline and some of its derivatives, tannic acid, L-(-)-phenylalanine (aminopropionic acid) and octadecylamine as potential inhibitors has been studied using the potentiodynamic, AC impedance, and Tafel extrapolation techniques. All tests were performed at 115 + or - 2 C. The anodic and cathodic polarization data show that aniline and its derivatives, L-(-)-phenylalanine, NaH/sub 2/PO/sub 4/, Na/sub 2/SiO/sub 3/, and Na/sub 2/CrO/sub 4/ inhibit the anodic process, whereas tannic acid inhibits the cathodic reaction. Octadecylamine was found to inhibit both the anodic and cathodic processes. The mechanisms of inhibition for some of these compounds have been inferred from the wide band width frequency dispersions of the interfacial impedance.

  10. Microbial metabolite butyrate facilitates M2 macrophage polarization and function.

    PubMed

    Ji, Jian; Shu, Dingming; Zheng, Mingzhu; Wang, Jie; Luo, Chenglong; Wang, Yan; Guo, Fuyou; Zou, Xian; Lv, Xiaohui; Li, Ying; Liu, Tianfei; Qu, Hao

    2016-04-20

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. Butyrate attenuated intestinal inflammation in mice with dextran sulfate sodium (DSS)-induced colitis, with a significant increase in colonic expression of the M2 macrophage-associated protein, Arg1. M2 macrophage treated with butyrate, had increased activation of the H3K9/STAT6 signaling pathway, suggesting a mechanism for butyrate facilitated M2 macrophage polarization. Collectively, our study indicated that commensal microbe-derived butyrate is a novel activator of STAT6-mediated transcription through H3K9 acetylation driving M2 macrophage polarization, and delineated new insights into the immune interplay underlying inflammatory bowel disease.

  11. Can sodium/hydrogen exchange inhibitors be repositioned for treating attention deficit hyperactivity disorder? An in silico approach.

    PubMed

    Faraone, Stephen V; Zhang-James, Yanli

    2013-10-01

    Medications for attention deficit hyperactivity disorder (ADHD) are only partially effective. Ideally, new treatment targets would derive from a known pathophysiology. Such data are not available for ADHD. We combine evidence for new etiologic pathways with bioinformatics data to assess the possibility that existing drugs might be repositioning for treating ADHD. We use this approach to determine if prior data implicating the sodium/hydrogen exchanger 9 gene (SLC9A9) in ADHD implicate sodium/hydrogen exchange (NHE) inhibitors as potential treatments. We assessed the potential for repositioning by assessing the similarity of drug-protein binding profiles between NHE inhibitors and drugs known to treat ADHD using the Drug Repositioning and Adverse Reaction via Chemical-Protein Interactome server. NHE9 shows a high degree of amino acid similarity between NHE inhibitor sensitive NHEs in the region of the NHE inhibitor recognition site defined for NHE1. We found high correlations in drug-protein binding profiles among most ADHD drugs. The drug-protein binding profiles of some NHE inhibitors were highly correlated with ADHD drugs whereas the profiles for a control set of nonsteroidal anti-inflammatory drugs (NSAIDs) were not. Further experimental work should evaluate if NHE inhibitors are suitable for treating ADHD.

  12. Preparation and application of crosslinked poly(sodium acrylate)--coated magnetite nanoparticles as corrosion inhibitors for carbon steel alloy.

    PubMed

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; El-Saeed, Ashraf M

    2015-01-14

    This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate) as shell. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM) was used to examine the morphology of the modified poly(sodium acrylate) magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.

  13. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    USDA-ARS?s Scientific Manuscript database

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  14. Sodium-glucose co-transporter 2 inhibitors: from apple tree to 'Sweet Pee'.

    PubMed

    Hardman, Timothy C; Rutherford, Peter; Dubrey, Simon W; Wierzbicki, Anthony S

    2010-01-01

    The sodium-glucose co-transporter 2 (SGLT2), located in the plasma membrane of cells lining the proximal tubule, facilitates the reabsorbtion of glucose in the kidney. Inhibition of SGLT2 has the potential to reduce blood glucose and represents an opportune target for managing blood glucose. By promoting the excretion of glucose, SGLT2 inhibitors are the first anti-diabetic treatment to target the removal rather than the metabolic redirection of glucose. Their mechanism of action is independent of that of endogenous insulin status and thus provides a means of managing plasma glucose irrespective of a patient's glycaemic status or treatments being used in combination. Several candidate SGLT2 inhibitors based on the core glucoside structure of phlorizin are currently being developed, of which, the metabolically more stable aromatic and heteroaromatic C-glucosides have demonstrated the most promising preclinical and clinical data. The inhibition of SGLT2 by messenger antisense technology is also being investigated. Current indications suggest that short-term benefits, in terms of HbA1(c) reductions, are modest and it remains to be seen whether encouraging exogenous glucose disposal will result in long term patient benefits in terms of returning metabolic balance or even weight loss. Indications are that clinical efficacy will be greater with molecules based on an O-glucoside structure. Concerns have been raised over the safety of these agents, particularly a possible predisposition to urinary tract infections, but these concerns have yet to be confirmed in clinical studies. Clinical development programs will need to establish those patients most likely to benefit from inhibition of SGLT2.

  15. Evans Blue is not a suitable inhibitor of the epithelial sodium channel δ-subunit.

    PubMed

    Perniss, Alexander; Wolf, Annemarie; Wichmann, Lukas; Schönberger, Matthias; Althaus, Mike

    2015-10-23

    The Epithelial Sodium Channel (ENaC) is a heterotrimeric ion channel which can be either formed by assembly of its α-, β- and γ-subunits or, alternatively, its δ-, β- and γ-subunits. The physiological function of αβγ-ENaC is well established, but the function of δβγ-ENaC remains elusive. The azo-dye Evans Blue (EvB) has been routinely used to discriminate between the two channel isoforms by decreasing transmembrane currents and amiloride-sensitive current fractions of δβγ-ENaC expressing Xenopus oocytes. Even though these results could be reproduced, it was found by precipitation experiments and spectroscopic methods that the cationic amiloride and the anionic EvB directly interact in solution, forming a strong complex. Thereby a large amount of pharmacologically available amiloride is removed from physiological buffer solutions and the effective amiloride concentration is reduced. This interaction did not occur in the presence of albumin. In microelectrode recordings, EvB was able to abrogate the block of δβγ-ENaC by amiloride or its derivative benzamil. In sum, EvB reduces amiloride-sensitive ion current fractions in electrophysiological experiments. This is not a result of a specific inhibition of δβγ-ENaC but rather represents a pharmacological artefact. EvB should therefore not be used as an inhibitor of δ-ENaC. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension

    PubMed Central

    Hoorn, Ewout J.; Walsh, Stephen B.; McCormick, James A.; Fürstenberg, Antje; Yang, Chao-Ling; Roeschel, Tom; Paliege, Alexander; Howie, Alexander J.; Conley, James; Bachmann, Sebastian; Unwin, Robert J.; Ellison, David H.

    2011-01-01

    Calcineurin inhibitors (CNIs) are immunosuppressive drugs, which are used widely to prevent rejection of transplanted organs and treat autoimmune disease. Hypertension and renal tubule dysfunction, including hyperkalemia, hypercalciuria, and acidosis often complicate their use1,2. These side effects resemble familial hyperkalemic hypertension (FHHt), a genetic disease characterized by overactivity of the renal sodium chloride co-transporter (NCC), and caused by mutations in WNK kinases. We hypothesized that CNIs induce hypertension by stimulating NCC. In wild-type mice, the CNI tacrolimus caused salt-sensitive hypertension and increased the abundance of phosphorylated NCC, and the NCC regulatory kinases WNK3, WNK4, and SPAK. The functional importance of NCC in this response was demonstrated by showing that tacrolimus did not affect blood pressure in NCC knockout mice, whereas the hypertensive response to tacrolimus was exaggerated in mice over-expressing NCC. Moreover, hydrochlorothiazide reversed tacrolimus-induced hypertension. In kidney transplant recipients treated with tacrolimus, fractional chloride excretion in response to bendroflumethiazide was greater than in controls, and renal NCC abundance was also greater, extending these observations to humans. Together, these findings indicate that tacrolimus-induced hypertension is mediated largely by NCC activation, and suggest that inexpensive and well-tolerated thiazide diuretics may be especially effective in preventing the complications of CNI treatment. PMID:21963515

  17. Pharmacological investigations of a new renin inhibitor in normal sodium-unrestricted volunteers.

    PubMed Central

    de Gasparo, M; Cumin, F; Nussberger, J; Guyenne, T T; Wood, J M; Menard, J

    1989-01-01

    1. CGP 38 560 A, a low-molecular-weight, non-peptidic renin inhibitor, was well tolerated upon intravenous and oral administration to recumbent healthy volunteers on an unrestricted-sodium diet. 2. After intravenous infusion over 30 min at a rate of 100 ml h-1, doses of 50, 125 and 250 micrograms kg-1 appear to induce a long-lasting inhibition of plasma renin activity. Plasma angiotensin II was decreased in a dose-dependent manner during the infusion and thereafter reverted to the initial level. A concomitant dose-related increase in active plasma renin was observed. Blood pressure was unaffected. The plasma levels of CGP 38 560 reached during infusion were at least 2000-fold higher than the theoretical inhibitory concentration based on in vitro results. 3. After oral administration in doses of 50, 100 and 200 mg CGP 38 560 A, inhibition of plasma renin activity was observed, but plasma active renin was unchanged. Blood pressure also remained unaffected. 4. CGP 38 560 was rapidly cleared from plasma with a half-life of 7.6 min for the first phase and 63 min for the second phase. Plasma levels were 100-fold lower after oral administration than after infusion, indicating a low degree of absorption (less than 1% oral bioavailability). PMID:2667598

  18. Ipragliflozin: A novel sodium-glucose cotransporter 2 inhibitor developed in Japan

    PubMed Central

    Ohkura, Tsuyoshi

    2015-01-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibition induces glucosuria and decreases blood glucose levels in diabetic patients and lowers hypoglycemic risk. SGLT1 is expressed in the kidney and intestine; SGLT1 inhibition causes abdominal symptoms such as diarrhea and reduces incretin secretion. Therefore, SGLT2 selectivity is important. Ipragliflozin is highly selective for SGLT2. In type 2 diabetes mellitus (T2DM), urinary glucose excretion increased to 90 g/24 h after 28 d of treatment with ipragliflozin 300 mg/d. Twelve weeks of ipragliflozin 50 mg/d vs placebo reduced glycated hemoglobin and body weight by 0.65% and 0.66 kg, respectively, in Western T2DM patients, and by 1.3% and 1.89 kg, respectively, in Japanese patients. Ipragliflozin (highly selective SGLT2 inhibitor) improves glycemic control and reduces body weight and lowers hypoglycemic risk and abdominal symptoms. Ipragliflozin can be a novel anti-diabetic and anti-obesity agent. PMID:25685284

  19. Effects of systemic administration of histone deacetylase inhibitor on memory formation and immediate early gene expression in chick brain.

    PubMed

    Tiunova, A A; Toropova, K A; Konovalova, E V; Anokhin, K V

    2012-09-01

    We studied the effects of histone deacetylase inhibitor that stimulates transcriptional activity via histone hyperacetylation on memory formation. Sodium butyrate and sodium valproate enhanced memory in chicks following "weak" training with memory transfer into long-term state. Quantitative analysis of c-Fos and ZENK transcriptional factor gene expression in six structures of chick brain revealed induction of these genes in the structures involved in this type of learning. Sodium valproate administration did not increase this induction, but even reduced it. These findings suggest that sodium butyrate and sodium valproate exert cognitive stimulating action in the "weak" memory formation paradigm, and that this effect is not mediated via enhanced expression of transcriptional factors, which are traditionally considered as "molecular switcher" for memory transfer into long-term state.

  20. Alternate splicing regulated by butyrate in the bovine epithelial cell

    USDA-ARS?s Scientific Manuscript database

    As a signaling molecule and a potent inhibitor of histone deacetylases (HADCs), butyrate exerts its impacts on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. In this study, we examined the effect of...

  1. Clinical relevance of the selectivity of sodium-glucose cotransporter-2 inhibitors.

    PubMed

    Morales-Olivas, Francisco J

    2016-11-01

    Selectivity is the property of a drug to preferentially bind to a biological structure. Most drugs can bind and stimulate or inhibit more than one system. Therefore, it is important that they are selective for the intended site and that the doses used do not have effects on other sites, which could provoke adverse reactions. Selectivity is assessed through in vitro experiments on organs or isolated cells. If the aim is to compare drugs, the experiment should be conducted in the same tissue and with the same design. Even so, the results cannot be directly extrapolated to clinical practice due to the influence of pharmacokinetic properties, which allow an adequate dose of the drug to reach the target site. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are able to inhibit renal SGLT2 without modifying intestinal SGLT1, whose inhibition could produce gastrointestinal adverse reactions. The concentration needed to inhibit each of the transporters is calculated, as well as the ratio between the concentration that inhibits SGLT1 and the concentration needed to inhibit SGLT2. The higher the ratio, the greater the selectivity and the lower the risk of gastrointestinal adverse reactions. The three SGLT2i recently introduced in the therapeutic arsenal are sufficiently selective for SGLT2 to make effects on intestinal SGLT1 unlikely. To differentiate the components of this therapeutic class, its pharmacokinetic properties should be analysed rather than its pharmacodynamic characteristics, such as selectivity. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  2. Suppression of asymmetric acid efflux and gravitropism in maize roots treated with auxin transport inhibitors of sodium orthovanadate

    NASA Technical Reports Server (NTRS)

    Mulkey, T. J.; Evans, M. L.

    1982-01-01

    In gravitropically stimulated roots of maize (Zea mays L., hybrid WF9 x 38MS), there is more acid efflux on the rapidly growing upper side than on the slowly growing lower side. In light of the Cholodny/Went hypothesis of gravitropism which states that gravitropic curvature results from lateral redistribution of auxin, the effects of auxin transport inhibitors on the development of acid efflux asymmetry and curvature in gravistimulated roots were examined. All the transport inhibitors tested prevented both gravitropism and the development of asymmetric acid efflux in gravistimulated roots. The results indicate that auxin redistribution may cause the asymmetry of acid efflux, a finding consistent with the Cholodny/Went hypothesis of gravitropism. As further evidence that auxin-induced acid efflux asymmetry may mediate gravitropic curvature, sodium orthovanadate, an inhibitor of auxin-induced H+ efflux was found to prevent both gravitropism and the development of asymmetric acid efflux in gravistimulated roots.

  3. Mechanism of butyrate-induced vasorelaxation of rat mesenteric resistance artery.

    PubMed Central

    Aaronson, P. I.; McKinnon, W.; Poston, L.

    1996-01-01

    1. The vasorelaxant effect of the sodium salt of the short chain fatty acid, butyrate, on preconstricted rat small mesenteric arteries (mean inner diameter approximately 300 microns) was characterized. Isometric force development was measured with a myograph, and intracellular pH (pHi) was simultaneously monitored, in arteries loaded with the fluorescent dye BCECF in its acetomethoxy form. Sodium butyrate (substituted isosmotically for NaCl) was applied to arteries after noradrenaline (NA) or high K+ contractures were established. 2. Arteries preconstricted with a concentration of NA inducing an approximately half maximal contraction were relaxed by 91.5 +/- 6.3% by 50 mmol l-1 butyrate. This concentration of butyrate did not, however, cause a significant relaxation of contractures to a maximal (5 mumol l-1) NA concentration, and also failed to relax significantly contractures stimulated by high (45 and 90 mmol l-1) K+ solutions. Contractures elicited with a combination of NA (at a submaximal concentration) and 45 mmol l-1 K+ were, however, markedly relaxed by butyrate. 3. Investigation of the concentration-dependency of the butyrate-induced relaxation of the half maximal NA response revealed an EC50 for butyrate of approximately 22 mmol l-1. 4. Sodium butyrate (50 mmol l-1) caused pHi to decrease from 7.25 +/- 0.02 to 6.89 +/- 0.08 (n = 4, P < 0.001). However, the vasorelaxant effect of butyrate on the submaximal NA contracture was not significantly modified when this fall in intracellular pH was prevented by the simultaneous application of NH4Cl. 5. Butyrate-induced relaxation was also unaffected by endothelial denudation and inhibition of NO synthase with N omega-nitro-L-arginine methyl ester (100 mumol l-1). 6. The relaxation of the NA contracture by 50 mmol l-1 sodium butyrate was abolished in arteries pretreated with the cyclic AMP antagonist Rp-cAMPS (25 mumol l-1). 7. We conclude that the butyrate-induced relaxation of the NA contracture is independent of

  4. Effect of dietary sodium on the Na-K ATPase inhibitor in patients with essential hypertension

    SciTech Connect

    Ashida, T.; Kuramochi, M.; Kojima, S.; Yoshimi, H.; Kawano, Y.; Kimura, G.; Abe, H.; Imanishi, M.; Yoshida, K.; Kawamura, M. )

    1989-07-01

    To study the circulating humoral factor modifying transmembrane sodium transport, plasma was obtained from 12 patients with essential hypertension (EH) fed a high sodium diet (NaCl 15 to 17 g/d) for seven days and thereafter a low sodium diet (NaCl 2 to 3 g/d) for seven days. Ouabain-sensitive {sup 86}Rb+ influx into the red blood cells (RBC) obtained from a healthy subject, and incubated with the plasma obtained during the high sodium diet was significantly lower than that incubated with the plasma obtained during the low sodium diet (3.74 +/- 0.26 v 3.97 +/- 0.30 nmol/10(8) cells, P less than .05). The changes in mean blood pressure from the high to low sodium diet showed a significant positive correlation with the changes in the ouabain-sensitive Rb influx into RBC in the plasma from the high to low sodium diet. These results suggest that a humoral factor modifying the sodium pump might be altered by sodium balance in EH, especially in salt-sensitive hypertension.

  5. Sodium-glucose cotransporter 2 inhibitors combined with dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes: a review of current clinical evidence and rationale

    PubMed Central

    Yassin, Sayf A; Aroda, Vanita R

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is a progressive and multifactorial cardiometabolic disorder. Almost half of adults with diabetes fail to achieve their recommended glucose control target. This has prompted some clinicians to advocate the use of more intensive initial therapy, including the use of combination therapy to target multiple physiologic defects in diabetes with the goal of achieving and sustaining glucose control. Numerous options exist for combining the various classes of glucose-lowering agents in the treatment of T2DM. This report reviews the mechanism, rationale, and evidence from clinical trials for combining two of the newer drug classes, namely, dipeptidyl peptidase-4 inhibitors and sodium-glucose cotransporter 2 inhibitors, and considers the possible role of such dual therapy in the management of T2DM. PMID:28356718

  6. Butyric acid production from red algae by a newly isolated Clostridium sp. S1.

    PubMed

    Lee, Kyung Min; Choi, Okkyoung; Kim, Ki-Yeon; Woo, Han Min; Kim, Yunje; Han, Sung Ok; Sang, Byoung-In; Um, Youngsoon

    2015-09-01

    To produce butyric acid from red algae such as Gelidium amansii in which galactose is a main carbohydrate, microorganisms utilizing galactose and tolerating inhibitors in hydrolysis including levulinic acid and 5-hydroxymethylfurfural (HMF) are required. A newly isolated bacterium, Clostridium sp. S1 produced butyric acid not only from galactose as the sole carbon source but also from a mixture of galactose and glucose through simultaneous utilization. Notably, Clostridium sp. S1 produced butyric acid and a small amount of acetic acid with the butyrate:acetate ratio of 45.4:1 and it even converted acetate to butyric acid. Clostridium sp. S1 tolerated 0.5-2 g levulinic acid/l and recovered from HMF inhibition at 0.6-2.5 g/l, resulting in 85-92% butyric acid concentration of the control culture. When acid-pretreated G. amansii hydrolysate was used, Clostridium sp. S1 produced 4.83 g butyric acid/l from 10 g galactose/l and 1 g glucose/l. Clostridium sp. S1 produces butyric acid from red algae due to its characteristics in sugar utilization and tolerance to inhibitors, demonstrating its advantage as a red algae-utilizing microorganism.

  7. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    PubMed

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc.

  8. A defect in sodium-dependent amino acid uptake in diabetic rabbit peripheral nerve. Correction by an aldose reductase inhibitor or myo-inositol administration.

    PubMed Central

    Greene, D A; Lattimer, S A; Carroll, P B; Fernstrom, J D; Finegold, D N

    1990-01-01

    A myo-inositol-related defect in nerve sodium-potassium ATPase activity in experimental diabetes has been suggested as a possible pathogenetic factor in diabetic neuropathy. Because the sodium-potassium ATPase is essential for other sodium-cotransport systems, and because myo-inositol-derived phosphoinositide metabolites regulate multiple membrane transport processes, sodium gradient-dependent amino acid uptake was examined in vitro in endoneurial preparations derived from nondiabetic and 14-d alloxan diabetic rabbits. Untreated alloxan diabetes reduced endoneurial sodium-gradient dependent uptake of the nonmetabolized amino acid 2-aminoisobutyric acid by greater than 50%. Administration of an aldose reductase inhibitor prevented reductions in both nerve myo-inositol content and endoneurial sodium-dependent 2-aminoisobutyric acid uptake. Myo-inositol supplementation that produced a transient pharmacological elevation in plasma myo-inositol concentration, but did not raise nerve myo-inositol content, reproduced the effect of the aldose reductase inhibitor on endoneurial sodium-dependent 2-aminoisobutyric acid uptake. Phorbol myristate acetate, which acutely normalizes sodium-potassium ATPase activity in diabetic nerve, did not acutely correct 2-aminoisobutyric uptake when added in vitro. These data suggest that depletion of a small myo-inositol pool may be implicated in the pathogenesis of defects in amino acid uptake in diabetic nerve and that rapid correction of sodium-potassium ATPase activity with protein kinase C agonists in vitro does not acutely normalize sodium-dependent 2-aminoisobutyric acid uptake. PMID:2185278

  9. Increased Hematocrit During Sodium-Glucose Cotransporter 2 Inhibitor Therapy Indicates Recovery of Tubulointerstitial Function in Diabetic Kidneys

    PubMed Central

    Sano, Motoaki; Takei, Makoto; Shiraishi, Yasuyuki; Suzuki, Yoshihiko

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been attracting attention for cardiovascular as well as antidiabetic effects since the results of the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME Trial) were reported. The hematocrit increases during treatment with SGLT2 inhibitors, which have a diuretic effect but do not cause sufficient hemoconcentration to increase the risk of cerebral infarction. Elevation of the hematocrit during SGLT2 inhibitor therapy is presumed to involve enhancement of erythropoiesis in addition to hemoconcentration. In patients with diabetes, the erythropoietin level increases after initiation of treatment with the SGLT2 inhibitor dapagliflozin and reaches a plateau in 2 - 4 weeks. The reticulocyte count increases simultaneously, followed by elevation of hemoglobin and hematocrit. In patients with diabetes, the proximal tubules are overtaxed by excessive glucose reabsorption and the increased oxygen requirement causes tubulointerstitial hypoxia. Consequently, erythropoietin production is impaired because “neural crest-derived” fibroblasts surrounding the damaged renal tubules undergo transformation into dysfunctional fibroblasts. SGLT2 inhibitors reduce the workload of the proximal tubules and improve tubulointerstitial hypoxia, allowing fibroblasts to resume normal erythropoietin production. These drugs represent a new class of diuretics that have a renoprotective effect by improving tubulointerstitial hypoxia, which is the final common pathway to end-stage renal disease. In patients with diabetes, elevation of hematocrit may be a surrogate marker for recovery from reversible tubulointerstitial injury. PMID:27829948

  10. Colonic butyrate- algesic or analgesic?

    PubMed

    Kannampalli, P; Shaker, R; Sengupta, J N

    2011-11-01

    Irritable bowel syndrome (IBS) is a common health issue that is characterized by abdominal pain, abnormal bowel movements, and altered visceral perception. The complexity and variability in symptoms pose serious challenges in treating IBS. Current therapy for IBS is primarily focused on reducing the abdominal pain, thereby improving the quality of life to a significant extent. Although the use of fiber rich diet is widely recommended in treating IBS, some studies have questioned its use. Intra-colonic butyrate, a short-chain fatty acid, is primarily produced by the fermentation of dietary fibers in the colon. In the existing literature there are conflicting reports about the function of butyrate. In rats it is known to induce visceral hypersensitivity without altered pathology, whereas in humans it has been reported to reduce visceral pain. Understanding the molecular mechanisms responsible for this contrasting effect of butyrate is important before recommending fiber rich diet to IBS patients.

  11. Intraperitoneal administration of butyrate prevents the severity of acetic acid colitis in rats

    PubMed Central

    Malago, Joshua J.; Sangu, Catherine L.

    2015-01-01

    Intrarectal infusion of butyrate improves colorectal disorders including ulcerative colitis (UC). However, it is not established whether systemically administered butyrate benefits such patients. The current study aimed at exploring and comparing the potential of intraperitoneally, intrarectally, and orally administered butyrate against acetic acid (AA)-induced UC in rats. Intrarectal administration of 2 ml of 50% AA was done after or without prior treatment of rats for 7 consecutive days with 100 mg/kg sodium butyrate (SB) intraperitoneally, intrarectally, or orally. Rats were sacrificed after 48 h of AA-treatment. Subsequently, colon sections were processed routinely for histopathological examination. We clinically observed diarrhea, loose stools, and hemoccult-positive stools, and histologically, epithelial loss and ulceration, crypt damage, goblet cell depletion, hemorrhage, and mucosal infiltration of inflammatory cells. The changes were significantly reduced by intraperitoneal, intrarectal, or oral butyrate, with intraperitoneal butyrate exhibiting the highest potency. It is concluded that intraperitoneal administration of butyrate abrogates the lesions of AA-induced UC and its potency surpasses that of intrarectal or oral butyrate. PMID:25743124

  12. Sodium glucose co-transporter 2 inhibitor luseogliflozin in the management of type 2 diabetes: a drug safety evaluation.

    PubMed

    Yabe, Daisuke; Hamamoto, Yoshiyuki; Seino, Yusuke; Kuwata, Hitoshi; Kurose, Takeshi; Seino, Yutaka

    2017-10-01

    Sodium glucose co-transporter-2 (SGLT2) inhibitors have been developed recently as a new class of anti-diabetic drug, and are becoming widely used in the management of type 2 diabetes (T2D). As these agents have a considerably different glucose-lowering mechanism from those of other anti-diabetic drugs, safe use of this drug class needs to be discussed based on data available from preapproval clinical trials as well as real-world studies. The SGLT2 inhibitor luseogliflozin was developed by Taisho Pharmaceutical Co., Ltd. and was approved as an oral anti-diabetic drug for T2D in Japan Areas covered: The overall safety and efficacy of SGLT2 inhibitor luseogliflozin are summarized on the basis of a literature review, with a focus on reported adverse drug reactions in preapproval clinical trials and a post-marketing surveillance. Expert opinion: SGLT2 inhibitor luseogliflozin is well tolerated, significantly improves hyperglycemia in preapproval clinical trials, and has a favorable safety profile in both preapproval clinical trials and post-marketing surveillance in elderly patients. While long-term safety and efficacy remain to be seen, luseogliflozin can benefit T2D patients worldwide. However, healthcare professionals must perform appropriate patient education that includes temporary withdrawal of luseogliflozin during patient a 'sick day' and avoidance of strict carbohydrate restriction during luseogliflozin treatment.

  13. Place of sodium-glucose co-transporter type 2 inhibitors for treatment of type 2 diabetes

    PubMed Central

    Mikhail, Nasser

    2014-01-01

    Inhibitors of sodium-glucose co-transporter type 2 (SGLT2), such as canagliflozin and dapagliflozin, are recently approved for treatment of type 2 diabetes. These agents lower blood glucose mainly by increasing urinary glucose excretion. Compared with placebo, SGLT2 inhibitors reduce hemoglobin A1c (HbA1c) levels by an average of 0.5%-0.8% when used as monotherapy or add-on therapy. Advantages of this drug class include modest weight loss of approximately 2 kg, low risk of hypoglycemia, and decrease blood pressure of approximately 4 mmHg systolic and 2 mmHg diastolic. These characteristics make these agents potential add-on therapy in patients with HbA1c levels close to 7%-8.0%, particularly if these patients are obese, hypertensive, and/or prone for hypoglycemia. Meanwhile, these drugs are limited by high frequency of genital mycotic infections. Less common adverse effects include urinary tract infections, hypotension, dizziness, and worsening renal function. SGLT2 inhibitors should be used with caution in the elderly because of increased adverse effects, and should not be used in chronic kidney disease due to decreased or lack of efficacy and nephrotoxicity. Overall, SGLT2 inhibitors are useful addition for treatment of select groups of patients with type 2 diabetes, but their efficacy and safety need to be established in long-term clinical trials. PMID:25512787

  14. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.

    PubMed

    De Nicola, Luca; Gabbai, Francis B; Liberti, Maria Elena; Sagliocca, Adelia; Conte, Giuseppe; Minutolo, Roberto

    2014-07-01

    Optimal prevention and treatment of chronic kidney disease in diabetes requires implementing therapies that specifically interfere with the pathogenesis of diabetic nephropathy. In this regard, significant attention has been given to alterations of the proximal tubule and resulting changes in glomerular filtration rate. At the onset of diabetes mellitus, hyperglycemia causes increases in proximal tubular reabsorption secondary to induction of tubular growth with associated increases in sodium/glucose cotransport. The increase in proximal reabsorption leads to a decrease in solute load to the macula densa, deactivation of the tubuloglomerular feedback, and increases in glomerular filtration rate. Because glomerular hyperfiltration currently is recognized as a risk factor for progression of kidney disease in diabetic patients, limiting proximal tubular reabsorption constitutes a potential target to reduce hyperfiltration. The recent introduction of sodium/glucose cotransporter 2 (SGLT2) inhibitors opens new therapeutic perspectives for this high-risk patient population. Experimental studies have shown that these new agents attenuate the progressive nature of diabetic nephropathy by blood glucose-dependent and -independent mechanisms. SGLT2 inhibition may prevent glomerular hyperfiltration independent of the effect of lowering blood glucose levels while limiting kidney growth, inflammation, and albuminuria through reductions in blood glucose levels. Clinical data for the potential role of the proximal tubule in the pathophysiology of diabetic nephropathy and the nephroprotective effects of SGLT2 inhibitors currently are limited compared to the more extensive experimental literature. We review the evidence supporting this working hypothesis by integrating the experimental findings with the available clinical data.

  15. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications.

    PubMed

    Heerspink, Hiddo J L; Perkins, Bruce A; Fitchett, David H; Husain, Mansoor; Cherney, David Z I

    2016-09-06

    Sodium-glucose cotransporter-2 (SGLT2) inhibitors, including empagliflozin, dapagliflozin, and canagliflozin, are now widely approved antihyperglycemic therapies. Because of their unique glycosuric mechanism, SGLT2 inhibitors also reduce weight. Perhaps more important are the osmotic diuretic and natriuretic effects contributing to plasma volume contraction, and decreases in systolic and diastolic blood pressures by 4 to 6 and 1 to 2 mm Hg, respectively, which may underlie cardiovascular and kidney benefits. SGLT2 inhibition also is associated with an acute, dose-dependent reduction in estimated glomerular filtration rate by ≈5 mL·min(-1)·1.73 m(-2) and ≈30% to 40% reduction in albuminuria. These effects mirror preclinical observations suggesting that proximal tubular natriuresis activates renal tubuloglomerular feedback through increased macula densa sodium and chloride delivery, leading to afferent vasoconstriction. On the basis of reduced glomerular filtration, glycosuric and weight loss effects are attenuated in patients with chronic kidney disease (estimated glomerular filtration rate <60 mL·min(-1)·1.73 m(-2)). In contrast, blood pressure lowering, estimated glomerular filtration rate, and albuminuric effects are preserved, and perhaps exaggerated in chronic kidney disease. With regard to long-term clinical outcomes, the EMPA-REG OUTCOME trial (Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes) in patients with type 2 diabetes mellitus and established cardiovascular disease randomly assigned to empagliflozin versus placebo reported a 14% reduction in the primary composite outcome of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, and >30% reductions in cardiovascular mortality, overall mortality, and heart failure hospitalizations associated with empagliflozin, even though, by design, the hemoglobin A1c difference between the randomized groups was marginal. Aside from an increased risk of mycotic genital

  16. Arsenic toxicity induced endothelial dysfunction and dementia: pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors.

    PubMed

    Sharma, Bhupesh; Sharma, P M

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate & brain GSH levels along with increase in serum & brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. © 2013.

  17. Impact of Sodium-Glucose Cotransporter 2 Inhibitors on Nonglycemic Outcomes in Patients with Type 2 Diabetes.

    PubMed

    Trujillo, Jennifer M; Nuffer, Wesley A

    2017-01-19

    The efficacy of the sodium-glucose cotransporter 2 (SGLT2) inhibitors canagliflozin, dapagliflozin, and empagliflozin in reducing hyperglycemia in patients with type 2 diabetes is well documented. In addition, positive effects have been observed with these agents on nonglycemic variables, such as reductions in body weight and blood pressure, which may confer additional health benefits. SGLT2 inhibitors are also associated with evidence of renal-protecting benefits. Furthermore, during the landmark Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes (EMPA-REG OUTCOME) trial, a substantial reduction in major adverse cardiovascular outcomes was demonstrated with empagliflozin therapy. In view of the complex pathogenesis of cardiovascular disease in patients with diabetes, a pharmacologic intervention for type 2 diabetes that produces a multifaceted reduction in cardiovascular disease risk, separate from glycemic control alone, would be advantageous. Although SGLT2 inhibitors are generally well tolerated, they are associated with an increased risk of genital mycotic infections, as well as the potential risk for serious adverse events such as dehydration, development of diabetic ketoacidosis, serious urinary tract infections, and bone fractures. The findings of ongoing research will help to determine the magnitude and clinical importance of these adverse events and whether the findings of EMPA-REG OUTCOME represent a class effect for SGLT2 inhibition or are specific to empagliflozin and will further elucidate the future role of SGLT2 inhibitors in the individualized management of patients with type 2 diabetes. In this article, we discuss the nonglycemic outcomes associated with SGLT2 inhibitor therapy in patients with type 2 diabetes as well as the clinical implications of these agents.

  18. Sodium-Glucose Linked Transporter-2 Inhibitors in Chronic Kidney Disease

    PubMed Central

    Zanoli, L.; Granata, A.; Lentini, P.; Rastelli, S.; Fatuzzo, P.; Rapisarda, F.; Castellino, P.

    2015-01-01

    SGLT2 inhibitors are new antihyperglycaemic agents whose ability to lower glucose is directly proportional to GFR. Therefore, in chronic kidney disease (CKD) the blood glucose lowering effect is reduced. Unlike many current therapies, the mechanism of action of SGLT2 inhibitors is independent of insulin action or beta-cell function. In addition, the mechanism of action of SGLT2 inhibitors is complementary and not alternative to other antidiabetic agents. SGLT2 inhibitors could be potentially effective in attenuating renal hyperfiltration and, consequently, the progression of CKD. Moreover, the reductions in intraglomerular pressure, systemic blood pressure, and uric acid levels induced by SGLT inhibition may potentially be of benefit in CKD subjects without diabetes. However, at present, only few clinical studies were designed to evaluate the effects of SGLT2 inhibitors in CKD. Consequently, safety and potential efficacy beyond blood glucose lowering should be better clarified in CKD. In this paper we provide an updated review of the use of SGLT2 inhibitors in clinical practice, with particular attention on subjects with CKD. PMID:25785281

  19. Sodium-glucose linked transporter-2 inhibitors in chronic kidney disease.

    PubMed

    Zanoli, L; Granata, A; Lentini, P; Rastelli, S; Fatuzzo, P; Rapisarda, F; Castellino, P

    2015-01-01

    SGLT2 inhibitors are new antihyperglycaemic agents whose ability to lower glucose is directly proportional to GFR. Therefore, in chronic kidney disease (CKD) the blood glucose lowering effect is reduced. Unlike many current therapies, the mechanism of action of SGLT2 inhibitors is independent of insulin action or beta-cell function. In addition, the mechanism of action of SGLT2 inhibitors is complementary and not alternative to other antidiabetic agents. SGLT2 inhibitors could be potentially effective in attenuating renal hyperfiltration and, consequently, the progression of CKD. Moreover, the reductions in intraglomerular pressure, systemic blood pressure, and uric acid levels induced by SGLT inhibition may potentially be of benefit in CKD subjects without diabetes. However, at present, only few clinical studies were designed to evaluate the effects of SGLT2 inhibitors in CKD. Consequently, safety and potential efficacy beyond blood glucose lowering should be better clarified in CKD. In this paper we provide an updated review of the use of SGLT2 inhibitors in clinical practice, with particular attention on subjects with CKD.

  20. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation

    PubMed Central

    Hu, Yee-Tung; Wu, Tsai-Chin; Yang, En-Cheng; Wu, Pei-Chi; Lin, Po-Tse; Wu, Yueh-Lung

    2017-01-01

    The western honeybee (Apis mellifera) is essential for the global economy due to its important role in ecosystems and agriculture as a pollinator of numerous flowering plants and crops. Pesticide abuse has greatly impacted honeybees and caused tremendous loss of honeybee colonies worldwide. The reasons for colony loss remain unclear, but involvement of pesticides and pathogen-pesticide interactions has been hypothesized. Histone deacetylase inhibitors (HDACis) inhibit the activity of histone acetylase, which causes the hyperacetylation of histone cores and influences gene expression. In this study, sodium butyrate, an HDACi, was used as a dietary supplement for honeybees; after treatment, gene expression profiles were analyzed using quantitative PCR. The results showed that sodium butyrate up-regulated genes involved in anti-pathogen and detoxification pathways. The bioassay results showed that honeybees treated with sodium butyrate were more tolerant to imidacloprid. Additionally, sodium butyrate strengthened the immune response of honeybees to invasions of Nosema ceranae and viral infections. We also performed a bioassay in which honeybees were exposed to pesticides and pathogens. Our results provide additional data regarding the mechanism by which honeybees react to stress and the potential application of HDACis in beekeeping. PMID:28112264

  1. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation.

    PubMed

    Hu, Yee-Tung; Wu, Tsai-Chin; Yang, En-Cheng; Wu, Pei-Chi; Lin, Po-Tse; Wu, Yueh-Lung

    2017-01-23

    The western honeybee (Apis mellifera) is essential for the global economy due to its important role in ecosystems and agriculture as a pollinator of numerous flowering plants and crops. Pesticide abuse has greatly impacted honeybees and caused tremendous loss of honeybee colonies worldwide. The reasons for colony loss remain unclear, but involvement of pesticides and pathogen-pesticide interactions has been hypothesized. Histone deacetylase inhibitors (HDACis) inhibit the activity of histone acetylase, which causes the hyperacetylation of histone cores and influences gene expression. In this study, sodium butyrate, an HDACi, was used as a dietary supplement for honeybees; after treatment, gene expression profiles were analyzed using quantitative PCR. The results showed that sodium butyrate up-regulated genes involved in anti-pathogen and detoxification pathways. The bioassay results showed that honeybees treated with sodium butyrate were more tolerant to imidacloprid. Additionally, sodium butyrate strengthened the immune response of honeybees to invasions of Nosema ceranae and viral infections. We also performed a bioassay in which honeybees were exposed to pesticides and pathogens. Our results provide additional data regarding the mechanism by which honeybees react to stress and the potential application of HDACis in beekeeping.

  2. Butyrate as preferred substrate for polyhydroxybutyrate production.

    PubMed

    Marang, Leonie; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2013-08-01

    In this study, the suitability of butyrate as substrate for polyhydroxyalkanoate (PHA) production by microbial enrichment cultures was assessed. Two sequencing batch reactors were operated under feast-famine conditions: one fed with butyrate, and another with mixed acetate and butyrate. The obtained results were compared to previous results with acetate as sole substrate. In all three reactors Plasticicumulans acidivorans dominated the enrichment culture. The carbon uptake rate and PHA yield were significantly higher on butyrate than on acetate, resulting in a higher PHA production rate. When both substrates were available the bacteria strongly preferred the uptake of butyrate. Only after butyrate depletion acetate was taken up at a high rate. The molar substrate uptake rate remained the same, suggesting that substrate uptake is the rate-limiting step. The results show that for optimized waste-based PHA production the pre-fermentation process should be directed towards butyrate production.

  3. Pharmacokinetics of butyric acid derivative with xylitol.

    PubMed

    Desmet, G; Brazier, M; Cerutti, J; Chany, C; Arnould-Guerin, M L

    1991-01-01

    The short chain fatty acids, especially butyric acid salts have interesting biological properties. In some cases, transformed cells can recover a normal phenotype and in animal, butyrate salts increase antitumor resistance. Butyrate may be considered as possibly useful for antitumor therapy. But these products exhibit two essential disadvantages which restrict their clinical use in man: high concentrations required to achieve therapeutic effects and rapid excretion with short half life. In order to optimize the clinical use of butyrate, we studied a n-butyric acid ester obtained with xylitol selected for its physiological and metabolic inertia. Structure determination of tributyryl xylitol was carried out by mass and NMR spectrometry (MW = 344). The low toxicity and the antitumor effects of this ester, especially in association with Corynebacterium parvum and interferon, confirm its therapeutic interest. The slow excretion of this prodrug should make butyrate clinical use easier by preventing extensive systemic metabolism and metabolic side-effects due to cations of butyrate salts.

  4. Sodium arsenite down-regulates the expression of X-linked inhibitor of apoptosis protein via translational and post-translational mechanisms in hepatocellular carcinoma

    SciTech Connect

    Chen, Hong; Hao, Yuqing; Wang, Lijing; Jia, Dongwei; Ruan, Yuanyuan; Gu, Jianxin

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Sodium arsenite down-regulates the protein expression level of XIAP in HCC. Black-Right-Pointing-Pointer Sodium arsenite inhibits the de novo XIAP synthesis and its IRES activity. Black-Right-Pointing-Pointer Sodium arsenite decreases XIAP stability and promotes its proteasomal degradation. Black-Right-Pointing-Pointer Overexpression of XIAP attenuates the pro-apoptotic effect of sodium arsenite. -- Abstract: X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitors of apoptosis protein (IAP) family, and has been reported to exhibit elevated expression levels in hepatocellular carcinoma (HCC) and promote cell survival, metastasis and tumor recurrence. Targeting XIAP has proven effective for the inhibition of cancer cell proliferation and restoration of cancer cell chemosensitivity. Arsenic (or sodium arsenite) is a potent anti-tumor agent used to treat patients with acute promyelocytic leukemia (APL). Additionally, arsenic induces cell growth inhibition, cell cycle arrest and apoptosis in human HCC cells. In this study, we identified XIAP as a target for sodium arsenite-induced cytotoxicity in HCC. The exposure of HCC cell lines to sodium arsenite resulted in inhibition of XIAP expression in both a dose- and time-dependent manner. Sodium arsenite blocked the de novo XIAP synthesis and the activity of its internal ribosome entry site (IRES) element. Moreover, treatment with sodium arsenite decreased the protein stability of XIAP and induced its ubiquitin-proteasomal degradation. Overexpression of XIAP attenuated the pro-apoptotic effect of sodium arsenite in HCC. Taken together, our data demonstrate that sodium arsenite suppresses XIAP expression via translational and post-translational mechanisms in HCC.

  5. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors from Natural Products: Discovery of Next-Generation Antihyperglycemic Agents.

    PubMed

    Choi, Chang-Ik

    2016-08-27

    Diabetes mellitus is a chronic condition associated with the metabolic impairment of insulin actions, leading to the development of life-threatening complications. Although many kinds of oral antihyperglycemic agents with different therapeutic mechanisms have been marketed, their undesirable adverse effects, such as hypoglycemia, weight gain, and hepato-renal toxicity, have increased demand for the discovery of novel, safer antidiabetic drugs. Since the important roles of the sodium-glucose cotransporter 2 (SGLT2) for glucose homeostasis in the kidney were recently elucidated, pharmacological inhibition of SGLT2 has been considered a promising therapeutic target for the treatment of type 2 diabetes. Since the discovery of the first natural SGLT2 inhibitor, phlorizin, several synthetic glucoside analogs have been developed and introduced into the market. Furthermore, many efforts to find new active constituents with SGLT2 inhibition from natural products are still ongoing. This review introduces the history of research on the development of early-generation SGLT2 inhibitors, and recent progress on the discovery of novel candidates for SGLT2 inhibitor from several natural products that are widely used in traditional herbal medicine.

  6. Study of Antitumor Activity of Sodium Phenylbutyrate, Histon Deacetylase Inhibitor, on Ehrlich Carcinoma Model.

    PubMed

    Fadeev, N P; Kharisov, R I; Kovan'ko, E G; Pustovalov, Yu I

    2015-09-01

    Antitumor activity of sodium phenylbutyrate was studied on 120 outbred female mice with transplanted Ehrlich ascites carcinoma. The animals received the drug in doses of 400, 800, and 1200 mg/kg with drinking water daily for 21 days. The antitumor effect was evaluated by tumor growth inhibition and lifespan prolongation. Phenylbutyrate in the dose of 800 mg/kg was most effective. The drug inhibited the tumor growth by 71%, prolonged the lifespan of animals by 28, and was low-toxic.

  7. Butyrate Regulates the Expression of Inflammatory and Chemotactic Cytokines In Human Acute Leukemic Cells During Apoptosis

    PubMed Central

    Pulliam, Stephanie R.; Pellom, Samuel T.; Shanker, Anil; Adunyah, Samuel E.

    2016-01-01

    Butyrate is a histone deacetylase inhibitor implicated in many studies as a potential therapy for various forms of cancer. High concentrations of butyrate (>1.5 mM) have been shown to activate apoptosis in several cancer cell lines including prostate, breast, and leukemia. Butyrate is also known to influence multiple signaling pathways that are mediators of cytokine production. The purpose of this study was to evaluate the impact of high concentrations of butyrate on the cancer microenvironment vis-à-vis apoptosis, cellular migration, and capacity to modulate cytokine expression in cancer cells. The results indicate that high concentrations of butyrate induced a 2-fold activation of caspase-3 and reduced cell viability by 60% in U937 leukemia cells. Within 24 hours, butyrate significantly decreased the levels of chemokines CCL2 and CCL5 in HL-60 and U937 cells, and decreased CCL5 in THP-1 leukemia cells. Differential effects were observed in treatments with valproic acid for CCL2 and CCL5 indicating butyrate-specificity. Many of the biological effects examined in this study are linked to activation of the AKT and MAPK signaling pathways; therefore, we investigated whether butyrate alters the levels of phosphorylated forms of these signaling proteins and how it correlated with the expression of chemokines. The results show that butyrate may partially regulate CCL5 production via p38 MAPK. The decrease in p-ERK1/2 and p-AKT levels correlated with the decrease in CCL2 production. These data suggest that while promoting apoptosis, butyrate has the potential to influence the cancer microenvironment by inducing differential expression of cytokines. PMID:27253488

  8. Butyrate-rich Colonic Microenvironment Is a Relevant Selection Factor for Metabolically Adapted Tumor Cells*

    PubMed Central

    Serpa, Jacinta; Caiado, Francisco; Carvalho, Tânia; Torre, Cheila; Gonçalves, Luís G.; Casalou, Cristina; Lamosa, Pedro; Rodrigues, Margarida; Zhu, Zhenping; Lam, Eric W. F.; Dias, Sérgio

    2010-01-01

    The short chain fatty acid (SCFA) buyrate is a product of colonic fermentation of dietary fibers. It is the main source of energy for normal colonocytes, but cannot be metabolized by most tumor cells. Butyrate also functions as a histone deacetylase (HDAC) inhibitor to control cell proliferation and apoptosis. In consequence, butyrate and its derived drugs are used in cancer therapy. Here we show that aggressive tumor cells that retain the capacity of metabolizing butyrate are positively selected in their microenvironment. In the mouse xenograft model, butyrate-preselected human colon cancer cells gave rise to subcutaneous tumors that grew faster and were more angiogenic than those derived from untreated cells. Similarly, butyrate-preselected cells demonstrated a significant increase in rates of homing to the lung after intravenous injection. Our data showed that butyrate regulates the expression of VEGF and its receptor KDR at the transcriptional level potentially through FoxM1, resulting in the generation of a functional VEGF:KDR autocrine growth loop. Cells selected by chronic exposure to butyrate express higher levels of MMP2, MMP9, α2 and α3 integrins, and lower levels of E-cadherin, a marker for epithelial to mesenchymal transition. The orthotopic model of colon cancer showed that cells preselected by butyrate are able to colonize the animals locally and at distant organs, whereas control cells can only generate a local tumor in the cecum. Together our data shows that a butyrate-rich microenvironment may select for tumor cells that are able to metabolize butyrate, which are also phenotypically more aggressive. PMID:20926374

  9. Sodium-proton exchanger isoform-1: synthesis of a potent inhibitor labeled with deuterium and carbon-14.

    PubMed

    Latli, Bachir; Haddad, Nizar; Hrapchak, Matt; Wei, Xudong; Tang, Wenjun; Song, Jinhua J; Senanayake, Chris H

    2013-03-01

    Sodium-proton exchangers, NHEs are plasma membrane proteins that are essential in the regulation of intracellular pH of the myocardium. There are nine known variously expressed isoforms of NHEs with NHE-1 being the predominant isoform in the heart. N-[4-(1-acetyl-piperidin-4-yl)-3-trifluoromethyl-benzoyl]-guanidine (1) is a potent NHE 1-inhibitor with good pharmacokinetics. It was prepared labeled with deuterium and carbon-14 to aid in drug metabolism, pharmacokinetics, and other studies. The combination of Comins' reaction and reduction under deuterium gas was used to access deuterium labeled (1) starting from deuterium labeled pyridine. Carbon-14 labeled zinc cyanide was used to prepare [(14)C]-(1) in three steps, with a specific activity of 55.6 mCi/mmol.

  10. Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors: Comparing Trial and Real World Use (Study Protocol).

    PubMed

    McGovern, Andrew; Feher, Michael; Munro, Neil; de Lusignan, Simon

    2017-04-01

    Sodium-glucose co-transporter-2 (SGLT2) inhibitors (gliflozins) are the newest class of medication available to treat type 2 diabetes (T2DM). Recent findings from the first complete cardiovascular safety trial in SGLT2 inhibitors, the Empagliflozin, Cardiovascular Outcomes, and Mortality in type 2 diabetes (EMPA-REG OUTCOMES) trial, demonstrated reduced cardiovascular outcomes in people with high cardiovascular risk. How to apply these findings to clinical practice remains unclear, with questions remaining on who will reap this cardiovascular benefit. To describe the proportion of people in the real world currently treated with SGLT2 inhibitors who meet the inclusion criteria of the EMPA-REG trial and therefore could expect the cardiovascular benefit identified by the trial. Similarly, to describe the proportion of people from the whole T2DM population who could also expect this same benefit. Routinely collected data from UK primary care in the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) database will be used. The study population will include all people with T2DM within this database (approximately 60,000). We will perform a cross-sectional investigation to describe the characteristics of people currently using SGTL2 inhibitors compared with the population of the EMPA-REG trail. We will similarly compare the characteristics of the RCGP RSC T2DM cohort with the inclusion criteria of the EMPA-REG trial. People with T2DM using a pre-existing verified clinical ontological process will be identified, as will people with prescriptions for SGLT2 inhibitors and other medications using Read coded and other proprietary coding systems. Descriptive statistics will be used to characterise the key clinical characteristics of people with T2DM using SGLT2 inhibitors and to compare these characteristics to people included in EMPA-REG trial; the proportion of people who match the trial criteria will be reported. Peer review publication

  11. Comparing Medication Adherence and Persistence Among Patients with Type 2 Diabetes Using Sodium-Glucose Cotransporter 2 Inhibitors or Sulfonylureas.

    PubMed

    Bell, Kelly F; Cappell, Katherine; Liang, Michael; Kong, Amanda M

    2017-06-01

    Patients with type 2 diabetes treated with pharmacotherapy should be adherent to and persistent with their medications to experience glycemic control and prevent associated complications. To compare medication adherence and persistence among patients with type 2 diabetes who are newly initiating a sodium-glucose cotransporter 2 (SGLT-2) inhibitor or a sulfonylurea. This was a retrospective, observational cohort study using the MarketScan claims databases. The patients who were selected for the study had newly initiated treatment with an SGLT-2 inhibitor or a sulfonylurea between January 1, 2015, and December 31, 2015 (index date; class of earliest medication is defined as the index class); were aged ≥18 years on the index date; were continuously enrolled with health insurance for 12 months before and 6 months after (ie, follow-up) the index date; and had ≥1 baseline diagnoses of type 2 diabetes. Study exclusions were type 1 diabetes, pregnancy, and gestational diabetes. Medication adherence was measured by the proportion of days covered (PDC) with the index class during the follow-up period and dichotomized as adherent (PDC ≥80%) or nonadherent. Persistence was defined as the number of days from the index date until a >60-day continuous gap in days without the index drug class (ie, discontinuation) or the end of follow-up. A propensity score model was used to match patients receiving an SGLT-2 inhibitor to patients receiving a sulfonylurea in a 1:1 ratio based on patient characteristics. Logistic (ie, adherence) and Cox (ie, persistence) regression models were fit to the matched samples. Initially, the study included 17,724 patients who received an SGLT-2 inhibitor and 25,490 patients who received a sulfonylurea. After propensity score matching, 13,657 patients remained in each cohort. Compared with patients receiving a sulfonylurea, a statistically significantly greater percentage of patients receiving an SGLT-2 inhibitor were adherent to therapy (61.4% vs

  12. Effects of Sodium Glucose Cotransporter-2 Inhibitors on Serum Uric Acid in Type 2 Diabetes Mellitus.

    PubMed

    Ahmadieh, Hala; Azar, Sami

    2017-07-27

    Hyperuricemia has been linked to metabolic syndrome, cardiovascular disease, and chronic kidney disease. Hyperuricemia and type 2 diabetes mellitus were inter-related, type 2 diabetes mellitus was more at risk of having a higher serum uric acid level, and also individuals with higher serum uric acid had higher risk of developing type 2 diabetes in the future. Insulin resistance seems to play an important role in the causal relationship between metabolic syndrome, type 2 diabetes, and hyperuricemia. Oral diabetic drugs that would have additional beneficial effects on reducing serum uric acid levels are of importance. Selective SGLT2 inhibitors were extensively studied in type 2 diabetes mellitus and were found to have improvement of glycemic control, in addition to their proven metabolic effects on weight and blood pressure. Additional beneficial effect of SGLT2 inhibitors on serum uric acid level reduction is investigated. Recently, data have been accumulating showing that they have additional beneficial effects on serum uric acid reduction. As for the postulated mechanism, serum uric acid decreased in SGLT2 inhibitor users as a result of the increase in the urinary excretion rate of uric acid, due to the inhibition of uric acid reabsorption mediated by the effect of the drug on the GLUT9 isoform 2, located at the collecting duct of the renal tubule.

  13. Renal Safety of Canagliflozin, a Sodium Glucose Co-transporter 2 Inhibitor, in Patients With Type 2 Diabetes Mellitus.

    PubMed

    Desai, Mehul; Yavin, Yshai; Balis, Dainius; Sun, Don; Xie, John; Canovatchel, William; Rosenthal, Norm

    2017-01-12

    The incidence of renal-related adverse events (AEs) with canagliflozin in patients with type 2 diabetes mellitus from a pooled population of patients in 7 active- and placebo-controlled trials (N = 5,598) and in a 104-week study versus glimepiride (N = 1,450) was low and similar in canagliflozin and non-canagliflozin groups. In the study versus glimepiride, canagliflozin was associated with an initial acute decrease in estimated glomerular filtration rate (eGFR) that attenuated over time, while eGFR declined progressively over 104 weeks with glimepiride; the incidence of renal-related AEs with canagliflozin was generally stable over time, while the incidence with glimepiride increased over 104 weeks. In the analysis reported in this manuscript based on postmarketing reports from the US Food and Drug Administration Adverse Event Reporting System, a potential signal was identified for acute kidney injury with all approved sodium glucose co-transporter 2 (SGLT2) inhibitors (ie, canagliflozin, dapagliflozin, empagliflozin). The early onset of acute kidney injury events with SGLT2 inhibitors in postmarketing reports likely reflects the acute changes in eGFR due to the known renal haemodynamic effects of SGLT2 inhibition.

  14. Canagliflozin: a sodium glucose co-transporter 2 inhibitor for the treatment of type 2 diabetes mellitus.

    PubMed

    Rosenthal, Norm; Meininger, Gary; Ways, Kirk; Polidori, David; Desai, Mehul; Qiu, Rong; Alba, Maria; Vercruysse, Frank; Balis, Dainius; Shaw, Wayne; Edwards, Robert; Bull, Scott; Di Prospero, Nicholas; Sha, Sue; Rothenberg, Paul; Canovatchel, William; Demarest, Keith

    2015-11-01

    The sodium glucose co-transporter 2 (SGLT2) inhibitor canagliflozin is a novel treatment option for adults with type 2 diabetes mellitus (T2DM). In patients with hyperglycemia, SGLT2 inhibition lowers plasma glucose levels by reducing the renal threshold for glucose (RTG ) and increasing urinary glucose excretion (UGE). Increased UGE is also associated with a mild osmotic diuresis and net caloric loss, which can lead to reductions in body weight and blood pressure (BP). After promising results from preclinical and phase I/II studies, the efficacy and safety of canagliflozin was evaluated in a comprehensive phase III development program in over 10,000 patients with T2DM on various background therapies. Canagliflozin improved glycemic control and provided reductions in body weight and BP versus placebo and active comparators in studies of up to 2 years' duration. Canagliflozin was generally well tolerated, with higher incidences of adverse events (AEs) related to the mechanism of action, including genital mycotic infections and AEs related to osmotic diuresis. Results from the preclinical and clinical studies led canagliflozin to be the first-in-class SGLT2 inhibitor approved in the United States, and support canagliflozin as a safe and effective therapeutic option across a broad range of patients with T2DM. © 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  15. Improving the bioavailability and anticancer effect of the PCA-1/ALKBH3 inhibitor HUHS015 using sodium salt.

    PubMed

    Mabuchi, Miyuki; Shimizu, Tadashi; Ueda, Masahiro; Sasakawa, Yuka; Nakao, Syuhei; Ueda, Yuko; Kawamura, Akio; Tsujikawa, Kazutake; Tanaka, Akito

    2015-01-01

    Prostate cancer antigen (PCA)-1/AlkB homologue 3 (ALKBH3) has been identified as a clinically significant factor and siRNA of PCA-1 inhibits DU145 proliferation both in vitro and in vivo. HUHS015 ( 1: ), a previous reported PCA-1 small-molecule inhibitor, was also effective without any obvious side-effects or toxicity. The potency of HUHS015, however, is not satisfying. We thought the reason is poor solubility of HUHS015 because insoluble material remained at the injection site after subcutaneous administration. To improve this inhibitor's solubility, we prepared various salts of HUHS015 and examined their solubility, which resulted in the selection of HUHS015 sodium salt ( 2: ) for further studies in vivo. Next, we compared the pharmacokinetics of 1: and 2: via several administration routes. We observed significant improvements in the pharmacokinetic parameters. For example, subcutaneous administration of 2: increased the area under the curve (AUC)0-24 by 8-fold compared to 1 and increased the suppressive effect on the proliferation of DU145 cells in a xenograft model.

  16. The effect of inhibitor sodium nitrate on pitting corrosion of dissimilar material weldment joint of stainless steel AISI 304 and mild steel SS 400

    SciTech Connect

    Hilca, B. R. Triyono

    2016-03-29

    This study experimentally evaluated the effect of Sodium Nitrate inhibitor (NaNO{sub 3}) of 0.1%, 0.3%, and 0.5% on NaCl 3.5% toward pitting corrosion of dissimilar metal welding joint between stainless steel AISI 304 and mild steel SS 400. Electrochemical corrosion was tested using potentiodynamic polarization. Further the Scanning Electron Microscope (SEM) conducted to analyze the specimen. Chemical composition analysis used Energy Dispersive X-ray Spectrometry (EDS). The highest efficiency of sodium nitrate for ER 308 attained 63.8% and 64.89%for ER 309L. The specimen surface which observed through SEM showed decrease of pitting corrosion respectively with the addition of sodium nitrate content as inhibitor.

  17. The effect of inhibitor sodium nitrate on pitting corrosion of dissimilar material weldment joint of stainless steel AISI 304 and mild steel SS 400

    NASA Astrophysics Data System (ADS)

    Hilca, B. R.; Triyono

    2016-03-01

    This study experimentally evaluated the effect of Sodium Nitrate inhibitor (NaNO3) of 0.1%, 0.3%, and 0.5% on NaCl 3.5% toward pitting corrosion of dissimilar metal welding joint between stainless steel AISI 304 and mild steel SS 400. Electrochemical corrosion was tested using potentiodynamic polarization. Further the Scanning Electron Microscope (SEM) conducted to analyze the specimen. Chemical composition analysis used Energy Dispersive X-ray Spectrometry (EDS). The highest efficiency of sodium nitrate for ER 308 attained 63.8% and 64.89%for ER 309L. The specimen surface which observed through SEM showed decrease of pitting corrosion respectively with the addition of sodium nitrate content as inhibitor.

  18. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells

    PubMed Central

    Yan, Hui; Ajuwon, Kolapo M.

    2015-01-01

    Short chain fatty acids (SCFA), products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity. PMID:26713737

  19. Combination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice

    PubMed Central

    Hiromura, Munenori; Mori, Yusaku; Kohashi, Kyoko; Kushima, Hideki; Ohara, Makoto; Watanabe, Takuya; Andersson, Olov

    2017-01-01

    Dipeptidyl peptidase-4 inhibitors (DPP-4is), in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is) suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (ipragliflozin, 1.0 mg/kg/day) and DPP-4i (alogliptin, 8.0 mg/kg/day), either alone or in combination, were administered to db/db mice or streptozotocin-induced diabetic apolipoprotein E-null (Apoe−/−) mice. Ipragliflozin and alogliptin monotherapies improved glucose intolerance; however, combination therapy did not show further improvement. The foam cell formation of peritoneal macrophages was suppressed by both the ipragliflozin and alogliptin monotherapies and was further enhanced by combination therapy. Although foam cell formation was closely associated with HbA1c levels in all groups, DPP-4i alone or the combination group showed further suppression of foam cell formation compared with the control or SGLT2i group at corresponding HbA1c levels. Both ipragliflozin and alogliptin monotherapies decreased scavenger receptors and increased cholesterol efflux regulatory genes in peritoneal macrophages, and combination therapy showed additive changes. In diabetic Apoe−/− mice, combination therapy showed the greatest suppression of plaque volume in the aortic root. In conclusion, combination therapy with SGLT2i and DPP4i synergistically suppresses macrophage foam cell formation and atherosclerosis in diabetic mice. PMID:28408925

  20. Dipeptidyl peptidase-4 inhibitors or sodium glucose co-transporter-2 inhibitors as an add-on to insulin therapy: A comparative review

    PubMed Central

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    The gradual decline in β-cell function is inevitable in type 2 diabetes mellitus and therefore, substantial proportions of patients require insulin subsequently, in order to achieve optimal glucose control. While weight gain, hypoglycemia, and fluid retention especially during dose intensification is a known limitation to insulin therapy, these adverse effects also reduce patient satisfaction and treatment adherence. It is also possible that the benefits of intensive control achieved by insulin therapy, perhaps get nullified by the weight gain and hypoglycemia. In addition, improvement in plasma glucose or glycated hemoglobin (HbA1c) itself is associated with weight gain. Notably, studies have already suggested that reduction in body weight by ~3–5%, may allow a significantly better glycemic control. Thus, a class of drugs, which can reduce HbA1c effectively, yet are weight neutral or preferably reduce body weight, could be the most sought out strategy as an add-on therapy to insulin. While sulfonylureas (SUs) are associated with weight gain and hypoglycemia, pioglitazone increases body weight and fluid retention. Moreover, SUs are not recommended once premix or prandial insulin is commenced. The addition of newer agents, such as glucagon-like peptide-1 receptor agonist to insulin certainly appears to be an effective tool in reducing both HbA1c and body weight as is evident across the studies; however, this approach incurs an additional injection as well as cost. Dipeptidyl peptidase-4 inhibitors (DPP-4I) and sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are other exciting options, as an add-on to insulin therapy primarily because these are oral drugs and do not possess any intrinsic potential of hypoglycemia. Furthermore, these are either weight neutral or induce significant weight loss. This review article aims to comparatively analyze the safety and efficacy of DPP-4I and SGLT-2I, as an add-on therapy to insulin. PMID:26904466

  1. Dipeptidyl peptidase-4 inhibitors or sodium glucose co-transporter-2 inhibitors as an add-on to insulin therapy: A comparative review.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    The gradual decline in β-cell function is inevitable in type 2 diabetes mellitus and therefore, substantial proportions of patients require insulin subsequently, in order to achieve optimal glucose control. While weight gain, hypoglycemia, and fluid retention especially during dose intensification is a known limitation to insulin therapy, these adverse effects also reduce patient satisfaction and treatment adherence. It is also possible that the benefits of intensive control achieved by insulin therapy, perhaps get nullified by the weight gain and hypoglycemia. In addition, improvement in plasma glucose or glycated hemoglobin (HbA1c) itself is associated with weight gain. Notably, studies have already suggested that reduction in body weight by ~3-5%, may allow a significantly better glycemic control. Thus, a class of drugs, which can reduce HbA1c effectively, yet are weight neutral or preferably reduce body weight, could be the most sought out strategy as an add-on therapy to insulin. While sulfonylureas (SUs) are associated with weight gain and hypoglycemia, pioglitazone increases body weight and fluid retention. Moreover, SUs are not recommended once premix or prandial insulin is commenced. The addition of newer agents, such as glucagon-like peptide-1 receptor agonist to insulin certainly appears to be an effective tool in reducing both HbA1c and body weight as is evident across the studies; however, this approach incurs an additional injection as well as cost. Dipeptidyl peptidase-4 inhibitors (DPP-4I) and sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are other exciting options, as an add-on to insulin therapy primarily because these are oral drugs and do not possess any intrinsic potential of hypoglycemia. Furthermore, these are either weight neutral or induce significant weight loss. This review article aims to comparatively analyze the safety and efficacy of DPP-4I and SGLT-2I, as an add-on therapy to insulin.

  2. Butyrate and glucose metabolism by colonocytes in experimental colitis in mice

    PubMed Central

    Ahmad, M; Krishnan, S; Ramakrishna, B; Mathan, M; Pulimood, A; Murthy, S

    2000-01-01

    BACKGROUND/AIMS—Impaired colonocyte metabolism of butyrate has been implicated in the aetiopathogenesis of ulcerative colitis. Colonocyte butyrate metabolism was investigated in experimental colitis in mice.
METHODS—Colitis was induced in Swiss outbred white mice by oral administration of 4% dextran sulphate sodium (DSS). Colonocytes isolated from colitic and normal control mice were incubated with [14C]butyrate or glucose, and production of 14CO2, as well as of intermediate metabolites (acetoacetate, β-hydroxybutyrate and lactate), was measured. The effect of different substrate concentrations on oxidation was also examined.
RESULTS—Butyrate oxidation (µmol/h per mg protein; mean (SEM)) was significantly reduced in DSS colitis, values on day 7 of DSS administration being 0.177 (0.007) compared with 0.406 (0.035) for control animals (p<0.001). Glucose oxidation (µmol/h per mg protein; mean (SEM)) on day 7 of DSS administration was significantly higher than in controls (0.06 (0.006) v 0.027 (0.004), p<0.001). Production of β-hydroxybutyrate was decreased and production of lactate increased in DSS colitis compared with controls. Increasing butyrate concentration from 10 to 80 mM enhanced oxidation in DSS colitis (0.036 (0.002) to 0.285 (0.040), p<0.001), although it continued to remain lower than in controls. Surface and crypt epithelial cells showed similar ratios of butyrate to glucose oxidation. When 1 mM DSS was added to normal colonocytes in vitro, it did not alter butyrate oxidation. The initial histological lesion of DSS administration was very patchy and involved crypt cells. Abnormal butyrate oxidation became apparent only after six days of DSS administration, at which time histological abnormalities were more widespread.
CONCLUSIONS—Colonocyte metabolism of butyrate, but not of glucose, is impaired in DSS colitis, and may be important in pathophysiology. Histological abnormalities preceded measurable defects in butyrate

  3. S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart

    PubMed Central

    Ch'En, F F-T; Villafuerte, F C; Swietach, P; Cobden, P M; Vaughan-Jones, R D

    2008-01-01

    Background and purpose: Intracellular pH (pHi) in heart is regulated by sarcolemmal H+-equivalent transporters such as Na+-H+ exchange (NHE) and Na+-HCO3 − cotransport (NBC). Inhibition of NBC influences pHi and can be cardioprotective in animal models of post-ischaemic reperfusion. Apart from a rabbit polyclonal NBC-antibody, a selective NBC inhibitor compound has not been studied. Compound S0859 (C29H24ClN3O3S) is a putative NBC inhibitor. Here, we provide the drug's chemical structure, test its potency and selectivity in ventricular cells and assess its suitability for experiments on cardiac contraction. Experimental approach: pHi recovery from intracellular acidosis was monitored using pH-epifluorescence (SNARF-fluorophore) in guinea pig, rat and rabbit isolated ventricular myocytes. Electrically evoked cell shortening (contraction) was measured optically. With CO2/HCO3 −-buffered superfusates containing 30 μM cariporide (to inhibit NHE), pHi recovery is mediated by NBC. Key results: S0859, an N-cyanosulphonamide compound, reversibly inhibited NBC-mediated pHi recovery (K i=1.7 μM, full inhibition at ∼30 μM). In HEPES-buffered superfusates, NHE-mediated pHi recovery was unaffected by 30 μM S0859. With CO2/HCO3 − buffer, pHi recovery from intracellular alkalosis (mediated by Cl−/HCO3 − and Cl−/OH− exchange) was also unaffected. Selective NBC-inhibition was not due to action on carbonic anhydrase (CA) enzymes, as 100 μM acetazolamide (a membrane-permeant CA-inhibitor) had no significant effect on NBC activity. pHi recovery from acidosis was associated with increased contractile-amplitude. The time course of recovery of pHi and contraction was slowed by S0859, confirming that NBC is a significant controller of contractility during acidosis. Conclusions and implications: Compound S0859 is a selective, high-affinity generic NBC inhibitor, potentially important for probing the transporter's functional role in heart and other tissues

  4. Butyrate stimulates tissue-type plasminogen-activator synthesis in cultured human endothelial cells.

    PubMed Central

    Kooistra, T; van den Berg, J; Töns, A; Platenburg, G; Rijken, D C; van den Berg, E

    1987-01-01

    Incubation of cultured human endothelial cells with 5 mM-dibutyryl cyclic AMP led to an approx. 2-fold increase in tissue-type plasminogen-activator (t-PA) production over a 24 h incubation period. The stimulating effect of dibutyryl cyclic AMP could be explained by the slow liberation of butyrate, as the effect could be reproduced by addition of free butyrate to the medium, but not by addition of 8-bromo cyclic AMP or forskolin, agents known to raise intracellular cyclic AMP levels. With butyrate, an accelerated accumulation of t-PA antigen in the conditioned medium (CM) was observed after a lag period of about 6 h. Increasing amounts of butyrate caused an increasingly stimulatory effect, reaching a plateau at 5 mM-butyrate. The relative enhancement of t-PA production in the presence of 5 mM-butyrate varied among different endothelial cell cultures from 6- to 25-fold in 24 h CM. Such an increase in t-PA production was observed with both arterial and venous endothelial cells. The butyrate-induced increases in t-PA production were accompanied by increased t-PA mRNA levels. Analysis of radiolabelled CM and cell extracts by SDS/polyacrylamide-gel electrophoresis indicated that the potent action of butyrate is probably restricted to a small number of proteins. The accumulation of plasminogen activator inhibitor type 1 (PAI-1) in CM from butyrate-treated cells varied only moderately. In our study of the relationship between structure and stimulatory activity, we found that a straight-chain C4 monocarboxylate structure with a methyl group at one end and a carboxy moiety at the other seems to be required for the optimal induction of t-PA in cultured endothelial cells. Images Fig. 2. Fig. 3. Fig. 5. Fig. 7. PMID:2827633

  5. CREB-binding protein, p300, butyrate, and Wnt signaling in colorectal cancer

    PubMed Central

    Bordonaro, Michael; Lazarova, Darina L

    2015-01-01

    This paper reviews the distinctive roles played by the transcriptional coactivators CREB-binding protein (CBP) and p300 in Wnt/β-catenin signaling and cell physiology in colorectal cancer (CRC). Specifically, we focus on the effects of CBP- and p300-mediated Wnt activity on (1) neoplastic progression; (2) the activities of butyrate, a breakdown product of dietary fiber, on cell signaling and colonic cell physiology; (3) the development of resistance to histone deacetylase inhibitors (HDACis), including butyrate and synthetic HDACis, in colonic cells; and (4) the physiology and number of cancer stem cells. Mutations of the Wnt/β-catenin signaling pathway initiate the majority of CRC cases, and we have shown that hyperactivation of this pathway by butyrate and other HDACis promotes CRC cell apoptosis. This activity by butyrate may in part explain the preventive action of fiber against CRC. However, individuals with a high-fiber diet may still develop neoplasia; therefore, resistance to the chemopreventive action of butyrate likely contributes to CRC. CBP or p300 may modify the ability of butyrate to influence colonic cell physiology since the two transcriptional coactivators affect Wnt signaling, and likely, its hyperactivation by butyrate. Also, CBP and p300 likely affect colonic tumorigenesis, as well as stem cell pluripotency. Improvement of CRC prevention and therapy requires a better understanding of the alterations in Wnt signaling and gene expression that underlie neoplastic progression, stem cell fate, and the development of resistance to butyrate and clinically relevant HDACis. Detailed knowledge of how CBP- and p300 modulate colonic cell physiology may lead to new approaches for anti-CRC prevention and therapeutics, particularly with respect to combinatorial therapy of CBP/p300 inhibitors with HDACis. PMID:26217075

  6. Brevenal Is a Natural Inhibitor of Brevetoxin Action in Sodium Channel Receptor Binding Assays

    PubMed Central

    Bourdelais, Andrea J.; Campbell, Susan; Jacocks, Henry; Naar, Jerome; Wright, Jeffery L. C.; Carsi, Jigani; Baden, Daniel G.

    2009-01-01

    Summary 1. Florida red tides produce profound neurotoxicity that is evidenced by massive fish kills, neurotoxic shellfish poisoning, and respiratory distress. Red tides vary in potency, potency that is not totally governed by toxin concentration. The purpose of the study was to understand the variable potency of red tides by evaluating the potential for other natural pharmacological agents which could modulate or otherwise reduce the potency of these lethal environmental events. 2. A synaptosome binding preparation with 3-fold higher specific brevetoxin binding was developed to detect small changes in toxin binding in the presence of potential antagonists. Rodent brain labeled in vitro with tritiated brevetoxin shows high specific binding in the cerebellum as evidenced by autoradiography. Synaptosome binding assays employing cerebellum-derived synaptosomes illustrate 3-fold increased specific binding. 3. A new polyether natural product from Florida's red tide dinoflagellate Karenia brevis, has been isolated and characterized. Brevenal, as the nontoxic natural product is known, competes with tritiated brevetoxin for site 5 associated with the voltage-sensitive sodium channel (VSSC). Brevenal displacement of specific brevetoxin binding is purely competitive in nature. 4. Brevenal, obtained from either laboratory cultures or field collections during a red tide, protects fish from the neurotoxic effects of brevetoxin exposure. 5. Brevenal may serve as a model compound for the development of therapeutics to prevent or reverse intoxication in red tide exposures. PMID:15233378

  7. Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring.

    PubMed

    Huang, Yanping; Gao, Shixing; Chen, Jinglong; Albrecht, Elke; Zhao, Ruqian; Yang, Xiaojing

    2017-02-21

    Maternal nutrition is important for the risk of the offspring to develop insulin resistance and adiposity later in life. The study was undertaken to determine effects of maternal butyrate supplementation on lipid metabolism and insulin sensitivity in the offspring skeletal muscle. The offspring of rats, fed a control diet or a butyrate diet (1% sodium butyrate) throughout gestation and lactation, was studied at weaning and at 60 days of age. The offspring of dams fed a butyrate diet had higher HOMA-insulin resistance and impaired glucose tolerance. This was associated with elevated mRNA and protein expressions of lipogenic genes and decreased amounts of lipolytic enzyme. Simultaneously, enhanced acetylation of histone H3 lysine 9 and histone H3 lysine 27 modification on the lipogenic genes in skeletal muscle of adult offspring was observed. Higher concentration of serum insulin and intramuscular triglyceride in skeletal muscle of offspring from the butyrate group at weaning were accompanied by increasing levels of lipogenic genes and enrichment of acetylation of histone H3 lysine 27. Maternal butyrate supplementation leads to insulin resistance and ectopic lipid accumulation in skeletal muscle of offspring, indicating the importance of short chain fatty acids in the maternal diet on lipid metabolism.

  8. The Future of Butyric Acid in Industry

    PubMed Central

    Dwidar, Mohammed; Park, Jae-Yeon; Mitchell, Robert J.; Sang, Byoung-In

    2012-01-01

    In this paper, the different applications of butyric acid and its current and future production status are highlighted, with a particular emphasis on the biofuels industry. As such, this paper discusses different issues regarding butyric acid fermentations and provides suggestions for future improvements and their approaches. PMID:22593687

  9. Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors.

    PubMed

    Music, Ena; Khan, Saad; Khamis, Imran; Heikkila, John J

    2014-11-01

    The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats.

  10. Response of copper deficient rats to inhibitors of renal sodium reabsorption

    SciTech Connect

    Noordewier, B.; Saari, J.T. USDA/ARS, Grand Forks, ND )

    1991-03-11

    This study examined the effects of furosemide (Furo), a Loop diuretic, and amiloride (Am), a potassium (K)-sparing diuretic, on the excretion of sodium (Na) and K in copper-adequate (CuAdeq) and copper-deficient (CuDef) rats. Weanling male Sprague Dawley rats were fed a CuDef or CuAdeq diet ad libitum and given deionized water to drink. After 5 weeks on the diets, rats were assigned to one of four treatment regimens: Furo, Am or Furo + Am. Rats were anesthetized and electrolyte excretion was measured in 2 {times} 15 min control periods followed by 3 {times} 15 min treatment periods. Furo increased Na excretion in a dose dependent manner in both the CuAdeq and the CuDef rats. The response of the CuAdeq rats was slightly greater than that of the CuDef rats in each of the 3 treatment groups in which Furo was given. K excretion following Furo increased to the same extent in the CuAdeq and CuDef rats. The natriuretic response to Am alone was slightly greater in the CuDef than the CuAdeq rats. The antikaliuretic response of the CuDef rats was similar to that of the CuAdeq rats whether Am was given alone or in combination with Furo. These data show that CuDef rats respond to Furo and Am in a manner which is similar to that of CuAdeq rats, this indicates that the sensitivity of the Na reabsorption mechanisms to inhibition by diuretics is not markedly affected by copper deficiency.

  11. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    SciTech Connect

    Sharma, Bhupesh Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  12. LX2761, a Sodium/Glucose Cotransporter 1 Inhibitor Restricted to the Intestine, Improves Glycemic Control in Mice.

    PubMed

    Powell, David R; Smith, Melinda G; Doree, Deon D; Harris, Angela L; Greer, Jennifer; DaCosta, Christopher M; Thompson, Andrea; Jeter-Jones, Sabrina; Xiong, Wendy; Carson, Kenneth G; Goodwin, Nicole C; Harrison, Bryce A; Rawlins, David B; Strobel, Eric D; Gopinathan, Suma; Wilson, Alan; Mseeh, Faika; Zambrowicz, Brian; Ding, Zhi-Ming

    2017-07-01

    LX2761 is a potent sodium/glucose cotransporter 1 inhibitor restricted to the intestinal lumen after oral administration. Studies presented here evaluated the effect of orally administered LX2761 on glycemic control in preclinical models. In healthy mice and rats treated with LX2761, blood glucose excursions were lower and plasma total glucagon-like peptide-1 (GLP-1) levels higher after an oral glucose challenge; these decreased glucose excursions persisted even when the glucose challenge occurred 15 hours after LX2761 dosing in ad lib-fed mice. Further, treating mice with LX2761 and the dipeptidyl-peptidase 4 inhibitor sitagliptin synergistically increased active GLP-1 levels, suggesting increased LX2761-mediated release of GLP-1 into the portal circulation. LX2761 also lowered postprandial glucose, fasting glucose, and hemoglobin A1C, and increased plasma total GLP-1, during long-term treatment of mice with either early- or late-onset streptozotocin-diabetes; in the late-onset cohort, LX2761 treatment improved survival. Mice and rats treated with LX2761 occasionally had diarrhea; this dose-dependent side effect decreased in severity and frequency over time, and LX2761 doses were identified that decreased postprandial glucose excursions without causing diarrhea. Further, the frequency of LX2761-associated diarrhea was greatly decreased in mice either by gradual dose escalation or by pretreatment with resistant starch 4, which is slowly digested to glucose in the colon, a process that primes the colon for glucose metabolism by selecting for glucose-fermenting bacterial species. These data suggest that clinical trials are warranted to determine if LX2761 doses and dosing strategies exist that provide improved glycemic control combined with adequate gastrointestinal tolerability in people living with diabetes. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Novel sodium channel inhibitor from Conus geographus: purification, structure, and pharmacological properties

    SciTech Connect

    Yanagawa, Y.; Abe, T.; Satake, M.; Odani, S.; Suzuki, J.; Ishikawa, K.

    1988-08-23

    A novel toxin, tentatively named conotoxin GS (CGS), has been isolated form a marine snail, Conus geographus. CGS was found to exist as a single polypeptide chain, consisting of 34 amino acid residues, cross-linked by three disulfide bonds. Its amino acid sequence was shown to be Ala-Cys-Ser-Gly-Arg-Gly-Ser-Arg-Cys-Hyp-Hyp-Gln-Cys-Cys-Met-Gly-Leu-Arg-Cys-Gly-Arg-Gly-Asn-Pro-Gln-Lys-Cys-Ile-Gly-Ala-His-Gla-Asp-Val. In competition experiments, CGS inhibited the bindings of (/sup 3/H)Lys-tetrodotoxin ((/sup 3/H)Lys-TTX) and (/sup 3/H)propionylconotoxin GIIIA to Electrophorus electricus electroplax membranes, with K/sub i/ values of 34 nM and 24 nM, respectively. The toxin inhibited the binding of (/sup 3/H)Lys-TTX (1 nM) to rat skeletal muscle homogenates with an IC/sub 50/ value of 880 nM but showed very little effect on this binding to the rat brain P/sub 2/ fraction at 10 ..mu..M. These binding studies indicate that CGS belongs to the same group of Na channel inhibitors as TTX, STX (saxitoxin), and ..mu..-conotoxins. Although CGS, like the ..mu..-conotoxins, is a pharmacological probe for distinguishing between neuronal and muscle Na channel subtypes, the homology in the sequences of CGS and ..mu..-conotoxins is very limited.

  14. Case of ketoacidosis by a sodium-glucose cotransporter 2 inhibitor in a diabetic patient with a low-carbohydrate diet

    PubMed Central

    Hayami, Tomohide; Kato, Yoshiro; Kamiya, Hideki; Kondo, Masaki; Naito, Ena; Sugiura, Yukako; Kojima, Chika; Sato, Sami; Yamada, Yuichiro; Kasagi, Rina; Ando, Toshihito; Noda, Saeko; Nakai, Hiromi; Takada, Eriko; Asano, Emi; Motegi, Mikio; Watarai, Atsuko; Kato, Koichi; Nakamura, Jiro

    2015-01-01

    We present a case of a 32-year-old diabetic woman with Prader–Willi syndrome who developed severe ketoacidosis caused by a sodium-glucose cotransporter 2 (SGLT2) inhibitor, a novel class of antihyperglycemic agents, during a strict low-carbohydrate diet. At admission, a serum glucose level of 191 mg/dL was relatively low, though laboratory evaluations showed severe ketoacidosis. This is the first report of ketoacidosis caused by a SGLT2 inhibitor. It is necessary to not only pay attention when using a SGLT2 inhibitor in patients following a low-carbohydrate diet, but also to start a low-carbohydrate diet in patients treated with a SGLT2 inhibitor because of a high risk for developing ketoacidosis. PMID:26417418

  15. Euglycemic Diabetic Ketoacidosis in a 27 year-old female patient with type-1-Diabetes treated with sodium-glucose cotransporter-2 (SGLT2) inhibitor Canagliflozin

    PubMed Central

    Bader, Nimrah; Mirza, Lubna

    2016-01-01

    We are reporting a timely case of atypical euglycemic diabetic ketoacidosis in a type 1 diabetic patient treated with sodium-glucose cotransporter-2 (SGLT-2) inhibitor canagliflozin. The clinical history, physical examination findings and laboratory values are described. Other causes of acidosis such as salicylate toxicity or alcohol intoxication were excluded. Ketoacidosis resolved after increasing dextrose and insulin doses supporting the hypothesis that SGLT-2 inhibitors may lead to hypoinsulinemia. Euglycemic ketoacidosis did not recur in our patient after discontinuing canagliflozin. We recommend reserving SGLT2 inhibitor therapy to type 2 diabetics, discontinuing medication and treating patients presenting with ketoacidosis due to SGLT-2 inhibitors with higher concentrations of dextrose with appropriate doses of insulin to help resolve acidosis. PMID:27375734

  16. Discovery of Dihydrobenzoxazepinone (GS-6615) Late Sodium Current Inhibitor (Late INai), a Phase II Agent with Demonstrated Preclinical Anti-Ischemic and Antiarrhythmic Properties.

    PubMed

    Zablocki, Jeff A; Elzein, Elfatih; Li, Xiaofen; Koltun, Dmitry O; Parkhill, Eric Q; Kobayashi, Tetsuya; Martinez, Ruben; Corkey, Britton; Jiang, Haibo; Perry, Thao; Kalla, Rao; Notte, Gregory T; Saunders, Oliver; Graupe, Michael; Lu, Yafan; Venkataramani, Chandru; Guerrero, Juan; Perry, Jason; Osier, Mark; Strickley, Robert; Liu, Gongxin; Wang, Wei-Qun; Hu, Lufei; Li, Xiao-Jun; El-Bizri, Nesrine; Hirakawa, Ryoko; Kahlig, Kris; Xie, Cheng; Li, Cindy Hong; Dhalla, Arvinder K; Rajamani, Sridharan; Mollova, Nevena; Soohoo, Daniel; Lepist, Eve-Irene; Murray, Bernard; Rhodes, Gerry; Belardinelli, Luiz; Desai, Manoj C

    2016-10-03

    Late sodium current (late INa) is enhanced during ischemia by reactive oxygen species (ROS) modifying the Nav 1.5 channel, resulting in incomplete inactivation. Compound 4 (GS-6615, eleclazine) a novel, potent, and selective inhibitor of late INa, is currently in clinical development for treatment of long QT-3 syndrome (LQT-3), hypertrophic cardiomyopathy (HCM), and ventricular tachycardia-ventricular fibrillation (VT-VF). We will describe structure-activity relationship (SAR) leading to the discovery of 4 that is vastly improved from the first generation late INa inhibitor 1 (ranolazine). Compound 4 was 42 times more potent than 1 in reducing ischemic burden in vivo (S-T segment elevation, 15 min left anteriorior descending, LAD, occlusion in rabbits) with EC50 values of 190 and 8000 nM, respectively. Compound 4 represents a new class of potent late INa inhibitors that will be useful in delineating the role of inhibitors of this current in the treatment of patients.

  17. Euglycemic Diabetic Ketoacidosis in a 27 year-old female patient with type-1-Diabetes treated with sodium-glucose cotransporter-2 (SGLT2) inhibitor Canagliflozin.

    PubMed

    Bader, Nimrah; Mirza, Lubna

    2016-01-01

    We are reporting a timely case of atypical euglycemic diabetic ketoacidosis in a type 1 diabetic patient treated with sodium-glucose cotransporter-2 (SGLT-2) inhibitor canagliflozin. The clinical history, physical examination findings and laboratory values are described. Other causes of acidosis such as salicylate toxicity or alcohol intoxication were excluded. Ketoacidosis resolved after increasing dextrose and insulin doses supporting the hypothesis that SGLT-2 inhibitors may lead to hypoinsulinemia. Euglycemic ketoacidosis did not recur in our patient after discontinuing canagliflozin. We recommend reserving SGLT2 inhibitor therapy to type 2 diabetics, discontinuing medication and treating patients presenting with ketoacidosis due to SGLT-2 inhibitors with higher concentrations of dextrose with appropriate doses of insulin to help resolve acidosis.

  18. Enhancement of human sodium iodide symporter gene therapy for breast cancer by HDAC inhibitor mediated transcriptional modulation.

    PubMed

    Kelkar, Madhura G; Senthilkumar, Kalimuthu; Jadhav, Smita; Gupta, Sudeep; Ahn, Beyong-Cheol; De, Abhijit

    2016-01-18

    The aberrant expression of human sodium iodide symporter (NIS) in breast cancer (BC) has raised the possibility of using targeted radioiodide therapy. Here we investigate modulation of endogenous, functional NIS expression by histone deacetylase inhibitors (HDACi) in vitro and in vivo. Luciferase reporter based initial screening of six different HDACi shows 2-10 fold enhancement of NIS promoter activity in majority of the cell types tested. As a result of drug treatment, endogenous NIS transcript and protein shows profound induction in BC cells. To get an insight on the mechanism of such transcriptional activation, role of Stat4, CREB and other transcription factors are revealed by transcription factor profiling array. Further, NIS-mediated intracellular iodide uptake also enhances substantially (p < 0.05) signifying functional relevance of the transcriptional modulation strategy. Gamma camera imaging confirms 30% higher uptake in VPA or NaB treated BC tumor xenograft. Corroborating with such functional impact of NIS, significant reduction in cell survival (p < 0.005) is observed in VPA, NaB or CI994 drug and (131)I combination treatment in vivo indicating effective radioablation. Thus, for the first time this study reveals the mechanistic basis and demonstrates functional relevance of HDACi pre-treatment strategy in elevating NIS gene therapy approach for BC management in clinic.

  19. Enhancement of human sodium iodide symporter gene therapy for breast cancer by HDAC inhibitor mediated transcriptional modulation

    PubMed Central

    Kelkar, Madhura G.; Senthilkumar, Kalimuthu; Jadhav, Smita; Gupta, Sudeep; Ahn, Beyong-Cheol; De, Abhijit

    2016-01-01

    The aberrant expression of human sodium iodide symporter (NIS) in breast cancer (BC) has raised the possibility of using targeted radioiodide therapy. Here we investigate modulation of endogenous, functional NIS expression by histone deacetylase inhibitors (HDACi) in vitro and in vivo. Luciferase reporter based initial screening of six different HDACi shows 2–10 fold enhancement of NIS promoter activity in majority of the cell types tested. As a result of drug treatment, endogenous NIS transcript and protein shows profound induction in BC cells. To get an insight on the mechanism of such transcriptional activation, role of Stat4, CREB and other transcription factors are revealed by transcription factor profiling array. Further, NIS-mediated intracellular iodide uptake also enhances substantially (p < 0.05) signifying functional relevance of the transcriptional modulation strategy. Gamma camera imaging confirms 30% higher uptake in VPA or NaB treated BC tumor xenograft. Corroborating with such functional impact of NIS, significant reduction in cell survival (p < 0.005) is observed in VPA, NaB or CI994 drug and 131I combination treatment in vivo indicating effective radioablation. Thus, for the first time this study reveals the mechanistic basis and demonstrates functional relevance of HDACi pre-treatment strategy in elevating NIS gene therapy approach for BC management in clinic. PMID:26777440

  20. [Gender-dependent effects of histone deacetylase inhibitor sodium valproate on early olfactory learning in 129Sv mice].

    PubMed

    Burenkova, O V; Aleksandrova, E A; Zaraĭskaia, I Iu

    2013-02-01

    In the brain, histone acetylation underlies both learning and the maintenance of long-term sustained effects of early experience which is further epigenetically inherited. However, the role of acetylation in learning previously has only been studied in adult animals: high level of learning could be dependent on high levels of histone H3 acetylation in the brain. The role of acetylation in the mechanisms of early learning has not been studied. In the present work, we were interested whether histone deacetylase inhibitor sodium valproate which increases the level of histone H3 acetylation will affect early olfactory discrimination learning in 8-day-old pups of 129Sv mice that are characterized by low efficiency of learning with imitation of maternal grooming. Multiple valproate injections from 3rd to 6th postnatal day had a gender-dependent effect: learning was selectively improved in male but not in female pups. In the female pups, learning improvement was observed after multiple injections of saline. Possible epigenetic mechanisms underlying these sex differences are discussed.

  1. Incretins and selective renal sodium-glucose co-transporter 2 inhibitors in hypertension and coronary heart disease

    PubMed Central

    Sanchez, Ramiro A; Sanabria, Hugo; de los Santos, Cecilia; Ramirez, Agustin J

    2015-01-01

    Hyperglycemia is associated with an increased risk of cardiovascular disease, and the consequences of intensive therapy may depend on the mechanism of the anti-diabetic agent(s) used to achieve a tight control. In animal models, stable analogues of glucagon-like peptide-1 (GLP-1) were able to reduce body weight and blood pressure and also had favorable effects on ischemia following coronary reperfusion. In a similar way, dipeptidyl peptidase IV (DPP-IV) showed to have favorable effects in animal models of ischemia/reperfusion. This could be due to the fact that DPP-IV inhibitors were able to prevent the breakdown of GLP-1 and glucose-dependent insulinotropic polypeptide, but they also decreased the degradation of several vasoactive peptides. Preclinical data for GLP-1, its derivatives and inhibitors of the DPP-IV enzyme degradation suggests that these agents may be able to, besides controlling glycaemia, induce cardio-protective and vasodilator effects. Notwithstanding the many favorable cardiovascular effects of GLP-1/incretins reported in different studies, many questions remain unanswered due the limited number of studies in human beings that aim to examine the effects of GLP-1 on cardiovascular endpoints. For this reason, long-term trials searching for positive cardiovascular effects are now in process, such as the CAROLINA and CARMELINA trials, which are supported by small pilot studies performed in humans (and many more animal studies) with incretin-based therapies. On the other hand, selective renal sodium-glucose co-transporter 2 inhibitors were also evaluated in the prevention of cardiovascular outcomes in type 2 diabetes. However, it is quite early to draw conclusions, since data on cardiovascular outcomes and cardiovascular death are limited and long-term studies are still ongoing. In this review, we will analyze the mechanisms underlying the cardiovascular effects of incretins and, at the same time, we will present a critical position about the real

  2. SHR3824, a novel selective inhibitor of renal sodium glucose cotransporter 2, exhibits antidiabetic efficacy in rodent models

    PubMed Central

    Yan, Pang-ke; Zhang, Li-na; Feng, Ying; Qu, Hui; Qin, Li; Zhang, Lian-shan; Leng, Ying

    2014-01-01

    Aim: The sodium glucose cotransporter 2 (SGLT2) plays an important role in renal glucose reabsorption, thus serves as a new target for the treatment of diabetes. The purpose of this study was to evaluate SHR3824 as a novel selective SGLT2 inhibitor and to characterize its in vivo effects on glucose homeostasis. The effects of chronic administration of SHR3824 on peripheral insulin sensitivity and pancreatic β-cell function were also investigated. Methods: The in vitro potency and selectivity of SHR3824 were assessed in HEK293 cells transfected with human SGLT2 or SGLT1. Acute and multi-dose studies were performed on ICR mice, GK rats and db/db mice to assess the ability of SHR3824 to enhance urinary glucose excretion and improve blood glucose levels. 2-Deoxyglucose uptake and insulin immunohistochemical staining were performed in the soleus muscle and pancreas, respectively, of db/db mice. A selective SGLT2 inhibitor BMS512148 (dapagliflozin) was taken as positive control. Results: SHR3824 potently inhibited human SGLT2 in vitro, but exerted much weak inhibition on human SGLT1 (the IC50 values of SHR3824 against human SGLT2 and SGLT1 were 2.38 and 4324 nmol/L, respectively). Acute oral administration of SHR3824 (0.3, 1.0, 3.0 mg/kg) dose-dependently improved glucose tolerance in ICR mice, and reduced hyperglycemia by increasing urinary glucose excretion in GK rats and db/db mice. Chronic oral administration of SHR3824 (0.3, 1.0, 3.0 mg·kg−1·d−1) dose-dependently reduced blood glucose and HbA1c levels in GK rats and db/db mice, and significantly increased insulin-stimulated glucose uptake in the soleus muscles and enhanced insulin staining in the islet cells of db/db mice. Conclusion: SHR3824 is a potent and selective SGLT2 inhibitor and exhibits antidiabetic efficacy in several rodent models, suggesting its potential as a new therapeutic agent for the treatment of type 2 diabetes. PMID:24786232

  3. Hemodynamic and renal implications of sodium-glucose cotransporter- 2 inhibitors in type 2 diabetes mellitus.

    PubMed

    Tejedor Jorge, Alberto

    2016-11-01

    In DM2, there is increased expression of the proximal glucose transporter SGLT2. The increased glucose reabsorption from the urine to the proximal tubule and subsequently to the bloodstream, has three direct effects on the prognosis of patients with DM2: a) it increases the daily glucose load by raising the renal threshold for glucose, thus augmenting requirements for oral antidiabetics and insulin. This progressive increase occurs throughout the course of the disease and in parallel with the increase in renal mass (renal hypertrophy); b) because of the greater glucose reabsorption, glycosuria is lower than the level corresponding to glycaemia, decreasing the stimulus on the tubuloglomerular feedback system of the distal nephron. As a result, the glomerular vasodilation caused by hyperglycaemia is not arrested, maintaining glomerular hyperfiltration, and c) the excess glucose transported to the proximal tubular cells modifies their redox status, increasing local production of glycosylating products and activating local production of proinflammatory and profibrotic proliferative mediators. These mediators are responsible for the direct free radical damage to proximal tubular cells, for increased SGLT2 expression, increased production of collagen IV and extracellular matrix, and activation of monocyte/macrophages able to cause endothelial injury. The use of SGLT2 inhibitors not only reduces the reabsorption of glucose from the glomerular filtrate back into the circulationthus improving metabolic control in diabetesbut also restores tubuloglomerular feedback by increasing glycosuria and distal urinary flow. However, the most notable effect is due to inhibition of glucose entry to the proximal tubular cells. Glycosuria is toxic to the kidney: it harms glucosetransporting cells, that is, the proximal cells, which contain SGLT2. In animal models, SGLT2 inhibition reduces local production of oxygen-free radicals, the formation of mesangial matrix and collagen IV

  4. The potential of sodium glucose cotransporter 2 (SGLT2) inhibitors to reduce cardiovascular risk in patients with type 2 diabetes (T2DM).

    PubMed

    Basile, Jan N

    2013-01-01

    Type 2 diabetes mellitus (T2DM) significantly increases morbidity and mortality from cardiovascular disease (CVD). Treatments for patients with T2DM have the potential to reduce cardiovascular (CV) risk. This review focuses on the potential of a new class of antidiabetic agents, the sodium glucose cotransporter 2 (SGLT2) inhibitors, to reduce CV risk in patients with T2DM through reductions in hyperglycemia, blood pressure (BP), and body weight. The results of clinical trials of SGLT2 inhibitors are summarized and discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon.

    PubMed

    Louis, Petra; Duncan, Sylvia H; McCrae, Sheila I; Millar, Jacqueline; Jackson, Michelle S; Flint, Harry J

    2004-04-01

    The final steps in butyrate synthesis by anaerobic bacteria can occur via butyrate kinase and phosphotransbutyrylase or via butyryl-coenzyme A (CoA):acetate CoA-transferase. Degenerate PCR and enzymatic assays were used to assess the presence of butyrate kinase among 38 anaerobic butyrate-producing bacterial isolates from human feces that represent three different clostridial clusters (IV, XIVa, and XVI). Only four strains were found to possess detectable butyrate kinase activity. These were also the only strains to give PCR products (verifiable by sequencing) with degenerate primer pairs designed within the butyrate kinase gene or between the linked butyrate kinase/phosphotransbutyrylase genes. Further analysis of the butyrate kinase/phosphotransbutyrylase genes of one isolate, L2-50, revealed similar organization to that described previously from different groups of clostridia, along with differences in flanking sequences and phylogenetic relationships. Butyryl-CoA:acetate CoA-transferase activity was detected in all 38 strains examined, suggesting that it, rather than butyrate kinase, provides the dominant route for butyrate formation in the human colonic ecosystem that contains a constantly high concentration of acetate.

  6. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data.

    PubMed

    Kurosaki, Eiji; Ogasawara, Hideaki

    2013-07-01

    Sodium-glucose cotransporter-2 (SGLT2) is expressed in the proximal tubules of the kidneys and plays a key role in renal glucose reabsorption. A novel class of antidiabetic medications, SGLT2-selective inhibitors attempt to improve glycemic control in diabetics by preventing glucose from being reabsorbed through SGLT2 and re-entering circulation. Ipragliflozin is an SGLT2 inhibitor in Phase 3 clinical development for the treatment of type 2 diabetes mellitus (T2DM). In this review, we summarize recent animal and human studies on ipragliflozin and other SGLT2 inhibitors including dapagliflozin, canagliflozin, empagliflozin, tofogliflozin, and luseogliflozin. These agents all show potent and selective SGLT2 inhibition in vitro and reduce blood glucose levels and HbA1c in both diabetic animal models and patients with T2DM. SGLT2 inhibitors offer several advantages over other classes of hypoglycemic agents. Due to their insulin-independent mode of action, SGLT2 inhibitors provide steady glucose control without major risk for hypoglycemia and may also reverse β-cell dysfunction and insulin resistance. Other favorable effects of SGLT2 inhibitors include a reduction in both body weight and blood pressure. SGLT2 inhibitors are safe and well tolerated and can easily be combined with other classes of antidiabetic medications to achieve tighter glycemic control. The long-term safety and efficacy of these agents are under evaluation.

  7. Propolis Augments Apoptosis Induced by Butyrate via Targeting Cell Survival Pathways

    PubMed Central

    Drago, Eric; Bordonaro, Michael; Lee, Seon; Atamna, Wafa; Lazarova, Darina L.

    2013-01-01

    Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC), and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling) may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors. PMID:24023824

  8. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.

    PubMed

    Peng, Luying; Li, Zhong-Rong; Green, Robert S; Holzman, Ian R; Lin, Jing

    2009-09-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier.

  9. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers12

    PubMed Central

    Peng, Luying; Li, Zhong-Rong; Green, Robert S.; Holzman, Ian R.; Lin, Jing

    2009-01-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier. PMID:19625695

  10. Increased dietary potassium and magnesium attenuate experimental volume dependent hypertension possibly through endogenous sodium-potassium pump inhibitor.

    PubMed

    Pamnani, Motilal B; Bryant, Howard J; Clough, David L; Schooley, James F

    2003-02-01

    We and others have shown that inhibition of cardiovascular muscle (CVM) cell Na+,K-ATPase activity (NKPTA) due to increased level of endogenous sodium potassium pump inhibitor (SPI) is involved in the mechanism of volume expanded (VE) experimental and human essential hypertension (HT). Since diets fortified with very high potassium (K) or very high magnesium (Mg) decrease blood pressure (BP), we have examined the effect of a moderate increase in dietary K alone and a moderate increase in dietary K and Mg on plasma levels of SPI, CVM cell NKPTA, and BP in reduced renal mass (RRM)-salt HT rats, a classical model of VE HT. Seventy Percent-RRM rats were divided in four dietary groups, (1) Na free and normal K and Mg (0Na-K-Mg); (2) normal Na, K and Mg (Na-K-Mg); (3) normal Na and high K (2 x normal), and normal Mg (Na-2K-Mg); and (4) normal Na and high K (2 x normal), and high Mg (2 x normal) (Na-2K-2Mg). As expected, compared to control 0Na-K-Mg rats, Na-K-Mg rats developed HT. Blood pressure increased significantly less in Na-2K-Mg rats whereas, BP did not increase in Na-2K-2Mg rats. Hypertension in NA-K-Mg rats was associated with an increase in plasma SPI and digitalis like factor (DIF) and a decrease in renal and myocardial NKPTA. However, doubling the Mg along with K in the diet (Na-2K-2Mg) normalized SPI and DIF and increased myocardial and renal NKPTA, compared to control 0Na-K-Mg rats. Also, compared to 0Na-K-Mg rats, water consumption, urine excretion, urinary sodium excretion urinary potassium excretion (U(Na)V), and (U(K)V) increased in the other three groups, more so in Na-2K-2Mg rats. These data show that K and Mg have additive effects in preventing an increase in SPI, thus probably preventing the BP increase in RRM rats.

  11. The c-Jun-N-terminal-Kinase inhibitor SP600125 enhances the butyrate derivative D1-induced apoptosis via caspase 8 activation in Kasumi 1 t(8;21) acute myeloid leukaemia cells.

    PubMed

    Rovida, Elisabetta; Gozzini, Antonella; Barbetti, Valentina; Giuntoli, Serena; Santini, Valeria; Dello Sbarba, Persio

    2006-12-01

    We recently showed that the histone deacetylase inhibitor D1 induced apoptosis in the t(8;21) Kasumi 1 acute myeloid leukaemia (AML) cell line and activated caspase 9. The present study characterised the effects of the combined administration of D1 with PD98059, SB203580 or SP600125, specific inhibitors of mitogen-activated protein kinase, extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 or Jun N-terminal kinase (JNK), respectively. Among these inhibitors, SP600125 was the only one to markedly induce apoptosis and decrease cell proliferation. These experiments showed that SP600125 activated caspase 8 and confirmed that D1 activated the intrinsic pathway of apoptosis, as caspase 8 was not affected while Bcl-2 was down-regulated following D1 administration. The combination of the two drugs enhanced caspase-8 activation and induced apoptosis in an additive fashion. JNK was constitutively activated in the Kasumi 1, NB4, HL60 and THP-1 human AML cell lines, as well as in primary blasts from a t(8;21) AML patient. In all these cells, the pro-apoptotic effect of the two drugs alone was increased when they were combined. On this basis, the combined administration of D1 with SP600125 seems to be very promising as a potential anti-leukaemic tool in AML.

  12. Clinical Pharmacokinetic, Pharmacodynamic, and Drug-Drug Interaction Profile of Canagliflozin, a Sodium-Glucose Co-transporter 2 Inhibitor.

    PubMed

    Devineni, Damayanthi; Polidori, David

    2015-10-01

    The sodium-glucose co-transporter 2 (SGLT2) inhibitors represent novel therapeutic approaches in the management of type 2 diabetes mellitus; they act on kidneys to decrease the renal threshold for glucose (RTG) and increase urinary glucose excretion (UGE). Canagliflozin is an orally active, reversible, selective SGLT2 inhibitor. Orally administered canagliflozin is rapidly absorbed achieving peak plasma concentrations in 1-2 h. Dose-proportional systemic exposure to canagliflozin has been observed over a wide dose range (50-1600 mg) with an oral bioavailability of 65 %. Canagliflozin is glucuronidated into two inactive metabolites, M7 and M5 by uridine diphosphate-glucuronosyltransferase (UGT) 1A9 and UGT2B4, respectively. Canagliflozin reaches steady state in 4 days, and there is minimal accumulation observed after multiple dosing. Approximately 60 % and 33 % of the administered dose is excreted in the feces and urine, respectively. The half-life of orally administered canagliflozin 100 or 300 mg in healthy participants is 10.6 and 13.1 h, respectively. No clinically relevant differences are observed in canagliflozin exposure with respect to age, race, sex, and body weight. The pharmacokinetics of canagliflozin remains unaffected by mild or moderate hepatic impairment. Systemic exposure to canagliflozin is increased in patients with renal impairment relative to those with normal renal function; however, the efficacy is reduced in patients with renal impairment owing to the reduced filtered glucose load. Canagliflozin did not show clinically relevant drug interactions with metformin, glyburide, simvastatin, warfarin, hydrochlorothiazide, oral contraceptives, probenecid, and cyclosporine, while co-administration with rifampin modestly reduced canagliflozin plasma concentrations and thus may necessitate an appropriate monitoring of glycemic control. Canagliflozin increases UGE and suppresses RTG in a dose-dependent manner, thereby lowering the plasma glucose

  13. Bone effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus.

    PubMed

    Blevins, Thomas C; Farooki, Azeez

    2017-01-01

    Canagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor approved for the treatment of type 2 diabetes mellitus (T2DM), lowers blood glucose by inhibiting renal glucose reabsorption and increasing urinary glucose excretion. It has been reported that SGLT2 inhibitors may have potential adverse effects on bone, including increased fracture risk and decreased bone mineral density (BMD). Across clinical studies, canagliflozin was not associated with meaningful changes in serum or urine calcium, vitamin D, or parathyroid hormone. Minimal increases in serum phosphate and magnesium that were within normal limits were seen with canagliflozin versus placebo. Canagliflozin was associated with increases in serum collagen type 1 beta-carboxy telopeptide (beta-CTX), a bone resorption marker, and osteocalcin, a bone formation marker. Decreases in total hip BMD were seen with canagliflozin 100 and 300 mg versus placebo after 2 years (-1.7%, -2.1%, -0.8%; differences of -0.9% and -1.2%), but not at other skeletal sites (normal age-related bone loss, ~0.5-1.0%/year). Changes in beta-CTX and total hip BMD were significantly associated with weight loss, which is known to increase bone resorption markers and decrease BMD. Canagliflozin was associated with a higher fracture incidence in an interim analysis of the CANagliflozin cardioVascular Assessment Study (CANVAS) in patients with a history or high risk of cardiovascular disease (incidence per 100 patient-years of 1.6, 1.6, and 1.1 with canagliflozin 100 and 300 mg and placebo), but not in other clinical studies of patients with T2DM. Fractures tended to occur as early as 12 weeks after initiating treatment and were primarily located in the distal parts of the upper and lower extremities. The reason for increased fracture risk with canagliflozin treatment is unknown, but is likely not related to a direct effect of canagliflozin on bone-related biomarkers. Data from ongoing canagliflozin studies, including CANVAS, will

  14. Photobleaching reveals complex effects of inhibitors on transcribing RNA polymerase II in living cells

    SciTech Connect

    Fromaget, Maud; Cook, Peter R. . E-mail: peter.cook@path.ox.ac.uk

    2007-08-15

    RNA polymerase II transcribes most eukaryotic genes. Photobleaching studies have revealed that living Chinese hamster ovary cells expressing the catalytic subunit of the polymerase tagged with the green fluorescent protein contain a large rapidly exchanging pool of enzyme, plus a smaller engaged fraction; genetic complementation shows this tagged polymerase to be fully functional. We investigated how transcriptional inhibitors - some of which are used therapeutically - affect the engaged fraction in living cells using fluorescence loss in photobleaching; all were used at concentrations that have reversible effects. Various kinase inhibitors (roscovitine, DRB, KM05283, alsterpaullone, isoquinolinesulfonamide derivatives H-7, H-8, H-89, H-9), proteasomal inhibitors (lactacystin, MG132), and an anti-tumour agent (cisplatin) all reduced the engaged fraction; an intercalator (actinomycin D), two histone deacetylase inhibitors (trichostatin A, sodium butyrate), and irradiation with ultra-violet light all increased it. The polymerase proves to be both a sensitive sensor and effector of the response to these inhibitors.

  15. Interaction of the Sodium/Glucose Cotransporter (SGLT) 2 inhibitor Canagliflozin with SGLT1 and SGLT2.

    PubMed

    Ohgaki, Ryuichi; Wei, Ling; Yamada, Kazunori; Hara, Taiki; Kuriyama, Chiaki; Okuda, Suguru; Ueta, Kiichiro; Shiotani, Masaharu; Nagamori, Shushi; Kanai, Yoshikatsu

    2016-07-01

    Canagliflozin, a selective sodium/glucose cotransporter (SGLT) 2 inhibitor, suppresses the renal reabsorption of glucose and decreases blood glucose level in patients with type 2 diabetes. A characteristic of canagliflozin is its modest SGLT1 inhibitory action in the intestine at clinical dosage. To reveal its mechanism of action, we investigated the interaction of canagliflozin with SGLT1 and SGLT2. Inhibition kinetics and transporter-mediated uptake were examined in human SGLT1- or SGLT2-expressing cells. Whole-cell patch-clamp recording was conducted to examine the sidedness of drug action. Canagliflozin competitively inhibited SGLT1 and SGLT2, with high potency and selectivity for SGLT2. Inhibition constant (Ki) values for SGLT1 and SGLT2 were 770.5 and 4.0 nM, respectively. (14)C-canagliflozin was suggested to be transported by SGLT2; however, the transport rate was less than that of α-methyl-d-glucopyranoside. Canagliflozin inhibited α-methyl-d-glucopyranoside-induced SGLT1- and SGLT2-mediated inward currents preferentially from the extracellular side and not from the intracellular side. Based on the Ki value, canagliflozin is estimated to sufficiently inhibit SGLT2 from the urinary side in renal proximal tubules. The Ki value for SGLT1 suggests that canagliflozin suppresses SGLT1 in the small intestine from the luminal side, whereas it does not affect SGLT1 in the heart and skeletal muscle, considering the maximal concentration of plasma-unbound canagliflozin. Similarly, SGLT1 in the kidney would not be inhibited, thereby aiding in the prevention of hypoglycemia. After binding to SGLT2, canagliflozin may be reabsorbed by SGLT2, which leads to the low urinary excretion and prolonged drug action of canagliflozin. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Different pH-sensitivity patterns of 30 sodium channel inhibitors suggest chemically different pools along the access pathway

    PubMed Central

    Lazar, Alexandra; Lenkey, Nora; Pesti, Krisztina; Fodor, Laszlo; Mike, Arpad

    2015-01-01

    The major drug binding site of sodium channels is inaccessible from the extracellular side, drug molecules can only access it either from the membrane phase, or from the intracellular aqueous phase. For this reason, ligand-membrane interactions are as important determinants of inhibitor properties, as ligand-protein interactions. One-way to probe this is to modify the pH of the extracellular fluid, which alters the ratio of charged vs. uncharged forms of some compounds, thereby changing their interaction with the membrane. In this electrophysiology study we used three different pH values: 6.0, 7.3, and 8.6 to test the significance of the protonation-deprotonation equilibrium in drug access and affinity. We investigated drugs of several different indications: carbamazepine, lamotrigine, phenytoin, lidocaine, bupivacaine, mexiletine, flecainide, ranolazine, riluzole, memantine, ritanserin, tolperisone, silperisone, ambroxol, haloperidol, chlorpromazine, clozapine, fluoxetine, sertraline, paroxetine, amitriptyline, imipramine, desipramine, maprotiline, nisoxetine, mianserin, mirtazapine, venlafaxine, nefazodone, and trazodone. We recorded the pH-dependence of potency, reversibility, as well as onset/offset kinetics. As expected, we observed a strong correlation between the acidic dissociation constant (pKa) of drugs and the pH-dependence of their potency. Unexpectedly, however, the pH-dependence of reversibility or kinetics showed diverse patterns, not simple correlation. Our data are best explained by a model where drug molecules can be trapped in at least two chemically different environments: A hydrophilic trap (which may be the aqueous cavity within the inner vestibule), which favors polar and less lipophilic compounds, and a lipophilic trap (which may be the membrane phase itself, and/or lipophilic binding sites on the channel). Rescue from the hydrophilic and lipophilic traps can be promoted by alkalic and acidic extracellular pH, respectively. PMID:26441665

  17. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation.

    PubMed

    Jesus, Ana R; Vila-Viçosa, Diogo; Machuqueiro, Miguel; Marques, Ana P; Dore, Timothy M; Rauter, Amélia P

    2017-01-26

    Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC50 = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC50 = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.

  18. The cyclooxygenase-2-specific inhibitor parecoxib sodium is as effective as 12 mg of morphine administered intramuscularly for treating pain after gynecologic laparotomy surgery.

    PubMed

    Malan, T Philip; Gordon, Stephen; Hubbard, Richard; Snabes, Michael

    2005-02-01

    Parecoxib sodium, the injectable prodrug of valdecoxib, is a cyclooxygenase-2-specific inhibitor that is effective in the treatment of postoperative pain. In this randomized, double-blind, placebo-controlled study, we compared the efficacy of a single dose of parecoxib sodium 40 mg IM with single doses of morphine 6 and 12 mg IM in treating postoperative pain after gynecologic surgery requiring a laparotomy incision. By nearly all efficacy measures (including total pain relief and patient's global evaluation of study medication), parecoxib sodium 40 mg IM demonstrated pain relief and a decrease in pain intensity that was statistically similar to that with morphine 12 mg IM and superior to that with morphine 6 mg IM. Parecoxib sodium 40 mg IM-treated patients also demonstrated a longer time to use of rescue medication than patients treated with both morphine doses, and this dose provided sustained pain relief over the 12-h study period. The incidence of adverse events in the active treatment groups was similar to that observed with placebo. Parecoxib sodium, 40 mg IM, has been shown to be as effective as clinically relevant doses of morphine in patients after gynecologic laparotomy surgery.

  19. Synthesis and biological characterization of synthetic analogs of Huwentoxin-IV (Mu-theraphotoxin-Hh2a), a neuronal tetrodotoxin-sensitive sodium channel inhibitor.

    PubMed

    Deng, Meichun; Luo, Xuan; Jiang, Liping; Chen, Hanchun; Wang, Jun; He, Hailun; Liang, Songping

    2013-09-01

    Huwentoxin-IV (HWTX-IV, also named Mu-theraphotoxin-Hh2a) is a typical inhibitor cystine knot peptide isolated from the venom of Chinese tarantula Ornithoctonus huwena and is found to inhibit tetrodotoxin-sensitive (TTX-S) sodium channels from mammalian sensory neurons. This peptide binds to neurotoxin receptor site 4 located at the extracellular S3-S4 linker of domain II in neuronal sodium channels. However, the molecular surface of HWTX-IV interaction with sodium channels remains unknown. In this study, we synthesized HWTX-IV and three mutants (T28D, R29A and Q34D) and characterized their functions on TTX-S sodium channels from adult rat dorsal root ganglion (DRG) neurons. Analysis of liquid chromatography, mass spectrometry and circular dichroism spectrum indicated that all four synthetic peptides are properly folded. Synthetic HWTX-IV exhibited the same activity as native HWTX-IV, while three mutations reduced toxin binding affinities by 10-200 fold, indicating that the basic or vicinal polar residues Thr²⁸, Arg²⁹, and Gln³⁴ in C-terminus might play critical roles in the interaction of HWTX-IV with TTX-S sodium channels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Supplementing the maternal diet of rats with butyrate enhances mitochondrial biogenesis in the skeletal muscles of weaned offspring.

    PubMed

    Huang, Yanping; Gao, Shixing; Jun, Guo; Zhao, Ruqian; Yang, Xiaojing

    2017-01-01

    The present study aimed to investigate the effects of maternal dietary butyrate supplementation on energy metabolism and mitochondrial biogenesis in offspring skeletal muscle and the possible mediating mechanisms. Virgin female rats were randomly assigned to either control or butyrate diets (1 % butyrate sodium) throughout gestation and lactation. At the end of lactation (21 d), the offspring were killed by exsanguination from the abdominal aorta under anaesthesia. The results showed that maternal butyrate supplementation throughout gestation and lactation did not affect offspring body weight. However, the protein expressions of G-protein-coupled receptors (GPR) 43 and 41 were significantly enhanced in offspring skeletal muscle of the maternal butyrate-supplemented group. The ATP content, most of mitochondrial DNA-encoded gene expressions, the cytochrome c oxidase subunit 1 and 4 protein contents and the mitochondrial DNA copy number were significantly higher in the butyrate group than in the control group. Meanwhile, the protein expressions of type 1 myosin heavy chain, mitochondrial transcription factor A, PPAR-coactivator-1α (PGC-1α) and uncoupling protein 3 were significantly increased in the gastrocnemius muscle of the treatment group compared with the control group. These results indicate for the first time that maternal butyrate supplementation during the gestation and lactation periods influenced energy metabolism and mitochondrial biogenesis through the GPR and PGC-1α pathways in offspring skeletal muscle at weaning.

  1. Effect of Sodium Glucose Cotransporter 2 Inhibitors With Low SGLT2/SGLT1 Selectivity on Circulating Glucagon-Like Peptide 1 Levels in Type 2 Diabetes Mellitus

    PubMed Central

    Takebayashi, Kohzo; Inukai, Toshihiko

    2017-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that improve glycemic control by inhibiting reabsorption of glucose filtered through the renal glomerulus. Use of drugs in this class has increased because of their effect of decreasing body weight and a low risk for hypoglycemia, in addition to a relatively strong glucose-lowering effect. SGLT2 inhibitors such as canagliflozin and sotagliflozin (a SGLT1/SGLT2 dual inhibitor) also have a mild or moderate intestinal and renal SGLT1 inhibitory effect because of their relatively weak selectivity for SGLT2 over SGLT1. Recent evidence shows that these SGLT2 inhibitors with low SGLT2/SGLT1 selectivity elevate the level of circulating glucagon like peptide-1 (GLP-1), an incretin hormone that promotes insulin secretion in pancreatic β cells. This effect probably occurs partly via inhibition of intestinal SGLT1, and the elevation of active GLP-1 levels is especially apparent when these drugs are co-administered with dipeptidyl peptidase 4 (DPP4) inhibitors. These findings suggest that a combination of canagliflozin or sotagliflozin and a DPP4 inhibitor can provide a beneficial effect associated with elevation of circulating active GLP-1 and may serve as a treatment for patients with type 2 diabetes. PMID:28811850

  2. Effect of Sodium Glucose Cotransporter 2 Inhibitors With Low SGLT2/SGLT1 Selectivity on Circulating Glucagon-Like Peptide 1 Levels in Type 2 Diabetes Mellitus.

    PubMed

    Takebayashi, Kohzo; Inukai, Toshihiko

    2017-09-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that improve glycemic control by inhibiting reabsorption of glucose filtered through the renal glomerulus. Use of drugs in this class has increased because of their effect of decreasing body weight and a low risk for hypoglycemia, in addition to a relatively strong glucose-lowering effect. SGLT2 inhibitors such as canagliflozin and sotagliflozin (a SGLT1/SGLT2 dual inhibitor) also have a mild or moderate intestinal and renal SGLT1 inhibitory effect because of their relatively weak selectivity for SGLT2 over SGLT1. Recent evidence shows that these SGLT2 inhibitors with low SGLT2/SGLT1 selectivity elevate the level of circulating glucagon like peptide-1 (GLP-1), an incretin hormone that promotes insulin secretion in pancreatic β cells. This effect probably occurs partly via inhibition of intestinal SGLT1, and the elevation of active GLP-1 levels is especially apparent when these drugs are co-administered with dipeptidyl peptidase 4 (DPP4) inhibitors. These findings suggest that a combination of canagliflozin or sotagliflozin and a DPP4 inhibitor can provide a beneficial effect associated with elevation of circulating active GLP-1 and may serve as a treatment for patients with type 2 diabetes.

  3. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy.

    PubMed

    Gomez-Arango, Luisa F; Barrett, Helen L; McIntyre, H David; Callaway, Leonie K; Morrison, Mark; Dekker Nitert, Marloes

    2016-10-01

    The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women.

  4. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    PubMed

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. The Intestinal Epithelial Cell Differentiation Marker Intestinal Alkaline Phosphatase (ALPi) Is Selectively Induced by Histone Deacetylase Inhibitors (HDACi) in Colon Cancer Cells in a Kruppel-like Factor 5 (KLF5)-dependent Manner*

    PubMed Central

    Shin, Joongho; Carr, Azadeh; Corner, Georgia A.; Tögel, Lars; Dávaos-Salas, Mercedes; Tran, Hoanh; Chueh, Anderly C.; Al-Obaidi, Sheren; Chionh, Fiona; Ahmed, Naseem; Buchanan, Daniel D.; Young, Joanne P.; Malo, Madhu S.; Hodin, Richard A.; Arango, Diego; Sieber, Oliver M.; Augenlicht, Leonard H.; Dhillon, Amardeep S.; Weber, Thomas K.; Mariadason, John M.

    2014-01-01

    The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect. PMID:25037223

  6. Lipase catalyzed transesterification of ethyl butyrate synthesis in n-hexane- a kinetic study.

    PubMed

    Devi, N Annapurna; Radhika, G B; Bhargavi, R J

    2017-08-01

    Kinetics of lipase catalyzed transesterification of ethyl caprate and butyric acid was investigated. The objective of this work was to propose a reaction mechanism and develop a rate equation for the synthesis of ethyl butyrate by transesterification using surfactant coated lipase from Candida rugosa. The reaction rate could be described in terms of Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The values of kinetic parameters computed were Vmax = 2.861 μmol/min/mg; Km(acid) = 0.0746 M; Km(ester) = 0.125 M; Ki acid = 0.450 M. This study indicated a competitive enzyme inhibition by butyric acid during lipase catalyzed transesterification reaction. Experimental observations had clearly indicated that the substrates as well as product act as dead-end inhibitors.

  7. Characterization of butyrate transport across the luminal membranes of equine large intestine.

    PubMed

    Nedjadi, Taoufik; Moran, Andrew W; Al-Rammahi, Miran A; Shirazi-Beechey, Soraya P

    2014-10-01

    The diet of the horse, pasture forage (grass), is fermented by the equine colonic microbiota to short-chain fatty acids, notably acetate, propionate and butyrate. Short-chain fatty acids provide a major source of energy for the horse and contribute to many vital physiological processes. We aimed to determine both the mechanism of butyrate uptake across the luminal membrane of equine colon and the nature of the protein involved. To this end, we isolated equine colonic luminal membrane vesicles. The abundance and activity of cysteine-sensitive alkaline phosphatase and villin, intestinal luminal membrane markers, were significantly enriched in membrane vesicles compared with the original homogenates. In contrast, the abundance of GLUT2 protein and the activity of Na(+)-K(+)-ATPase, known markers of the intestinal basolateral membrane, were hardly detectable. We demonstrated, by immunohistochemistry, that monocarboxylate transporter 1 (MCT1) protein is expressed on the luminal membrane of equine colonocytes. We showed that butyrate transport into luminal membrane vesicles is energized by a pH gradient (out < in) and is not Na(+) dependent. Moreover, butyrate uptake is time and concentration dependent, with a Michaelis-Menten constant of 5.6 ± 0.45 mm and maximal velocity of 614 ± 55 pmol s(-1) (mg protein)(-1). Butyrate transport is significantly inhibited by p-chloromercuribenzoate, phloretin and α-cyano-4-hydroxycinnamic acid, all potent inhibitors of MCT1. Moreover, acetate and propionate, as well as the monocarboxylates pyruvate and lactate, also inhibit butyrate uptake. Data presented here support the conclusion that transport of butyrate across the equine colonic luminal membrane is predominantly accomplished by MCT1. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  8. Bicarbonate-dependent transport of acetate and butyrate across the basolateral membrane of sheep rumen epithelium.

    PubMed

    Dengler, F; Rackwitz, R; Benesch, F; Pfannkuche, H; Gäbel, G

    2014-02-01

    This study aimed to assess the role of HCO₃⁻ in the transport of acetate and butyrate across the basolateral membrane of rumen epithelium and to identify transport proteins involved. The effects of basolateral variation in HCO₃⁻ concentrations on acetate and butyrate efflux out of the epithelium and the transepithelial flux of these short-chain fatty acids were tested in Ussing chamber experiments using (14)C-labelled substrates. HCO₃⁻-dependent transport mechanisms were characterized by adding specific inhibitors of candidate proteins to the serosal side. Effluxes of acetate and butyrate out of the epithelium were higher to the serosal side than to the mucosal side. Acetate and butyrate effluxes to both sides of rumen epithelium consisted of HCO₃⁻-independent and -dependent parts. HCO₃⁻-dependent transport across the basolateral membrane was confirmed in studies of transepithelial fluxes. Mucosal to serosal fluxes of acetate and butyrate decreased with lowering serosal HCO₃⁻ concentrations. In the presence of 25 mm HCO₃⁻, transepithelial flux of acetate was inhibited effectively by p-hydroxymercuribenzoic acid or α-cyano-4-hydroxycinnamic acid, while butyrate flux was unaffected by the blockers. Fluxes of both acetate and butyrate from the serosal to the mucosal side were diminished largely by the addition of NO₃⁻ to the serosal side, with this effect being more pronounced for acetate. Our results indicate the existence of a basolateral short-chain fatty acid/HCO₃⁻ exchanger, with monocarboxylate transporter 1 as a primary candidate for acetate transfer. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  9. [The effect of inhibitors of sodium permeability (novocaine and tetrodotoxin) on the trace depolarization of myelinated nerve fibers].

    PubMed

    Katalymov, L L

    1995-09-01

    Partial block of the sodium permeability by local anesthetics does not induce significant aftereffect of depolarisation in intact Ranvier nodes of the frog isolated myelinated nerve fibres. The sodium current seems to take no part in generation of the depolarisation aftereffect.

  10. Changes in glucose-induced plasma active glucagon-like peptide-1 levels by co-administration of sodium-glucose cotransporter inhibitors with dipeptidyl peptidase-4 inhibitors in rodents.

    PubMed

    Oguma, Takahiro; Kuriyama, Chiaki; Nakayama, Keiko; Matsushita, Yasuaki; Hikida, Kumiko; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Minami, Masabumi; Shiotani, Masaharu

    2016-12-01

    We investigated whether structurally different sodium-glucose cotransporter (SGLT) 2 inhibitors, when co-administered with dipeptidyl peptidase-4 (DPP4) inhibitors, could enhance glucagon-like peptide-1 (GLP-1) secretion during oral glucose tolerance tests (OGTTs) in rodents. Three different SGLT inhibitors-1-(β-d-Glucopyranosyl)-4-chloro-3-[5-(6-fluoro-2-pyridyl)-2-thienylmethyl]benzene (GTB), TA-1887, and canagliflozin-were examined to assess the effect of chemical structure. Oral treatment with GTB plus a DPP4 inhibitor enhanced glucose-induced plasma active GLP-1 (aGLP-1) elevation and suppressed glucose excursions in both normal and diabetic rodents. In DPP4-deficient rats, GTB enhanced glucose-induced aGLP-1 elevation without affecting the basal level, whereas metformin, previously reported to enhance GLP-1 secretion, increased both the basal level and glucose-induced elevation. Oral treatment with canagliflozin and TA-1887 also enhanced glucose-induced aGLP-1 elevation when co-administered with either teneligliptin or sitagliptin. These data suggest that structurally different SGLT2 inhibitors enhance plasma aGLP-1 elevation and suppress glucose excursions during OGTT when co-administered with DPP4 inhibitors, regardless of the difference in chemical structure. Combination treatment with DPP4 inhibitors and SGLT2 inhibitors having moderate SGLT1 inhibitory activity may be a promising therapeutic option for improving glycemic control in patients with type 2 diabetes mellitus. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. Single-dose Pharmacokinetics and Pharmacodynamics of Canagliflozin, a Selective Inhibitor of Sodium Glucose Cotransporter 2, in Healthy Indian Participants.

    PubMed

    Devineni, Damayanthi; Polidori, David; Curtin, Christopher; Stieltjes, Hans; Tian, Hong; Wajs, Ewa

    2016-01-01

    Canagliflozin, an orally active selective inhibitor of sodium glucose cotransporter 2, has been approved in several countries for the treatment of type 2 diabetes mellitus. This study assessed the pharmacokinetic (PK) and pharmacodynamic (PD) properties and tolerability of single-dose canagliflozin 200 or 300 mg in healthy Indian participants. In this Phase 1, single-center, open-label, 2-period crossover study, healthy adult participants were randomly assigned to receive a single dose of canagliflozin 200 mg in period 1, followed by canagliflozin 300 mg in period 2, or vice versa. The 2 periods were separated by a washout interval of 14 days. The PK and PD properties and tolerability of canagliflozin were assessed at prespecified time points. Of 15 randomized participants, 14 completed the study. After the administration of single doses of 200 and 300 mg, the mean (SD) Cmax values were 1792 (430) ng/mL and 2789 (941) ng/mL, respectively; AUC0-∞, values were 18,706 (3818) ng·h/mL and 28,207 (5901) ng·h/mL, respectively. The Tmax and t½ of canagliflozin were independent of dose (Tmax, 1.5 hours at both doses; t½, 13.0 and 12.6 hours with 200 and 300 mg). Over the first 4 hours, mean (SD) renal threshold for glucose (RTG) values were 60.8 (8.90) and 61.2 (7.04) mg/dL with the 200- and 300-mg doses, respectively. No effect on plasma glucose concentrations over 0 to 4 hours relative to baseline was observed with either dose. The only treatment-emergent adverse event (TEAE) reported in >1 participant was dizziness (2 participants with the 200-mg dose). None of the participants in the 300-mg group reported any TEAEs. No deaths, discontinuations due to TEAEs, or hypoglycemic episodes were reported. The mean plasma exposure (Cmax and AUC) to canagliflozin increased in a dose-dependent manner after the administration of single-dose oral canagliflozin 200 and 300 mg in these healthy Indian participants. The Tmax and t½ of canagliflozin appeared to be independent of

  12. The sodium glucose cotransporter 2 inhibitor empagliflozin does not prolong QT interval in a thorough QT (TQT) study

    PubMed Central

    2013-01-01

    Background Empagliflozin is a potent, selective sodium glucose cotransporter 2 (SGLT2) inhibitor in development as an oral antidiabetic treatment. This QT interval study assessed potential effects of empagliflozin on ventricular repolarisation and other electrocardiogram (ECG) parameters. Methods A randomised, placebo-controlled, single-dose, double-blind, five-period crossover study incorporating a novel double-placebo period design to reduce sample size, while maintaining full statistical power. Treatments: single empagliflozin doses of 25 mg (therapeutic) and 200 mg (supratherapeutic), matching placebo and open-label moxifloxacin 400 mg (positive control). Triplicate 12-lead ECGs of 10 second duration were recorded at baseline and during the first 24 hours after dosing. The primary endpoint was mean change from baseline (MCfB) in the population heart rate-corrected QT interval (QTcN) between 1–4 hours after dosing. Results Thirty volunteers (16 male, 14 female, mean [range] age: 34.5 [18–52] years) were randomised. The placebo-corrected MCfB in QTcN 1–4 hours after dosing was 0.6 (90% CI: -0.7, 1.9) ms and -0.2 (-1.4, 0.9) ms for empagliflozin 25 mg and 200 mg, respectively, below the ICH E14 defined threshold of regulatory concern 10 ms. Assay sensitivity was confirmed by a placebo-corrected MCfB in QTcN 2–4 hours post-dose of 12.4 (10.7, 14.1) ms with moxifloxacin 400 mg. Empagliflozin tolerability was good for all volunteers; 23.3% experienced adverse events (AEs) with empagliflozin and 27.6% with placebo. The most frequent AE was nasopharyngitis. Conclusions/interpretation Single doses of empagliflozin 25 mg and 200 mg were not associated with QTcN prolongation and were well tolerated in healthy volunteers. Trial registration ClinicalTrials.gov: NCT01195675 PMID:23617452

  13. Hyaluronidase inhibitors (sodium cromoglycate and sodium auro-thiomalate) reduce the local tissue damage and prolong the survival time of mice injected with Naja kaouthia and Calloselasma rhodostoma venoms.

    PubMed

    Yingprasertchai, Senee; Bunyasrisawat, Srisurat; Ratanabanangkoon, Kavi

    2003-11-01

    Experiments have been carried out to find potent inhibitors of hyaluronidases of Naja kaouthia (NK) and Calloselasma rhodostoma (CR) venoms with the aim of reducing local tissue damage and systemic toxicities caused by the venoms. Seven drugs/chemicals known to inhibit hyaluronidases were tested for their activity on venom enzymes. These were: sodium cromoglycate (SC), sodium aurothiomalate (SAT), apigenin, kaemferol, phenylbutazone, oxyphenbutazone and fenoprofen. The results showed that SC or SAT at 10 mM, completely inhibited the enzymes of both venoms. In in vivo experiments, SC or SAT, when incubated with NK venom prior to injection, significantly reduced edema and myonecrosis. In the case of CR venom, hemorrhage, in addition to edema and myonecrosis, was also significantly reduced. In the independent type experiment, SC or SAT were effective if injected within 1 min after the injection of venom. At longer time intervals of 3 and 10 min the inhibitors were effective in reducing some parameters of local tissue necrosis but the extent of inhibition was lower. SC and SAT at 256 and 195 microg/mouse, respectively, significantly prolonged the survival time of mice receiving lethal doses of NK. In the case of CR venoms, the two inhibitors not only prolonged the survival time but also prevented death of mice receiving lethal doses of the venom. The other inhibitors were poorly soluble in water and were studied only on enzyme inhibition and prolongation of survival time; they were mostly ineffective. Thus, SC and SAT when injected immediately at the sites of bites can reduce the systemic and local toxicity of NK and CR venoms. These results suggest that administration of these drugs at the site of venom injection may be useful in reducing venom-induced local tissue damage.

  14. A sodium-glucose co-transporter 2 inhibitor empagliflozin prevents abnormality of circadian rhythm of blood pressure in salt-treated obese rats.

    PubMed

    Takeshige, Yui; Fujisawa, Yoshihide; Rahman, Asadur; Kittikulsuth, Wararat; Nakano, Daisuke; Mori, Hirohito; Masaki, Tsutomu; Ohmori, Koji; Kohno, Masakazu; Ogata, Hiroaki; Nishiyama, Akira

    2016-06-01

    Studies were performed to examine the effects of the selective sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin on urinary sodium excretion and circadian blood pressure in salt-treated obese Otsuka Long Evans Tokushima Fatty (OLETF) rats. Fifteen-week-old obese OLETF rats were treated with 1% NaCl (in drinking water), and vehicle (0.5% carboxymethylcellulose, n=10) or empagliflozin (10 mg kg(-1)per day, p.o., n=11) for 5 weeks. Blood pressure was continuously measured by telemetry system. Glucose metabolism and urinary sodium excretion were evaluated by oral glucose tolerance test and high salt challenge test, respectively. Vehicle-treated OLETF rats developed non-dipper type blood pressure elevation with glucose intolerance and insulin resistance. Compared with vehicle-treated animals, empagliflozin-treated OLETF rats showed an approximately 1000-fold increase in urinary glucose excretion and improved glucose metabolism and insulin resistance. Furthermore, empagliflozin prevented the development of blood pressure elevation with normalization of its circadian rhythm to a dipper profile, which was associated with increased urinary sodium excretion. These data suggest that empagliflozin elicits beneficial effects on both glucose homeostasis and hypertension in salt-replete obese states.

  15. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... No. 137-40-6) is the sodium salt of propionic acid. It occurs as colorless, transparent crystals or a granular crystalline powder. It is odorless, or has a faint acetic-butyric acid odor, and is deliquescent. It is prepared by neutralizing propionic acid with sodium hydroxide. (b) The ingredients meets the...

  16. Proteasome inhibitor (MG132) rescues Nav1.5 protein content and the cardiac sodium current in dystrophin-deficient mdx (5cv) mice.

    PubMed

    Rougier, Jean-Sébastien; Gavillet, Bruno; Abriel, Hugues

    2013-01-01

    The cardiac voltage-gated sodium channel, Nav1.5, plays a central role in cardiac excitability and impulse propagation and associates with the dystrophin multiprotein complex at the lateral membrane of cardiomyocytes. It was previously shown that Nav1.5 protein content and the sodium current (l Na) were both decreased in cardiomyocytes of dystrophin-deficient mdx (5cv) mice. In this study, wild-type and mdx (5cv) mice were treated for 7 days with the proteasome inhibitor MG132 (10 μg/Kg/24 h) using implanted osmotic mini pumps. MG132 rescued both the total amount of Nav1.5 protein and l Na but, unlike in previous studies, de novo expression of dystrophin was not observed in skeletal or cardiac muscle. This study suggests that the reduced expression of Nav1.5 in dystrophin-deficient cells is dependent on proteasomal degradation.

  17. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus.

    PubMed

    Scheen, André J

    2014-04-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. They are proposed as a novel approach for the management of type 2 diabetes mellitus. They have proven their efficacy in reducing glycated haemoglobin, without inducing hypoglycaemia, as monotherapy or in combination with various other glucose-lowering agents, with the add-on value of promoting some weight loss and lowering arterial blood pressure. As they may be used concomitantly with many other drugs, we review the potential drug-drug interactions (DDIs) regarding the three leaders in the class (dapagliglozin, canagliflozin and empagliflozin). Most of the available studies were performed in healthy volunteers and have assessed the pharmacokinetic interferences with a single administration of the SGLT2 inhibitor. The exposure [assessed by peak plasma concentrations (Cmax) and area under the concentration-time curve (AUC)] to each SGLT2 inhibitor tested was not significantly influenced by the concomitant administration of other glucose-lowering agents or cardiovascular agents commonly used in patients with type 2 diabetes. Reciprocally, these medications did not influence the pharmacokinetic parameters of dapagliflozin, canagliflozin or empagliflozin. Some modest changes were not considered as clinically relevant. However, drugs that could specifically interfere with the metabolic pathways of SGLT2 inhibitors [rifampicin, inhibitors or inducers of uridine diphosphate-glucuronosyltransferase (UGT)] may result in significant changes in the exposure of SGLT2 inhibitors, as shown for dapagliflozin and canagliflozin. Potential DDIs in patients with type 2 diabetes receiving chronic treatment with an SGLT2 inhibitor deserve further attention, especially in individuals treated with several medications or in more fragile patients with hepatic and/or renal impairment.

  18. Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: a meta-analysis of randomized double-blind controlled trials

    PubMed Central

    2013-01-01

    Background The discovery of sodium-glucose co-transporter 2 (SGLT2) inhibitors, with a novel mechanism independent of insulin secretion or sensitization, bring about a new therapeutic approach to the management of type 2 diabetes mellitus. The aim of this meta-analysis was to evaluate the safety and efficacy of SGLT2 inhibitors at different doses in randomized double blind clinical trials. Methods This meta-analysis was conducted by including randomized double-blind controlled trials of SGLT2 inhibitors in patients with type 2 diabetes irrespective of their antidiabetic drug exposure history but with an inadequate glycemic control. All the effect sizes were computed using the random effects model. Standardized mean differences (SMDs) and odds ratios (OR) were computed for continuous and dichotomous variables, respectively. Additional analyses like sensitivity analysis, subgroup analysis and meta-regression were also performed. Results The pooled analyses demonstrated a significant reduction in mean changes in Hemoglobin A1c (HbA1c) (SMD = −0.78%, 95% CI, -0.87 to −0.69), fasting plasma glucose (FPG) (SMD = −0.70 mg/dl, 95% CI, -0.79 to −0.61), body weight (overall SMD = −0.59 kg, 95% CI, -0.65 to −0.52) and blood pressure from baseline with SGLT2 inhibitors based therapy. Consistently a significant number of patients treated with SGLT2 inhibitors achieved HbA1c < 7% (OR = 2.09, 95% CI, 1.77 to 2.46). SGLT2 inhibitors based therapy was associated with adverse events like genital and urinary tract infections. Conclusion All studied doses of SGLT2 inhibitors, either as monotherapy or in combination with other antidiabetic agents, consistently improved glycemic control in patients with type 2 diabetes. However, a small percentage of patients suffer from genital and urinary tract infections. PMID:24341330

  19. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Metabolic Parameters in Patients With Type 2 Diabetes: A Chart-Based Analysis.

    PubMed

    Katsuyama, Hisayuki; Hamasaki, Hidetaka; Adachi, Hiroki; Moriyama, Sumie; Kawaguchi, Akiko; Sako, Akahito; Mishima, Shuichi; Yanai, Hidekatsu

    2016-03-01

    Effects of the new class of anti-diabetic drugs, sodium-glucose cotransporter 2 (SGLT2) inhibitors, on metabolic parameters in patients with type 2 diabetes remain largely unknown. We retrospectively picked up patients who had been continuously prescribed SGLT2 inhibitors for 1 month or more between April 2014 and November 2015 by a chart-based analysis, and compared the data before the SGLT2 inhibitor treatment with the data at 1, 2, 3 and 6 months after the SGLLT2 inhibitor treatment started. Fifty patients were eligible for the analyses in our study. The HbA1c levels as well as body weight significantly decreased at 1, 2, 3 and 6 months after the start of SGLT2 inhibitors. Systolic blood pressure tended to decrease only at 1 and 2 months, but there was no change at 3 and 6 months. No significant change was observed in serum high-density lipoprotein-cholesterol (HDL-C), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) and non-HDL-C levels. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels significantly decreased at 3 and 6 months after the prescription. The hematocrit levels significantly increased at 1, 2, 3 and 6 months, and the estimated glomerular filtration rate (eGFR) levels significantly decreased at 1 month after the start of SGLT2 inhibitors. A significant correlation between reductions in HbA1c levels and HbA1c levels at baseline was observed at 1, 3 and 6 months. The decreases in serum ALT levels were also significantly correlated with the baseline ALT levels at 3 and 6 months. Present study demonstrated that SGLT2 inhibitors significantly reduced HbA1c and body weight and improved liver functions, whereas no significant change was observed in serum lipid profiles.

  20. [Sodium-glucose co-transporter-2 inhibitors: from the bark of apple trees and familial renal glycosuria to the treatment of type 2 diabetes mellitus].

    PubMed

    Mauricio, Dídac

    2013-09-01

    The therapeutic armamentarium for the treatment of hyperglycemia in type 2 diabetes mellitus is still inadequate. We are currently witnessing the introduction of a new mode of hypoglycemic treatment through induction of glycosuria to decrease the availability of the metabolic substrate, i.e. glucose. Clinical trials have shown that sodium-glucose co-transporter-2 (SGLT2) inhibitors are as efficacious as other oral hypoglycemic drugs. This article discusses the basic features of this new treatment concept and the efficacy and safety of this new drug group. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  1. Quantitative Influences of Butyrate or Propionate on Thermophilic Production of Methane from Biomass †

    PubMed Central

    Henson, J. Michael; Bordeaux, F. M.; Rivard, Christopher J.; Smith, P. H.

    1986-01-01

    Sodium butyrate and sodium propionate were continuously infused into separate 4-liter thermophilic digesters. These digesters were operated at 55°C, had a retention time of 20 days, and had a pH of 7.8. Infusion rates were started at 10 mM day−1 and were increased incrementally when new stable external organic acid pool sizes and new stable gas production rates were observed. Stable conditions were obtained in both digesters at an infusion rate of 15 mM day−1, with methanogenesis elevated over that of control digesters. Calculations based on expected CH4 at this infusion rate and measured CH4 production in the treated and control digesters, however, showed an approximately 25% inhibition of methanogenesis in both digesters. A digester infused with sodium chloride showed little or no inhibition at this infusion rate, but was totally inhibited when its infusion rate was increased to 20 mM day−1, and cumulative added NaCl reached 0.38 M. The butyrate and propionate-amended digesters tolerated addition rates of 20 mM day−1, but both failed when they were increased to 25 mM day−1. These results indicate that the thermophilic digesters could function stably at higher external pool sizes of butyrate or propionate than routinely observed. PMID:16346985

  2. Inhibitor effects of sodium benzoate on corrosion resistance of Al6061-B4C composites in NaCl and H3BO3 solutions

    NASA Astrophysics Data System (ADS)

    Rafi-ud-din; Shafqat, Q. A.; Shahzad, M.; Ahmad, Ejaz; Asghar, Z.; Rafiq, Nouman; Qureshi, A. H.; Syed, Waqar adil; asim Pasha, Riffat

    2016-12-01

    Sodium benzoate (SB) is used for the first time to inhibit the corrosion of Al6061-B4C composites in H3BO3 and NaCl solutions. Al6061100-x -x wt% B4C (x = 0, 5, and 10) composites are manufactured by a powder metallurgy route. The corrosion inhibition efficiency of SB is investigated as a function of the volume fractions of B4C particles by using potentiodynamic polarization and electrochemical impedance techniques. Without the use of an inhibitor, an increase of the B4C particles in the composite decreases the corrosion resistance of Al6061-B4C composites. It is found that SB is an efficient corrosion inhibitor for Al6061-B4C composites in both investigated solutions. The corrosion inhibition efficiency of SB increases with an increase in B4C content. Since SB is an adsorption type inhibitor, it is envisaged that an extremely thin layer of molecules adsorbs onto the surface and suppresses the oxidation and reduction. It is found that the inhibitor effect of SB is more pronounced in a H3BO3 environment than in NaCl solution. Further, the mechanism of corrosion inhibition by SB is illustrated by using optical and scanning electron microscopy of corroded samples. It is found that the adsorption of benzoate ions on the Al surface and its bonding with Al3+ ions forms a hydrophobic layer on top of the exposed Al surface, which enhances the protection against dissolved boride ions.

  3. Compound-Specific Effects of Mutations at Val787 in DII-S6 of Nav1.4 Sodium Channels on the Action of Sodium Channel Inhibitor Insecticides

    PubMed Central

    von Stein, Richard T.; Soderlund, David M.

    2012-01-01

    Sodium channel inhibitor (SCI) insecticides are hypothesized to inhibit voltage-gated sodium channels by binding selectively to the slow-inactivated state. Replacement of valine at position 787 in the S6 segment of homology domain II of the rat Nav1.4 sodium channel by lysine (V787K) enchances slow inactivation of this channel whereas replacement by alanine or cysteine (V787A, V787C) inhibits slow inactivation. To test the hypothesis that SCI insecticides bind selectively to the slow-inactivated state, we constructed mutated Nav1.4/V787A, Nav1.4/V787C, and Nav1.4/V787K cDNAs, expressed wildtype and mutated channels with the auxiliary β1 subunit in Xenopus oocytes, and used the two-electrode voltage clamp technique to examine the effects of these mutations on channel inhibition by four SCI insecticides (indoxacarb, its bioactivated metabolite DCJW, metaflumizone, and RH3421). Mutations at Val787 affected SCI insecticide sensitivity in a manner that was independent of mutation-induced changes in slow inactivation gating. Sensitivity to inhibition by 10 μM indoxacarb was significantly increased in all three mutated channels, whereas sensitivity to inhibition by 10 μM metaflumizone was significantly reduced in Nav1.4/V787A channels and completely abolished in Nav1.4/V787K channels. The effects of Val787 mutations on metaflumizone were correlated with the hydrophobicity of the substituted amino acid rather than the extent of slow inactivation. None of the mutations at Val787 significantly affected the sensitivity to inhibition by DCJW or RH3421. These results demonstrate that the impact of mutations at Val787 on sodium channel inhibition by SCI insecticides depends on the specific insecticide examined and is independent of mutation-induced changes in slow inactivation gating. We propose that Val787 may be a unique determinant of metaflumizone binding. PMID:22983119

  4. Effect of hepatic or renal impairment on the pharmacokinetics of canagliflozin, a sodium glucose co-transporter 2 inhibitor.

    PubMed

    Devineni, Damayanthi; Curtin, Christopher R; Marbury, Thomas C; Smith, William; Vaccaro, Nicole; Wexler, David; Vandebosch, An; Rusch, Sarah; Stieltjes, Hans; Wajs, Ewa

    2015-03-01

    Canagliflozin is a sodium-glucose cotransporter 2 inhibitor approved for the treatment of type 2 diabetes mellitus (T2DM). Because T2DM is often associated with renal or hepatic impairment, understanding the effects of these comorbid conditions on the pharmacokinetics of canagliflozin, and further assessing its safety, in these special populations is essential. Two open-label studies evaluated the pharmacokinetics, pharmacodynamics (renal study only), and safety of canagliflozin in participants with hepatic or renal impairment. Participants in the hepatic study (8 in each group) were categorized based on their Child-Pugh score (normal hepatic function, mild impairment [Child-Pugh score of 5 or 6], and moderate impairment [Child-Pugh score of 7-9]) and received a single oral dose of canagliflozin 300 mg. Participants in the renal study (8 in each group) were categorized based on their creatinine clearance (CLCR) (normal renal function [CLCR ≥80 mL/min]; mild [CLCR 50 to <80 mL/min], moderate [CLCR 30 to <50 mL/min], or severe [CLCR <30 mL/min] renal impairment; and end-stage renal disease [ESRD]) and received a single oral dose of canagliflozin 200 mg; the exception was those with ESRD, who received 1 dose postdialysis and 1 dose predialysis (10 days later). Canagliflozin's pharmacokinetics and pharmacodynamics (urinary glucose excretion [UGE] and renal threshold for glucose excretion [RTG]) were assessed at predetermined time points. Mean maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from time zero to infinite (AUC)0-∞ values differed by <11% between the group with normal hepatic function and those with mild and moderate hepatic impairment. In the renal study, the mean Cmax values were 13%, 29%, and 29% higher and the mean AUC0-∞ values were 17%, 63%, and 50% higher in participants with mild, moderate, and severe renal impairment, respectively; values were similar in the ESRD group relative to the group with normal

  5. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens.

    PubMed

    Mátis, G; Kulcsár, A; Petrilla, J; Hermándy-Berencz, K; Neogrády, Zs

    2016-08-01

    The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  6. Model analysis of effect of canagliflozin (Invokana), a sodium-glucose cotransporter 2 inhibitor, to alter plasma 1,5-anhydroglucitol.

    PubMed

    Fortuna, Danielle; McCloskey, Laura J; Stickle, Douglas F

    2016-01-15

    Renal reabsorption of 1,5-anhydroglucitol (AG) is competitively inhibited by elevated glucose and leads to depleted plasma AG in diabetes. Plasma AG recovery in diabetes normally correlates with improved glycemic control. However, use of sodium-glucose co-transporter 2 (SGLT2) inhibitors (e.g., canagliflozin) to treat diabetes by inhibition of renal glucose reabsorption can negate this correlation, via an indirect effect (increase of renal filtrate glucose concentration) to inhibit AG reabsorption by sodium-glucose co-transporter 4 (SGLT4). Conversely, then, AG measurement might be useful as an independent marker for SGLT2 inhibitor activity. Using an AG mass balance model, we analyzed literature data on plasma AG before and after initiation of canagliflozin therapy (CT) to quantitatively characterize the effect of CT on AG reabsorption. According to model calculations, modest decreases (<5%) in fractional reabsorption of AG account for the drastic decrease in [AG] observed during CT. Decreases are predicted to be rapid (t1/2<3days) after CT initiation. CT negates the usual premise of AG measurement (that [AG] should increase with improved glycemic control). However, according to model calculations, a substantial and likely rapid effect of CT on [AG] means that AG measurement might provide an early marker for CT activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Enzymology of butyrate formation by Butyrivibrio fibrisolvens.

    PubMed

    Miller, T L; Jenesel, S E

    1979-04-01

    Butyrivibrio fibrisolvens is a major butyrate-forming species in the bovine and ovine rumen. The enzymology of butyrate formation from pyruvate was investigated in cell-free extracts of B. fibrisolvens D1. Pyruvate owas oxidized to acetylcoenzyme A (CoA) in the presence of CoA.SH and benzyl viologen or flavin nucleotides. The bacterium uses thiolase, beta-hydroxybutyryl-CoA dehydrogenase, crotonase, and crotonyl-CoA reductase to form butyryl-CoA from acetyl-CoA. Reduction of acetoacetyl-CoA to beta-hydroxybutyryl-CoA was faster with NADH than with NADPH. Crotonyl-CoA was reduced to butyryl-CoA by NADH, but not by NADPH, only in the presence of flavin nucleotides. Reduction of flavin nucleotides by NADH was much slower than the flavin-dependent reduction of crotonyl-CoA. This indicates that flavoproteins rather than free flavin participated in the reduction of crotonyl-CoA. Butyryl-CoA was converted to butyrate by phosphate butyryl transferase and butyrate kinase.

  8. Fragrance material review on phenethyl butyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of phenethyl butyrate when used as a fragrance ingredient is presented. Phenethyl butyrate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for phenethyl butyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Fragrance material review on benzyl butyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl butyrate when used as a fragrance ingredient is presented. Benzyl butyrate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl butyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization, toxicokinetics, and repeated dose data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Catalytic upgrading of butyric acid towards fine chemicals and biofuels

    PubMed Central

    Sjöblom, Magnus; Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-01-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. PMID:26994015

  11. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus.

    PubMed

    Scheen, André J

    2015-01-01

    Inhibitors of sodium-glucose co-transporter type 2 (SGLT2) are proposed as a novel approach for the management of type 2 diabetes mellitus (T2DM). Several compounds are already available in many countries (dapagliflozin, canagliflozin, empagliflozin and ipragliflozin) and some others are in a late phase of development. The available SGLT2 inhibitors share similar pharmacokinetic characteristics, with a rapid oral absorption, a long elimination half-life allowing once-daily administration, an extensive hepatic metabolism mainly via glucuronidation to inactive metabolites, the absence of clinically relevant drug-drug interactions and a low renal elimination as parent drug. SGLT2 co-transporters are responsible for reabsorption of most (90 %) of the glucose filtered by the kidneys. The pharmacological inhibition of SGLT2 co-transporters reduces hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. The amount of glucose excreted in the urine depends on both the level of hyperglycaemia and the glomerular filtration rate. Results of numerous placebo-controlled randomised clinical trials of 12-104 weeks duration have shown significant reductions in glycated haemoglobin (HbA1c), resulting in a significant increase in the proportion of patients reaching HbA1c targets, and a significant lowering of fasting plasma glucose when SGLT2 inhibitors were administered as monotherapy or in addition to other glucose-lowering therapies including insulin in patients with T2DM. In head-to-head trials of up to 2 years, SGLT2 inhibitors exerted similar glucose-lowering activity to metformin, sulphonylureas or sitagliptin. The durability of the glucose-lowering effect of SGLT2 inhibitors appears to be better; however, this remains to be more extensively investigated. The risk of hypoglycaemia was much lower with SGLT2 inhibitors than with sulphonylureas and was similarly low as that reported with metformin, pioglitazone or sitagliptin

  12. Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana.

    PubMed

    Li, Dongling; Xiao, Yucheng; Hu, Weijun; Xie, Jinyun; Bosmans, Frank; Tytgat, Jan; Liang, Songping

    2003-12-18

    Hainantoxin-I is a novel peptide toxin, purified from the venom of the Chinese bird spider Selenocosmia hainana (=Ornithoctonus hainana). It includes 33 amino acid residues with a disulfide linkage of I-IV, II-V and III-VI, assigned by partial reduction and sequence analysis. Under two-electrode voltage-clamp conditions, hainantoxin-I can block rNa(v)1.2/beta(1) and the insect sodium channel para/tipE expressed in Xenopus laevis oocytes with IC(50) values of 68+/-6 microM and 4.3+/-0.3 microM respectively. The three-dimensional solution structure of hainantoxin-I belongs to the inhibitor cystine knot structural family determined by two-dimensional (1)H nuclear magnetic resonance techniques. Structural comparison of hainantoxin-I with those of other toxins suggests that the combination of the charged residues and a vicinal hydrophobic patch should be responsible for ligand binding. This is the first report of an insect sodium channel blocker from spider venom and it provides useful information for the structure-function relationship studies of insect sodium channels.

  13. A sodium channel inhibitor ISTX-I with a novel structure provides a new hint at the evolutionary link between two toxin folds

    PubMed Central

    Rong, Mingqiang; Liu, Jiangxin; Zhang, Meilin; Wang, Gan; Zhao, Gang; Wang, Guodong; Zhang, Yaping; Hu, Kaifeng; Lai, Ren

    2016-01-01

    Members of arachnida, such as spiders and scorpions, commonly produce venom with specialized venom glands, paralyzing their prey with neurotoxins that specifically target ion channels. Two well-studied motifs, the disulfide-directed hairpin (DDH) and the inhibitor cystine knot motif (ICK), are both found in scorpion and spider toxins. As arachnids, ticks inject a neurotoxin-containing cocktail from their salivary glands into the host to acquire a blood meal, but peptide toxins acting on ion channels have not been observed in ticks. Here, a new neurotoxin (ISTX-I) that acts on sodium channels was identified from the hard tick Ixodes scapularis and characterized. ISTX-I exhibits a potent inhibitory function with an IC50 of 1.6 μM for sodium channel Nav1.7 but not other sodium channel subtypes. ISTX-I adopts a novel structural fold and is distinct from the canonical ICK motif. Analysis of the ISTX-I, DDH and ICK motifs reveals that the new ISTX-I motif might be an intermediate scaffold between DDH and ICK, and ISTX-I is a clue to the evolutionary link between the DDH and ICK motifs. These results provide a glimpse into the convergent evolution of neurotoxins from predatory and blood-sucking arthropods. PMID:27407029

  14. Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep.

    PubMed

    Agarwal, U; Hu, Q; Baldwin, R L; Bequette, B J

    2015-05-01

    Butyrate, a major rumen VFA, has been indirectly linked to enhancement of urea recycling on the basis of increased expression of urea transporter in the rumen epithelia of steers fed a rumen butyrate-enhancing diet. Two studies were conducted to quantify the effect of elevated rumen butyrate concentrations on N balance, urea kinetics and rumen epithelial proliferation. Wether sheep (n= 4), fitted with a rumen cannula, were fed a pelleted ration (∼165 g CP/kg DM, 10.3 MJ ME/kg DM) at 1.8 × ME requirement. In Exp. 1, sheep were infused intraruminally with either an electrolyte buffer solution (Con-Buf) or butyrate dissolved in the buffer solution (But-Buf) during 8-d periods in a balanced crossover design. In Exp. 2, sheep were infused intraruminally with either sodium acetate (Na-Ac) or sodium butyrate (Na-But) for 9 d. All solutions were adjusted to pH 6.8 and 8.0 in Exp. 1 and 2, respectively, and VFA were infused at 10% of ME intake. [15N2] urea was continuously infused intravenously for the last 5 d of each period, and total urine and feces were collected. In Exp. 1, 2H5-phenylalanine was continuously infused intravenously over the last 12 h, after which a biopsy from the rumen papillae was taken for measurement of fractional protein synthesis rate (FSR). Butyrate infusion treatments increased (P = 0.1 in Exp. 1; P < 0.05 in Exp. 2) the proportion of rumen butyrate, and acetate infusion increased (P < 0.05) rumen acetate. All animals were in positive N balance (4.2 g N/d in Exp. 1; 7.0 g N/d in Exp. 2), but no difference in N retention was observed between treatments. In Exp. 2, urea entry (synthesis) rate was reduced ( < 0.05) by Na-But compared with the Na-Ac control. In Exp. 1, although But-Buf infusion increased the FSR of rumen papillae (35.3% ± 1.08%/d vs. 28.7% ± 1.08%/d; P < 0.05), urea kinetics were not altered by But-Buf compared with Con-Buf. These studies are the first to directly assess the role of butyrate in urea recycling and its effects on

  15. Searching for Synbiotics to increase Colonic Butyrate Concentration

    USDA-ARS?s Scientific Manuscript database

    Butyrate is produced by microbial fermentation of plant fiber in the gut and a preferred substrate for gut epithelial cells. In ruminants, butyrate contributes to 70% of energy metabolism. In monogastric species, butyrate also plays an important role in energy metabolism in the hindgut. Moreover, bu...

  16. Effect of butyrate and Lactobacillus GG on a butyrate receptor and transporter during Campylobacter jejuni exposure.

    PubMed

    Cresci, Gail A M; Mayor, Paul C; Thompson, Stuart A

    2017-03-01

    Campylobacter jejuni frequently infects humans causing many gastrointestinal symptoms, fever, fatigue and several long-term debilitating diseases. Current treatment for campylobacteriosis includes rehydration and in some cases, antibiotic therapy. Probiotics are used to treat several gastrointestinal diseases. Butyrate is a short-chain fatty acid known to promote intestinal health. Interaction of butyrate with its respective receptor (HCAR2) and transporter (SLC5A8), both expressed in the intestine, is associated with water and electrolyte absorption as well as providing defense against colon cancer and inflammation. Alterations in gut microbiota influence the presence of HCAR2 and SLC5A8 in the intestine. We hypothesized that adherence and/or invasion of C. jejuni and alterations in HCAR2 and SLC5A8 expression would be minimized with butyrate or Lactobacillus GG (LGG) pretreatment of Caco-2 cells. We found that both C. jejuni adhesion but not invasion was reduced with butyrate pretreatment. While LGG pretreatment did not prevent C. jejuni adhesion, it did result in reduced invasion which was associated with altered cell supernate pH. Both butyrate and LGG protected HCAR2 and SLC5A8 protein expression following C. jejuni infection. These results suggest that the first stages of C. jejuni infection of Caco-2 cells may be minimized by LGG and butyrate pretreatment. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Inhibition of NLRP3 Inflammasome Pathway by Butyrate Improves Corneal Wound Healing in Corneal Alkali Burn

    PubMed Central

    Bian, Fang; Xiao, Yangyan; Zaheer, Mahira; Volpe, Eugene A.; Pflugfelder, Stephen C.; Li, De-Quan; de Paiva, Cintia S.

    2017-01-01

    Epithelial cells are involved in the regulation of innate and adaptive immunity in response to different stresses. The purpose of this study was to investigate if alkali-injured corneal epithelia activate innate immunity through the nucleotide-binding oligomerization domain-containing protein (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway. A unilateral alkali burn (AB) was created in the central cornea of C57BL/6 mice. Mice received either no topical treatment or topical treatment with sodium butyrate (NaB), β-hydroxybutyric acid (HBA), dexamethasone (Dex), or vehicle (balanced salt solution, BSS) quater in die (QID) for two or five days (d). We evaluated the expression of inflammasome components including NLRP3, apoptosis-associated speck-like protein (ASC), and caspase-1, as well as the downstream cytokine interleukin (IL)-1β. We found elevation of NLRP3 and IL-1β messenger RNA (mRNA) transcripts, as well as levels of inflammasome component proteins in the alkali-injured corneas compared to naïve corneas. Treatment with NLRP3 inhibitors using NaB and HBA preserved corneal clarity and decreased NLRP3, caspase-1, and IL-1β mRNA transcripts, as well as NLRP3 protein expression on post-injury compared to BSS-treated corneas. These findings identified a novel innate immune signaling pathway activated by AB. Blocking the NLRP3 pathway in AB mouse model decreases inflammation, resulting in greater corneal clarity. These results provide a mechanistic basis for optimizing therapeutic intervention in alkali injured eyes. PMID:28273882

  18. Inhibition of NLRP3 Inflammasome Pathway by Butyrate Improves Corneal Wound Healing in Corneal Alkali Burn.

    PubMed

    Bian, Fang; Xiao, Yangyan; Zaheer, Mahira; Volpe, Eugene A; Pflugfelder, Stephen C; Li, De-Quan; de Paiva, Cintia S

    2017-03-05

    Epithelial cells are involved in the regulation of innate and adaptive immunity in response to different stresses. The purpose of this study was to investigate if alkali-injured corneal epithelia activate innate immunity through the nucleotide-binding oligomerization domain-containing protein (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway. A unilateral alkali burn (AB) was created in the central cornea of C57BL/6 mice. Mice received either no topical treatment or topical treatment with sodium butyrate (NaB), β-hydroxybutyric acid (HBA), dexamethasone (Dex), or vehicle (balanced salt solution, BSS) quater in die (QID) for two or five days (d). We evaluated the expression of inflammasome components including NLRP3, apoptosis-associated speck-like protein (ASC), and caspase-1, as well as the downstream cytokine interleukin (IL)-1β. We found elevation of NLRP3 and IL-1β messenger RNA (mRNA) transcripts, as well as levels of inflammasome component proteins in the alkali-injured corneas compared to naïve corneas. Treatment with NLRP3 inhibitors using NaB and HBA preserved corneal clarity and decreased NLRP3, caspase-1, and IL-1β mRNA transcripts, as well as NLRP3 protein expression on post-injury compared to BSS-treated corneas. These findings identified a novel innate immune signaling pathway activated by AB. Blocking the NLRP3 pathway in AB mouse model decreases inflammation, resulting in greater corneal clarity. These results provide a mechanistic basis for optimizing therapeutic intervention in alkali injured eyes.

  19. Diabetes and kidney disease: the role of sodium-glucose cotransporter-2 (SGLT-2) and SGLT-2 inhibitors in modifying disease outcomes.

    PubMed

    Mende, Christian W

    2017-03-01

    Patients with type 2 diabetes (T2D) often have coexisting chronic kidney disease (CKD). However, healthy renal function is crucial in maintaining glucose homeostasis, assuring that almost all of the filtered glucose is reabsorbed by the sodium glucose cotransporters (SGLTs) SGLT-1 and SGLT-2. In diabetes, an increased amount of glucose is filtered by the kidneys and SGLT-2 is upregulated, leading to increased glucose absorption and worsening hyperglycemia. Prolonged hyperglycemia contributes to the development of CKD by inducing metabolic and hemodynamic changes in the kidneys. Due to the importance of SGLT-2 in regulating glucose levels, investigation into SGLT-2 inhibitors was initiated as a glucose-dependent mechanism to control hyperglycemia, and there are three agents currently approved for use in the United States: dapagliflozin, canagliflozin, and empagliflozin. SGLT-2 inhibitors have been shown to reduce glycated hemoglobin (A1C), weight, and blood pressure, which not only affects glycemic control, but may also help slow the progression of renal disease by impacting the underlying mechanisms of kidney injury. In addition, SGLT-2 inhibitors have shown reductions in albuminuria, uric acid, and an increase in magnesium. Caution is advised when prescribing SGLT-2 inhibitors to patients with moderately impaired renal function and those at risk for volume depletion and hypotension. Published data on slowing of the development, as well as progression of CKD, is a hopeful indicator for the possible renal protection potential of this drug class. This narrative review provides an in-depth discussion of the interplay between diabetes, SGLT-2 inhibitors, and factors that affect kidney function.

  20. Effects of diuretics on sodium-dependent glucose cotransporter 2 inhibitor-induced changes in blood pressure in obese rats suffering from the metabolic syndrome.

    PubMed

    Rahman, Asadur; Kittikulsuth, Wararat; Fujisawa, Yoshihide; Sufiun, Abu; Rafiq, Kazi; Hitomi, Hirofumi; Nakano, Daisuke; Sohara, Eisei; Uchida, Shinichi; Nishiyama, Akira

    2016-05-01

    Experiments were carried out to investigate whether diuretics (hydrochlorothiazide + furosemide) impact on the effects of a sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor on glucose metabolism and blood pressure (BP) in metabolic syndrome SHR/NDmcr-cp(+/+) rats (SHRcp). Male 13-week-old SHRcp were treated with: vehicle; the SGLT2-inhibitor luseogliflozin (10 mg/kg per day); diuretics (hydrochlorothiazide; 10 mg/kg/day + furosemide; 5 mg/kg per day); or luseogliflozin + diuretics (n = 5-8 for each group) daily by oral gavage for 5 weeks. BP and glucose metabolism were evaluated by a telemetry system and oral glucose tolerance test, respectively. Vehicle-treated SHRcp developed nondipper type hypertension (dark vs. light-period mean arterial pressure: 148.6 ± 0.7 and 148.0 ± 0.7 mmHg, respectively, P = 0.2) and insulin resistance. Compared with vehicle-treated animals, luseogliflozin-treated rats showed an approximately 4000-fold increase in urinary excretion of glucose and improved glucose metabolism. Luseogliflozin also significantly decreased BP and turned the circadian rhythm of BP from a nondipper to dipper pattern (dark vs. light-period mean arterial pressure: 138.0 ± 1.6 and 132.0 ± 1.3 mmHg, respectively, P < 0.01), which were associated with a significant increase in urinary excretion of sodium. Addition of diuretics did not influence luseogliflozin-induced improvement of glucose metabolism and circadian rhythm of BP in SHRcp. These data suggest that a SGLT2 inhibitor elicits its beneficial effects on glucose metabolism and hypertension in study participants with metabolic syndrome undergoing treatment with diuretics.

  1. Synthesis and evaluation of poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene)/magnetite nanoparticle composites as corrosion inhibitors for steel.

    PubMed

    El-Mahdy, Gamal A; Atta, Ayman M; Al-Lohedan, Hamad A

    2014-01-30

    Self-stabilized magnetic polymeric composite nanoparticles of coated poly-(sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene)/magnetite (PAMPS-Na-co-St/Fe3O4) were prepared by emulsifier-free miniemulsion polymerization using styrene (St) as a monomer, 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na) as an ionic comonomer, N,N-methylenebisacrylamide (MBA) as crosslinker, hexadecane (HD) as a hydrophobic solvent, and 2,2-azodiisobutyronitrile (AIBN) as an initiator in the presence of hydrophobic oleic acid coated magnetite particles. Hydrophobic oleic acid coated magnetite particles with an average size of about 7-10 nm were prepared with the new modified water-based magnetite ferrofluid, synthesized by a chemical modified coprecipitation method. The morphology and the particle size distributions of the crosslinked PAMPS-Na-co-St/Fe3O4 composite were observed and analyzed by transmission electron microscopy (TEM). The average Fe3O4 content of PAMPS-Na-co-St/Fe3O4 was determined by thermogravimetric analysis (TGA). The inhibitory action of PAMPS-Na-co-St/Fe3O4 towards steel corrosion in 1 M HCl solutions has been investigated by polarization and electrochemical impedance spectroscopy (EIS) methods. Polarization measurements indicate that PAMPS-Na-co-St/Fe3O4 acts as a mixed type-inhibitor and the inhibition efficiency increases with inhibitor concentration. The results of potentiodynamic polarization and EIS measurements clearly showed that the inhibition mechanism involves blocking of the steel surface by inhibitor molecules via adsorption.

  2. Butyrate induced cell cycle arrest in bovine cells through targeting gene expression relevant to DNA replication apparatus.

    PubMed

    Li, Cong-jun; Li, Robert W

    2008-03-17

    Using real-time RT-PCR and Western blot analysis in bovine kidney epithelial cells, we systematically investigated the effects of butyrate on patterns of gene expression relevant to DNA replication apparatus. The real-time PCR and Western blot data generally confirmed previously reported microarray data. Of the five genes tested by quantitative RT-PCR, CDKN1A (p21(waf1)) was up regulated, CDC2/cdk1, MCM6, ORC1L were down regulated, while ORC3L expression remained unchanged following butyrate treatment. Also consistent with RT-PCR results, Western blot analysis confirmed that butyrate up-regulated cyclin-kinase inhibitor p21(waf1) in a does-dependent manner. In contrast, butyrate treatment had no effect on the expression of ERK 1/2 proteins. Also consistent with mRNA results, ORC1 and MCM3 proteins were down-regulated by butyrate treatment, while ORC2 protein remained unchanged. The present results suggest that ORC1, not ORC2 or ORC3, along with MCM proteins play a critical role in regulating the initiation of DNA replication and cell cycle progression in MDBK cells and are targets of butyrate regulation.

  3. [Effects of histone deacetylase inhibitor sodium valproate on the physical and behavioral development of 129SV mice].

    PubMed

    Burenkova, O V; Aleksandrova, E A; Zarayskaya, I Yu

    2015-01-01

    Sodium valproate is a widely used antiepileptic drug at high dosage levels, but it has been shown to produce a variety of toxic side-effects when used during perinatal period. These effects include increased risk of congenital anomalies and autism. For this reason, valproate is commonly employed in animal model of autism. Sodium valproate has multiple molecular targets including histone deacetylases. Therefore valproate can be utilized as a tool for the modulation of epigenetic modifications of the genome via inhibition of histone deacetylases. It is known that administration of sodium valproate at a dose of 50 mg/kg during early postnatal period leads to increase of the histone H3 acetylation level in the brain. The aim of the present study was to evaluate the effects of multiple valproate injections from 3rd to 6th postnatal day (50 mg/kg s.c.) on physical and sensorimotor development of 129Sv mice. The standard battery of tests was used. Our results show that valproate have no negative effect on physical development, sensorimotor function, and social behavior. The obtained results support the applicability of sodium valproate in our dosing schedule for further experimental modulation of histone acetulation level in the developing brain.

  4. Combined use of crystalline sodium salt and polymeric precipitation inhibitors to improve pharmacokinetic profile of ibuprofen through supersaturation.

    PubMed

    Terebetski, Jenna L; Cummings, John J; Fauty, Scott E; Michniak-Kohn, Bozena

    2014-10-01

    To maximize the pharmacological effect of a pain reliever such as ibuprofen, early onset of action is critical. Unfortunately, the acidic nature of ibuprofen minimizes the amount of drug that can be solubilized under gastric conditions and would be available for immediate absorption upon entry into the intestine. Although the sodium salt of ibuprofen has higher solubility, rapid conversion from the salt to the poorly soluble free acid phase occurs under gastric conditions. Therefore, the combination of the highly soluble sodium salt form of ibuprofen with polymers was evaluated as an approach to prolong supersaturation of ibuprofen during the disproportionation of the salt. Binary combinations of ibuprofen sodium with polymers resulted in the identification of several formulations that demonstrated high degrees and extended durations of supersaturation during in vitro dissolution experiments. These formulations included HPMC, polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA64), methylcellulose (MC), and hydroxypropyl cellulose (HPC). The in vitro supersaturation observed with these ibuprofen-polymer formulations translated to an increase in Cmax and an earlier Tmax for the PVP-VA64, MC, and HPC formulations relative to ibuprofen only controls when administered orally to rats under fasted conditions. Based on these observations, combining ibuprofen sodium with polymers such as PVP-VA64, MC, or HPC is a viable formulation approach to prolong supersaturation in the stomach and enable an optimized pharmacokinetic profile in vivo where rapid onset of action is desired.

  5. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    PubMed

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  7. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications

    PubMed Central

    Kamel, Samir; Salama, Ahmed; Sarhan, Hebat-Allah

    2014-01-01

    Carboxymethyl cellulose acetate butyrate (CMCAB) has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW) thermoplastic polymers with high glass transition temperatures (Tg). CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD) formulations. PMID:25548679

  8. Carboxymethyl cellulose acetate butyrate: a review of the preparations, properties, and applications.

    PubMed

    El-Sakhawy, Mohamed; Kamel, Samir; Salama, Ahmed; Sarhan, Hebat-Allah

    2014-01-01

    Carboxymethyl cellulose acetate butyrate (CMCAB) has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW) thermoplastic polymers with high glass transition temperatures (Tg). CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD) formulations.

  9. A novel class of apical sodium--dependent bile salt transporter inhibitors: 1-(2,4-bifluorophenyl)-7-dialkylamino-1,8-naphthyridine-3-carboxamides.

    PubMed

    Liu, Hongtao; Pang, Guoxun; Ren, Jinfeng; Zhao, Yue; Wang, Juxian

    2017-03-01

    The apical sodium--dependent bile acid transporter (ASBT) is the main transporter to promote re-absorption of bile acids from the intestinal tract into the enterohepatic circulation. Inhibition of ASBT could increase the excretion of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. Therefore, ASBT is an attractive target for developing new cholesterol-lowering drugs. In this report, a series of 1-(2,4-bifluorophenyl)-7-dialkylamino-1,8-naphthyridine-3-carboxamides were designed as inhibitors of ASBT. Most of them demonstrated potency against ASBT transport of bile acids. In particular, compound 4a1 was found to have the best activity, resulting in 80.1% inhibition of ASBT at 10 μmol/L.

  10. Benefits/risks of sodium-glucose co-transporter 2 inhibitor canagliflozin in women for the treatment of Type 2 diabetes.

    PubMed

    Kushner, Pamela

    2016-06-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors, such as canagliflozin, are used in patients with Type 2 diabetes mellitus (T2DM). In clinical studies, canagliflozin significantly reduced A1C, bodyweight and blood pressure, and was generally well tolerated with no increased risk of hypoglycemia. Most common adverse effects observed were genital mycotic infections and urinary tract infections, and increased urination. Approximately 10% of women treated with canagliflozin experienced a genital mycotic infection compared with 3% treated with placebo; those with a prior history were at greater risk. Approximately 9% of women treated with canagliflozin reported a urinary tract infection compared with 7% treated with placebo. Most adverse events were considered mild to moderate in intensity and responded to standard therapy. Treatment with canagliflozin was effective and generally well tolerated in both women (and men) with T2DM.

  11. Partial purification of a sodium pump inhibitor from bovine adenohypophysis. Its comparison with the natriuretic factor isolated from hypothalamus.

    PubMed

    Illescas, M; Ricote, M; Méndez, E; Robles, R G; Sancho, J M

    1988-01-01

    Adenohypophysis and hypothalamic bovine tissues were homogenized, lipid extracted, salt removed and loaded onto 2 successive mu Bondapak HPLC columns, semipreparative and analytic, respectively. In vitro sodium-pump inhibitory activity, recovered from each tissue, showed similar chromatographic patterns, but hypothalamus seems to contain a major hydrophobic material which appears at the end of the run, when acetonitrile gradient raised 40% approximately. Digitalis-like activity disappears along the purification procedure, and this fact suggests a clear dissociation between (Na/K)ATPase inhibition and digoxin-like activity, measured as crossing with digoxin antibodies.

  12. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium

    PubMed Central

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn’t induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  13. Mitochondrial inhibitor sodium azide inhibits the reorganization of mitochondria-rich cytoplasm and the establishment of the anteroposterior axis in ascidian embryo.

    PubMed

    Ishii, Hirokazu; Shirai, Takuma; Makino, Chisato; Nishikata, Takahito

    2014-02-01

    In ascidian eggs, cytoplasmic and cortical reorganization, previously called ooplasmic segregation, occurs in two phases during the first cell cycle. In the second phase of reorganization, the mitochondria-rich cytoplasm (myoplasm) moves to the future posterior side, concurrent with sperm aster migration along the egg cortex. Although this reorganization is the critical step for establishing the anteroposterior axis, its molecular mechanism is not fully understood. In this study, we showed that low concentrations of the mitochondrial inhibitor sodium azide (NaN3 ), which showed the low toxicity in sperm, inhibited the second phase of reorganization without the microtubule depolymerization. In the NaN3 -treated embryo, the sperm aster was not attracted to the cortex and altered its migration pathway; therefore, the myoplasm remained at the vegetal pole. Consequently, the anteroposterior axis was not established. Another mitochondrial inhibitor, oligomycin, did not affect these processes. These results suggest that NaN3 inhibits unknown molecules that are important for the second phase of reorganization. Identifying the target molecule of NaN3 will lead to a molecular understanding of cytoplasmic and cortical reorganization.

  14. Insulin-sensitizing and cardiovascular effects of the sodium-hydrogen exchange inhibitor, cariporide, in the JCR: LA-cp rat and db/db mouse.

    PubMed

    Russell, J C; Proctor, S D; Kelly, S E; Löhn, M; Busch, A E; Schäfer, S

    2005-12-01

    The effects of the sodium-hydrogen (Na/H) exchange inhibitor cariporide (HOE642), on insulin sensitivity and vascular function were studied in the JCR:LA-cp rat and the db/db mouse. In the insulin-resistant rat, cariporide reduced fasting insulin levels (42%, P < 0.02) and insulin response in a meal tolerance test (50%, P < 0.01), indicating increased insulin sensitivity. The ACE inhibitor, ramipril, used as a reference agent, reduced the insulin response to the meal, but not fasting levels. The EC50 for acetylcholine-mediated relaxation of phenylephrine-precontracted aortic rings was significantly lower in cariporide-treated rats (P < 0.002), but not in ramipril-treated rats. Flow response of the coronary circulation to bradykinin was significantly greater in both cariporide- and ramipril-treated rats, (3-fold decrease in the EC50, P < 0.05). Cariporide-treated hearts were smaller, slower beating, with greater developed LVP. In the obese db/db mouse, chronic treatment with cariporide obviated vascular hypercontractility and improved endothelial function. Thus, cariporide had beneficial effects on the abnormal insulin metabolism and associated vascular dysfunction in the JCR:LA-cp insulin-resistant rat, which develops advanced cardiovascular disease and ischemic myocardial lesions. It also improved vascular function in a similar mouse model of insulin resistance. These effects were markedly greater than those of ramipril.

  15. Resistant starch from high amylose maize (HAM-RS2) and dietary butyrate reduce abdominal fat by a different apparent mechanism.

    PubMed

    Vidrine, Kirk; Ye, Jianping; Martin, Roy J; McCutcheon, Kathleen L; Raggio, Anne M; Pelkman, Christine; Durham, Holiday A; Zhou, June; Senevirathne, Reshani N; Williams, Cathy; Greenway, Frank; Finley, John; Gao, Zhanguo; Goldsmith, Felicia; Keenan, Michael J

    2014-02-01

    Obesity is a health concern. Resistant starch (RS) type 2 from high-amylose maize (HAM-RS2) and dietary sodium butyrate (SB) reduce abdominal fat in rodents. RS treatment is associated with increased gut hormones peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), but it is not known if SB increases these hormones. This was investigated in a 2 × 2 rat study with HAM-RS2 (0 or 28% weight) and dietary sodium butyrate (0 and 3.2%) resulting in isocaloric treatments: energy control (EC), sodium butyrate (SB), HAM-RS2 (RS), and the combination (SBRS). RS and SB reduced abdominal fat and the combination reduced abdominal fat compared to SB and RS. RS was associated with increased fermentation in the cecum. Serum PYY and GLP-1 total were increased with RS treatment. RS treatment was associated with increased cecal butyrate produced from fermentation of RS, but there was no cecal increase for dietary SB. SB after its absorption into the blood appears to not affect production of PYY and GLP-1, while butyrate from fermentation in the cecum promotes increased PYY and GLP-1. Future studies with lower doses of RS and SB are warranted and the combination may be beneficial for human health. Copyright © 2013 The Obesity Society.

  16. An Sp1 response element in the Kaposi's sarcoma-associated herpesvirus open reading frame 50 promoter mediates lytic cycle induction by butyrate.

    PubMed

    Ye, Jianjiang; Shedd, Duane; Miller, George

    2005-02-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) can be driven into the lytic cycle in vitro by phorbol esters and sodium butyrate. This report begins to analyze the process by which butyrate activates the promoter of KSHV open reading frame 50 (ORF50), the key viral regulator of the KSHV latency to lytic cycle switch. A short fragment of the promoter, 134 nucleotides upstream of the translational start of ORF50, retained basal uninduced activity and conferred maximal responsiveness to sodium butyrate. The butyrate response element was mapped to a consensus Sp1-binding site. By means of electrophoretic mobility shift assays, both Sp1 and Sp3 were shown to form complexes in vitro with the ORF50 promoter at the Sp1 site. Butyrate induced the formation of a group of novel complexes, including several Sp3-containing complexes, one Sp1-containing complex, and several other complexes that were not identified with antibodies to Sp1 or Sp3. Formation of all butyrate-induced DNA-protein complexes was mediated by the consensus Sp1 site. In insect and mammalian cell lines, Sp1 significantly activated the ORF50 promoter linked to luciferase. Chromatin immunoprecipitation experiments in a PEL cell line showed that butyrate induced Sp1, CBP, and p300 binding to the ORF50 promoter in vivo in an on-off manner. The results suggest that induction of the KSHV lytic cycle by butyrate is mediated through interactions at the Sp1/Sp3 site located 103 to 112 nucleotides upstream of the translational initiation of ORF50 presumably by enhancing the binding of Sp1 to this site.

  17. Synergistic effects of dimethyloxalylglycine and butyrate incorporated into α-calcium sulfate on bone regeneration.

    PubMed

    Woo, Kyung Mi; Jung, Hong-Moon; Oh, Joung-Hwan; Rahman, Saeed Ur; Kim, Soung Min; Baek, Jeong-Hwa; Ryoo, Hyun-Mo

    2015-01-01

    Osteogenesis is closely related to angiogenesis, and the combined delivery of angiogenic and osteogenic factors has been suggested to enhance bone regeneration. Small molecules have been explored as alternatives to growth factors for tissue regeneration applications. In this study, we examined the effects of the combined application of angiogenic and osteogenic small molecules on bone regeneration using a prolyl hydroxylase, dimethyloxalylglycine (DMOG), and a histone deacetylase inhibitor, butyrate. In a critical size bone defect model in rats, DMOG and butyrate, which were incorporated into α calcium sulfate (αCS), resulted in synergistic enhancements in bone and blood vessel formation, eventually leading to bone healing, as confirmed by micro-CT and histological analyses. In MC4 pre-osteoblast cultures, DMOG and butyrate enhanced the pro-angiogenic responses and osteoblast differentiation, respectively, which were evaluated based on the levels of hypoxia inducible factor (HIF)-1α protein and the expression of pro-angiogenic molecules (VEGF, home oxidase-1, glucose transporter-1) and by alkaline phosphatase (ALP) activity and the expression of osteoblast phenotype marker molecules (ALP, α1(I)col, osteocalcin, and bone sialoprotein). DMOG combined with butyrate synergistically improved osteoblast differentiation and pro-angiogenic responses, the levels of which were drastically increased in the cultures on αCS disks. Furthermore, it was demonstrated that αCS increased the level of HIF-1α and as a consequence VEGF expression, and supported osteoblast differentiation through the release of calcium ions from the αCS. Altogether, the results of this study provide evidence that a combination treatment with the small molecules DMOG and butyrate can expedite the process of bone regeneration and that αCS can be an efficient delivery vehicle for the small molecules for bone regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

    PubMed Central

    Canani, Roberto Berni; Costanzo, Margherita Di; Leone, Ludovica; Pedata, Monica; Meli, Rosaria; Calignano, Antonio

    2011-01-01

    The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from non-absorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport, ameliorates mucosal inflammation and oxidative status, reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition, a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases, hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different; many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine. PMID:21472114

  19. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch

    PubMed Central

    2014-01-01

    Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as

  20. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes

    PubMed Central

    Shin, Seok Joon; Chung, Sungjin; Kim, Soo Jung; Lee, Eun-Mi; Yoo, Young-Hye; Kim, Ji-Won; Ahn, Yu-Bae; Kim, Eun-Sook; Moon, Sung-Dae; Kim, Myung-Jun

    2016-01-01

    Background Renal renin-angiotensin system (RAS) activation is one of the important pathogenic mechanisms in the development of diabetic nephropathy in type 2 diabetes. The aim of this study was to investigate the effects of a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, dapagliflozin, on renal RAS in an animal model with type 2 diabetes. Methods Dapagliflozin (1.0 mg/kg, OL-DA) or voglibose (0.6 mg/kg, OL-VO, diabetic control) (n = 10 each) was administered to Otsuka Long-Evans Tokushima Fatty (OLETF) rats for 12 weeks. We used voglibose, an alpha-glucosidase inhibitor, as a comparable counterpart to SGLT2 inhibitor because of its postprandial glucose-lowering effect without proven renoprotective effects. Control Long-Evans Tokushima Otsuka (LT) and OLETF (OL-C) rats received saline (n = 10, each). Changes in blood glucose, urine albumin, creatinine clearance, and oxidative stress were measured. Inflammatory cell infiltration, mesangial widening, and interstitial fibrosis in the kidney were evaluated by histological analysis. The effects of dapagliflozin on renal expression of the RAS components were evaluated by quantitative RT-PCR in renal tissue. Results After treatment, hyperglycemia and urine microalbumin levels were attenuated in both OL-DA and OL-VO rather than in the OL-C group (P < 0.05). The urine angiotensin II (Ang II) and angiotensinogen levels were significantly decreased following treatment with dapagliflozin or voglibose, but suppression of urine Ang II level was more prominent in the OL-DA than the OL-VO group (P < 0.05). The expressions of angiotensin type 1 receptor and tissue oxidative stress markers were markedly increased in OL-C rats, which were reversed by dapagliflozin or voglibose (P < 0.05, both). Inflammatory cell infiltration, mesangial widening, interstitial fibrosis, and total collagen content were significantly increased in OL-C rats, which were attenuated in OL-DA group (P < 0.05). Conclusion Dapagliflozin treatment showed

  1. Protective Effect of Met12, a Small Peptide Inhibitor of Fas, on the Retinal Pigment Epithelium and Photoreceptor After Sodium Iodate Injury

    PubMed Central

    Xiao, Jianhui; Yao, Jingyu; Jia, Lin; Lin, Chengmao; Zacks, David N.

    2017-01-01

    Purpose A major problem in macular degeneration is the inability to reduce RPE and photoreceptor death. These cells die by necroptosis and apoptosis, respectively, but the upstream activator(s) of these death pathways is unknown. In this study, we use the sodium iodate (NaIO3) model of oxidative stress to test the hypothesis that activation of the Fas receptor contributes to the death of the RPE and photoreceptors. Methods Sodium iodate was injected in Brown-Norway rats via femoral vein injection. Both in vivo (fundus photography, optical coherence tomography, and fluorescein angiography) and ex vivo (histology, immunohistochemistry, Western blot, and RT-PCR) analyses of the RPE and retina were conducted at baseline, as well as at various times post NaIO3 injection. The ability of intravitreal injection of Met12, a small peptide inhibitor of the Fas receptor, to prevent RPE and photoreceptor cell death was assessed. Results Injection of NaIO3 led to Fas-mediated activation of both necroptosis and apoptosis in the RPE and photoreceptors, respectively. This was accompanied by a significant increase in the number of microglia/macrophages in the outer retina. Met12 significantly reduced the activation of the Fas-mediated death pathways, resulting in reduced RPE and photoreceptor death and a decreased immune response. Conclusions Our results demonstrate that NaIO3 activates Fas-mediated cell death, both in the RPE and photoreceptor, and that a small peptide antagonist of the Fas receptor, Met12, significantly reduces the extent of this cell death. These findings suggest a role for Fas inhibition to protect the RPE and photoreceptors from death due to oxidative stress. PMID:28346613

  2. The Effect of a Novel Highly Selective Inhibitor of the Sodium/Calcium Exchanger (NCX) on Cardiac Arrhythmias in In Vitro and In Vivo Experiments

    PubMed Central

    Kohajda, Zsófia; Farkas-Morvay, Nikolett; Jost, Norbert; Nagy, Norbert; Geramipour, Amir; Horváth, András; Varga, Richárd S.; Hornyik, Tibor; Corici, Claudia; Acsai, Károly; Horváth, Balázs; Prorok, János; Ördög, Balázs; Déri, Szilvia; Tóth, Dániel; Levijoki, Jouko; Pollesello, Piero; Koskelainen, Tuula; Otsomaa, Leena; Tóth, András; Baczkó, István; Leprán, István; Nánási, Péter P.; Papp, Julius Gy; Varró, András; Virág, László

    2016-01-01

    Background In this study the effects of a new, highly selective sodium-calcium exchanger (NCX) inhibitor, ORM-10962 were investigated on cardiac NCX current, Ca2+ transients, cell shortening and in experimental arrhythmias. The level of selectivity of the novel inhibitor on several major transmembrane ion currents (L-type Ca2+ current, major repolarizing K+ currents, late Na+ current, Na+/K+ pump current) was also determined. Methods Ion currents in single dog ventricular cells (cardiac myocytes; CM), and action potentials in dog cardiac multicellular preparations were recorded utilizing the whole-cell patch clamp and standard microelectrode techniques, respectively. Ca2+ transients and cell shortening were measured in fluorescent dye loaded isolated dog myocytes. Antiarrhythmic effects of ORM-10962 were studied in anesthetized ouabain (10 μg/kg/min i.v.) pretreated guinea pigs and in ischemia-reperfusion models (I/R) of anesthetized coronary artery occluded rats and Langendorff perfused guinea pigs hearts. Results ORM-10962 significantly reduced the inward/outward NCX currents with estimated EC50 values of 55/67 nM, respectively. The compound, even at a high concentration of 1 μM, did not modify significantly the magnitude of ICaL in CMs, neither had any apparent influence on the inward rectifier, transient outward, the rapid and slow components of the delayed rectifier potassium currents, the late and peak sodium and Na+/K+ pump currents. NCX inhibition exerted moderate positive inotropic effect under normal condition, negative inotropy when reverse, and further positive inotropic effect when forward mode was facilitated. In dog Purkinje fibres 1 μM ORM-10962 decreased the amplitude of digoxin induced delayed afterdepolarizations (DADs). Pre-treatment with 0.3 mg/kg ORM-10962 (i.v.) 10 min before starting ouabain infusion significantly delayed the development and recurrence of ventricular extrasystoles (by about 50%) or ventricular tachycardia (by about 30

  3. Ginsenosides, ingredients of the root of Panax ginseng, are not substrates but inhibitors of sodium-glucose transporter 1.

    PubMed

    Gao, Shengli; Kushida, Hirotaka; Makino, Toshiaki

    2017-01-01

    Recent pharmacokinetic studies have revealed that ginsenosides, the major ingredients of ginseng (the roots of Panax ginseng), are present in the plasma collected from subjects receiving ginseng, and speculated that ginsenosides might be actively transported via glucose transporters. We evaluated whether ginsenosides Rb1 and Rg1, and their metabolites from enteric bacteria act as substrates of sodium-glucose cotransporter (SGLT) 1, the major glucose transporter expressed on the apical side of intestinal epithelial cells. First, we evaluated the competing effects of ginseng extract and ginsenosides on the uptake of [(14)C]methyl-glucose, a substrate of SGLT1, by SGLT1-overexpressing HEK293 cells. A boiling water extract of ginseng inhibited SGLT1 in a concentration-dependent manner with an IC50 value of 0.85 mg/ml. By activity-guided fractionation, we determined that the fraction containing ginsenosides displayed an inhibitory effect on SGLT1. Of the ginsenosides evaluated, protopanaxatriol-type ginsenosides were not found to inhibit SGLT1, whereas protopanaxadiol-type ginsenosides, including ginsenosides Rd, Rg3, Rh2, F2 and compound K, exhibited significant inhibitory effects on SGLT1, with ginsenoside F2 having the highest activity with an IC50 value of 23.0 µM. Next, we measured the uptake of ginsenoside F2 and compound K into Caco-2 cells, a cell line frequently used to evaluate the intestinal absorption of drugs. The uptake of ginsenoside F2 and compound K into Caco-2 cells was not competitively inhibited by glucose. Furthermore, the uptake of ginsenoside F2 and compound K into SGLT1-overexpressing HEK293 cells was not significantly higher than into mock cells. Ginsenoside F2 and compound K did not appear to be substrates of SGLT1, although these compounds could inhibit SGLT1. Ginsenosides might be absorbed by passive diffusion through the intestinal membrane or actively transported via unknown transporters other than SGLT1.

  4. Physiologically based pharmacokinetic-pharmacodynamic modeling to predict concentrations and actions of sodium-dependent glucose transporter 2 inhibitor canagliflozin in human intestines and renal tubules.

    PubMed

    Mori, Kazumi; Saito, Ryuta; Nakamaru, Yoshinobu; Shimizu, Makiko; Yamazaki, Hiroshi

    2016-11-01

    Canagliflozin is a recently developed sodium-glucose cotransporter (SGLT) 2 inhibitor that promotes renal glucose excretion and is considered to inhibit renal SGLT2 from the luminal side of proximal tubules. Canagliflozin reportedly inhibits SGLT1 weakly and suppresses postprandial plasma glucose, suggesting that it also inhibits intestinal SGLT1. However, it is difficult to measure the drug concentrations of these assumed sites of action directly. The pharmacokinetic-pharmacodynamic (PK/PD) relationships of canagliflozin remain poorly characterized. Therefore, a physiologically based pharmacokinetic (PBPK) model of canagliflozin was developed based on clinical data from healthy volunteers and it was used to simulate luminal concentrations in intestines and renal tubules. In small intestine simulations, the inhibition ratios for SGLT1 were predicted to be 40%-60% after the oral administration of clinical doses (100-300 mg/day). In contrast, inhibition ratios of canagliflozin for renal SGLT2 and SGLT1 were predicted to be approximately 100% and 0.2%-0.4%, respectively. These analyses suggest that canagliflozin only inhibits SGLT2 in the kidney. Using the simulated proximal tubule luminal concentrations of canagliflozin, the urinary glucose excretion rates in canagliflozin-treated diabetic patients were accurately predicted using the renal glucose reabsorption model as a PD model. Because the simulation of canagliflozin pharmacokinetics was successful, this PBPK methodology was further validated by successfully simulating the pharmacokinetics of dapagliflozin, another SGLT2 inhibitor. The present results suggest the utility of this PBPK/PD model for predicting canagliflozin concentrations at target sites and help to elucidate the pharmacological effects of SGLT1/2 inhibition in humans. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Sodium-Glucose Cotransporter 2 Inhibitor and a Low Carbohydrate Diet Affect Gluconeogenesis and Glycogen Content Differently in the Kidney and the Liver of Non-Diabetic Mice

    PubMed Central

    Atageldiyeva, Kuralay; Fujita, Yukihiro; Yanagimachi, Tsuyoshi; Mizumoto, Katsutoshi; Takeda, Yasutaka; Honjo, Jun; Takiyama, Yumi; Abiko, Atsuko; Makino, Yuichi; Haneda, Masakazu

    2016-01-01

    A low carbohydrate diet (LCHD) as well as sodium glucose cotransporter 2 inhibitors (SGLT2i) may reduce glucose utilization and improve metabolic disorders. However, it is not clear how different or similar the effects of LCHD and SGLT2i are on metabolic parameters such as insulin sensitivity, fat accumulation, and especially gluconeogenesis in the kidney and the liver. We conducted an 8-week study using non-diabetic mice, which were fed ad-libitum with LCHD or a normal carbohydrate diet (NCHD) and treated with/without the SGLT-2 inhibitor, ipragliflozin. We compared metabolic parameters, gene expression for transcripts related to glucose and fat metabolism, and glycogen content in the kidney and the liver among the groups. SGLT2i but not LCHD improved glucose excursion after an oral glucose load compared to NCHD, although all groups presented comparable non-fasted glycemia. Both the LCHD and SGLT2i treatments increased calorie-intake, whereas only the LCHD increased body weight compared to the NCHD, epididimal fat mass and developed insulin resistance. Gene expression of certain gluconeogenic enzymes was simultaneously upregulated in the kidney of SGLT2i treated group, as well as in the liver of the LCHD treated group. The SGLT2i treated groups showed markedly lower glycogen content in the liver, but induced glycogen accumulation in the kidney. We conclude that LCHD induces deleterious metabolic changes in the non-diabetic mice. Our results suggest that SGLT2i induced gluconeogenesis mainly in the kidney, whereas for LCHD it was predominantly in the liver. PMID:27327650

  6. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors

    PubMed Central

    Harrison, Ian F; Crum, William R; Vernon, Anthony C; Dexter, David T

    2015-01-01

    Background and Purpose Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD. Experimental Approach The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague–Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning. Longitudinal motor behavioural testing, structural MRI and post-mortem assessment of nigrostriatal integrity were used to track changes in this model of PD and quantify neuroprotection/restoration. Subsequent cellular and molecular analyses were performed to elucidate the mechanisms underlying valproate's effects. Key Results Despite producing a distinct pattern of structural re-modelling in the healthy and lactacystin-lesioned brain, delayed-start valproate administration induced dose-dependent neuroprotection/restoration against lactacystin neurotoxicity, characterized by motor deficit alleviation, attenuation of morphological brain changes and restoration of dopaminergic neurons in the substantia nigra. Molecular analyses revealed that valproate alleviated lactacystin-induced histone hypoacetylation and induced up-regulation of brain neurotrophic/neuroprotective factors. Conclusions and Implications The histone acetylation and up-regulation of neurotrophic/neuroprotective factors associated with valproate treatment culminate in a neuroprotective and neurorestorative phenotype in this animal model of PD. As valproate induced structural re-modelling of the brain, further research is required to determine whether valproate represents a viable candidate for disease treatment; however

  7. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice.

    PubMed

    Naznin, Farhana; Sakoda, Hideyuki; Okada, Tadashi; Tsubouchi, Hironobu; Waise, T M Zaved; Arakawa, Kenji; Nakazato, Masamitsu

    2017-01-05

    Chronic inflammation in systemic organs, such as adipose tissue, nodose ganglion, hypothalamus, and skeletal muscles, is closely associated with obesity and diabetes mellitus. Because sodium glucose cotransporter 2 (SGLT2) inhibitors exert both anti-diabetic and anti-obesity effects by promoting urinary excretion of glucose and subsequent caloric loss, we investigated the effect of canagliflozin, an SGLT2 inhibitor, on obesity-induced inflammation in neural tissues and skeletal muscles of mice. High-fat diet (HFD)-fed male C57BL/6J mice were treated with canagliflozin for 8 weeks. Canagliflozin attenuated the HFD-mediated increases in body weight, liver weight, and visceral and subcutaneous fat weight. Additionally, canagliflozin decreased blood glucose as well as the fat, triglyceride, and glycogen contents of the liver. Along with these metabolic corrections, canagliflozin attenuated the increases in the mRNA levels of the proinflammatory biomarkers Iba1 and Il6 and the number of macrophages/microglia in the nodose ganglion and hypothalamus. In the skeletal muscle of HFD-fed obese mice, canagliflozin decreased inflammatory cytokine levels, macrophage accumulation, and the mRNA level of the specific atrophic factor atrogin-1. Canagliflozin also increased the mRNA level of insulin-like growth factor 1, protected against muscle mass loss, and restored the contractile force of muscle. These findings suggested that SGLT2 inhibition disrupts the vicious cycle of obesity and inflammation, not only by promoting caloric loss, but also by suppression of obesity-related inflammation in both the nervous system and skeletal muscle.

  8. Therapeutic Value of Voltage-Gated Sodium Channel Inhibitors in Breast, Colorectal, and Prostate Cancer: A Systematic Review.

    PubMed

    Martin, Fabiola; Ufodiama, Chiedu; Watt, Ian; Bland, Martin; Brackenbury, William J

    2015-01-01

    Although survival rates of breast, colon, and prostate cancers are improving, deaths from these tumors frequently occur due to metastasis. Voltage-gated Na(+) channels (VGSCs) are membrane proteins, which regulate membrane current and cellular migration during nervous system organogenesis. VGSCs are also expressed in fibroblasts, immune cells, glia, and metastatic cancer cells. VGSCs regulate migration and invasion of breast, bowel, and prostate cancer cells, suggesting that they may be novel anti-metastatic targets. We conducted a systematic review of clinical and preclinical studies testing the effects of VGSC-inhibiting drugs in cancer. Two-hundred and four publications were identified, of which two human, two mouse, and 20 in vitro publications were included. In the clinical studies, the effect of these drugs on survival and metastatic relapse is not clear. The 22 preclinical studies collectively suggest that several VGSC-inhibiting drugs inhibit cancer proliferation, migration, and invasion. None of the human and only six of the preclinical studies directly investigated the effect of the drugs on VGSC activity. Studies were difficult to compare due to lack of standardized methodology and outcome measures. We conclude that the benefits of VGSC inhibitors require further investigation. Standardization of future studies and outcome measures should enable meaningful study comparisons.

  9. Specific cell cycle synchronization with butyrate and cell cycle analysis

    USDA-ARS?s Scientific Manuscript database

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  10. Aptiom (eslicarbazepine acetate) as a dual inhibitor of β-secretase and voltage-gated sodium channel: advancement in Alzheimer's disease-epilepsy linkage via an enzoinformatics study.

    PubMed

    Shaikh, Sibhghatulla; Rizvi, Syed M D; Hameed, Nida; Biswas, Deboshree; Khan, Mahiuddin; Shakil, Shazi; Kamal, Mohammad A

    2014-01-01

    Neurodegenerative disorders are increasingly identified as one of the major causes of epilepsy. The relationship of epileptic activity to Alzheimer's disease (AD) is of clinical importance. Voltage-gated sodium channel (VSC) is one of the best targets in the treatment of epilepsy while β-secretase (BACE) has long been observed as a curative target for AD. To explore a possible link between the treatment of AD and epilepsy, the molecular interactions of recently Food and Drug Administration approved antiepileptic drug Aptiom (Eslicarbazepine acetate) with BACE and VSC were studied. Docking study was performed using 'Autodock4.2'. Hydrophobic and pi-pi interactions play critical role in the correct positioning of Eslicarbazepine acetate within the catalytic site of VSC and BACE enzyme to permit docking. Free energy of binding (ΔG) of 'Eslicarbazepine acetate-VSC' interaction and 'Eslicarbazepine acetate-CAS domain of BACE' interaction was found to be -5.97 and -7.19 kcal/mol, respectively. Hence, Eslicarbazepine acetate might act as a potent dual inhibitor of BACE and VSC. However, scope still remains in the determination of the three-dimensional structure of BACE-Eslicarbazepine acetate and VSC-Eslicarbazepine acetate complexes by X-ray crystallography to validate the described data. Further, Aptiom (Eslicarbazepine acetate) could be expected to form the basis of future dual therapy against epilepsy associated neurological disorders.

  11. Ipragliflozin, a sodium glucose co-transporter 2 inhibitor, reduces intrahepatic lipid content and abdominal visceral fat volume in patients with type 2 diabetes.

    PubMed

    Ohta, Akio; Kato, Hiroyuki; Ishii, Satoshi; Sasaki, Yosuke; Nakamura, Yuta; Nakagawa, Tomoko; Nagai, Yoshio; Tanaka, Yasushi

    2017-10-01

    We recently investigated the effect of ipragliflozin, a sodium glucose co-transporter-2 inhibitor (SGLT-2I), in Japanese patients with type 2 diabetes by a 24-week. SGLT-2Is also have an anti-obesity effect, and reduction of body fat has been demonstrated by indirect methods. However, evaluation of the effect on the total visceral fat volume and intrahepatic lipid content has not been performed. We measured the abdominal subcutaneous fat volume (SFV) and visceral fat volume (VFV) by whole abdominal CT scanning, the intrahepatic lipid (IHL) content by proton magnetic resonance spectroscopy (1H-MRS), and the fat mass index (FI) and appendicular skeletal mass index (ASMI) by dual X-ray absorptiometry (DXA) in 20 patients from our previous study. Administration of ipragliflozin at 50 mg/day for 24 weeks significantly reduced SFV, VFV, and IHL. FI and ASMI were also significantly decreased. Changes of VFV and IHL content at 12 weeks were significantly correlated with the change of HbA1c, but no correlation was observed at 24 weeks. These findings demonstrate that ipragliflozin decreases visceral and hepatic fat, with improvement of glycemic control possibly being attributable to these changes at least up to 12 weeks.

  12. Evaluation of drug-drug interaction between henagliflozin, a novel sodium-glucose co-transporter 2 inhibitor, and metformin in healthy Chinese males.

    PubMed

    Wang, Liupeng; Wu, Chunyong; Shen, Lu; Liu, Haiyan; Chen, Ying; Liu, Fang; Wang, Youqun; Yang, Jin

    2016-08-01

    1. Henagliflozin is a novel sodium-glucose transporter 2 inhibitor and presents a complementary therapy to metformin for patients with T2DM due to its insulin-independent mechanism of action. This study evaluated the potential pharmacokinetic drug-drug interaction between henagliflozin and metformin in healthy Chinese male subjects. 2. In open-label, single-center, single-arm, two-period, three-treatment self-control study, 12 subjects received 25 mg henagliflozin, 1000 mg metformin or the combination. Lack of PK interaction was defined as the ratio of geometric means and 90% confidence interval (CI) for combination: monotherapy being within the range of 0.80-1.25. 3. Co-administration of henagliflozin with metformin had no effect on henagliflozin area under the plasma concentration-time curve (AUC0-24) (GRM: 1.08; CI: 1.05, 1.10) and peak plasma concentration (Cmax) (GRM: 0.99; CI: 0.92, 1.07). Reciprocally, co-administration of metformin with henagliflozin had no clinically significant on metformin AUC0-24 (GRM: 1.09, CI: 1.02, 1.16) although there was an 11% increase in metformin Cmax (GRM 1.12; CI 1.02, 1.23). All monotherapies and combination therapy were well tolerated. 4. Henagliflozin can be co-administered with metformin without dose adjustment of either drug.

  13. The pan-DAC inhibitor LBH589 is a multi-functional agent in breast cancer cells: cytotoxic drug and inducer of sodium-iodide symporter (NIS).

    PubMed

    Fortunati, N; Catalano, M G; Marano, F; Mugoni, V; Pugliese, M; Bosco, O; Mainini, F; Boccuzzi, G

    2010-12-01

    New drugs with anti-tumor activity, also able to modify the expression of selected molecules, are under evaluation in breast cancer which is becoming resistant to conventional treatment, or in metastatic disease. The sodium-iodide symporter (NIS), which mediates iodide uptake into thyroid cells, and is the molecular basis of radioiodine imaging and therapy in thyroid cancer, is also expressed in a large portion of breast tumors. Since NIS expression in breast cancer is not sufficient for a significant iodide uptake, drugs able to induce its expression and correct function are under evaluation. In the present study, we report for the first time that the pan-deacetylase (DAC) inhibitor LBH589 (panobinostat) significantly induced NIS, both as mRNA and as protein, through the increase of NIS promoter activity, with the final consequence of obtaining a significant up-take of iodide in MCF7, T47D, and MDA-MB231 breast cancer cells. Moreover, we observed that LBH589 causes a significant reduction in cell viability of estrogen-sensitive and -insensitive breast cancer cells within nanomolar range. The anti-tumor effect of LBH589 is sustained by apoptosis induction and cell cycle arrest in G(2)/M. In conclusion, our data suggest that LBH589 might be a powerful tool in the management of breast cancer due to its multiple effects and support a potential application of LBH589 in the diagnosis and treatment of this disease.

  14. Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B

    PubMed Central

    Chen, Jihong; Ghazawi, Feras M; Bakkar, Wafae; Li, Qiao

    2006-01-01

    Background In eukaryotic cells, the genomic DNA is packed with histones to form the nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important role in the control of specific gene expression. Mounting evidence has established that histone deacetylase inhibitors selectively induce cellular differentiation, growth arrest and apoptosis in variety of cancer cells, making them a promising class of anticancer drugs. However, the molecular mechanisms of the anti-cancer effects of these inhibitors have yet to be understood. Results Here, we report that a key determinant for the susceptibility of cancer cells to histone deacetylase inhibitors is their ability to maintain cellular Akt activity in response to the treatment. Also known as protein kinase B, Akt is an essential pro-survival factor in cell proliferation and is often deregulated during tumorigenesis. We show that histone deacetylase inhibitors, such as valproic acid and butyrate, impede Akt1 and Akt2 expression, which leads to Akt deactivation and apoptotic cell death. In addition, valproic acid and butyrate induce apoptosis through the caspase-dependent pathway. The activity of caspase-9 is robustly activated upon valproic acid or butyrate treatment. Constitutively active Akt is able to block the caspase activation and rescues cells from butyrate-induced apoptotic cell death. Conclusion Our study demonstrates that although the primary target of histone deacetylase inhibitors is transcription, it is the capacity of cells to maintain cellular survival networks that determines their fate of survival. PMID:17156483

  15. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes

    PubMed Central

    Rada-Iglesias, Alvaro; Enroth, Stefan; Ameur, Adam; Koch, Christoph M.; Clelland, Gayle K.; Respuela-Alonso, Patricia; Wilcox, Sarah; Dovey, Oliver M.; Ellis, Peter D.; Langford, Cordelia F.; Dunham, Ian; Komorowski, Jan; Wadelius, Claes

    2007-01-01

    Butyrate is a histone deacetylase inhibitor (HDACi) with anti-neoplastic properties, which theoretically reactivates epigenetically silenced genes by increasing global histone acetylation. However, recent studies indicate that a similar number or even more genes are down-regulated than up-regulated by this drug. We treated hepatocarcinoma HepG2 cells with butyrate and characterized the levels of acetylation at DNA-bound histones H3 and H4 by ChIP-chip along the ENCODE regions. In contrast to the global increases of histone acetylation, many genomic regions close to transcription start sites were deacetylated after butyrate exposure. In order to validate these findings, we found that both butyrate and trichostatin A treatment resulted in histone deacetylation at selected regions, while nucleosome loss or changes in histone H3 lysine 4 trimethylation (H3K4me3) did not occur in such locations. Furthermore, similar histone deacetylation events were observed when colon adenocarcinoma HT-29 cells were treated with butyrate. In addition, genes with deacetylated promoters were down-regulated by butyrate, and this was mediated at the transcriptional level by affecting RNA polymerase II (POLR2A) initiation/elongation. Finally, the global increase in acetylated histones was preferentially localized to the nuclear periphery, indicating that it might not be associated to euchromatin. Our results are significant for the evaluation of HDACi as anti-tumourogenic drugs, suggesting that previous models of action might need to be revised, and provides an explanation for the frequently observed repression of many genes during HDACi treatment. PMID:17567991

  16. Untangling the fiber yarn: butyrate feeds Warburg to suppress colorectal cancer.

    PubMed

    Sebastián, Carlos; Mostoslavsky, Raul

    2014-12-01

    Dietary composition has an important role in shaping the gut microbiota. In turn, changes in the diet directly impinge on bacterial metabolites present in the intestinal lumen. Whether such metabolites play a role in intestinal cancer has been a topic of hot debate. In this issue of Cancer Discovery, Donohoe and colleagues show that dietary fiber protects against colorectal carcinoma in a microbiota-dependent manner. Furthermore, fiber-derived butyrate acts as a histone deacetylase inhibitor, inhibiting cell proliferation and inducing apoptosis in colorectal cancer cells experiencing the Warburg effect.

  17. Induction of human choriogonadotropin in HeLa-cell cultures by aliphatic monocarboxylates and inhibitors of deoxyribonucleic acid synthesis

    PubMed Central

    Ghosh, Nimai K.; Rukenstein, Adriana; Cox, Rody P.

    1977-01-01

    The ectopic production of the glycopeptide hormone human placental choriogonadotropin by HeLa65 cells was measured by radioimmunoassay with antiserum against the β-subunit of choriogonadotropin and with the 125I-labelled β-subunit as a tracer antigen. Choriogonadotropin synthesis was markedly (500-fold) stimulated by sodium butyrate. Kinetic studies and the use of an inhibitor of protein synthesis, cycloheximide, indicated that protein synthesis was required for this induction. Investigation of the efficiency of 22 aliphatic short-chain fatty acids and derivatives in causing increased choriogonadotropin synthesis by HeLa cells showed stringent structural requirements. Induction of choriogonadotropin synthesis in HeLa cells was not restricted to butyrate. Other aliphatic acids (propionate, isobutyrate, valerate and hexanoate) were also capable of inducing choriogonadotropin synthesis at 10–50% of the efficiency of butyrate. Hydroxy derivatives of monocarboxylate inducers, related mono- and di-carboxylic acids, alcohols, amines, ketones, esters and sulphoxide were ineffective in increasing choriogonadotropin production by HeLa cells. A saturated C4 straight-chain acid without substituent hydroxyl groups but with a methyl group at one end and a carboxyl moiety at the other appeared to be most efficient in activating choriogonadotropin production. A second clonal line of HeLa cells, HeLa71, showed a higher constitutive synthesis of choriogonadotropin than HeLa65 cells, which was also markedly increased by butyrate. Butyrate and other aliphatic monocarboxylate inducers of choriogonadotropin synthesis inhibited HeLa-cell growth and DNA synthesis. This inhibition of DNA replication may be related to the mechanism of choriogonadotropin synthesis, since two well-characterized anti-neoplastic inhibitors of DNA synthesis, hydroxyurea and 1-β-d-arabinofuranosylcytosine, also stimulated a 300-fold increase in choriogonadotropin synthesis in HeLa cells and were synergistic

  18. Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction.

    PubMed

    Batlle-Vilanova, Pau; Ganigué, Ramon; Ramió-Pujol, Sara; Bañeras, Lluís; Jiménez, Gerard; Hidalgo, Manuela; Balaguer, M Dolors; Colprim, Jesús; Puig, Sebastià

    2017-10-01

    To date acetate is the main product of microbial electrosynthesis (MES) from carbon dioxide (CO2). In this work a tubular bioelectrochemical system was used to carry out MES and enhance butyrate production over the other organic products. Batch tests were performed at a fixed cathode potential of -0.8V vs SHE. The reproducibility of the results according to previous experiments was validated in a preliminary test. According to the literature butyrate production could take place by chain elongation reactions at low pH and high hydrogen partial pressure (pH2). During the experiment, CO2 supply was limited to build up pH2 and trigger the production of compounds with a higher degree of reduction. In test 1 butyrate became the predominant end-product, with a concentration of 59.7mMC versus 20.3mMC of acetate, but limitation on CO2 supply resulted in low product titers. CO2 limitation was relaxed in test 2 to increase the bioelectrochemical activity but increase pH2 and promote the production of butyrate, what resulted in the production of 87.5mMC of butyrate and 34.7mMC of acetate. The consumption of ethanol, and the presence of other products in the biocathode (i.e. caproate) suggested that butyrate production took place through chain elongation reactions, likely driven by Megasphaera sueciensis (>39% relative abundance). Extraction and concentration of butyrate was performed by liquid membrane extraction. A concentration phase with 252.4mMC of butyrate was obtained, increasing also butyrate/acetate ratio to 16.4. The results are promising for further research on expanding the product portfolio of MES. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases.

    PubMed

    Singh, Nagendra; Thangaraju, Muthusamy; Prasad, Puttur D; Martin, Pamela M; Lambert, Nevin A; Boettger, Thomas; Offermanns, Stefan; Ganapathy, Vadivel

    2010-09-03

    Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na(+)-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8(-/-) and Gpr109a(-/-) mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate.

  20. Blockade of Dendritic Cell Development by Bacterial Fermentation Products Butyrate and Propionate through a Transporter (Slc5a8)-dependent Inhibition of Histone Deacetylases

    PubMed Central

    Singh, Nagendra; Thangaraju, Muthusamy; Prasad, Puttur D.; Martin, Pamela M.; Lambert, Nevin A.; Boettger, Thomas; Offermanns, Stefan; Ganapathy, Vadivel

    2010-01-01

    Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na+-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8−/− and Gpr109a−/− mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate. PMID:20601425

  1. Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis.

    PubMed

    Storgaard, Heidi; Gluud, Lise L; Bennett, Cathy; Grøndahl, Magnus F; Christensen, Mikkel B; Knop, Filip K; Vilsbøll, Tina

    2016-01-01

    Sodium-glucose co-transporter 2 inhibitors (SGLT2-i) are a novel drug class for the treatment of diabetes. We aimed at describing the maximal benefits and risks associated with SGLT2-i for patients with type 2 diabetes. Systematic review and meta-analysis. We included double-blinded, randomised controlled trials (RCTs) evaluating SGLT2-i administered in the highest approved therapeutic doses (canagliflozin 300 mg/day, dapagliflozin 10 mg/day, and empagliflozin 25 mg/day) for ≥12 weeks. Comparison groups could receive placebo or oral antidiabetic drugs (OAD) including metformin, sulphonylureas (SU), or dipeptidyl peptidase 4 inhibitors (DPP-4-i). Trials were identified through electronic databases and extensive manual searches. Primary outcomes were glycated haemoglobin A1c (HbA1c) levels, serious adverse events, death, severe hypoglycaemia, ketoacidosis and CVD. Secondary outcomes were fasting plasma glucose, body weight, blood pressure, heart rate, lipids, liver function tests, creatinine and adverse events including infections. The quality of the evidence was assessed using GRADE. Meta-analysis of 34 RCTs with 9,154 patients showed that SGLT2-i reduced HbA1c compared with placebo (mean difference -0.69%, 95% confidence interval -0.75 to -0.62%). We downgraded the evidence to 'low quality' due to variability and evidence of publication bias (P = 0.015). Canagliflozin was associated with the largest reduction in HbA1c (-0.85%, -0.99% to -0.71%). There were no differences between SGLT2-i and placebo for serious adverse events. SGLT2-i increased the risk of urinary and genital tract infections and increased serum creatinine, and exerted beneficial effects on bodyweight, blood pressure, lipids and alanine aminotransferase (moderate to low quality evidence). Analysis of 12 RCTs found a beneficial effect of SGLT2-i on HbA1c compared with OAD (-0.20%, -0.28 to -0.13%; moderate quality evidence). This review includes a large number of patients with type 2 diabetes and

  2. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer's disease- diabetes type 2 linkage via an enzoinformatics study.

    PubMed

    Rizvi, Syed M D; Shakil, Shahnawaz; Biswas, Deboshree; Shakil, Shazi; Shaikh, Sibhghatulla; Bagga, Paramdeep; Kamal, Mohammad A

    2014-04-01

    Acetylcholinesterase (AChE) is a primary target for Alzheimer's therapy while recently sodium glucose cotransporter 2 (SGLT2) has gained importance as a potential target for Type 2 Diabetes Mellitus (T2DM) therapy. The present study emphasizes the molecular interactions between a new Food and Drug Administration (FDA) approved antidiabetic drug 'Invokana' (chemically known as Canagliflozin) with AChE and SGLT2 to establish a link between the treatment of T2DM and Alzheimer's Disease (AD). Docking study was performed using 'Autodock4.2'. Both hydrophobic and π-π interactions play an important role in the correct positioning of Canagliflozin within SGLT2 and catalytic site (CAS) of AChE to permit docking. Free energy of binding (ΔG) for 'Canagliflozin-SGLT2' interaction and 'Canagliflozin - CAS domain of AChE' interaction were found to be -10.03 kcal/mol and -9.40 kcal/mol, respectively. During 'Canagliflozin-SGLT2' interaction, Canagliflozin was found to interact with the most important amino acid residue Q457 of SGLT2. This residue is known for its interaction with glucose during reabsorption in kidney. However, 'Canagliflozin-CAS domain of AChE' interaction revealed that out of the three amino acids constituting the catalytic triad (S203, H447 and E334), two amino acid residues (S203 and H447) interact with Canagliflozin. Hence, Invokana (Canagliflozin) might act as a potent dual inhibitor of AChE and SGLT2. However, scope still remains in the determination of the three-dimensional structure of SGLT2-Canagliflozin and AChE-Canagliflozin complexes by X-ray crystallography to validate the described data. Since the development of diabetes is associated with AD, the design of new AChE inhibitors based on antidiabetic drug scaffolds would be particularly beneficial. Moreover, the present computational study reveals that Invokana (Canagliflozin) is expected to form the basis of a future dual therapy against diabetes associated neurological disorders.

  3. Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis

    PubMed Central

    Gluud, Lise L.; Bennett, Cathy; Grøndahl, Magnus F.; Christensen, Mikkel B.; Knop, Filip K.; Vilsbøll, Tina

    2016-01-01

    Objective Sodium-glucose co-transporter 2 inhibitors (SGLT2-i) are a novel drug class for the treatment of diabetes. We aimed at describing the maximal benefits and risks associated with SGLT2-i for patients with type 2 diabetes. Design Systematic review and meta-analysis. Data Sources and Study Selection We included double-blinded, randomised controlled trials (RCTs) evaluating SGLT2-i administered in the highest approved therapeutic doses (canagliflozin 300 mg/day, dapagliflozin 10 mg/day, and empagliflozin 25 mg/day) for ≥12 weeks. Comparison groups could receive placebo or oral antidiabetic drugs (OAD) including metformin, sulphonylureas (SU), or dipeptidyl peptidase 4 inhibitors (DPP-4-i). Trials were identified through electronic databases and extensive manual searches. Primary outcomes were glycated haemoglobin A1c (HbA1c) levels, serious adverse events, death, severe hypoglycaemia, ketoacidosis and CVD. Secondary outcomes were fasting plasma glucose, body weight, blood pressure, heart rate, lipids, liver function tests, creatinine and adverse events including infections. The quality of the evidence was assessed using GRADE. Results Meta-analysis of 34 RCTs with 9,154 patients showed that SGLT2-i reduced HbA1c compared with placebo (mean difference -0.69%, 95% confidence interval -0.75 to -0.62%). We downgraded the evidence to ‘low quality’ due to variability and evidence of publication bias (P = 0.015). Canagliflozin was associated with the largest reduction in HbA1c (-0.85%, -0.99% to -0.71%). There were no differences between SGLT2-i and placebo for serious adverse events. SGLT2-i increased the risk of urinary and genital tract infections and increased serum creatinine, and exerted beneficial effects on bodyweight, blood pressure, lipids and alanine aminotransferase (moderate to low quality evidence). Analysis of 12 RCTs found a beneficial effect of SGLT2-i on HbA1c compared with OAD (-0.20%, -0.28 to -0.13%; moderate quality evidence). Conclusion

  4. The effects of a TGR5 agonist and a dipeptidyl peptidase IV inhibitor on dextran sulfate sodium-induced colitis in mice

    PubMed Central

    Sakanaka, Taisuke; Inoue, Takuya; Yorifuji, Naoki; Iguchi, Munetaka; Fujiwara, Kaori; Narabayashi, Ken; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kuramoto, Takanori; Ishida, Kumi; Abe, Yosuke; Takeuchi, Toshihisa; Umegaki, Eiji; Akiba, Yasutada; Kaunitz, Jonathan D.; Higuchi, Kazuhide

    2016-01-01

    Background and Aim Luminal nutrients stimulate enteroendocrine L cells to release gut hormones, including intestinotrophic glucagon-like peptide-2 (GLP-2). Because L cells express the bile acid receptor TGR5 and dipeptidyl peptidase-IV (DPPIV) rapidly degrades GLPs, we hypothesized that luminal TGR5 activation may attenuate intestinal injury via GLP-2 release, which is enhanced by DPPIV inhibition. Methods Intestinal injury was induced in mice by administration of dextran sulfate sodium (DSS) in drinking water (free access to water containing 5% DSS for 7 days). The selective TGR5 agonist betulinic acid (BTA) and the DPPIV inhibitor sitagliptin phosphate monohydrate (STG) were administered orally for 7 days. Male C57BL/6 mice (6–7 weeks old) were divided into five groups: normal control group, disease control group, BTA low group (drinking water containing 15 mg/L BTA), BTA high group (50 mg/L BTA), and BTA high + STG (3 mg/kg, i.g.) group. Results The selective TGR5 agonist BTA dose-dependently suppressed disease activity index and mRNA expression of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the colon. Nevertheless, STG administration had little additive effect on BTA-induced protection. Fibroblast activation protein mRNA expression, but not expression of other DPP family members, was increased in the colon of DSS-treated mice with increased mucosal DPPIV. Co-administration of the selective GLP-2 antagonist GLP-2 (3–33) reversed the effect of BTA. Conclusion The selective TGR5 agonist BTA ameliorated DSS-induced colitis in mice via the GLP-2 pathway with no effect of DPPIV inhibition, suggesting that other DPP enzymatic activity is involved in GLP-2 degradation. PMID:25827806

  5. Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on the pharmacokinetics of oral contraceptives, warfarin, and digoxin in healthy participants.

    PubMed

    Devineni, Damayanthi; Manitpisitkul, Prasarn; Vaccaro, Nicole; Bernard, Apexa; Skee, Donna; Mamidi, Rao N V S; Tian, Hong; Weiner, Sveta; Stieltjes, Hans; Sha, Sue; Rothenberg, Paul

    2015-01-01

    Drug-drug interactions between canagliflozin, a sodium glucose co-transporter 2 inhibitor approved for the management of type-2 diabetes mellitus, and an oral contraceptive (OC), warfarin, and digoxin were evaluated in three phase 1 studies in healthy participants. All studies were open-label; study 1 included a fixed-sequence design, and studies 2 and 3 used a crossover design. Regimens were: study 1: OC (levonorgestrel (150 μg) + ethinyl estradiol (30 μg))/day (day 1), canagliflozin 200 mg/day (days 4 - 8), and canagliflozin with OC (day 9); study 2: canagliflozin 300 mg/day (days 1 - 12) with warfarin 30 mg/day (day 6) in period 1, and only warfarin 30 mg/day (day 1) in period 2, or vice versa; study 3: digoxin alone (0.5 mg/day (day 1) + 0.25 mg/day (days 2 - 7)) in period 1, and with canagliflozin 300 mg/day (days 1 - 7) in period 2, or vice versa. Pharmacokinetics (PK) were assessed at prespecified intervals; OC: days 1 and 9, canagliflozin: days 8 - 9 (study 1); warfarin: days 6 (period 1) and 1 (period 2) (study 2); and digoxin: days 5 - 7 (periods 1 and 2) (study 3). Warfarin's pharmacodynamics (PD; International Normalized Ratio (INR)) was assessed on days 6 (period 1) and 1 (period 2). Canagliflozin increased the plasma exposure of OC (maximum plasma concentration (Cmax): 22%, area under the curve (AUC): 6%) and digoxin (Cmax: 36%, AUC: 20%); but did not alter warfarin'€™s PK and PD. No clinically relevant safety findings (including hypoglycemia) were noted. Canagliflozin can be coadministered with OC, warfarin, or digoxin without dose adjustments. All treatments were well-tolerated.

  6. Dose-Ranging Effects of Canagliflozin, a Sodium-Glucose Cotransporter 2 Inhibitor, as Add-On to Metformin in Subjects With Type 2 Diabetes

    PubMed Central

    Rosenstock, Julio; Aggarwal, Naresh; Polidori, David; Zhao, Yue; Arbit, Deborah; Usiskin, Keith; Capuano, George; Canovatchel, William

    2012-01-01

    OBJECTIVE To evaluate the effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in type 2 diabetes mellitus inadequately controlled with metformin monotherapy. RESEARCH DESIGN AND METHODS This was a double-blind, placebo-controlled, parallel-group, multicenter, dose-ranging study in 451 subjects randomized to canagliflozin 50, 100, 200, or 300 mg once daily (QD) or 300 mg twice daily (BID), sitagliptin 100 mg QD, or placebo. Primary end point was change in A1C from baseline through week 12. Secondary end points included change in fasting plasma glucose (FPG), body weight, and overnight urinary glucose-to-creatinine ratio. Safety and tolerability were also assessed. RESULTS Canagliflozin was associated with significant reductions in A1C from baseline (7.6–8.0%) to week 12: −0.79, −0.76, −0.70, −0.92, and −0.95% for canagliflozin 50, 100, 200, 300 mg QD and 300 mg BID, respectively, versus −0.22% for placebo (all P < 0.001) and −0.74% for sitagliptin. FPG was reduced by −16 to −27 mg/dL, and body weight was reduced by −2.3 to −3.4%, with significant increases in urinary glucose-to-creatinine ratio. Adverse events were transient, mild to moderate, and balanced across arms except for a non–dose-dependent increase in symptomatic genital infections with canagliflozin (3–8%) versus placebo and sitagliptin (2%). Urinary tract infections were reported without dose dependency in 3–9% of canagliflozin, 6% of placebo, and 2% of sitagliptin arms. Overall incidence of hypoglycemia was low. CONCLUSIONS Canagliflozin added onto metformin significantly improved glycemic control in type 2 diabetes and was associated with low incidence of hypoglycemia and significant weight loss. The safety/tolerability profile of canagliflozin was favorable except for increased frequency of genital infections in females. PMID:22492586

  7. Effects of rifampin, cyclosporine A, and probenecid on the pharmacokinetic profile of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants

    PubMed Central

    Devineni, Damayanthi; Vaccaro, Nicole; Murphy, Joe; Curtin, Christopher; Mamidi, Rao N.V.S.; Weiner, Sveta; Wang, Shean-Sheng; Ariyawansa, Jay; Stieltjes, Hans; Wajs, Ewa; Di Prospero, Nicholas A.; Rothenberg, Paul

    2015-01-01

    Objective: Canagliflozin, a sodium-glucose co-transporter 2 inhibitor, approved for the treatment of type-2 diabetes mellitus (T2DM), is metabolized by uridine diphosphate-glucuronosyltransferases (UGT) 1A9 and UGT2B4, and is a substrate of P-glycoprotein (P-gp). Canagliflozin exposures may be affected by coadministration of drugs that induce (e.g., rifampin for UGT) or inhibit (e.g. probenecid for UGT; cyclosporine A for P-gp) these pathways. The primary objective of these three independent studies (single-center, open-label, fixed-sequence) was to evaluate the effects of rifampin (study 1), probenecid (study 2), and cyclosporine A (study 3) on the pharmacokinetics of canagliflozin in healthy participants. Methods: Participants received; in study 1: canagliflozin 300 mg (days 1 and 10), rifampin 600 mg (days 4 – 12); study 2: canagliflozin 300 mg (days 1 – 17), probenecid 500 mg twice daily (days 15 – 17); and study 3: canagliflozin 300 mg (days 1 – 8), cyclosporine A 400 mg (day 8). Pharmacokinetics were assessed at pre-specified intervals on days 1 and 10 (study 1); on days 14 and 17 (study 2), and on days 2 – 8 (study 3). Results: Rifampin decreased the maximum plasma canagliflozin concentration (Cmax) by 28% and its area under the curve (AUC) by 51%. Probenecid increased the Cmax by 13% and the AUC by 21%. Cyclosporine A increased the AUC by 23% but did not affect the Cmax. Conclusion: Coadministration of canagliflozin with rifampin, probenecid, and cyclosporine A was well-tolerated. No clinically meaningful interactions were observed for probenecid or cyclosporine A, while rifampin coadministration modestly reduced canagliflozin plasma concentrations and could necessitate an appropriate monitoring of glycemic control. PMID:25407255

  8. Effects of rifampin, cyclosporine A, and probenecid on the pharmacokinetic profile of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants.

    PubMed

    Devineni, Damayanthi; Vaccaro, Nicole; Murphy, Joe; Curtin, Christopher; Mamidi, Rao N V S; Weiner, Sveta; Wang, Shean-Sheng; Ariyawansa, Jay; Stieltjes, Hans; Wajs, Ewa; Di Prospero, Nicholas A; Rothenberg, Paul

    2015-02-01

    Canagliflozin, a sodium-glucose co-transporter 2 inhibitor, approved for the treatment of type-2 diabetes mellitus (T2DM), is metabolized by uridine diphosphate-glucuronosyltransferases (UGT) 1A9 and UGT2B4, and is a substrate of P-glycoprotein (P-gp). Canagliflozin exposures may be affected by coadministration of drugs that induce (e.g., rifampin for UGT) or inhibit (e.g. probenecid for UGT; cyclosporine A for P-gp) these pathways. The primary objective of these three independent studies (single-center, open-label, fixed-sequence) was to evaluate the effects of rifampin (study 1), probenecid (study 2), and cyclosporine A (study 3) on the pharmacokinetics of canagliflozin in healthy participants. Participants received; in study 1: canagliflozin 300 mg (days 1 and 10), rifampin 600 mg (days 4-12); study 2: canagliflozin 300 mg (days 1-17), probenecid 500 mg twice daily (days 15-17); and study 3: canagliflozin 300 mg (days 1-8), cyclosporine A 400 mg (day 8). Pharmacokinetics were assessed at prespecified intervals on days 1 and 10 (study 1); on days 14 and 17 (study 2), and on days 2-8 (study 3). Rifampin decreased the maximum plasma canagliflozin concentration (Cmax) by 28% and its area under the curve (AUC) by 51%. Probenecid increased the Cmax by 13% and the AUC by 21%. Cyclosporine A increased the AUC by 23% but did not affect the Cmax. Coadministration of canagliflozin with rifampin, probenecid, and cyclosporine A was well-tolerated. No clinically meaningful interactions were observed for probenecid or cyclosporine A, while rifampin coadministration modestly reduced canagliflozin plasma concentrations and could necessitate an appropriate monitoring of glycemic control.

  9. Pharmacodynamic effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, from a randomized study in patients with type 2 diabetes.

    PubMed

    Sha, Sue; Devineni, Damayanthi; Ghosh, Atalanta; Polidori, David; Hompesch, Marcus; Arnolds, Sabine; Morrow, Linda; Spitzer, Heike; Demarest, Keith; Rothenberg, Paul

    2014-01-01

    This randomized, double-blind, placebo-controlled, single and multiple ascending-dose study evaluated the pharmacodynamic effects and safety/tolerability of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes. Patients (N = 116) discontinued their antihyperglycemic medications 2 weeks before randomization. Patients received canagliflozin 30, 100, 200, or 400 mg once daily or 300 mg twice daily, or placebo at 2 study centers in the United States and Germany, or canagliflozin 30 mg once daily or placebo at 1 study center in Korea, while maintaining an isocaloric diet for 2 weeks. On Days -1, 1, and 16, urinary glucose excretion (UGE), plasma glucose (PG), fasting PG (FPG), and insulin were measured. The renal threshold for glucose (RTG) was calculated from UGE, PG, and estimated glomerular filtration rate. Safety was evaluated based on adverse event (AE) reports, vital signs, electrocardiograms, clinical laboratory tests, and physical examinations. Canagliflozin increased UGE dose-dependently (,80-120 g/day with canagliflozin $100 mg), with increases maintained over the 14-day dosing period with each dose. Canagliflozin dose-dependently decreased RTG, with maximal reductions to ,4-5 mM (72-90 mg/dL). Canagliflozin also reduced FPG and 24-hour mean PG; glucose reductions were seen on Day 1 and maintained over 2 weeks. Plasma insulin reductions with canagliflozin were consistent with observed PG reductions. Canagliflozin also reduced body weight. AEs were transient, mild to moderate in intensity, and balanced across groups; 1 canagliflozin-treated female reported an episode of vaginal candidiasis. Canagliflozin did not cause hypoglycemia, consistent with the RTG values remaining above the hypoglycemia threshold. At Day 16, there were no clinically meaningful changes in urine volume, urine electrolyte excretion, renal function, or routine laboratory test values. Canagliflozin increased UGE and decreased RTG, leading to reductions

  10. Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models.

    PubMed

    Suzuki, M; Takeda, M; Kito, A; Fukazawa, M; Yata, T; Yamamoto, M; Nagata, T; Fukuzawa, T; Yamane, M; Honda, K; Suzuki, Y; Kawabe, Y

    2014-07-07

    Tofogliflozin, a highly selective inhibitor of sodium/glucose cotransporter 2 (SGLT2), induces urinary glucose excretion (UGE), improves hyperglycemia and reduces body weight in patients with Type 2 diabetes (T2D). The mechanisms of tofogliflozin on body weight reduction were investigated in detail with obese and diabetic animal models. Diet-induced obese (DIO) rats and KKAy mice (a mouse model of diabetes with obesity) were fed diets containing tofogliflozin. Body weight, body composition, biochemical parameters and metabolic parameters were evaluated. In DIO rats tofogliflozin was administered for 9 weeks, UGE was induced and body weight gain was attenuated. Body fat mass decreased without significant change in bone mass or lean body mass. Food consumption (FC) increased without change in energy expenditure, and deduced total calorie balance (deduced total calorie balance=FC-UGE-energy expenditure) decreased. Respiratory quotient (RQ) and plasma triglyceride (TG) level decreased, and plasma total ketone body (TKB) level increased. Moreover, plasma leptin level, adipocyte cell size and proportion of CD68-positive cells in mesenteric adipose tissue decreased. In KKAy mice, tofogliflozin was administered for 3 or 5 weeks, plasma glucose level and body weight gain decreased together with a reduction in liver weight and TG content without a reduction in body water content. Combination therapy with tofogliflozin and pioglitazone suppressed pioglitazone-induced body weight gain and reduced glycated hemoglobin level more effectively than monotherapy with either pioglitazone or tofogliflozin alone. Body weight reduction with tofogliflozin is mainly due to calorie loss with increased UGE. In addition, tofogliflozin also induces a metabolic shift from carbohydrate oxidation to fatty acid oxidation, which may lead to prevention of fat accumulation and inflammation in adipose tissue and liver. Tofogliflozin may have the potential to prevent obesity, hepatic steatosis and

  11. Genetic Deletion of Tissue Inhibitor of Metalloproteinase-1/TIMP-1 Alters Inflammation and Attenuates Fibrosis in Dextran Sodium Sulphate-induced Murine Models of Colitis.

    PubMed

    Breynaert, Christine; de Bruyn, Magali; Arijs, Ingrid; Cremer, Jonathan; Martens, Erik; Van Lommel, Leentje; Geboes, Karel; De Hertogh, Gert; Schuit, Frans; Ferrante, Marc; Vermeire, Séverine; Ceuppens, Jan; Opdenakker, Ghislain; Van Assche, Gert

    2016-11-01

    Increased levels of tissue inhibitor of metalloproteinase-1 [TIMP-1] have been detected in both inflammatory and fibrotic lesions in Crohn's disease. In a murine model of chronic inflammation, fibrosis was associated with an increase in TIMP-1 and inhibition of matrix metalloproteinase [MMP]-mediated degradation. We investigated the effect of TIMP-1 deficiency in acute and chronic murine models of colitis. Colitis was induced via oral administration of dextran sodium sulphate [DSS] to B6.129S4-Timp1(tm1Pds)/J knock-out [KO] and C57BL/6J wild-type [WT] mice. Levels of inflammation and fibrosis were assessed and gelatin zymographies and gene expression microarrays were performed. Compared with WT mice, TIMP-1 KO mice had higher inflammatory parameters after acute DSS administration and developed less fibrosis after chronic DSS administration. MMP-2 levels were increased in WT versus TIMP-1 KO mice with acute colitis, whereas a trend for higher proMMP-9 levels was observed in WT versus TIMP-1 KO mice with chronic colitis. In control conditions, several immune-related genes [e.g Ido1, Cldn8] were differentially expressed between young TIMP-1 KO and WT mice, but to a lesser extent between older TIMP-1 KO and WT mice. In response to DSS, the gene expression pattern was significantly different between young TIMP-1 KO and WT mice, whereas it was similar in older TIMP-1 KO and WT mice. TIMP-1 deficiency leads to differential expression of immune-related genes and to attenuated development of fibrosis. Unravelling the role of TIMP-1 in intestinal remodelling is necessary to develop more effective and more targeted therapeutic strategies for intestinal fibrosis. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Dapagliflozin, a Sodium-Glucose Co-Transporter 2 Inhibitor, Acutely Reduces Energy Expenditure in BAT via Neural Signals in Mice

    PubMed Central

    Chiba, Yumiko; Yamada, Tetsuya; Tsukita, Sohei; Takahashi, Kei; Munakata, Yuichiro; Shirai, Yuta; Kodama, Shinjiro; Asai, Yoichiro; Sugisawa, Takashi; Uno, Kenji; Sawada, Shojiro; Imai, Junta; Nakamura, Kazuhiro; Katagiri, Hideki

    2016-01-01

    Selective sodium glucose cotransporter-2 inhibitor (SGLT2i) treatment promotes urinary glucose excretion, thereby reducing blood glucose as well as body weight. However, only limited body weight reductions are achieved with SGLT2i treatment. Hyperphagia is reportedly one of the causes of this limited weight loss. However, the effects of SGLT2i treatment on systemic energy expenditure have not been fully elucidated. Herein, we investigated the acute effects of dapagliflozin, a SGLT2i, on systemic energy expenditure in mice. Eighteen hours after dapagliflozin treatment oxygen consumption and brown adipose tissue (BAT) expression of ucp1, a thermogenesis-related gene, were significantly decreased as compared to those after vehicle treatment. In addition, dapagliflozin significantly suppressed norepinephrine (NE) turnover in BAT and c-fos expression in the rostral raphe pallidus nucleus (rRPa) which contains the sympathetic premotor neurons responsible for thermogenesis. These findings indicate that the dapagliflozin-mediated acute decrease in energy expenditure involves a reduction in BAT thermogenesis via decreased sympathetic nerve activity from the rRPa. Furthermore, common hepatic branch vagotomy abolished the reductions in ucp1 expression and NE contents in BAT and c-fos expression in the rRPa. In addition, alterations in hepatic carbohydrate metabolism, such as decreases in glycogen contents and upregulation of phosphoenolpyruvate carboxykinase, manifested prior to the suppression of BAT thermogenesis, e.g. 6 hours after dapagliflozin treatment. Collectively, these results suggest that SGLT2i treatment acutely suppresses energy expenditure in BAT via regulation of an inter-organ neural network consisting of the common hepatic vagal branch and sympathetic nerves. PMID:26963613

  13. Pharmacokinetics and Pharmacodynamics of Henagliflozin, a Sodium Glucose Co-Transporter 2 Inhibitor, in Chinese Patients with Type 2 Diabetes Mellitus.

    PubMed

    Yong, Xiaolan; Wen, Aidong; Liu, Xiangyang; Liu, Haiyan; Liu, Yan-Ping; Li, Nan; Hu, Tingting; Chen, Ying; Wang, Minquan; Wang, Lantian; Dai, Xiaojiao; Huang, Juan; Li, Jia; Shen, Huaqiong

    2016-03-01

    Henagliflozin, a selective inhibitor of the renal sodium glucose cotransporter-2, was developed for type 2 diabetes mellitus (T2DM). This study characterized single- and multiple-dose pharmacokinetics and pharmacodynamics of henagliflozin in Chinese patients with T2DM. Thirty T2DM patients were randomized in a 4:1 ratio to orally receive either henagliflozin 5, 10, 20 mg/day or placebo for 10 days, except on day 2 and day 3. Pharmacokinetic and pharmacodynamic profiles were measured on day 1 and day 10. Henagliflozin exhibited dose-proportional plasma concentrations with a half-life ranging from 9.1 to 14 h. Steady-state plasma henagliflozin concentration was reached by day 7 in all active treatment groups. Henagliflozin decreased the 24-h mean plasma glucose by -0.3, -1.0 and -1.0 mmol/L with doses of 5, 10 and 20 mg on day 1, respectively. The corresponding values on day 10 were -0.8, -0.9 and -1.2 mmol/L. Twenty-four-hour urinary glucose excretion increased by 11, 65 and 82 times with doses of 5, 10 and 20 mg on day 1, respectively, with a similar trend on day 10. No treatment-related serious adverse events or discontinuations due to adverse events occurred. The observed pharmacokinetic and pharmacodynamic profiles of henagliflozin support a once-daily dosing regimen in Chinese T2DM patients.

  14. Dapagliflozin, a Sodium-Glucose Co-Transporter 2 Inhibitor, Acutely Reduces Energy Expenditure in BAT via Neural Signals in Mice.

    PubMed

    Chiba, Yumiko; Yamada, Tetsuya; Tsukita, Sohei; Takahashi, Kei; Munakata, Yuichiro; Shirai, Yuta; Kodama, Shinjiro; Asai, Yoichiro; Sugisawa, Takashi; Uno, Kenji; Sawada, Shojiro; Imai, Junta; Nakamura, Kazuhiro; Katagiri, Hideki

    2016-01-01

    Selective sodium glucose cotransporter-2 inhibitor (SGLT2i) treatment promotes urinary glucose excretion, thereby reducing blood glucose as well as body weight. However, only limited body weight reductions are achieved with SGLT2i treatment. Hyperphagia is reportedly one of the causes of this limited weight loss. However, the effects of SGLT2i treatment on systemic energy expenditure have not been fully elucidated. Herein, we investigated the acute effects of dapagliflozin, a SGLT2i, on systemic energy expenditure in mice. Eighteen hours after dapagliflozin treatment oxygen consumption and brown adipose tissue (BAT) expression of ucp1, a thermogenesis-related gene, were significantly decreased as compared to those after vehicle treatment. In addition, dapagliflozin significantly suppressed norepinephrine (NE) turnover in BAT and c-fos expression in the rostral raphe pallidus nucleus (rRPa) which contains the sympathetic premotor neurons responsible for thermogenesis. These findings indicate that the dapagliflozin-mediated acute decrease in energy expenditure involves a reduction in BAT thermogenesis via decreased sympathetic nerve activity from the rRPa. Furthermore, common hepatic branch vagotomy abolished the reductions in ucp1 expression and NE contents in BAT and c-fos expression in the rRPa. In addition, alterations in hepatic carbohydrate metabolism, such as decreases in glycogen contents and upregulation of phosphoenolpyruvate carboxykinase, manifested prior to the suppression of BAT thermogenesis, e.g. 6 hours after dapagliflozin treatment. Collectively, these results suggest that SGLT2i treatment acutely suppresses energy expenditure in BAT via regulation of an inter-organ neural network consisting of the common hepatic vagal branch and sympathetic nerves.

  15. A novel and selective sodium-glucose cotransporter-2 inhibitor, tofogliflozin, improves glycaemic control and lowers body weight in patients with type 2 diabetes mellitus.

    PubMed

    Ikeda, S; Takano, Y; Cynshi, O; Tanaka, R; Christ, A D; Boerlin, V; Beyer, U; Beck, A; Ciorciaro, C; Meyer, M; Kadowaki, T

    2015-10-01

    To assess the efficacy, safety and tolerability of different doses of tofogliflozin, a novel, highly selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, in patients with type 2 diabetes mellitus (T2DM). In a 12-week, multicentre, multinational, randomized, double-blind, parallel-group, placebo-controlled, dose-finding study, patients with inadequate glycaemic control from diet and exercise alone, or from diet and exercise plus a stable dose of metformin, were randomized to one of five doses of tofogliflozin (2.5, 5, 10, 20, or 40 mg) or placebo. The primary efficacy endpoint was absolute change at week 12 from baseline in glycated haemoglobin (HbA1c), minus the change in the placebo group. Statistically significant dose-dependent reductions in HbA1c were shown in all treated groups except the 2.5-mg dose group, with a maximum reduction of 0.56% (placebo-subtracted) at the 40-mg dose, along with increased urinary glucose excretion. Metformin treatment had no substantial influence on tofogliflozin efficacy. Dose-dependent reductions in fasting plasma glucose and body weight were observed, and glucose intolerance was improved, with a trend towards blood pressure reduction. Slight increases were observed for mean ketone bodies with no abnormal change in ketone body ratio. No deaths or treatment-related serious adverse events were reported. The incidence of adverse events was similar in the placebo (37.9%) to that in the tofogliflozin group (35.9-46.3%). Withdrawal because of adverse events was rare (≤2 patients per treatment group), with similar rates of withdrawal in the placebo and tofogliflozin groups. A once-daily dose of tofogliflozin for 12 weeks was an effective, safe and well-tolerated treatment for T2DM. © 2015 John Wiley & Sons Ltd.

  16. Influence of Butyrate Loaded Clinoptilolite Dietary Supplementation on Growth Performance, Development of Intestine and Antioxidant Capacity in Broiler Chickens.

    PubMed

    Wu, Yanan; Zhou, Yanmin; Lu, Changhui; Ahmad, Hussain; Zhang, Hao; He, Jintian; Zhang, Lili; Wang, Tian

    2016-01-01

    The study was conducted to evaluate the effects of dietary butyrate loaded clinoptilolite (CLI-B) on growth performance, pancreatic digestive enzymes, intestinal development and histomorphology, as well as antioxidant capacity of serum and intestinal mucosal in chickens. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly assigned to 4 groups: CON group (fed basal diets), SB group (fed basal diet with 0.05% sodium butyrate), CLI group (fed basal diet with 1% clinoptilolite), and CLI-B group (fed basal diet with 1% CLI-B). The results showed that supplementation of CLI-B significantly decreased (P < 0.05) feed conservation ratio at both 21 and 42 days of age, improved the pancreatic digestive enzymes activities (P < 0.05), increased the villus length and villus/crypt ratio (P < 0.05), and decreased the crypt depth of intestine (P < 0.05) as compared to the other experimental groups. Furthermore, the CLI-B environment improved the antioxidant capacity by increasing the antioxidant enzyme activities (P < 0.05) in intestine mucosal, and decreasing the NO content and iNOS activity (P < 0.05) in serum. In addition, CLI-B supplementation had improved the development of intestine and antioxidant capacity of broilers than supplementation with either clinoptilolite or butyrate sodium alone. In conclusion, 1% CLI-B supplementation improved the health status, intestine development and antioxidant capacity in broiler chickens, thus appearing as an important feed additive for the poultry industry.

  17. Influence of Butyrate Loaded Clinoptilolite Dietary Supplementation on Growth Performance, Development of Intestine and Antioxidant Capacity in Broiler Chickens

    PubMed Central

    Wu, Yanan; Zhou, Yanmin; Lu, Changhui; Ahmad, Hussain; Zhang, Hao; He, Jintian; Zhang, Lili; Wang, Tian

    2016-01-01

    The study was conducted to evaluate the effects of dietary butyrate loaded clinoptilolite (CLI-B) on growth performance, pancreatic digestive enzymes, intestinal development and histomorphology, as well as antioxidant capacity of serum and intestinal mucosal in chickens. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly assigned to 4 groups: CON group (fed basal diets), SB group (fed basal diet with 0.05% sodium butyrate), CLI group (fed basal diet with 1% clinoptilolite), and CLI-B group (fed basal diet with 1% CLI-B). The results showed that supplementation of CLI-B significantly decreased (P < 0.05) feed conservation ratio at both 21 and 42 days of age, improved the pancreatic digestive enzymes activities (P < 0.05), increased the villus length and villus/crypt ratio (P < 0.05), and decreased the crypt depth of intestine (P < 0.05) as compared to the other experimental groups. Furthermore, the CLI-B environment improved the antioxidant capacity by increasing the antioxidant enzyme activities (P < 0.05) in intestine mucosal, and decreasing the NO content and iNOS activity (P < 0.05) in serum. In addition, CLI-B supplementation had improved the development of intestine and antioxidant capacity of broilers than supplementation with either clinoptilolite or butyrate sodium alone. In conclusion, 1% CLI-B supplementation improved the health status, intestine development and antioxidant capacity in broiler chickens, thus appearing as an important feed additive for the poultry industry. PMID:27104860

  18. Effects of antidiabetic drugs on the incidence of macrovascular complications and mortality in type 2 diabetes mellitus: a new perspective on sodium-glucose co-transporter 2 inhibitors.

    PubMed

    Rahelić, Dario; Javor, Eugen; Lucijanić, Tomo; Skelin, Marko

    2017-02-01

    Elevated hemoglobin A1c (HbA1c) values correlate with microvascular and macrovascular complications. Thus, patients with type 2 diabetes mellitus (T2DM) are at an increased risk of developing macrovascular events. Treatment of T2DM should be based on a multifactorial approach because of its evidence regarding reduction of macrovascular complications and mortality in T2DM. It is well known that intensive glucose control reduces the risk of microvascular complications in T2DM, but the effects of antidiabetic drugs on macrovascular complications and mortality in T2DM are less clear. The results of recent trials have demonstrated clear evidence that empagliflozin and liraglutide reduce cardiovascular (CV) and all-cause mortality in T2DM, an effect that is absent in other members of antidiabetic drugs. Empagliflozin is a member of a novel class of antidiabetic drugs, the sodium-glucose co-transporter 2 (SGLT2) inhibitors. Two ongoing randomized clinical trials involving other SGLT2 inhibitors, canagliflozin and dapagliflozin, will provide additional evidence of the beneficial effects of SGLT2 inhibitors in T2DM population. The aim of this paper is to systematically present the latest evidence regarding the usage of antidiabetic drugs, and the reduction of macrovascular complications and mortality. A special emphasis is put on the novel class of antidiabetic drugs, of SGLT2 inhibitors. Key messages Macrovascular complications and mortality are best clinical trial endpoints for evaluating the efficacy of antidiabetic drugs. The first antidiabetic drug that demonstrated a reduction in mortality in the treatment of type 2 diabetes mellitus (T2DM) was empagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor. SGLT2 inhibitors are novel class of antidiabetic drugs that play a promising role in the treatment of T2DM.

  19. Impact of butyric acid on butanol formation by Clostridium pasteurianum.

    PubMed

    Regestein, Lars; Doerr, Eric Will; Staaden, Antje; Rehmann, Lars

    2015-11-01

    The butanol yield of the classic fermentative acetone-butanol-ethanol (ABE) process has been enhanced in the past decades through the development of better strains and advanced process design. Nevertheless, by-product formation and the incomplete conversion of intermediates still decrease the butanol yield. This study demonstrates the potential of increasing the butanol yield from glycerol though the addition of small amounts of butyric acid. The impact of butyric acid was investigated in a 7L stirred tank reactor. The results of this study show the positive impact of butyric acid on butanol yield under pH controlled conditions and the metabolic stages were monitored via online measurement of carbon dioxide formation, pH value and redox potential. Butyric acid could significantly increase the butanol yield at low pH values if sufficient quantities of primary carbon source (glycerol) were present. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of hydrochlorothiazide on the pharmacokinetics, pharmacodynamics, and tolerability of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants.

    PubMed

    Devineni, Damayanthi; Vaccaro, Nicole; Polidori, David; Rusch, Sarah; Wajs, Ewa

    2014-05-01

    Many patients with type 2 diabetes mellitus (T2DM) also have hypertension, which is commonly treated with thiazide diuretics, including hydrochlorothiazide (HCTZ). Canagliflozin, a sodium glucose cotransporter 2 inhibitor developed for the treatment of T2DM, lowers plasma glucose by inhibiting renal glucose reabsorption, thereby increasing urinary glucose excretion and mild osmotic diuresis. Because patients with T2DM are likely to receive concurrent canagliflozin and HCTZ, potential interactions were evaluated. This study evaluated the effects of HCTZ on the pharmacokinetic and pharmacodynamic properties and tolerability of canagliflozin in healthy participants. This Phase I, single-center, open-label, fixed-sequence, 2-period study was conducted in healthy participants. During period 1, participants received canagliflozin 300 mg once daily for 7 days, followed by a 14-day washout period. During period 2, participants received HCTZ 25 mg once daily for 28 days, followed by canagliflozin 300 mg + HCTZ 25 mg once daily for 7 days. Blood samples were taken before and several times after administration on day 7 of period 1 and on days 28 and 35 of period 2 for canagliflozin and HCTZ pharmacokinetic analyses using LC-MS/MS. Blood and urine samples were collected for up to 24 hours after canagliflozin administration on day 1 of period 1 and day 35 of period 2 for pharmacodynamic glucose assessment. Tolerability was also evaluated. Thirty participants were enrolled (16 men, 14 women; all white; mean age, 43.7 years). Canagliflozin AUC during a dosing interval (T) at steady state (AUCτ,ss) and Cmax at steady state (Cmax,ss) were increased when canagliflozin was coadministered with HCTZ, with geometric mean ratios (90% CI) of 1.12 (1.08-1.17) and 1.15 (1.06-1.25), respectively. AUCτ,ss and Cmax,ss for HCTZ were similar with and without canagliflozin coadministration. The 24-hour mean renal threshold for glucose and mean plasma glucose were comparable for canagliflozin

  1. Absence of Drug-Drug Interactions Between Luseogliflozin, a Sodium-Glucose Co-transporter-2 Inhibitor, and Various Oral Antidiabetic Drugs in Healthy Japanese Males.

    PubMed

    Sasaki, Takashi; Seino, Yutaka; Fukatsu, Atsushi; Ubukata, Michito; Sakai, Soichi; Samukawa, Yoshishige

    2015-05-01

    We investigated the possibilities of drug-drug interactions between luseogliflozin, a sodium-glucose co-transporter-2 inhibitor, and oral antidiabetic drugs (OADs) in healthy Japanese males. We conducted six independent studies to investigate potential drug-drug interactions between 5 mg luseogliflozin and the following OADs usually used in Japan: 1 mg glimepiride, 250 mg metformin, 30 mg pioglitazone, 50 mg sitagliptin, 50 mg miglitol, or 0.6 mg voglibose (0.2 mg before each meal). Twelve subjects were enrolled in each study. The glimepiride, metformin, sitagliptin, and miglitol studies were randomized, open-label, single-dose, three-way crossover studies. The pioglitazone and voglibose studies were open-label studies, where a single dose of luseogliflozin was added to multiple doses of pioglitazone or voglibose. The endpoints were the area under the curve from 0 to 24 h (AUC0-24 h) or to infinity (AUCinf) and the maximum concentration (Cmax) of each drug administered alone or in combination. The 90% confidence intervals (CIs) of the geometric mean ratio (GMR) for Cmax of luseogliflozin in the pioglitazone and miglitol studies were beyond the reference range for bioequivalence (0.80-1.25) (miglitol: 0.851 [0.761, 0.952]; pioglitazone: 1.16 [1.04, 1.30]). However, the 90% CIs for AUC0-24 h were within the reference range. The 90% CIs of the GMRs for Cmax and AUC0-24 h of pioglitazone were beyond the reference range (Cmax 0.884 [0.746, 1.05]; AUC0-24 h 0.896 [0.774, 1.04]), but the 90% CIs for the active metabolites of pioglitazone were within the reference range. For the other combinations tested, the 90% CIs and GMRs for luseogliflozin and the individual OADs were within the reference range. No clinically meaningful interactions were observed between luseogliflozin and six commonly used OADs in Japan, although there were some changes in the pharmacokinetics of pioglitazone co-administered with luseogliflozin and for luseogliflozin co-administered with miglitol or

  2. Use of Sodium Polyanetholesulfonate-CaCl2 for Removal of Serum Nonspecific Inhibitors of Rubella Hemagglutination: Comparison with Other Polyanion-Divalent Cation Combinations

    PubMed Central

    Ellins, Mary L.; Campbell, James B.

    1977-01-01

    By using trypsin-treated human type O cells as indicators, we compared the abilities of four polyanion-divalent cation combinations (heparin-MnCl2; high-and low-molecular-weight dextran sulfate-CaCl2; and sodium polyanetholesulfonate [SPS]-CaCl2) for removal of serum non-immunoglobulin (lipoprotein) inhibitors of rubella hemagglutination. The combination of SPS-CaCl2 was found to be the most effective, precipitating completely the pre-β and β-lipoproteins and reducing the α-lipoprotein levels by more than 50%. Hemagglutination patterns after this treatment were clear and stable, and, when normal sera were tested, hemagglutination-inhibition (HI) titers were comparable to those obtained after standard heparin-MnCl2 treatment. High-molecular-weight dextran sulfate-CaCl2 removed serum lipoproteins almost as effectively as SPS-CaCl2. However, problems of nonspecific agglutination and the heavy hemagglutination patterns resulting made this combination unacceptable for routine purposes. Neither low-molecular-weight dextran sulfate-CaCl2 nor heparin-MnCl2 removed the pre-β lipoproteins completely, and occasionally traces of β-lipoprotein also remained after treatment. The presence of pre-β lipoproteins in normal sera after treatment may be of no consequence in the HI test since we have found that the very-low-density lipoprotein fractions obtained by ultracentrifugal methods from normal sera (those corresponding to the pre-β fractions obtained by electrophoresis) had no HI activity. However, very-low-density lipoprotein fractions from all hyperlipemic sera tested had HI activity (titers ranging from 1:16 to 1:1,024) which, in the majority of cases, was not eliminated after heparin-MnCl2 treatment. In every case, treatment with SPS-CaCl2 removed this nonspecific activity completely. Since hyperlipemic sera may occasionally be encountered in routine rubella HI antibody testing, we recommend the use of SPS-CaCl2 rather than heparin-MnCl2 for pretreatment of sera. PMID

  3. Modulation of Mononuclear Phagocyte Inflammatory Response by Liposome-Encapsulated Voltage Gated Sodium Channel Inhibitor Ameliorates Myocardial Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Ji, Wen-Jie; Zhang, Li; Dong, Yan; Ge, Lan; Lu, Rui-Yi; Sun, Hai-Ying; Guo, Zao-Zeng; Yang, Guo-Hong; Jiang, Tie-Min; Li, Yu-Ming

    2013-01-01

    Background Emerging evidence shows that anti-inflammatory strategies targeting inflammatory monocyte subset could reduce excessive inflammation and improve cardiovascular outcomes. Functional expression of voltage-gated sodium channels (VGSCs) have been demonstrated in monocytes and macrophages. We hypothesized that mononuclear phagocyte VGSCs are a target for monocyte/macrophage phenotypic switch, and liposome mediated inhibition of mononuclear phagocyte VGSC may attenuate myocardial ischemia/reperfusion (I/R) injury and improve post-infarction left ventricular remodeling. Methodology/Principal Findings Thin film dispersion method was used to prepare phenytoin (PHT, a non-selective VGSC inhibitor) entrapped liposomes. Pharmacokinetic study revealed that the distribution and elimination half-life of PHT entrapped liposomes were shorter than those of free PHT, indicating a rapid uptake by mononuclear phagocytes after intravenous injection. In rat peritoneal macrophages, several VGSC α subunits (NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaVX, Scn1b, Scn3b and Scn4b) and β subunits were expressed at mRNA level, and PHT could suppress lipopolysaccharide induced M1 polarization (decreased TNF-α and CCL5 expression) and facilitate interleukin-4 induced M2 polarization (increased Arg1 and TGF-β1 expression). In vivo study using rat model of myocardial I/R injury, demonstrated that PHT entrapped liposome could partially suppress I/R injury induced CD43+ inflammatory monocyte expansion, along with decreased infarct size and left ventricular fibrosis. Transthoracic echocardiography and invasive hemodynamic analysis revealed that PHT entrapped liposome treatment could attenuate left ventricular structural and functional remodeling, as shown by increased ejection fraction, reduced end-systolic and end-diastolic volume, as well as an amelioration of left ventricular systolic (+dP/dtmax) and diastolic (-dP/dtmin) functions. Conclusions/Significance Our work for the

  4. Genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus: a pooled analysis of clinical studies.

    PubMed

    Nyirjesy, Paul; Sobel, Jack D; Fung, Albert; Mayer, Cristiana; Capuano, George; Ways, Kirk; Usiskin, Keith

    2014-06-01

    To characterize genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus (T2DM) using pooled data from Phase 3 studies. Genital mycotic infections with canagliflozin 100 and 300 mg were evaluated in Population 1 (N = 2313; mean exposure [weeks]: canagliflozin, 24.3; placebo, 23.8), including patients from four placebo-controlled studies, and Population 2 (N = 9439; mean exposure [weeks]: canagliflozin, 68.1; control, 64.4), including patients from eight placebo/active-controlled studies (including older patients and those with renal impairment or high cardiovascular disease risk). ClinicalTrials.gov, NCT01081834; NCT01106625; NCT01106677; NCT01106690; NCT01032629; NCT01064414; NCT01106651; NCT00968812. Adverse events suggestive of genital mycotic infections were recorded, with additional information collected using supplemental electronic case report forms. In Population 1, genital mycotic infection incidence was higher with canagliflozin 100 and 300 mg than placebo (95% confidence intervals excluded zero) in females (10.4%, 11.4%, 3.2%) and males (4.2%, 3.7%, 0.6%). These were generally mild to moderate in intensity, none were serious, and few led to discontinuation. Most events with canagliflozin were treated with antifungal therapies, and median symptom duration following treatment initiation was similar across groups; few patients had >1 event (females, 2.3%; males, 0.9%). Findings with canagliflozin 100 and 300 mg versus control were similar in Population 2 (females: 14.7%, 13.9%, 3.1%; males: 7.3%, 9.3%, 1.6%); a low proportion of males underwent circumcision across groups. Most events with canagliflozin occurred within the first 4 months in females and first year in males; no consistent evidence of dose dependence was observed. Key limitations included lack of laboratory confirmation for most events and variable treatment methods. Genital mycotic infection incidences

  5. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes.

    PubMed

    Neal, Bruce; Perkovic, Vlado; de Zeeuw, Dick; Mahaffey, Kenneth W; Fulcher, Greg; Ways, Kirk; Desai, Mehul; Shaw, Wayne; Capuano, George; Alba, Maria; Jiang, Joel; Vercruysse, Frank; Meininger, Gary; Matthews, David

    2015-03-01

    There are limited data about the effects of sodium-glucose cotransporter 2 inhibitors when used with insulin. We report the efficacy and safety of canagliflozin in patients with type 2 diabetes using insulin. The CANagliflozin CardioVascular Assessment Study is a double-blind, placebo-controlled study that randomized participants to placebo, canagliflozin 100 mg, or canagliflozin 300 mg once daily, added to a range of therapies. The primary end point of this substudy was the change in HbA1c from baseline at 18 weeks among patients using insulin; 52-week effects were also examined. Individuals receiving insulin at baseline were randomized to receive placebo (n = 690), canagliflozin 100 mg (n = 692), or canagliflozin 300 mg (n = 690). These individuals were 66% male and had a median age of 63 years, mean HbA1c of 8.3% (67 mmol/mol), BMI of 33.1 kg/m(2), estimated glomerular filtration rate of 75 mL/min/1.73 m(2), fasting plasma glucose of 9.2 mmol/L, and a median daily insulin dose of 60 IU. Most individuals were using basal/bolus insulin. Reductions in HbA1c with canagliflozin 100 and 300 mg versus placebo were -0.62% (95% CI -0.69, -0.54; -6.8 mmol/mol [95% CI -7.5, -5.9]; P < 0.001) and -0.73% (95% CI -0.81, -0.65; -8.0 mmol/mol [95% CI -8.9, -7.1]; P < 0.001) at 18 weeks and -0.58% (95% CI -0.68, -0.48; -6.3 mmol/mol [95% CI -7.4, -5.2]) and -0.73% (95% CI -0.83, -0.63; -8.0 mmol/mol [95% CI -9.1, -6.9]) at 52 weeks. There were significant falls in fasting plasma glucose, body weight, and blood pressure at both time points and there was a greater incidence of hypoglycemia, genital mycotic infections, and hypovolemia with both canagliflozin doses. Canagliflozin added to insulin therapy improved glycemic control and decreased body weight. There was a greater frequency of several anticipated side effects, although few led to discontinuation of treatment. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited

  6. Efficacy and Safety of Canagliflozin, a Sodium-Glucose Cotransporter 2 Inhibitor, as Add-on to Insulin in Patients With Type 1 Diabetes.

    PubMed

    Henry, Robert R; Thakkar, Payal; Tong, Cindy; Polidori, David; Alba, Maria

    2015-12-01

    This study assessed the efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to insulin in adults with type 1 diabetes. This 18-week, double-blind, phase 2 study randomized 351 patients (HbA1c 7.0-9.0% [53-75 mmol/mol]) on multiple daily insulin injections or continuous subcutaneous insulin infusion to canagliflozin 100 or 300 mg or placebo. The primary end point was the proportion of patients achieving at week 18 both HbA1c reduction from baseline of ≥0.4% (≥4.4 mmol/mol) and no increase in body weight. Other end points included changes in HbA1c, body weight, and insulin dose, as well as hypoglycemia incidence. Safety was assessed by adverse event (AE) reports. More patients had both HbA1c reduction ≥0.4% and no increase in body weight with canagliflozin 100 and 300 mg versus placebo at week 18 (36.9%, 41.4%, 14.5%, respectively; P < 0.001). Both canagliflozin doses provided reductions in HbA1c, body weight, and insulin dose versus placebo over 18 weeks. The incidence of hypoglycemia was similar across groups; severe hypoglycemia rates were low (1.7-6.8%). Overall incidence of AEs was 55.6%, 67.5%, and 54.7% with canagliflozin 100 and 300 mg and placebo; discontinuation rates were low (0.9-1.3%). Increased incidence of ketone-related AEs (5.1%, 9.4%, 0%), including the specific AE of diabetic ketoacidosis (DKA) (4.3%, 6.0%, 0%), was seen with canagliflozin 100 and 300 mg versus placebo. Canagliflozin provided reductions in HbA1c, body weight, and insulin dose with no increase in hypoglycemia, but increased rates of ketone-related AEs, including DKA, in adults with type 1 diabetes inadequately controlled with insulin. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  7. Pharmacodynamic Effects of Canagliflozin, a Sodium Glucose Co-Transporter 2 Inhibitor, from a Randomized Study in Patients with Type 2 Diabetes

    PubMed Central

    Sha, Sue; Devineni, Damayanthi; Ghosh, Atalanta; Polidori, David; Hompesch, Marcus; Arnolds, Sabine; Morrow, Linda; Spitzer, Heike; Demarest, Keith; Rothenberg, Paul

    2014-01-01

    Introduction This randomized, double-blind, placebo-controlled, single and multiple ascending-dose study evaluated the pharmacodynamic effects and safety/tolerability of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes. Methods Patients (N = 116) discontinued their antihyperglycemic medications 2 weeks before randomization. Patients received canagliflozin 30, 100, 200, or 400 mg once daily or 300 mg twice daily, or placebo at 2 study centers in the United States and Germany, or canagliflozin 30 mg once daily or placebo at 1 study center in Korea, while maintaining an isocaloric diet for 2 weeks. On Days –1, 1, and 16, urinary glucose excretion (UGE), plasma glucose (PG), fasting PG (FPG), and insulin were measured. The renal threshold for glucose (RTG) was calculated from UGE, PG, and estimated glomerular filtration rate. Safety was evaluated based on adverse event (AE) reports, vital signs, electrocardiograms, clinical laboratory tests, and physical examinations. Results Canagliflozin increased UGE dose-dependently (∼80–120 g/day with canagliflozin ≥100 mg), with increases maintained over the 14-day dosing period with each dose. Canagliflozin dose-dependently decreased RTG, with maximal reductions to ∼4–5 mM (72–90 mg/dL). Canagliflozin also reduced FPG and 24-hour mean PG; glucose reductions were seen on Day 1 and maintained over 2 weeks. Plasma insulin reductions with canagliflozin were consistent with observed PG reductions. Canagliflozin also reduced body weight. AEs were transient, mild to moderate in intensity, and balanced across groups; 1 canagliflozin-treated female reported an episode of vaginal candidiasis. Canagliflozin did not cause hypoglycemia, consistent with the RTG values remaining above the hypoglycemia threshold. At Day 16, there were no clinically meaningful changes in urine volume, urine electrolyte excretion, renal function, or routine laboratory test values. Conclusions

  8. Clinical profile of patients with type 2 diabetes mellitus treated with sodium- glucose cotransporter-2 inhibitors and experience in real-world clinical practice in Spain.

    PubMed

    Cuatrecasas, Gabriel; Goñi-Goicoechea, Fernando

    2016-11-01

    The main aim of the treatment of type 2 diabetes is overall control of cardiovascular risk factors. Almost 50% of patients with type 2 diabetes do not achieve glycaemic targets, and a much higher percentage do not achieve weight and blood pressure targets, despite the therapeutic arsenal that has appeared in the last decade for the treatment of this disease. In addition, antidiabetic secretatogues and insulin are associated with weight gain and an increased risk of hyperglycaemic episodes. Clinical practice guidelines recommend sodium-glucose cotransporter-2 inhibitors (SGLT2i) as an alternative in the same therapeutic step as the other options after initiation of metformin therapy. The present study reviews the most appropriate patient profile for SGLT2i therapy, based on their safety and efficacy demonstrated in controlled clinical trials. The article discusses which patients are at risk of experiencing the possible secondary effects due to the mechanism of action of this new therapeutic class, in whom SGLT2i should be used with caution. These considerations on the profile of patients suitable for SGLT2i therapy are contrasted with the results obtained in daily clinical practice, both in retrospective studies from other countries and from real-world experiences in Spain. This article presents a selection of studies performed in distinct centres with a minimum follow-up of 6 months and compares their results with those from clinical trials. SGLT2i are used in clinical practice in any therapeutic step and the efficacy results are very similar to those reported by controlled clinical trials, with a slightly higher proportion of genitourinary infections and a low dropout rate. Half the reported patients are diabetics receiving insulin therapy plus a gliflozin, showing the wide uptake of this therapeutic strategy by clinicians. SGLT2i are especially attractive due to their additional effectiveness in weight and blood pressure control and the possibility of using them

  9. Characterization of the Pro-Inflammatory Cytokine IL-1β on Butyrate Oxidation in Colorectal Cancer Cells.

    PubMed

    Johnstone, Megan; Bennett, Natalie; Standifer, Cynthia; Smith, Alexis; Han, Anna; Bettaieb, Ahmed; Whelan, Jay; Donohoe, Dallas R

    2017-06-01

    Cancer, in part, is driven, by alterations in cellular metabolism that promote cell survival and cell proliferation. Identifying factors that influence this shift in cellular metabolism in cancer cells is important. Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that has been reported to be elevated in colorectal cancer patients. While much is known toward the effect of dietary nutrients on regulating inflammation and the inflammatory response, which includes cytokines such as IL-1β, far less is understood how cytokines impact nutrient fate to alter cancer cell metabolism. Butyrate, a nutrient derived from the fermentation of dietary fiber in the colon, is the preferential exogenous energetic substrate used by non-cancerous colonocytes, but is used less efficiently by colorectal cancer cells. To test whether IL-1β alters colonocyte energy metabolism, we measured butyrate oxidation in HCT116 colorectal cancer cells with and without IL-1β. We hypothesize that IL-1β will push cancerous colonocytes away from the utilization and oxidation of butyrate. In this study, we demonstrate that pretreatment of colorectal cancer cells with IL-1β diminished butyrate oxidation and NADH levels. This effect was blocked with the interleukin receptor antagonist A (IL-1RA). Moreover, IL-1β suppressed basal mitochondrial respiration and lowered the mitochondrial spare capacity. By using inhibitors to block downstream targets of the interleukin-1 receptor pathway, we show that p38 is required for the IL-1β-mediated decrease in butyrate oxidation. These data provide insight into the metabolic effects induced by IL-1β in colorectal cancer, and identify relevant targets that may be exploited to block the effects of this cytokine. J. Cell. Biochem. 118: 1614-1621, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Histone deacetylase inhibitors upregulate Rap1GAP and inhibit Rap activity in thyroid tumor cells.

    PubMed

    Dong, Xiaoyun; Korch, Christopher; Meinkoth, Judy L

    2011-06-01

    Increases in Rap activity have been associated with tumor progression. Although activating mutations in Rap have not been described, downregulation of Rap1GAP is frequent in human tumors including thyroid carcinomas. In this study, we explored whether endogenous Rap1GAP expression could be restored to thyroid tumor cells. The effects of deacetylase inhibitors and a demethylating agent, individually and in combination, were examined in four differentiated and six anaplastic thyroid carcinoma (ATC) cell lines. Treatment with the structurally distinct histone deacetylase (HDAC) inhibitors, sodium butyrate and trichostatin A, increased Rap1GAP expression in all the differentiated thyroid carcinoma cell lines and in four of the six ATC cell lines. The demethylating agent, 5-aza-deoxycytidine, restored Rap1GAP expression in one anaplastic cell line and enhanced the effects of HDAC inhibitors in a second anaplastic cell line. Western blotting indicated that Rap2 was highly expressed in human thyroid cancer cells. Importantly, treatment with HDAC inhibitors impaired Rap2 activity in both differentiated and anaplastic tumor cell lines. The mechanism through which Rap activity is repressed appears to entail effects on the expression of multiple Rap regulators, including RapGEFs and RapGAPs. These results suggest that HDAC inhibitors may provide a tractable approach to impair Rap activity in human tumor cells.

  11. Histone Deacetylase Inhibitor Phenylbutyrate Exaggerates Heart Failure in Pressure Overloaded Mice independently of HDAC inhibition

    PubMed Central

    Ma, Jing; Luo, Tao; Zeng, Zhi; Fu, Haiying; Asano, Yoshihiro; Liao, Yulin; Minamino, Tetsuo; Kitakaze, Masafumi

    2016-01-01

    4-Sodium phenylbutyrate (PBA) has been reported to inhibit endoplasmic reticulum stress and histone deacetylation (HDAC), both of which are novel therapeutic targets for cardiac hypertrophy and heart failure. However, it is unclear whether PBA can improve heart function. Here, we tested the effects of PBA and some other HDAC inhibitors on cardiac dysfunction induced by pressure overload. Transverse aortic constriction (TAC) was performed on male C57BL/6 mice. PBA treatment (100 mg/kg, 6 weeks) unexpectedly led to a higher mortality, exacerbated cardiac remodelling and dysfunction. Similar results were noted in TAC mice treated with butyrate sodium (BS), a PBA analogue. In contrast, other HDAC inhibitors, valproic acid (VAL) and trichostatin A (TSA), improved the survival. All four HDAC inhibitors induced histone H3 acetylation and inhibited HDAC total activity. An individual HDAC activity assay showed that rather than class IIa members (HDAC4 and 7), PBA and BS predominantly inhibited class I members (HDAC2 and 8), whereas VAL and TSA inhibited all of them. These findings indicate that PBA and BS accelerate cardiac hypertrophy and dysfunction, whereas VAL and TSA have opposing effects. PMID:27667442

  12. Review of insulin-dependent and insulin-independent agents for treating patients with type 2 diabetes mellitus and potential role for sodium-glucose co-transporter 2 inhibitors.

    PubMed

    Freeman, Jeffrey S

    2013-05-01

    Diabetes, especially type 2 diabetes mellitus (T2DM), continues to be a global health care problem. Although the beneficial effects of glycemic control are well established, in the United States, > 40% of adults with diabetes fail to achieve target glycated hemoglobin levels. Antidiabetic drug classes vary with respect to their mechanisms of action, glucose-lowering potential, and safety and tolerability profiles. Antidiabetic drug classes include some agents that depend on the presence or action of insulin for their therapeutic effect. As the disease state of T2DM progresses, patient pancreatic β-cell function declines, and therapies that stimulate insulin secretion or improve insulin sensitivity become less effective for this population. Therefore, the development of additional antidiabetic agents with novel mechanisms of action that can be used alone or in combination with currently approved medications may help patients achieve glycemic control. Agents that have comparable glucose-lowering capabilities but different mechanisms of action may fill treatment gaps or meet the needs of patient subpopulations. For example, inhibitors of sodium-glucose co-transporter 2 (SGLT2) represent an emerging class of glucose-lowering agents. The SGLT2 inhibitors reduce glucose reabsorption by the kidney, leading to increased urinary glucose excretion and caloric loss. In clinical trials, these agents have been shown to improve glycemic control and to reduce body weight in patients with T2DM. Additionally, SGLT2 inhibitors pose a low risk for hypoglycemia and are generally well tolerated; however, their use has been associated with an increase in the frequency of genital infections and, in some studies, urinary tract infections. Sodium-glucose co-transporter 2 inhibitors may provide an alternative or an addition to existing therapies for the treatment of patients with T2DM.

  13. Butyrate and propionate: important components of toxic dental plaque extracts.

    PubMed Central

    Singer, R E; Buckner, B A

    1981-01-01

    Extracts of in vitro-cultured human dental plaque contain factors toxic to mammalian cells. Previous studies demonstrated that those toxic factors most readily released from cultured plaque had very low molecular weights and were heat stable. Studies reported here demonstrate that metabolic end products including short-chain fatty acids were present in fractions containing the low-molecular-weight, heat-stable factors. The salts of two of these acids, butyrate and propionate, inhibited proliferation of both mouse L929 cells and human gingival fibroblasts. Furthermore, when tested at concentrations present in plaque extracts, the inhibitory effects of butyrate and propionate accounted for essentially all the inhibitory potential of the extracts. These findings, taken together with those of other groups, suggest that butyrate and propionate, end products of dental plaque metabolism, may have an etiological role in periodontal disease. PMID:7251132

  14. Pyruvate sparing by butyrate and propionate in proliferating colonic epithelium.

    PubMed

    Butler, R N; Stafford, I; Triantafillos, E; O'Dee, C D; Jarrett, I G; Fettman, M J; Roberts-Thomson, I C

    1990-01-01

    1. The effects of fasting and fasting followed by refeeding on the relative activities of the pyruvate dehydrogenase (PDH) complex and the tricarboxylic acid (TCA) cycle in isolated rat colonocytes were estimated by the rate of production of 14CO2 from [1-14C]pyruvate and [3-14C]pyruvate, respectively. 2. Decarboxylation of pyruvate by the PDH complex exceeded that by the TCA cycle in both fasted and fasted/refed colonocytes, was higher in distal than in proximal colon, and was stimulated by refeeding following a fast. 3. Oxidation of pyruvate by both the PDH complex and the TCA cycle was inhibited by butyrate. 4. Propionate alone had no effect, but synergized with butyrate to further reduce pyruvate decarboxylation by the TCA cycle. 5. Preferential utilization of butyrate by proliferating colonic epithelial cells is postulated to maximize the energy yield and spare pyruvate and its precursors for alternative synthetic roles necessary for active cell division.

  15. Synergistic Interactions between HDAC and Sirtuin Inhibitors in Human Leukemia Cells

    PubMed Central

    Cea, Michele; Soncini, Debora; Fruscione, Floriana; Raffaghello, Lizzia; Garuti, Anna; Emionite, Laura; Moran, Eva; Magnone, Mirko; Zoppoli, Gabriele; Reverberi, Daniele; Caffa, Irene; Salis, Annalisa; Cagnetta, Antonia; Bergamaschi, Micaela; Casciaro, Salvatore; Pierri, Ivana; Damonte, Gianluca; Ansaldi, Filippo; Gobbi, Marco; Pistoia, Vito; Ballestrero, Alberto; Patrone, Franco

    2011-01-01

    Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD+-independent HDACs are an established therapeutic target, the relevance of NAD+-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited. PMID:21818379

  16. Metabolic flexibility of a butyrate pathway mutant of Clostridium acetobutylicum.

    PubMed

    Yoo, Minyeong; Croux, Christian; Meynial-Salles, Isabelle; Soucaille, Philippe

    2017-01-31

    Clostridium acetobutylicum possesses two homologous buk genes, buk (or buk1) and buk2, which encode butyrate kinases involved in the last step of butyrate formation. To investigate the contribution of buk in detail, an in-frame deletion mutant was constructed. However, in all the Δbuk mutants obtained, partial deletions of the upstream ptb gene were observed, and low phosphotransbutyrylase and butyrate kinase activities were measured. This demonstrates that i) buk (CA_C3075) is the key butyrate kinase-encoding gene and that buk2 (CA_C1660) that is poorly transcribed only plays a minor role; and ii) strongly suggests that a Δbuk mutant is not viable if the ptb gene is not also inactivated, probably due to the accumulation of butyryl-phosphate, which might be toxic for the cell. One of the ΔbukΔptb mutants was subjected to quantitative transcriptomic (mRNA molecules/cell) and fluxomic analyses in acidogenic, solventogenic and alcohologenic chemostat cultures. In addition to the low butyrate production, drastic changes in metabolic fluxes were also observed for the mutant: i) under acidogenic conditions, the primary metabolite was butanol and a new metabolite, 2-hydroxy-valerate, was produced ii) under solventogenesis, 58% increased butanol production was obtained compared to the control strain under the same conditions, and a very high yield of butanol formation (0.3gg(-1)) was reached; and iii) under alcohologenesis, the major product was lactate. Furthermore, at the transcriptional level, adhE2, which encodes an aldehyde/alcohol dehydrogenase and is known to be a gene specifically expressed in alcohologenesis, was surprisingly highly expressed in all metabolic states in the mutant. The results presented here not only support the key roles of buk and ptb in butyrate formation but also highlight the metabolic flexibility of C. acetobutylicum in response to genetic alteration of its primary metabolism.

  17. N-Butyrate alters chromatin accessibility to DNA repair enzymes

    SciTech Connect

    Smith, P.J.

    1986-03-01

    Current evidence suggests that the complex nature of mammalian chromatin can result in the concealment of DNA damage from repair enzymes and their co-factors. Recently it has been proposed that the acetylation of histone proteins in chromatin may provide a surveillance system whereby damaged regions of DNA become exposed due to changes in chromatin accessibility. This hypothesis has been tested by: (i) using n-butyrate to induce hyperacetylation in human adenocarcinoma (HT29) cells; (ii) monitoring the enzymatic accessibility of chromatin in permeabilised cells; (iii) measuring u.v. repair-associated nicking of DNA in intact cells and (iv) determining the effects of n-butyrate on cellular sensitivity to DNA damaging agents. The results indicate that the accessibility of chromatin to Micrococcus luteus u.v. endonuclease is enhanced by greater than 2-fold in n-butyrate-treated cells and that there is a corresponding increase in u.v. repair incision rates in intact cells exposed to the drug. Non-toxic levels of n-butyrate induce a block to G1 phase transit and there is a significant growth delay on removal of the drug. Resistance of HT29 cells to u.v.-radiation and adriamycin is enhanced in n-butyrate-treated cells whereas X-ray sensitivity is increased. Although changes in the responses of cells to DNA damaging agents must be considered in relation to the effects of n-butyrate on growth rate and cell-cycle distribution, the results are not inconsistent with the proposal that increased enzymatic-accessibility/repair is biologically favourable for the resistance of cells to u.v.-radiation damage. Overall the results support the suggested operation of a histone acetylation-based chromatin surveillance system in human cells.

  18. Oxadiazoles Have Butyrate-Specific Conditional Activity against Mycobacterium tuberculosis

    PubMed Central

    Early, Julie V.; Casey, Allen; Martinez-Grau, Maria Angeles; Gonzalez Valcarcel, Isabel C.; Vieth, Michal; Ollinger, Juliane; Bailey, Mai Ann; Alling, Torey; Files, Megan; Ovechkina, Yulia

    2016-01-01

    Mycobacterium tuberculosis is a global pathogen of huge importance which can adapt to several host niche environments in which carbon source availability is likely to vary. We developed and ran a phenotypic screen using butyrate as the sole carbon source to be more reflective of the host lung environment. We screened a library of ∼87,000 small compounds and identified compounds which demonstrated good antitubercular activity against M. tuberculosis grown with butyrate but not with glucose as the carbon source. Among the hits, we identified an oxadiazole series (six compounds) which had specific activity against M. tuberculosis but which lacked cytotoxicity against mammalian cells. PMID:27044545

  19. Lack of clinically relevant drug-drug interaction between empagliflozin, a sodium glucose cotransporter 2 inhibitor, and verapamil, ramipril, or digoxin in healthy volunteers.

    PubMed

    Macha, Sreeraj; Sennewald, Regina; Rose, Peter; Schoene, Katja; Pinnetti, Sabine; Woerle, Hans J; Broedl, Uli C

    2013-03-01

    Empagliflozin is a sodium glucose cotransporter 2 inhibitor in clinical development as a treatment for type 2 diabetes mellitus. The goal of this study was to investigate potential drug-drug interactions between empagliflozin and verapamil, ramipril, and digoxin in healthy volunteers. The potential drug-drug interactions were evaluated in 3 separate trials. In the first study, 16 subjects were randomized to receive single-dose empagliflozin 25 mg alone or single-dose empagliflozin 25 mg with single-dose verapamil 120 mg. In the second study, 23 subjects were randomized to receive empagliflozin 25 mg once daily (QD) for 5 days, ramipril (2.5 mg on day 1 then 5 mg QD on days 2-5) for 5 days or empagliflozin 25 mg with ramipril (2.5 mg on day 1 then 5 mg QD on days 2-5) for 5 days. In the third study, 20 subjects were randomized to receive single-dose digoxin 0.5 mg alone or empagliflozin 25 mg QD for 8 days with single-dose digoxin 0.5 mg on day 5. Exposure of empagliflozin was not affected by coadministration with verapamil (AUC0-∞: geometric mean ratio [GMR], 102.95%; 90% CI, 98.87-107.20; Cmax: GMR, 92.39%; 90% CI, 85.38-99.97) or ramipril (AUC over a uniform dosing interval τ at steady state [AUCτ,ss]: GMR, 96.55%; 90% CI, 93.05-100.18; Cmax at steady state [Cmax,ss]: GMR, 104.47%; 90% CI 97.65-111.77). Empagliflozin had no clinically relevant effect on exposure of ramipril (AUCτ,ss: GMR, 108.14%; 90% CI 100.51-116.35; Cmax,ss: GMR, 103.61%; 90% CI, 89.73-119.64) or its active metabolite ramiprilat (AUCτ,ss: GMR, 98.67%; 90% CI, 96.00-101.42; Cmax,ss: GMR, 98.29%; 90% CI, 92.67-104.25). Coadministration of empagliflozin had no clinically meaningful effect on digoxin AUC0-∞ (GMR, 106.11%; 90% CI, 96.71-116.41); however, a slight increase in Cmax was observed that was not considered clinically relevant (GMR, 113.94%; 90% CI, 99.33-130.70). All treatments were well tolerated. There were no serious adverse events or adverse events leading to discontinuation

  20. The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs.

    PubMed

    Castillo, M; Martín-Orúe, S M; Roca, M; Manzanilla, E G; Badiola, I; Perez, J F; Gasa, J

    2006-10-01

    An experiment was designed to evaluate the effects of 3 different additives on the gastrointestinal microbiota of early-weaned pigs. Early-weaned (18 to 22 d; n = 32) pigs (6.0 +/- 0.10 kg of BW) from 8 litters were randomly distributed into 8 pens. Each pen was assigned 1 of 4 dietary treatments: a prestarter or control diet, the control diet with 0.04% avilamycin (AB), with 0.3% sodium butyrate, or with 0.03% plant extract mixture (XT; standardized mixture with 5% (wt/wt) carvacrol extracted from Origanum spp., 3% cinnamaldehyde extracted from Cinnamonum spp., and 2% capsicum oleoresin from Capsicum annum). At the end of the experimental period, 8 pigs per treatment were killed, and samples of their intestinal content were taken. The total bacterial load along the gastrointestinal tract (GIT; stomach, jejunum, cecum, and distal colon) and the lactobacilli and enterobacteria in the jejunum and cecum were measured by quantitative PCR. The total microbial counts along the GIT did not differ among the diets, but there was an increase in the lactobacilli:enterobacteria ratio in the cecum of the piglets on the XT diet (P = 0.003). Restriction fragment length polymorphism of the PCR-amplified V3, V4, and V5 regions of the 16S rDNA gene showed changes in the structure of the microbial community in the jejunum. Dendrograms grouped animals by diets; control with 0.3% sodium butyrate was the treatment that promoted the biggest changes in the microbial ecosystem, followed by AB and then XT. Biodiversity increased when using additives compared with the control diet (P = 0.002). Microbial metabolic activity along the hindgut was studied using the concentration of purine bases and carbohydrase activities. Different patterns for purine bases were observed between diets (diet x intestinal section, P = 0.01). The control diet reached a maximum purine base concentration at the end of the colon, whereas that of the AB diet was reached at the cecum. We could not detect any cellulase

  1. Sodium glucose co-transporter inhibitors for the management of diabetes mellitus: an opinion paper from the Endocrine and Metabolism Practice and Research Network of the American College of Clinical Pharmacy.

    PubMed

    Clements, Jennifer N; Whitley, Heather P; D'Souza, Jennifer J; Gross, Benjamin; Hess, Rick; Reece, Sara; Gentry, Chad; Shealy, Kayce

    2015-01-01

    Type 2 diabetes mellitus (T2DM) carries a high prevalence in the United States and worldwide. Therefore, the number of medication classes being developed and studied has grown. The individualized management of diabetes is accomplished by evaluating a medication's efficacy, safety, and cost, along with the patient's preference and tolerance to the medication. Sodium glucose co-transporter 2 inhibitors are a new therapeutic class indicated for the treatment of diabetes and have a unique mechanism of action, independent of beta-cell function. The first agent approved by the Food and Drug Administration (FDA) was canagliflozin in March 2013. Two agents - dapagliflozin and empagliflozin - were FDA-approved in January and July 2014, respectively. A clear understanding of the new class is needed to identify its appropriate use in clinical practice. Members of the American College of Clinical Pharmacy Endocrine and Metabolism Practice and Research Network reviewed available literature regarding this therapeutic class. The article addresses the advantages, disadvantages, emerging role, and patient education for sodium glucose co-transporter 2 inhibitors. Key limitations for this article include limited access to clinical trial data not published by the pharmaceutical company and limited data on products produced outside the United States.

  2. Transcriptome characterization by deep-RNA-sequencing underlies the mechanisms of butyrate-induced epigenomic regulation in bovine cells

    USDA-ARS?s Scientific Manuscript database

    Volatile short-chain fatty acids (SCFAs, acetate, propionate, and butyrate), especially butyrate, alter cell differentiation, proliferation, motility, and in particular, induce cell cycle arrest and apoptosis through its histone deacetylase (HDAC) inhibition activity. Butyrate is a great inducer of ...

  3. 4-(2-Methyl-4-chlorophenoxy) butyric acid (MCPB)

    Integrated Risk Information System (IRIS)

    4 - ( 2 - Methyl - 4 - chlorophenoxy ) butyric acid ( MCPB ) ; CASRN 94 - 81 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Hea

  4. Development of a specific radioimmunoassay for cortisol 17-butyrate

    SciTech Connect

    Smith, G.N.; Lee, Y.F.; Bu'Lock, D.E.; August, P.; Anderson, D.C.

    1983-07-01

    We describe the development and validation of an assay for cortisol 17-butyrate in blood in which there is no significant cross reaction with endogenous corticosteroids at levels encountered normally in man. Preliminary data on blood levels of the drug in absorption studies are presented.

  5. Induction of peroxisomes by butyrate-producing probiotics.

    PubMed

    Weng, Huachun; Endo, Kosuke; Li, Jiawei; Kito, Naoko; Iwai, Naoharu

    2015-01-01

    We previously found that peroxisomal biogenesis factor 11a (Pex11a) deficiency is associated with a reduction in peroxisome abundance and impaired fatty acid metabolism in hepatocytes, and results in steatosis. In the present study, we investigated whether butyrate induces Pex11a expression and peroxisome proliferation, and studied its effect on lipid metabolism. C57BL/6 mice fed standard chow or a high-fat diet (HFD) were treated with tributyrin, 4-phelybutyrate acid (4-PBA), or the butyrate-producing probiotics (Clostridium butyricum MIYAIRI 588 [CBM]) plus inulin (dietary fiber), and the body weight, white adipose tissue, serum triglycerides, mRNA expression, and peroxisome abundance were evaluated. Tributyrin or 4-PBA treatment significantly decreased body weight and increased hepatic mRNA expression of peroxisome proliferator-activated receptor-α (PPARα) and Pex11a. In addition, 4-PBA treatment increased peroxisome abundance and the expression of genes involved in peroxisomal fatty acid β-oxidation (acyl-coenzyme A oxidase 1 and hydroxysteroid [17-beta] dehydrogenase 4). CBM and inulin administration reduced adipose tissue mass and serum triglycerides, induced Pex11a, acyl-coenzyme A oxidase 1, and hydroxysteroid (17-beta) dehydrogenase 4 genes, and increased peroxisome abundance in mice fed standard chow or an HFD. In conclusion, elevation of butyrate availability (directly through administration of butyrate or indirectly via administration of butyrate-producing probiotics plus fiber) induces PPARα and Pex11a and the genes involved in peroxisomal fatty acid β-oxidation, increases peroxisome abundance, and improves lipid metabolism. These results may provide a new therapeutic strategy against hyperlipidemia and obesity.

  6. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation.

    PubMed

    Ghorbaniaghdam, Atefeh; Henry, Olivier; Jolicoeur, Mario

    2013-04-01

    A kinetic-metabolic model approach describing and simulating Chinese hamster ovary (CHO) cell behavior is presented. The model includes glycolysis, pentose phosphate pathway, TCA cycle, respiratory chain, redox state and energetic metabolism. Growth kinetic is defined as a function of the major precursors for the synthesis of cell building blocks. Michaelis-Menten type kinetic is used for metabolic intermediates as well as for regulatory functions from energy shuttles (ATP/ADP) and cofactors (NAD/H and NADP/H). Model structure and parameters were first calibrated using results from bioreactor cultures of CHO cells expressing recombinant t-PA. It is shown that the model can simulate experimental data for all available experimental data, such as extracellular glucose, glutamine, lactate and ammonium concentration time profiles, as well as cell energetic state. A sensitivity analysis allowed identifying the most sensitive parameters. The model was then shown to be readily adaptable for studying the effect of sodium butyrate on CHO cells metabolism, where it was applied to the cases with sodium butyrate addition either at mid-exponential growth phase (48 h) or at the early plateau phase (74 h). In both cases, a global optimization routine was used for the simultaneous estimation of the most sensitive parameters, while the insensitive parameters were considered as constants. Finally, confidence intervals for the estimated parameters were calculated. Results presented here further substantiate our previous findings that butyrate treatment at mid-exponential phase may cause a shift in cellular metabolism toward a sustained and increased efficiency of glucose utilization channeled through the TCA cycle.

  7. Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate

    USDA-ARS?s Scientific Manuscript database

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...

  8. Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep

    USDA-ARS?s Scientific Manuscript database

    Butyrate, a major rumen VFA, has been indirectly linked to enhancement of urea recycling based on increased expression of urea transporter (UT-B) in the rumen epithelia of steers fed a rumen butyrate-enhancing diet. Two studies were conducted to quantify the effect of elevated rumen butyrate concent...

  9. Quantification of transcriptome responses of the rumen epithelium to butyrate infusion

    USDA-ARS?s Scientific Manuscript database

    Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms play an important role in energy metabolism and physiology in ruminants as well as in human health. Butyrate is a preferred substrate in the rumen epithelium where approximately 90% of butyrate is metabolized. Additi...

  10. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    PubMed

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).

  11. Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes.

    PubMed

    Brandão, Fabiana As; Derengowski, Lorena S; Albuquerque, Patrícia; Nicola, André M; Silva-Pereira, Ildinete; Poças-Fonseca, Marcio J

    2015-01-01

    Cryptococcus neoformans undergoes phenotypical changes during host infection in order to promote persistence and survival. Studies have demonstrated that such adaptations require alterations in gene transcription networks by distinct mechanisms. Drugs such as the histone deacetylases inhibitors (HDACi) Sodium Butyrate (NaBut) and Trichostatin A (TSA) can alter the chromatin conformation and have been used to modulate epigenetic states in the treatment of diseases such as cancer. In this work, we have studied the effect of NaBut and TSA on the expression of C. neoformans major virulence phenotypes and on the survival rate of an animal model infected with drugs-treated yeasts. Both drugs affected fungal growth at 37°C more intensely than at 30°C; nonetheless, drugs did not affect cell viability at the concentrations we studied. HDACi also provoked the reduction of the fungal capsule expansion. Phospholipases enzyme activity decreased; mating process and melanin synthesis were also affected by both inhibitors. NaBut led to an increase in the population of cells in G2/M. Treated yeast cells, which were washed in order to remove the drugs from the culture medium prior to the inoculation in the Galleria mellonela infection model, did not cause significant difference at the host survival curve when compared to non-treated cells. Overall, NaBut effects on the impairment of C. neoformans main virulence factors were more intense and stable than the TSA effects.

  12. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion.

    PubMed

    Malhi, Moolchand; Gui, Hongbing; Yao, Lei; Aschenbach, Jörg R; Gäbel, Gotthold; Shen, Zanming

    2013-01-01

    We tested the hypothesis that the proliferative effects of intraruminal butyrate infusions on the ruminal epithelium are linked to upregulation in cyclin D1 (CCND1), the cyclin-dependent kinase 4 (CDK4), and their possible association with enhanced absorption of short-chain fatty acids (SCFA). Goats (n=23) in 2 experiments (Exp.) were fed 200 g/d concentrate and hay ad libitum. In Exp. 1, goats received an intraruminal infusion of sodium butyrate at 0.3 (group B, n=8) or 0 (group C, n=7) g/kg of body weight (BW) per day before morning feeding for 28 d and were slaughtered 8 h after the butyrate infusion. In Exp. 2, goats (n=8) received butyrate infusion and feeding as in Exp. 1. On d 28, epithelial samples were biopsied from the antrium ruminis at 0, 3, and 7 h after the last butyrate infusion. In Exp. 1, the ruminal molar proportional concentration of butyrate increased in group B by about 110% after butyrate infusion and remained elevated for 1.5 h; thereafter, it gradually returned to the baseline (preinfusion) level. In group C, the molar proportional concentration of butyrate was unchanged over the time points. The length and width of papillae increased in B compared with C; this was associated with increased numbers of cells and cell layers in the epithelial strata and an increase in the surface area of 82%. The mRNA expression of CCND1 increased transiently at 3 h but returned to the preinfusion level at 7 h following butyrate infusion in Exp. 2. However, it did not differ between B and C in Exp. 1, in which the ruminal epithelium was sampled at 8 h after butyrate infusion. The mRNA expression of the monocarboxylate transporter MCT4, but not MCT1, was stably upregulated in B compared with C. The estimated absorption rate of total SCFA (%/h) increased in B compared with C. We conclude that transient increases in cyclin D1 transcription contribute to butyrate-induced papillae growth and subsequently to the increased absorption of SCFA in the ruminal epithelium

  13. De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi's sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists.

    PubMed

    Ye, Jianjiang; Gradoville, Lyndle; Daigle, Derek; Miller, George

    2007-09-01

    The oncogenic human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are latent in cultured lymphoma cells. We asked whether reactivation from latency of either virus requires de novo protein synthesis. Using Northern blotting and quantitative reverse transcriptase PCR, we measured the kinetics of expression of the lytic cycle activator genes and determined whether abundance of mRNAs encoding these genes from either virus was reduced by treatment with cycloheximide (CHX), an inhibitor of protein synthesis. CHX blocked expression of mRNAs of EBV BZLF1 and BRLF1, the two EBV lytic cycle activator genes, when HH514-16 Burkitt lymphoma cells were treated with histone deacetylase (HDAC) inhibitors, sodium butyrate or trichostatin A, or a DNA methyltransferase inhibitor, 5-Aza-2'-deoxycytidine. CHX also inhibited EBV lytic cycle activation in B95-8 marmoset lymphoblastoid cells by phorbol ester phorbol-12-myristate-13-acetate (TPA). EBV lytic cycle induction became resistant to CHX between 4 and 6 h after application of the inducing stimulus. KSHV lytic cycle activation, as assessed by ORF50 mRNA expression, was rapidly induced by the HDAC inhibitors, sodium butyrate and trichostatin A, in HH-B2 primary effusion lymphoma cells. In HH-B2 cells, CHX did not inhibit, but enhanced, expression of the KSHV lytic cycle activator gene, ORF50. In BC-1, a primary effusion lymphoma cell line that is dually infected with EBV and KSHV, CHX blocked EBV BRLF1 lytic gene expression induced by TPA and sodium butyrate; KSHV ORF50 mRNA induced simultaneously in the same cells by the same inducing stimuli was resistant to CHX. The experiments show, for the cell lines and inducing agents studied, that the EBV BZLF1 and BRLF1 genes do not behave with "immediate-early" kinetics upon reactivation from latency. KSHV ORF50 is a true "immediate-early" gene. Our results indicate that the mechanism by which HDAC inhibitors and TPA induce lytic cycle

  14. Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5)

    PubMed Central

    Huard, Kim; Brown, Janice; Jones, Jessica C.; Cabral, Shawn; Futatsugi, Kentaro; Gorgoglione, Matthew; Lanba, Adhiraj; Vera, Nicholas B.; Zhu, Yimin; Yan, Qingyun; Zhou, Yingjiang; Vernochet, Cecile; Riccardi, Keith; Wolford, Angela; Pirman, David; Niosi, Mark; Aspnes, Gary; Herr, Michael; Genung, Nathan E.; Magee, Thomas V.; Uccello, Daniel P.; Loria, Paula; Di, Li; Gosset, James R.; Hepworth, David; Rolph, Timothy; Pfefferkorn, Jeffrey A.; Erion, Derek M.

    2015-01-01

    Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints. PMID:26620127

  15. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells.

    PubMed

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-04-11

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells.

  16. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells

    PubMed Central

    2013-01-01

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells. PMID:23577829

  17. Isolation of butyrate-utilizing bacteria from thermophilic and mesophilic methane-producing ecosystems

    SciTech Connect

    Henson, J.M.

    1983-01-01

    The ability of various ecosystems to convert butyrate to methane was studied in order to isolate the bacteria responsible for the conversion. When thermophilic digester sludge was enriched with butyrate, methane was produced without a lag period. Marine sediments enriched with butyrate required a 2-week incubation period before methanogenesis began. A thermophilic digester was studied in more detail and found by most-probable-number enumeration to have ca. 5 x 10/sup 6/ butyrate-utilizing bactera/ml of sludge. A thermophilic butyrate-utilizing bacterium was isolated in coculture with Methanobacterium thermoautotrophicum and a Methanosarcina sp. This bacterium was a gram-negative, slightly curved rod that occurred singly, was nonmotile, and did not appear to produce spores. The thermophilic digester was infused with butyrate at the rate of 10 ..mu..moles/ml of sludge per day. Biogas production increased by 150%, with the percentage of methane increasing from 58% to 68%. Acetate, propionate, and butyrate did not accumulate. Butyrate-utilizing enrichments from mesophilic ecosystems were used in obtaining cocultures of butyrate-utilizing bacteria. These cocultures served as inocula for attempts to isolate pure cultures of butyrate-utilizing bacteria by use of hydrogenase-containing membrane fragments of Escherichia coli. After a 3-week incubation period, colonies appeared only in inoculated tubes that contained membrane fragments and butyrate.

  18. Inhibition of phosphatidylserine synthesis during Jurkat T cell activation. The phosphatase inhibitor, sodium ortho-vanadate bypasses the CD3/T cell receptor-induced second messenger signaling pathway.

    PubMed

    Pelassy, C; Breittmayer, J P; Aussel, C

    2000-02-01

    Sodium ortho-vanadate (Na3VO4), an inhibitor of protein tyrosine phosphatase, induces a rapid (15 min) and strong inhibition of phosphatidylserine synthesis with an IC50 = 100 microM. The mode of action of Na3VO4 was compared to that of CD3 mAbs. It was found that Na3VO4 bypasses the major CD3-induced T cell activation signals including protein tyrosine phosphorylation, p56lck activation and the generation of second messengers including inositol phosphates and its subsequent Ca2+ mobilization as well as diacylglycerol production. These facts were confirmed by using a panel of Jurkat clones that differs by the expression of either tyrosine kinases involved in the CD3-induced T cell activation pathway such as p56lck, p72syk and ZAP-70 or some cell surface receptors such as the CD3/TCR complex or the CD45 phosphatase.

  19. Discovery of triazolopyridine GS-458967, a late sodium current inhibitor (Late INai) of the cardiac NaV 1.5 channel with improved efficacy and potency relative to ranolazine.

    PubMed

    Koltun, Dmitry O; Parkhill, Eric Q; Elzein, Elfatih; Kobayashi, Tetsuya; Notte, Gregory T; Kalla, Rao; Jiang, Robert H; Li, Xiaofen; Perry, Thao D; Avila, Belem; Wang, Wei-Qun; Smith-Maxwell, Catherine; Dhalla, Arvinder K; Rajamani, Sridharan; Stafford, Brian; Tang, Jennifer; Mollova, Nevena; Belardinelli, Luiz; Zablocki, Jeff A

    2016-07-01

    We started with a medium throughput screen of heterocyclic compounds without basic amine groups to avoid hERG and β-blocker activity and identified [1,2,4]triazolo[4,3-a]pyridine as an early lead. Optimization of substituents for Late INa current inhibition and lack of Peak INa inhibition led to the discovery of 4h (GS-458967) with improved anti-arrhythmic activity relative to ranolazine. Unfortunately, 4h demonstrated use dependent block across the sodium isoforms including the central and peripheral nervous system isoforms that is consistent with its low therapeutic index (approximately 5-fold in rat, 3-fold in dog). Compound 4h represents our initial foray into a 2nd generation Late INa inhibitor program and is an important proof-of-concept compound. We will provide additional reports on addressing the CNS challenge in a follow-up communication.

  20. Sodium - blood

    MedlinePlus

    ... naproxen Lower than normal sodium level is called hyponatremia. It may be due to: Use of medicines ... overview Hepatorenal syndrome Hyperaldosteronism - primary and secondary Hypopituitarism Hypothyroidism Ions Low sodium level Nephrotic syndrome Sweating Review ...

  1. Sodium Test

    MedlinePlus

    ... low levels of cortisol, aldosterone and sex hormones ( Addison disease ) Drinking too much water as might occur during ... urinary sodium levels may indicate diuretic use or Addison disease. Sodium levels are often evaluated in relation to ...

  2. Formation of propionate and butyrate by the human colonic microbiota.

    PubMed

    Louis, Petra; Flint, Harry J

    2017-01-01

    The human gut microbiota ferments dietary non-digestible carbohydrates into short-chain fatty acids (SCFA). These microbial products are utilized by the host and propionate and butyrate in particular exert a range of health-promoting functions. Here an overview of the metabolic pathways utilized by gut microbes to produce these two SCFA from dietary carbohydrates and from amino acids resulting from protein breakdown is provided. This overview emphasizes the important role played by cross-feeding of intermediary metabolites (in particular lactate, succinate and 1,2-propanediol) between different gut bacteria. The ecophysiology, including growth requirements and responses to environmental factors, of major propionate and butyrate producing bacteria are discussed in relation to dietary modulation of these metabolites. A detailed understanding of SCFA metabolism by the gut microbiota is necessary to underpin effective strategies to optimize SCFA supply to the host.

  3. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    SciTech Connect

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or

  4. Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum.

    PubMed

    Zutz, Christoph; Chiang, Yi Ming; Faehnrich, Bettina; Bacher, Markus; Hellinger, Roland; Kluger, Bernhard; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2017-04-01

    Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives.

  5. Cellulose acetate butyrate microparticles for controlled release of carbamazepine.

    PubMed

    Arnaud, P; Boué, C; Chaumeil, J C

    1996-01-01

    Cellulose acetate butyrate microparticles loaded in carbamazepine were prepared by a solvent evaporation technique. A decrease of the amount of organic solvent (from 80 to 40 ml of methylene chloride) increased the microparticle average diameter (73-111 and 207 microns) and decreased the carbamazepine release rate (T50% increased from 3.3 to 16.8 and 166.4 min). The microparticle area under the curve at 120 min was similar to that obtained with Tegretol LP 200 tablets.

  6. Sodium Bicarbonate

    MedlinePlus

    ... to 2 hours after meals, with a full glass of water. If you are using sodium bicarbonate for another reason, it may be taken with or without food. Do not take sodium bicarbonate on an overly full stomach.Dissolve sodium bicarbonate powder in at least 4 ounces (120 milliliters) of ...

  7. Sodium Azide

    MedlinePlus

    ... exposed to sodium azide by drinking the contaminated water. Following contamination of food with sodium azide, you could be exposed to sodium azide by eating the contaminated food. Following release of ... with soap and water, and get medical care as quickly as possible. ...

  8. Effect of the butyrate prodrug pivaloyloxymethyl butyrate (AN9) on a mouse model for spinal muscular atrophy

    PubMed Central

    Edwards, Jonathan D.; Butchbach, Matthew E. R.

    2016-01-01

    Spinal muscular atrophy (SMA) is an early-onset motor neuron disease that leads to loss of muscle function. Butyrate (BA)-based compounds markedly improve the survival and motor phenotype of SMA mice. In this study, we examine the protective effects of the BA prodrug pivaloyloxymethyl butyrate (AN9) on the survival of SMNΔ7 SMA mice. Oral administration of AN9 beginning at PND04 almost doubled the average lifespan of SMNΔ7 SMA mice. AN9 treatment also increased the growth rate of SMNΔ7 SMA mice when compared to vehicle-treated SMNΔ7 SMA mice. In conclusion, BA prodrugs like AN9 have ameliorative effects on SMNΔ7 SMA mice. PMID:27911337

  9. Identification of a potent sodium hydrogen exchanger isoform 1 (NHE1) inhibitor with a suitable profile for chronic dosing and demonstrated cardioprotective effects in a preclinical model of myocardial infarction in the rat.

    PubMed

    Huber, John D; Bentzien, Jörg; Boyer, Stephen J; Burke, Jennifer; De Lombaert, Stéphane; Eickmeier, Christian; Guo, Xin; Haist, James V; Hickey, Eugene R; Kaplita, Paul; Karmazyn, Morris; Kemper, Raymond; Kennedy, Charles A; Kirrane, Thomas; Madwed, Jeffrey B; Mainolfi, Elizabeth; Nagaraja, Nelamangara; Soleymanzadeh, Fariba; Swinamer, Alan; Eldrup, Anne B

    2012-08-23

    Sodium-hydrogen exchanger isoform 1 (NHE1) is a ubiquitously expressed transmembrane ion channel responsible for intracellular pH regulation. During myocardial ischemia, low pH activates NHE1 and causes increased intracellular calcium levels and aberrant cellular processes, leading to myocardial stunning, arrhythmias, and ultimately cell damage and death. The role of NHE1 in cardiac injury has prompted interest in the development of NHE1 inhibitors for the treatment of heart failure. This report outlines our efforts to identify a compound suitable for once daily, oral administration with low drug-drug interaction potential starting from NHE1 inhibitor sabiporide. Substitution of a piperidine for the piperazine of sabiporide followed by replacement of the pyrrole moiety and subsequent optimization to improve potency and eliminate off-target activities resulted in the identification of N-[4-(1-acetyl-piperidin-4-yl)-3-trifluoromethyl-benzoyl]-guanidine (60). Pharmacological evaluation of 60 revealed a remarkable ability to prevent ischemic damage in an ex vivo model of ischemia reperfusion injury in isolated rat hearts.

  10. Sodium-glucose co-transporter-2 inhibitor use and dietary carbohydrate intake in Japanese individuals with type 2 diabetes: A randomized, open-label, 3-arm parallel comparative, exploratory study.

    PubMed

    Yabe, Daisuke; Iwasaki, Masahiro; Kuwata, Hitoshi; Haraguchi, Takuya; Hamamoto, Yoshiyuki; Kurose, Takeshi; Sumita, Kiminobu; Yamazato, Hitoshi; Kanada, Shigeto; Seino, Yutaka

    2016-12-19

    This study investigated the safety and efficacy of the sodium-glucose co-transporter-2 (SGLT2) inhibitor luseogliflozin with differing carbohydrate intakes in Japanese individuals with type 2 diabetes (T2D). Participants were randomly assigned to 3 carbohydrate-adjusted meals for 14 days (days 1-14; a high carbohydrate [HC; 55% total energy carbohydrate] and high glycaemic index [HGI] meal; an HC [55% total energy carbohydrate] and low glycaemic index [LGI] meal; or a low carbohydrate [LC; 40% total energy carbohydrate] and HGI meal). All participants received luseogliflozin for the last 7 days (days 8-14), continuous glucose monitoring (CGM) before and after luseogliflozin treatment (days 5-8 and days 12-15) and blood tests on days 1, 8 and 15. Luseogliflozin significantly decreased the area under the curve and mean of CGM values in all 3 groups similarly. Fasting plasma glucose, insulin and glucagon were similar at all time points. Ketone bodies on day 15 were significantly higher in the LC-HGI group compared with the HC-HGI and HC-LGI groups. In conclusion, luseogliflozin has similar efficacy and safety in Japanese people with T2D when meals contain 40% to 55% total energy carbohydrate, but a strict LC diet on this class of drug should be avoided to prevent SGLT2 inhibitor-associated diabetic ketoacidosis.

  11. Sodium-glucose cotransporter (SGLT) 2 inhibitors for prevention or delay of type 2 diabetes mellitus and its associated complications in people at risk for the development of type 2 diabetes mellitus.

    PubMed

    Hemmingsen, Bianca; Krogh, Jesper; Metzendorf, Maria-Inti; Richter, Bernd

    2016-04-21

    Sodium-glucose cotransporter (SGLT) 2 inhibitors were recently approved as glucose-lowering interventions in people with type 2 diabetes mellitus (T2DM). Potential beneficial or harmful effects of SGLT 2 inhibitors in people at risk for the development of T2DM are unknown. To assess the effects of SGLT 2 inhibitors focusing on the prevention or delay of T2DM and its associated complications in people with impaired glucose tolerance, impaired fasting blood glucose or moderately elevated glycosylated haemoglobin A1c (HbA1c) or any combination of these. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, PubMed, EMBASE, ClinicalTrials.gov, the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) and reference lists of systematic reviews, articles and health technology assessment reports. We asked investigators of ongoing for information about additional trials. The date of the last search of all databases was January 2016. Randomised controlled trials (RCTs) of any duration comparing SGLT 2 inhibitors with any glucose-lowering intervention, behaviour-changing intervention, placebo or no intervention in people with impaired fasting glucose, impaired glucose tolerance, moderately elevated HbA1c or combinations of these. Two review authors read all abstracts, assessed quality and extracted data independently. We resolved discrepancies by consensus or the involvement of a third author. We could not include any RCT in this systematic review. One trial was published in two abstracts, but did not provide separate information of the participants with impaired glucose tolerance, impaired fasting glucose or both. We identified two ongoing trials, both evaluating the effects of dapagliflozin (and metformin) in people at risk for the development of type 2 diabetes and a follow-up of 24 to 26 weeks. Both trials will mainly report on surrogate outcome measures with some data on adverse effects and health

  12. Identification and Characterization of ProTx-III [μ-TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula Thrixopelma pruriens.

    PubMed

    Cardoso, Fernanda C; Dekan, Zoltan; Rosengren, K Johan; Erickson, Andelain; Vetter, Irina; Deuis, Jennifer R; Herzig, Volker; Alewood, Paul F; King, Glenn F; Lewis, Richard J

    2015-08-01

    Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 (hNaV1.7) using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, μ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM) and the association rate decreased for the C-terminal acid form of Tp1a compared with the native amidated form (IC50 2.1 nM), suggesting that the peptide C terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 μM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNaV1.7 without significantly altering the voltage dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNaV1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classic inhibitor cystine knot (ICK) motif. The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences from other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop.

    PubMed

    Li, Xin; Shi, Zhongping; Li, Zhigang

    2014-08-01

    In this study, we attempted to increase butanol/acetone ratio and total solvent productivity in ABE fermentations with corn- and cassava-based media, by consecutively feeding a small amount of butyrate/acetate during solventogenic phase to weaken the metabolic strengths in butyrate/acetate closed-loops. Consecutively feeding a small amount of butyrate (a total of 3.0 g/L-broth) is most effective in improving performance of corn-based ABE fermentations, as it simultaneously increased average butanol/acetone ratio by 23 % (1.92-2.36) and total solvent productivity by 16 % (0.355-0.410 g/L/h) as compared with those of control. However, the butyrate feeding strategy could not improve butanol/acetone ratio and total solvent productivity in cassava-based ABE fermentations, where the metabolic strength of butyrate closed-loop had already been very low.

  14. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification.

    PubMed

    Xin, Fengxue; Basu, Anindya; Yang, Kun-Lin; He, Jianzhong

    2016-02-01

    In this study, a fermentation process for production of butanol and butyl-butyrate by using Clostridium sp. strain BOH3 is developed. This strain is able to produce butyric acid and butanol when it ferments 60 g/L xylose. Meanwhile, it also excreted indigenous lipases (induced by olive oil) which naturally convert butyric acid and butanol into 1.2 g/L of butyl-butyrate. When Bio-OSR was used as both an inducer for lipase and extractant for butyl-butyrate, the butyl-butyrate concentration can reach 6.3 g/L. To further increase the yield, additional lipases and butyric acid are added to the fermentation system. Moreover, kerosene was used as an extractant to remove butyl-butyrate in situ. When all strategies are combined, 22.4 g/L butyl-butyrate can be produced in a fed-batch reactor spiked with 70 g/L xylose and 7.9 g/L butyric acid, which is 4.5-fold of that in a similar system (5 g/L) with hexadecane as the extractant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. In vitro characterization of luseogliflozin, a potent and competitive sodium glucose co-transporter 2 inhibitor: Inhibition kinetics and binding studies.

    PubMed

    Uchida, Saeko; Mitani, Akiko; Gunji, Emi; Takahashi, Teisuke; Yamamoto, Koji

    2015-05-01

    In this study, we evaluated an inhibition model of luseogliflozin on sodium glucose co-transporter 2 (SGLT2). We also analyzed the binding kinetics of the drug to SGLT2 protein using [(3)H]-luseogliflozin. Luseogliflozin competitively inhibited human SGLT2 (hSGLT2)-mediated glucose uptake with a Ki value of 1.10 nM. In the absence of glucose, [(3)H]-luseogliflozin exhibited a high affinity for hSGLT2 with a Kd value of 1.3 nM. The dissociation half-time was 7 h, suggesting that luseogliflozin dissociates rather slowly from hSGLT2. These profiles of luseogliflozin might contribute to the long duration of action of this drug. Copyright © 2015 Taisho Pharmaceutical Co., Ltd. Production and hosting by Elsevier B.V. All rights reserved.

  16. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor Increases Circulating Zinc-Α2-Glycoprotein Levels in Patients with Type 2 Diabetes

    PubMed Central

    Liao, Xin; Wang, Xuemei; Li, Haopeng; Li, Ling; Zhang, Guohao; Yang, Mengliu; Yuan, Lei; Liu, Hua; Yang, Gangyi; Gao, Lin

    2016-01-01

    ZAG has recently been characterized as a potent metabolic regulator, but the effect of anti-diabetic agents on ZAG in humans remains unknown. Our aim was to study the effects of SGLT2 inhibitor on circulating ZAG and ADI in nT2DM. 162 subjects with nT2DM were treated by a placebo or DAPA. After 3-months of DAPA therapy, HbA1c, FBG, 2h-PBG, FFA, TG, blood pressure, BMI, WHR, body weight, FAT%, FINS, and HOMA-IR in T2DM patients decreased significantly, whereas HDL-C was significantly increased. Importantly, circulating ZAG and ADI levels in these patients were also significantly increased after DAPA therapy. Basal ZAG levels were associated with changes in BMI, FAT%, TC, HbA1c, HDL-C and ADI at post-treatment, whereas basal ADI levels were associated with changes in FAT%, TC, HbA1c, FFA and HDL-c. In vitro, DAPA treatment showed increased ZAG expression and secretion in HepG2 cells. When combined with a PPAR-γinhibitor GW9662, the effect of DAPA on ZAG was abrogated. These findings suggest that circulating ZAG can be regulated by DAPA, and DAPA promotes the expression and secretion of ZAG in the liver via the activation of PPAR-γ. The changes in ZAG induced by DAPA may play a physiologic role in enhancing insulin sensitivity. PMID:27611858

  17. Long-Term Culture of Porcine Induced Pluripotent Stem-Like Cells Under Feeder-Free Conditions in the Presence of Histone Deacetylase Inhibitors.

    PubMed

    Petkov, Stoyan; Glage, Silke; Nowak-Imialek, Monika; Niemann, Heiner

    2016-03-01

    The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a complex process that involves significant epigenetic alterations in the reprogrammed cells. Epigenetic modifiers such as histone deacetylase (HDAC) inhibitors have been shown to increase the efficiency of derivation of iPSCs in humans and mice. In this study, we used three HDAC inhibitors, valproic acid, sodium butyrate, and suberoylanilide hydroxamic acid, together with ascorbic acid, for derivation and long-term feeder-free culture of porcine iPS-like cells. In the absence of exogenous growth factors and/or small molecules, these inhibitors were able to maintain the expression of key pluripotency markers, including genes known to be specific for naive pluripotent state in mouse stem cells, for over 60 passages under feeder-free conditions. Surprisingly, the cells became dependent on HDAC inhibitors for the maintenance of proliferation. Moreover, despite showing successful integration into blastocysts upon injection, the cells were unable to undergo normal differentiation in vitro and in vivo in the form of teratomas. Our results suggest that HDAC inhibitors maintain pluripotency gene expression of porcine iPSC-like cells in long-term culture, but prevent lineage specification, requiring further optimization of culture conditions for porcine iPSC derivation.

  18. Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells.

    PubMed

    Elce, A; Amato, F; Zarrilli, F; Calignano, A; Troncone, R; Castaldo, G; Canani, R B

    2017-08-31

    Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders.

  19. TNF-alpha modulates the differentiation induced by butyrate in the HT-29 human colon adenocarcinoma cell line.

    PubMed

    Kovaríková, M; Pacherník, J; Hofmanová, J; Zadák, Z; Kozubík, A

    2000-09-01

    The aim of this study was to determine whether and how tumour necrosis factor alpha (TNF-alpha) modulates butyrate effects. After the treatment of human colon adenocarcinoma HT-29 cells with sodium butyrate (NaBt), TNF-alpha or with their combinations we detected cell cycle (flow cytometry), cell proliferation (amidoblack and MTT assays), the amount of dead (floating) and apoptotic cells (flow cytometry and fluorescence microscopy), and the level of differentiation by alkaline phosphatase (ALP) activity (spectrophotometry), relative F-actin content (confocal laser scanning microscopy analysis) and E-cadherin expression (Western blot analysis). Both TNF-alpha and NaBt decreased cell growth in a dose-dependent manner. After combined treatment of the cells with both agents used, either none or additive effects were observed as compared with NaBt treatment alone. The level of dead and apoptotic cells was dose-dependently increased after this combined treatment. In contrast, TNF-alpha suppressed ALP activity and F-actin accumulation induced by NaBt. The results suggest that TNF-alpha does not influence significantly the antiproliferative effects of NaBt but, contrary to its potentiation of apoptosis, it markedly reduces NaBt-induced differentiation of HT-29 colon adenocarcinoma cells.

  20. Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry.

    PubMed

    Van Immerseel, F; Boyen, F; Gantois, I; Timbermont, L; Bohez, L; Pasmans, F; Haesebrouck, F; Ducatelle, R

    2005-12-01

    Short-chain fatty acids have been widely used as feed additives to control Salmonella in poultry. Data on the use of butyric acid in poultry are lacking. In this study, powder form and coated butyric acid were compared in their ability to reduce Salmonella colonization of ceca and internal organs shortly after infection of young chickens with Salmonella enteritidis. In the first trial, 4 groups of 25 specific pathogen free layer chickens were given feed either supplemented with powder form butyric acid, coated butyric acid, a combination of powder form and coated butyric acid (all groups received a total of 0.63 g of butyric acid/kg) or nonsupplemented feed. The specific pathogen free layer chickens were orally infected with 10(6) cfu of S. enteritidis. Coated butyric acid significantly decreased cecal colonization 3 d post-infection compared with control chickens, and powder form butyric acid had no effect. To study long-term shedding and colonization of Salmonella in broilers given coated butyric acid as feed additive (0.63 g of active product butyric acid/kg), 10 Ross broiler chickens were infected at d 5 with 10(5) cfu of S. enteritidis and housed together with 40 noninfected broilers. A control group received nonsupplemented feed. The group of broilers receiving coated butyric acid had a significantly lower number of broilers shedding Salmonella bacteria, but cecal colonization at slaughter age was equal for both groups. In conclusion, butyric acid decreases cecal colonization shortly after infection, decreases fecal shedding, and as a consequence, decreases environmental contamination by S. enteritidis-infected broilers. However, complete elimination can probably only be achieved with a combined approach using both hygienic measures and different protection measures, as the broilers still carried S. enteritidis bacteria in the ceca at slaughter age, although at enrichment level.

  1. DNA methyltransferase inhibitor RG108 and histone deacetylase inhibitors cooperate to enhance NB4 cell differentiation and E-cadherin re-expression by chromatin remodelling.

    PubMed

    Savickiene, Jurate; Treigyte, Grazina; Jazdauskaite, Arune; Borutinskaite, Veronika-Viktorija; Navakauskiene, Ruta

    2012-11-01

    Epigenetic silencing of cancer-related genes by abnormal methylation and the reversal of this process by DNA methylation inhibitors represents a promising strategy in cancer therapy. As DNA methylation affects gene expression and chromatin structure, we investigated the effects of novel DNMT (DNA methyltransferase) inhibitor, RG108, alone and in its combinations with structurally several HDAC (histone deacetylase) inhibitors [sodium PB (phenyl butyrate) or BML-210 (N-(2-aminophenyl)-N'phenyloctanol diamine), and all-trans RA (retinoic acid)] in the human PML (promyelocytic leukaemia) NB4 cells. RG108 at different doses from 20 to 100 μM caused time-, but not a dose-dependent inhibition of NB4 cell proliferation without cytotoxicity. Temporal pretreatment with RG108 before RA resulted in a dose-dependent cell growth inhibition and remarkable acceleration of granulocytic differentiation. Prolonged treatments with RG108 and RA in the presence of HDAC inhibitors significantly increased differentiation. RG108 caused time-dependent re-expression of methylation-silenced E-cadherin, with increase after temporal or continuous treatments with RG108 and RA, or RA together with PB in parallel, in cell maturation, suggesting the role of E-cadherin as a possible therapeutic marker. These processes required both PB-induced hyperacetylation of histone H4 and trimethylation of histone H3 at lysine 4, indicating the cooperative action of histone modifications and DNA methylation/demethylation in derepression of E-cadherin. This work provides novel experimental evidence of the beneficial role of the DNMT inhibitor RG108 in combinations with RA and HDACIs in the effective differentiation of human PML based on epigenetics.

  2. Butyrate-induced changes in nuclease sensitivity of chromatin cannot be correlated with transcriptional activation.

    PubMed Central

    Birren, B W; Taplitz, S J; Herschman, H R

    1987-01-01

    We examined in the H4IIE rat hepatoma cell line the relationship between butyrate-induced changes in the nuclease sensitivity of chromatin and changes in transcriptional activity of specific genes. The butyrate-inducible metallothionein I (MT-I) gene underwent a dramatic increase in DNase I sensitivity after 3 h of butyrate treatment. However, genes not transcribed in H4IIE cells underwent the same changes in DNase I sensitivity. Thus, butyrate-induced increases in DNase I sensitivity are not sufficient for the transcriptional activation of a gene. Butyrate treatment has also been reported to alter the sensitivity of sequences to micrococcal nuclease (MNase) in a manner reflecting their tissue-specific expression. Butyrate exposure caused increased digestion of the MT-I gene by MNase. However, butyrate-induced MNase sensitivity also occurred for genes which are neither transcribed in untreated cells nor butyrate inducible. Moreover, cadmium, a potent transcriptional activator of the MT-I gene, does not alter the sensitivity of the MT-I gene to MNase. Thus, the butyrate-induced alterations in MNase sensitivity are neither sufficient for, necessary for, nor indicative of transcriptional activation. Images PMID:3431545

  3. Less-toxic corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1981-01-01

    Combinations of borates, nitrates, phosphates, silicates, and sodium MBT protect aluminum from corrosion in fresh water. Most effective combinations contained sodium phosphate and were alkaline. These inhibitors replace toxic chromates which are subject to governmental restrictions, but must be used in larger quantities. Experimental exposure times varied from 1 to 14 months depending upon nature of submersion solution.

  4. Antimicrobial activity of butyrate glycerides toward Salmonella Typhimurium and Clostridium perfringens.

    PubMed

    Namkung, H; Yu, H; Gong, J; Leeson, S

    2011-10-01

    The antimicrobial activities of n-butyric acid and its derivatives against Salmonella Typhimurium and Clostridium perfringens were studied. n-Butyric acid and its derivatives (monobutyrin and a mixture of mono-, di-, and tri-glycerides of butyric acid) were added at different concentrations (ranging from 250 to 7,000 mg/kg to a media inoculated with either Salmonella Typhimurium or C. perfringens. The antimicrobial activity of butyric acid against C. perfringens was measured at 2 bacterium concentrations and 2 inoculations involving ambient aerobic or anaerobic conditions. The most effective antimicrobial activity for Salmonella Typhimurium was observed with n-butyric acid, with 90% inhibition rate at a concentration of 1,500 mg/kg. Although minimal inhibition for Salmonella Typhimurium was observed with butyric acid glycerides, lipase addition to a mixture of mono-, di-, and triglycerides of butyric acid increased (P < 0.01) antimicrobial activity of these derivatives. Antimicrobial activity of butyric acid and its derivative against C. perfringens was higher when using a moderate initial inoculation concentration (10(5)) compared with a higher initial concentration (10(7)) of this bacterium. At a lower inoculation of C. perfringens (10(5)), >90% inhibition rate by all butyric acid glycerides was observed with prior aerobic inoculation at 2,000 mg/kg, whereas using anaerobic inoculation, only 50% monobutyrin maintained >90% inhibitory effect at 3,000 mg/kg. The antimicrobial effect of monobutyrin against C. perfringens was generally higher (P < 0.01) for 50% monobutyrin than for 100% monobutyrin. Either a mixture of butyric acid derivatives or 50% monobutyrin decreased (P < 0.01) C. perfringens in a media containing intestinal contents whereas only 50% monobutyrin decreased (P < 0.01) Salmonella Typhimurium within a media containing cecal contents from mature Leghorns. These results show that n-butyric acid and 50% monobutyrin could be used to control Salmonella

  5. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages.

    PubMed

    Fernando, Maria R; Saxena, Alpana; Reyes, José-Luis; McKay, Derek M

    2016-05-15

    The short-chain fatty acid butyrate is produced by fermentation of dietary fiber by the intestinal microbiota; butyrate is the primary energy source of colonocytes and has immunomodulatory effects. Having shown that macrophages differentiated with IL-4 [M(IL-4)s] can suppress colitis, we hypothesized that butyrate would reinforce an M(IL-4) phenotype. Here, we show that in the presence of butyrate M(IL-4)s display reduced expression of their hallmark markers Arg1 and Ym1 and significantly suppressed LPS-induced nitric oxide, IL-12p40, and IL-10 production. Butyrate treatment likely altered the M(IL-4) phenotype via inhibition of histone deacetylation. Functionally, M(IL-4)s treated with butyrate showed increased phagocytosis and killing of bacteria, compared with M(IL-4) and this was not accompanied by enhanced proinflammatory cytokine production. Culture of regulatory T cells with M(IL-4)s and M(IL-4 + butyrate)s revealed that both macrophage subsets suppressed expression of the regulatory T-cell marker Foxp3. However, Tregs cocultured with M(IL-4 + butyrate) produced less IL-17A than Tregs cocultured with M(IL-4). These data illustrate the importance of butyrate, a microbial-derived metabolite, in the regulation of gut immunity: the demonstration that butyrate promotes phagocytosis in M(IL-4)s that can limit T-cell production of IL-17A reveals novel aspects of bacterial-host interaction in the regulation of intestinal homeostasis. Copyright © 2016 the American Physiological Society.

  6. Anti-inflammatory effects of novel AP-1 and NF-κB inhibitors in dextran-sulfate-sodium-induced colitis in rats.

    PubMed

    El-Salhy, Magdy; Umezawa, Kazuo

    2016-06-01

    The aim of the present study was to elucidate the anti-inflammatory effects of the two novel anti-inflammatory substances, 3-[(dodecylthiocarbonyl)‑methyl]-glutarimide (DTCM-G) and dehydroxymethylepoxyquinomicin (DHMEQ), on DSS-induced colitis in rats. For this purpose, rats with dextran sulfate sodium (DSS)-induced colitis were randomly divided into 3 groups with 10 animals in each group as follows: i) the control group, which received 0.5 ml of 0.5% carboxymethyl cellulose (CMC; vehicle), ii) rats that received DTCM-G (20 mg/kg body weight in 0.5% CMC; the DTCM-G group), and iii) rats that received DHMEQ (15 mg/kg body weight in 0.5% CMC; the DHMEQ group). The animals were sacrificed after the 5-day treatment period, and tissue samples were taken from their colons and sectioned for histological evaluation. The tissue sections were stained with hematoxylin and eosin, and immunostained for leukocytes, lymphocytes, macrophages/monocytes and mast cells. The disease activity index (DAI), histological grading of colitis, and densities of several types of submucosal immune cells were compared between the controls, and the DTCM-G and DHMEQ groups. The DAI values were significantly lower in both the DTCM-G and DHMEQ groups than in the control group. The total scores for the histological grading of colitis were also significantly lower in the DTCM-G and DHMEQ groups than in the control group. The submucosal densities of leucocytes, lymphocytes, macrophages/monocytes and mast cells were significantly lower in the DTCM-G and DHMEQ groups than in the control group. Our findings indicate that the anti-inflammatory and anticancer effects of DTCM-G and DHMEQ, and the absence of any associated toxicity render them excellent therapeutic candidates for clinical use in the treatment of colitis.

  7. ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors.

    PubMed

    Schmalhofer, William A; Calhoun, Jeffrey; Burrows, Rachel; Bailey, Timothy; Kohler, Martin G; Weinglass, Adam B; Kaczorowski, Gregory J; Garcia, Maria L; Koltzenburg, Martin; Priest, Birgit T

    2008-11-01

    Voltage-gated sodium (Na(V)1) channels play a critical role in modulating the excitability of sensory neurons, and human genetic evidence points to Na(V)1.7 as an essential contributor to pain signaling. Human loss-of-function mutations in SCN9A, the gene encoding Na(V)1.7, cause channelopathy-associated indifference to pain (CIP), whereas gain-of-function mutations are associated with two inherited painful neuropathies. Although the human genetic data make Na(V)1.7 an attractive target for the development of analgesics, pharmacological proof-of-concept in experimental pain models requires Na(V)1.7-selective channel blockers. Here, we show that the tarantula venom peptide ProTx-II selectively interacts with Na(V)1.7 channels, inhibiting Na(V)1.7 with an IC(50) value of 0.3 nM, compared with IC(50) values of 30 to 150 nM for other heterologously expressed Na(V)1 subtypes. This subtype selectivity was abolished by a point mutation in DIIS3. It is interesting that application of ProTx-II to desheathed cutaneous nerves completely blocked the C-fiber compound action potential at concentrations that had little effect on Abeta-fiber conduction. ProTx-II application had little effect on action potential propagation of the intact nerve, which may explain why ProTx-II was not efficacious in rodent models of acute and inflammatory pain. Mono-iodo-ProTx-II ((125)I-ProTx-II) binds with high affinity (K(d) = 0.3 nM) to recombinant hNa(V)1.7 channels. Binding of (125)I-ProTx-II is insensitive to the presence of other well characterized Na(V)1 channel modulators, suggesting that ProTx-II binds to a novel site, which may be more conducive to conferring subtype selectivity than the site occupied by traditional local anesthetics and anticonvulsants. Thus, the (125)I-ProTx-II binding assay, described here, offers a new tool in the search for novel Na(V)1.7-selective blockers.

  8. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus.

    PubMed

    Sha, S; Polidori, D; Heise, T; Natarajan, J; Farrell, K; Wang, S-S; Sica, D; Rothenberg, P; Plum-Mörschel, L

    2014-11-01

    To evaluate the effects of canagliflozin on plasma volume, urinary glucose excretion (UGE), fasting plasma glucose (FPG), glycated haemoglobin (HbA1c) and additional measures of fluid/electrolyte balance in patients with type 2 diabetes on ba