Science.gov

Sample records for inhibitors induce peroxisome

  1. Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1) in Human Macrophages

    PubMed Central

    Copin, C.; Derudas, B.; Marx, N.

    2016-01-01

    Tissue factor (TF) is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa). Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1). Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway. PMID:28115923

  2. Peroxisomes, peroxisomal diseases, and the hepatotoxicity induced by peroxisomal metabolites.

    PubMed

    Wanders, Ronald J A; Ferdinandusse, Sacha

    2012-12-01

    The group of peroxisomal disorders represents a growing number of genetically determined diseases in humans in which there is an impairment in one or more peroxisomal functions. The peroxisomal disorders are usually subdivided in two major subgroups including (1) the peroxisome biogenesis disorders (PBDs) and (2) the single peroxisomal enzyme deficiencies. Liver pathology is a frequent finding in patients affected by a peroxisomal disorder. This is not only true for patients affected by a PBD, but also for patients with a single enzyme defect in one of the metabolic pathways in which peroxisomes are involved. By comparing the different peroxisomal disorders, we provide evidence suggesting that the main hepatotoxic metabolites responsible for the liver pathology found in patients, are the bile acid synthesis intermediates di- and trihydroxycholestanoic acid (DHCA and THCA). Studies in different experimental systems have shown that DHCA and THCA, especially in the unconjugated form, interfere with different physiological processes including mitochondrial oxidative phosphorylation. The implications of these findings will be discussed with special emphasis on patients with di- and trihydroxycholestanoic acidaemia.

  3. NADH Induces the Generation of Superoxide Radicals in Leaf Peroxisomes 1

    PubMed Central

    del Río, Luis A.; Fernández, Víctor M.; Rupérez, Francisco L.; Sandalio, Luisa M.; Palma, José M.

    1989-01-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O2−) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O2− radicals. In the soluble fractions of peroxisomes, no generation of O2− radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes (LM Sandalio, VM Fernández, FL Rupérez, LA del Río [1988] Plant Physiol 87: 1-4) suggests that O2− generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related rôles for peroxisomes in cellular metabolism. PMID:16666612

  4. NADH induces the generation of superoxide radicals in leaf peroxisomes. [Pisum sativum L

    SciTech Connect

    del Rio, L.A.; Sandalio, L.M.; Palma, J.M. ); Fernandez, V.M.; Ruperez, F.L. )

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O{sub 2}{sup {minus}}) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O{sub 2}{sup {minus}} radicals. In the soluble fractions of peroxisomes, no generation of O{sub 2}{sup {minus}} radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes suggests that O{sub 2}{sup {minus}} generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related roles for peroxisomes in cellular metabolism.

  5. Inhibition of peroxisome proliferator-activated receptor (PPAR)-mediated keratinocyte differentiation by lipoxygenase inhibitors.

    PubMed Central

    Thuillier, Philippe; Brash, Alan R; Kehrer, James P; Stimmel, Julie B; Leesnitzer, Lisa M; Yang, Peiying; Newman, Robert A; Fischer, Susan M

    2002-01-01

    Lipoxygenase (LOX) metabolites from arachidonic acid and linoleic acid have been implicated in atherosclerosis, inflammation, keratinocyte differentiation and tumour progression. We previously showed that peroxisome proliferator-activated receptors (PPARs) play a role in keratinocyte differentiation and that the PPARalpha ligand 8S-hydroxyeicosatetraenoic acid is important in this process. We hypothesized that blocking LOX activity would block PPAR-mediated keratinocyte differentiation. Three LOX inhibitors, nordihydroguaiaretic acid, quercetin and morin, were studied for their effects on primary keratinocyte differentiation and PPAR activity. All three LOX inhibitors blocked calcium-induced expression of the differentiation marker keratin 1. In addition, activity of a PPAR-responsive element was inhibited in the presence of all three inhibitors, and this effect was mediated primarily through PPARalpha and PPARgamma. LOX inhibitors decreased the activity of a chimaeric PPAR-Gal4-ligand-binding domain reporter system and this effect was reversed by addition of PPAR ligands. Ligand-binding studies revealed that the LOX inhibitors bind directly to PPARs and demonstrate a novel mechanism for these inhibitors in altering PPAR-mediated gene expression. PMID:12069687

  6. PPARα Activation Induces Nε-Lys-Acetylation of Rat Liver Peroxisomal Multifunctional Enzyme Type 1

    PubMed Central

    Contreras, Miguel A.; Alzate, Oscar; Singh, Avtar K.

    2013-01-01

    Peroxisomes are ubiquitous subcellular organelles that participate in metabolic and disease processes, with few of its proteins undergoing posttranslational modifications. As the role of lysine-acetylation has expanded into the cellular intermediary metabolism, we used a combination of differential centrifugation, organelle isolation by linear density gradient centrifugation, western blot analysis, and peptide fingerprinting and amino acid sequencing by mass spectrometry to investigate protein acetylation in control and ciprofibrate-treated rat liver peroxisomes. Organelle protein samples isolated by density gradient centrifugation from PPARα-agonist treated rat liver screened with an anti-Nε-acetyl lysine antibody revealed a single protein band of 75 kDa. Immunoprecipitation with this antibody resulted in the precipitation of a protein from the protein pool of ciprofibrate-induced peroxisomes, but not from the protein pool of non-induced peroxisomes. Peptide mass fingerprinting analysis identified the protein as the peroxisomal multifunctional enzyme type 1. In addition, mass spectrometry-based amino acid sequencing resulted in the identification of unique peptides containing 4 acetylated-Lys residues (K155, K173, K190, and K583). This is the first report that demonstrates posttranslational acetylation of a peroxisomal enzyme in PPARα-dependent proliferation of peroxisomes in rat liver. PMID:24092543

  7. Peroxisome proliferator-activated receptorα agonists differentially regulate inhibitor of DNA binding expression in rodents and human cells.

    PubMed

    González, María Del Carmen; Corton, J Christopher; Acero, Nuria; Muñoz-Mingarro, Dolores; Quirós, Yolanda; Alvarez-Millán, Juan José; Herrera, Emilio; Bocos, Carlos

    2012-01-01

    Inhibitor of DNA binding (Id2) is a helix-loop-helix (HLH) transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR) gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY). WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2). MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V), the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans.

  8. Peroxisome Proliferator-Activated Receptorα Agonists Differentially Regulate Inhibitor of DNA Binding Expression in Rodents and Human Cells

    PubMed Central

    González, María del Carmen; Corton, J. Christopher; Acero, Nuria; Muñoz-Mingarro, Dolores; Quirós, Yolanda; Álvarez-Millán, Juan José; Herrera, Emilio; Bocos, Carlos

    2012-01-01

    Inhibitor of DNA binding (Id2) is a helix-loop-helix (HLH) transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR) gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY). WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2). MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V), the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans. PMID:22701468

  9. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus.

    PubMed

    Chen, Xiao-Lin; Shen, Mi; Yang, Jun; Xing, Yunfei; Chen, Deng; Li, Zhigang; Zhao, Wensheng; Zhang, Yan

    2017-02-01

    Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co-localized with peroxisomes during appressorial development. Compared with the massive vesicle-shaped peroxisomes formed in the wild-type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1-mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium.

  10. Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis.

    PubMed

    Ashby, J; Brady, A; Elcombe, C R; Elliott, B M; Ishmael, J; Odum, J; Tugwood, J D; Kettle, S; Purchase, I F

    1994-11-01

    applied to the class and should be essentially generic; if not, each chemical should be considered independently. Our critical analysis of the published data for over 70 agents which have been shown to possess intrinsic ability to induce peroxisome proliferation in the livers of rodents has led to the conclusion that there exists a strong correlation between peroxisome proliferation as n early effect in the liver and hepatocarcinogenicity in chronic exposure studies. An almost perfect correlation was observed between the induction of peroxisomes in the rodent liver and the eventual appearance of tumours following chronic exposure The few exceptions to this were largely explainable (section II).(ABSTRACT TRUNCATED AT 400 WORDS)

  11. Hepatocyte proliferation induced by a single dose of a peroxisome proliferator.

    PubMed Central

    Ohmura, T.; Ledda-Columbano, G. M.; Piga, R.; Columbano, A.; Glemba, J.; Katyal, S. L.; Locker, J.; Shinozuka, H.

    1996-01-01

    In compensatory hyperplasia after partial hepatectomy or liver cell injury, hepatocyte proliferation is triggered by coordinated actions of growth factor such as hepatocyte growth factor and transforming growth factor-alpha and -beta. Initiation of hepatocyte DNA synthesis is preceded by the activation of the set of early growth response genes mediated by enhanced nuclear factor-kappa B binding to DNA. Using an experimental model to induce hepatocyte DNA synthesis in vivo by a single dose of a peroxisome proliferator, which does not induce liver cell necrosis (direct hyperplasia), we investigated whether peroxisome proliferator-induced hepatocyte proliferation involved an induction of known growth factors, an activation of early growth response genes, and nuclear factor-kappa B. A single intragastric administration of 250 mg/kg BR931 (4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio-(N-beta-hydroxyethyl) acetamide) to male wistar rats induced a wave of hepatocyte DNA synthesis starting after 12 hours and peaking at approximately 24 to 36 hours. The response was dose dependent. The treatment also induced the expression of the mRNA for the peroxisomal bifunctional enzyme, one of the peroxisome-related fatty acid beta-oxidation enzymes. Pretreatment of rats with dexamethasone (2 mg/kg) inhibited both hepatocyte DNA synthesis and the induction of the peroxisomal bifunctional enzyme gene. Northern blot analyses of liver RNA during a period preceding the onset of DNA synthesis revealed no induction of hepatocyte growth factor, transforming growth factor-alpha, or tumor necrosis factor-alpha mRNAs. No induction of early growth response genes, liver regeneration factor-1, or c-myc was detected. Furthermore, gel mobility shift assays showed no enhanced nuclear factor-kappa B binding to its DNA consensus sequence after BR931 treatment, whereas control studies demonstrated a distinct increase in binding after partial hepatectomy or lead nitrate treatment. The results suggest that

  12. Peroxisomes and Kidney Injury

    PubMed Central

    2016-01-01

    Abstract Significance: Peroxisomes are organelles present in most eukaryotic cells. The organs with the highest density of peroxisomes are the liver and kidneys. Peroxisomes possess more than fifty enzymes and fulfill a multitude of biological tasks. They actively participate in apoptosis, innate immunity, and inflammation. In recent years, a considerable amount of evidence has been collected to support the involvement of peroxisomes in the pathogenesis of kidney injury. Recent Advances: The nature of the two most important peroxisomal tasks, beta-oxidation of fatty acids and hydrogen peroxide turnover, functionally relates peroxisomes to mitochondria. Further support for their communication and cooperation is furnished by the evidence that both organelles share the components of their division machinery. Until recently, the majority of studies on the molecular mechanisms of kidney injury focused primarily on mitochondria and neglected peroxisomes. Critical Issues: The aim of this concise review is to introduce the reader to the field of peroxisome biology and to provide an overview of the evidence about the contribution of peroxisomes to the development and progression of kidney injury. The topics of renal ischemia–reperfusion injury, endotoxin-induced kidney injury, diabetic nephropathy, and tubulointerstitial fibrosis, as well as the potential therapeutic implications of peroxisome activation, are addressed in this review. Future Directions: Despite recent progress, further studies are needed to elucidate the molecular mechanisms induced by dysfunctional peroxisomes and the role of the dysregulated mitochondria–peroxisome axis in the pathogenesis of renal injury. Antioxid. Redox Signal. 25, 217–231. PMID:26972522

  13. Gene expression for peroxisome-associated enzymes in hepatocellular carcinomas induced by ciprofibrate, a hypolipidemic compound

    SciTech Connect

    Rao, M.S.; Nemali, M.R.; Reddy, J.K.

    1986-03-05

    Administration of hypolipidemic compounds leads to marked proliferation of peroxisomes and peroxisome-associated enzymes (PAE) in the livers of rodents and non-rodent species. The increase peroxisome-associated enzymes such as fatty acid ..beta..-oxidation system and catalase is shown to be due to an increase in the levels of mRNA. In this experiment they have examined hepatocellular carcinomas (HCC), induced in male F-344 rats by ciprofibrate (0.025%, w/w for 60 weeks), for gene expression of PAE. Total RNA was purified from HCC as well as from control and ciprofibrate (0.025% for 2 weeks) fed rat livers. Northern blot analysis was performed using (32/sub p/)cDNA probes for albumin, fatty acetyl-CoA oxidase, enoyl-CoA hydratase 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme and catalase. mRNA levels in HCC for albumin, fatty acid ..beta..-oxidation enzymes and catalase were comparable with those levels observed in the livers of rats given ciprofibrate for 2 weeks. In control livers the mRNAs for ..beta..-oxidation enzymes were low. Albumin mRNA levels in all the 3 groups were comparable. Additional studies are necessary to determine whether the increased level of mRNAs for the ..beta..-oxidation enzymes in HCC is due to the effect of ciprofibrate or to the gene amplification.

  14. Protective Role for Tissue Inhibitor of Metalloproteinase-4, a Novel Peroxisome Proliferator-Activated Receptor-γ Target Gene, in Smooth Muscle in Deoxycorticosterone Acetate-Salt Hypertension.

    PubMed

    Ketsawatsomkron, Pimonrat; Keen, Henry L; Davis, Deborah R; Lu, Ko-Ting; Stump, Madeliene; De Silva, T Michael; Hilzendeger, Aline M; Grobe, Justin L; Faraci, Frank M; Sigmund, Curt D

    2016-01-01

    Loss of peroxisome proliferator-activated receptor-γ (PPARγ) function causes hypertension, whereas its activation lowers blood pressure. Evidence suggests that these effects may be attributable to PPARγ activity in the vasculature. However, the specific transcriptional targets of PPARγ in vessels remain largely unidentified. In this study, we examined the role of smooth muscle PPARγ during salt-sensitive hypertension and investigated its transcriptional targets and functional effect. Transgenic mice expressing dominant-negative PPARγ (S-P467L) in smooth muscle cells were more prone to deoxycorticosterone acetate-salt-induced hypertension and mesenteric arterial dysfunction compared with nontransgenic controls. Despite similar morphometry at baseline, vascular remodeling in conduit and small arteries was enhanced in S-P467L after deoxycorticosterone acetate-salt treatment. Gene expression profiling in aorta and mesenteric arteries revealed significantly decreased expression of tissue inhibitor of metalloproteinase-4 (TIMP-4) in S-P467L. Expression of TIMP-4 was increased by deoxycorticosterone acetate-salt treatment, but this increase was ablated in S-P467L. Interference with PPARγ activity either by treatment with a PPARγ inhibitor, GW9662, or by expressing P467L PPARγ markedly suppressed TIMP-4 in primary smooth muscle cells. PPARγ binds to a PPAR response element (PPRE) in chromatin close to the TIMP-4 gene in smooth muscle cells, suggesting that TIMP-4 is a novel target of PPARγ. The interference with PPARγ and decrease in TIMP-4 were accompanied by an increase in total matrix metalloproteinase activity. PPARγ-mediated loss of TIMP-4 increased, whereas overexpression of TIMP-4 decreased smooth muscle cell migration in a scratch assay. Our findings highlight a protective mechanism induced by PPARγ in deoxycorticosterone acetate-salt treatment, establishing a novel mechanistic link between PPARγ and TIMP-4.

  15. Mechanisms of peroxisome proliferator-induced DNA hypomethylation in rat liver.

    PubMed

    Pogribny, Igor P; Tryndyak, Volodymyr P; Boureiko, Anna; Melnyk, Stepan; Bagnyukova, Tetyana V; Montgomery, Beverly; Rusyn, Ivan

    2008-09-26

    Genomic hypomethylation is a consistent finding in both human and animal tumors and mounting experimental evidence suggests a key role for epigenetic events in tumorigenesis. Furthermore, it has been suggested that early changes in DNA methylation and histone modifications may serve as sensitive predictive markers in animal testing for carcinogenic potency of environmental agents. Alterations in metabolism of methyl donors, disturbances in activity and/or expression of DNA methyltransferases, and presence of DNA single-strand breaks could contribute to the loss of cytosine methylation during carcinogenesis; however, the precise mechanisms of genomic hypomethylation induced by chemical carcinogens remain largely unknown. This study examined the mechanism of DNA hypomethylation during hepatocarcinogenesis induced by peroxisome proliferators WY-14,643 (4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid) and DEHP (di-(2-ethylhexyl)phthalate), agents acting through non-genotoxic mode of action. In the liver of male Fisher 344 rats exposed to WY-14,643 (0.1% (w/w), 5 months), the level of genomic hypomethylation increased by approximately 2-fold, as compared to age-matched controls, while in the DEHP group (1.2% (w/w), 5 months) DNA methylation did not change. Global DNA hypomethylation in livers from WY-14,643 group was accompanied by the accumulation of DNA single-strand breaks, increased cell proliferation, and diminished expression of DNA methyltransferase 1, while the metabolism of methyl donors was not affected. In contrast, none of these parameters changed significantly in rats fed DEHP. Since WY-14,643 is much more potent carcinogen than DEHP, we conclude that the extent of loss of DNA methylation may be related to the carcinogenic potential of the chemical agent, and that accumulation of DNA single-strand breaks coupled to the increase in cell proliferation and altered DNA methyltransferase expression may explain genomic hypomethylation during peroxisome

  16. Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells.

    PubMed

    Paruchuri, Sailaja; Jiang, Yongfeng; Feng, Chunli; Francis, Sanjeev A; Plutzky, Jorge; Boyce, Joshua A

    2008-06-13

    Cysteinyl leukotrienes (cys-LTs) are potent inflammatory lipid mediators, of which leukotriene (LT) E(4) is the most stable and abundant in vivo. Although only a weak agonist of established G protein-coupled receptors (GPCRs) for cys-LTs, LTE(4) potentiates airway hyper-responsiveness (AHR) by a cyclooxygenase (COX)-dependent mechanism and induces bronchial eosinophilia. We now report that LTE(4) activates human mast cells (MCs) by a pathway involving cooperation between an MK571-sensitive GPCR and peroxisome proliferator-activated receptor (PPAR)gamma, a nuclear receptor for dietary lipids. Although LTD(4) is more potent than LTE(4) for inducing calcium flux by the human MC sarcoma line LAD2, LTE(4) is more potent for inducing proliferation and chemokine generation, and is at least as potent for upregulating COX-2 expression and causing prostaglandin D(2) (PGD(2)) generation. LTE(4) caused phosphorylation of extracellular signal-regulated kinase (ERK), p90RSK, and cyclic AMP-regulated-binding protein (CREB). ERK activation in response to LTE(4), but not to LTD(4), was resistant to inhibitors of phosphoinositol 3-kinase. LTE(4)-mediated COX-2 induction, PGD(2) generation, and ERK phosphorylation were all sensitive to interference by the PPARgamma antagonist GW9662 and to targeted knockdown of PPARgamma. Although LTE(4)-mediated PGD(2) production was also sensitive to MK571, an antagonist for the type 1 receptor for cys-LTs (CysLT(1)R), it was resistant to knockdown of this receptor. This LTE(4)-selective receptor-mediated pathway may explain the unique physiologic responses of human airways to LTE(4) in vivo.

  17. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    SciTech Connect

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu; Yoo, Kyeong-Won; Song, Seung Ryel; Park, Do-Sim; So, Hong-Seob; Park, Raekil

    2013-12-06

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation.

  18. Identification of transcriptional networks involved in peroxisome proliferator chemical-induced hepatocyte proliferation

    EPA Science Inventory

    Peroxisome proliferator chemical (PPC) exposure leads to increases in rodent liver tumors through a non-genotoxic mode of action (MOA). The PPC MOA includes increased oxidative stress, hepatocyte proliferation and decreased apoptosis. We investigated the putative genetic regulato...

  19. Pmp27 promotes peroxisomal proliferation

    PubMed Central

    1995-01-01

    Peroxisomes perform many essential functions in eukaryotic cells. The weight of evidence indicates that these organelles divide by budding from preexisting peroxisomes. This process is not understood at the molecular level. Peroxisomal proliferation can be induced in Saccharomyces cerevisiae by oleate. This growth substrate is metabolized by peroxisomal enzymes. We have identified a protein, Pmp27, that promotes peroxisomal proliferation. This protein, previously termed Pmp24, was purified from peroxisomal membranes, and the corresponding gene, PMP27, was isolated and sequenced. Pmp27 shares sequence similarity with the Pmp30 family in Candida boidinii. Pmp27 is a hydrophobic peroxisomal membrane protein but it can be extracted by high pH, suggesting that it does not fully span the bilayer. Its expression is regulated by oleate. The function of Pmp27 was probed by observing the phenotype of strains in which the protein was eliminated by gene disruption or overproduced by expression from a multicopy plasmid. The strain containing the disruption (3B) was able to grow on all carbon sources tested, including oleate, although growth on oleate, glycerol, and acetate was slower than wild type. Strain 3B contained peroxisomes with all of the enzymes of beta-oxidation. However, in addition to the presence of a few modestly sized peroxisomes seen in a typical thin section of a cell growing on oleate-containing medium, cells of strain 3B also contained one or two very large peroxisomes. In contrast, cells in a strain in which Pmp27 was overexpressed contained an increased number of normal-sized peroxisomes. We suggest that Pmp27 promotes peroxisomal proliferation by participating in peroxisomal elongation or fission. PMID:7721939

  20. Optical Control of Peroxisomal Trafficking

    PubMed Central

    2015-01-01

    The blue-light-responsive LOV2 domain of Avena sativa phototropin1 (AsLOV2) has been used to regulate activity and binding of diverse protein targets with light. Here, we used AsLOV2 to photocage a peroxisomal targeting sequence, allowing light regulation of peroxisomal protein import. We generated a protein tag, LOV-PTS1, that can be appended to proteins of interest to direct their import to the peroxisome with light. This method provides a means to inducibly trigger peroxisomal protein trafficking in specific cells at user-defined times. PMID:26513473

  1. Taiwanofungus camphoratus activates peroxisome proliferator-activated receptors and induces hypotriglyceride in hypercholesterolemic rats.

    PubMed

    Suk, Fat-Moon; Lin, Shyr-Yi; Chen, Chien-Ho; Yen, Shish-Jung; Su, Ching-Hua; Liu, Der-Zen; Hou, Wen-Chi; Hung, Ling-Fang; Lin, Pei-Jung; Liang, Yu-Chih

    2008-07-01

    Taiwanofungus camphoratus (T. camphoratus), a fungus and a Taiwan-specific, well-known traditional Chinese medicine, has long been used to treat diarrhea, hypertension, itchy skin, and liver cancer. To gain a large amount of T. camphoratus, several culture techniques have been developed, including solid-state culture and liquid-state fermentation. Peroxisome proliferator-activated receptor gamma (PPARgamma) has been described as a hypoglycemic agent that increases insulin sensitivity in peripheral tissues and results in reduced blood glucose, insulin, and triglyceride levels in insulin-resistant animals and in type-2 (non-insulin-dependent) diabetic patients. In this study, we investigate the possibility that T. camphoratus might activate PPARgamma in vitro and hypolipidemic activity in vivo. The results show that an aqueous extract of the wild fruiting bodies of T. camphoratus was able to increase the PPARgamma activity in cells transfected with the PPARgamma expression plasmid and the AOx-TK reporter plasmid. Based on the cell experiment, we examined the hypolipidemic effect of wild fruiting bodies (WFT) and a solid-state culture (SST) of T. camphoratus on SD rats fed on a high-cholesterol (HC) diet. The results show that WFT significantly decreased the serum triglyceride level, but could not affect the cholesterol level. SST only slightly decreased the serum triglyceride level. In addition, both WFT and SST significantly decreased the serum alanine transaminase (ALT) level and protected against the liver damage induced by the HC diet from the results of a histological examination. These results suggest that T. camphoratus might contain PPARgamma ligands and result in a hypotriglyceridemic effect, and that it also exhibits a liver protective activity.

  2. Peroxisome proliferator-activated receptor alpha protects renal tubular cells from gentamicin-induced apoptosis via upregulating Na(+)/H(+) exchanger NHE1.

    PubMed

    Chen, Cheng-Hsien; Chen, Tso-Hsiao; Wu, Mei-Yi; Chen, Jia-Rung; Tsai, Hwei-Fang; Hong, Li-Yu; Zheng, Cai-Mei; Chiu, I-Jen; Lin, Yuh-Feng; Hsu, Yung-Ho

    2015-11-23

    Peroxisome proliferator-activated receptor alpha (PPARα) is a transcription factor which has been reported to inhibit gentamicin-induced apoptosis in renal tubular cells. However, the antiapoptotic mechanism of PPARα is still unknown. In this study, we found that PPARα overexpression induced Na(+)/H(+) exchanger NHE1 expression in the rat renal tubular cells NRK-52E. Beraprost, a PPARα ligand, also increased NHE1 expression in the renal tubules in normal mice, but not in PPARα knockout mice. Chromatin immunoprecipitation assays revealed that two PPARα binding elements were located in the rat NHE1 promoter region. Na(+)/H(+) exchanger activity also increased in the PPARα-overexpressed cells. Flow cytometry showed that the PPARα-overexpressed cells were resistant to apoptosis-induced shrinkage. Cariporide, a selective NHE1 inhibitor, inhibited the antiapoptotic effect of PPARα in the gentamicin-treated cells. The interaction between NHE1 and ezrin/radixin/moesin (ERM) and between ERM and phosphatidylinositol 4,5-bisphosphate in the PPARα-overexpressed cells was more than in the control cells. ERM siRNA transfection inhibited the PPARα-induced antiapoptotic effect. PPARα overexpression also increased the phosphoinositide 3-kinase (PI3K) expression, which is dependent on NHE1 activity. Increased PI3K further increased the phosphorylation of the pro-survival kinase Akt in the PPARα-overexpressed cells. Wortmannin, a PI3K inhibitor, inhibited PPARα-induced Akt activity and the antiapoptotic effect. We conclude that PPARα induces NHE1 expression, and then recruits ERM to promote PI3K/Akt-mediated cell survival in renal tubular cells. The application of PPARα activation reduces the nephrotoxicity of gentamicin and may expand the clinical use of gentamicin.

  3. Pathogenesis of peroxisomal deficiency disorders (Zellweger syndrome) may be mediated by misregulation of the GABAergic system via the diazepam binding inhibitor

    PubMed Central

    Breitling, Rainer

    2004-01-01

    Background Zellweger syndrome (ZS) is a fatal inherited disease caused by peroxisome biogenesis deficiency. Patients are characterized by multiple disturbances of lipid metabolism, profound hypotonia and neonatal seizures, and distinct craniofacial malformations. Median live expectancy of ZS patients is less than one year. While the molecular basis of peroxisome biogenesis and metabolism is known in considerable detail, it is unclear how peroxisome deficiency leads to the most severe neurological symptoms. Recent analysis of ZS mouse models has all but invalidated previous hypotheses. Hypothesis We suggest that a regulatory rather than a metabolic defect is responsible for the drastic impairment of brain function in ZS patients. Testing the hypothesis Using microarray analysis we identify diazepam binding inhibitor/acyl-CoA binding protein (DBI) as a candidate protein that might be involved in the pathogenic mechanism of ZS. DBI has a dual role as a neuropeptide antagonist of GABA(A) receptor signaling in the brain and as a regulator of lipid metabolism. Repression of DBI in ZS patients could result in an overactivation of GABAergic signaling, thus eventually leading to the characteristic hypotonia and seizures. The most important argument for a misregulation of GABA(A) in ZS is, however, provided by the striking similarity between ZS and "benzodiazepine embryofetopathy", a malformation syndrome observed after the abuse of GABA(A) agonists during pregnancy. Implications of the hypothesis We present a tentative mechanistic model of the effect of DBI misregulation on neuronal function that could explain some of the aspects of the pathology of Zellweger syndrome. PMID:15102341

  4. An oxidative and salinity stress induced peroxisomal ascorbate peroxidase from Avicennia marina: molecular and functional characterization.

    PubMed

    Kavitha, Kumaresan; Venkataraman, Gayatri; Parida, Ajay

    2008-01-01

    APX (EC, 1.11.1.11) has a key role in scavenging ROS and in protecting cells against their toxic effects in algae and higher plants. A cDNA encoding a peroxisomal ascorbate peroxidase, Am-pAPX1, was isolated from salt stressed leaves of Avicennia marina (Forsk.) Vierh. by EST library screening and its expression in the context of various environmental stresses was investigated. Am-pAPX1 contains an ORF of 286 amino acids coding for a 31.4 kDa protein. The C-terminal region of the Am-pAPX1 ORF has a putative transmembrane domain and a peroxisomal targeting signal (RKKMK), suggesting peroxisomal localization. The peroxisomal localization of Am-pAPX1 was confirmed by stable transformation of the GFP-(Ala)(10)-Am-pAPX1 fusion in tobacco. RNA blot analysis revealed that Am-pAPX1 is expressed in response to salinity (NaCl) and oxidative stress (high intensity light, hydrogen peroxide application and excess iron). The isolated genomic clone of Am-pAPX1 was found to contain nine exons. A fragment of 1616bp corresponding to the 5' upstream region of Am-pAPX1 was isolated by TAIL-PCR. In silico analysis of this sequence reveals the presence of putative light and abiotic stress regulatory elements.

  5. Yeast peroxisomes: structure, functions and biotechnological opportunities.

    PubMed

    Sibirny, Andriy A

    2016-06-01

    Peroxisomes are ubiquitous organelles found in most eukaryotic cells. In yeasts, peroxisomes play important roles in cell metabolism, especially in different catabolic processes including fatty acid β-oxidation, the glyoxylic shunt and methanol metabolism, as well as some biosynthetic processes. In addition, peroxisomes are the compartment in which oxidases and catalase are localized. New peroxisomes mainly arise by fission of pre-existing ones, although they can also be formed from the endoplasmic reticulum (ER). Peroxisomes consist of matrix-soluble proteins and membrane proteins known as peroxins. A total of 34 PEX peroxin genes and proteins have been identified to date. and their functions have been elucidated. Protein import into peroxisomes depends on peroxins and requires specific signals in the structure of transported proteins: PTS1, PTS2 and mPTS. The mechanisms of metabolite penetration into peroxisomes are still poorly understood. Peroxisome number and the volume occupied by these organelles are tightly regulated. Methanol, fatty acids and methylamine act as efficient peroxisome proliferators, whereas glucose and ethanol induce peroxisome autophagic degradation (pexophagy). To date, 42 Atg proteins involved in pexophagy are known. Catabolism and alcoholic fermentation of the major pentose sugar, xylose, depend on peroxisomal enzymes. Overexpression of peroxisomal transketolase and transaldolase activates xylose fermentation. Peroxisomes could be useful as target organelles for overexpression of foreign toxic proteins.

  6. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ

    PubMed Central

    Tsujimoto, Shunsuke; Kishina, Manabu; Koda, Masahiko; Yamamoto, Yasutaka; Tanaka, Kohei; Harada, Yusuke; Yoshida, Akio; Hisatome, Ichiro

    2016-01-01

    Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)-induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP-1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity. PMID:27431935

  7. Peroxisomal proliferation in heart and liver of mice receiving chlorpromazine, ethyl 2(5(4-chlorophenyl)pentyl) oxiran-2-carboxylic acid or high fat diet: a biochemical and morphometrical comparative study.

    PubMed

    Vamecq, J; Roels, F; Van den Branden, C; Draye, J P

    1987-12-01

    Chlorpromazine and related drugs including trifluoperazine, clopenthixol, and fluphenazine are in vitro inhibitors of mitochondrial carnitine palmitoyltransferase and cytochrome c oxidase and of peroxisomal carnitine octanoyltransferase from mouse heart and liver. By contrast with 0.1% ethyl 2(5(4-chlorophenyl)pentyl) oxiran-2-carboxylic acid or 0.1% clofibrate-containing diets, the treatment of mice with 0.1% chlorpromazine-containing diet fails to induce peroxisomal proliferation in liver and heart. An 0.5% chlorpromazine-containing diet did induce peroxisomal proliferation. Inhibition of peroxisomal beta-oxidation presumably via the reduction of carnitine octanoyltransferase by chlorpromazine elicits the appearance in liver of lamellar structures resembling those seen in human peroxisomal disorders and induces accumulation of very long-chain fatty acids in plasma. The peroxisomal proliferation induced by administration of high dose chlorpromazine is ascribed to its ability to depress mitochondrial fatty acid oxidation by impairing cytochrome c oxidase and carnitine palmitoyltransferase activities.

  8. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    SciTech Connect

    Liang Pengfei; Jiang Bimei; Yang Xinghua; Xiao Xianzhong Huang Xu; Long Jianhong; Zhang Pihong; Zhang Minghua; Xiao Muzhang; Xie Tinghong; Huang Xiaoyuan

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.

  9. Anti-kindling Effect of Bezafibrate, a Peroxisome Proliferator-activated Receptors Alpha Agonist, in Pentylenetetrazole Induced Kindling Seizure Model

    PubMed Central

    Saha, Lekha; Bhandari, Swati; Bhatia, Alka; Banerjee, Dibyajyoti; Chakrabarti, Amitava

    2014-01-01

    Background and Purpose: Studies in the animals suggested that Peroxisome proliferators activated receptors (PPARs) may be involved in seizure control and selective agonists of PPAR α or PPAR γ raise seizure thresholds. The present study was contemplated with the aim of evaluating the anti kindling effects and the mechanism of bezafibrate, a Peroxisome proliferator-activated receptors α (PPAR-α) agonist in pentylenetetrazole (PTZ) induced kindling model of seizures in rats. Methods: In a PTZ kindled Wistar rat model, different doses of bezafibrate (100 mg/kg, 200 mg/kg and 300 mg/kg) were administered intraperitoneally 30 minutes before the PTZ injection. The PTZ injection was given on alternate day till the animal became fully kindled or till 10 weeks. The parameters measured were the latency to develop kindling and incidence of kindling, histopathological study of hippocampus, hippocampal lipid peroxidation studies, serum neuron specific enolase, and hippocampal DNA fragmentation study. Results: In this study, bezafibrate significantly reduced the incidence of kindling in PTZ treated rats and exhibited a marked prolongation in the latencies to seizures. In the present study bezafibrate decreased the thiobarbituric acid-reactive substance i.e. Malondialdehyde levels, increased the reduced glutathione levels, catalase and superoxide dismutase activity in the brain. This added to its additional neuroprotective effects. Bezafibrate also reduced the neuronal damage and apoptosis in hippocampal area of the brain. Therefore bezafibrate exerted anticonvulsant properties in PTZ induced kindling model in rats. Conclusions: These findings may provide insights into the understanding of the mechanism of bezafibrate as an anti kindling agent and could offer a useful support to the basic antiepileptic therapy in preventing the development of PTZ induced seizures, suggesting its potential for therapeutic applications in temporal lobe epilepsy. PMID:25625088

  10. Modulation of VEGF-Induced Retinal Vascular Permeability by Peroxisome Proliferator-Activated Receptor-β/δ

    PubMed Central

    Suarez, Sandra; McCollum, Gary W.; Bretz, Colin A.; Yang, Rong; Capozzi, Megan E.; Penn, John S.

    2014-01-01

    Purpose. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Methods. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Results. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. Conclusions. These data suggest a protective effect for PPARβ/δ antagonism against

  11. Eicosapentaenoic acid (EPA) induces peroxisome proliferator-activated receptors and ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Unoda, Kiichi; Doi, Yoshimitsu; Nakajima, Hideto; Yamane, Kazushi; Hosokawa, Takafumi; Ishida, Shimon; Kimura, Fumiharu; Hanafusa, Toshiaki

    2013-03-15

    Eicosapentaenoic acid (EPA), one of the n-3 polyunsaturated fatty acids, is a neuroprotective lipid with anti-inflammatory properties. We investigated the possible therapeutic effect of EPA on experimental autoimmune encephalomyelitis (EAE). EAE mice were fed a diet with or without EPA. The clinical EAE scores of the EPA-fed mice were significantly lower than those of the non-EPA mice. In the EPA-treated mice, IFN-γ and IL-17 productions were remarkably inhibited and the expression levels of peroxisome proliferator-activated receptors were significantly enhanced in the CNS-infiltrating CD4T cells. Thus EPA shows promise as a potential new therapeutic agent against multiple sclerosis.

  12. Activation of Peroxisome Proliferator-activated Receptor α Induces Lysosomal Biogenesis in Brain Cells

    PubMed Central

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J.; Sims, Katherine B.; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-01-01

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174

  13. Peroxisome Proliferator–Activated Receptor-γ Agonists Prevent In Vivo Remodeling of Human Artery Induced by Alloreactive T Cells

    PubMed Central

    Tobiasova, Zuzana; Zhang, Lufeng; Yi, Tai; Qin, Linfeng; Manes, Thomas D.; Kulkarni, Sanjay; Lorber, Marc I.; Rodriguez, Frederick C.; Choi, Je-Min; Tellides, George; Pober, Jordan S.; Kawikova, Ivana; Bothwell, Alfred L.M.

    2012-01-01

    Background Ligands activating the transcription factor peroxisome proliferator–activated receptor-γ (PPARγ) have antiinflammatory effects. Vascular rejection induced by allogeneic T cells can be responsible for acute and chronic graft loss. Studies in rodents suggest that PPARγ agonists may inhibit graft vascular rejection, but human T-cell responses to allogeneic vascular cells differ from those in rodents, and the effects of PPARγ in human transplantation are unknown. Methods and Results We tested the effects of PPARγ agonists on human vascular graft rejection using a model in which human artery is interposed into the abdominal aorta of immunodeficient mice, followed by adoptive transfer of allogeneic (to the artery donor) human peripheral blood mononuclear cells. Interferon-γ–dependent rejection ensues within 4 weeks, characterized by intimal thickening, T-cell infiltrates, and vascular cell activation, a response resembling clinical intimal arteritis. The PPARγ agonists 15-deoxy-prostaglandin-J2, ciglitazone, and pioglitazone reduced intimal expansion, intimal infiltration of CD45RO+ memory T cells, and plasma levels of inflammatory cytokines. The PPARγ antagonist GW9662 reversed the protective effects of PPARγ agonists, confirming the involvement of PPARγ-mediated pathways. In vitro, pioglitazone inhibited both alloantigen-induced proliferation and superantigen-induced transendothelial migration of memory T cells, indicating the potential mechanisms of PPARγ effects. Conclusion Our results suggest that PPARγ agonists inhibit allogeneic human memory T cell responses and may be useful for the treatment of vascular graft rejection. PMID:21690493

  14. Biological potential of basophilic hepatocellular foci and hepatic adenoma induced by the peroxisome proliferator, Wy-14,643.

    PubMed

    Marsman, D S; Popp, J A

    1994-01-01

    The biological potential of hepatic foci and tumors induced by peroxisome proliferators such as Wy-14,643 has been poorly characterized. In this study, male F-344 rats (n = 20/group/time point) were fed Wy-14,643 (0.1%) for 22, 37 or 52 weeks ('W-22', 'W-37' or 'W-52' respectively). At each time point some rats were killed and additional Wy-14,643-fed rats were switched to basal diet (Wy-14,643/'stopped') for up to 104 weeks (referred to as 'W-22/S', 'W-37/S' and 'W-52/S'). Homogeneous basophilic foci, but not clear cell foci, increased in number and size in W-37 and W-52 rats. In W-37/S rats, clear cell foci replaced basophilic foci as the most frequent phenotype. In serial section overlays, adenosine triphosphatase deficient foci accounted for only 16% of basophilic foci in W-52 rats and 16% of clear cell foci in W-37/S rats at 52 weeks. The replication of basophilic foci of W-37 rats was markedly increased (focal labeling index, FLI = 61.8% versus non-focal labeling index, LI = 11.4%; control LI = 0.8%). Clear cell foci from W-37/S rats at 52 weeks had a FLI of 1.6% (non-focal LI = 0.6%). Hepatocellular adenomas were increased in W-37 (11/20 rats and 0.8 tumors/rat) and W-52 groups (19/20 rats and 2.8 tumors/rat). Prevalence of hepatocellular carcinomas was elevated in W-52 rats (6/20 rats) but not in W-22 or W-37 rats. Following removal of Wy-14,643, prevalence of animals with malignant, metastatic hepatocellular carcinomas in W-52/S rats was similar to the prevalence in W-52 rats. However, Wy-14,643-induced adenomas completely regressed in W-37/S and W-52/S groups. In summary, significant morphological continuity between highly proliferative basophilic foci and hepatocellular tumors was identified, emphasizing the superiority of basophilia as a marker for lesions leading to development of hepatocellular neoplasia in rats fed Wy-14,643. An important biological distinction was noted between regressive hepatic adenomas and progressive hepatocellular carcinomas

  15. Peroxisome proliferator-activated receptor β/δ induces myogenesis by modulating myostatin activity.

    PubMed

    Bonala, Sabeera; Lokireddy, Sudarsanareddy; Arigela, Harikumar; Teng, Serena; Wahli, Walter; Sharma, Mridula; McFarlane, Craig; Kambadur, Ravi

    2012-04-13

    Classically, peroxisome proliferator-activated receptor β/δ (PPARβ/δ) function was thought to be restricted to enhancing adipocyte differentiation and development of adipose-like cells from other lineages. However, recent studies have revealed a critical role for PPARβ/δ during skeletal muscle growth and regeneration. Although PPARβ/δ has been implicated in regulating myogenesis, little is presently known about the role and, for that matter, the mechanism(s) of action of PPARβ/δ in regulating postnatal myogenesis. Here we report for the first time, using a PPARβ/δ-specific ligand (L165041) and the PPARβ/δ-null mouse model, that PPARβ/δ enhances postnatal myogenesis through increasing both myoblast proliferation and differentiation. In addition, we have identified Gasp-1 (growth and differentiation factor-associated serum protein-1) as a novel downstream target of PPARβ/δ in skeletal muscle. In agreement, reduced Gasp-1 expression was detected in PPARβ/δ-null mice muscle tissue. We further report that a functional PPAR-responsive element within the 1.5-kb proximal Gasp-1 promoter region is critical for PPARβ/δ regulation of Gasp-1. Gasp-1 has been reported to bind to and inhibit the activity of myostatin; consistent with this, we found that enhanced secretion of Gasp-1, increased Gasp-1 myostatin interaction and significantly reduced myostatin activity upon L165041-mediated activation of PPARβ/δ. Moreover, we analyzed the ability of hGASP-1 to regulate myogenesis independently of PPARβ/δ activation. The results revealed that hGASP-1 protein treatment enhances myoblast proliferation and differentiation, whereas silencing of hGASP-1 results in defective myogenesis. Taken together these data revealed that PPARβ/δ is a positive regulator of skeletal muscle myogenesis, which functions through negatively modulating myostatin activity via a mechanism involving Gasp-1.

  16. Curcumin inhibits trinitrobenzene sulphonic acid-induced colitis in rats by activation of peroxisome proliferator-activated receptor gamma.

    PubMed

    Zhang, Ming; Deng, Changsheng; Zheng, Jiaju; Xia, Jian; Sheng, Dan

    2006-08-01

    Curcumin is a widely used spice with anti-inflammatory and anti-cancer properties. It has been reported that curcumin held therapeutic effects on experimental colitis by inhibition of nuclear factor kappa B (NF-kappaB). The peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor with anti-tumor and anti-inflammatory effects and its activation may inhibit the nuclear translocation of NF-kappaB. Several studies have shown that PPARgamma ligands had an important therapeutic effect in colitis. However there is no report about the alteration of PPARgamma in trinitrobenzene sulphonic acid (TNBS)-induced colitis treated with curcumin. In this study, we administered curcumin (30 mg/kg/day) by intraperitoneal injection immediately after colitis was induced and the injection lasted for two weeks. have evaluated the effects of curcumin on the colitis induced by trinitrobenzene sulphonic acid (TNBS). Curcumin (30 mg/kg d) was administered by intraperitoneal just after colitis was induced and lasted for two weeks. Therapeutic effects of dexamethasone (Dex, 2 mg/kg d) alone and the combined effects of curcumin+Dex were also examined. We found that curcumin improved long-term survival rate of disease-bearing rats, promoted rat body weight recovery, and decreased macroscopic scores of the colitis. The expression levels of PPARgamma, 15-deoxy-D12,14-prostaglandin J(2) (15d-PGJ(2)) and prostaglandin E(2) (PGE(2)) were all increased, but the expression level of cyclooxygenase-2 (COX-2) was decreased in rats after administration of curcumin. Treatment with Dex improved PPARgamma expression and inhibited the expression of COX-2, 15d-PGJ(2) and PGE(2). Combined effects of curcumin+Dex were similar to that of Dex. In summary, curcumin showed therapeutic effects on TNBS-induced colitis and the mechanisms by which curcumin exerts its effects may involve activation of PPARgamma and its ligands.

  17. Pioglitazone induces cell growth arrest and activates mitochondrial apoptosis in human uterine leiomyosarcoma cells by a peroxisome proliferator-activated receptor γ-independent mechanism.

    PubMed

    Lützen, Ulf; Zhao, Yi; Lucht, Katja; Zuhayra, Maaz; Marx, Marlies; Cascorbi, Ingolf; Culman, Juraj

    2017-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) agonists, thiazolidinediones, including pioglitazone (PIO) exhibit anti-tumour activities in cancer cells. The present study investigates the effects of PIO on cell proliferation and apoptosis in SK-UT-1 cells, a human uterine leiomyosarcoma cell line, and human uterine smooth muscle cells (HUtSMC). The proliferation and viability of SK-UT-1 cells treated with vehicle or PIO were assessed by cell counting and WST-1 assay. The activity of MEK/ERK and p38 MAPK signalling pathways and the expression of p53, the cyclin-dependent kinase inhibitor, p21, Bax, Bad and Bim proteins and cleaved caspase-3 were analysed by Western blotting. Quiescent SK-UT-1 cells intensively proliferate and display high levels of phosphorylated, activated MEK1/2, ERK1/2 and p38 MAPK. PIO (10 or 25 μM) induced time- and dose-dependently cell-growth arrest, reduced the cell numbers and effectively suppressed the over-activated MEK/ERK and p38 MAPK signalling pathways as evidenced by the abolished levels of phosphorylated MEK1/2, ERK1/2 and p38 MAPK. PIO activated the intrinsic apoptotic pathway, i.e. up-regulated the p53, p21, Bax and Bad proteins and cleaved caspase-3. PIO also reduced cell numbers of highly proliferative SK-UT-1 cells cultured in growth medium. The anti-proliferative and pro-apoptotic actions of PIO were not PPARγ dependent and exclusive for SK-UT-1 cells as PIO did not interfere with the proliferation of HUtSMC. The pronounced anti-tumorigenic effects of PIO in SK-UT-1 cells address an important issue about the relevance of the PPARγ agonist in the treatment of the human uterine leiomyosarcoma.

  18. Activating Peroxisome Proliferator-Activated Receptors (PPARs): a New Sight for Chrysophanol to Treat Paraquat-Induced Lung Injury.

    PubMed

    Li, Ang; Liu, Yuguang; Zhai, Lu; Wang, Liying; Lin, Zhe; Wang, Shumin

    2016-04-01

    The aim of this study is to evaluate the protective effects of chrysophanol (CH) against paraquat (PQ)-induced pulmonary injury. Fifty BALB/C mice were randomized into five groups: (1) control, (2) PQ, (3) PQ + dexamethasone (Dex, 2 mg/kg), (4) PQ + CH (10 mg/kg), and (5) PQ + CH (20 mg/kg). A single dose of PQ (50 mg/kg, i.p.) was intraperitoneally given to induce acute lung injury. Then mice were treated with CH (10 and 20 mg/kg/day, orally) for 7 days. At the end of the experiment, animals were euthanized and then bronchoalveolar lavage fluid (BALF) and lung tissues were collected for histological observation, biochemical analysis, and Western blot analysis. Malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) levels in BALF were determined. The levels of SOD and MDA in the lung were also detected. The peroxisome proliferator-activated receptor (PPAR)-γ and nuclear factor-kappaB (NF-κB) pathway proteins in the lung were determined by Western blot. Histological examination indicated that CH attenuated lung inflammation caused by PQ. Biochemical results showed that CH treatment significantly reduced the levels of MDA, MPO, and inflammatory cytokines and increased the level of SOD, compared to those in the PQ group. Meanwhile, Western Blot results revealed that CH increased PPAR-γ expression and inhibited NF-κB pathway activation after PQ challenge. These findings suggested the potential therapeutic effects of CH which is derived from a natural product on PQ-induced pulmonary injury.

  19. Pioglitazone, a specific ligand of peroxisome proliferator-activated receptor-gamma, protects pancreas against acute cerulein-induced pancreatitis

    PubMed Central

    Konturek, Peter C; Dembinski, Artur; Warzecha, Zygmunt; Burnat, Grzegorz; Ceranowicz, Piotr; Hahn, Eckhart G; Dembinski, Marcin; Tomaszewska, Romana; Konturek, Stanislaw J

    2005-01-01

    AIM: To determine the effect of pioglitazone, a specific peroxisome proliferator-activated receptor-γ (PPARγ) ligand, on the development of acute pancreatitis (AP) and on the expression of heat shock protein 70 (HSP70) in the pancreas. METHODS: AP was induced in rats by subcutaneous infusion of cerulein for 5 h. Pancreatic blood flow was measured by laser Doppler flowmetry. Plasma lipase activity, interleukin-1β (IL-1β) and IL-10 were determined. Pancreatic weight and histology were evaluated and pancreatic DNA synthesis and blood flow as well as pancreatic mRNA for IL-1β and HSP70 were assessed in rats treated with pioglitazone alone or in combination with cerulein. RESULTS: Pioglitazone administered (10-100 mg/kg i.g.) 30 min before cerulein, attenuated dose-dependently the pancreatic tissue damage in cerulein-induced pancreatitis (CIP) as demonstrated by the improvement of pancreatic histology, reduction in plasma lipase activity, plasma concentration of pro-inflammatory IL-1β and its gene expression in the pancreas and attenuation of the pancreatitis-evoked fall in pancreatic blood flow. CIP increased pancreatic HSP70 mRNA and protein expression in the pancreas and this effect was enhanced by pioglitazone treatment. CONCLUSION: Pioglitazone attenuates CIP and the beneficial effect of this pioglitazone is multifactorial probably due to its anti-inflammatory activities, to the suppression of IL-1β and to the overexpression of HSP70. PPARγ ligands could represent a new therapeutic option in the treatment of AP. PMID:16419161

  20. Peroxisome Proliferator-Activated Receptor-α Inhibition Protects Against Doxorubicin-Induced Cardiotoxicity in Mice.

    PubMed

    Rahmatollahi, Mahdieh; Baram, Somayeh Mahmoodi; Rahimian, Reza; Saeedi Saravi, Seyed Soheil; Dehpour, Ahmad Reza

    2016-07-01

    Doxorubicin is an effective chemotherapeutic drug against a considerable number of malignancies. However, its toxic effects on myocardium are confirmed as major limit of utilization. PPAR-α is highly expressed in the heart, and its activation leads to an increased cardiac fatty acid oxidation and cardiomyocyte necrosis. This study was performed to adjust the hypothesis that PPAR-α receptor inhibition protects against doxorubicin-induced cardiac dysfunction in mice. Male Balb/c mice were used in this study. Left atria were isolated, and their contractility was measured in response to electrical field stimulation in a standard organ bath. PPAR-α activity was measured using specific PPAR-α antibody in an ELISA-based system coated with double-strand DNA containing PPAR-α response element sequence. Moreover, cardiac MDA and TNF-α levels were measured by ELISA method. Following incubation with doxorubicin (35 µM), a significant reduction in atrial contractility was observed (P < 0.001). Pretreatment of animals with a selective PPAR-α antagonist, GW6471, significantly improved doxorubicin-induced atrial dysfunction (P < 0.001). Furthermore, pretreatment of the mice with a non-selective cannabinoid agonist, WIN55212-2, significantly decreased PPAR-α activity in cardiac tissue, subsequently leading to significant improvement in doxorubicin-induced atrial dysfunction (P < 0.001). Also, GW6471 and WIN significantly reduced cardiac MDA and TNF-α levels compared with animals receiving doxorubicin (P < 0.001). The study showed that inhibition of PPAR-α is associated with protection against doxorubicin-induced cardiotoxicity in mice, and cannabinoids can potentiate the protection by PPAR-α blockade. Moreover, PPAR-α may be considered as a target to prevent cardiotoxicity induced by doxorubicin in patients undergoing chemotherapy.

  1. Crosstalk between mitochondria and peroxisomes

    PubMed Central

    Demarquoy, Jean; Le Borgne, Françoise

    2015-01-01

    Mitochondria and peroxisomes are small ubiquitous organelles. They both play major roles in cell metabolism, especially in terms of fatty acid metabolism, reactive oxygen species (ROS) production, and ROS scavenging, and it is now clear that they metabolically interact with each other. These two organelles share some properties, such as great plasticity and high potency to adapt their form and number according to cell requirements. Their functions are connected, and any alteration in the function of mitochondria may induce changes in peroxisomal physiology. The objective of this paper was to highlight the interconnection and the crosstalk existing between mitochondria and peroxisomes. Special emphasis was placed on the best known connections between these organelles: origin, structure, and metabolic interconnections. PMID:26629313

  2. Peroxisome division and proliferation in plants.

    PubMed

    Aung, Kyaw; Zhang, Xinchun; Hu, Jianping

    2010-06-01

    Peroxisomes are eukaryotic organelles with crucial functions in development. Plant peroxisomes participate in various metabolic processes, some of which are co-operated by peroxisomes and other organelles, such as mitochondria and chloroplasts. Defining the complete picture of how these essential organelles divide and proliferate will be instrumental in understanding how the dynamics of peroxisome abundance contribute to changes in plant physiology and development. Research in Arabidopsis thaliana has identified several evolutionarily conserved major components of the peroxisome division machinery, including five isoforms of PEROXIN11 proteins (PEX11), two dynamin-related proteins (DRP3A and DRP3B) and two FISSION1 proteins (FIS1A/BIGYIN and FIS1B). Recent studies in our laboratory have also begun to uncover plant-specific factors. DRP5B is a dual-localized protein that is involved in the division of both chloroplasts and peroxisomes, representing an invention of the plant/algal lineage in organelle division. In addition, PMD1 (peroxisomal and mitochondrial division 1) is a plant-specific protein tail anchored to the outer surface of peroxisomes and mitochondria, mediating the division and/or positioning of these organelles. Lastly, light induces peroxisome proliferation in dark-grown Arabidopsis seedlings, at least in part, through activating the PEX11b gene. The far-red light receptor phyA (phytochrome A) and the transcription factor HYH (HY5 homologue) are key components in this signalling pathway. In summary, pathways for the division and proliferation of plant peroxisomes are composed of conserved and plant-specific factors. The sharing of division proteins by peroxisomes, mitochondria and chloroplasts is also suggesting possible co-ordination in the division of these metabolically associated plant organelles.

  3. Bezafibrate induces acyl-CoA oxidase mRNA levels and fatty acid peroxisomal beta-oxidation in rat white adipose tissue.

    PubMed

    Vázquez, M; Roglans, N; Cabrero, A; Rodríguez, C; Adzet, T; Alegret, M; Sánchez, R M; Laguna, J C

    2001-01-01

    Rats treated with bezafibrate, a PPAR activator, gain less body weight and increase daily food intake. Previously, we have related these changes to a shift of thermogenesis from brown adipose tissue to white adipose tissue attributable to bezafibrate, which induces uncoupling proteins (UCP), UCP-1 and UCP-3, in rat white adipocytes. Nevertheless, UCP induction was weak, implying additional mechanisms in the change of energy homeostasis produced by bezafibrate. Here we show that bezafibrate, in addition to inducing UCPs, modifies energy homeostasis by directly inducing aco gene expression and peroxisomal fatty acid beta-oxidation in white adipose tissue. Further, bezafibrate significantly reduced plasma triglyceride and leptin concentrations, without modifying the levels of PPARgamma or ob gene in white adipose tissue. These results indicate that bezafibrate reduces the amount of fatty acids available for triglyceride synthesis in white adipose tissue.

  4. Peroxisome Biogenesis and Function

    PubMed Central

    Kaur, Navneet; Reumann, Sigrun; Hu, Jianping

    2009-01-01

    Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis. PMID:22303249

  5. Biogenesis of peroxisomes: immunocytochemical investigation of peroxisomal membrane proteins in proliferating rat liver peroxisomes and in catalase-negative membrane loops

    PubMed Central

    1989-01-01

    Treatment of rats with a new hypocholesterolemic drug BM 15766 induces proliferation of peroxisomes in pericentral regions of the liver lobule with distinct alterations of the peroxisomal membrane (Baumgart, E., K. Stegmeier, F. H. Schmidt, and H. D. Fahimi. 1987. Lab. Invest. 56:554- 564). We have used ultrastructural cytochemistry in conjunction with immunoblotting and immunoelectron microscopy to investigate the effects of this drug on peroxisomal membranes. Highly purified peroxisomal fractions were obtained by Metrizamide gradient centrifugation from control and treated rats. Immunoblots prepared from such peroxisomal fractions incubated with antibodies to 22-, 26-, and 70-kD peroxisomal membrane proteins revealed that the treatment with BM 15766 induced only the 70-kD protein. In sections of normal liver embedded in Lowicryl K4M, all three membrane proteins of peroxisomes could be localized by the postembedding technique. The strongest labeling was obtained with the 22-kD antibody followed by the 70-kD and 26-kD antibodies. In treated animals, double-membraned loops with negative catalase reaction in their lumen, resembling smooth endoplasmic reticulum segments as well as myelin-like figures, were noted in the proximity of some peroxisomes. Serial sectioning revealed that the loops seen at some distance from peroxisomes in the cytoplasm were always continuous with the peroxisomal membranes. The double-membraned loops were consistently negative for glucose-6-phosphatase, a marker for endoplasmic reticulum, but were distinctly labeled with antibodies to peroxisomal membrane proteins. Our observations indicate that these membranous structures are part of the peroxisomal membrane system. They could provide a membrane reservoir for the proliferation of peroxisomes and the expansion of this intracellular compartment. PMID:2544605

  6. Peroxisomes in Saccharomyces cerevisiae: immunofluorescence analysis and import of catalase A into isolated peroxisomes.

    PubMed Central

    Thieringer, R; Shio, H; Han, Y S; Cohen, G; Lazarow, P B

    1991-01-01

    To isolate peroxisomes from Saccharomyces cerevisiae of a quality sufficient for in vitro import studies, we optimized the conditions for cell growth and for cell fractionation. Stability of the isolated peroxisomes was monitored by catalase latency and sedimentability of marker enzymes. It was improved by (i) using cells that were shifted to oleic acid medium after growth to stationary phase in glucose precultures, (ii) shifting the pH from 7.2 to 6.0 during cell fractionation, and (iii) carrying out equilibrium density centrifugation with Nycodenz containing 0.25 M sucrose throughout the gradient. A concentrated peroxisomal fraction was used for in vitro import of catalase A. After 2 h of incubation, 62% of the catalase was associated with, and 16% was imported into, the organelle in a protease-resistant fashion. We introduced immunofluorescence microscopy for S. cerevisiae peroxisomes, using antibodies against thiolase, which allowed us to identify even the extremely small organelles in glucose-grown cells. Peroxisomes from media containing oleic acid were larger in size, were greater in number, and had a more intense fluorescence signal. The peroxisomes were located, sometimes in clusters, in the cell periphery, often immediately adjacent to the plasma membrane. Systematic immunofluorescence observations of glucose-grown S. cerevisiae demonstrated that all such cells contained at least one and usually several very small peroxisomes despite the glucose repression. This finding fits a central prediction of our model of peroxisome biogenesis: peroxisomes form by division of preexisting peroxisomes; therefore, every cell must have at least one peroxisome if additional organelles are to be induced in that cell. Images PMID:1986244

  7. Di(2-ethylhexyl) phthalate induces a functional zinc deficiency during pregnancy and teratogenesis that is independent of peroxisome proliferator-activated receptor-alpha.

    PubMed

    Peters, J M; Taubeneck, M W; Keen, C L; Gonzalez, F J

    1997-11-01

    Di(2-ethylhexyl) phthalate (DEHP) is a peroxisome proliferator whose administration to rodents induces a pleiotropic response mediated by the peroxisome proliferator-activated receptor-alpha (PPAR alpha). The mechanisms underlying DEHP-induced reproductive toxicity and teratogenicity are not well understood but could be the result of an alteration in gene expression by PPAR alpha. Additionally, phthalate exposure is known to impair fetal zinc (Zn) levels during pregnancy. In this work, we investigated whether the reproductive toxicity and teratogenicity of DEHP are mediated by PPAR alpha and whether the receptor influences maternal and/or embryonic Zn metabolism. Pregnant female mice, homozygous wild-type (+/+) or PPAR alpha -null (-/-), were intubated with either vehicle alone or 1,000 mg DEHP/kg body weight on gestation day (GD) 8 and 9. Pregnancy outcome was evaluated on GD10 and GD18 in two cohorts of animals. Compared to controls, DEHP administration resulted in maternal toxicity, embryo/ fetal toxicity, and teratogenicity in both (+/+) and (-/-) mice. Maternal liver mRNA for cytochrome P-450 4A1 (CYP4A1) was higher in DEHP-treated (+/+) mice but not in DEHP-treated (-/-) mice on GD10, consistent with their respective phenotype. Maternal liver MT and Zn levels were significantly higher than in controls on GD10. In addition, embryonic Zn content was significantly lower in both genotypes treated with DEHP compared to controls. Results from this work show that DEHP-induced reproductive toxicity, teratogenicity, and altered Zn metabolism are not mediated through PPAR alpha-dependent mechanisms. In addition, this work suggests that DEHP-induced alterations in Zn metabolism contribute to the mechanisms underlying DEHP-induced reproductive toxicity and teratogenicity.

  8. Wogonin prevents lipopolysaccharide-induced acute lung injury and inflammation in mice via peroxisome proliferator-activated receptor gamma-mediated attenuation of the nuclear factor-kappaB pathway

    PubMed Central

    Yao, Jing; Pan, Di; Zhao, Yue; Zhao, Li; Sun, Jie; Wang, Yu; You, Qi-Dong; Xi, Tao; Guo, Qing-Long; Lu, Na

    2014-01-01

    Acute lung injury (ALI) from a variety of clinical disorders, characterized by diffuse inflammation, is a cause of acute respiratory failure that develops in patients of all ages. Previous studies reported that wogonin, a flavonoid-like chemical compound which was found in Scutellaria baicalensis, has anti-inflammatory effects in several inflammation models, but not in ALI. Here, the in vivo protective effect of wogonin in the amelioration of lipopolysaccharide (LPS) -induced lung injury and inflammation was assessed. In addition, the in vitro effects and mechanisms of wogonin were studied in the mouse macrophage cell lines Ana-1 and RAW264.7. In vivo results indicated that wogonin attenuated LPS-induced histological alterations. Peripheral blood leucocytes decreased in the LPS-induced group, which was ameliorated by wogonin. In addition, wogonin inhibited the production of several inflammatory cytokines, including tumour necrosis factor-α, interleukin-1β (IL-1β) and IL-6, in the bronchoalveolar lavage fluid and lung tissues after LPS challenge, while the peroxisome proliferator-activated receptor γ (PPARγ) inhibitor GW9662 reversed these effects. In vitro results indicated that wogonin significantly decreased the secretion of IL-6, IL-1β and tumour necrosis factor-α in Ana-1 and RAW264.7 cells, which was suppressed by transfection of PPARγ small interfering RNA and GW9662 treatment. Moreover, wogonin activated PPARγ, induced PPARγ-mediated attenuation of the nuclear translocation and the DNA-binding activity of nuclear factor-κB in vivo and in vitro. In conclusion, all of these results showed that wogonin may serve as a promising agent for the attenuation of ALI-associated inflammation and pathology by regulating the PPARγ-involved nuclear factor-κB pathway. PMID:24766487

  9. Partial disassembly of peroxisomes

    PubMed Central

    1985-01-01

    Rat liver peroxisomes were subjected to a variety of procedures intended to partially disassemble or damage them; the effects were analyzed by recentrifugation into sucrose gradients, enzyme analyses, electron microscopy, and SDS PAGE. Freezing and thawing or mild sonication released some matrix proteins and produced apparently intact peroxisomal "ghosts" with crystalloid cores and some fuzzy fibrillar content. Vigorous sonication broke open the peroxisomes but the membranes remained associated with cores and fibrillar and amorphous matrix material. The density of both ghosts and more severely damaged peroxisomes was approximately 1.23. Pyrophosphate (pH 9) treatment solubilized the fibrillar content, yielding ghosts that were empty except for cores. Some matrix proteins such as catalase and thiolase readily leak from peroxisomes. Other proteins were identified that remain in mechanically damaged peroxisomes but are neither core nor membrane proteins because they can be released by pyrophosphate treatment. These constitute a class of poorly soluble matrix proteins that appear to correspond to the fibrillar material observed morphologically. All of the peroxisomal beta-oxidation enzymes are located in the matrix, but they vary greatly in how easily they leak out. Palmitoyl coenzyme A synthetase is in the membrane, based on its co-distribution with the 22-kilodalton integral membrane polypeptide. PMID:2989301

  10. Bisphenol A diglycidyl ether induces apoptosis in tumour cells independently of peroxisome proliferator-activated receptor-gamma, in caspase-dependent and -independent manners.

    PubMed Central

    Fehlberg, Sebastian; Trautwein, Stefan; Göke, Alexandra; Göke, Rüdiger

    2002-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors which are involved in many biological processes, such as regulation of cell differentiation, lipid metabolism, inflammation and cell death. PPARs consist of three families, PPAR-alpha, PPAR-delta and PPAR-gamma. Bisphenol A diglycidyl ether (BADGE) has been described as a pure antagonist of PPAR-gamma. However, recent data also revealed PPAR-gamma-agonistic activities of BADGE. Here we show that BADGE kills transformed cells by apoptosis and promotes the cytotoxic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and indomethacin. The cytotoxic effect of BADGE does not require PPAR-gamma expression and is mediated in caspase-dependent and caspase-independent manners. PMID:11879183

  11. Peroxisome proliferator activated receptor α (PPARα) and PPAR gamma coactivator (PGC-1α) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements

    PubMed Central

    Song, Shulan; Attia, Ramy R.; Connaughton, Sara; Niesen, Melissa I.; Ness, Gene C.; Elam, Marshall B.; Hori, Roderick T.; Cook, George A.; Park, Edwards A.

    2010-01-01

    Long chain fatty acids and pharmacologic ligands for the peroxisome proliferator activated receptor alpha (PPARα) activate expression of genes involved in fatty acid and glucose oxidation including carnitine palmitoyltransferase-1A (CPT-1A) and pyruvate dehydrogenase kinase 4 (PDK4). CPT-1A catalyzes the transfer of long chain fatty acids from acyl-CoA to carnitine for translocation across the mitochondrial membranes and is an initiating step in the mitochondrial oxidation of long chain fatty acids. PDK4 phosphorylates and inhibits the pyruvate dehydrogenase complex (PDC) which catalyzes the conversion of pyruvate to acetyl-CoA in the glucose oxidation pathway. The activity of CPT-1A is modulated both by transcriptional changes as well as by malonyl-CoA inhibition. In the liver, CPT-1A and PDK4 gene expression are induced by starvation, high fat diets and PPARα ligands. Here, we characterized a binding site for PPARα in the second intron of the rat CPT-1A gene. Our studies indicated that WY14643 and long chain fatty acids induce CPT-1A gene expression through this element. In addition, we found that mutation of the PPARα binding site reduced the expression of CPT-1A-luciferase vectors in the liver of fasted rats. We had demonstrated previously that CPT-1A was stimulated by the peroxisome proliferator activated receptor gamma coactivator (PGC-1α) via sequences in the first intron of the rat CPT-1A gene. Surprisingly, PGC-1α did not enhance CPT-1A transcription through the PPARα binding site in the second intron. Following knockdown of PGC-1α with short hairpin RNA, the CPT-1A and PDK4 genes remained responsive to WY14643. Overall, our studies indicated that PPARα and PGC-1α stimulate transcription of the CPT-1A gene through different regions of the CPT-1A gene. PMID:20638986

  12. Overexpression of peroxisome proliferator-activated receptor α in pancreatic β-cells improves glucose tolerance in diet-induced obese mice.

    PubMed

    Hogh, K-Lynn N; Uy, Christopher E; Asadi, Ali; Baker, Robert K; Riedel, Michael J; Gray, Sarah L

    2013-02-01

    Lipotoxicity is implicated in pancreatic β-cell dysfunction in obesity-induced type 2 diabetes. In vitro, activation of peroxisome proliferator-activated receptor α (PPARα) has been shown to protect pancreatic β-cells from the lipotoxic effects of palmitate, thereby preserving insulin secretion. Utilizing an adeno-associated virus (dsAAV8), overexpression of PPARα was induced specifically in pancreatic β-cells of adult, C57Bl/6 mice fed a high-fat diet for 20 weeks and carbohydrate metabolism and β-cell mass assessed. We show that overexpression of PPARα in pancreatic β-cells in vivo preserves β-cell function in obesity, and this improves glucose tolerance by preserving insulin secretion in comparison to control mice with diet-induced obesity. No changes in β-cell mass were observed in PPARα-overexpressing mice compared with diet-induced obese control animals. This model of β-cell-specific PPARα overexpression provides a useful in vivo model for elucidating the mechanisms underlying β-cell lipotoxicity in obesity-induced type 2 diabetes.

  13. Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury.

    PubMed

    Yuan, Yanggang; Huang, Songming; Wang, Wenyan; Wang, Yingying; Zhang, Ping; Zhu, Chunhua; Ding, Guixia; Liu, Bicheng; Yang, Tianxin; Zhang, Aihua

    2012-10-01

    Glomerular podocytes are highly specialized epithelial cells whose injury in glomerular diseases causes proteinuria. Since mitochondrial dysfunction is an early event in podocyte injury, we tested whether a major regulator of oxidative metabolism and mitochondrial function, the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), affects podocyte damage. Aldosterone-induced injury decreased PGC-1α expression, and induced mitochondrial and podocyte damage in dose- and time-dependent manners. The suppression of endogenous PGC-1α by RNAi caused podocyte mitochondrial damage and apoptosis while its increase by infection with an adenoviral vector prevented aldosterone-induced mitochondrial malfunction and inhibited injury. Overexpression of the silent mating type information regulation 2 homolog 1, a gene upstream of PGC-1α, prevented aldosterone-induced mitochondrial damage and podocyte injury by upregulating PGC-1α at both the transcriptional and post-translational levels. Resveratrol, a SIRT1 activator, attenuated aldosterone-induced mitochondrial malfunction and podocyte injury in vitro and in aldosterone-infused mice in vivo. Hence, endogenous PGC-1α may be important for maintenance of mitochondrial function in podocytes under normal conditions. Activators of SIRT1, such as resveratol, may be therapeutically useful in glomerular diseases to promote and maintain PGC-1α expression and, consequently, podocyte integrity.

  14. Di-n-octyl phthalate (DOP), a relatively ineffective peroxisome inducing straight chain isomer of the environmental contaminant di(2-ethylhexyl)phthalate (DEHP), enhances the development of putative preneoplastic lesions in rat liver.

    PubMed

    DeAngelo, A B; Garrett, C T; Manolukas, L A; Yario, T

    1986-11-01

    Di-n-octyl phthalate (DOP) is the straight chain isomer of di(2-ethylhexyl) phthalate (DEHP) which is a widely used plasticizer and an environmental contaminant. DEHP is a strong inducer of peroxisome proliferation in rat liver. This is significant since other compounds which are strong inducers of peroxisome proliferation have been reported to be weak carcinogens (Reddy, J.K. and Lalwani, N.D., CRC Crit. Rev. Toxicol., 12 (1983) 1). In contrast to DEHP, DOP causes little or no induction of liver peroxisomes (Mann, A.H. et al., Toxicol. Appl. Pharmacol., 77 (1985) 116, and Gray, T.J.B. et al., Toxicology, 28 (1983) 167). In the current study the ability of 1% DOP to promote the development of putative preneoplastic lesions was evaluated. The effect of feeding 0.5% DEHP as well as equimolar amounts of its 2 major metabolites, mono(2-ethylhexyl)phthalate (MEHP) and 2-ethylhexanol (2-EH) were also investigated. GGT+ foci were initiated in the livers of Sprague--Dawley male rats with a single dose of diethylnitrosamine (DEN) following partial hepatectomy. The control group of rats was fed a semipurified diet (Co) for 10 weeks while the experimental groups received the semipurified diet containing the respective compounds. Induction of peroxisome proliferation was monitored by carnitine acetyltransferase (CAT) levels. DOP treatment resulted in a 6-fold increase in the number of GGT+ foci (20.8 +/- 4.0 vs. 3.5 +/- 1.3; P less than 0.05). This was accompanied by no change in liver weight and only a slight increase in CAT activity when compared with control animals. In contrast to DOP, 2-EH produced essentially no effect with regard to number of foci, peroxisome proliferation or liver weight. DEHP and MEHP induced significant peroxisome proliferation and hepatomegaly but the number of foci were significantly lower than in 2-EH-treated rats. The mechanism for the promoting ability of DOP is not clear but would not appear to be related to peroxisome proliferation. Because of

  15. Farnesyltransferase inhibitors-induced autophagy: alternative mechanisms?

    PubMed

    Pan, Jingxuan; Song, Enlin; Cheng, Chao; Lee, Mong-Hong; Yeung, Sai-Ching Jim

    2009-01-01

    Farnesyltransferase inhibitors (FTIs) were designed to block the action of Ras oncoproteins which depend on posttranslational modification by adding a farnesyl isoprenoid membrane anchor. However, off-target actions are believed to account for most of their antitumor activity. We recently reported the induction of autophagy in cancer cells in a dose-dependent manner by FTIs. We observed similar results of autophagy in a panel of tumor cell lines for the three FTIs tested. Therefore, the induction of autophagy is very likely a pharmacological class effect of inhibition of farnesyltransferase. In this addendum, we discuss the possible mechanisms underlying the induction of autophagy by FTIs, including reactive oxygen species-, DNA damage- and Ras-mediated pathways as alternatives to Rheb-mediated regulation of mTOR and autophagy.

  16. The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11.

    PubMed

    Li, Xiaoling; Gould, Stephen J

    2003-05-09

    Peroxisome division involves the conserved PEX11 peroxisomal membrane proteins and in yeast has been shown to require Vps1p, a dynamin-like protein. We show here that DLP1, the human homolog of the yeast DNM1 and VPS1 genes, plays an important role in peroxisome division in human cells. Disruption of DLP1 function by either RNA interference or overexpressing dominant negative DLP1 mutants causes a dramatic reduction in peroxisome abundance, although overexpression of functional DLP1 has no effect on peroxisome abundance. Overexpression of PEX11 induces peroxisome division in a multistep process involving elongation of preexisting peroxisomes followed by their division. We find that DLP1 is dispensable for the first phase of this process but essential for the second. Furthermore, we show that DLP1 associates with peroxisomes and that PEX11 overexpression recruits DLP1 to peroxisome membranes. However, we were unable to detect physical interaction between PEX11 and DLP1, and the stoichiometry of PEX11 and peroxisome-associated DLP1 was far less than 1:1. Based on these and other aspects, we propose that DLP1 performs an essential but transient role in peroxisome division and that PEX11 promotes peroxisome division by recruiting DLP1 to peroxisome membranes through an indirect mechanism.

  17. Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    SciTech Connect

    Kim, Sung Hun; Yoo, Chong Il; Kim, Hui Taek; Park, Ji Yeon; Kwon, Chae Hwa; Keun Kim, Yong . E-mail: kim430@pusan.ac.kr

    2006-09-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatment caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.

  18. Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer.

    PubMed

    Ramachandran, Lalitha; Manu, Kanjoormana Aryan; Shanmugam, Muthu K; Li, Feng; Siveen, Kodappully Sivaraman; Vali, Shireen; Kapoor, Shweta; Abbasi, Taher; Surana, Rohit; Smoot, Duane T; Ashktorab, Hassan; Tan, Patrick; Ahn, Kwang Seok; Yap, Chun Wei; Kumar, Alan Prem; Sethi, Gautam

    2012-11-02

    Gastric cancer (GC) is a lethal malignancy and the second most common cause of cancer-related deaths. Although treatment options such as chemotherapy, radiotherapy, and surgery have led to a decline in the mortality rate due to GC, chemoresistance remains as one of the major causes for poor prognosis and high recurrence rate. In this study, we investigated the potential effects of isorhamnetin (IH), a 3'-O-methylated metabolite of quercetin on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, GC cell lines, and xenograft mice model. We observed that IH exerted a strong antiproliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of GC cells, which could be reversed in the presence of PPAR-γ inhibitor. We found that IH increased PPAR-γ activity and modulated the expression of PPAR-γ regulated genes in GC cells. Also, the increase in PPAR-γ activity was reversed in the presence of PPAR-γ-specific inhibitor and a mutated PPAR-γ dominant negative plasmid, supporting our hypothesis that IH can act as a ligand of PPAR-γ. Using molecular docking analysis, we demonstrate that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, our findings clearly indicate that antitumor effects of IH may be mediated through modulation of the PPAR-γ activation pathway in GC.

  19. Cromolyn sodium for ACE inhibitor-induced cough.

    PubMed

    Allen, T L; Gora-Harper, M L

    1997-06-01

    There are several theories on the cause of ACE inhibitor-induced cough, but the exact mechanism is not known. In many patients, if cough develops, the ACE inhibitor can be discontinued and a drug in another therapeutic class used in its place. However, in patients with CHF, diabetic nephropathy, and patients who have experienced a myocardial infarction, discontinuing the ACE inhibitor may not be in the best interest of the patient. In this patient population it would be reasonable to try cromolyn sodium to treat cough, while continuing the ACE inhibitor. Data are not available to support the efficacy of cromolyn sodium to treat cough in patients with diabetic nephropathy, but these patients clearly benefit from the use of an ACE inhibitor. Other factors not addressed in the case reports and the clinical trial such as patient adherence, cost, and quality of life should also play a role in the decision to use cromolyn sodium. Cromolyn sodium has been effective for the treatment of ACE inhibitor-induced cough in many case reports and has had mild success in one small clinical trial. Although none of the reports adequately assessed adverse effects, studies examining cromolyn for other indications have demonstrated a relatively benign adverse effect profile. It is difficult to recommend an exact dose to use because of the dosing variability in the case reports. The majority of the case reports and the one clinical trial used dosages similar to recommendations for bronchial asthma (i.e., 2 puffs [1.6 mg] 4 times daily via MDI or 20-mg capsules 4 times daily via breath-activated inhalation). At this time, the use of cromolyn sodium is a viable option, but more controlled studies are needed to fully elucidate its role in the treatment of ACE inhibitor-induced cough.

  20. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    PubMed

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.

  1. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway.

    PubMed

    Misawa, Koichi; Hashizume, Kojiro; Yamamoto, Masaki; Minegishi, Yoshihiko; Hase, Tadashi; Shimotoyodome, Akira

    2015-10-01

    The initiation of obesity entails an imbalance wherein energy intake exceeds expenditure. Obesity is increasing in prevalence and is now a worldwide health problem. Food-derived peroxisome proliferator-activated receptor δ (PPARδ) stimulators represent potential treatment options for obesity. Ginger (Zingiber officinale Roscoe) was previously shown to regulate the PPARγ signaling pathway in adipocytes. In this study, we investigated the antiobesity effects of ginger in vivo and the mechanism of action in vitro. Energy expenditure was increased, and diet-induced obesity was attenuated in C57BL/6J mice treated with dietary ginger extract (GE). GE also increased the number of Type I muscle fibers, improved running endurance capacity and upregulated PPARδ-targeted gene expression in skeletal muscle and the liver. 6-Shogaol and 6-gingerol acted as specific PPARδ ligands and stimulated PPARδ-dependent gene expression in cultured human skeletal muscle myotubes. An analysis of cellular respiration revealed that pretreating cultured skeletal muscle myotubes with GE increased palmitate-induced oxygen consumption rate, which suggested an increase in cellular fatty acid catabolism. These results demonstrated that sustained activation of the PPARδ pathway with GE attenuated diet-induced obesity and improved exercise endurance capacity by increasing skeletal muscle fat catabolism. 6-Shogaol and 6-gingerol may be responsible for the regulatory effects of dietary ginger on PPARδ signaling.

  2. Administration of the peroxisomal proliferator-activated receptor {gamma} agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment

    SciTech Connect

    Zhao Weiling; Payne, Valerie; Tommasi, Ellen; Diz, Debra I.; Hsu, F.-C.; Robbins, Mike E. . E-mail: mrobbins@wfubmc.edu

    2007-01-01

    Purpose: We hypothesized that administration of the anti-inflammatory peroxisomal proliferator-activated receptor {gamma} (PPAR{gamma}) agonist pioglitazone (Pio) to adult male rats would inhibit radiation-induced cognitive impairment. Methods and Materials: Young adult male F344 rats received one of the following: (1) fractionated whole brain irradiation (WBI); 40 or 45 Gy {gamma}-rays in 4 or 4.5 weeks, respectively, two fractions per week and normal diet; (2) sham-irradiation and normal diet; (3) WBI plus Pio (120 ppm) before, during, and for 4 or 54 weeks postirradiation; (4) sham-irradiation plus Pio; or (5) WBI plus Pio starting 24h after completion of WBI. Results: Administration of Pio before, during, and for 4 or 54 weeks after WBI prevented Radiation-induced cognitive impairment. Administration of Pio for 54 weeks starting after completion of fractionated WBI substantially but not significantly reduced Radiation-induced cognitive impairment. Conclusions: These findings offer the promise of improving the quality of life and increasing the therapeutic window for brain tumor patients.

  3. Peroxisome Proliferator-Activated Receptor Gamma Exacerbates Concanavalin A-Induced Liver Injury via Suppressing the Translocation of NF-κB into the Nucleus

    PubMed Central

    Ogawa, Yuji; Yoneda, Masato; Tomeno, Wataru; Imajo, Kento; Shinohara, Yoshiyasu; Fujita, Koji; Shibata, Wataru; Kirikoshi, Hiroyuki; Saito, Satoru; Wada, Koichiro; Maeda, Shin; Nakajima, Atsushi

    2012-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) has been reported to reduce inflammation and attenuate fibrosis in the liver. In this study, we investigated the effects of PPARγ on the liver injury induced by 20 mg/kg Concanavalin A (Con A). The mice were administered one of the three types of PPARγ ligands (pioglitazone, ciglitazone, and troglitazone) for 1 week, and the serum alanine aminotransferase (ALT) levels at 20 h after Con A injection were significantly elevated in the PPARγ ligand-treated mice. Furthermore, the serum ALT levels after Con A injection in the PPARγ hetero-knock-out mice (PPARγ+/− mice) were lower than those in the wild-type mice (WT mice). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) revealed extensive liver damage induced by Con A in the pioglitazone-treated mice. Electrophoresis mobility shift assay (EMSA) revealed that activation of translocation of nuclear factor- (NF-) κB, which is a suppressor of apoptosis, in the nucleus of the hepatocytes was suppressed in the pioglitazone-treated mice after Con A injection. In this study, we showed that PPARγ exacerbated Con A-induced liver injury via suppressing the translocation of NF-κB into the nucleus, thereby inhibiting the suppression of liver cell apoptosis. PMID:23251143

  4. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORα (PPARα) AGONISTS DIFFERENTIALLY REGULATE INHIBITOR OF DNA BINDING (ID2) EXPRESSION IN RODENTS AND HUMAN CELLS

    EPA Science Inventory

    Abstract Inhibitor of DNA binding (Id2) is a member of the helix-loop-helix (HLH) transcription factor family whose members play important roles in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones,...

  5. Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitor 6.

    PubMed

    Barrie, Mahmoud B; Stout, Heather W; Abougergi, Marwan S; Miller, Bonnie C; Thiele, Dwain L

    2004-05-15

    Expression of the granzyme B inhibitors, human proteinase inhibitor 9 (PI-9), or the murine orthologue, serine proteinase inhibitor 6 (SPI-6), confers resistance to CTL or NK killing by perforin- and granzyme-dependent effector mechanisms. In light of prior studies indicating that virally infected hepatocytes are selectively resistant to this CTL effector mechanism, the present studies investigated PI-9 and SPI-6 expression in hepatocytes and hepatoma cells in response to adenoviral infection and to cytokines produced during antiviral immune responses. Neither PI-9 nor SPI-6 expression was detected by immunoblotting in uninfected murine or human hepatocytes. Similarly, human Huh-7 hepatoma cells were found to express only very low levels of PI-9 relative to levels detected in perforin- and granzyme-resistant CTL or lymphokine-activated killer cells. Following in vivo adenoviral infection or in vitro culture with IFN-alphabeta or IFN-gamma, SPI-6 expression was induced in murine hepatocytes. Similarly, after culture with IFN-alpha, induction of PI-9 mRNA and protein expression was observed in human hepatocytes and Huh-7 cells. IFN-gamma and TNF-alpha also induced 4- to 10-fold higher levels of PI-9 mRNA expression in Huh-7 cells, whereas levels of mRNA encoding a related serine proteinase inhibitor, proteinase inhibitor 8, were unaffected by culture of Huh-7 cells with IFN-alpha, IFN-gamma, or TNF-alpha. These findings indicate that cytokines that promote antiviral cytopathic responses also regulate expression of the cytoprotective molecules, PI-9 and SPI-6, in hepatocytes that are potential targets of CTL and NK effector mechanisms.

  6. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    SciTech Connect

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung; Kim, Hye Jin; Yang, Jin Mo; Ryu, Somi; Noh, Yoo Hun; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Yoo, Keon Hee; Koo, Hong Hoe; Sung, Ki Woong

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.

  7. No evidence for a role of the peroxisome proliferator-activated receptor gamma (PPARG) and adiponectin (ADIPOQ) genes in antipsychotic-induced weight gain.

    PubMed

    Brandl, Eva J; Tiwari, Arun K; Zai, Clement C; Chowdhury, Nabilah I; Lieberman, Jeffrey A; Meltzer, Herbert Y; Kennedy, James L; Müller, Daniel J

    2014-10-30

    Antipsychotics frequently cause changes in glucose metabolism followed by development of weight gain and/or diabetes. Recent findings from our group indicated an influence of glucose-related genes on this serious side effect. With this study, we aimed to extend previous research and performed a comprehensive study on the peroxisome proliferator-activated receptor gamma (PPARG) and the adiponectin (ADIPOQ) genes. In 216 schizophrenic patients receiving antipsychotics for up to 14 weeks, we investigated single-nucleotide polymorphisms in or near PPARG (N=24) and ADIPOQ (N=18). Statistical analysis was done using ANCOVA in SPSS. Haplotype analysis was performed in UNPHASED 3.1.4 and Haploview 4.2. None of the PPARG or ADIPOQ variants showed significant association with antipsychotic-induced weight gain in our combined sample or in a refined subsample of patients of European ancestry treated with clozapine or olanzapine after correction for multiple testing. Similarly, no haplotype association could withstand multiple test correction. Although we could not find a significant influence of ADIPOQ and PPARG on antipsychotic-induced weight gain, our comprehensive examination of these two genes contributes to understanding the biology of this serious side effect. More research on glucose metabolism genes is warranted to elucidate their role in metabolic changes during antipsychotic treatment.

  8. Effect of vitamin D on isoprenaline induced myocardial infarction in rats; possible role of Peroxisome Proliferator Activated Receptor- ɣ (PPAR-ɣ).

    PubMed

    El-Gohary, Ola Ahmed; Allam, Mona Maher

    2017-01-22

    Infarct-like lesion induced by isoprenaline is a well-known model to study myocardial infarction (MI). Vitamin D has been shown to have anti-inflammatory and antioxidant effects. Recent studies highlighted cross talk between vitamin D and peroxisome proliferator-activated receptor gamma (PPAR- ɣ). The present study was designed to investigate the effect of pretreatment with vitamin D on the isoprenaline-induced infarct-like lesion in rats and the role of PPAR- ɣ as a novel mechanism in vitamin D-mediated cardio protective effect. Markers chosen to assess cardiac damage included serum level of creatine kinase (CPK), lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Cardiac contents of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH) have been also assessed. Furthermore, ECG monitoring and measurement of injury extension were carried out. Isoprenaline increased the level of cardiac enzymes as well as inflammatory and oxidative stress biomarkers. In addition, it produced ST-segment elevation. Pretreatment with vitamin D significantly improved previous parameters. The prior treatment with PPAR- ɣ antagonist; bisphenol A diglycidyl ether; (BADGE) significantly attenuated the protective effect of vitamin D. In conclusion, vitamin D can be demonstrated as a promising cardio-protective agent in MI and PPAR- ɣ significantly contributes toward vitamin D-mediated protection.

  9. Src is activated by the nuclear receptor peroxisome proliferator-activated receptor β/δ in ultraviolet radiation-induced skin cancer.

    PubMed

    Montagner, Alexandra; Delgado, Maria B; Tallichet-Blanc, Corinne; Chan, Jeremy S K; Sng, Ming K; Mottaz, Hélén; Degueurce, Gwendoline; Lippi, Yannick; Moret, Catherine; Baruchet, Michael; Antsiferova, Maria; Werner, Sabine; Hohl, Daniel; Saati, Talal Al; Farmer, Pierre J; Tan, Nguan S; Michalik, Liliane; Wahli, Walter

    2014-01-01

    Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.

  10. Peroxisome Proliferator-activated Receptor γ Agonists Induce Cell Cycle Arrest through Transcriptional Regulation of Krüppel-like Factor 4 (KLF4)*

    PubMed Central

    Li, Sheng; Zhou, Qibing; He, Huan; Zhao, Yahui; Liu, Zhihua

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ), a subgroup of ligand-activated nuclear receptors, plays critical roles in cell cycle regulation, differentiation, apoptosis, and invasion. PPARγ is involved in tumorigenesis and is a potent target for cancer therapy. PPARγ transactivation of KLF4 has been demonstrated in various studies; however, how PPARγ regulates KLF4 expression is not clear. In this study, we reveal that PPARγ regulates the expression of KLF4 by binding directly to the PPAR response element (PPRE) within the KLF4 promoter. The PPRE resides at −1657 to −1669 bp upstream of the KLF4 ATG codon, which is essential for the transactivation of troglitazone-induced KLF4 expression. Furthermore, we found that stable silencing of KLF4 obviously suppressed the G1/S arrest and anti-proliferation effects induced by PPARγ ligands. Taken together, our data indicate that up-regulation of KLF4 upon PPARγ activation is mediated through the PPRE in the KLF4 promoter, thus providing further insights into the PPARγ signal transduction pathway as well as a novel cancer therapeutic strategy. PMID:23275339

  11. Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion

    PubMed Central

    Juvekar, Ashish; Hu, Hai; Yadegarynia, Sina; Lyssiotis, Costas A.; Ullas, Soumya; Lien, Evan C.; Bellinger, Gary; Son, Jaekyoung; Hok, Rosanna C.; Seth, Pankaj; Daly, Michele B.; Kim, Baek; Scully, Ralph; Asara, John M.; Cantley, Lewis C.; Wulf, Gerburg M.

    2016-01-01

    We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1f/fp53f/f), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors. PMID:27402769

  12. Protective effect of the peroxisome proliferator-activated receptor (PPAR)-γ, ligand rosiglitazone on tert-butyl hydroperoxide-induced QZG cell injury.

    PubMed

    Li, Wen-Li; Liang, Xin; Wang, Xin; Zhang, Xiao-Di; Liu, Rui; Zhang, Wei; Chen, Hong-Li; Qin, Xu-Jun; Bai, Hua; Hai, Chun-Xu

    2011-09-01

    Tert-butyl hydroperoxide (t-BHP) can induce cell injury by forming free radical intermediates. Peroxisome proliferator-activated receptor (PPAR)-γ is a ligand-activated transcription factor belonging to nuclear hormone receptor superfamily, and is involved in oxidative stress response. Thiazolidinedione rosiglitazone is a potent PPARγ agonist. The main aim of this study was to investigate the protective effect of rosiglitazone on QZG cells from t-BHP-induced toxicity. MTT assay showed that t-BHP treatment resulted in decreased cell viability in a concentration dependent manner. Under 400 μM t-BHP treatment, QZG cell displayed significant loss of viability and dramatic morphological changes characterized by changing in shape from triangle to spherical, disappearance of cell cilia, swollen mitochondrial and typical apoptotic alteration such as condensation of chromatin, and appearance of crescent under light microscopy and electronic microscopy, respectively. Flow cytometry analysis indicated that 30.90±1.70% QZG cells were undergoing apoptosis compared to that of the control cells (2.80±0.85%, P<0.05). There was substantial population of the cells undergoing necrosis (28.5.%). 25 μM rosiglitazone treatment inhibited the t-BHP-induced cell toxicity significantly by restoring the cell viability, reducing cell population undergone apoptosis to normal level (3.5%) and ameliorating t-BHP-induced pathological changes. Real-time RT-PCR results showed that 400 μM t-BHP caused dramatic down-regulation of PPARγ expression in QZG cells, whereas combining treatment with 25 μM rosiglitazone resistant to PPARγ expression to normal level partially. Overall, our results indicate that rosiglitazone has protective effect against t-BHP-induced QZG cell injury. The protective effect of rosiglitazone is involved in its regulation on the function of PPARγ.

  13. Peroxisomal bifunctional enzyme deficiency.

    PubMed Central

    Watkins, P A; Chen, W W; Harris, C J; Hoefler, G; Hoefler, S; Blake, D C; Balfe, A; Kelley, R I; Moser, A B; Beard, M E

    1989-01-01

    Peroxisomal function was evaluated in a male infant with clinical features of neonatal adrenoleukodystrophy. Very long chain fatty acid levels were elevated in both plasma and fibroblasts, and beta-oxidation of very long chain fatty acids in cultured fibroblasts was significantly impaired. Although the level of the bile acid intermediate trihydroxycoprostanoic acid was slightly elevated in plasma, phytanic acid and L-pipecolic acid levels were normal, as was plasmalogen synthesis in cultured fibroblasts. The latter three parameters distinguish this case from classical neonatal adrenoleukodystrophy. In addition, electron microscopy and catalase subcellular distribution studies revealed that, in contrast to neonatal adrenoleukodystrophy, peroxisomes were present in the patient's tissues. Immunoblot studies of peroxisomal beta-oxidation enzymes revealed that the bifunctional enzyme (enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase) was deficient in postmortem liver samples, whereas acyl-CoA oxidase and the mature form of beta-ketothiolase were present. Density gradient centrifugation of fibroblast homogenates confirmed that intact peroxisomes were present. Immunoblots of fibroblasts peroxisomal fractions showed that they contained acyl-CoA oxidase and beta-ketothiolase, but bifunctional enzyme was not detected. Northern analysis, however, revealed that mRNA coding for the bifunctional enzyme was present in the patient's fibroblasts. These results indicate that the primary biochemical defect in this patient is a deficiency of peroxisomal bifunctional enzyme. It is of interest that the phenotype of this patient resembled neonatal adrenoleukodystrophy and would not have been distinguished from this disorder by clinical study alone. Images PMID:2921319

  14. Inhibition of tumor necrosis factor-alpha-induced interleukin-6 expression by telmisartan through cross-talk of peroxisome proliferator-activated receptor-gamma with nuclear factor kappaB and CCAAT/enhancer-binding protein-beta.

    PubMed

    Tian, Qingping; Miyazaki, Ryohei; Ichiki, Toshihiro; Imayama, Ikuyo; Inanaga, Keita; Ohtsubo, Hideki; Yano, Kotaro; Takeda, Kotaro; Sunagawa, Kenji

    2009-05-01

    Telmisartan, an angiotensin II type 1 receptor antagonist, was reported to be a partial agonist of peroxisome proliferator-activated receptor-gamma. Although peroxisome proliferator-activated receptor-gamma activators have been shown to have an anti-inflammatory effect, such as inhibition of cytokine production, it has not been determined whether telmisartan has such effects. We examined whether telmisartan inhibits expression of interleukin-6 (IL-6), a proinflammatory cytokine, in vascular smooth muscle cells. Telmisartan, but not valsartan, attenuated IL-6 mRNA expression induced by tumor necrosis factor-alpha (TNF-alpha). Telmisartan decreased TNF-alpha-induced IL-6 mRNA and protein expression in a dose-dependent manner. Because suppression of IL-6 mRNA expression was prevented by pretreatment with GW9662, a specific peroxisome proliferator-activated receptor-gamma antagonist, peroxisome proliferator-activated receptor-gamma may be involved in the process. Telmisartan suppressed IL-6 gene promoter activity induced by TNF-alpha. Deletion analysis suggested that the DNA segment between -150 bp and -27 bp of the IL-6 gene promoter that contains nuclear factor kappaB and CCAAT/enhancer-binding protein-beta sites was responsible for telmisartan suppression. Telmisartan attenuated TNF-alpha-induced nuclear factor kappaB- and CCAAT/enhancer-binding protein-beta-dependent gene transcription and DNA binding. Telmisartan also attenuated serum IL-6 level in TNF-alpha-infused mice and IL-6 production from rat aorta stimulated with TNF-alpha ex vivo. These data suggest that telmisartan may attenuate inflammatory process induced by TNF-alpha in addition to the blockade of angiotensin II type 1 receptor. Because both TNF-alpha and angiotensin II play important roles in atherogenesis through enhancement of vascular inflammation, telmisartan may be beneficial for treatment of not only hypertension but also vascular inflammatory change.

  15. Peroxisome protein import: a complex journey

    PubMed Central

    Baker, Alison; Hogg, Thomas Lanyon; Warriner, Stuart L.

    2016-01-01

    The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor–cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes. PMID:27284042

  16. Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome Proliferator–Activated Receptor Gamma-Independent Mechanism

    PubMed Central

    Chamorro-García, Raquel; Kirchner, Séverine; Li, Xia; Janesick, Amanda; Casey, Stephanie C.; Chow, Connie

    2012-01-01

    Background: Bisphenol A (BPA) and bisphenol A diglycidyl ether (BADGE), used in manufacturing coatings and resins, leach from packaging materials into food. Numerous studies suggested that BPA and BADGE may have adverse effects on human health, including the possibility that exposure to such chemicals can be superimposed on traditional risk factors to initiate or exacerbate the development of obesity. BPA is a suspected obesogen, whereas BADGE, described as a peroxisome proliferator–activated receptor gamma (PPARγ) antagonist, could reduce weight gain. Objectives: We sought to test the adipogenic effects of BADGE in a biologically relevant cell culture model. Methods: We used multipotent mesenchymal stromal stem cells (MSCs) to study the adipogenic capacity of BADGE and BPA and evaluated their effects on adipogenesis, osteogenesis, gene expression, and nuclear receptor activation. Discussion: BADGE induced adipogenesis in human and mouse MSCs, as well as in mouse 3T3-L1 preadipocytes. In contrast, BPA failed to promote adipogenesis in MSCs, but induced adipogenesis in 3T3-L1 cells. BADGE exposure elicited an adipogenic gene expression profile, and its ability to induce adipogenesis and the expression of adipogenic genes was not blocked by known PPARγ antagonists. Neither BADGE nor BPA activated or antagonized retinoid “X” receptor (RXR) or PPARγ in transient transfection assays. Conclusions: BADGE can induce adipogenic differentiation in both MSCs and in preadipocytes at low nanomolar concentrations comparable to those that have been observed in limited human biomonitoring. BADGE probably acts through a mechanism that is downstream of, or parallel to, PPARγ. PMID:22763116

  17. Dietary β-conglycinin prevents fatty liver induced by a high-fat diet by a decrease in peroxisome proliferator-activated receptor γ2 protein.

    PubMed

    Yamazaki, Tomomi; Kishimoto, Kyoko; Miura, Shinji; Ezaki, Osamu

    2012-02-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). Mice fed a high-fat diet, especially that of saturated-fat-rich oil, develop fatty liver with an increase in peroxisome proliferator-activated receptor (PPAR) γ2 protein in liver. The fatty liver induced by a high-fat diet is improved by knockdown of liver PPARγ2. In this study, we investigated whether β-conglycinin (a major protein of soy protein) could reduce PPARγ2 protein and prevent high-fat-diet-induced fatty liver in ddY mice. Mice were fed a high-starch diet (70 energy% [en%] starch) plus 20% (wt/wt) sucrose in their drinking water or a high-safflower-oil diet (60 en%) or a high-butter diet (60 en%) for 11 weeks, by which fatty liver is developed. As a control, mice were fed a high-starch diet with drinking water. Either β-conglycinin or casein (control) was given as dietary protein. β-Conglycinin supplementation completely prevented fatty liver induced by each type of diet, along with a reduction in adipose tissue weight. β-Conglycinin decreased sterol regulatory element-binding protein (SREBP)-1c and carbohydrate response element-binding protein (ChREBP) messenger RNAs (mRNAs) in sucrose-supplemented mice, whereas it decreased PPARγ2 mRNA (and its target genes CD36 and FSP27), but did not decrease SREBP-1c and ChREBP mRNAs, in mice fed a high-fat diet. β-Conglycinin decreased PPARγ2 protein and liver triglyceride (TG) concentration in a dose-dependent manner in mice fed a high-butter diet; a significant decrease in liver TG concentration was observed at a concentration of 15 en%. In conclusion, β-conglycinin effectively prevents fatty liver induced by a high-fat diet through a decrease in liver PPARγ2 protein.

  18. Structural Basis for Inhibitor-Induced Aggregation of HIV Integrase

    PubMed Central

    Sherrill-Mix, Scott; Hwang, Young; Eilers, Grant; McDanal, Charlene; Wang, Ping; Temelkoff, David

    2016-01-01

    The allosteric inhibitors of integrase (termed ALLINIs) interfere with HIV replication by binding to the viral-encoded integrase (IN) protein. Surprisingly, ALLINIs interfere not with DNA integration but with viral particle assembly late during HIV replication. To investigate the ALLINI inhibitory mechanism, we crystallized full-length HIV-1 IN bound to the ALLINI GSK1264 and determined the structure of the complex at 4.4 Å resolution. The structure shows GSK1264 buried between the IN C-terminal domain (CTD) and the catalytic core domain. In the crystal lattice, the interacting domains are contributed by two different dimers so that IN forms an open polymer mediated by inhibitor-bridged contacts; the N-terminal domains do not participate and are structurally disordered. Engineered amino acid substitutions at the inhibitor interface blocked ALLINI-induced multimerization. HIV escape mutants with reduced sensitivity to ALLINIs commonly altered amino acids at or near the inhibitor-bound interface, and these substitutions also diminished IN multimerization. We propose that ALLINIs inhibit particle assembly by stimulating inappropriate polymerization of IN via interactions between the catalytic core domain and the CTD and that understanding the interface involved offers new routes to inhibitor optimization. PMID:27935939

  19. Palmitoylethanolamide stimulation induces allopregnanolone synthesis in C6 Cells and primary astrocytes: involvement of peroxisome-proliferator activated receptor-α.

    PubMed

    Raso, G Mattace; Esposito, E; Vitiello, S; Iacono, A; Santoro, A; D'Agostino, G; Sasso, O; Russo, R; Piazza, P V; Calignano, A; Meli, R

    2011-07-01

    Palmitoylethanolamide (PEA) regulates many pathophysiological processes in the central nervous system, including pain perception, convulsions and neurotoxicity, and increasing evidence points to its neuroprotective action. In the present study, we report that PEA, acting as a ligand of peroxisome-proliferator activated receptor (PPAR)-α, might regulate neurosteroidogenesis in astrocytes, which, similar to other glial cells and neurones, have the enzymatic machinery for neurosteroid de novo synthesis. Accordingly, we used the C6 glioma cell line and primary murine astrocytes. In the mitochondrial fraction from cells stimulated with PEA, we demonstrated an increase in steroidogenic acute regulatory protein (StAR) and cytochrome P450 enzyme (P450scc) expression, both comprising proteins considered to be involved in crucial steps of neurosteroid formation. The effects of PEA were completely blunted by GW6471, a selective PPAR-α antagonist, or by PPAR-α silencing by RNA interference. Accordingly, allopregnanolone (ALLO) levels were increased in supernatant of PEA-treated astrocytes, as revealed by gas chromatography-mass spectrometry, and this effect was inhibited by GW6471. Moreover, PEA showed a protective effect, reducing malondialdehyde formation in cells treated with l-buthionine-(S,R)-sulfoximine, a glutathione depletor and, interestingly, the effect of PEA was partially inhibited by finasteride, a 5α-reductase inhibitor. A similar profile of activity was demonstrated by ALLO and the lack of an additive effect with PEA suggests that the reduction of oxidative stress by PEA is mediated through ALLO synthesis. The present study provides evidence indicating the involvement of the saturated acylethanolamide PEA in ALLO synthesis through PPAR-α in astrocytes and explores the antioxidative activity of this molecule, confirming its homeostatic and protective role both under physiological and pathological conditions.

  20. Mechanisms underlying skin disorders induced by EGFR inhibitors

    PubMed Central

    Holcmann, Martin; Sibilia, Maria

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is frequently mutated or overexpressed in a large number of tumors such as carcinomas or glioblastoma. Inhibitors of EGFR activation have been successfully established for the therapy of some cancers and are more and more frequently being used as first or later line therapies. Although the side effects induced by inhibitors of EGFR are less severe than those observed with classic cytotoxic chemotherapy and can usually be handled by out-patient care, they may still be a cause for dose reduction or discontinuation of treatment that can reduce the effectiveness of antitumor therapy. The mechanisms underlying these cutaneous side effects are only partly understood. Important questions, such as the reasons for the correlation between the intensity of the side effects and the efficiency of treatment with EGFR inhibitors, remain to be answered. Optimized adjuvant strategies to accompany anti-EGFR therapy need to be found for optimal therapeutic application and improved quality of life of patients. Here, we summarize current literature on the molecular and cellular mechanisms underlying the cutaneous side effects induced by EGFR inhibitors and provide evidence that keratinocytes are probably the optimal targets for adjuvant therapy aimed at alleviating skin toxicities. PMID:27308503

  1. Induction of peroxisomes by butyrate-producing probiotics.

    PubMed

    Weng, Huachun; Endo, Kosuke; Li, Jiawei; Kito, Naoko; Iwai, Naoharu

    2015-01-01

    We previously found that peroxisomal biogenesis factor 11a (Pex11a) deficiency is associated with a reduction in peroxisome abundance and impaired fatty acid metabolism in hepatocytes, and results in steatosis. In the present study, we investigated whether butyrate induces Pex11a expression and peroxisome proliferation, and studied its effect on lipid metabolism. C57BL/6 mice fed standard chow or a high-fat diet (HFD) were treated with tributyrin, 4-phelybutyrate acid (4-PBA), or the butyrate-producing probiotics (Clostridium butyricum MIYAIRI 588 [CBM]) plus inulin (dietary fiber), and the body weight, white adipose tissue, serum triglycerides, mRNA expression, and peroxisome abundance were evaluated. Tributyrin or 4-PBA treatment significantly decreased body weight and increased hepatic mRNA expression of peroxisome proliferator-activated receptor-α (PPARα) and Pex11a. In addition, 4-PBA treatment increased peroxisome abundance and the expression of genes involved in peroxisomal fatty acid β-oxidation (acyl-coenzyme A oxidase 1 and hydroxysteroid [17-beta] dehydrogenase 4). CBM and inulin administration reduced adipose tissue mass and serum triglycerides, induced Pex11a, acyl-coenzyme A oxidase 1, and hydroxysteroid (17-beta) dehydrogenase 4 genes, and increased peroxisome abundance in mice fed standard chow or an HFD. In conclusion, elevation of butyrate availability (directly through administration of butyrate or indirectly via administration of butyrate-producing probiotics plus fiber) induces PPARα and Pex11a and the genes involved in peroxisomal fatty acid β-oxidation, increases peroxisome abundance, and improves lipid metabolism. These results may provide a new therapeutic strategy against hyperlipidemia and obesity.

  2. ROS Generation in Peroxisomes and its Role in Cell Signaling.

    PubMed

    Del Río, Luis A; López-Huertas, Eduardo

    2016-07-01

    In plant cells, as in most eukaryotic organisms, peroxisomes are probably the major sites of intracellular H2O2 production, as a result of their essentially oxidative type of metabolism. In recent years, it has become increasingly clear that peroxisomes carry out essential functions in eukaryotic cells. The generation of the important messenger molecule hydrogen peroxide (H2O2) by animal and plant peroxisomes and the presence of catalase in these organelles has been known for many years, but the generation of superoxide radicals (O2(·(-)) ) and the occurrence of the metalloenzyme superoxide dismutase was reported for the first time in peroxisomes from plant origin. Further research showed the presence in plant peroxisomes of a complex battery of antioxidant systems apart from catalase. The evidence available of reactive oxygen species (ROS) production in peroxisomes is presented, and the different antioxidant systems characterized in these organelles and their possible functions are described. Peroxisomes appear to have a ROS-mediated role in abiotic stress situations induced by the heavy metal cadmium (Cd) and the xenobiotic 2,4-D, and also in the oxidative reactions of leaf senescence. The toxicity of Cd and 2,4-D has an effect on the ROS metabolism and speed of movement (dynamics) of peroxisomes. The regulation of ROS production in peroxisomes can take place by post-translational modifications of those proteins involved in their production and/or scavenging. In recent years, different studies have been carried out on the proteome of ROS metabolism in peroxisomes. Diverse evidence obtained indicates that peroxisomes are an important cellular source of different signaling molecules, including ROS, involved in distinct processes of high physiological importance, and might play an important role in the maintenance of cellular redox homeostasis.

  3. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression

    PubMed Central

    Barone, Rosario; Macaluso, Filippo; Sangiorgi, Claudia; Campanella, Claudia; Marino Gammazza, Antonella; Moresi, Viviana; Coletti, Dario; Conway de Macario, Everly; Macario, Alberto JL; Cappello, Francesco; Adamo, Sergio; Farina, Felicia; Zummo, Giovanni; Di Felice, Valentina

    2016-01-01

    Heat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus, and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus. Short-term overexpression of hsp60, achieved by in vitro plasmid transfection, was then performed to determine whether this chaperone could have a role in the activation of the expression levels of PGC1α isoforms. The levels of Hsp60 protein were fibre-type specific in the posterior muscles and endurance training increased its content in type I muscle fibers. Concomitantly with the increased levels of Hsp60 released in the blood stream of trained mice, mitochondrial copy number and the expression of three isoforms of PGC1α increased. Overexpressing hsp60 in cultured myoblasts induced only the expression of PGC1 1α, suggesting a correlation between Hsp60 overexpression and PGC1 1 α activation. PMID:26812922

  4. Candesartan cilexetil prevents diet-induced insulin resistance via peroxisome proliferator-activated receptor-γ activation in an obese rat model

    PubMed Central

    YAN, WEN-HUA; PAN, CHANG-YU; DOU, JING-TAO; MENG, JUN-HUA; WANG, BAO-AN; MU, YI-MING

    2016-01-01

    Angiotensin II type 1 receptor (AT1R) blockers (ARBs) have been shown to reduce the incidence of type 2 diabetes mellitus; however, the underlying molecular mechanism is unknown. Peroxisome proliferator-activated receptor γ (PPARγ) is the central regulator of insulin and glucose metabolism, which improves insulin sensitivity. Whether candesartan cilexetil, as a prodrug of the AT1R blocker candesartan, has PPARγ-activating properties remains to be elucidated. The aim of the present study was to investigate the effects of oral administration of candesartan cilexetil on glucose tolerance and the actions of PPARγ on liver and adipose tissue in the insulin-resistant obese rat induced by high-fat diet. Animals treated with candesartan cilexetil showed an improved glucose tolerance after oral glucose challenge. Whole-body insulin sensitivity was evaluated using the hyperinsulinemic-euglycemic clamp technique. During high-fat feeding in high-fat diet (HF) rats, the glucose infusion rate (GIR) was 52.3% lower than that in normal chow (NC) rats. However, the GIR was significantly enhanced following candesartan cilexetil treatment. Angiotensin II receptor antagonism also resulted in significant increases in PPARγ protein expression in adipose and liver tissue. These results indicate that PPARγ activation by candesartan cilexetil may provide novel therapeutic options in the treatment of patients with metabolic syndrome. PMID:27347049

  5. Atorvastatin treatment induced peroxisome proliferator-activated receptor alpha expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats.

    PubMed

    Roglans, Núria; Sanguino, Elena; Peris, Cristina; Alegret, Marta; Vázquez, Manuel; Adzet, Tomás; Díaz, Cristina; Hernández, Gonzalo; Laguna, Juan C; Sánchez, Rosa M

    2002-07-01

    We aimed to investigate the effect of atorvastatin (5 and 30 mg/kg/day for 2 weeks) on hepatic lipid metabolism in a well established model of dietary hypertriglyceridemia, the fructose-fed rat. Fructose feeding (10% fructose in drinking water for 2 weeks) induced hepatic lipogenesis and reduced peroxisome proliferator-activated receptor alpha (PPARalpha) expression and fatty acid oxidation. As a result, plasma and liver triglyceride and plasma apolipoprotein B (apoB) levels were increased. Atorvastatin, 5 and 30 mg/kg during 2 weeks, markedly reduced plasma triglyceride, but decreased apoB levels only at the highest dose tested (50%). Triglyceride biosynthetic enzymes and microsomal triglyceride transfer protein were unchanged, whereas liver PPARalpha, acyl-CoA oxidase, and carnitine palmitoyltransferase I mRNA levels (1.9-, 1.25-, and 3.4-fold, respectively) and hepatic fatty acid beta-oxidation activity (1.25-fold) were increased by atorvastatin at 30 mg/kg. Furthermore, hepatic triglyceride content (45%) and plasma nonesterified fatty acids (NEFAs) (49%) were reduced. These results show for the first time that liver triglyceride increase in fructose-fed rats is linked to decreased expression of PPARalpha, which is prevented by atorvastatin treatment. The increase in PPARalpha expression caused by atorvastatin was associated with reduced liver triglyceride and plasma NEFA levels.

  6. Antagonist of peroxisome proliferator-activated receptor {gamma} induces cerebellar amyloid-{beta} levels and motor dysfunction in APP/PS1 transgenic mice

    SciTech Connect

    Du, Jing; Sun, Bing; Chen, Kui; Fan, Li; Wang, Zhao

    2009-07-03

    Recent evidences show that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) is involved in the modulation of the amyloid-{beta} (A{beta}) cascade causing Alzheimer's disease (AD) and treatment with PPAR{gamma} agonists protects against AD pathology. However, the function of PPAR{gamma} steady-state activity in A{beta} cascade and AD pathology remains unclear. In this study, an antagonist of PPAR{gamma}, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPAR{gamma} activity in cerebellum. The results show that inhibition of PPAR{gamma} significantly induced A{beta} levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellar levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of A{beta}. Since cerebellum is spared from significant A{beta} accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPAR{gamma} steady-state activity in protection of cerebellum against AD pathology.

  7. Protection from noise-induced hearing loss with Src inhibitors.

    PubMed

    Bielefeld, Eric C

    2015-06-01

    Noise-induced hearing loss is a major cause of acquired hearing loss around the world and pharmacological approaches to protecting the ear from noise are under investigation. Noise results in a combination of mechanical and metabolic damage pathways in the cochlea. The Src family of protein tyrosine kinases could be active in both pathways and Src inhibitors have successfully prevented noise-induced cochlear damage and hearing loss in animal models. The long-term goal is to optimize delivery methods into the cochlea to reduce invasiveness and limit side-effects before human clinical testing can be considered. At their current early stage of research investigation, Src inhibitors represent an exciting class of compounds for inclusion in a multifaceted pharmacological approach to protecting the ear from noise.

  8. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation.

    PubMed

    Yao, Pei-Li; Chen, Liping; Dobrzański, Tomasz P; Zhu, Bokai; Kang, Boo-Hyon; Müller, Rolf; Gonzalez, Frank J; Peters, Jeffrey M

    2016-12-20

    Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients.

  9. Pulmonary Administration of GW0742, a High-Affinity Peroxisome Proliferator-Activated Receptor Agonist, Repairs Collapsed Alveoli in an Elastase-Induced Mouse Model of Emphysema.

    PubMed

    Ozawa, Chihiro; Horiguchi, Michiko; Akita, Tomomi; Oiso, Yuki; Abe, Kaori; Motomura, Tomoki; Yamashita, Chikamasa

    2016-01-01

    Pulmonary emphysema is a disease in which lung alveoli are irreversibly damaged, thus compromising lung function. Our previous study revealed that all-trans-retinoic acid (ATRA) induces the differentiation of human lung alveolar epithelial type 2 progenitor cells and repairs the alveoli of emphysema model mice. ATRA also reportedly has the ability to activate peroxisome proliferator-activated receptor (PPAR) β/δ. A selective PPARβ/δ ligand has been reported to induce the differentiation of human keratinocytes during wound repair. Here, we demonstrate that treatment using a high-affinity PPARβ/δ agonist, GW0742, reverses the lung tissue damage induced by elastase in emphysema-model mice and improves respiratory function. Mice treated with elastase, which collapsed their alveoli, were then treated with either 10% dimethyl sulfoxide (DMSO) in saline (control group) or GW0742 (1.0 mg/kg twice a week) by pulmonary administration. Treatment with GW0742 for 2 weeks increased the in vivo expression of surfactant proteins A and D, which are known alveolar type II epithelial cell markers. GW0742 treatment also shortened the average distance between alveolar walls in the lungs of emphysema model mice, compared with a control group treated with 10% DMSO in saline. Treatment with GW0742 for 3 weeks also improved tissue elastance (cm H2O/mL), as well as the ratio of the forced expiratory volume in the first 0.05 s to the forced vital capacity (FEV 0.05/FVC). In each of these experiments, GW0742 treatment reversed the damage caused by elastase. In conclusion, PPARβ/δ agonists are potential therapeutic agents for pulmonary emphysema.

  10. Curcumin protects neurons against oxygen-glucose deprivation/reoxygenation-induced injury through activation of peroxisome proliferator-activated receptor-γ function.

    PubMed

    Liu, Zun-Jing; Liu, Hong-Qiang; Xiao, Cheng; Fan, Hui-Zhen; Huang, Qing; Liu, Yun-Hai; Wang, Yu

    2014-11-01

    The turmeric derivative curcumin protects against cerebral ischemic injury. We previously demonstrated that curcumin activates peroxisome proliferator-activated receptor-γ (PPARγ), a ligand-activated transcription factor involved in both neuroprotective and anti-inflammatory signaling pathways. This study tested whether the neuroprotective effects of curcumin against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury of rat cortical neurons are mediated (at least in part) by PPARγ. Curcumin (10 μM) potently enhanced PPARγ expression and transcriptional activity following OGD/R. In addition, curcumin markedly increased neuronal viability, as evidenced by decreased lactate dehydrogenase release and reduced nitric oxide production, caspase-3 activity, and apoptosis. These protective effects were suppressed by coadministration of the PPARγ antagonist 2-chloro-5-nitrobenzanilide (GW9662) and by prior transfection of a small-interfering RNA (siRNA) targeting PPARγ, treatments that had no toxic effects on healthy neurons. Curcumin reduced OGD/R-induced accumulation of reactive oxygen species and inhibited the mitochondrial apoptosis pathway, as indicated by reduced release of cytochrome c and apoptosis-inducing factor and maintenance of both the mitochondrial membrane potential and the Bax/Bcl-2 ratio. Again, GW9662 or PPARγ siRNA transfection mitigated the protective effects of curcumin on mitochondrial function. Curcumin suppressed IκB kinase phosphorylation and IκB degradation, thereby inhibiting nuclear factor-κ B (NF-κB) nuclear translocation, effects also blocked by GW9662 or PPARγ siRNA. Immunoprecipitation experiments revealed that PPARγ interacted with NF-κB p65 and inhibited NF-κB activation. The present study provides strong evidence that at least some of the neuroprotective effects of curcumin against OGD/R are mediated by PPARγ activation.

  11. Histone deacetylase inhibitors induce autophagy through FOXO1-dependent pathways.

    PubMed

    Zhang, Jianbin; Ng, Shukie; Wang, Jigang; Zhou, Jing; Tan, Shi-Hao; Yang, Naidi; Lin, Qingsong; Xia, Dajing; Shen, Han-Ming

    2015-04-03

    Autophagy is a catabolic process in response to starvation or other stress conditions to sustain cellular homeostasis. At present, histone deacetylase inhibitors (HDACIs) are known to induce autophagy in cells through inhibition of mechanistic target of rapamycin (MTOR) pathway. FOXO1, an important transcription factor regulated by AKT, is also known to play a role in autophagy induction. At present, the role of FOXO1 in the HDACIs-induced autophagy has not been reported. In this study, we first observed that HDACIs increased the expression of FOXO1 at the mRNA and protein level. Second, we found that FOXO1 transcriptional activity was enhanced by HDACIs, as evidenced by increased FOXO1 nuclear accumulation and transcriptional activity. Third, suppression of FOXO1 function by siRNA knockdown or by a chemical inhibitor markedly blocked HDACIs-induced autophagy. Moreover, we found that FOXO1-mediated autophagy is achieved via its transcriptional activation, leading to a dual effect on autophagy induction: (i) enhanced expression of autophagy-related (ATG) genes, and (ii) suppression of MTOR via transcription of the SESN3 (sestrin 3) gene. Finally, we found that inhibition of autophagy markedly enhanced HDACIs-mediated cell death, indicating that autophagy serves as an important cell survival mechanism. Taken together, our studies reveal a novel function of FOXO1 in HDACIs-mediated autophagy in human cancer cells and thus support the development of a novel therapeutic strategy by combining HDACIs and autophagy inhibitors in cancer therapy.

  12. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis.

    PubMed

    Zhang, Yun-Fang; Zou, Xun-Liang; Wu, Jun; Yu, Xue-Qing; Yang, Xiao

    2015-12-01

    We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.

  13. Peroxisome proliferator-activated receptor-α expression induces alterations in cardiac myofilaments in a pressure-overload model of hypertrophy.

    PubMed

    Karam, Chehade N; Warren, Chad M; Henze, Marcus; Banke, Natasha H; Lewandowski, E Douglas; Solaro, R John

    2017-04-01

    Although alterations in fatty acid (FA) metabolism have been shown to have a negative impact on contractility of the hypertrophied heart, the targets of action remain elusive. In this study we compared the function of skinned fiber bundles from transgenic (Tg) mice that overexpress a relatively low level of the peroxisome proliferator-activated receptor α (PPARα), and nontransgenic (NTg) littermates. The mice (NTg-T and Tg-T) were stressed by transverse aortic constriction (TAC) and compared with shams (NTg-S and Tg-S). There was an approximate 4-fold increase in PPARα expression in Tg-S compared with NTg-S, but Tg-T hearts showed the same PPARα expression as NTg-T. Expression of PPARα did not alter the hypertrophic response to TAC but did reduce ejection fraction (EF) in Tg-T hearts compared with other groups. The rate of actomyosin ATP hydrolysis was significantly higher in Tg-S skinned fiber bundles compared with all other groups. Tg-T hearts showed an increase in phosphorylation of specific sites on cardiac myosin binding protein-C (cMyBP-C) and β-myosin heavy chain isoform. These results advance our understanding of potential signaling to the myofilaments induced by altered FA metabolism under normal and pathological states. We demonstrate that chronic and transient PPARα activation during pathological stress alters myofilament response to Ca(2+) through a mechanism that is possibly mediated by MyBP-C phosphorylation and myosin heavy chain isoforms.NEW & NOTEWORTHY Data presented here demonstrate novel signaling to sarcomeric proteins by chronic alterations in fatty acid metabolism induced by PPARα. The mechanism involves modifications of key myofilament regulatory proteins modifying cross-bridge dynamics with differential effects in controls and hearts stressed by pressure overload.

  14. Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells

    PubMed Central

    Debbabi, Meryam; Nury, Thomas; Zarrouk, Amira; Mekahli, Nadia; Bezine, Maryem; Sghaier, Randa; Grégoire, Stéphane; Martine, Lucy; Durand, Philippe; Camus, Emmanuelle; Vejux, Anne; Jabrane, Aymen; Bretillon, Lionel; Prost, Michel; Moreau, Thibault; Ammou, Sofien Ben; Hammami, Mohamed; Lizard, Gérard

    2016-01-01

    Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases. PMID:27897980

  15. Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells.

    PubMed

    Debbabi, Meryam; Nury, Thomas; Zarrouk, Amira; Mekahli, Nadia; Bezine, Maryem; Sghaier, Randa; Grégoire, Stéphane; Martine, Lucy; Durand, Philippe; Camus, Emmanuelle; Vejux, Anne; Jabrane, Aymen; Bretillon, Lionel; Prost, Michel; Moreau, Thibault; Ammou, Sofien Ben; Hammami, Mohamed; Lizard, Gérard

    2016-11-25

    Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases.

  16. Arginase inhibitor attenuates pulmonary artery hypertension induced by hypoxia.

    PubMed

    Chu, YanBiao; XiangLi, XiaoYing; Niu, Hu; Wang, HongChao; Jia, PingDong; Gong, WenBin; Wu, DaWei; Qin, WeiDong; Xing, ChunYan

    2016-01-01

    Hypoxia-induced pulmonary arterial hypertension (HPAH) is a refractory disease characterized by increased proliferation of pulmonary vascular smooth cells and progressive pulmonary vascular remodeling. The level of nitric oxide (NO), a potential therapeutic vasodilator, is low in PAH patients. L-arginine can be converted to either beneficial NO by nitric oxide synthases or to harmful urea by arginase. In the present study, we aimed to investigate whether an arginase inhibitor, S-(2-boronoethyl)-L-cysteine ameliorates HPAH in vivo and vitro. In a HPAH mouse model, we assessed right ventricle systolic pressure (RVSP) by an invasive method, and found that RSVP was elevated under hypoxia, but was attenuated upon arginase inhibition. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured under hypoxic conditions, and their proliferative capacity was determined by cell counting and flow cytometry. The levels of cyclin D1, p27, p-Akt, and p-ERK were detected by RT-PCR or Western blot analysis. Compared to hypoxia group, arginase inhibitor inhibited HPASMCs proliferation and reduced the levels of cyclin D1, p-Akt, p-ERK, while increasing p27 level. Moreover, in mouse models, compared to control group, hypoxia increased cyclin D1 expression but reduced p27 expression, while arginase inhibitor reversed the effects of hypoxia. Taken together, these results suggest that arginase plays an important role in increased proliferation of HPASMCs induced by hypoxia and it is a potential therapeutic target for the treatment of pulmonary hypertensive disorders.

  17. AMP-activated protein kinase is required for exercise-induced peroxisome proliferator-activated receptor co-activator 1 translocation to subsarcolemmal mitochondria in skeletal muscle.

    PubMed

    Smith, Brennan K; Mukai, Kazutaka; Lally, James S; Maher, Amy C; Gurd, Brendon J; Heigenhauser, George J F; Spriet, Lawrence L; Holloway, Graham P

    2013-03-15

    In skeletal muscle, mitochondria exist as two subcellular populations known as subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. SS mitochondria preferentially respond to exercise training, suggesting divergent transcriptional control of the mitochondrial genomes. The transcriptional co-activator peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and mitochondrial transcription factor A (Tfam) have been implicated in the direct regulation of the mitochondrial genome in mice, although SS and IMF differences may exist, and the potential signalling events regulating the mitochondrial content of these proteins have not been elucidated. Therefore, we examined the potential for PGC-1α and Tfam to translocate to SS and IMF mitochondria in human subjects, and performed experiments in rodents to identify signalling mechanisms regulating these translocation events. Acute exercise in humans and rats increased PGC-1α content in SS but not IMF mitochondria. Acute exposure to 5-aminoimidazole-4-carboxamide-1-β-ribofuranoside in rats recapitulated the exercise effect of increased PGC-1α protein within SS mitochondria only, suggesting that AMP-activated protein kinase (AMPK) signalling is involved. In addition, rendering AMPK inactive (AMPK kinase dead mice) prevented exercise-induced PGC-1α translocation to SS mitochondria, further suggesting that AMPK plays an integral role in these translocation events. In contrast to the conserved PGC-1α translocation to SS mitochondria across species (humans, rats and mice), acute exercise only increased mitochondrial Tfam in rats. Nevertheless, in rat resting muscle PGC-1α and Tfam co-immunoprecipate with α-tubulin, suggesting a common cytosolic localization. These data suggest that exercise causes translocation of PGC-1α preferentially to SS mitochondria in an AMPK-dependent manner.

  18. Species-specific differences in peroxisome proliferation, catalase, and SOD2 upregulation as well as toxicity in human, mouse, and rat hepatoma cells induced by the explosive and environmental pollutant 2,4,6-trinitrotoluene.

    PubMed

    Naumenko, Ekaterina Anatolevna; Ahlemeyer, Barbara; Baumgart-Vogt, Eveline

    2017-03-01

    2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017.

  19. ACE Inhibitor-Induced Angioedema following Cervical Spine Surgery

    PubMed Central

    Sabbagh, Hussam

    2017-01-01

    Angioedema is a well-known side effect of angiotensin converting enzyme inhibitors (ACEi). However, ACE inhibitors induced angioedema after cervical surgery is a rare condition. They result in increased levels of circulating bradykinins. Rare cases of angioedema following local trauma in patients using ACE inhibitors have been published. We present such a case. A 54-year-old Caucasian female with a history significant for hypertension, controlled with lisinopril, was admitted for routine cervical spine surgery. She has severe degenerative cervical disc disease and was admitted to the hospital for an elective cervical diskectomy. The patient failed weaning off the ventilator on multiple attempts postoperatively. There were no observed symptoms of an allergic reaction. A CT scan of the neck showed extensive soft tissue edema at the level of the arytenoids. Dexamethasone was given to reduce the edema without successful resolution. On review of her medications, it was found that the patient was resumed on lisinopril following the procedure. It was subsequently discontinued. By the following day the patient had a positive leak around the ET tube cuff and patient was successfully extubated. PMID:28348897

  20. How Peroxisomes Affect Aflatoxin Biosynthesis in Aspergillus Flavus

    PubMed Central

    Reverberi, Massimo; Punelli, Marta; Smith, Carrie A.; Zjalic, Slaven; Scarpari, Marzia; Scala, Valeria; Cardinali, Giorgia; Aspite, Nicaela; Pinzari, Flavia; Payne, Gary A.; Fabbri, Anna A.; Fanelli, Corrado

    2012-01-01

    In filamentous fungi, peroxisomes are crucial for the primary metabolism and play a pivotal role in the formation of some secondary metabolites. Further, peroxisomes are important site for fatty acids β-oxidation, the formation of reactive oxygen species and for their scavenging through a complex of antioxidant activities. Oxidative stress is involved in different metabolic events in all organisms and it occurs during oxidative processes within the cell, including peroxisomal β-oxidation of fatty acids. In Aspergillus flavus, an unbalance towards an hyper-oxidant status into the cell is a prerequisite for the onset of aflatoxin biosynthesis. In our preliminary results, the use of bezafibrate, inducer of both peroxisomal β-oxidation and peroxisome proliferation in mammals, significantly enhanced the expression of pex11 and foxA and stimulated aflatoxin synthesis in A. flavus. This suggests the existence of a correlation among peroxisome proliferation, fatty acids β-oxidation and aflatoxin biosynthesis. To investigate this correlation, A. flavus was transformed with a vector containing P33, a gene from Cymbidium ringspot virus able to induce peroxisome proliferation, under the control of the promoter of the Cu,Zn-sod gene of A. flavus. This transcriptional control closely relates the onset of the antioxidant response to ROS increase, with the proliferation of peroxisomes in A. flavus. The AfP33 transformant strain show an up-regulation of lipid metabolism and an higher content of both intracellular ROS and some oxylipins. The combined presence of a higher amount of substrates (fatty acids-derived), an hyper-oxidant cell environment and of hormone-like signals (oxylipins) enhances the synthesis of aflatoxins in the AfP33 strain. The results obtained demonstrated a close link between peroxisome metabolism and aflatoxin synthesis. PMID:23094106

  1. Modulation of Receptor Phosphorylation Contributes to Activation of Peroxisome Proliferator Activated Receptor α by Dehydroepiandrosterone and Other Peroxisome Proliferators

    PubMed Central

    Tamasi, Viola; Miller, Kristy K. Michael; Ripp, Sharon L.; Vila, Ermin; Geoghagen, Thomas E.; Prough, Russell A.

    2008-01-01

    Dehydroepiandrosterone (DHEA), a C19 human adrenal steroid, activates peroxisome proliferator-activated receptor α (PPARα) in vivo but does not ligand-activate PPARα in transient transfection experiments. We demonstrate that DHEA regulates PPARα action by altering both the levels and phosphorylation status of the receptor. Human hepatoma cells (HepG2) were transiently transfected with the expression plasmid encoding PPARα and a plasmid containing two copies of fatty acyl coenzyme oxidase (FACO) peroxisome-proliferator activated receptor responsive element consensus oligonucleotide in a luciferase reporter gene. Nafenopin treatment increased reporter gene activity in this system, whereas DHEA treatment did not. Okadaic acid significantly decreased nafenopin-induced reporter activity in a concentration-dependent manner. Okadaic acid treatment of primary rat hepatocytes decreased both DHEA- and nafenopin-induced FACO activity in primary rat hepatocytes. DHEA induced both PPARα mRNA and protein levels, as well as PP2A message in primary rat hepatocytes. Western blot analysis showed that the serines at positions 12 and 21 were rapidly dephosphorylated upon treatment with DHEA and nafenopin. Results using specific protein phosphatase inhibitors suggested that protein phosphatase 2A (PP2A) is responsible for DHEA action, and protein phosphatase 1 might be involved in nafenopin induction. Mutation of serines at position 6, 12, and 21 to an uncharged alanine residue significantly increased transcriptional activity, whereas mutation to negative charged aspartate residues (mimicking receptor phosphorylation) decreased transcriptional activity. DHEA action involves induction of PPARα mRNA and protein levels as well as increased PPARα transcriptional activity through decreasing receptor phosphorylation at serines in the AF1 region. PMID:18079279

  2. Peroxisomal cholesterol biosynthesis and Smith-Lemli-Opitz syndrome

    SciTech Connect

    Weinhofer, Isabelle; Kunze, Markus; Stangl, Herbert; Porter, Forbes D.; Berger, Johannes . E-mail: johannes.berger@meduniwien.ac.at

    2006-06-23

    Smith-Lemli-Opitz syndrome (SLOS), caused by 7-dehydrocholesterol-reductase (DHCR7) deficiency, shows variable severity independent of DHCR7 genotype. To test whether peroxisomes are involved in alternative cholesterol synthesis, we used [1-{sup 14}C]C24:0 for peroxisomal {beta}-oxidation to generate [1-{sup 14}C]acetyl-CoA as cholesterol precursor inside peroxisomes. The HMG-CoA reductase inhibitor lovastatin suppressed cholesterol synthesis from [2-{sup 14}C]acetate and [1-{sup 14}C]C8:0 but not from [1-{sup 14}C]C24:0, implicating a peroxisomal, lovastatin-resistant HMG-CoA reductase. In SLOS fibroblasts lacking DHCR7 activity, no cholesterol was formed from [1-{sup 14}C]C24:0-derived [1-{sup 14}C]acetyl-CoA, indicating that the alternative peroxisomal pathway also requires this enzyme. Our results implicate peroxisomes in cholesterol biosynthesis but provide no link to phenotypic variation in SLOS.

  3. Peroxisome proliferator-activated receptor γ (PPARγ) mediates a Ski oncogene-induced shift from glycolysis to oxidative energy metabolism.

    PubMed

    Ye, Fang; Lemieux, Hélène; Hoppel, Charles L; Hanson, Richard W; Hakimi, Parvin; Croniger, Colleen M; Puchowicz, Michelle; Anderson, Vernon E; Fujioka, Hisashi; Stavnezer, Ed

    2011-11-18

    Overexpression of the Ski oncogene induces oncogenic transformation of chicken embryo fibroblasts (CEFs). However, unlike most other oncogene-transformed cells, Ski-transformed CEFs (Ski-CEFs) do not display the classical Warburg effect. On the contrary, Ski transformation reduced lactate production and glucose utilization in CEFs. Compared with CEFs, Ski-CEFs exhibited enhanced TCA cycle activity, fatty acid catabolism through β-oxidation, glutamate oxidation, oxygen consumption, as well as increased numbers and mass of mitochondria. Interestingly, expression of PPARγ, a key transcription factor that regulates adipogenesis and lipid metabolism, was dramatically elevated at both the mRNA and protein levels in Ski-CEFs. Accordingly, PPARγ target genes that are involved in lipid uptake, transport, and oxidation were also markedly up-regulated by Ski. Knocking down PPARγ in Ski-CEFs by RNA interference reversed the elevated expression of these PPARγ target genes, as well as the shift to oxidative metabolism and the increased mitochondrial biogenesis. Moreover, we found that Ski co-immunoprecipitates with PPARγ and co-activates PPARγ-driven transcription.

  4. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity. PMID:26241051

  5. Ciglitazone ameliorates homocysteine-mediated mitochondrial translocation and matrix metalloproteinase-9 activation in endothelial cells by inducing peroxisome proliferator activated receptor-gamma activity.

    PubMed

    Tyagi, N; Moshal, K S; Sen, U; Lominadze, D; Ovechkin, A V; Tyagi, S C

    2006-12-31

    The activation of peroxisome proliferator activated receptor-gamma (PPARgamma) ameliorates the homocysteine (Hcy)-induced matrix metalloproteinase (MMP) by decreasing reactive oxygen species (ROS) production. However, the mechanism by which Hcy induces ROS generation and MMP activation is unclear. We hypothesize that Hcy increases NADH oxidase (Nox-4) and decreases thioredoxin (Trx). This leads to translocation of Nox-4 into the mitochondria and decrease in Trx. In addition, activation of PPARgamma ameliorates the translocation of Nox-4 into mitochondria and MMP-9 activation. Mouse aortic vascular endothelial cells (MVEC) were cultured in the presence or absence of 100 microM Hcy. The cells were pre-treated with ciglitazone (CZ, 150 microM). Activity of PPARgamma activity was measured by electrophoretic mobility shift assay (EMSA) and antibody super shift assay. In situ generation of ROS was measured using 2,7-dichlorofluorescin (DCF) as a probe. The expression of Nox-4 and Trx were measured by quantitative real-time polymerase chain reaction (Q-RT-PCR). The translocation of Nox-4 was measured by 2-D gel analysis. To determine the levels of Nox-4 and Trx, the mitochondria and cytosol were separated and Western blot analysis was preformed. The MMP-9 activity was measured by gelatin-zymography. The results suggested that CZ activated endothelial PPARgamma in the presence of Hcy. Production of ROS was ameliorated by PPARgamma activation. Expression of Nox-4 was increased, while production of Trx was decreased by Hcy. However, the treatment with CZ normalized the levels of Nox-4 and Trx. Nox-4 was translocated into mitochondria in Hcy-treated endothelial cells. This translocation was associated with decreased production of Trx in mitochondria. The treatment with CZ blocked this translocation and increased Trx levels in mitochondria. Hcy-mediated MMP-9 activity was decreased in cells pre-treated with CZ. These results suggest that Hcy increases NADH oxidase and

  6. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    SciTech Connect

    Riganti, Chiara . E-mail: dario.ghigo@unito.it

    2006-05-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H{sub 2}O{sub 2} concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution.

  7. Peroxisome Metabolism and Cellular Aging

    PubMed Central

    Titorenko, Vladimir I.; Terlecky, Stanley R.

    2010-01-01

    The essential role of peroxisomes in fatty acid oxidation, anaplerotic metabolism, and hydrogen peroxide turnover is well established. Recent findings suggest these and other related biochemical processes governed by the organelle may also play a critical role in regulating cellular aging. The goal of this review is to summarize and integrate into a model, the evidence that peroxisome metabolism actually helps define the replicative and chronological age of a eukaryotic cell. In this model, peroxisomal reactive oxygen species (ROS) are seen as altering organelle biogenesis and function, and eliciting changes in the dynamic communication networks that exist between peroxisomes and other cellular compartments. At low levels, peroxisomal ROS activate an anti-aging program in the cell; at concentrations beyond a specific threshold, a pro-aging course is triggered. PMID:21083858

  8. Pex19p, a Farnesylated Protein Essential for Peroxisome Biogenesis

    PubMed Central

    Götte, Klaudia; Girzalsky, Wolfgang; Linkert, Michael; Baumgart, Evelyn; Kammerer, Stefan; Kunau, Wolf-Hubert; Erdmann, Ralf

    1998-01-01

    We report the identification and molecular characterization of Pex19p, an oleic acid-inducible, farnesylated protein of 39.7 kDa that is essential for peroxisome biogenesis in Saccharomyces cerevisiae. Cells lacking Pex19p are characterized by the absence of morphologically detectable peroxisomes and mislocalization of peroxisomal matrix proteins to the cytosol. The human HK33 gene product was identified as the putative human ortholog of Pex19p. Evidence is provided that farnesylation of Pex19p takes place at the cysteine of the C-terminal CKQQ amino acid sequence. Farnesylation of Pex19p was shown to be essential for the proper function of the protein in peroxisome biogenesis. Pex19p was shown to interact with Pex3p in vivo, and this interaction required farnesylation of Pex19p. PMID:9418908

  9. ABCD2 Alters Peroxisome Proliferator-Activated Receptor α Signaling In Vitro, but Does Not Impair Responses to Fenofibrate Therapy in a Mouse Model of Diet-Induced Obesity

    PubMed Central

    Liu, Xiaoxi; Liu, Jingjing; Liang, Shuang; Schlüter, Agatha; Fourcade, Stephane; Aslibekyan, Stella; Pujol, Aurora

    2014-01-01

    Fenofibrate is a peroxisome proliferator-activated receptor (PPAR) α ligand that has been widely used as a lipid-lowering agent in the treatment of hypertriglyceridemia. ABCD2 (D2) is a peroxisomal long-chain acyl-CoA transporter that is highly induced by fenofibrate in the livers of mice. To determine whether D2 is a modifier of fibrate responses, wild-type and D2-deficient mice were treated with fenofibrate for 14 days. The absence of D2 altered expression of gene clusters associated with lipid metabolism, including PPARα signaling. Using 3T3-L1 adipocytes, which express high levels of D2, we confirmed that knockdown of D2 modified genomic responses to fibrate treatment. We next evaluated the impact of D2 on effects of fibrates in a mouse model of diet-induced obesity. Fenofibrate treatment opposed the development of obesity, hypertriglyceridemia, and insulin resistance. However, these effects were unaffected by D2 genotype. We concluded that D2 can modulate genomic responses to fibrates, but that these effects are not sufficiently robust to alter the effects of fibrates on diet-induced obesity phenotypes. PMID:25123288

  10. Peroxisome biogenesis and human peroxisome-deficiency disorders

    PubMed Central

    FUJIKI, Yukio

    2016-01-01

    Peroxisome is a single-membrane-bounded ubiquitous organelle containing a hundred different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders (PBDs) including Zellweger syndrome, more than a dozen different complementation groups of Chinese hamster ovary (CHO) cell mutants impaired in peroxisome biogenesis are isolated as a model experimental system. By taking advantage of rapid functional complementation assay of the CHO cell mutants, successful cloning of PEX genes encoding peroxins required for peroxisome assembly invaluably contributed to the accomplishment of cloning of pathogenic genes responsible for PBDs. Peroxins are divided into three groups: 1) peroxins including Pex3p, Pex16p and Pex19p, are responsible for peroxisome membrane biogenesis via Pex19p- and Pex3p-dependent class I and Pex19p- and Pex16p-dependent class II pathways; 2) peroxins that function in matrix protein import; 3) those such as Pex11pβ are involved in peroxisome division where DLP1, Mff, and Fis1 coordinately function. PMID:27941306

  11. Catalase Deficiency Accelerates Diabetic Renal Injury Through Peroxisomal Dysfunction

    PubMed Central

    Hwang, Inah; Lee, Jiyoun; Huh, Joo Young; Park, Jehyun; Lee, Hi Bahl; Ho, Ye-Shih; Ha, Hunjoo

    2012-01-01

    Mitochondrial reactive oxygen species (ROS) play an important role in diabetes complications, including diabetic nephropathy (DN). Plasma free fatty acids (FFAs) as well as glucose are increased in diabetes, and peroxisomes and mitochondria participate in FFA oxidation in an interconnected fashion. Therefore, we investigated whether deficiency of catalase, a major peroxisomal antioxidant, accelerates DN through peroxisomal dysfunction and abnormal renal FFA metabolism. Diabetes was induced by multiple injections of low-dose streptozotocin into catalase knock-out (CKO) and wild-type (WT) C57BL/6 mice. Murine mesangial cells (MMCs) transfected with catalase small interfering RNA followed by catalase overexpression were used to further elucidate the role of endogenous catalase. Despite equivalent hyperglycemia, parameters of DN, along with markers of oxidative stress, were more accelerated in diabetic CKO mice than in diabetic WT mice up to 10 weeks of diabetes. CKO mice and MMCs showed impaired peroxisomal/mitochondrial biogenesis and FFA oxidation. Catalase deficiency increased mitochondrial ROS and fibronectin expression in response to FFAs, which were effectively restored by catalase overexpression or N-acetylcysteine. These data provide unprecedented evidence that FFA-induced peroxisomal dysfunction exacerbates DN and that endogenous catalase plays an important role in protecting the kidney from diabetic stress through maintaining peroxisomal and mitochondrial fitness. PMID:22315314

  12. Proton pump inhibitor-induced hypomagnesaemia and hypocalcaemia: case review

    PubMed Central

    Sivakumar, Jonathan

    2016-01-01

    Proton pump inhibitor (PPI)-induced hypomagnesaemia is a rare but serious adverse effect of a widely prescribed medication. It has become an increasingly recognised complication since 2006, with the U.S. Food and Drug Administration issuing a warning for this risk with regards to long-term PPI use. We present the case of PPI-associated hypomagnesaemia and hypocalcaemia. A 91 year old male presented with tetany from severe hypomagnesaemia and hypocalcaemia. This condition occurred in the context of 18 months of PPI use, and resolved following cessation of PPI therapy and the replenishment of magnesium and calcium stores. Monitoring of magnesium, calcium and potassium levels is crucial in patients prescribed PPIs long-term; especially the elderly patient. PMID:28078056

  13. Selective Serotonin–norepinephrine Reuptake Inhibitors-induced Takotsubo Cardiomyopathy

    PubMed Central

    Vasudev, Rahul; Rampal, Upamanyu; Patel, Hiten; Patel, Kunal; Bikkina, Mahesh; Shamoon, Fayez

    2016-01-01

    Context: Takotsubo translates to “octopus pot” in Japanese. Takotsubo cardiomyopathy (TTC) is characterized by a transient regional systolic dysfunction of the left ventricle. Catecholamine excess is the one most studied and favored theories explaining the pathophysiology of TTC. Case Report: We present the case of a 52-year-old Hispanic female admitted for venlafaxine-induced TTC with a review literature on all the cases of Serotonin–norepinephrine reuptake inhibitors (SNRI)-associated TTC published so far. Conclusion: SNRI inhibit the reuptake of catecholamines into the presynaptic neuron, resulting in a net gain in the concentration of epinephrine and serotonin in the neuronal synapses and causing iatrogenic catecholamine excess, ultimately leading to TTC. PMID:27583240

  14. A case series of proton pump inhibitor-induced hypomagnesemia.

    PubMed

    Hoorn, Ewout J; van der Hoek, Joost; de Man, Rob A; Kuipers, Ernst J; Bolwerk, Clemens; Zietse, Robert

    2010-07-01

    Proton pump inhibitor (PPI)-induced hypomagnesemia has been recognized since 2006. Our aim was to further characterize the clinical consequences and possible mechanisms of this electrolyte disorder using 4 cases. Two men (aged 63 and 81 years) and 2 women (aged 73 and 62 years) had been using a PPI (esomeprazole, pantoprazole, omeprazole, and rabeprazole, 20-40 mg) for 1-13 years. They developed severe hypomagnesemia (magnesium, 0.30 +/- 0.28 mEq/L; reference, 1.40-2.10 mEq/L) with hypocalcemia (calcium, 6.4 +/- 1.8 mg/dL), relative hypoparathyroidism (parathyroid hormone, 43 +/- 6 pg/mL), and extremely low urinary calcium and magnesium excretion. One patient was admitted with postanoxic encephalopathy after a collapse likely caused by arrhythmia. The others had electrocardiogram abnormalities (prolonged QT interval, ST depression, and U waves). Concomitant hypokalemia (potassium, 2.8 +/- 0.1 mEq/L) was considered the trigger for these arrhythmias. Hypomagnesemia-induced kaliuresis (potassium excretion, 65 +/- 24 mEq/L) was identified as the cause of hypokalemia. This series of PPI-induced hypomagnesemia shows that this is a generic effect. It also indicates that hypomagnesemia may occur within 1 year of PPI therapy initiation and can have serious clinical consequences, likely triggered by the associated hypokalemia. A high index of suspicion is required in PPI users for unexplained hypomagnesemia, hypocalcemia, hypokalemia, or associated symptoms.

  15. Inhibitors of Histone Deacetylases Attenuate Noise-Induced Hearing Loss.

    PubMed

    Chen, Jun; Hill, Kayla; Sha, Su-Hua

    2016-08-01

    Loss of auditory sensory hair cells is the major pathological feature of noise-induced hearing loss (NIHL). Currently, no established clinical therapies for prevention or amelioration of NIHL are available. The absence of treatments is due to our lack of a comprehensive understanding of the molecular mechanisms underlying noise-induced damage. Our previous study indicates that epigenetic modification of histones alters hair cell survival. In this study, we investigated the effect of noise exposure on histone H3 lysine 9 acetylation (H3K9ac) in the inner ear of adult CBA/J mice and determined if inhibition of histone deacetylases by systemic administration of suberoylanilide hydroxamic acid (SAHA) could attenuate NIHL. Our results showed that H3K9ac was decreased in the nuclei of outer hair cells (OHCs) and marginal cells of the stria vascularis in the basal region after exposure to a traumatic noise paradigm known to induce permanent threshold shifts (PTS). Consistent with these results, levels of histone deacetylases 1, 2, and 3 (HDAC1, HDAC2 and HDAC3) were increased predominately in the nuclei of cochlear cells. Silencing of HDAC1, HDAC2, or HDAC3 with siRNA reduced the expression of the target HDAC in OHCs, but did not attenuate noise-induced PTS, whereas treatment with the pan-HDAC inhibitor SAHA, also named vorinostat, reduced OHC loss, and attenuated PTS. These findings suggest that histone acetylation is involved in the pathogenesis of noise-induced OHC death and hearing loss. Pharmacological targeting of histone deacetylases may afford a strategy for protection against NIHL.

  16. Mode of action framework analysis for receptor-mediated toxicity: the Peroxisome Proliferator-Activated Receptor alpha (PPARα) as a case study

    EPA Science Inventory

    Therapeutic hypolipidemic agents and industrial chemicals that cause peroxisome proliferation and induce liver tumors in rodents activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα). Research has elucidated the cellular and molecular events by w...

  17. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor {alpha}/retinoid X receptor

    SciTech Connect

    Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.; Akita, Geoffrey Y.; Cheng, Seng H.; Gregory, Richard J.; Jiang Canwen

    2007-12-21

    In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferase I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.

  18. Human disorders of peroxisome metabolism and biogenesis.

    PubMed

    Waterham, Hans R; Ferdinandusse, Sacha; Wanders, Ronald J A

    2016-05-01

    Peroxisomes are dynamic organelles that play an essential role in a variety of cellular catabolic and anabolic metabolic pathways, including fatty acid alpha- and beta-oxidation, and plasmalogen and bile acid synthesis. Defects in genes encoding peroxisomal proteins can result in a large variety of peroxisomal disorders either affecting specific metabolic pathways, i.e., the single peroxisomal enzyme deficiencies, or causing a generalized defect in function and assembly of peroxisomes, i.e., peroxisome biogenesis disorders. In this review, we discuss the clinical, biochemical, and genetic aspects of all human peroxisomal disorders currently known.

  19. [The influence of inhibitors of neuronal and inducible NO-synthases on experimental hemorrhagic stroke].

    PubMed

    Krushinskiĭ, A L; Kuzenkov, V S; D'iakonova, V E; Reutov, V P

    2014-01-01

    Objectives. To study the effect of inhibitors of neuronal and inducible NO-synthase on the development of hemorrhagic stroke in rats Krushinsky-Molodkina (KM) without adaptation to hypoxia and with short-term adaptation to hypobaric hypoxia. Material and methods. Ninety rats were included in the study. Experiments with short-term adaptation to hypobaric hypoxia were performed on 48 rats. The inhibitor of inducible NO-synthase (aminoguanidine, "Sigma") or the inhibitor of neuronal NO-synthase (7-nitroindasol, "Sigma") were injected in dosage 2.5 mg/100g intraperitoneally. Results. Selective inhibitors of neuronal and inducible NO-synthase had a protective effect on stress injuries in KM rats. The inhibitor of neuronal NO-synthase was more effective than the inhibitor of inducible NO-synthase in the experiments without adaptation to hypoxia. Markedly greater protective effect was achieved by the simultaneous introduction of inhibitors of neuronal and inducible NO-synthase. The greatest protective effect in the development of stress damage in rats of KM was observed in short-term adaptation to hypobaric hypoxia with simultaneous introduction of both inhibitors. Conclusions. It can be assumed that an excessive amount of NO produced by neuronal and inducible NO-synthases during the acoustic exposure in KM rats leads to stress damage. Use of selective inhibitors reduce the excess NO synthesis and the development of audiogenic stress damage caused by hemorrhagic stroke.

  20. Overexpression of PGC-1α Increases Peroxisomal and Mitochondrial Fatty Acid Oxidation in Human Primary Myotubes.

    PubMed

    Huang, Tai-Yu; Zheng, Donghai; Houmard, Joseph A; Brault, Jeffrey J; Hickner, Robert C; Cortright, Ronald N

    2017-01-10

    Peroxisomes are indispensable organelles for lipid metabolism in humans and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI =24.0 ± 0.6 kg/m(2), N = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (Peroxins) and genes (PEXs) responsible for proliferation and functions were assessed by western blotting and real-time qRT-PCR respectively. 1-(14)C palmitic acid and 1-(14)C lignoceric acid (exclusive peroxisomal specific substrate) were used to assess mitochondrial oxidation of peroxisomal derived metabolites. Following overexpression of PGC-1α, 1) Peroxisomal membrane protein 70kD (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated (P<0.05) 2) PGC-1α, PMP70, key PEXs, and peroxisomal β-oxidation mRNA expression levels were significantly upregulated (P<0.05) and 3) A concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed (P<0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomes and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation as observed in HSkM cells.

  1. Toward a definition of the complete proteome of plant peroxisomes: Where experimental proteomics must be complemented by bioinformatics.

    PubMed

    Reumann, Sigrun

    2011-05-01

    In the past few years, proteome analysis of Arabidopsis peroxisomes has been established by the complementary efforts of four research groups and has emerged as the major unbiased approach to identify new peroxisomal proteins on a large scale. Collectively, more than 100 new candidate proteins from plant peroxisomes have been identified, including long-awaited low-abundance proteins. More than 50 proteins have been validated as peroxisome targeted, nearly doubling the number of established plant peroxisomal proteins. Sequence homologies of the new proteins predict unexpected enzyme activities, novel metabolic pathways and unknown non-metabolic peroxisome functions. Despite this remarkable success, proteome analyses of plant peroxisomes remain highly material intensive and require major preparative efforts. Characterization of the membrane proteome or post-translational protein modifications poses major technical challenges. New strategies, including quantitative mass spectrometry methods, need to be applied to allow further identifications of plant peroxisomal proteins, such as of stress-inducible proteins. In the long process of defining the complete proteome of plant peroxisomes, the prediction of peroxisome-targeted proteins from plant genome sequences emerges as an essential complementary approach to identify additional peroxisomal proteins that are, for instance, specific to peroxisome variants from minor tissues and organs or to abiotically stressed model and crop plants.

  2. Agonist-induced activation releases peroxisome proliferator-activated receptor beta/delta from its inhibition by palmitate-induced nuclear factor-kappaB in skeletal muscle cells.

    PubMed

    Jové, Mireia; Laguna, Juan C; Vázquez-Carrera, Manuel

    2005-05-01

    The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood, but there is a strong correlation between insulin resistance and intramyocellular lipid accumulation in skeletal muscle. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. The aim of this work was to study whether the exposure of skeletal muscle cells to palmitate affected peroxisome proliferator-activated receptor (PPAR) beta/delta activity. Here, we report that exposure of C2C12 skeletal muscle cells to 0.75 mM palmitate reduced (74%, P<0.01) the mRNA levels of the PPARbeta/delta-target gene pyruvatedehydrogenase kinase 4 (PDK-4), which is involved in fatty acid utilization. This reduction was not observed in the presence of the PPARbeta/delta agonist L-165041. This drug prevented palmitate-induced nuclear factor (NF)-kappaB activation. Increased NF-kappaB activity after palmitate exposure was associated with enhanced protein-protein interaction between PPARbeta/delta and p65. Interestingly, treatment with the PPARbeta/delta agonist L-165041 completely abolished this interaction. These results indicate that palmitate may reduce fatty acid utilization in skeletal muscle cells by reducing PPARbeta/delta signaling through increased NF-kappaB activity.

  3. Proton pump inhibitor-induced exfoliative dermatitis: A case report.

    PubMed

    Qiu, Zhihong; Liu, Hongtao; He, Lien; Ma, Yinling; Song, Haojing; Bai, Wanjun; Yu, Meiling

    2016-02-01

    A 74-year-old female patient was admitted to hospital following a road accident with pains in the chest, abdomen, waist, back, nose, left wrist and lower limbs. After 1 week, the patient presented with gastrointestinal bleeding, and thus was treated with protein pump inhibitors (PPIs), including lansoprazole, esomeprazole and omeprazole enteric-coated tablets, in order to inhibit acid secretion and attenuate bleeding. However, the patient developed skin rashes on the chest and right lower limb and foot 28 days following treatment initiation. The skin rashes spread and ulcerated after 3 days, and were associated with tracheal mucosal injury and hemoptysis. Subsequently, treatment of the patient with PPIs was terminated, after which the tracheal hemoptysis and skin rashes markedly improved. In addition, no new skin rashes appeared following termination of the PPI treatment. In the present case, long-term treatment of an elderly patient with PPIs may have induced exfoliative dermatitis, due to hepatic ischemia, hypoxia and acute renal failure, which may have decreased the metabolism of PPIs, resulting in the accumulation of PPI metabolites.

  4. Clinical predictors associated with proton pump inhibitor-induced hypomagnesemia.

    PubMed

    Kim, Sunyong; Lee, Hyuk; Park, Chan Hyuk; Shim, Choong Nam; Lee, Hyun Jik; Park, Jun Chul; Shin, Sung Kwan; Lee, Sang Kil; Lee, Yong Chan; Kim, Ha Yan; Kang, Dae Ryong

    2015-01-01

    There is increasing evidence and case reports regarding proton pump inhibitor (PPI)-induced hypomagnesemia. Our study aimed to clarify the relationship between PPI use and serum magnesium levels and to specify high-risk patients. We retrospectively studied 112 consecutive patients aged 20 years or older who were treated with PPI for ≥30 days and whose serum magnesium levels were available for the PPI treatment period. We compared the mean level of serum magnesium of the enrolled patients with PPI treatment with matched controls. There were no significant differences between the matched PPI users (n = 105) and nonusers (n = 210) in the magnesium levels (0.85 ± 0.09 vs. 0.86 ± 0.16 mM, P = 0.297). In a subgroup analysis of a PPI user group, hypomagnesemia could be observed in 32 patients but not in 80 patients. In multivariate analyses, PPI use for >1 year, age less than 45 years, and concurrent cisplatin or carboplatin use were significantly associated with PPI-induced hypomagnesemia {P = 0.042, odds ratio [OR; 95% confidence interval (CI)]: 5.388 [1.056-27.493]; P = 0.007, OR [95% CI]: 4.710 [1.523-14.571]; P = 0.007, OR [95% CI]: 13.404 [2.066-86.952], respectively} after adjusting for confounders. This study shows that long-term PPI use is associated with hypomagnesemia in hospitalized adult patients. Therefore, serum magnesium levels should be checked before the initiation of PPI treatment and during the treatment period in patients, particularly those concurrently using platinum-based chemotherapy or who are expected to use PPI for long periods.

  5. Yeast peroxisomes multiply by growth and division.

    PubMed

    Motley, Alison M; Hettema, Ewald H

    2007-07-30

    Peroxisomes can arise de novo from the endoplasmic reticulum (ER) via a maturation process. Peroxisomes can also multiply by fission. We have investigated how these modes of multiplication contribute to peroxisome numbers in Saccharomyces cerevisiae and the role of the dynamin-related proteins (Drps) in these processes. We have developed pulse-chase and mating assays to follow the fate of existing peroxisomes, de novo-formed peroxisomes, and ER-derived preperoxisomal structures. We find that in wild-type (WT) cells, peroxisomes multiply by fission and do not form de novo. A marker for the maturation pathway, Pex3-GFP, is delivered from the ER to existing peroxisomes. Strikingly, cells lacking peroxisomes as a result of a segregation defect do form peroxisomes de novo. This process is slower than peroxisome multiplication in WT cells and is Drp independent. In contrast, peroxisome fission is Drp dependent. Our results show that peroxisomes multiply by growth and division under our assay conditions. We conclude that the ER to peroxisome pathway functions to supply existing peroxisomes with essential membrane constituents.

  6. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  7. Aromatase inhibitor-induced joint pain: melatonin's role.

    PubMed

    Burk, R

    2008-12-01

    Aromatase inhibitors (AIs) enjoy increasing use in breast cancer adjuvant therapy. But the joint pain associated with AIs significantly reduces patient adherence despite the clear survival benefits of this class of drugs. Two clues point to a novel hypothesis for this unexplained symptom. First, realizing that joint pain is associated with virtually all estrogen-depleting breast cancer treatments suggests that the cause is broader than this particular class of drugs. Second, the strongly circadian nature of these symptoms suggests circadian hormone involvement. This puts new light on some existing research findings: that estrogen depletion can increase pineal melatonin, that the ability of light to suppress pineal melatonin is more variable than once thought, and that an altered melatonin cycle is associated with rheumatoid arthritis patients, where identical circadian symptoms present. It is hypothesized that when AIs decrease estrogen levels, light-induced melatonin suppression (LIMS) loses efficacy, leading to an abnormal melatonin cycle as seen in rheumatoid arthritis patients, producing (via mechanisms not yet understood) the symptoms of morning stiffness. Not all frequencies of retinal light are equally effective at suppressing pineal melatonin; most artificial lighting has less relevant spectral density than sunlight. This hypothesis predicts that some patients can suppress the circadian joint pain associated with aromatase inhibitors merely by getting sufficient hours of daily retinal sunlight. A single patient history is discussed, in which a series of treatments had no effect on AI joint pain, while extended exposure to sunlight produced a definitive elimination of symptoms the next morning. To conclusively demonstrate the role of melatonin, light-emitting diodes of an appropriate frequency were mounted on a cap for the patient to wear. If worn first thing in the morning, the cap sharply curtailed the duration of morning stiffness. If worn for a

  8. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis

    PubMed Central

    Motley, Alison M.; Galvin, Paul C.; Ekal, Lakhan; Nuttall, James M.

    2015-01-01

    A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum–derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division. PMID:26644516

  9. Multi-layered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae.

    PubMed

    Manzanares-Estreder, Sara; Espí-Bardisa, Joan; Alarcón, Benito; Pascual-Ahuir, Amparo; Proft, Markus

    2017-03-21

    Peroxisomes are dynamic organelles and the sole location for fatty acid β-oxidation in yeast cells. Here we report that peroxisomal function is crucial for the adaptation to salt stress, especially upon sugar limitation. Upon stress, multiple layers of control regulate the activity and the number of peroxisomes. Activated Hog1 MAP kinase triggers the induction of genes encoding enzymes for fatty acid activation, peroxisomal import and β-oxidation through the Adr1 transcriptional activator, which transiently associates with genes encoding fatty acid metabolic enzymes in a stress- and Hog1-dependent manner. Moreover, Na(+) and Li(+) stress increases the number of peroxisomes per cell in a Hog1-independent manner, which depends instead of the retrograde pathway and the dynamin related GTPases Dnm1 and Vps1. The strong activation of the Faa1 fatty acyl-CoA synthetase, which specifically localizes to lipid particles and peroxisomes, indicates that adaptation to salt stress requires the enhanced mobilization of fatty acids from internal lipid stores. Furthermore, the activation of mitochondrial respiration during stress depends on peroxisomes, mitochondrial acetyl-carnitine uptake is essential for salt resistance, and the number of peroxisomes attached to the mitochondrial network increases during salt adaptation, which altogether indicates that stress-induced peroxisomal β-oxidation triggers enhanced respiration upon salt shock. This article is protected by copyright. All rights reserved.

  10. The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1.

    PubMed Central

    Waterham, H R; de Vries, Y; Russel, K A; Xie, W; Veenhuis, M; Cregg, J M

    1996-01-01

    We report the cloning of PER6, a gene essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. The PER6 sequence predicts that its product Per6p is a 52-kDa polypeptide with the cysteine-rich C3HC4 motif. Per6p has significant overall sequence similarity with the human peroxisome assembly factor PAF-1, a protein that is defective in certain patients suffering from the peroxisomal disorder Zellweger syndrome, and with car1, a protein required for peroxisome biogenesis and caryogamy in the filamentous fungus Podospora anserina. In addition, the C3HC4 motif and two of the three membrane-spanning segments predicted for Per6p align with the C3HC4 motifs and the two membrane-spanning segments predicted for PAF-1 and car1. Like PAF-1, Per6p is a peroxisomal integral membrane protein. In methanol- or oleic acid-induced cells of per6 mutants, morphologically recognizable peroxisomes are absent. Instead, peroxisomal remnants are observed. In addition, peroxisomal matrix proteins are synthesized but located in the cytosol. The similarities between Per6p and PAF-1 in amino acid sequence and biochemical properties, and between mutants defective in their respective genes, suggest that Per6p is the putative yeast homolog of PAF-1. PMID:8628321

  11. The histone 3 lysine 9 methyltransferase inhibitor chaetocin improves prognosis in a rat model of high salt diet-induced heart failure

    PubMed Central

    Ono, Tomohiko; Kamimura, Naomi; Matsuhashi, Tomohiro; Nagai, Toshihiro; Nishiyama, Takahiko; Endo, Jin; Hishiki, Takako; Nakanishi, Tsuyoshi; Shimizu, Noriaki; Tanaka, Hirotoshi; Ohta, Shigeo; Suematsu, Makoto; Ieda, Masaki; Sano, Motoaki; Fukuda, Keiichi; Kaneda, Ruri

    2017-01-01

    Histone acetylation has been linked to cardiac hypertrophy and heart failure. However, the pathological implications of changes in histone methylation and the effects of interventions with histone methyltransferase inhibitors for heart failure have not been fully clarified. Here, we focused on H3K9me3 status in the heart and investigated the effects of the histone H3K9 methyltransferase inhibitor chaetocin on prognoses in Dahl salt-sensitive rats, an animal model of chronic heart failure. Chaetocin prolonged survival and restored mitochondrial dysfunction. ChIP-seq analysis demonstrated that chronic stress to the heart induced H3K9me3 elevation in thousands of repetitive elements, including intronic regions of mitochondria-related genes, such as the gene encoding peroxisome proliferator-activated receptor-gamma coactivator 1 alpha. Furthermore, chaetocin reversed this effect on these repetitive loci. These data suggested that excessive heterochromatinization of repetitive elements of mitochondrial genes in the failing heart may lead to the silencing of genes and impair heart function. Thus, chaetocin may be a potential therapeutic agent for chronic heart failure. PMID:28051130

  12. New isolates of carnation Italian ringspot virus differ from the original one by having replication-associated proteins with a typical tombusvirus-like N-terminus and by inducing peroxisome- rather than mitochondrion-derived multivesicular bodies.

    PubMed

    Koenig, Renate; Lesemann, Dietrich-Eckhardt; Pfeilstetter, Ernst

    2009-01-01

    Five new isolates of carnation Italian ringspot virus (CIRV) from cherry trees, Gypsophila and surface water differ from the original carnation isolate (CIRV-car) and also from Pelargonium necrotic spot virus (PelNSV) by having an ORF 1/ORF1-RT with a typical tombusvirus-like 5'end and by inducing the formation of peroxisome- rather than mitochondrion-derived multivesicular bodies (MVBs). This supports with natural isolates earlier conclusions reached by others with artificially produced hybrid viruses that the 5'end of ORF 1 determines from which organelle the MBVs will be derived. CIRV-car might have resulted from a natural recombination event with genome elements of a PelNSV-like virus.

  13. Modification of tumour cell metabolism modulates sensitivity to Chk1 inhibitor-induced DNA damage

    PubMed Central

    Massey, Andrew J.

    2017-01-01

    Chk1 kinase inhibitors are currently under clinical investigation as potentiators of cytotoxic chemotherapy and demonstrate potent activity in combination with anti-metabolite drugs that increase replication stress through the inhibition of nucleotide or deoxyribonucleotide biosynthesis. Inhibiting other metabolic pathways critical for the supply of building blocks necessary to support DNA replication may lead to increased DNA damage and synergy with an inhibitor of Chk1. A screen of small molecule metabolism modulators identified combinatorial activity between a Chk1 inhibitor and chloroquine or the LDHA/LDHB inhibitor GSK 2837808A. Compounds, such as 2-deoxyglucose or 6-aminonicotinamide, that reduced the fraction of cells undergoing active replication rendered tumour cells more resistant to Chk1 inhibitor-induced DNA damage. Withdrawal of glucose or glutamine induced G1 and G2/M arrest without increasing DNA damage and reduced Chk1 expression and activation through autophosphorylation. This suggests the expression and activation of Chk1 kinase is associated with cells undergoing active DNA replication. Glutamine starvation rendered tumour cells more resistant to Chk1 inhibitor-induced DNA damage and reversal of the glutamine starvation restored the sensitivity of tumour cells to Chk1 inhibitor-induced DNA damage. Chk1 inhibitors may be a potentially useful therapeutic treatment for patients whose tumours contain a high fraction of replicating cells. PMID:28106079

  14. Peroxisome Proliferator-Activated Receptors as Mediators of Phthalate-Induced Effects in the Male and Female Reproductive Tract: Epidemiological and Experimental Evidence

    PubMed Central

    Latini, Giuseppe; Scoditti, Egeria; Verrotti, Alberto; De Felice, Claudio; Massaro, Marika

    2008-01-01

    There is growing evidence that male as well as female reproductive function has been declining in human and wildlife populations over the last 40 years. Several factors such as lifestyle or environmental xenobiotics other than genetic factors may play a role in determining adverse effects on reproductive health. Among the environmental xenobiotics phthalates, a family of man-made pollutants are suspected to interfere with the function of the endocrine system and therefore to be endocrine disruptors. The definition of endocrine disruption is today extended to broader endocrine regulations, and includes activation of metabolic sensors, such as the peroxisome proliferator-activated receptors (PPARs). Toxicological studies have shown that phthalates can activate a subset of PPARs. Here, we analyze the epidemiological and experimental evidence linking phthalate exposure to both PPAR activation and adverse effects on male and female reproductive health. PMID:18288285

  15. Selective Serotonin Reuptake Inhibitor-Induced Sexual Dysfunction in Adolescents: A Review.

    ERIC Educational Resources Information Center

    Scharko, Alexander M.

    2004-01-01

    Objective: To review the existing literature on selective serotonin reuptake inhibitor (SSRI)-induced sexual dysfunction in adolescents. Method: A literature review of SSRI-induced adverse effects in adolescents focusing on sexual dysfunction was done. Nonsexual SSRI-induced adverse effects were compared in adult and pediatric populations.…

  16. Peroxisomes, oxidative stress, and inflammation

    PubMed Central

    Terlecky, Stanley R; Terlecky, Laura J; Giordano, Courtney R

    2012-01-01

    Peroxisomes are intracellular organelles mediating a wide variety of biosynthetic and biodegradative reactions. Included among these are the metabolism of hydrogen peroxide and other reactive species, molecules whose levels help define the oxidative state of cells. Loss of oxidative equilibrium in cells of tissues and organs potentiates inflammatory responses which can ultimately trigger human disease. The goal of this article is to review evidence for connections between peroxisome function, oxidative stress, and inflammation in the context of human health and degenerative disease. Dysregulated points in this nexus are identified and potential remedial approaches are presented. PMID:22649571

  17. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    SciTech Connect

    Sharma, Bhupesh Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  18. Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY

    PubMed Central

    Fahy, Deirdre; Sanad, Marwa N. M. E.; Duscha, Kerstin; Lyons, Madison; Liu, Fuquan; Bozhkov, Peter; Kunz, Hans-Henning; Hu, Jianping; Neuhaus, H. Ekkehard; Steel, Patrick G.; Smertenko, Andrei

    2017-01-01

    Plant peroxisomes maintain a plethora of key life processes including fatty acid β-oxidation, photorespiration, synthesis of hormones, and homeostasis of reactive oxygen species (ROS). Abundance of peroxisomes in cells is dynamic; however mechanisms controlling peroxisome proliferation remain poorly understood because measuring peroxisome abundance is technically challenging. Counting peroxisomes in individual cells of complex organs by electron or fluorescence microscopy is expensive and time consuming. Here we present a simple technique for quantifying peroxisome abundance using the small probe Nitro-BODIPY, which in vivo fluoresces selectively inside peroxisomes. The physiological relevance of our technique was demonstrated using salinity as a known inducer of peroxisome proliferation. While significant peroxisome proliferation was observed in wild-type Arabidopsis leaves following 5-hour exposure to NaCl, no proliferation was detected in the salt-susceptible mutants fry1-6, sos1-14, and sos1-15. We also found that N-BODIPY detects aggregation of peroxisomes during final stages of programmed cell death and can be used as a marker of this stage. Furthermore, accumulation of peroxisomes in an autophagy-deficient Arabidopsis mutant atg5 correlated with N-BODIPY labeling. In conclusion, the technique reported here enables quantification of peroxisomes in plant material at various physiological settings. Its potential applications encompass identification of genes controlling peroxisome homeostasis and capturing stress-tolerant genotypes. PMID:28145408

  19. A small molecule inhibitor of PAI-1 protects against doxorubicin-induced cellular senescence

    PubMed Central

    Ghosh, Asish K.; Rai, Rahul; Park, Kitae E.; Eren, Mesut; Miyata, Toshio; Wilsbacher, Lisa D.; Vaughan, Douglas E.

    2016-01-01

    Doxorubicin, an anthracycline antibiotic, is a commonly used anticancer drug. In spite of its widespread usage, its therapeutic effect is limited by its cardiotoxicity. On the cellular level, Doxorubicin-induced cardiotoxicity manifests as stress induced premature senescence. Previously, we demonstrated that plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of serine proteases, is an important biomarker and regulator of cellular senescence and aging. Here, we tested the hypothesis that pharmacological inhibition of cellular PAI-1 protects against stress- and aging-induced cellular senescence and delineated the molecular basis of protective action of PAI-1 inhibition. Results show that TM5441, a potent small molecule inhibitor of PAI-1, effectively prevents Doxorubicin-induced senescence in cardiomyocytes, fibroblasts and endothelial cells. TM5441 exerts its inhibitory effect on Doxorubicin-induced cellular senescence by decreasing reactive oxygen species generation, induction of antioxidants like catalase and suppression of stress-induced senescence cadre p53, p21, p16, PAI-1 and IGFBP3. Importantly, TM5441 also reduces replicative senescence of fibroblasts. Together these results for the first time demonstrate the efficacy of PAI-1 inhibitor in prevention of Doxorubicin-induced and replicative senescence in normal cells. Thus PAI-1 inhibitor may form an important adjuvant component of chemotherapy regimens, limiting not only Doxorubicin-induced cardiac senescence but also ameliorating the prothrombotic profile. PMID:27736799

  20. Down-regulation of peroxisome proliferator activated receptor γ coactivator 1α induces oxidative stress and toxicity of 1-(4-Chlorophenyl)-benzo-2,5-quinone in HaCaT human keratinocytes

    PubMed Central

    Xiao, Wusheng; Goswami, Prabhat C.

    2015-01-01

    Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that is known to regulate oxidative stress response by enhancing the expression of antioxidant genes. We have shown previously that 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone-metabolite of 4-monochlorobiphenyl (PCB3) induces oxidative stress and toxicity in human skin keratinocytes, and breast and prostate epithelial cells. In this study, we investigate whether PGC-1α regulates oxidative stress and toxicity in 4-ClBQ treated HaCaT human keratinocytes. Results showed significant down-regulation in the expression of PGC-1α and catalase in 4-ClBQ treated HaCaT cells. Down-regulation of PGC-1α expression was associated with 4-ClBQ induced increase in the steady-state levels of cellular reactive oxygen species (ROS) and toxicity. Overexpression of pgc-1α enhanced the expression of catalase and suppressed 4-ClBQ induced increase in cellular ROS levels and toxicity. These results suggest that pgc-1α mediates 4-ClBQ induced oxidative stress and toxicity in HaCaT cells presumably by regulating catalase expression. PMID:26004620

  1. Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation.

    PubMed

    Kim, Ki Young; Ahn, Jin Hee; Cheon, Hyae Gyeong

    2007-09-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit human lung cancers by inducing apoptosis and differentiation. In the present study, we elucidated the apoptotic mechanism of PPARgamma activation in human lung cancers by using a novel PPARgamma agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy)-3-phenyl-(1H-indene-2-carboxylic acid ethyl ester (KR-62980), and rosiglitazone. PPARgamma activation selectively inhibited cell viability of non-small-cell lung cancer with little effect on small-cell lung cancer and normal lung cells. The cell death induced by PPARgamma activation presented apoptotic features of oligonucleosomal DNA fragmentation in A549 human non-small-cell lung cancer cell line. Reactive oxygen species (ROS) production was accompanied by increased expression of proline oxidase (POX), a redox enzyme expressed in mitochondria, upon incubation with the agonists. POX RNA interference treatment blocked PPARgamma-induced ROS formation and cytotoxicity, suggesting that POX plays a functional role in apoptosis through ROS formation. The apoptotic effects by the agonists were antagonized by bisphenol A diglycidyl ether, a PPARgamma antagonist, and by knockdown of PPARgamma expression, indicating the involvement of PPARgamma in these actions. The results of the present study suggest that PPARgamma activation induces apoptotic cell death in non-small-cell lung carcinoma mainly through ROS formation via POX induction.

  2. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells

    PubMed Central

    Baenke, Franziska; Chaneton, Barbara; Smith, Matthew; Van Den Broek, Niels; Hogan, Kate; Tang, Haoran; Viros, Amaya; Martin, Matthew; Galbraith, Laura; Girotti, Maria R.; Dhomen, Nathalie; Gottlieb, Eyal; Marais, Richard

    2016-01-01

    BRAF inhibitors can extend progression-free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first-line setting. PMID:26365896

  3. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    SciTech Connect

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa; Moon, Eun-Yi; Hong, Sung Hee

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  4. Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis

    SciTech Connect

    Kobayashi, Shinta; Tanaka, Atsushi; Fujiki, Yukio . E-mail: yfujiscb@mbox.nc.kyushu-u.ac.jp

    2007-05-01

    Dynamin-like protein 1 (DLP1) and Pex11p{beta} function in morphogenesis of peroxisomes. In the present work, we investigated whether Fis1 is involved in fission of peroxisomes. Endogenous Fis1 was morphologically detected in peroxisomes as well as mitochondria in wild-type CHO-K1 and DLP1-defective ZP121 cells. Subcellular fractionation studies also revealed the presence of Fis1 in peroxisomes. Peroxisomal Fis1 showed the same topology, i.e., C-tail anchored membrane protein, as the mitochondrial one. Furthermore, ectopic expression of FIS1 induced peroxisome proliferation in CHO-K1 cells, while the interference of FIS1 RNA resulted in tubulation of peroxisomes, hence reducing the number of peroxisomes. Fis1 interacted with Pex11p{beta}, by direct binding apparently involving the C-terminal region of Pex11p{beta} in the interaction. Pex11p{beta} also interacted with each other, whereas the binding of Pex11p{beta} to DLP1 was not detectable. Moreover, ternary complexes comprising Fis1, Pex11p{beta}, and DLP1 were detected by chemical cross-linking. We also showed that the highly conserved N-terminal domain of Pex11p{beta} was required for the homo-oligomerization of Pex11p{beta} and indispensable for the peroxisome-proliferating activity. Taken together, these findings indicate that Fis1 plays important roles in peroxisome division and maintenance of peroxisome morphology in mammalian cells, possibly in a concerted manner with Pex11p{beta} and DLP1.

  5. Statins enhance peroxisome proliferator-activated receptor gamma coactivator-1alpha activity to regulate energy metabolism.

    PubMed

    Wang, Wenxian; Wong, Chi-Wai

    2010-03-01

    Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) serves as an inducible coactivator for a number of transcription factors to control energy metabolism. Insulin signaling through Akt kinase has been demonstrated to phosphorylate PGC-1alpha at serine 571 and downregulate its activity in the liver. Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors that reduce cholesterol synthesis in the liver. In this study, we found that statins reduced the active form of Akt and enhanced PGC-1alpha activity. Specifically, statins failed to activate an S571A mutant of PGC-1alpha. The activation of PGC-1alpha by statins selectively enhanced the expression of energy metabolizing enzymes and regulators including peroxisome proliferator-activated receptor alpha, acyl-CoA oxidase, carnitine palmitoyl transferase-1A, and pyruvate dehydrogenase kinase 4. Importantly, a constitutively active form of Akt partially reduced the statin-enhanced gene expression. Our study thus provides a plausible mechanistic explanation for the hypolipidemic effect of statin through elevating the rate of beta-oxidation and mitochondrial Kreb's cycle capacity to enhance fatty acid utilization while reducing the rate of glycolysis.

  6. Dipeptidyl peptidase IV inhibitor lowers PPARγ agonist-induced body weight gain by affecting food intake, fat mass, and beige/brown fat but not fluid retention

    PubMed Central

    Masuda, Takahiro; Fu, Yiling; Eguchi, Akiko; Czogalla, Jan; Rose, Michael A.; Kuczkowski, Alexander; Gerasimova, Maria; Feldstein, Ariel E.; Scadeng, Miriam

    2013-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) agonists like pioglitazone (PGZ) are effective antidiabetic drugs, but they induce fluid retention and body weight (BW) gain. Dipeptidyl peptidase IV (DPP IV) inhibitors are antidiabetic drugs that enhance renal Na+ and fluid excretion. Therefore, we examined whether the DPP IV inhibitor alogliptin (ALG) ameliorates PGZ-induced BW gain. Male Sv129 mice were treated with vehicle (repelleted diet), PGZ (220 mg/kg diet), ALG (300 mg/kg diet), or a combination of PGZ and ALG (PGZ + ALG) for 14 days. PGZ + ALG prevented the increase in BW observed with PGZ but did not attenuate the increase in body fluid content determined by bioimpedance spectroscopy (BIS). BIS revealed that ALG alone had no effect on fat mass (FM) but enhanced the FM-lowering effect of PGZ; MRI analysis confirmed the latter and showed reductions in visceral and inguinal subcutaneous (sc) white adipose tissue (WAT). ALG but not PGZ decreased food intake and plasma free fatty acid concentrations. Conversely, PGZ but not ALG increased mRNA expression of thermogenesis mediator uncoupling protein 1 in epididymal WAT. Adding ALG to PGZ treatment increased the abundance of multilocular cell islets in sc WAT, and PGZ + ALG increased the expression of brown-fat-like “beige” cell marker TMEM26 in sc WAT and interscapular brown adipose tissue and increased rectal temperature vs. vehicle. In summary, DPP IV inhibition did not attenuate PPARγ agonist-induced fluid retention but prevented BW gain by reducing FM. This involved ALG inhibition of food intake and was associated with food intake-independent synergistic effects of PPARγ agonism and DPP-IV inhibition on beige/brown fat cells and thermogenesis. PMID:24347054

  7. Beneficial Effect of Flavone Derivatives on Aβ-Induced Memory Deficit Is Mediated by Peroxisome Proliferator-Activated Receptor γ Coactivator 1α: A Comparative Study.

    PubMed

    Arsalandeh, Farshad; Ahmadian, Shahin; Foolad, Forough; Khodagholi, Fariba; Farimani, Mahdi M; Shaerzadeh, Fatemeh

    2015-01-01

    In the present study, the neuroprotective effect of 5-hydroxy-6,7,4'-trimethoxyflavone (flavone 1), a natural flavone, was investigated in comparison with another flavone, 5,7,4'-trihydroxyflavone (flavone 2) on the hippocampus of amyloid beta (Aβ)-injected rats. Rats were treated with the 2 flavones (1 mg/kg/d) for 1 week before Aβ injection. Seven days after Aβ administration, memory function of rats was assessed in a passive avoidance test (PAT). Changes in the levels of mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α), phospho-adenosine monophosphate (AMP)-activated protein kinase (pAMPK), AMPK, phospho-cAMP-responsive element-binding protein (CREB), CREB, and nuclear respiratory factor 1 (NRF-1) proteins were determined by Western blot analysis. Our results showed an improvement in memory in rats pretreated with flavonoids. At the molecular level, phosphorylation of CREB, known as the master modulator of memory processes, increased. On the other hand, the level of mitochondrial biogenesis factors, PGC-1α and its downstream molecules NRF-1 and TFAM significantly increased by dietary administration of 2 flavones. In addition, flavone 1 and flavone 2 prevented mitochondrial swelling and mitochondrial membrane potential reduction. Our results provided evidence that flavone 1 is more effective than flavone 2 presumably due to its O-methylated groups. In conclusion, it seems that in addition to classical antioxidant effect, flavones exert part of their protective effects through mitochondrial biogenesis.

  8. Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor-induced cell death

    SciTech Connect

    Ozaki, Kei-ichi; Minoda, Ai; Kishikawa, Futaba; Kohno, Michiaki . E-mail: kohnom@net.nagasaki-u.ac.jp

    2006-01-27

    Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway is associated with the neoplastic phenotype of a large number of human tumor cells. Although specific blockade of the ERK pathway by treating such tumor cells with potent mitogen-activated protein kinase/ERK kinase (MEK) inhibitors completely suppresses their proliferation, it by itself shows only a modest effect on the induction of apoptotic cell death. However, these MEK inhibitors markedly enhance the efficacy of histone deacetylase (HDAC) inhibitors to induce apoptotic cell death: such an enhanced cell death is observed only in tumor cells in which the ERK pathway is constitutively activated. Co-administration of MEK inhibitor markedly sensitizes tumor cells to HDAC inhibitor-induced generation of reactive oxygen species, which appears to mediate the enhanced cell death induced by the combination of these agents. These results suggest that the combination of MEK inhibitors and HDAC inhibitors provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the ERK pathway is constitutively activated.

  9. Peroxisomes are platforms for cytomegalovirus’ evasion from the cellular immune response

    PubMed Central

    Magalhães, Ana Cristina; Ferreira, Ana Rita; Gomes, Sílvia; Vieira, Marta; Gouveia, Ana; Valença, Isabel; Islinger, Markus; Nascimento, Rute; Schrader, Michael; Kagan, Jonathan C.; Ribeiro, Daniela

    2016-01-01

    The human cytomegalovirus developed distinct evasion mechanisms from the cellular antiviral response involving vMIA, a virally-encoded protein that is not only able to prevent cellular apoptosis but also to inhibit signalling downstream from mitochondrial MAVS. vMIA has been shown to localize at mitochondria and to trigger their fragmentation, a phenomenon proven to be essential for the signalling inhibition. Here, we demonstrate that vMIA is also localized at peroxisomes, induces their fragmentation and inhibits the peroxisomal-dependent antiviral signalling pathway. Importantly, we demonstrate that peroxisomal fragmentation is not essential for vMIA to specifically inhibit signalling downstream the peroxisomal MAVS. We also show that vMIA interacts with the cytoplasmic chaperone Pex19, suggesting that the virus has developed a strategy to highjack the peroxisomal membrane proteins’ transport machinery. Furthermore, we show that vMIA is able to specifically interact with the peroxisomal MAVS. Our results demonstrate that peroxisomes constitute a platform for evasion of the cellular antiviral response and that the human cytomegalovirus has developed a mechanism by which it is able to specifically evade the peroxisomal MAVS-dependent antiviral signalling. PMID:27181750

  10. Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells

    SciTech Connect

    Bai Jirong . E-mail: jbai@bidmc.harvard.edu; Demirjian, Aram; Sui Jianhua; Marasco, Wayne; Callery, Mark P. . E-mail: mcallery@bidmc.harvard.ede

    2006-10-06

    Pancreatic cancer is a common and lethal malignancy. Pancreatic cancer cells overexpress multiple anti-apoptotic factors and death receptor decoys, and are strongly resistant to radiation and to 5-fluorouracil (5-FU)- or gemcitabine (Gem)-based chemotherapy regimens. We have found that low-dose proteasome inhibitor PS-341 and histone deacetylase inhibitor trichostatin A (TSA) synergistically induce cytotoxicity in a panel of eight diverse pancreatic cancer cell lines. Combining TSA with PS-341 effectively inactivated NF{kappa}B signaling, downregulated the predominant endogenous anti-apoptotic factor Bcl-XL overexpression, and disrupted MAP kinase pathway. The combined drug regimen effectively inflicted an average of 71.5% apoptotic cell death (55.2-80%) in diverse pancreatic cancer cell lines by activating the intrinsic apoptotic pathway. Conclusion: the TSA/PS-341 regimen may represent a potential novel therapeutic strategy for pancreatic cancer.

  11. Localization of peroxisomal matrix proteins by photobleaching

    SciTech Connect

    Buch, Charlotta; Hunt, Mary C.; Alexson, Stefan E.H.; Hallberg, Einar

    2009-10-16

    The distribution of some enzymes between peroxisomes and cytosol, or a dual localization in both these compartments, can be difficult to reconcile. We have used photobleaching in live cells expressing green fluorescent protein (GFP)-fusion proteins to show that imported bona fide peroxisomal matrix proteins are retained in the peroxisome. The high mobility of the GFP-fusion proteins in the cytosol and absence of peroxisomal escape makes it possible to eliminate the cytosolic fluorescence by photobleaching, to distinguish between exclusively cytosolic proteins and proteins that are also present at low levels in peroxisomes. Using this technique we found that GFP tagged bile acid-CoA:amino acid N-acyltransferase (BAAT) was exclusively localized in the cytosol in HeLa cells. We conclude that the cytosolic localization was due to its carboxyterminal non-consensus peroxisomal targeting signal (-SQL) since mutation of the -SQL to -SKL resulted in BAAT being efficiently imported into peroxisomes.

  12. Role of p53 in cdk Inhibitor VMY-1-103-induced Apoptosis in Prostate Cancer

    DTIC Science & Technology

    2013-11-01

    JA, Uren A. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog /GLI pathway. J Clin Invest. 2011...induced apoptosis in prostate cancer PRINCIPAL INVESTIGATOR: Lymor Ringer...2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of p53 in cdk inhibitor VMY-1-103-induced apoptosis in prostate cancer 5b. GRANT NUMBER

  13. Hypersensitivity to proton pump inhibitors: lansoprazole-induced Kounis syndrome.

    PubMed

    Vlahos, Nicholas P; Vavilis, George K; Giannelou, Ageliki G; Georgopoulou, Christina N; Kommata, Varvara J; Kougias, Constantinos T; Tsartsalis, Dimitrios N; Kounis, George N; Mazarakis, Andreas; Batsolaki, Maria; Gouvelou-Deligianni, Geogia V; Hahalis, George; Kounis, Nicholas G

    2009-05-29

    Proton pump inhibitors are commonly used in clinical practice for the treatment of peptic ulcer and gastroesophageal reflux and are well tolerated by the patients. Their use is rarely associated with hypersensitivity and anaphylactic reactions. According to the reports in the Uppsala Monitoring Center database the frequency of hypersensitivity reactions out of all reported adverse reactions for proton pump inhibitors and H2-histamine receptor antagonists was between 0.2% and 0.7%. A few cases of hypersensitivity to lansoprazole have been reported. We report a patient who developed Kounis syndrome after taking 30 mg of lansoprazole. This is the first report of Kounis syndrome associated with lansoprazole administration in the world literature.

  14. Angiotensin type 2-receptor (AT2R) activation induces hypotension in apolipoprotein E-deficient mice by activating peroxisome proliferator-activated receptor-γ.

    PubMed

    Li, Ming; Tejada, Thor; Lambert, Jonathan P; Nicholson, Chad K; Yahiro, Eiji; Ambai, Vats T; Ali, Syeda F; Bradley, Eddie W; Graham, Robert M; Dell'Italia, Louis J; Calvert, John W; Naqvi, Nawazish

    2016-01-01

    Angiotensin II (Ang II) modulates blood pressure and atherosclerosis development through its vascular type-1 (AT1R) and type-2 (AT2R) receptors, which have opposing effects. AT2R activation produces hypotension, and is anti-atherogenic. Targeted overexpression of AT2Rs in vascular smooth muscle cells (VSMCs) indicates that these effects are due to increased nitric oxide (NO) generation. However, the role of endogenous VSMC AT2Rs in these events is unknown. Effect of 7-day low-dose Ang II-infusion (12 µg/kg/hr) on blood pressure was tested in 9-week-old apoE((-/-)) mice fed a low or high cholesterol diet (LCD or HCD, respectively). Cardiac output was measured by echocardiography. Immunohistochemistry was performed to localize and quantify AT2Rs and p-Ser(1177)-endothelial nitric oxide synthase (eNOS) levels in the aortic arch. PD123319 and GW-9662 were used to selectively block the AT2R and peroxisome proliferator-activated receptor-γ (PPAR-γ), respectively. Ang II infusion decreased blood pressure by 12 mmHg (P < 0.001) in LCD/apoE((-/-)) mice without altering cardiac output; a response blocked by PD123319. Although, AT2R stimulation neither activated eNOS (p-Ser(1177)-eNOS) nor changed plasma NO metabolites, it caused an ~6-fold increase in VSMC PPAR-γ levels (P < 0.001) and the AT2R-mediated hypotension was abolished by GW-9662. AT2R-mediated hypotension was also inhibited by HCD, which selectively decreased VSMC AT2R expression by ~6-fold (P < 0.01). These findings suggest a novel pathway for the Ang II/AT2R-mediated hypotensive response that involves PPAR-γ, and is down regulated by a HCD.

  15. K(ATP) channel block prevents proteasome inhibitor-induced apoptosis in differentiated PC12 cells.

    PubMed

    Nam, Yoon Jeong; Lee, Da Hee; Lee, Min Sung; Lee, Chung Soo

    2015-10-05

    Dysfunction of the proteasome system has been suggested to be implicated in neuronal degeneration. Modulation of KATP channels appears to affect the viability of neuronal cells exposed to toxic insults. However, the effect of KATP channel blockers on the neuronal cell death mediated by proteasome inhibition has not been studied. The present study investigated the effect of KATP channel blockers on proteasome inhibitor-induced apoptosis in differentiated PC12 cells and SH-SY5Y cells. 5-Hydroxydecanoate (a selective KATP channel blocker) and glibenclamide (a cell surface and mitochondrial KATP channel inhibitor) reduced the proteasome inhibitor-induced apoptosis. Addition of the KATP channel blockers attenuated the proteasome inhibitor-induced changes in the levels of apoptosis-related proteins, the loss of the mitochondrial transmembrane potential, the increase in the formation of reactive oxygen species and the depletion of glutathione in both cell lines. The results show that KATP channel blockers may attenuate proteasome inhibitor-induced apoptosis in PC12 cells by suppressing activation of the mitochondrial pathway and of the caspase-8- and Bid-dependent pathways. The preventive effect appears to be associated with the inhibition of the formation of reactive oxygen species and the depletion of glutathione. KATP channel blockade appears to prevent proteasome inhibition-induced neuronal cell death.

  16. Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders.

    PubMed

    Nazarko, Taras Y

    2017-02-28

    Peroxisome biogenesis disorders (PBDs) is a group of diseases caused by mutations in one of the peroxins, proteins responsible for biogenesis of the peroxisomes. In recent years, it became clear that many peroxins (e.g., PEX3 and PEX14) play additional roles in peroxisome homeostasis (such as promoting autophagic degradation of peroxisomes or pexophagy), which are often opposite to their originally established functions in peroxisome formation and maintenance. Even more interesting, the peroxins that make up the peroxisomal AAA ATPase complex (AAA-complex) in yeast (Pex1, Pex6 and Pex15) or mammals (PEX1, PEX6, PEX26) are responsible for the downregulation of pexophagy. Moreover, this might be even their primary role in human: to prevent pexophagy by removing from the peroxisomal membrane the ubiquitinated peroxisomal matrix protein import receptor, Ub-PEX5, which is also a signal for the Ub-binding pexophagy receptor, NBR1. Remarkably, the peroxisomes rescued from pexophagy by autophagic inhibitors in PEX1(G843D) (the most common PBD mutation) cells are able to import matrix proteins and improve their biochemical function suggesting that the AAA-complex per se is not essential for the protein import function in human. This paradigm-shifting discovery published in the current issue of Autophagy has raised hope for up to 65% of all PBD patients with various deficiencies in the AAA-complex. Recognizing PEX1, PEX6 and PEX26 as pexophagy suppressors will allow treating these patients with a new range of tools designed to target mammalian pexophagy.

  17. UK114, a YjgF/Yer057p/UK114 family protein highly conserved from bacteria to mammals, is localized in rat liver peroxisomes

    SciTech Connect

    Antonenkov, Vasily D. . E-mail: vasily.antonenkov@oulu.fi; Ohlmeier, Steffen; Sormunen, Raija T.; Hiltunen, J. Kalervo

    2007-05-25

    Mammalian UK114 belongs to a highly conserved family of proteins with unknown functions. Although it is believed that UK114 is a cytosolic or mitochondrial protein there is no detailed study of its intracellular localization. Using analytical subcellular fractionation, electron microscopic colloidal gold technique, and two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with mass spectrometric analysis we show here that a large portion of UK114 is present in rat liver peroxisomes. The peroxisomal UK114 is a soluble matrix protein and it is not inducible by the peroxisomal proliferator clofibrate. The data predict involvement of UK114 in peroxisomal metabolism.

  18. The effect of combined regulation of the expression of peroxisome proliferator-activated receptor-γ and calcitonin gene-related peptide on alcohol-induced adipogenic differentiation of bone marrow mesenchymal stem cells.

    PubMed

    Li, Jinfeng; Wang, Yisheng; Li, Yuebai; Sun, Junkui; Zhao, Guoqiang

    2014-07-01

    Studies have shown that alcohol can upregulate the expression of peroxisome proliferator-activated receptor-γ (PPARγ) gene in bone marrow mesenchymal stem cells (BMSCs). High expression of PPARγ can promote adipogenic differentiation of BMSCs, and reduce their osteogenic differentiation. Abnormal proliferation of adipocytes and fatty accumulation in osteocytes can result in high intraosseous pressure and disturbance of blood circulation in the femoral head, which induces osteonecrosis of the femoral head (ONFH). Downregulation of PPARγ is efficient in inhibiting adipogenesis and maintaining osteogenesis of BMSCs, which might potentially reduce the incidence of ONFH. Calcitonin gene-related peptide (CGRP) is a neuropeptide gene which has been closely associated with bone regeneration. In this study, we aimed to observe the effect of combined regulation of the expression of PPARγ and CGRP genes on alcohol-induced adipogenic differentiation of BMSCs. Our results demonstrated that simultaneous downregulation of PPARγ and upregulation of CGRP was efficient in suppressing adipogenic differentiation of BMSCs and promoting their osteogenic differentiation. These findings might enlighten a novel approach for the prevention of ONFH.

  19. Oxaliplatin neurotoxicity involves peroxisome alterations. PPARγ agonism as preventive pharmacological approach.

    PubMed

    Zanardelli, Matteo; Micheli, Laura; Cinci, Lorenzo; Failli, Paola; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo

    2014-01-01

    The development of neuropathic syndromes is an important, dose limiting side effect of anticancer agents like platinum derivates, taxanes and vinca alkaloids. The causes of neurotoxicity are still unclear but the impairment of the oxidative equilibrium is strictly related to pain. Two intracellular organelles, mitochondria and peroxisomes cooperate to the maintaining of the redox cellular state. Whereas a relationship between chemotherapy-dependent mitochondrial alteration and neuropathy has been established, the role of peroxisome is poor explored. In order to study the mechanisms of oxaliplatin-induced neurotoxicity, peroxisomal involvement was evaluated in vitro and in vivo. In primary rat astrocyte cell culture, oxaliplatin (10 µM for 48 h or 1 µM for 5 days) increased the number of peroxisomes, nevertheless expression and functionality of catalase, the most important antioxidant defense enzyme in mammalian peroxisomes, were significantly reduced. Five day incubation with the selective Peroxisome Proliferator Activated Receptor-γ (PPAR-γ) antagonist G3335 (30 µM) induced a similar peroxisomal impairment suggesting a relationship between PPARγ signaling and oxaliplatin neurotoxicity. The PPARγ agonist rosiglitazone (10 µM) reduced the harmful effects induced both by G3335 and oxaliplatin. In vivo, in a rat model of oxaliplatin induced neuropathy, a repeated treatment with rosiglitazone (3 and 10 mg kg(-1) per os) significantly reduced neuropathic pain evoked by noxious (Paw pressure test) and non-noxious (Cold plate test) stimuli. The behavioral effect paralleled with the prevention of catalase impairment induced by oxaliplatin in dorsal root ganglia. In the spinal cord, catalase protection was showed by the lower rosiglitazone dosage without effect on the astrocyte density increase induced by oxaliplatin. Rosiglitazone did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. These results highlight the role of

  20. Xenobiotic-induced hepatocyte proliferation associated with constitutive active/androstane receptor (CAR) or peroxisome proliferator-activated receptor α (PPARα) is enhanced by pregnane X receptor (PXR) activation in mice.

    PubMed

    Shizu, Ryota; Benoki, Satoshi; Numakura, Yuki; Kodama, Susumu; Miyata, Masaaki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2013-01-01

    Xenobiotic-responsive nuclear receptors pregnane X receptor (PXR), constitutive active/androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) play pivotal roles in the metabolic functions of the liver such as xenobiotics detoxification and energy metabolism. While CAR or PPARα activation induces hepatocyte proliferation and hepatocarcinogenesis in rodent models, it remains unclear whether PXR activation also shows such effects. In the present study, we have investigated the role of PXR in the xenobiotic-induced hepatocyte proliferation with or without CAR activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) and phenobarbital, or PPARα activation by Wy-14643 in mice. Treatment with TCPOBOP or phenobarbital increased the percentage of Ki-67-positive nuclei as well as mRNA levels of cell proliferation-related genes in livers as expected. On the other hand, treatment with the PXR activator pregnenolone 16α-carbonitrile (PCN) alone showed no such effects. Surprisingly, PCN co-treatment significantly augmented the hepatocyte proliferation induced by CAR activation with TCPOBOP or phenobarbital in wild-type mice but not in PXR-deficient mice. Intriguingly, PXR activation also augmented the hepatocyte proliferation induced by Wy-14643 treatment. Moreover, PCN treatment increased the RNA content of hepatocytes, suggesting the induction of G0/G1 transition, and reduced mRNA levels of Cdkn1b and Rbl2, encoding suppressors of cell cycle initiation. Our present findings indicate that xenobiotic-induced hepatocyte proliferation mediated by CAR or PPARα is enhanced by PXR co-activation despite that PXR activation alone does not cause the cell proliferation in mouse livers. Thus PXR may play a novel and unique role in the hepatocyte/liver hyperplasia upon exposure to xenobiotics.

  1. WY-14643, a selective agonist of peroxisome proliferator-activated receptor-α, ameliorates lipopolysaccharide-induced depressive-like behaviors by preventing neuroinflammation and oxido-nitrosative stress in mice.

    PubMed

    Yang, Rongrong; Wang, Peng; Chen, Zhuo; Hu, Wenfeng; Gong, Yu; Zhang, Wei; Huang, Chao

    2017-02-01

    Depression is a common disease that afflicts one in six people at some points in life. Numerous hypotheses have been raised in past years, but the exact mechanism that can be used to explain the development of depression remains obscure. Recently, more and more attentions are being focused on neuroinflammation and oxidative stress in depression. WY-14643, an agonist of peroxisome proliferator-activated receptor-α (PPAR-α), has been reported to inhibit neuroinflammation and oxidative stress, and one of our previous studies have showed that WY-14643 possesses antidepressive activities. On that account, we investigated the effect of WY-14643 pretreatment on lipopolysaccharide (LPS)-induced depressive-like behaviors, neuroinflammation and oxido-nitrosative stress in mice. Results showed that WY-14643 pretreatment at the doses of 5 and 10mg/kg significantly ameliorated LPS (0.83mg/kg)-induced depressive-like behaviors in the tail suspension test (TST), forced swimming test (FST) and sucrose preference experiment. Further analysis showed that WY-14643 pretreatment not only inhibited the production of pro-inflammatory cytokines induced by LPS, such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), but also prevented the LPS-induced enhancement of oxidative and nitrosative stress in the hippocampus and prefrontal cortex. In addition, the LPS-induced decreases in hippocampal and prefrontal cortical brain-derived neurotrophic factor (BDNF) levels were reversed by WY-14643 pretreatment. Taken together, our data provide further evidence to show that WY-14643 could be an agent that can be used to treat depression, and inhibition of neuroinflammation and oxido-nitrosative stress may be the potential mechanism for the antidepressive effect of WY-14643.

  2. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal.

    PubMed

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-02-01

    C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine.

  3. Autophagic degradation of peroxisomes in mammals

    PubMed Central

    Katarzyna, Zientara-Rytter; Suresh, Subramani

    2016-01-01

    Peroxisomes are essential organelles required for proper cell function in all eukaryotic organisms. They participate in a wide range of cellular processes including the metabolism of lipids and generation, as well as detoxification, of hydrogen peroxide. Therefore, peroxisome homeostasis, manifested by the precise and efficient control of peroxisome number and functionality, must be tightly regulated in response to environmental changes. Due to the existence of many physiological disorders and diseases associated with peroxisome homeostasis imbalance, the dynamics of peroxisomes have been widely examined. The increasing volume of reports demonstrating significant involvement of the autophagy machinery in peroxisome removal leads us to summarize current knowledge of peroxisome degradation in mammalian cells. In this review we present current models of peroxisome degradation. We particularly focus on pexophagy - the selective clearance of peroxisomes through autophagy. We also critically discuss concepts of peroxisome recognition for pexophagy, including signaling and selectivity factors. Finally, we present examples of the pathological effects of pexophagy dysfunction and suggest promising future directions. PMID:27068951

  4. The exportomer: the peroxisomal receptor export machinery.

    PubMed

    Platta, Harald W; Hagen, Stefanie; Erdmann, Ralf

    2013-04-01

    Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.

  5. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  6. Proton pump inhibitor-induced hypomagnesemia: A new challenge

    PubMed Central

    Florentin, Matilda; Elisaf, Moses S

    2012-01-01

    Proton pump inhibitors (PPIs) are commonly used in clinical practice for the prevention and treatment of peptic ulcer, gastritis, esophagitis and gastroesophageal reflux. Hypomagnesemia has recently been recognized as a side effect of PPIs. Low magnesium levels may cause symptoms from several systems, some of which being potentially serious, such as tetany, seizures and arrhythmias. It seems that PPIs affect the gastrointestinal absorption of magnesium. Clinicians should be vigilant in order to timely consider and prevent or reverse hypomagnesemia in patients who take PPIs, especially if they are prone to this electrolyte disorder. PMID:24175253

  7. Proton Pump Inhibitor-Induced Remission of Lymphocytic Esophagitis

    PubMed Central

    Sandhu, Naemat; Miick, Ronald; Govil, Yogesh

    2016-01-01

    Lymphocytic esophagitis is a chronic condition that has been described in the literature; however, there is little information describing its characteristics and treatment. We present a case of lymphocytic esophagitis that was identified following food impaction. Repeat esophagogastroduodenoscopy (EGD) with biopsy showed a marked decrease in lymphocytic infiltration after a 6-week course of twice-daily high-dose proton pump inhibitor (PPI). After initiation of the high-dose PPI regimen, the patient had no further episodes of dysphagia or food impaction. We propose that treating lymphocytic esophagitis with twice-daily PPI can improve symptoms and show histologic evidence of improvement. PMID:28119946

  8. PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease

    PubMed Central

    Schlüter, Agatha; Fourcade, Stéphane; Domènech-Estévez, Enric; Gabaldón, Toni; Huerta-Cepas, Jaime; Berthommier, Guillaume; Ripp, Raymond; Wanders, Ronald J. A.; Poch, Olivier; Pujol, Aurora

    2007-01-01

    Peroxisomes are essential organelles of eukaryotic origin, ubiquitously distributed in cells and organisms, playing key roles in lipid and antioxidant metabolism. Loss or malfunction of peroxisomes causes more than 20 fatal inherited conditions. We have created a peroxisomal database () that includes the complete peroxisomal proteome of Homo sapiens and Saccharomyces cerevisiae, by gathering, updating and integrating the available genetic and functional information on peroxisomal genes. PeroxisomeDB is structured in interrelated sections ‘Genes’, ‘Functions’, ‘Metabolic pathways’ and ‘Diseases’, that include hyperlinks to selected features of NCBI, ENSEMBL and UCSC databases. We have designed graphical depictions of the main peroxisomal metabolic routes and have included updated flow charts for diagnosis. Precomputed BLAST, PSI-BLAST, multiple sequence alignment (MUSCLE) and phylogenetic trees are provided to assist in direct multispecies comparison to study evolutionary conserved functions and pathways. Highlights of the PeroxisomeDB include new tools developed for facilitating (i) identification of novel peroxisomal proteins, by means of identifying proteins carrying peroxisome targeting signal (PTS) motifs, (ii) detection of peroxisomes in silico, particularly useful for screening the deluge of newly sequenced genomes. PeroxisomeDB should contribute to the systematic characterization of the peroxisomal proteome and facilitate system biology approaches on the organelle. PMID:17135190

  9. PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome

    PubMed Central

    Schlüter, Agatha; Real-Chicharro, Alejandro; Gabaldón, Toni; Sánchez-Jiménez, Francisca; Pujol, Aurora

    2010-01-01

    Peroxisomes are essential organelles that play a key role in redox signalling and lipid homeostasis. They contain a highly diverse enzymatic network among different species, mirroring the varied metabolic needs of the organisms. The previous PeroxisomeDB version organized the peroxisomal proteome of humans and Saccharomyces cerevisiae based on genetic and functional information into metabolic categories with a special focus on peroxisomal disease. The new release (http://www.peroxisomeDB.org) adds peroxisomal proteins from 35 newly sequenced eukaryotic genomes including fungi, yeasts, plants and lower eukaryotes. We searched these genomes for a core ensemble of 139 peroxisomal protein families and identified 2706 putative peroxisomal protein homologs. Approximately 37% of the identified homologs contained putative peroxisome targeting signals (PTS). To help develop understanding of the evolutionary relationships among peroxisomal proteins, the new database includes phylogenetic trees for 2386 of the peroxisomal proteins. Additional new features are provided, such as a tool to capture kinetic information from Brenda, CheBI and Sabio-RK databases and more than 1400 selected bibliographic references. PeroxisomeDB 2.0 is a freely available, highly interactive functional genomics platform that offers an extensive view on the peroxisomal metabolome across lineages, thus facilitating comparative genomics and systems analysis of the organelle. PMID:19892824

  10. Assessment of 105 Patients with Angiotensin Converting Enzyme-Inhibitor Induced Angioedema

    PubMed Central

    von Buchwald, Christian; Prasad, Sumangali Chandra; Kamaleswaran, Shailajah; Ajgeiy, Kawa Khaled; Authried, Georg; Pallesen, Kristine Appel U.

    2017-01-01

    Objective. To asses a cohort of 105 consecutive patients with angiotensin converting enzyme-inhibitor induced angioedema with regard to demographics, risk factors, family history of angioedema, hospitalization, airway management, outcome, and use of diagnostic codes used for the condition. Study Design. Cohort study. Methods. This was a retrospective cohort study of 105 patients with angiotensin converting enzyme-inhibitor induced angioedema in the period 1995–2014. Results. The cohort consisted of 67 females and 38 males (F : M ratio 1.8), with a mean age of 63 [range 26–86] years. Female gender was associated with a significantly higher risk of angiotensin converting enzyme-inhibitor induced angioedema. 6.7% had a positive family history of angioedema. Diabetes seemed to be a protective factor with regard to angioedema. 95% experienced angioedema of the head and neck. 4.7% needed intubation or tracheostomy. 74 admissions took place during the study period with a total of 143 days spent in the hospital. The diagnosis codes most often used for this condition were “DT783 Quincke's oedema” and “DT78.4 Allergy unspecified”. Complement C1 inhibitor was normal in all tested patients. Conclusion. Female gender predisposes to angiotensin converting enzyme-inhibitor induced angioedema, whereas diabetes seems to be a protective factor. PMID:28286522

  11. PKC/MEK inhibitors suppress oxaliplatin-induced neuropathy and potentiate the antitumor effects.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Tani, Tadahumi; Shimaoka, Hirotaka; Suzuyama, Naohiro; Sakamoto, Kotaro; Fujita, Arisa; Ogawa, Naoki; Itoh, Tatsuki; Imano, Motohiro; Funakami, Yoshinori; Ichida, Seiji; Satou, Takao; Nishida, Shozo

    2015-07-01

    Oxaliplatin is a key drug commonly used in colorectal cancer treatment. Despite high clinical efficacy, its therapeutic application is limited by common, dose-limiting occurrence of neuropathy. As usual symptomatic neuropathy treatments fail to improve the patients' condition, there is an urgent need to advance our understanding of the pathogenesis of neuropathy to propose effective therapy and ensure adequate pain management. Oxaliplatin-induced neuropathy was recently reported to be associated with protein kinase C (PKC) activation. It is unclear, however, whether PKC inhibition can prevent neuropathy. In our current studies, we found that a PKC inhibitor, tamoxifen, inhibited oxaliplatin-induced neuropathy via the PKC/extracellular signal-regulated kinase (ERK)/c-Fos pathway in lumbar spinal cords (lumbar segments 4-6). Additionally, tamoxifen was shown to act in synergy with oxaliplatin to inhibit growth in tumor cells-implanted mice. Moreover, mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, PD0325901, suppressed oxaliplatin-induced neuropathy and enhanced oxaliplatin efficacy. Our results indicate that oxaliplatin-induced neuropathy is associated with PKC/ERK/c-Fos pathway in lumbar spinal cord. Additionally, we demonstrate that disruption of this pathway by PKC and MEK inhibitors suppresses oxaliplatin-induced neuropathy, thereby suggesting that PKC and MEK inhibitors may be therapeutically useful in preventing oxaliplatin-induced neuropathy and could aid in combination antitumor pharmacotherapy.

  12. MEK inhibitors block AICAR-induced maturation in mouse oocytes by a MAPK-independent mechanism.

    PubMed

    LaRosa, Cean; Downs, Stephen M

    2005-02-01

    The present study was carried out to assess the possible role of mitogen-activated protein kinase (MAPK) in the meiosis-inducing action of the AMP-activated protein kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Cumulus cell-enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured 4 hr in Eagle's minimum essential medium containing dbcAMP plus increasing concentrations of AICAR or okadaic acid (OA). OA is a phosphatase inhibitor known to stimulate both meiotic maturation and MAPK activation and served as a positive control. Both OA and AICAR were potent inducers of meiotic resumption in mouse oocytes and brought about the phosphorylation (and thus, activation) of MAPK, but by different kinetics: MAPK phosphorylation preceded GVB in OA-treated oocytes, while that resulting from AICAR treatment appeared only after GVB. The MEK inhibitors, PD98059 and U0126, blocked the meiotic resumption induced by AICAR but not that induced by OA. Although the MEK inhibitors suppressed MAPK phosphorylation in both OA- and AICAR-treated oocytes, meiotic resumption was not causally linked to MAPK phosphorylation in either group. Furthermore, AICAR-induced meiotic resumption in Mos-null oocytes (which are unable to stimulate MAPK) was also abrogated by PD98059 treatment. A non-specific effect of the MEK inhibitors on AICAR accessibility to the oocyte was discounted by showing that they failed to suppress either nucleoside uptake or AICAR-stimulated phosphorylation of acetyl CoA carboxylase (ACC), a substrate of AMPK. The suppression of AICAR-induced maturation by MEK inhibitors must, therefore, be occurring by actions unrelated to MEK stimulation of MAPK; consequently, it would be prudent to consider this possible non-specific action of the inhibitors when they are used to block MAPK activation in mouse oocytes.

  13. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors

    PubMed Central

    Qian, Guofeng; Karnati, Srikanth; Baumgart-Vogt, Eveline

    2015-01-01

    Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat), whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and related gene expression

  14. Involvement of carnitine acyltransferases in peroxisomal fatty acid metabolism by the yeast Pichia guilliermondii.

    PubMed Central

    Pagot, Y; Belin, J M

    1996-01-01

    This article provides information about peroxisomal fatty acid metabolism in the yeast Pichia guilliermondii. The existence of inducible mitochondrial carnitine palmitoyltransferase and peroxisomal carnitine octanoyl-transferase activities was demonstrated after culture of this yeast in a medium containing methyl oleate. The subcellular sites and induction patterns were studied. The inhibition of carnitine octanoyl- and palmitoyl-transferases by chlorpromazine to a large extent prevented the otherwise observed metabolism-dependent inactivation of thiolase by 2-bromofatty acids in vivo. We concluded that the metabolism of long- and medium-chain fatty acids in the peroxisome of this yeast involved carnitine intermediates. PMID:8837442

  15. The association of peroxisomes with the developing cell plate in dividing onion root cells depends on actin microfilaments and myosin.

    PubMed

    Collings, David A; Harper, John D I; Vaughn, Kevin C

    2003-12-01

    We have investigated changes in the distribution of peroxisomes through the cell cycle in onion ( Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek ( Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent protein. During interphase and mitosis, peroxisomes distribute randomly throughout the cytoplasm, but beginning late in anaphase, they accumulate at the division plane. Initially, peroxisomes occur within the microtubule phragmoplast in two zones on either side of the developing cell plate. However, as the phragmoplast expands outwards to form an annulus, peroxisomes redistribute into a ring immediately inside the location of the microtubules. Peroxisome aggregation depends on actin microfilaments and myosin. Peroxisomes first accumulate in the division plane prior to the formation of the microtubule phragmoplast, and throughout cytokinesis, always co-localise with microfilaments. Microfilament-disrupting drugs (cytochalasin and latrunculin), and a putative inhibitor of myosin (2,3-butanedione monoxime), inhibit aggregation. We propose that aggregated peroxisomes function in the formation of the cell plate, either by regulating hydrogen peroxide production within the developing cell plate, or by their involvement in recycling of excess membranes from secretory vesicles via the beta-oxidation pathway. Differences in aggregation, a phenomenon which occurs in onion, some other monocots and to a lesser extent in tobacco BY-2 suspension cells, but which is not obvious in the roots of Arabidopsis thaliana (L.) Heynh., may reflect differences within the primary cell walls of these plants.

  16. Biphenyl metabolism by rat liver microsomes. Regioselective effects of inducers, inhibitors, and solvents

    SciTech Connect

    Haugen, D.A.

    1981-01-01

    The effects of the inducers phenobarbital and 3-methylcholanthrene, the inhibitors 7,8-benzoflavone and 1-benzyl-imidazole, and the solvents methanol, acetone, and dimethyl sulfoxide on the 2-, 3-, and 4-hydroxylation of biphenyl and the O-de-ethylation of 7-ethoxycoumarin by rat liver microsomes were examined. Phenobarbital pretreatment primarily induced 2- and 3-hydroxylation, the latter most dramatically. 3-Methylcholanthrene pretreatment induced 2- and 3-hydroxylation to similar extents. The inhibitors and solvents had regioselective effects on biphenyl metabolism that were characteristic of the uninduced, phenobarbital-induced, and 3-methylcholanthrene-induced microsomes. The presence of multiple forms of cytochrome P-450 in uninduced microsomes is indicated by the regioselective effects of the solvents and the inhibitors. The 3-methylcholanthrene-dependent increases in 2- and 3-hydroxylation appear due to induction of a single form of cytochrome P-450, as indicated by similar dose-response relationships and similar changes in sensitivitty to the inhibitors. The phenobarbital-dependent increases in 2- and 3-hydroxylation appear due to the induction of two forms of cytochrome P-450, as indicated by different changes in sensitivity to the effects of dimethyl sulfoxide and 7,8-benzoflavone. The results indicate that examination of the regioselectivity of biphenyl metabolism is a useful approach for characterizing microsomal mono-oxygenases, and they suggest that the approach may also be useful in the characterization of purified mono-oxygenase systems. (JMT)

  17. [Apoptosis of human leukemic cells induced by topoisomerase I and II inhibitors].

    PubMed

    Solary, E; Dubrez, L; Eymin, B; Bertrand, R; Pommier, Y

    1996-03-01

    Comparison between five human leukemic lines (BV173, HL60, U937, K562, KCL22) suggest that the main determinant of their sensitivity to topoisomerase I (camptothecin) and II (VP-16) inhibitors is their ability to regulate cell cycle progression in response to specific DNA damage, then to die through apoptosis: the more the cells inhibit cell cycle progression, the less sensitive they are. The final pathway of apoptosis induction involves a cytoplasmic signal, active at neutral pH, needing magnesium, sensitive to various protease inhibitors and activated directly by staurosporine. Modulators of intracellular signaling (calcium chelators, calmodulin inhibitors, PKC modulators, kinase and phosphatase inhibitors) have no significant influence upon apoptosis induction. Conversely, apoptosis induction pathway is modified during monocytic differentiation of HL60 cells induced by phorbol esters. Lastly, poly(ADP-ribosyl)ation and chromatine structure should regulate apoptotic DNA fragmentation that is prevented by 3-aminobenzamide and spermine, respectively.

  18. A novel mechanism by which small molecule inhibitors induce the DFG flip in Aurora A

    PubMed Central

    Martin, Mathew P.; Zhu, Jin-Yi; Lawrence, Harshani R.; Pireddu, Roberta; Luo, Yunting; Alam, Riazul; Ozcan, Sevil; Sebti, Said M.; Lawrence, Nicholas J.; Schönbrunn, Ernst

    2015-01-01

    Most protein kinases share a DFG (Asp-Phe-Gly) motif in the ATP site which can assume two distinct conformations, the active DFG-in and the inactive DFG-out states. Small molecule inhibitors able to induce the DFG-out state have received considerable attention in kinase drug discovery. Using a typical DFG-in inhibitor scaffold of Aurora A, a kinase involved in the regulation of cell division, we found that halogen and nitrile substituents directed at the N-terminally flanking residue Ala273 induced global conformational changes in the enzyme, leading to DFG-out inhibitors that are among the most potent Aurora A inhibitors reported to date. The data suggest an unprecedented mechanism of action, in which induced-dipole forces along the Ala273 side chain alter the charge distribution of the DFG backbone, allowing the DFG to unwind. As the ADFG sequence and three-dimensional structure is highly conserved, DFG-out inhibitors of other kinases may be designed by specifically targeting the flanking alanine residue with electric dipoles. PMID:22248356

  19. Effects of inhibitors of radiation-induced potentially lethal damage repair on chemotherapy in murine tumors

    SciTech Connect

    Nakatsugawa, S.; Sugahara, T.

    1982-09-01

    Enhancement of various antitumor drugs effects by inhibitors of radiation-induced potentially lethal damage (PLD) repair was studied in three murine tumors (EMT-6, RIF-1 and SQ-1). In EMT-6 tumors, PLD repair inhibitors, 3'-deoxyguanosine (3'dG) and 7904 (a derivative of 3'-deoxyadenosine) showed a marked enhancement of tumor growth inhibition by anticancerous drugs (FT-207 (a derivative of 5-FU), bleomycin, Ara-C, ACNU). However, the effects of mitomycin-C and vincristine were not potentiated by the inhibitors. In SQ-1 carcinomas, another repair inhibitor, ara-A (1-..beta..-D-arabinofuranosyladenine) (32 mg/kg) potentiated the effect of ACNU. In RIF-1 sarcomas, in which a low PLD repair function has been reported after ionizing radiation exposure, the potentiation was not so marked as in EMT-6 or SQ-1 tumors. Thus, as a possibility, the potentiation by inhibitors of radiation-induced PLD repair might be a result of the inhibition of chemical-induced PLD repair. The study of this field may contribute to the improvement of cancer treatment not only by radiotherapy but also by chemotherapy.

  20. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells

    PubMed Central

    WADA, NAOKO; KAWANO, YAWARA; FUJIWARA, SHIHO; KIKUKAWA, YOSHITAKA; OKUNO, YUTAKA; TASAKI, MASAYOSHI; UEDA, MITSUHARU; ANDO, YUKIO; YOSHINAGA, KAZUYA; RI, MASAKI; IIDA, SHINSUKE; NAKASHIMA, TAKAYUKI; SHIOTSU, YUKIMASA; MITSUYA, HIROAKI; HATA, HIROYUKI

    2015-01-01

    Shikonin (SHK), a natural small agent (MW 288.3), reportedly induces cell death in various tumor cells. We have found that SHK also exerts potent cytocidal effects on human multiple myeloma (MM) cells, but its anticancer mechanism in MM cells remains to be elucidated. SHK at 2.5–5 μM induced apoptosis in seven MM cell lines, including the bortezomib-resistant cell line KMS11/BTZ. The IC50 value of SHK against KMS11/BTZ was comparable to that of a parental cell line KMS11 (1.1 and 1.56 μM, respectively). SHK induces accumulation of ubiquitinated proteins and activates XBP-1 in MM cells, suggesting that SHK functions as a proteasome inhibitor, eventually inducing ER stress-associated apoptosis. SHK increases levels of HSP70/72, which protects cells from apoptosis, and exerts greater cytocidal effects in combination with the HSP70/72 inhibitor VER-155008. At higher concentrations (10–20 μM), SHK induced cell death, which was completely inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), while the cytocidal activity was unaffected by Z-VAD-FMK, strongly suggesting that cell death is induced by SHK at high concentrations through necroptosis. The present data show for the first time that SHK induces cell death in MM cells. SHK efficiently induces apoptosis and combination of heat shock protein inhibitor with low dose SHK enhances apoptosis, while high dose SHK induces necroptosis in MM cells. These findings together support the use of SHK as a potential therapeutic agent for MM. PMID:25530098

  1. Peroxisome fission in Hansenula polymorpha requires Mdv1 and Fis1, two proteins also involved in mitochondrial fission.

    PubMed

    Nagotu, Shirisha; Krikken, Arjen M; Otzen, Marleen; Kiel, Jan A K W; Veenhuis, Marten; van der Klei, Ida J

    2008-09-01

    We show that Mdv1 and Caf4, two components of the mitochondrial fission machinery in Saccharomyces cerevisiae, also function in peroxisome proliferation. Deletion of MDV1, CAF4 or both, however, had only a minor effect on peroxisome numbers at peroxisome-inducing growth conditions, most likely related to the fact that Vps1--and not Dnm1--is the key player in peroxisome fission in this organism. In contrast, in Hansenula polymorpha, which has only a Dnm1-dependent peroxisome fission machinery, deletion of MDV1 led to a drastic reduction of peroxisome numbers. This phenotype was accompanied by a strong defect in mitochondrial fission. The MDV1 paralog CAF4 is absent in H. polymorpha. In wild-type H. polymorpha, cells Dnm1-mCherry and green fluorescent protein (GFP)-Mdv1 colocalize in spots that associate with both peroxisomes and mitochondria. Furthermore, Fis1 is essential to recruit Mdv1 to the peroxisomal and mitochondrial membrane. However, formation of GFP-Mdv1 spots--and related to this normal organelle fission--is strictly dependent on the presence of Dnm1. In dnm1 cells, GFP-Mdv1 is dispersed over the surface of peroxisomes and mitochondria. Also, in H. polymorpha mdv1 or fis1 cells, the number of Dnm1-GFP spots is strongly reduced. These spots still associate to organelles but are functionally inactive.

  2. Citrate synthase encoded by the CIT2 gene of Saccharomyces cerevisiae is peroxisomal.

    PubMed Central

    Lewin, A S; Hines, V; Small, G M

    1990-01-01

    The product of the CIT2 gene has the tripeptide SKL at its carboxyl terminus. This amino acid sequence has been shown to act as a peroxisomal targeting signal in mammalian cells. We examined the subcellular site of this extramitochondrial citrate synthase. Cells of Saccharomyces cerevisiae were grown on oleate medium to induce peroxisome proliferation. A fraction containing membrane-enclosed vesicles and organelles was analyzed by sedimentation on density gradients. In wild-type cells, the major peak of citrate synthase activity was recovered in the mitochondrial fraction, but a second peak of activity cosedimented with peroxisomes. The peroxisomal activity, but not the mitochondrial activity, was inhibited by incubation at pH 8.1, a characteristic of the extramitochondrial citrate synthase encoded by the CIT2 gene. In a strain in which the CIT1 gene encoding mitochondrial citrate synthase had been disrupted, the major peak of citrate synthase activity was peroxisomal, and all of the activity was sensitive to incubation at pH 8.1. Yeast cells bearing a cit2 disruption were unable to mobilize stored lipids and did not form stable peroxisomes in oleate. We conclude that citrate synthase encoded by CIT2 is peroxisomal and participates in the glyoxylate cycle. Images PMID:2181273

  3. Lenvatinib in combination with golvatinib overcomes hepatocyte growth factor pathway-induced resistance to vascular endothelial growth factor receptor inhibitor.

    PubMed

    Nakagawa, Takayuki; Matsushima, Tomohiro; Kawano, Satoshi; Nakazawa, Youya; Kato, Yu; Adachi, Yusuke; Abe, Takanori; Semba, Taro; Yokoi, Akira; Matsui, Junji; Tsuruoka, Akihiko; Funahashi, Yasuhiro

    2014-06-01

    Vascular endothelial growth factor receptor (VEGFR) inhibitors are approved for the treatment of several tumor types; however, some tumors show intrinsic resistance to VEGFR inhibitors, and some patients develop acquired resistance to these inhibitors. Therefore, a strategy to overcome VEGFR inhibitor resistance is urgently required. Recent reports suggest that activation of the hepatocyte growth factor (HGF) pathway through its cognate receptor, Met, contributes to VEGFR inhibitor resistance. Here, we explored the effect of the HGF/Met signaling pathway and its inhibitors on resistance to lenvatinib, a VEGFR inhibitor. In in vitro experiments, addition of VEGF plus HGF enhanced cell growth and tube formation of HUVECs when compared with stimulation by either factor alone. Lenvatinib potently inhibited the growth of HUVECs induced by VEGF alone, but cells induced by VEGF plus HGF showed lenvatinib resistance. This HGF-induced resistance was cancelled when the Met inhibitor, golvatinib, was added with lenvatinib. Conditioned medium from tumor cells producing high amounts of HGF also conferred resistance to inhibition by lenvatinib. In s.c. xenograft models based on various tumor cell lines with high HGF expression, treatment with lenvatinib alone showed weak antitumor effects, but treatment with lenvatinib plus golvatinib showed synergistic antitumor effects, accompanied by decreased tumor vessel density. These results suggest that HGF from tumor cells confers resistance to tumor endothelial cells against VEGFR inhibitors, and that combination therapy using VEGFR inhibitors with Met inhibitors may be effective for overcoming resistance to VEGFR inhibitors. Further evaluation in clinical trials is warranted.

  4. IDENTITY OF "INHIBITOR" AND ANTIBODY IN EXTRACTS OF VIRUS-INDUCED RABBIT PAPILLOMAS

    PubMed Central

    Friedewald, William F.

    1940-01-01

    The "inhibitor" demonstrable in extracts of the virus-induced rabbit papillomas is identical with the antiviral antibody found in the blood of hosts bearing the growths. The conditions in these latter are frequently favorable to its extravasation in considerable amount into them. Its significance and its influence upon the recovery of virus from the papillomas are discussed. PMID:19871016

  5. MAP KINASE ERK 1/2 INHIBITORS INDUCE DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    ROSEN, M.B. and E. S. HUNTER. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina. MAP kinase Erk1/2 inhibitors induce dysmorphology in mouse whole embryo culture.

    MAP Kinase signal transduction is associated with a variety ...

  6. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  7. Characterization of a novel component of the peroxisomal protein import apparatus using fluorescent peroxisomal proteins.

    PubMed Central

    Kalish, J E; Keller, G A; Morrell, J C; Mihalik, S J; Smith, B; Cregg, J M; Gould, S J

    1996-01-01

    Fluorescent peroxisomal probes were developed by fusing green fluorescent protein (GFP) to the matrix peroxisomal targeting signals PTS1 and PTS2, as well as to an integral peroxisomal membrane protein (IPMP). These proteins were used to identify and characterize novel peroxisome assembly (pas) mutants in the yeast Pichia pastoris. Mutant cells lacking the PAS10 gene mislocalized both PTS1-GFP and PTS2-GFP to the cytoplasm but did incorporate IPMP-GFP into peroxisome membranes. Similar distributions were observed for endogenous peroxisomal matrix and membrane proteins. While peroxisomes from translocation-competent pas mutants sediment in sucrose gradients at the density of normal peroxisomes, >98% of peroxisomes from pas10 cells migrated to a much lower density and had an extremely low ratio of matrix:membrane protein. These data indicate that Pas10p plays an important role in protein translocation across the peroxisome membrane. Consistent with this hypothesis, we find that Pas10p is an integral protein of the peroxisome membrane. In addition, Pas10p contains a cytoplasmically-oriented C3HC4 zinc binding domain that is essential for its biological activity. Images PMID:8670828

  8. Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae.

    PubMed

    Fagarasanu, Monica; Fagarasanu, Andrei; Tam, Yuen Yi C; Aitchison, John D; Rachubinski, Richard A

    2005-06-06

    Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance.

  9. Capsaicin Inhibits Dimethylnitrosamine-Induced Hepatic Fibrosis by Inhibiting the TGF-β1/Smad Pathway via Peroxisome Proliferator-Activated Receptor Gamma Activation.

    PubMed

    Choi, Jae Ho; Jin, Sun Woo; Choi, Chul Yung; Kim, Hyung Gyun; Lee, Gi Ho; Kim, Yong An; Chung, Young Chul; Jeong, Hye Gwang

    2017-01-18

    Capsaicin (CPS) exerts many pharmacological effects, but any possible influence on liver fibrosis remains unclear. Therefore, we evaluated the inhibitory effects of CPS on dimethylnitrosamine (DMN) and TGF-β1-induced liver fibrosis in rats and hepatic stellate cells (HSCs). CPS inhibited DMN-induced hepatotoxicity, NF-κB activation, and collagen accumulation. CPS also suppressed the DMN-induced increases in α-SMA, collagen type I, MMP-2, and TNF-α. In addition, CPS inhibited DMN-induced TGF-β1 expression (from 2.3 ± 0.1 to 1.0 ± 0.1) and Smad2/3 phosphorylation (from 1.5 ± 0.1 to 1.1 ± 0.1 and from 1.6 ± 0.1 to 1.1 ± 0.1, respectively) by activating Smad7 expression (from 0.1 ± 0.0 to 0.9 ± 0.1) via PPAR-γ induction (from 0.2 ± 0.0 to 0.8 ± 0.0) (p < 0.05). Furthermore, in HSCs, CPS inhibited the TGF-β1-induced increases in α-SMA and collagen type I expression, via PPAR-γ activation. These results indicate that CPS can ameliorate hepatic fibrosis by inhibiting the TGF-β1/Smad pathway via PPAR-γ activation.

  10. Peroxisomes in brain development and function☆

    PubMed Central

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-01-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26686055

  11. Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium.

    PubMed

    Ohdate, Takumi; Inoue, Yoshiharu

    2012-09-01

    Saccharomyces cerevisiae is able to use some fatty acids, such as oleic acid, as a sole source of carbon. β-oxidation, which occurs in a single membrane-enveloped organelle or peroxisome, is responsible for the assimilation of fatty acids. In S. cerevisiae, β-oxidation occurs only in peroxisomes, and H(2)O(2) is generated during this fatty acid-metabolizing pathway. S. cerevisiae has three GPX genes (GPX1, GPX2, and GPX3) encoding atypical 2-Cys peroxiredoxins. Here we show that expression of GPX1 was induced in medium containing oleic acid as a carbon source in an Msn2/Msn4-dependent manner. We found that Gpx1 was located in the peroxisomal matrix. The peroxisomal Gpx1 showed peroxidase activity using thioredoxin or glutathione as a reducing power. Peroxisome biogenesis was induced when cells were cultured with oleic acid. Peroxisome biogenesis was impaired in gpx1∆ cells, and subsequently, the growth of gpx1∆ cells was lowered in oleic acid-containing medium. Gpx1 contains six cysteine residues. Of the cysteine-substituted mutants of Gpx1, Gpx1(C36S) was not able to restore growth and peroxisome formation in oleic acid-containing medium, therefore, redox regulation of Gpx1 seems to be involved in the mechanism of peroxisome formation.

  12. Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae.

    PubMed

    Kuravi, Kasinath; Nagotu, Shirisha; Krikken, Arjen M; Sjollema, Klaas; Deckers, Markus; Erdmann, Ralf; Veenhuis, Marten; van der Klei, Ida J

    2006-10-01

    Saccharomyces cerevisiae contains three dynamin-related-proteins, Vps1p, Dnm1p and Mgm1p. Previous data from glucose-grown VPS1 and DNM1 null mutants suggested that Vps1p, but not Dnm1p, plays a role in regulating peroxisome abundance. Here we show that deletion of DNM1 also results in reduction of peroxisome numbers. This was not observed in glucose-grown dnm1 cells, but was evident in cells grown in the presence of oleate. Similar observations were made in cells lacking Fis1p, a protein involved in Dnm1p function. Fluorescence microscopy of cells producing Dnm1-GFP or GFP-Fis1p demonstrated that both proteins had a dual localization on mitochondria and peroxisomes. Quantitative analysis revealed a greater reduction in peroxisome number in oleate-induced vps1 cells relative to dnm1 or fis1 cells. A significant fraction of oleate-induced vps1 cells still contained two or more peroxisomes. Conversely, almost all cells of a dnm1 vps1 double-deletion strain contained only one, enlarged peroxisome. This suggests that deletion of DNM1 reinforces the vps1 peroxisome phenotype. Time-lapse imaging indicated that during budding of dnm1 vps1 cells, the single peroxisome present in the mother cell formed long protrusions into the developing bud. This organelle divided at a very late stage of the budding process, possibly during cytokinesis.

  13. Tyrosine kinase inhibitors enhance ciprofloxacin-induced phototoxicity by inhibiting ABCG2.

    PubMed

    Mealey, Katrina L; Dassanayake, Sandamali; Burke, Neal S

    2014-01-01

    The tyrosine kinase inhibitor (TKI) class of anticancer agents inhibits ABCG2-mediated drug efflux. ABCG2 is an important component of the blood-retinal barrier, where it limits retinal exposure to phototoxic compounds such as fluoroquinolone antibiotics. Patients treated with TKIs would be expected to be at greater risk for retinal phototoxicity. Using an in vitro system, our results indicate that the TKIs gefitinib and imatinib abrogate the ability of ABCG2 to protect cells against ciprofloxacin-induced phototoxicity. We conclude that the concurrent administration of ABCG2 inhibitors with photoreactive fluoroquinolone antibiotics may result in retinal damage.

  14. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study.

    PubMed

    Lankhorst, Stephanie; Kappers, Mariëtte H W; van Esch, Joep H M; Smedts, Frank M M; Sleijfer, Stefan; Mathijssen, Ron H J; Baelde, Hans J; Danser, A H Jan; van den Meiracker, Anton H

    2014-12-01

    Common adverse effects of angiogenesis inhibition are hypertension and renal injury. To determine the most optimal way to prevent these adverse effects and to explore their interdependency, the following drugs were investigated in unrestrained Wistar Kyoto rats exposed to the angiogenesis inhibitor sunitinib: the dual endothelin receptor antagonist macitentan; the calcium channel blocker amlodipine; the angiotensin-converting enzyme inhibitor captopril; and the phosphodiesterase type 5 inhibitor sildenafil. Mean arterial pressure was monitored telemetrically. After 8 days, rats were euthanized and blood samples and kidneys were collected. In addition, 24-hour urine samples were collected. After sunitinib start, mean arterial pressure increased rapidly by ≈30 mm Hg. Coadministration of macitentan or amlodipine largely prevented this rise, whereas captopril or sildenafil did not. Macitentan, captopril, and sildenafil diminished the sunitinib-induced proteinuria and endothelinuria and glomerular intraepithelial protein deposition, whereas amlodipine did not. Changes in proteinuria and endothelinuria were unrelated. We conclude that in our experimental model, dual endothelin receptor antagonism and calcium channel blockade are suitable to prevent angiogenesis inhibition-induced hypertension, whereas dual endothelin receptor antagonism, angiotensin-converting enzyme inhibitor, and phosphodiesterase type 5 inhibition can prevent angiogenesis inhibition-induced proteinuria. Moreover, the variable response of hypertension and renal injury to different antihypertensive agents suggests that these side effects are, at least in part, unrelated.

  15. Small molecule inhibitors block Gas6-inducible TAM activation and tumorigenicity

    PubMed Central

    Kimani, Stanley G.; Kumar, Sushil; Bansal, Nitu; Singh, Kamalendra; Kholodovych, Vladyslav; Comollo, Thomas; Peng, Youyi; Kotenko, Sergei V.; Sarafianos, Stefan G.; Bertino, Joseph R.; Welsh, William J.; Birge, Raymond B.

    2017-01-01

    TAM receptors (Tyro-3, Axl, and Mertk) are a family of three homologous type I receptor tyrosine kinases that are implicated in several human malignancies. Overexpression of TAMs and their major ligand Growth arrest-specific factor 6 (Gas6) is associated with more aggressive staging of cancers, poorer predicted patient survival, acquired drug resistance and metastasis. Here we describe small molecule inhibitors (RU-301 and RU-302) that target the extracellular domain of Axl at the interface of the Ig-1 ectodomain of Axl and the Lg-1 of Gas6. These inhibitors effectively block Gas6-inducible Axl receptor activation with low micromolar IC50s in cell-based reporter assays, inhibit Gas6-inducible motility in Axl-expressing cell lines, and suppress H1299 lung cancer tumor growth in a mouse xenograft NOD-SCIDγ model. Furthermore, using homology models and biochemical verifications, we show that RU301 and 302 also inhibit Gas6 inducible activation of Mertk and Tyro3 suggesting they can act as pan-TAM inhibitors that block the interface between the TAM Ig1 ectodomain and the Gas6 Lg domain. Together, these observations establish that small molecules that bind to the interface between TAM Ig1 domain and Gas6 Lg1 domain can inhibit TAM activation, and support the further development of small molecule Gas6-TAM interaction inhibitors as a novel class of cancer therapeutics. PMID:28272423

  16. Dual-Action Inhibitors of HIF Prolyl Hydroxylases That Induce Binding of a Second Iron Ion

    PubMed Central

    Thalhammer, Armin; Demetriades, Marina; Chowdhury, Rasheduzzaman; Tian, Ya-Min; Stolze, Ineke; McNeill, Luke A.; Lee, Myung Kyu; Woon, Esther C. Y.; Mackeen, Mukram M.; Kawamura, Akane; Ratcliffe, Peter J.; Mecinović, Jasmin; Schofield, Christopher J.

    2015-01-01

    Inhibition of the hypoxia-inducible factor (HIF) prolyl-hydroxylases (PHD or EGLN enzymes) is of interest for the treatment of anemia and ischemia-related diseases. Most PHD inhibitors work by binding to the single ferrous ion and competing with 2-oxoglutarate (2OG) co-substrate for binding at the PHD active site. Non-specific iron chelators also inhibit the PHDs, both in vitro and in cells. We report the identification of dual action PHD inhibitors, which bind to the active site iron and also induce the binding of a second iron ion at the active site. Following analysis of small-molecule iron complexes and application of non-denaturing protein mass spectrometry to assess PHD2·iron·inhibitor stoichimetry, selected diacylhydrazines were identified as PHD2 inhibitors that induce the binding of a second iron ion. Some compounds were shown to inhibit the HIF hydroxylases in human hepatoma and renal carcinoma cell lines. PMID:23151668

  17. Saururus cernuus Lignans - Potent Small Molecule Inhibitors of Hypoxia-Inducible Factor-1

    PubMed Central

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R.; Zhang, Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou, Yu-Dong

    2010-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B1, manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1α protein accumulation without affecting HIF-1α mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors. PMID:15967416

  18. Saururus cernuus lignans--potent small molecule inhibitors of hypoxia-inducible factor-1.

    PubMed

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R; Zhang, Lei; Bruick, Richard K; Mohammed, Kaleem A; Agarwal, Ameeta K; Nagle, Dale G; Zhou, Yu-Dong

    2005-08-05

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B1, manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF, and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1alpha protein accumulation without affecting HIF-1alpha mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors.

  19. Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19

    PubMed Central

    Emmanouilidis, Leonidas; Schütz, Ulrike; Tripsianes, Konstantinos; Madl, Tobias; Radke, Juliane; Rucktäschel, Robert; Wilmanns, Matthias; Schliebs, Wolfgang; Erdmann, Ralf; Sattler, Michael

    2017-01-01

    The transport of peroxisomal membrane proteins (PMPs) requires the soluble PEX19 protein as chaperone and import receptor. Recognition of cargo PMPs by the C-terminal domain (CTD) of PEX19 is required for peroxisome biogenesis in vivo. Farnesylation at a C-terminal CaaX motif in PEX19 enhances the PMP interaction, but the underlying molecular mechanisms are unknown. Here, we report the NMR-derived structure of the farnesylated human PEX19 CTD, which reveals that the farnesyl moiety is buried in an internal hydrophobic cavity. This induces substantial conformational changes that allosterically reshape the PEX19 surface to form two hydrophobic pockets for the recognition of conserved aromatic/aliphatic side chains in PMPs. Mutations of PEX19 residues that either mediate farnesyl contacts or are directly involved in PMP recognition abolish cargo binding and cannot complement a ΔPEX19 phenotype in human Zellweger patient fibroblasts. Our results demonstrate an allosteric mechanism for the modulation of protein function by farnesylation. PMID:28281558

  20. Wound-Inducible Proteinase Inhibitors in Pepper. Differential Regulation upon Wounding, Systemin, and Methyl Jasmonate1

    PubMed Central

    Moura, Daniel S.; Ryan, Clarence A.

    2001-01-01

    Seven small (approximately 6,000 D) wound-inducible proteinase inhibitor proteins were isolated from leaves of pepper (Capsicum annuum) plants that are members of the potato inhibitor II family. N-terminal sequences obtained indicated that the pepper leaf proteinase inhibitors (PLPIs) exhibit homology to two GenBank accessions that code for preproteins containing three isoinhibitors domains each that, when post-translationally processed, can account for the mixture of isoinhibitors that are reported herein from pepper leaves. A constitutive level of PLPI proteins was found in pepper leaves, and these levels increased up to 2.6-fold upon wounding of the lower leaves. Exposing intact plants to methyl jasmonate vapors induced the accumulation of PLPIs. Supplying excised young pepper plants with water through the cut stems induced PLPI proteins to levels higher than those found in intact plants, but with high variability. Supplying the excised plants with systemin did not result in an increase of PLPI levels that were statistically higher than levels found in excised plants. Gel-blot analyses of PLPI induction revealed the presence of two mRNA bands, having slightly different mobilities in agarose gels. Only the low Mr mRNA is present in untreated control plants, and it appears to be responsible for the constitutive levels of PLPI found in leaves. Both mRNA species are wound- and methyl jasmonate-inducible. Only the low- Mr species is weakly induced by systemin, indicating a differential expression of the two PLPI species. PMID:11351092

  1. Effect of COX-2 inhibitor after TNBS-induced colitis in Wistar rats.

    PubMed

    Paiotti, Ana Paula Ribeiro; Miszputen, Sender Jankiel; Oshima, Celina Tizuko Fujiyama; de Oliveira Costa, Henrique; Ribeiro, Daniel Araki; Franco, Marcello

    2009-08-01

    Inflammatory bowel disease (IBD) is a common chronic gastrointestinal disorder characterized by alternating periods of remission and active intestinal inflammation. Some studies suggest that antiinflammatory drugs are a promising alternative for treatment of the disease. Thus, this study aimed to evaluate the effect of lumiracoxib, a selective-cyclooxygenase-2 (COX-2) inhibitor, on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. Wistar rats (n = 25) were randomized into four groups, as follows: Group (1) Sham group: sham induced-colitis rats; Group (2) TNBS group: nontreated induced-colitis rats; Group (3) Lumiracoxib control group; and Group (4) Lumiracoxib-treated induced-colitis rats. Our results showed that rats from groups 2 and 4 presented similar histopathological damage and macroscopic injury in the distal colon as depicted by significant statistically differences (P < 0.01; P < 0.05) compared to the other two groups. Weak expression of COX-2 mRNA was detected in normal colon cells, while higher levels of COX-2 mRNA were detected in group 2 and group 4. Therapy with lumiracoxib reduced COX-2 expression by 20-30%, but it was still higher and statistically significant compared to data obtained from the lumiracoxib control group. Treatment with the selective COX-2 inhibitor lumiracoxib did not reduce inflammation-associated colonic injury in TNBS-induced experimental colitis. Thus, the use of COX-2 inhibitors for treating IBD should be considered with caution and warrants further experimental investigation to elucidate their applicability.

  2. Secreted Wnt Signaling Inhibitors in Disuse-Induced Bone Loss

    DTIC Science & Technology

    2011-05-01

    regulators of Wnt/Lrp signaling (Sost,  Dkk1 ) modulate bone loss in response to mechanical  disuse. Furthermore, we proposed to test whether these...induced paralysis of the quadriceps, hamstrings, and soleus) in one hindlimb of a series of mice  with mutations in Wnt modulators (Sost‐/‐,  Dkk1 ...and in wild‐type mice that are also treated with  neutralizing antibody to  Dkk1  or Sost (or both).  These experiments have the potential to reveal new

  3. Treatment with Dimethyl Fumarate attenuates calcineurin inhibitor-induced Nephrotoxicity

    PubMed Central

    Takasu, Chie; Vaziri, Nosratola D.; Li, Shiri; Robles, Lourdes; Vo, Kelly; Takasu, Mizuki; Pham, Christine; Liu, Shuman; Farzaneh, Seyed H.; Foster, Clarence E; Stamos, Michael J; Ichii, Hirohito

    2014-01-01

    Background Cyclosporine A (CsA) is an immunosuppressive drug which has been widely used to prevent rejection following organ transplantation. However, its therapeutic use is limited by nephrotoxicity, in part mediated by oxidative stress. The present study aims to investigate the protective effects of Dimethyl Fumarate (DMF) on CsA-induced nephrotoxicity by enhancing the antioxidant defense system. Methods Male Sprague-Dawley rats were treated with CsA (n=8, 20 mg/kg/day i.p.) orCsA + DMF (n=7, 50 mg/kg/day p.o.) for 28 days. Renal function, histopathology, malondialdehyde (MDA), myeloperoxidase (MPO) levels and anti-oxidant enzyme expression were determined. Results DMF co-treatment ameliorated CsA-induced renal dysfunction as evidenced by significant decrease in serum creatinine (CsA 0.79 ± 0.02 mg/dl vs. CsA + DMF 0.62 ± 0.04 mg/dl, P=0.001) and urea (CsA 66.9 ± 0.4 mg/dl vs. CsA + DMF 53.3 ± 2.6 mg/dl, P<0.0001) levels, as well as improvement of creatinine clearance. DMF also significantly decreased serum MDA and renal tissue MDA and MPO contents. The protein expression of NQO-1, a major cellular anti-oxidant and detoxifying enzyme was significantly enhanced by DMF administration in kidney. Conclusions Administration of DMF has a protective potential against CsA nephrotoxicity. The protection afforded by DMF is mediated in part through inhibiting oxidative stress and inflammation and enhancing the antioxidant capacity. PMID:25710612

  4. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan.

    PubMed

    Lefevre, Sophie D; Kumar, Sanjeev; van der Klei, Ida J

    2015-01-01

    Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.

  5. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma

    PubMed Central

    Mao, Xinfang; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Guan, Shan; Woodfield, Sarah E.; Vasudevan, Sanjeev A.; Tao, Ling; Pang, Jonathan C.; Lu, Jiaxiong; Zhang, Huiyuan; Zhang, Fuchun; Yang, Jianhua

    2017-01-01

    Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma. PMID:27902463

  6. Pioglitazone ameliorates behavioral, biochemical and cellular alterations in quinolinic acid induced neurotoxicity: possible role of peroxisome proliferator activated receptor-Upsilon (PPARUpsilon) in Huntington's disease.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-08-01

    Emerging evidence indicates that PPARUpsilon activators attenuate neurodegeneration and related complications. Therefore, the present study focused on the neuroprotective potential of pioglitazone against quinolinic acid (QUIN) induced neurotoxicity. Intrastriatal (unilaterally) administration of QUIN significantly altered body weight and motor function (locomotor activity, rotarod and beam walk performance). Further, QUIN treatment significantly caused oxidative damage (increased lipid peroxidation, nitrite concentration and depleted endogenous antioxidant defense enzymes), altered mitochondrial enzyme complex (I, II and IV) activities and TNF-alpha level as compared to sham treated animals. Pioglitazone (10, 20 and 40mg/kg, p.o.) treatment significantly improved body weight and motor functions, oxidative defense. Further, pioglitazone treatment restored mitochondrial enzyme complex activity as well as TNF-alpha level as compared to QUIN treated group. While Bisphenol A diglycidyl ether (BADGE) (15mg/kg), PPARUpsilon antagonist significantly reversed the protective effect of the pioglitazone (40mg/kg) in the QUIN treated animals. Further, pioglitazone treatment significantly attenuated the striatal lesion volume in QUIN treated animals, suggesting a role for the PPARUpsilon pathway in QUIN induced neurotoxicity. Altogether, this evidence indicates that PPARUpsilon activation by pioglitazone attenuated QUIN induced neurotoxicity in animals and which could be an important therapeutic avenue to ameliorate Huntington like symptoms.

  7. 8-Hydroxyeicosapentaenoic Acid Decreases Plasma and Hepatic Triglycerides via Activation of Peroxisome Proliferator-Activated Receptor Alpha in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Yamada, Hidetoshi; Kikuchi, Sayaka; Hakozaki, Mayuka; Motodate, Kaori; Nagahora, Nozomi; Hirose, Masamichi

    2016-01-01

    PPARs regulate the expression of genes involved in lipid homeostasis. PPARs serve as molecular sensors of fatty acids, and their activation can act against obesity and metabolic syndromes. 8-Hydroxyeicosapentaenoic acid (8-HEPE) acts as a PPAR ligand and has higher activity than EPA. However, to date, the PPAR ligand activity of 8-HEPE has only been demonstrated in vitro. Here, we investigated its ligand activity in vivo by examining the effect of 8-HEPE treatment on high fat diet-induced obesity in mice. After the 4-week treatment period, the levels of plasma and hepatic triglycerides in the 8-HEPE-fed mice were significantly lower than those in the HFD-fed mice. The expression of genes regulated by PPARα was significantly increased in 8-HEPE-fed mice compared to those that received only HFD. Additionally, the level of hepatic palmitic acid in 8-HEPE-fed mice was significantly lower than in HFD-fed mice. These results suggested that intake of 8-HEPE induced PPARα activation and increased catabolism of lipids in the liver. We found no significant differences between EPA-fed mice and HFD-fed mice. We demonstrated that 8-HEPE has a larger positive effect on metabolic syndrome than EPA and that 8-HEPE acts by inducing PPARα activation in the liver. PMID:27239345

  8. Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro.

    PubMed

    Flint, O P; Masters, B A; Gregg, R E; Durham, S K

    1997-07-01

    The cholesterol-lowering HMG CoA reductase inhibitors (HMGRI), pravastatin and lovastatin, have been associated with skeletal myopathy in humans and in rats. In a previous in vitro study, HMGRI-induced changes in neonatal rat skeletal muscle cells were characterized by reversible inhibition of protein synthesis and loss of differentiated myotubes at concentrations markedly lower than those inducing enzyme leakage. Myotoxicity was determined to be directly related to inhibition of HMG CoA reductase, since mevalonate, the immediate product of HMG CoA reductase metabolism, abrogated the drug-induced changes. Farnesol, geranylgeraniol, and squalene are metabolites of mevalonate. Squalene, formed from farnesol by squalene synthase, is the first metabolite solely committed to cholesterol synthesis. In contrast, geranylgeraniol, formed by the addition of an isoprene group to farnesol, is the first metabolite uncommitted to cholesterol synthesis. The objective of the present study was to determine the role of inhibition of cholesterol synthesis in HMGRI-induced in vitro myotoxicity. HMGRI-treated neonatal rat skeletal muscle cultures were supplemented with farnesol and geranylgeraniol, and in another study, muscle cultures were exposed to two squalene synthase inhibitors (SSI), BMS-187745 and its prodrug ester, BMS-188494. Endpoints evaluated for both studies included protein synthesis ([3H]leucine incorporation), total cellular protein (a measure of cell loss), intra- and extracellular lactate dehydrogenase activity (a measure of membrane integrity), cholesterol biosynthesis ([14C]acetate incorporation), and morphology. HMG CoA reductase inhibitor-induced morphologic changes and inhibition of protein synthesis were significantly ameliorated by supplementation with farnesol and geranylgeraniol. In contrast to HMGRI-induced in vitro myotoxicity, SSI induced an irreversible, minimal cytotoxicity at close to maximum soluble concentrations. These results indicate that

  9. High-fat diet-induced reduction of peroxisome proliferator-activated receptor-γ coactivator-1α messenger RNA levels and oxidative capacity in the soleus muscle of rats with metabolic syndrome.

    PubMed

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko

    2012-02-01

    Animal models of type 2 diabetes exhibit reduced peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) messenger RNA (mRNA) levels, which are associated with decreased oxidative capacity, in skeletal muscles. In contrast, animal models with metabolic syndrome show normal PGC-1α mRNA levels. We hypothesized that a high-fat diet decreases PGC-1α mRNA levels in skeletal muscles of rats with metabolic syndrome, reducing muscle oxidative capacity and accelerating metabolic syndrome or inducing type 2 diabetes. We examined mRNA levels and fiber profiles in the soleus muscles of rats with metabolic syndrome (SHR/NDmcr-cp [cp/cp]; CP) fed a high-fat diet. Five-week-old CP rats were assigned to a sedentary group (CP-N) that was fed a standard diet (15.1 kJ/g, 23.6% protein, 5.3% fat, and 54.4% carbohydrates) or a sedentary group (CP-H) that was fed a high-fat diet (21.6 kJ/g, 23.6% protein, 34.9% fat, and 25.9% carbohydrates) and were housed for 10 weeks. Body weight, energy intake, and systolic blood pressure were higher in the CP-H group than in the CP-N group. Nonfasting glucose, triglyceride, total cholesterol, and leptin levels were higher in the CP-H group than in the CP-N group. There was no difference in insulin levels between the CP-N and CP-H groups. Muscle PGC-1α mRNA levels and succinate dehydrogenase activity were lower in the CP-H group than in the CP-N group. We concluded that a high-fat diet reduces PGC-1α mRNA levels and oxidative capacity in skeletal muscles and accelerates metabolic syndrome.

  10. Diverse intracellular pathogens activate type III interferon expression from peroxisomes.

    PubMed

    Odendall, Charlotte; Dixit, Evelyn; Stavru, Fabrizia; Bierne, Helene; Franz, Kate M; Durbin, Ann Fiegen; Boulant, Steeve; Gehrke, Lee; Cossart, Pascale; Kagan, Jonathan C

    2014-08-01

    Type I interferon responses are considered the primary means by which viral infections are controlled in mammals. Despite this view, several pathogens activate antiviral responses in the absence of type I interferons. The mechanisms controlling type I interferon-independent responses are undefined. We found that RIG-I like receptors (RLRs) induce type III interferon expression in a variety of human cell types, and identified factors that differentially regulate expression of type I and type III interferons. We identified peroxisomes as a primary site of initiation of type III interferon expression, and revealed that the process of intestinal epithelial cell differentiation upregulates peroxisome biogenesis and promotes robust type III interferon responses in human cells. These findings highlight the importance of different intracellular organelles in specific innate immune responses.

  11. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins

    PubMed Central

    1988-01-01

    As part of an effort to understand how proteins are imported into the peroxisome, we have sought to identify the peroxisomal targeting signals in four unrelated peroxisomal proteins: human catalase, rat hydratase:dehydrogenase, pig D-amino acid oxidase, and rat acyl-CoA oxidase. Using gene fusion experiments, we have identified a region of each protein that can direct heterologous proteins to peroxisomes. In each case, the peroxisomal targeting signal is contained at or near the carboxy terminus of the protein. For catalase, the peroxisomal targeting signal is located within the COOH-terminal 27 amino acids of the protein. For hydratase:dehydrogenase, D-amino acid oxidase, and acyl-CoA oxidase, the targeting signals are located within the carboxy- terminal 15, 14, and 15 amino acids, respectively. A tripeptide of the sequence Ser-Lys/His-Leu is present in each of these targeting signals as well as in the peroxisomal targeting signal identified in firefly luciferase (Gould, S.J., G.-A. Keller, and S. Subramani. 1987. J. Cell Biol. 105:2923-2931). When the peroxisomal targeting signal of the hydratase:dehydrogenase is mutated so that the Ser-Lys-Leu tripeptide is converted to Ser-Asn-Leu, it can no longer direct proteins to peroxisomes. We suggest that this tripeptide is an essential element of at least one class of peroxisomal targeting signals. PMID:2901422

  12. A novel role for the apoptosis inhibitor ARC in suppressing TNFα-induced regulated necrosis.

    PubMed

    Kung, G; Dai, P; Deng, L; Kitsis, R N

    2014-04-01

    TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis.

  13. Association between cardiac changes and stress, and the effect of peroxisome proliferator-activated receptor-γ on stress-induced myocardial injury in mice.

    PubMed

    Gao, Jin-liao; Xue, Qiao; Wang, Shi-wen; Gao, Li-fei; Lan, Yun-feng; Fang, Zhou; Fu, Yi-cheng; Liu, Yan; Li, Yang; Fan, Li

    2015-02-01

    This study was aimed to investigate the effect of stress induced by high-intensity exercises on the cardiovascular system. In the epidemiological investigation, 200 subjects (test group) engaged in special high-intensity exercises, and 97 who lived and worked in the same environment and conditions as those in the test group, but did not participate in the exercises served as controls. In the second part of the study, 50 mice were randomly divided into control group, exhaustive swimming group, white noise group, exhaustive swimming plus white noise group, and pioglitazone intervention group. The results showed that the plasma concentrations of the myocardial injury markers heart fatty acid-binding protein (H-FABP), C-reactive protein (CRP), β-endorphin (β-EP) and levels of psychological stress were significantly increased in test group as compared with control group; special high-intensity exercises resulted in a significant elevation of the incidence of cardiac arrhythmias. Animal experiments showed that the plasma levels of corticosterone (CORT) and troponin I (TnI) were raised while the level of SOD was reduced in exhaustive swimming group, white noise group, and exhaustive swimming plus white noise group. The expression levels of PPARγ mRNA and protein were decreased in myocardial tissues in these groups as well. HE staining showed no remarkable change in myocardial tissues in all the groups. Treatment with pioglitazone significantly decreased the plasma levels of TnI and CORT, while increased the level of SOD and the expression levels of PPARγ mRNA and protein. It was concluded that the high-intensity exercises may induce a heavy physical and psychological stress and predispose the subjects to accumulated fatigue and sleep deprivation; high-intensity exercises also increases the incidence of arrhythmias and myocardial injury. PPARγ may be involved in the physical and psychological changes induced by high-intensity exercises.

  14. Interferon-α, -β and -γ induce CXCL11 secretion in human thyrocytes: modulation by peroxisome proliferator-activated receptor γ agonists.

    PubMed

    Antonelli, Alessandro; Ferrari, Silvia Martina; Mancusi, Caterina; Mazzi, Valeria; Pupilli, Cinzia; Centanni, Marco; Ferri, Clodoveo; Ferrannini, Ele; Fallahi, Poupak

    2013-05-01

    It has been previously shown IFN-α, -β, -γ and TNF-α (synergically with IFNs) dose-dependently induce the release of CXCL9 and CXCL10 chemokines by thyroid follicular cells, suggesting that this process may be related, at least in part, to the appearance of thyroid dysfunction during IFNs therapy. No study has evaluated the effect of IFN-α and -β on CXCL11 chemokine production in thyrocytes. The aims of this study were: (a) to test the effect of IFN-α, -β and -γ on the secretion of the Th1 chemokine CXCL11, in primary cultures of human thyroid follicular cells; (b) to assess the effect of PPAR-γ activation on CXCL11 secretion. In primary cultures of human thyroid follicular cells, CXCL11 was undetectable in the supernatant. IFN-γ, -α and -β dose dependently induced CXCL11 release. TNF-α alone had no effect. The combination of each of the IFNs with TNF-α had a significant synergistic effect on CXCL11 secretion. Treatment of primary cultures of human thyroid follicular cells with rosiglitazone dose dependently inhibited the IFNs stimulated CXCL11 release. Compared with IFN-α and -β, IFN-γ was the most potent stimulus of CXCL11 secretion. In conclusion, we first show that IFN-α, -β and -γ and TNF-α (synergically with IFNs) dose-dependently induce the release of CXCL11 by primary cultures of human thyroid follicular cells, suggesting that this process may be related to the appearance of thyroid dysfunction during IFNs therapy. Furthermore, PPAR-γ activation partially inhibits this process.

  15. Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants.

    PubMed

    Corpas, Francisco J; Hayashi, Makoto; Mano, Shoji; Nishimura, Mikio; Barroso, Juan B

    2009-12-01

    Peroxisomes are unique organelles involved in multiple cellular metabolic pathways. Nitric oxide (NO) is a free radical active in many physiological functions under normal and stress conditions. Using Arabidopsis (Arabidopsis thaliana) wild type and mutants expressing green fluorescent protein through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo, this study analyzes the temporal and cell distribution of NO during the development of 3-, 5-, 8-, and 11-d-old Arabidopsis seedlings and shows that Arabidopsis peroxisomes accumulate NO in vivo. Pharmacological analyses using nitric oxide synthase (NOS) inhibitors detected the presence of putative calcium-dependent NOS activity. Furthermore, peroxins Pex12 and Pex13 appear to be involved in transporting the putative NOS protein to peroxisomes, since pex12 and pex13 mutants, which are defective in PTS1- and PTS2-dependent protein transport to peroxisomes, registered lower NO content. Additionally, we show that under salinity stress (100 mM NaCl), peroxisomes are required for NO accumulation in the cytosol, thereby participating in the generation of peroxynitrite (ONOO(-)) and in increasing protein tyrosine nitration, which is a marker of nitrosative stress.

  16. Uptake inhibitors but not substrates induce protease resistance in extracellular loop two of the dopamine transporter.

    PubMed

    Gaffaney, Jon D; Vaughan, Roxanne A

    2004-03-01

    Changes in protease sensitivity of extracellular loop two (EL2) of the dopamine transporter (DAT) during inhibitor and substrate binding were examined using trypsin proteolysis and epitope-specific immunoblotting. In control rat striatal membranes, proteolysis of DAT in a restricted region of EL2 was produced by 0.001 to 10 microg/ml trypsin. However, in the presence of the dopamine uptake blockers [2-(diphenylmethoxyl) ethyl]-4-(3phenylpropyl) piperazine (GBR 12909), mazindol, 2beta-carbomethoxy-3beta-(4-flourophenyl)tropane (beta-CFT), nomifensine, benztropine, or (-)-cocaine, 100- to 1000-fold higher concentrations of trypsin were required to produce comparable levels of proteolysis. Protease resistance induced by ligands was correlated with their affinity for DAT binding, was not observed with Zn2+, (+)-cocaine, or inhibitors of norepinephrine or serotonin transporters, and was not caused by altered catalytic activity of trypsin. Together, these results support the hypothesis that the interaction of uptake inhibitors with DAT induces a protease-resistant conformation in EL2. In contrast, binding of substrates did not induce protease resistance in EL2, suggesting that substrates and inhibitors interact with DAT differently during binding. To assess the effects of EL2 proteolysis on DAT function, the binding and transport properties of trypsin-digested DAT were assayed with [3H]CFT and [3H]dopamine. Digestion decreased the Bmax for binding and the Vmax for uptake in amounts that were proportional to the extent of proteolysis, indicating that the structural integrity of EL2 is required for maintenance of both DAT binding and transport functions. Together this data provides novel information about inhibitor and substrate interactions at EL2, possibly relating the protease resistant DAT conformation to a mechanism of transport inhibition.

  17. Interferon-alpha, -beta and -gamma induce CXCL9 and CXCL10 secretion by human thyrocytes: modulation by peroxisome proliferator-activated receptor-gamma agonists.

    PubMed

    Antonelli, Alessandro; Ferrari, Silvia Martina; Fallahi, Poupak; Ghiri, Emiliano; Crescioli, Clara; Romagnani, Paola; Vitti, Paolo; Serio, Mario; Ferrannini, Ele

    2010-06-01

    It has been hypothesized that interferon (IFN) alpha and beta cause autoimmune thyroid dysfunctions by changing the Th1/Th2 balance, but the mechanisms involved are not yet known. The aims of this study were: (a) to test the effect of IFNalpha, IFNbeta and IFNgamma on the secretion of the Th1 chemokines CXCL9 and CXCL10, in "primary cultures of human thyroid follicular cells" (TFC); (b) to assess the effect of PPARgamma activation on CXCL9 and CXCL10 secretion. In TFC, CXCL9 and CXCL10 were undetectable in the supernatant. IFNgamma, IFNalpha and IFNbeta, dose dependently induced CXCL9 and CXCL10 release. TNFalpha alone had no effect. The combination of each of the IFNs with TNFalpha had a significant synergistic effect on CXCL9 and CXCL10 secretion. Treatment of TFC with rosiglitazone dose dependently inhibited the IFNs-stimulated CXCL9 and CXCL10 release. Compared with IFNalpha and IFNbeta, IFNgamma was the most potent stimulus of CXCL9 and CXCL10 secretion. In conclusion, IFNalpha, IFNbeta, IFNgamma and TNFalpha (synergistically with IFNs) dose-dependently induce the release of CXCL9 and CXCL10 by TFC, suggesting that this process may be related, at least in part, to the appearance of thyroid dysfunction during IFNs therapy. Furthermore, PPARgamma activation partially inhibits this process.

  18. Rifampicin-Induced Hepatic Lipid Accumulation: Association with Up-Regulation of Peroxisome Proliferator-Activated Receptor γ in Mouse Liver

    PubMed Central

    Zhang, Da-Gang; Li, Lu; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous study found that rifampicin caused intrahepatic cholestasis. This study investigated the effects of rifampicin on hepatic lipid metabolism. Mice were orally administered with rifampicin (200 mg/kg) daily for different periods. Results showed that serum TG level was progressively reduced after a short elevation. By contrast, hepatic TG content was markedly increased in rifampicin-treated mice. An obvious hepatic lipid accumulation, as determined by Oil Red O staining, was observed in mice treated with rifampicin for more than one week. Moreover, mRNA levels of Fas, Acc and Scd-1, several key genes for fatty acid synthesis, were elevated in rifampicin-treated mice. In addition, the class B scavenger receptor CD36 was progressively up-regulated by rifampicin. Interestingly, hepatic SREBP-1c and LXR-α, two important transcription factors that regulate genes for hepatic fatty acid synthesis, were not activated by rifampicin. Instead, hepatic PXR was rapidly activated in rifampicin-treated mice. Hepatic PPARγ, a downstream target of PXR, was transcriptionally up-regulated. Taken together, the increased hepatic lipid synthesis and uptake of fatty acids from circulation into liver jointly contribute to rifampicin-induced hepatic lipid accumulation. The increased uptake of fatty acids from circulation into liver might be partially attributed to rifampicin-induced up-regulation of PPARγ and its target genes. PMID:27806127

  19. Pathophysiology of visual disorders induced by phosphodiesterase inhibitors in the treatment of erectile dysfunction

    PubMed Central

    Moschos, Marilita M; Nitoda, Eirini

    2016-01-01

    Aim The aim of this review was to summarize the ocular action of the most common phosphodiesterase (PDE) inhibitors used for the treatment of erectile dysfunction and the subsequent visual disorders. Method This is a literature review of several important articles focusing on the pathophysiology of visual disorders induced by PDE inhibitors. Results PDE inhibitors have been associated with ocular side effects, including changes in color vision and light perception, blurred vision, transient alterations in electroretinogram (ERG), conjunctival hyperemia, ocular pain, and photophobia. Sildenafil and tadalafil may induce reversible increase in intraocular pressure and be involved in the development of non-arteritic ischemic optic neuropathy. Reversible idiopathic serous macular detachment, central serous chorioretinopathy, and ERG disturbances have been related to the significant impact of sildenafil and tadalafil on retinal perfusion. Discussion So far, PDE inhibitors do not seem to cause permanent toxic effects on chorioretinal tissue and photoreceptors. However, physicians should write down any visual symptom observed during PDE treatment and refer the patients to ophthalmologists. PMID:27799745

  20. Peroxisome Biogenesis Disorders: Biological, Clinical and Pathophysiological Perspectives

    ERIC Educational Resources Information Center

    Braverman, Nancy E.; D'Agostino, Maria Daniela; MacLean, Gillian E.

    2013-01-01

    The peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive disorders in which peroxisome assembly is impaired, leading to multiple peroxisome enzyme deficiencies, complex developmental sequelae and progressive disabilities. Mammalian peroxisome assembly involves the protein products of 16 "PEX" genes;…

  1. Neurite outgrowth of NG108-15 cells induced by heat shock protein 90 inhibitors.

    PubMed

    Jin, Erika; Sano, Mamoru

    2008-12-01

    We previously reported that radicicol (Rad) and geldanamycin (Geld), heat shock protein 90 (Hsp90) inhibitors, potentiate neurite growth of cultured sensory neurons from chick embryo. We now show that the antibiotics induce neurite growth in NG108-15 cells. Treatment of the cells with these drugs caused transient decrease in protein levels of Raf1, ERK1/2, phosphorylated ERK1/2, Akt1, and CDK4. The neurite growth of NG108-15 induced by the inhibitors was blocked by actynomycin D, but the neurite growth stimulated by dbcAMP in the cells was not affected. The neurite growth could be due to a change in the synthesis of some specific protein(s) and is speculated to be due to the transient downregulation of particular-signaling molecules stabilized by Hsp90.

  2. Effects of the inducible nitric oxide synthase inhibitor aminoguanidine in two different rat models of schizophrenia.

    PubMed

    Lafioniatis, Anastasios; Orfanidou, Martha A; Papadopoulou, Evangelia S; Pitsikas, Nikolaos

    2016-08-01

    Several lines evidence indicate that the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine and the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induce schizophrenia-like symptoms in rodents, including memory impairments and social withdrawal. Nitric oxide (NO) has been proposed to act as an intracellular messenger in the brain and its overproduction is associated with schizophrenia. The current study was designed to investigate the ability of the inducible NO synthase (iNOS) inhibitor aminoguanidine (AG) to counteract schizophrenia-like behavioural deficits produced by ketamine and apomorphine in rats. The efficacy of AG to antagonize extinction of recognition memory, ketamine and apomorphine-induced recognition memory impairments was tested utilizing the novel object recognition task (NORT). Further, the efficacy of AG to attenuate ketamine-induced social withdrawal was examined in the social interaction test. AG (25 and 50mg/kg) antagonized extinction of recognition memory and reversed ketamine (3mg/kg) and apomorphine (1mg/kg)-induced recognition memory deficits. In contrast, AG (50 and 100mg/kg) did not counteract the ketamine (8mg/kg)-induced social isolation. The present data show that the iNOS inhibitor AG counteracted extinction of recognition memory and reversed recognition memory deficits produced by dysfunction of the glutamatergic and the dopaminergic (DAergic) system in rats. Therefore, AG may be efficacious in attenuating memory impairments often observed in schizophrenia patients.

  3. Inhibition of peroxisome-proliferator-activated receptor (PPAR)alpha by MK886.

    PubMed Central

    Kehrer, J P; Biswal, S S; La, E; Thuillier, P; Datta, K; Fischer, S M; Vanden Heuvel, J P

    2001-01-01

    Although MK886 was originally identified as an inhibitor of 5-lipoxygenase activating protein (FLAP), recent data demonstrate that this activity does not underlie its ability to induce apoptosis [Datta, Biswal and Kehrer (1999) Biochem. J. 340, 371--375]. Since FLAP is a fatty-acid binding protein, it is conceivable that MK886 may affect other such proteins. A family of nuclear receptors that are activated by fatty acids and their metabolites, the peroxisome-proliferator-activated receptors (PPARs), have been implicated in apoptosis and may represent a target for MK886. The ability of MK886 to inhibit PPAR-alpha, -beta and -gamma activity was assessed using reporter assay systems (peroxisome-proliferator response element--luciferase). Using a transient transfection system in monkey kidney fibroblast CV-1 cells, mouse keratinocyte 308 cells and human lung adenocarcinoma A549 cells, 10--20 microM MK886 inhibited Wy14,643 activation of PPAR alpha by approximately 80%. Similar inhibition of PPAR alpha by MK886 was observed with a stable transfection reporter system in CV-1 cells. Only minimal inhibitory effects were seen on PPAR beta and PPAR gamma. MK886 inhibited PPAR alpha by a non-competitive mechanism as shown by its effects on the binding of arachidonic acid to PPAR alpha protein, and a dose-response study using a transient transfection reporter assay in COS-1 cells. An assay assessing PPAR ligand-receptor interactions showed that MK886 prevents the conformational change necessary for active-complex formation. The expression of keratin-1, a protein encoded by a PPAR alpha-responsive gene, was reduced by MK886 in a culture of mouse primary keratinocytes, suggesting that PPAR inhibition has functional consequences in normal cells. Although Jurkat cells express all PPAR isoforms, various PPAR alpha and PPAR gamma agonists were unable to prevent MK886-induced apoptosis. This is consistent with MK886 functioning as a non-competitive inhibitor of PPAR alpha, but may

  4. A Nanoconjugate Apaf-1 Inhibitor Protects Mesothelial Cells from Cytokine-Induced Injury

    PubMed Central

    Santamaría, Beatriz; Benito-Martin, Alberto; Ucero, Alvaro Conrado; Aroeira, Luiz Stark; Reyero, Ana; Vicent, María Jesús; Orzáez, Mar; Celdrán, Angel; Esteban, Jaime; Selgas, Rafael; Ruíz-Ortega, Marta; Cabrera, Manuel López; Egido, Jesús; Pérez-Payá, Enrique; Ortiz, Alberto

    2009-01-01

    Background Inflammation may lead to tissue injury. We have studied the modulation of inflammatory milieu-induced tissue injury, as exemplified by the mesothelium. Peritoneal dialysis is complicated by peritonitis episodes that cause loss of mesothelium. Proinflammatory cytokines are increased in the peritoneal cavity during peritonitis episodes. However there is scarce information on the modulation of cell death by combinations of cytokines and on the therapeutic targets to prevent desmesothelization. Methodology Human mesothelial cells were cultured from effluents of stable peritoneal dialysis patients and from omentum of non-dialysis patients. Mesothelial cell death was studied in mice with S. aureus peritonitis and in mice injected with tumor necrosis factor alpha and interferon gamma. Tumor necrosis factor alpha and interferon gamma alone do not induce apoptosis in cultured mesothelial cells. By contrast, the cytokine combination increased the rate of apoptosis 2 to 3-fold over control. Cell death was associated with the activation of caspases and a pancaspase inhibitor prevented apoptosis. Specific caspase-8 and caspase-3 inhibitors were similarly effective. Co-incubation with both cytokines also impaired mesothelial wound healing in an in vitro model. However, inhibition of caspases did not improve wound healing and even impaired the long-term recovery from injury. By contrast, a polymeric nanoconjugate Apaf-1 inhibitor protected from apoptosis and allowed wound healing and long-term recovery. The Apaf-1 inhibitor also protected mesothelial cells from inflammation-induced injury in vivo in mice. Conclusion Cooperation between tumor necrosis factor alpha and interferon gamma contributes to mesothelial injury and impairs the regenerative capacity of the monolayer. Caspase inhibition attenuates mesothelial cell apoptosis but does not facilitate regeneration. A drug targeting Apaf-1 allows protection from apoptosis as well as regeneration in the course of

  5. Cyclooxygenase-2 inhibitor nimesulide blocks ultraviolet B-induced photocarcinogenesis in SKH-1 hairless mice.

    PubMed

    Tang, Xiuwei; Kim, Arianna L; Kopelovich, Levy; Bickers, David R; Athar, Mohammad

    2008-01-01

    Cyclooxygenase-2 (COX-2) inhibition can inhibit UVB-induced carcinogenesis in the skin. We have shown that COX-2 is overexpressed in UVB-induced squamous cell carcinomas (SCCs). Celecoxib, a specific inhibitor of COX-2, blocks UVB-induced papillomas and carcinomas in murine skin. However, as COX-2 inhibitors of this type are associated with an increased risk of adverse cardiovascular events, we decided to study nimesulide, a different class of COX-2 inhibitor, an N-arylmethanesulfonamide derivative not known to have these untoward effects. To assess the antitumor-promoting effects of nimesulide, 90 mice were equally divided into three groups. Group I animals received no test agent or UVB and served as age-matched controls; group II animals were irradiated with UVB (180 mJ cm(-2), twice weekly for 35 weeks) and group III animals received 300 p.p.m. nimesulide in drinking water and were irradiated with UVB as described for group-II. Nimesulide treatment reduced the growth of UVB-induced tumors both in terms of tumor number and tumor volume. By weeks 25, 30 and 35, the tumor numbers in the nimesulide-treated group were 79%, 49% and 53% less than the number occurring in UVB-treated animals whereas tumor volume was reduced 69%, 54% and 53%, respectively, compared to the UVB-irradiated control group. Nimesulide also inhibited the malignant progression of SCCs. The reduction in tumorigenesis was paralleled by a decrease in cell cycle regulatory proteins (cyclins A, B1, D1, E, CDK2/4/6) and the antiapoptotic protein (Bcl2); concomitantly there was an increase in proapoptotic markers, poly (ADP-ribose) polymerase (PARP) and caspase-3. Nimesulide also decreased ornithine decarboxylase expression and the nuclear accumulation of nuclear factor kappa B transcriptionally active protein complexes. These results show that alternative classes of COX-2 inhibitors may likely be efficacious as cancer chemopreventive agents and may have an improved therapeutic index.

  6. The Calpain Inhibitor MDL28170 Induces the Expression of Apoptotic Markers in Leishmania amazonensis Promastigotes

    PubMed Central

    Marinho, Fernanda A.; Gonçalves, Keyla C. S.; Oliveira, Simone S. C.; Gonçalves, Diego S.; Matteoli, Filipe P.; Seabra, Sergio H.; Oliveira, Ana Carolina S.; Bellio, Maria; Oliveira, Selma S.; Souto-Padrón, Thaïs; d'Avila-Levy, Claudia M.; Santos, André L. S.; Branquinha, Marta H.

    2014-01-01

    Background Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. Methodology/Principal Findings In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. Conclusions/Significance The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the

  7. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content.

    PubMed

    Neschen, Susanne; Moore, Irene; Regittnig, Werner; Yu, Chun Li; Wang, Yanlin; Pypaert, Marc; Petersen, Kitt Falk; Shulman, Gerald I

    2002-02-01

    To examine the mechanism by which fish oil protects against fat-induced insulin resistance, we studied the effects of control, fish oil, and safflower oil diets on peroxisomal content, fatty acyl-CoA, diacylglycerol, and ceramide content in rat liver and muscle. We found that, in contrast to control and safflower oil-fed rats, fish oil feeding induced a 150% increase in the abundance of peroxisomal acyl-CoA oxidase and 3-ketoacyl-CoA thiolase in liver but lacked similar effects in muscle. This was paralleled by an almost twofold increase in hepatic peroxisome content (both P < 0.002 vs. control and safflower). These changes in the fish oil-fed rats were associated with a more than twofold lower hepatic triglyceride/diacylglycerol, as well as intramuscular triglyceride/fatty acyl-CoA, content. In conclusion, these data strongly support the hypothesis that n-3 fatty acids protect against fat-induced insulin resistance by serving as peroxisome proliferator-activated receptor-alpha ligands and thereby induce hepatic, but not intramuscular, peroxisome proliferation. In turn, an increased hepatic beta-oxidative capacity results in lower hepatic triglyceride/diacylglycerol and intramyocellular triglyceride/fatty acyl-CoA content.

  8. Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Severe heart failure (HF) is characterized by profound alterations in cardiac metabolic phenotype, with down-regulation of the free fatty acid (FFA) oxidative pathway and marked increase in glucose oxidation. We tested whether fenofibrate, a pharmacological agonist of peroxisome proliferator-activat...

  9. Curcumin Attenuates Beta-Amyloid-Induced Neuroinflammation via Activation of Peroxisome Proliferator-Activated Receptor-Gamma Function in a Rat Model of Alzheimer's Disease.

    PubMed

    Liu, Zun-Jing; Li, Zhong-Hao; Liu, Lei; Tang, Wen-Xiong; Wang, Yu; Dong, Ming-Rui; Xiao, Cheng

    2016-01-01

    Neuroinflammation is known to have a pivotal role in the pathogenesis of Alzheimer's disease (AD), and curcumin has been reported to have therapeutical effects on AD because of its anti-inflammatory effects. Curcumin is not only a potent PPARγ agonist, but also has neuroprotective effects on cerebral ischemic injury. However, whether PPARγ activated by curcumin is responsible for the anti-neuroinflammation and neuroprotection on AD remains unclear, and needs to be further investigated. Here, using both APP/PS1 transgenic mice and beta-amyloid-induced neuroinflammation in mixed neuronal/glial cultures, we showed that curcumin significantly alleviated spatial memory deficits in APP/PS1 mice and promoted cholinergic neuronal function in vivo and in vitro. Curcumin also reduced the activation of microglia and astrocytes, as well as cytokine production and inhibited nuclear factor kappa B (NF-κB) signaling pathway, suggesting the beneficial effects of curcumin on AD are attributable to the suppression of neuroinflammation. Attenuation of these beneficial effects occurred when co-administrated with PPARγ antagonist GW9662 or silence of PPARγ gene expression, indicating that PPARγ might be involved in anti-inflammatory effects. Circular dichroism and co-immunoprecipitation analysis showed that curcumin directly bound to PPARγ and increased the transcriptional activity and protein levels of PPARγ. Taking together, these data suggested that PPARγ might be a potential target of curcumin, acting to alleviate neuroinflammation and improve neuronal function in AD.

  10. Curcumin Attenuates Beta-Amyloid-Induced Neuroinflammation via Activation of Peroxisome Proliferator-Activated Receptor-Gamma Function in a Rat Model of Alzheimer's Disease

    PubMed Central

    Liu, Zun-Jing; Li, Zhong-Hao; Liu, Lei; Tang, Wen-Xiong; Wang, Yu; Dong, Ming-Rui; Xiao, Cheng

    2016-01-01

    Neuroinflammation is known to have a pivotal role in the pathogenesis of Alzheimer's disease (AD), and curcumin has been reported to have therapeutical effects on AD because of its anti-inflammatory effects. Curcumin is not only a potent PPARγ agonist, but also has neuroprotective effects on cerebral ischemic injury. However, whether PPARγ activated by curcumin is responsible for the anti-neuroinflammation and neuroprotection on AD remains unclear, and needs to be further investigated. Here, using both APP/PS1 transgenic mice and beta-amyloid-induced neuroinflammation in mixed neuronal/glial cultures, we showed that curcumin significantly alleviated spatial memory deficits in APP/PS1 mice and promoted cholinergic neuronal function in vivo and in vitro. Curcumin also reduced the activation of microglia and astrocytes, as well as cytokine production and inhibited nuclear factor kappa B (NF-κB) signaling pathway, suggesting the beneficial effects of curcumin on AD are attributable to the suppression of neuroinflammation. Attenuation of these beneficial effects occurred when co-administrated with PPARγ antagonist GW9662 or silence of PPARγ gene expression, indicating that PPARγ might be involved in anti-inflammatory effects. Circular dichroism and co-immunoprecipitation analysis showed that curcumin directly bound to PPARγ and increased the transcriptional activity and protein levels of PPARγ. Taking together, these data suggested that PPARγ might be a potential target of curcumin, acting to alleviate neuroinflammation and improve neuronal function in AD. PMID:27594837

  11. PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance.

    PubMed

    Koch, Johannes; Pranjic, Kornelija; Huber, Anja; Ellinger, Adolf; Hartig, Andreas; Kragler, Friedrich; Brocard, Cécile

    2010-10-01

    Dynamic changes of membrane structure are intrinsic to organelle morphogenesis and homeostasis. Ectopic expression of proteins of the PEX11 family from yeast, plant or human lead to the formation of juxtaposed elongated peroxisomes (JEPs),which is evocative of an evolutionary conserved function of these proteins in membrane tubulation. Microscopic examinations reveal that JEPs are composed of independent elongated peroxisomes with heterogeneous distribution of matrix proteins. We established the homo- and heterodimerization properties of the human PEX11 proteins and their interaction with the fission factor hFis1, which is known to recruit the GTPase DRP1 to the peroxisomal membrane. We show that excess of hFis1 but not of DRP1 is sufficient to fragment JEPs into normal round-shaped organelles, and illustrate the requirement of microtubules for JEP formation. Our results demonstrate that PEX11-induced JEPs represent intermediates in the process of peroxisome membrane proliferation and that hFis1 is the limiting factor for progression. Hence, we propose a model for a conserved role of PEX11 proteins in peroxisome maintenance through peroxisome polarization, membrane elongation and segregation.

  12. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    SciTech Connect

    Hayashi, H.; Miwa, A. )

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  13. Effects of inhibitors on 1-methyladenine induced maturation of starfish oocytes

    NASA Astrophysics Data System (ADS)

    Lee, Harold H.; Xu, Quanhan

    1986-12-01

    1-methladenine (1-MA) induces starfish oocytes maturation via surface reaction followed by the appearance of a cytoplasmic maturation factor which in turn induces germinal vesicle breakdown (GVBD) to resume meiosis. Cellular mechanisms involved in GVBD were investigated by microinjection of metabolic inhibitors. Colchicine (Co) inhibited maturation, cytochalasin-B (CB) delayed GVBD and actinomycin-D-(Act-D) and puromycin (Pu) had no effect. It appears that the microtubule and the microfilament systems are associated with the nuclear membrane dissolution during the process of oocyte maturation of starfish.

  14. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Jaffe, M. J.

    1984-01-01

    The present study was designed to establish the role of an essential hormone controlling sex expression in cucumber. A potent anti-ethylene agent, AgNO3, completely inhibited pistillate flower formation caused by IAA, ACC or ethephon. Inhibitors of ethylene biosynthesis, AVG and CoCl2 also suppressed feminization due to exogenous IAA or ACC. Though AVG also suppressed ethephon-induced feminization, this may be due to the second effect of AVG rather than the effect on ACC biosynthesis. These results confirm that ethylene is a major factor regulating feminization and that exogenous auxin induces pistillate flower formation through its stimulation of ethylene production, rather than ACC production.

  15. Discovery of Indenopyrazoles as a New Class of Hypoxia Inducible Factor (HIF)-1 Inhibitors

    PubMed Central

    2013-01-01

    The indenopyrazole framework was investigated as a new class of HIF-1α inhibitors. Indenopyrazole 2l was found to most strongly inhibit the hypoxia-induced HIF-1α transcriptional activity (IC50 = 0.014 μM) among all of the known compounds having relatively simple structures, unlike manassantins. Indenopyrazole 2l suppressed HIF-1α transcriptional activity without affecting both HIF-1α protein accumulation and HIF-1α/HIF-1β heterodimerization in nuclei under the hypoxic conditions, suggesting that 2l probably affected the transcriptional pathway induced by the HIF-1α/HIF-1β heterodimer. PMID:24900662

  16. Depressor effect of chymase inhibitor in mice with high salt-induced moderate hypertension.

    PubMed

    Devarajan, Sankar; Yahiro, Eiji; Uehara, Yoshinari; Habe, Shigehisa; Nishiyama, Akira; Miura, Shin-ichiro; Saku, Keijiro; Urata, Hidenori

    2015-12-01

    The aim of the present study was to determine whether long-term high salt intake in the drinking water induces hypertension in wild-type (WT) mice and whether a chymase inhibitor or other antihypertensive drugs could reverse the increase of blood pressure. Eight-week-old male WT mice were supplied with drinking water containing 2% salt for 12 wk (high-salt group) or high-salt drinking water plus an oral chymase inhibitor (TPC-806) at four different doses (25, 50, 75, or 100 mg/kg), captopril (75 mg/kg), losartan (100 mg/kg), hydrochlorothiazide (3 mg/kg), eplerenone (200 mg/kg), or amlodipine (6 mg/kg). Control groups were given normal water with or without the chymase inhibitor. Blood pressure and heart rate gradually showed a significant increase in the high-salt group, whereas a dose-dependent depressor effect of the chymase inhibitor was observed. There was also partial improvement of hypertension in the losartan- and eplerenone-treated groups but not in the captopril-, hydrochlorothiazide-, and amlodipine-treated groups. A high salt load significantly increased chymase-dependent ANG II-forming activity in the alimentary tract. In addition, the relative contribution of chymase to ANG II formation, but not actual average activity, showed a significant increase in skin and skeletal muscle, whereas angiotensin-converting enzyme-dependent ANG II-forming activity and its relative contribution were reduced by high salt intake. Plasma and urinary renin-angiotensin system components were significantly increased in the high-salt group but were significantly suppressed in the chymase inhibitor-treated group. In conclusion, 2% salt water drinking for 12 wk caused moderate hypertension and activated the renin-angiotensin system in WT mice. A chymase inhibitor suppressed both the elevation of blood pressure and heart rate, indicating a definite involvement of chymase in salt-sensitive hypertension.

  17. Giant peroxisomes in a moss (Physcomitrella patens) peroxisomal biogenesis factor 11 mutant.

    PubMed

    Kamisugi, Yasuko; Mitsuya, Shiro; El-Shami, Mahmoud; Knight, Celia D; Cuming, Andrew C; Baker, Alison

    2016-01-01

    Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 μm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division.

  18. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    SciTech Connect

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  19. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis

    PubMed Central

    Guan, Shan; Zhao, Yanling; Lu, Jiaxiong; Yu, Yang; Sun, Wenjing; Mao, Xinfang; Chen, Zhenghu; Xu, Xin; Pan, Jessie; Sun, Surong; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common extracranial malignant neoplasm in children. Elevated level of proteasome activity promotes cancer development and the inhibition of proteasome activity is a promising strategy for cancer treatment. Therefore, targeting proteasome by small molecule inhibitors may be a viable option for NB therapy. Here in this study, we show that a novel proteasome inhibitor Carfilzomib (CFZ) exerts anti-tumor effect on NB. CFZ caused decreased cell viability and attenuated colony formation ability of a subset of NB cell lines. CFZ induced cell apoptosis in NB cells. Moreover, CFZ enhanced the cytotoxic effect of doxorubicin (Dox) on NB cells and Dox-induced p38 and JNK phosphorylation. In addition, CFZ inhibited Dox-induced NF-κB activation by stabilizing the protein level of IκBα. Furthermore, CFZ induced apoptosis and augmented Dox-induced apoptosis in NB tumor cells in orthotopic xenograft mouse models. In summary, our study suggests that proteasome is a therapeutic target in NB and proteasome inhibition by CFZ is a potential therapeutic strategy for treating NB patients. PMID:27713150

  20. Mitochondrial respiratory chain inhibitors modulate the metal-induced inner mitochondrial membrane permeabilization.

    PubMed

    Belyaeva, Elena A

    2010-01-01

    To elucidate the molecular mechanisms of the protective action of stigmatellin (an inhibitor of complex III of mitochondrial electron transport chain, mtETC) against the heavy metal-induced cytotoxicity, we tested its effectiveness against mitochondrial membrane permeabilization produced by heavy metal ions Cd²(+), Hg²(+), Cu²(+) and Zn²(+), as well as by Ca²(+) (in the presence of P(i)) or Se (in form of Na₂SeO₃) using isolated rat liver mitochondria. It was shown that stigmatellin modulated mitochondrial swelling produced by these metals/metalloids in the isotonic sucrose medium in the presence of ascorbate plus tetramethyl-p-phenylenediamine (complex IV substrates added for energization of the mitochondria). It was found that stigmatellin and other mtETC inhibitors enhanced the mitochondrial swelling induced by selenite. However, in the same medium, all the mtETC inhibitors tested as well as cyclosporin A and bongkrekic acid did not significantly affect Cu²(+)-induced swelling. In contrast, the high-amplitude swelling produced by Cd²(+), Hg²(+), Zn²(+), or Ca²(+) plus P(i) was significantly depressed by these inhibitors. Significant differences in the action of these metals/metalloids on the redox status of pyridine nucleotides, transmembrane potential and mitochondrial respiration were also observed. In the light of these results as well as the data from the recent literature, our hypothesis on a possible involvement of the respiratory supercomplex, formed by complex I (P-site) and complex III (S-site) in the mitochondrial permeabilization mediated by the mitochondrial transition pore, is updated.

  1. Pharmacological Regulation of Peroxisome Number in Glia

    DTIC Science & Technology

    2008-09-01

    suggest a relationship between cholesterol homeostasis peroxisome abundance that may have relevance to therapies for Alzheimer’s disease and Neimann- Pick...FIGURE 4. Specialized Cholesterol Handling in the Brain FIGURE 5. LXR Control of Cholesterol Metabolism Chapter 2 FIGURE 1 . Differential Effects...Not Affect Levels of 4 Different Proteins That Potentially Could Participate in the Control of Peroxisome Number vi Chapter 3 FIGURE 1

  2. Preferential and non-selective cyclooxygenase inhibitors reduce inflammation during lipopolysaccharide-induced synovitis.

    PubMed

    Morton, Alison J; Campbell, Nigel B; Gayle, J'mai M; Redding, W Rich; Blikslager, Anthony T

    2005-04-01

    Synovitis in horses is frequently treated by administration of non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenase isoforms (COX-1 and COX-2). Constitutively expressed COX-1 is involved in physiologic functions such as maintenance of gastric mucosal integrity, whereas COX-2 is up-regulated at sites of inflammation. Thus, COX-2 inhibitors reduce inflammation with reduced gastrointestinal side effects as compared to non-selective COX inhibitors. The objective of the present study was to compare the anti-inflammatory effects of the preferential COX-2 inhibitor etodolac with the non-selective COX inhibitor phenylbutazone in horses with lipopolysaccharide (LPS)-induced synovitis. Three groups of horses (n=6) received no treatment, phenylbutazone (4.4 mg/kg, IV, q12h), or etodolac (23 mg/kg, IV, q12h), respectively, 2-h following injection of LPS into one middle carpal joint. Synovial fluid was analyzed for white blood cell (WBC) count, and TXB2 and PGE2 levels. Phenylbutazone and etodolac significantly reduced WBC count 6 and 24-h following injection of LPS compared to untreated horses. In addition, both drugs significantly reduced PGE2 levels (P<0.05) 6-h following LPS injection, whereas the probable COX-1 prostanoid TXB2 was significantly reduced by phenylbutazone (P<0.05), but not etodolac. Etodolac may serve as a more selective anti-inflammatory agent than phenylbutazone for treatment of equine synovitis.

  3. Methods for the Analyses of Inhibitor-Induced Aberrant Multimerization of HIV-1 Integrase

    PubMed Central

    Kessl, Jacques J.; Sharma, Amit; Kvaratskhelia, Mamuka

    2016-01-01

    HIV-1 integrase (IN) is an important therapeutic target as its function is essential for the viral lifecycle. The discovery of multifunctional allosteric IN inhibitors or ALLINIs, which potently impair viral replication by promoting aberrant, higher order IN multimerization as well as inhibit IN interactions with its cellular cofactor, LEDGF/p75, has opened new venues to exploit IN multimerization as a therapeutic target. Furthermore, the recent discovery of multimerization selective IN inhibitors or MINIs, has provided new investigational probes to study the direct effects of aberrant IN multimerization in vitro and in infected cells. Here we describe three complementary methods designed to detect and quantify the effects of these new classes of inhibitors on IN multimerization. These methods include a homogenous time-resolved fluorescence-based assay which allows for measuring EC50 values for the inhibitor-induced aberrant IN multimerization, a dynamic light scattering-based assay which allows for monitoring the formation and sizes of oligomeric IN particles in a time-dependent manner, and a chemical cross-linking-based assay of interacting IN subunits which allows for the determination of IN oligomers in viral particles. PMID:26714710

  4. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    SciTech Connect

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.; Liles, John T.; Lebofsky, Margitta; Farhood, Anwar; Jaeschke, Hartmut

    2015-07-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is

  5. Structure, composition, physical properties, and turnover of proliferated peroxisomes. A study of the trophic effects of Su-13437 on rat liver

    PubMed Central

    Leighton, F.; Coloma, L.; Koenig, C.

    1975-01-01

    Peroxisome proliferation has been induced with 2-methyl-2-(p-[1,2,3,4-tetrahydro-1-naphthyl]-phenoxy)-propionic acid (Su-13437). DNA, protein, cytochrome oxidase, glucose-6-phosphatase, and acid phosphatase concentrations remain almost constant. Peroxisomal enzyme activities change to approximately 165%, 50%, 30%, and 0% of the controls for catalase, urate oxidase, L-alpha-hydroxy acid oxidase, and D-amino acid oxidase, respectively. For catalase the change results from a decrease in particle-bound activity and a fivefold increase in soluble activity. The average diameter of peroxisome sections is 0.58 +/- 0.15 mum in controls and 0.73 +/- 0.25 mum after treatment. Therefore, the measured peroxisomal enzymes are highly diluted in proliferated particles. After tissue fractionation, approximately one-half of the normal peroxisomes and all proliferated peroxisomes show matric extraction with ghost formation, but no change in size. In homogenates submitted to mechanical stress, proliferated peroxisomes do not reveal increased fragility; unexpectedly, Su-13437 stabilizes lysosomes. Our results suggest that matrix extraction and increased soluble enzyme activities result from transmembrane passage of peroxisomal proteins. The changes in concentration of peroxisomal oxidases and soluble catalase after Su-13437 allow the calculation of their half-lives. These are the same as those found for total catalase, in normal and treated rats, after allyl isopropyl acetamide: about 1.3 days, a result compatible with peroxisome degradation by autophagy. A sequential increase in liver RNA concentration, [14C]leucine incorporation into DOC-soluble proteins and into immunoprecipitable catalase, and an increase in liver size and peroxisomal volume per gram liver, characterize the trophic effect of the drug used. In males, Su-13437 is more active than CPIB, another peroxisome proliferation-inducing drug; in females, only Su-13437 is active. PMID:406

  6. Functional Effects of AKT3 on Aurora Kinase Inhibitor-induced Aneuploidy.

    PubMed

    Noguchi, Kohji; Hongama, Keita; Hariki, Shiori; Nonomiya, Yuma; Katayama, Kazuhiro; Sugimoto, Yoshikazu

    2017-02-03

    The suppression of mitotic Aurora kinases (AURKs) by AURK inhibitors frequently causes cytokinetic failure, leading to polyploidy or aneuploidy, indicating the critical role of AURK-mediated phosphorylation during cytokinesis. We demonstrate the deregulated expression of AKT3 in Aurora kinase inhibitor (AURKi)-resistant cells, which we established from human colorectal cancer HCT 116 cells. The AKT family, which includes AKT1, -2, and -3, plays multiple roles in antiapoptotic functions and drug resistance and is involved in cell growth and survival pathways. We found that an AKT inhibitor, AZD5363, showed synergistic effect with an AURKi, VX-680, on two AKT3-expressing AURKi-resistant cell lines, and AKT3 knockdown sensitized cells to VX-680. Consistent with these activities, AKT3 expression suppressed AURKi-induced apoptosis and conferred resistance to AURKi. Thus, AKT3 expression affects cell sensitivity to AURKi. Moreover, we found that AKT3 expression suppressed AURKi-induced aneuploidy, and inversely AKT3 knockdown enhanced it. In addition, partial co-localization of AKT3 with AURKB was observed during anaphase. Overall, this study suggests that AKT3 could repress the antiproliferative effects of AURKi, with a novel activity particularly suppressing the aneuploidy induction.

  7. Natural haemozoin induces expression and release of human monocyte tissue inhibitor of metalloproteinase-1.

    PubMed

    Polimeni, Manuela; Valente, Elena; Ulliers, Daniela; Opdenakker, Ghislain; Van den Steen, Philippe E; Giribaldi, Giuliana; Prato, Mauro

    2013-01-01

    Recently matrix metalloproteinase-9 (MMP-9) and its endogenous inhibitor (tissue inhibitor of metalloproteinase-1, TIMP-1) have been implicated in complicated malaria. In vivo, mice with cerebral malaria (CM) display high levels of both MMP-9 and TIMP-1, and in human patients TIMP-1 serum levels directly correlate with disease severity. In vitro, natural haemozoin (nHZ, malarial pigment) enhances monocyte MMP-9 expression and release. The present study analyses the effects of nHZ on TIMP-1 regulation in human adherent monocytes. nHZ induced TIMP-1 mRNA expression and protein release, and promoted TNF-α, IL-1β, and MIP-1α/CCL3 production. Blocking antibodies or recombinant cytokines abrogated or mimicked nHZ effects on TIMP-1, respectively. p38 MAPK and NF-κB inhibitors blocked all nHZ effects on TIMP-1 and pro-inflammatory molecules. Still, total gelatinolytic activity was enhanced by nHZ despite TIMP-1 induction. Collectively, these data indicate that nHZ induces inflammation-mediated expression and release of human monocyte TIMP-1 through p38 MAPK- and NF-κB-dependent mechanisms. However, TIMP-1 induction is not sufficient to counterbalance nHZ-dependent MMP-9 enhancement. Future investigation on proteinase-independent functions of TIMP-1 (i.e. cell survival promotion and growth/differentiation inhibition) is needed to clarify the role of TIMP-1 in malaria pathogenesis.

  8. XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells

    PubMed Central

    Moreno-Martínez, Daniel; Nomdedeu, Meritxell; Lara-Castillo, María Carmen; Etxabe, Amaia; Pratcorona, Marta; Tesi, Niccolò; Díaz-Beyá, Marina; Rozman, María; Montserrat, Emili; Urbano-Ispizua, Álvaro; Esteve, Jordi; Risueño, Ruth M.

    2014-01-01

    Acute myeloid leukemia (AML) is a neoplasia characterized by the rapid expansion of immature myeloid blasts in the bone marrow, and marked by poor prognosis and frequent relapse. As such, new therapeutic approaches are required for remission induction and prevention of relapse. Due to the higher chemotherapy sensitivity and limited life span of more differentiated AML blasts, differentiation-based therapies are a promising therapeutic approach. Based on public available gene expression profiles, a myeloid-specific differentiation-associated gene expression pattern was defined as the therapeutic target. A XIAP inhibitor (Dequalinium chloride, DQA) was identified in an in silico screening searching for small molecules that induce similar gene expression regulation. Treatment with DQA, similarly to Embelin (another XIAP inhibitor), induced cytotoxicity and differentiation in AML. XIAP inhibition differentially impaired cell viability of the most primitive AML blasts and reduced clonogenic capacity of AML cells, sparing healthy mature blood and hematopoietic stem cells. Taken together, these results suggest that XIAP constitutes a potential target for AML treatment and support the evaluation of XIAP inhibitors in clinical trials. PMID:24952669

  9. Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis

    PubMed Central

    Chen, Zhenghu; Wang, Long; Yao, Dayong; Yang, Tianshu; Cao, Wen-Ming; Dou, Jun; Pang, Jonathan C.; Guan, Shan; Zhang, Huiyuan; Yu, Yang; Zhao, Yanling; Wang, Yongfeng; Xu, Xin; Shi, Yan; Patel, Roma; Zhang, Hong; Vasudevan, Sanjeev A.; Liu, Shangfeng; Yang, Jianhua; Nuchtern, Jed G.

    2016-01-01

    Neuroblastoma (NB) is the most common extracranial tumor in children. Unlike in most adult tumors, tumor suppressor protein 53 (p53) mutations occur with a relatively low frequency in NB and the downstream function of p53 is intact in NB cell lines. Wip1 is a negative regulator of p53 and hindrance of Wip1 activity by novel inhibitor GSK2830371 is a potential strategy to activate p53’s tumor suppressing function in NB. Yet, the in vivo efficacy and the possible mechanisms of GSK2830371 in NB have not yet been elucidated. Here we report that novel Wip1 inhibitor GSK2830371 induced Chk2/p53-mediated apoptosis in NB cells in a p53-dependent manner. In addition, GSK2830371 suppressed the colony-formation potential of p53 wild-type NB cell lines. Furthermore, GSK2830371 enhanced doxorubicin- (Dox) and etoposide- (VP-16) induced cytotoxicity in a subset of NB cell lines, including the chemoresistant LA-N-6 cell line. More importantly, GSK2830371 significantly inhibited tumor growth in an orthotopic xenograft NB mouse model by inducing Chk2/p53-mediated apoptosis in vivo. Taken together, this study suggests that GSK2830371 induces Chk2/p53-mediated apoptosis both in vitro and in vivo in a p53 dependent manner. PMID:27991505

  10. ROCK inhibitor reduces Myc-induced apoptosis and mediates immortalization of human keratinocytes

    PubMed Central

    Dakic, Aleksandra; DiVito, Kyle; Fang, Shuang; Suprynowicz, Frank; Gaur, Anirudh; Li, Xin; Palechor-Ceron, Nancy; Simic, Vera; Choudhury, Sujata; Yu, Songtao; Simbulan-Rosenthal, Cynthia M.; Rosenthal, Dean; Schlegel, Richard; Liu, Xuefeng

    2016-01-01

    The Myc/Max/Mad network plays a critical role in cell proliferation, differentiation and apoptosis and c-Myc is overexpressed in many cancers, including HPV-positive cervical cancer cell lines. Despite the tolerance of cervical cancer keratinocytes to high Myc expression, we found that the solitary transduction of the Myc gene into primary cervical and foreskin keratinocytes induced rapid cell death. These findings suggested that the anti-apoptotic activity of E7 in cervical cancer cells might be responsible for negating the apoptotic activity of over-expressed Myc. Indeed, our earlier in vitro studies demonstrated that Myc and E7 synergize in the immortalization of keratinocytes. Since we previously postulated that E7 and the ROCK inhibitor, Y-27632, were members of the same functional pathway in cell immortalization, we tested whether Y-27632 would inhibit apoptosis induced by the over-expression of Myc. Our findings indicate that Y-27632 rapidly inhibited Myc-induced membrane blebbing and cellular apoptosis and, more generally, functioned as an inhibitor of extrinsic and intrinsic pathways of cell death. Most important, Y-27632 cooperated with Myc to immortalize keratinocytes efficiently, indicating that apoptosis is a major barrier to Myc-induced immortalization of keratinocytes. The anti-apoptotic activity of Y-27632 correlated with a reduction in p53 serine 15 phosphorylation and the consequent reduction in the expression of downstream target genes p21 and DAPK1, two genes involved in the induction of cell death. PMID:27556514

  11. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    SciTech Connect

    Zuo, Chaohui; Qiu, Xiaoxin; Liu, Nianli; Yang, Darong; Xia, Man; Liu, Jingshi; Wang, Xiaohong; and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  12. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    PubMed Central

    Iyer, Malliga R.; Liu, Ziyi; Cao, Zongxian; Jourdan, Tony; Erdelyi, Katalin; Godlewski, Grzegorz; Szanda, Gergő; Liu, Jie; Park, Joshua K.; Mukhopadhyay, Bani; Rosenberg, Avi Z.; Liow, Jeih-San; Lorenz, Robin G.; Pacher, Pal; Innis, Robert B.

    2016-01-01

    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1–/– but not in nos2–/– mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis. PMID:27525312

  13. Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A.

    PubMed Central

    Hu, D E; Fan, T P

    1995-01-01

    1. Vascular endothelial growth factor (VEGF) is a heparin-binding angiogenic factor which specifically acts on endothelial cells via distinct membrane-spanning tyrosine kinase receptors. Here we used the rat sponge implant model to test the hypothesis that the angiogenic activity of VEGF can be suppressed by protein tyrosine kinase (PTK) inhibitors. 2. Neovascular responses in subcutaneous sponge implants were determined by measurements of relative sponge blood flow by use of a 133Xe clearance technique, and confirmed by histological studies and morphometric analysis. 3. Daily local administration of 250 ng VEGF165 accelerated the rate of 133Xe clearance from the sponges and induced an intense neovascularisation. This VEGF165-induced angiogenesis was inhibited by daily co-administration of the selective PTK inhibitor, lavendustin A (10 micrograms), but not its negative control, lavendustin B (10 micrograms). Blood flow measurements and morphometric analysis of 8-day-old sponges showed that lavendustin A reduced the 133Xe clearance of VEGF165-treated sponges from 32.9 +/- 1.5% to 20.9 +/- 1.6% and the total fibrovascular growth area from 62.4 +/- 6.1% to 21.6 +/- 6.8% (n = 12, P < 0.05). 4. Co-injection of suramin (3 mg), an inhibitor of heparin-binding growth factors, also suppressed the VEGF165-elicited neovascular response. In contrast, neither lavendustin A nor suramin produced any effect on the basal sponge-induced angiogenesis. 5. When given alone, low doses of VEGF165 (25 ng) or basic fibroblast growth factor (bFGF; 10 ng) did not modify the basal sponge-induced neovascularisation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 2 PMID:7533611

  14. Hypoxia inducible factor 1α expression and effects of its inhibitors in canine lymphoma

    PubMed Central

    KAMBAYASHI, Satoshi; IGASE, Masaya; KOBAYASHI, Kosuke; KIMURA, Ayana; SHIMOKAWA MIYAMA, Takako; BABA, Kenji; NOGUCHI, Shunsuke; MIZUNO, Takuya; OKUDA, Masaru

    2015-01-01

    Hypoxic conditions in various cancers are believed to relate with their malignancy, and hypoxia inducible factor-1α (HIF-1α) has been shown to be a major regulator of the response to low oxygen. In this study, we examined HIF-1α expression in canine lymphoma using cell lines and clinical samples and found that these cells expressed HIF-1α. Moreover, the HIF-1α inhibitors, echinomycin, YC-1 and 2-methoxyestradiol, suppressed the proliferation of canine lymphoma cell lines. In a xenograft model using NOD/scid mice, echinomycin treatment resulted in a dose-dependent regression of the tumor. Our results suggest that HIF-1α contributes to the proliferation and/or survival of canine lymphoma cells. Therefore, HIF-1α inhibitors may be potential agents to treat canine lymphoma. PMID:26050843

  15. BML-111 Attenuates Renal Ischemia/Reperfusion Injury Via Peroxisome Proliferator-Activated Receptor-α-Regulated Heme Oxygenase-1.

    PubMed

    Wu, Sheng-Hua; Chen, Xiao-Qing; Lü, Jing; Wang, Ming-Jie

    2016-04-01

    We examine whether BML-111, a lipoxin receptor agonist, inhibits renal ischemia/reperfusion (I/R) injury, and whether peroxisome proliferator-activated receptor-α (PPARα) or heme oxygenase-1 (HO-1) is involved in protective effects of BML-111 on kidney against I/R injury. Rats subjected to renal I/R injury were treated with or without BML-111. Renal histological and immunohistochemical studies were performed. Expressions of phosphorylated p38 mitogen-activated protein kinase (pp38 MAPK), phosphorylated PPARα (pPPARα), and HO-1 were assessed in NRK-52E cells exposed to BML-111. The binding activity of PPARα to peroxisome proliferator-responsive element (PPRE) on HO-1 promoter in the cells was determined. BML-111 treatment resulted in a marked reduction in the severity of histological features of renal I/R injury, and attenuated the rise in renal myeloperoxidase and malondialdehyde, blood urea nitrogen and creatinine, urinary N-acetyl-β-glucosaminidase, and leucine aminopeptidase levels caused by I/R injury. BML-111 stimulated the renal expressions of pPPARα and HO-1, and cellular messenger RNA (mRNA) and protein expressions of pPPARα and HO-1 which were both blocked by GW6471, a selective PPARα antagonist, and ZnPP-IX, a specific inhibitor of HO-1 pretreatment. The pp38 MAPK inhibitor SB203580 blocked the BML-111-induced expressions of pp38 MAPK, pPPARα, and HO-1 in NRK-52E cells. The binding activity of PPARα to PPRE in nuclear extracts of NRK-52E cells was enhanced by treatment of the cells with BML-111, and was suppressed by GW6471 and SB203580. BML-111 protects the kidney against I/R injury via activation of p38 MAPK/PPARα/HO-1 pathway.

  16. Bis-ANS as a specific inhibitor for microtubule-associated protein induced assembly of tubulin.

    PubMed

    Mazumdar, M; Parrack, P K; Mukhopadhyay, K; Bhattacharyya, B

    1992-07-21

    5,5'-Bis[8-(phenylamino)-1-naphthalenesulfonate] (bis-ANS), the fluorescent probe which binds to tubulin, inhibits its assembly into microtubules [Horowitz et al. (1984) J. Biol. Chem. 259, 14647-14650]. The results described in this paper demonstrate that bis-ANS is quite distinct from other well-known microtubule inhibitors in its specificity of action. The inhibitory potentials of bis-ANS and its three structural analogues ANS, Prodan [6-propionyl-2-(dimethylamino)naphthalene], and NSA (naphthalenesulfonic acid) have been compared. It is found that they can be arranged in the following order according to their polymerization inhibitory potentials: bis-ANS approximately equal to Prodan much greater than ANS greater than NSA. Interestingly, the naphthalene nucleus is sufficient to cause inhibition of polymerization. Detailed experiments were carried out to examine the mode of assembly inhibition by aminonaphthalenes at the molecular level, using bis-ANS as a representative. It was found that there was little or no effect of bis-ANS on the assembly of tubulin when polymerization was induced by assembly promoters like taxol, DMSO, or glutamate, or on the assembly of subtilisin-digested protein (tubulin S), for all of which half-maximal inhibition could not be achieved even at 120 microM bis-ANS. On the contrary, bis-ANS acts as an inhibitor in the case of MAP- (MAP2 and tau) and poly(L-lysine)-induced assembly of tubulin, with half-maximal inhibitory concentrations ranging from 1.5 to 7.6 microM. Our results place bis-ANS as a novel inhibitor, which seems to specifically inhibit C-termini-mediated assembly. Of all assembly inhibitors known so far, none exhibits such selection.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    SciTech Connect

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  18. Effect of enzyme inducers and inhibitors on the pharmacokinetics of oltipraz in rats.

    PubMed

    Bae, Soo Kyung; Lee, Shin Jung; Kim, Young Hoon; Kim, Taekrho; Lee, Myung Gull

    2005-04-01

    A series of in-vitro and in-vivo experiments, using various inducers and inhibitors of hepatic microsomal cytochrome P450 (CYP) isozymes, was conducted to study oltipraz pharmacokinetics in rats. In in-vivo studies, oltipraz at a dose of 10 mg kg(-) was administered intravenously to rats. In rats pretreated with SKF 525-A (a nonspecific CYP isozyme inhibitor in rats; n-9), the time-averaged total body clearance (CL) of oltipraz was significantly slower (56.6% decrease) than that in untreated rats (n=9). This indicated that oltipraz is metabolized via CYP isozymes in rats. Hence, various enzyme inducers or inhibitors were used in in-vitro and in-vivo studies in rats. In rats pretreated with 3-methylcholanthrene (n=9 and 8 for untreated and treated groups, respectively), phenobarbital (n=7 and 10 for untreated and treated groups, respectively) or dexamethasone (n=7 and 12 for untreated and treated groups, respectively) (main inducers of CYP1A1/2, 2B1/2 and 3A1/2 in rats, respectively), the CL values were significantly faster (38.4, 94.4 and 33.6% increase, respectively). In rats pretreated with sulfaphenazole (n=8 and 9 for untreated and treated groups, respectively), quinine (n=7 and 9 for untreated and treated groups, respectively) or troleandomycin (n=8 and 9 for untreated and treated groups, respectively) (main inhibitors of CYP2C11, 2D1 and 3A1/2 in rats, respectively), the CL values were significantly slower (31.0, 27.6 and 36.3% decrease, respectively). The in-vivo results with various enzyme inhibitors correlated well with the in-vitro intrinsic clearance for disappearance of oltipraz (CL(int)) (n=5, each). The above data suggested that oltipraz could be metabolized in male rats mainly via CYP1A1/2, 2B1/2, 2C11, 3A1/2 and 2D1.

  19. Vascular dysfunction induced by hypochlorite is improved by the selective phosphodiesterase-5-inhibitor vardenafil.

    PubMed

    Radovits, Tamás; Arif, Rawa; Bömicke, Timo; Korkmaz, Sevil; Barnucz, Enikő; Karck, Matthias; Merkely, Béla; Szabó, Gábor

    2013-06-15

    Reactive oxygen species, such as hypochlorite induce oxidative stress, which impairs nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling and leads to vascular dysfunction. It has been proposed, that elevated cGMP-levels may contribute to an effective cytoprotection against oxidative stress. We investigated the effects of vardenafil, a selective inhibitor of the cGMP-degrading phosphodiesterase-5 enzyme on vascular dysfunction induced by hypochlorite. In organ bath experiments for isometric tension, we investigated the endothelium-dependent and endothelium-independent vasorelaxation of isolated rat aortic rings using cumulative concentrations of acetylcholine and sodium nitroprusside (SNP). Vascular dysfunction was induced by exposing rings to hypochlorite (100-400 µM). In the treatment groups, rats were pretreated with vardenafil (30 and 300 µg/kg i.v.). Immunohistochemical analysis was performed for the oxidative stress markers nitrotyrosine, poly(ADP-ribose) and for apoptosis inducing factor (AIF). Exposure to hypochlorite resulted in a marked impairment of acetylcholine-induced endothelium-dependent vasorelaxation of aortic rings. Pretreatment with vardenafil led to improved endothelial function as reflected by the higher maximal vasorelaxation (Rmax) to acetylcholine. Regarding endothelium-independent vasorelaxation, hypochlorite exposure led to a left-shift of SNP concentration-response curves in the vardenafil groups without any alterations of the Rmax. In the hypochlorite groups immunohistochemical analysis showed enhanced poly(ADP-ribose)-formation and nuclear translocation of AIF, which were prevented by vardenafil-pretreatment. Our results support the view that cytoprotective effects of PDE-5-inhibitors on the endothelium may underlie the improved endothelial function, however, a slight sensitisation of vascular smooth muscle to NO was also confirmed. PDE-5-inhibition may represent a potential therapy approach for treating vascular

  20. Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoate biosynthesis in plant peroxisomes.

    PubMed

    Tilbrook, Kimberley; Poirier, Yves; Gebbie, Leigh; Schenk, Peer M; McQualter, Richard B; Brumbley, Stevens M

    2014-10-01

    Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.

  1. Discovery of Novel Polo-Like Kinase 1 Polo-Box Domain Inhibitors to Induce Mitotic Arrest in Tumor Cells.

    PubMed

    Qin, Tan; Chen, Fangjin; Zhuo, Xiaolong; Guo, Xiao; Yun, Taikangxiang; Liu, Ying; Zhang, Chuanmao; Lai, Luhua

    2016-08-11

    Polo-like kinase 1(Plk1) is vital for cell mitosis and has been identified as anticancer target. Its polo-box domain (PBD) mediates substrate binding, blocking of which may offer selective Plk1 inhibition compared to kinase domain inhibitors. Although several PBD inhibitors were reported, most of them suffer from low cell activity. Here, we report the discovery of novel inhibitors to induce mitotic arrest in HeLa cells by virtual screening with Plk1 PBD and cellular activity testing. Of the 81 compounds tested in the cell assay, 10 molecules with diverse chemical scaffolds are potent to induce mitotic arrest of HeLa at low micromolar concentrations. The best compound induces mitotic arrest of HeLa cells with an EC50 of 4.4 μM. The cellular active inhibitors showed binding to Plk1 PBD and compete with PBD substrate in microscale thermophoresis analysis.

  2. Redox interplay between mitochondria and peroxisomes

    PubMed Central

    Lismont, Celien; Nordgren, Marcus; Van Veldhoven, Paul P.; Fransen, Marc

    2015-01-01

    Reduction-oxidation or “redox” reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from “omics” technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of discussion. PMID:26075204

  3. Lactate dehydrogenase inhibitors can reverse inflammation induced changes in colon cancer cells.

    PubMed

    Manerba, Marcella; Di Ianni, Lorenza; Govoni, Marzia; Roberti, Marinella; Recanatini, Maurizio; Di Stefano, Giuseppina

    2017-01-01

    The inflammatory microenvironment is an essential component of neoplastic lesions and can significantly impact on tumor progression. Besides facilitating invasive growth, inflammatory cytokines were also found to reprogram cancer cell metabolism and to induce aerobic glycolysis. Previous studies did not consider the possible contribution played in these changes by lactate dehydrogenase (LDH). The A isoform of LDH (LDH-A) is the master regulator of aerobic glycolysis; it actively reduces pyruvate and causes enhanced lactate levels in tumor tissues. In cancer cells, lactate was recently found to directly increase migration ability; moreover, when released in the microenvironment, it can facilitate matrix remodeling. In this paper, we illustrate that treatment of human colon adenocarcinoma cells with TNF-α and IL-17, two pro-inflammatory cytokines, modifies LDH activity, causing a shift toward the A isoform which results in increased lactate production. At the same time, the two cytokines appeared to induce features of epithelial-mesenchymal transition in the treated cells, such as reduction of E-cadherin levels and increased secretion of metalloproteinases. Noteworthy, oxamate and galloflavin, two inhibitors of LDH activity which reduce lactate production in cells, were found to relieve the inflammation-induced effects. These results suggest LDH-A and/or lactate as common elements at the cross-road between cancer cell metabolism, tumor progression and inflammation. At present, LDH inhibitors suitable for clinical use are actively searched as possible anti-proliferative agents; our data lead to hypothesize for these compounds a wider potential in anticancer treatment.

  4. Differential contribution of two peroxisomal protein receptors to the maintenance of peroxisomal functions in Arabidopsis.

    PubMed

    Hayashi, Makoto; Yagi, Mina; Nito, Kazumasa; Kamada, Tomoe; Nishimura, Mikio

    2005-04-15

    Peroxisomes in higher plant cells are known to differentiate in function depending on the cell type. Because of the functional differentiation, plant peroxisomes are subdivided into several classes, such as glyoxysomes and leaf peroxisomes. These peroxisomal functions are maintained by import of newly synthesized proteins containing one of two peroxisomal targeting signals known as PTS1 and PTS2. These targeting signals are known to be recognized by the cytosolic receptors, Pex5p and Pex7p, respectively. To demonstrate the contribution of Pex5p and Pex7p to the maintenance of peroxisomal functions in plants, double-stranded RNA constructs were introduced into the genome of Arabidopsis thaliana. Expression of the PEX5 and PEX7 genes was efficiently reduced by the double-stranded RNA-mediated interference in the transgenic Arabidopsis. The Pex5p-deficient Arabidopsis showed reduced activities for both glyoxysomal and leaf peroxisomal functions. An identical phenotype was observed in a transgenic Arabidopsis overexpressing functionally defective Pex5p. In contrast, the Pex7p-deficient Arabidopsis showed reduced activity for glyoxysomal function but not for leaf peroxisomal function. Analyses of peroxisomal protein import in the transgenic Arabidopsis revealed that Pex5p was involved in import of both PTS1-containing proteins and PTS2-containing proteins, whereas Pex7p contributed to the import of only PTS2-containing proteins. Overall, the results indicated that Pex5p and Pex7p play different roles in the maintenance of glyoxysomal and leaf peroxisomal functions in plants.

  5. HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells.

    PubMed

    Ji, Meiying; Lee, Eun Jeoung; Kim, Ki Bae; Kim, Yangmi; Sung, Rohyun; Lee, Sang-Jeon; Kim, Don Soo; Park, Seon Mee

    2015-05-01

    The effects of histone deacetylase (HDAC) inhibitors on epithelial-mesenchymal transition (EMT) differ in various types of cancers. We investigated the EMT phenotype in four colon cancer cell lines when challenged with HDAC inhibitors trichostatin A (TSA) and valproic acid (VPA) with or without transforming growth factor-β1 (TGF-β1) treatment. Four colon cancer cell lines with different phenotypes in regards to tumorigenicity, microsatellite stability and DNA mutation were used. EMT phenotypes were assessed by the expression of E-cadherin and vimentin using western blot analysis, immunofluorescence, quantitative real-time RT-PCR following treatment with TSA (100 or 200 nM) or VPA (0.5 mM) with or without TGF-β1 (5 ng/ml) for 24 h. Biological EMT phenotypes were also evaluated by cell morphology, migration and invasion assays. TSA or VPA induced mesenchymal features in the colon carcinoma cells by a decrease in E-cadherin and an increase in vimentin expression at the mRNA and protein levels. Confocal microscopy revealed membranous attenuation or nuclear translocation of E-cadherin and enhanced expression of vimentin. These responses occurred after 6 h and increased until 24 h. Colon cancer cells changed from a round or rectangular shape to a spindle shape with increased migration and invasion ability following TSA or VPA treatment. The susceptibility to EMT changes induced by TSA or VPA was comparable in microsatellite stable (SW480 and HT29) and microsatellite unstable cells (DLD1 and HCT116). TSA or VPA induced a mesenchymal phenotype in the colon carcinoma cells and these effects were augmented in the presence of TGF-β1. HDAC inhibitors require careful caution before their application as new anticancer drugs for colon cancers.

  6. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates murine colitis

    PubMed Central

    Gupta, Ram; Chaudhary, Anita R; Shah, Binita N; Jadhav, Avinash V; Zambad, Shitalkumar P; Gupta, Ramesh Chandra; Deshpande, Shailesh; Chauthaiwale, Vijay; Dutt, Chaitanya

    2014-01-01

    Background and aim Mucosal healing in inflammatory bowel disease (IBD) can be achieved by improvement of intestinal barrier protection. Activation of hypoxia-inducible factor (HIF) has been identified as a critical factor for barrier protection during mucosal insult and is linked with improvement in symptoms of colitis. Although prophylactic efficacy of HIF hydroxylase inhibitors in murine colitis have been established, its therapeutic efficacy in clinically relevant therapeutic settings have not been established. In the present study we aim to establish therapeutic efficacy of TRC160334, a novel HIF hydroxylase inhibitor, in animal models of colitis. Methods The efficacy of TRC160334 was evaluated in two different mouse models of colitis by oral route. A prophylactic efficacy study was performed in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse model of colitis representing human Crohn’s disease pathology. Additionally, a therapeutic efficacy study was performed in a dextran sulfate sodium-induced mouse model of colitis, a model simulating human ulcerative colitis. Results TRC160334 treatment resulted in significant improvement in disease end points in both models of colitis. TRC160334 treatment resulted into cytoprotective heatshock protein 70 induction in inflamed colon. TRC160334 successfully attenuated the rate of fall in body weight, disease activity index, and macroscopic and microscopic scores of colonic damage leading to overall improvement in study outcome. Conclusion Our findings are the first to demonstrate that therapeutic intervention with a HIF hydroxylase inhibitor ameliorates IBD in disease models. These findings highlight the potential of TRC160334 for its clinical application in the treatment of IBD. PMID:24493931

  7. Roles of Peroxisomes in the Rice Blast Fungus

    PubMed Central

    Liu, Caiyun

    2016-01-01

    The rice blast fungus, Magnaporthe oryzae, is a model plant pathogenic fungus and is a severe threat to global rice production. Over the past two decades, it has been found that the peroxisomes play indispensable roles during M. oryzae infection. Given the importance of the peroxisomes for virulence, we review recent advances of the peroxisomes roles during M. oryzae infection processes. We firstly introduce the molecular mechanisms and life cycles of the peroxisomes. And then, metabolic functions related to the peroxisomes are also discussed. Finally, we provide an overview of the relationship between peroxisomes and pathogenicity. PMID:27610388

  8. Assay to measure the secretion of sphingosine-1-phosphate from cells induced by S1P lyase inhibitors.

    PubMed

    Loetscher, Erika; Schneider, Karolina; Beerli, Christian; Billich, Andreas

    2013-04-12

    Inhibitors of the sphingosine-1-phosphate (S1P) degrading enzyme S1P lyase (SPL) may be useful in the therapy of inflammatory diseases by preventing lymphocyte recruitment to diseased tissues. Here we describe a cellular assay for such inhibitors, which takes advantage of the observation that a fraction of the intracellular S1P accumulated in the presence of SPL inhibitors is secreted into the medium of cultured cells. The secreted S1P is then quantified using an S1P-sensitive reporter cell line. In the routine assay protocol, human HEK293T cells are treated with SPL inhibitors in the presence of phosphatase inhibitors and sphingosine; while the phosphatase inhibitors are included to prevent the degradation of S1P secreted from the cells, sphingosine is added as source for intracellular S1P that is prone to SPL degradation. The secreted S1P in the supernatant of the cell cultures is then quantified by measuring calcium flux induced in CHO-K1 cells expressing the human S1P3 receptor. Using this method SPL inhibitors were shown to induce a concentration-dependent increase of extracellular S1P under the conditions used; thus, the assay allows for the ranking of SPL inhibitors according to their potency on living cells.

  9. Lobeglitazone, a Novel Peroxisome Proliferator-Activated Receptor γ Agonist, Attenuates Renal Fibrosis Caused by Unilateral Ureteral Obstruction in Mice

    PubMed Central

    Seo, Jung Beom; Jung, Yun-A; Seo, Hye-Young; Kang, Sun Hee; Jeon, Hui-Jeon; Lee, Jae Man; Lee, Sungwoo; Kim, Jung-Guk; Lee, In-Kyu

    2017-01-01

    Background Renal tubulointerstitial fibrosis is a common feature of the final stage of nearly all cause types of chronic kidney disease. Although classic peroxisome proliferator-activated receptor γ (PPARγ) agonists have a protective effect on diabetic nephropathy, much less is known about their direct effects in renal fibrosis. This study aimed to investigate possible beneficial effects of lobeglitazone, a novel PPARγ agonist, on renal fibrosis in mice. Methods We examined the effects of lobeglitazone on renal tubulointerstitial fibrosis in unilateral ureteral obstruction (UUO) induced renal fibrosis mice. We further defined the role of lobeglitazone on transforming growth factor (TGF)-signaling pathways in renal tubulointerstitial fibrosis through in vivo and in vitro study. Results Through hematoxylin/eosin and sirius red staining, we observed that lobeglitazone effectively attenuates UUO-induced renal atrophy and fibrosis. Immunohistochemical analysis in conjunction with quantitative reverse transcription polymerase chain reaction and Western blot analysis revealed that lobeglitazone treatment inhibited UUO-induced upregulation of renal Smad-3 phosphorylation, α-smooth muscle actin, plasminogen activator inhibitor 1, and type 1 collagen. In vitro experiments with rat mesangial cells and NRK-49F renal fibroblast cells suggested that the effects of lobeglitazone on UUO-induced renal fibrosis are mediated by inhibition of the TGF-β/Smad signaling pathway. Conclusion The present study demonstrates that lobeglitazone has a protective effect on UUO-induced renal fibrosis, suggesting that its clinical applications could extend to the treatment of non-diabetic origin renal disease. PMID:28256116

  10. Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors.

    PubMed

    Holt, Sandra; Comelli, Francesca; Costa, Barbara; Fowler, Christopher J

    2005-10-01

    The in vivo effect of inhibitors of fatty acid amide hydrolase (FAAH) upon oedema volume and FAAH activity was evaluated in the carrageenan induced hind paw inflammation model in the mouse. Oedema was measured at two time points, 2 and 4 h, after intraplantar injection of carrageenan to anaesthetised mice. Intraperitoneal (i.p.) injections of the FAAH inhibitor URB597 (0.1, 0.3, 1 and 3 mg kg(-1)) 30 min prior to carrageenan administration, dose-dependently reduced oedema formation. At the 4 h time point, the ED(50) for URB597 was approximately 0.3 mg kg(-1). Indomethacin (5 mg kg(-1) i.p.) completely prevented the oedema response to carrageenan. The antioedema effects of indomethacin and URB597 were blocked by 3 mg kg(-1) i.p. of the CB(2) receptor antagonist SR144528. The effect of URB597 was not affected by pretreatment with the peroxisome proliferator-activated receptor gamma antagonist bisphenol A diglycidyl ether (30 mg kg(-1) i.p.) or the TRPV1 antagonist capsazepine (10 mg kg(-1) i.p.), when oedema was assessed 4 h after carrageenan administration. The CB(1) receptor antagonists AM251 (3 mg kg(-1) i.p.) and rimonabant (0.5 mg kg(-1) i.p.) gave inconsistent effects upon the antioedema effect of URB597. FAAH measurements were conducted ex vivo in the paws, spinal cords and brains of the mice. The activities of FAAH in the paws and spinal cords of the inflamed vehicle-treated mice were significantly lower than the corresponding activities in the noninflamed mice. PMSF treatment almost completely inhibited the FAAH activity in all three tissues, as did the highest dose of URB597 (3 mg kg(-1)) in spinal cord samples, whereas no obvious changes were seen ex vivo for the other treatments. In conclusion, the results show that in mice, treatment with indomethacin and URB597 produce SR144528-sensitive anti-inflammatory effects in the carrageenan model of acute inflammation.

  11. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis

    SciTech Connect

    Wu Yichen; Yen Wenyen; Lee, T.-C. Yih, L.-H.

    2009-04-15

    Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90{alpha}/{beta} also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.

  12. Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice.

    PubMed

    Tamura, Yukinori; Kawao, Naoyuki; Yano, Masato; Okada, Kiyotaka; Okumoto, Katsumi; Chiba, Yasutaka; Matsuo, Osamu; Kaji, Hiroshi

    2015-06-01

    Long-term use of glucocorticoids (GCs) causes numerous adverse effects, including glucose/lipid abnormalities, osteoporosis, and muscle wasting. The pathogenic mechanism, however, is not completely understood. In this study, we used plasminogen activator inhibitor-1 (PAI-1)-deficient mice to explore the role of PAI-1 in GC-induced glucose/lipid abnormalities, osteoporosis, and muscle wasting. Corticosterone markedly increased the levels of circulating PAI-1 and the PAI-1 mRNA level in the white adipose tissue of wild-type mice. PAI-1 deficiency significantly reduced insulin resistance and glucose intolerance but not hyperlipidemia induced by GC. An in vitro experiment revealed that active PAI-1 treatment inhibits insulin-induced phosphorylation of Akt and glucose uptake in HepG2 hepatocytes. However, this was not observed in 3T3-L1 adipocytes and C2C12 myotubes, indicating that PAI-1 suppressed insulin signaling in hepatocytes. PAI-1 deficiency attenuated the GC-induced bone loss presumably via inhibition of apoptosis of osteoblasts. Moreover, the PAI-1 deficiency also protected from GC-induced muscle loss. In conclusion, the current study indicated that PAI-1 is involved in GC-induced glucose metabolism abnormality, osteopenia, and muscle wasting in mice. PAI-1 may be a novel therapeutic target to mitigate the adverse effects of GC.

  13. Mitochondrial and peroxisomal beta-oxidation capacities of organs from a non-oilseed plant.

    PubMed

    Masterson, C; Wood, C

    2001-09-22

    Until recently, beta-oxidation was believed to be exclusively located in the peroxisomes of all higher plants. Whilst this is true for germinating oilseeds undergoing gluconeogenesis, evidence demonstrating mitochondrial beta-oxidation in other plant systems has refuted this central dogma of plant lipid metabolism. This report describes a comparative study of the dual mitochondrial and peroxisomal beta-oxidation capacities of plant organs. Oxidation of [1-(14)C] palmitate was measured in the cotyledons, plumules and radicles of Pisum sativum L., which is a starchy seed, over a 14 day period from the commencement of imbibition. Respiratory chain inhibitors were used for differentiating between mitochondrial and peroxisomal beta-oxidation. Peroxisomal beta-oxidation gave a steady, baseline rate and, in the early stages of seedling development, accounted for 70-100% of the beta-oxidation observed. Mitochondrial beta-oxidation gave peaks of activity at days 7 and 10-11, accounting for up to 82% of the total beta-oxidation activity at these times. These peaks coincide with key stages of seedling development and were not observed when normal development was disrupted by growth in the dark. Peroxisomal beta-oxidation was unaffected by etiolation. Since mitochondrial beta-oxidation was overt only during times of intense biosynthetic activity it might be switched on or off during seedling development. In contrast, peroxisomes maintained a continuous, low beta-oxidation activity that could be essential in removing harmful free fatty acids, e.g. those produced by protein and lipid turnover.

  14. Glycosidase inhibitors (castanospermine and swainsonine) and neuraminidase inhibit pokeweed mitogen-induced B cell maturation.

    PubMed

    Karasuno, T; Kanayama, Y; Nishiura, T; Nakao, H; Yonezawa, T; Tarui, S

    1992-08-01

    Castanospermine (CSP), an inhibitor of alpha-glucosidase, enhanced immunoglobulin (Ig) release in a Staphylococcus aureus Cowan I (SAC)-induced lymphocyte culture (Scand. J. Immunol. 1990. 32: 529). In a pokeweed mitogen (PWM)-human lymphocyte culture, unlike the SAC-stimulated system, CSP strongly decreased the number of IgG-, IgA- and IgM-secreting cells as well as that of Ig-bearing cells. Peripheral blood lymphocytes treated with swainsonine, a mannosidase II inhibitor, or with neuraminidase also showed a reduced response to PWM. In cross-culture experiments, only a mixture of B cells pretreated with either agent and untreated T cells showed such a suppressive effect. Adhesion was decreased between B cells treated with either agent and untreated T cells, but not between treated T cells and untreated B cells. These results demonstrate that a certain alteration in B cell membrane oligosaccharides inhibited the T cell-B cell adhesion in the PWM culture, leading to an arrest of B cell maturation. Considering that these inhibitors eventually prevent terminal sialic acid addition, the present study provides evidence that sialic acids on B cell surface oligosaccharides play a biological role in the T cell-B cell interaction.

  15. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells.

    PubMed

    Karthik, Govindasamy-Muralidharan; Ma, Ran; Lövrot, John; Kis, Lorand Levente; Lindh, Claes; Blomquist, Lennart; Fredriksson, Irma; Bergh, Jonas; Hartman, Johan

    2015-10-10

    Breast cancer cells with stem cell characteristics (CSC) are a distinct cell population with phenotypic similarities to mammary stem cells. CSCs are important drivers of tumorigenesis and the metastatic process. Tamoxifen is the most widely used hormonal therapy for estrogen receptor (ER) positive cancers. In our study, tamoxifen was effective in reducing proliferation of ER + adherent cancer cells, but not their CSC population. We isolated, expanded and incubated CSC from seven breast cancers with or without tamoxifen. By genome-wide transcriptional analysis we identified tamoxifen-induced transcriptional pathways associated with ribosomal biogenesis and mRNA translation, both regulated by the mTOR-pathway. We observed induction of the key mTOR downstream targets S6K1, S6RP and 4E-BP1 in-patient derived CSCs by tamoxifen on protein level. Using the mTOR inhibitors rapamycin, everolimus and PF-04691502 (a dual PI3K/mTOR inhibitor) and in combination with tamoxifen, significant reduction in mammosphere formation was observed. Hence, we suggest that the CSC population play a significant role during endocrine resistance through activity of the mTOR pathway. In addition, tamoxifen further stimulates the mTOR-pathway but can be antagonized using mTOR-inhibitors.

  16. Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)-induced gene regulation in the adolescent striatum.

    PubMed

    Van Waes, Vincent; Beverley, Joel; Marinelli, Michela; Steiner, Heinz

    2010-08-01

    The psychostimulant methylphenidate (Ritalin) is used in conjunction with selective serotonin reuptake inhibitors (SSRIs) in the treatment of medical conditions such as attention-deficit hyperactivity disorder with anxiety/depression comorbidity and major depression. Co-exposure also occurs in patients on SSRIs who use psychostimulant 'cognitive enhancers'. Methylphenidate is a dopamine/norepinephrine reuptake inhibitor that produces altered gene expression in the forebrain; these effects partly mimic gene regulation by cocaine (dopamine/norepinephrine/serotonin reuptake inhibitor). We investigated whether the addition of SSRIs (fluoxetine or citalopram; 5 mg/kg) modified gene regulation by methylphenidate (2-5 mg/kg) in the striatum and cortex of adolescent rats. Our results show that SSRIs potentiate methylphenidate-induced expression of the transcription factor genes zif268 and c-fos in the striatum, rendering these molecular changes more cocaine-like. Present throughout most of the striatum, this potentiation was most robust in its sensorimotor parts. The methylphenidate + SSRI combination also enhanced behavioral stereotypies, consistent with dysfunction in sensorimotor striatal circuits. In so far as such gene regulation is implicated in psychostimulant addiction, our findings suggest that SSRIs may enhance the addiction potential of methylphenidate.

  17. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage

    PubMed Central

    Chen, SH; Wu, HM; Ossola, B; Schendzielorz, N; Wilson, BC; Chu, CH; Chen, SL; Wang, Q; Zhang, D; Qian, L; Li, X; Hong, JS; Lu, RB

    2012-01-01

    BACKGROUND AND PURPOSE Prevention or disease-modifying therapies are critical for the treatment of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. However, no such intervention is currently available. Growing evidence has demonstrated that administration of histone deacetylase (HDAC) inhibitors ameliorates a wide range of neurologic and psychiatric disorders in experimental models. Suberoylanilide hydroxamic acid (SAHA) was the first HDAC inhibitor approved by the Food and Drug Administration for the sole use of cancer therapy. The purpose of this study was to explore the potential new indications of SAHA for therapy of neurodegenerative diseases in in vitro Parkinson's disease models. EXPERIMENTAL APPROACH Mesencephalic neuron–glia cultures and reconstituted cultures were used to investigate neurotrophic and neuroprotective effects of SAHA. We measured toxicity in dopaminergic neurons, using dopamine uptake assay and morphological analysis and expression of neurotrophic substances by enzyme-linked immunosorbent assay and real-time RT PCR. KEY RESULTS In mesencephalic neuron–glia cultures, SAHA displayed dose- and time-dependent prolongation of the survival and protection against neurotoxin-induced neuronal death of dopaminergic neurons. Mechanistic studies revealed that the neuroprotective effects of SAHA were mediated in part by promoting release of neurotrophic factors from astroglia through inhibition of histone deacetylation. CONCLUSION AND IMPLICATIONS The novel neurotrophic and neuroprotective effects of SAHA demonstrated in this study suggest that further study of this HDAC inhibitor could provide a new therapeutic approach to the treatment of neurodegenerative diseases. PMID:21726209

  18. A Novel Malate Dehydrogenase 2 Inhibitor Suppresses Hypoxia-Inducible Factor-1 by Regulating Mitochondrial Respiration

    PubMed Central

    Jang, Kusik; Kim, Inhyub; Kim, Bo-Kyung; Lee, Kyeong; Won, Misun

    2016-01-01

    We previously reported that hypoxia-inducible factor (HIF)-1 inhibitor LW6, an aryloxyacetylamino benzoic acid derivative, inhibits malate dehydrogenase 2 (MDH2) activity during the mitochondrial tricarboxylic acid (TCA) cycle. In this study, we present a novel MDH2 inhibitor compound 7 containing benzohydrazide moiety, which was identified through structure-based virtual screening of chemical library. Similar to LW6, compound 7 inhibited MDH2 activity in a competitive fashion, thereby reducing NADH level. Consequently, compound 7 reduced oxygen consumption and ATP production during the mitochondrial respiration cycle, resulting in increased intracellular oxygen concentration. Therefore, compound 7 suppressed the accumulation of HIF-1α and expression of its target genes, vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1). Moreover, reduction in ATP content activated AMPK, thereby inactivating ACC and mTOR the downstream pathways. As expected, compound 7 exhibited significant growth inhibition of human colorectal cancer HCT116 cells. Compound 7 demonstrated substantial anti-tumor efficacy in an in vivo xenograft assay using HCT116 mouse model. Taken together, a novel MDH2 inhibitor, compound 7, suppressed HIF-1α accumulation via reduction of oxygen consumption and ATP production, integrating metabolism into anti-cancer efficacy in cancer cells. PMID:27611801

  19. A small molecule inhibitor of XIAP induces apoptosis and synergises with vinorelbine and cisplatin in NSCLC

    PubMed Central

    Dean, E J; Ward, T; Pinilla, C; Houghten, R; Welsh, K; Makin, G; Ranson, M; Dive, C

    2009-01-01

    Background: Evasion of apoptosis contributes to the pathogenesis of solid tumours including non-small cell lung cancer (NSCLC). Malignant cells resist apoptosis through over-expression of inhibitor of apoptosis proteins (IAPs), such as X-linked IAP (XIAP). Methods: A phenylurea-based small molecule inhibitor of XIAP, XIAP antagonist compound (XAC) 1396-11, was investigated preclincally to determine its ability to sensitise to clinically relevant cytotoxics, potentially allowing dose reduction while maintaining therapeutic efficacy. Results: XIAP protein expression was detected in six NSCLC cell lines examined. The cytotoxicity of XAC 1396-11 against cultured NSCLC cell lines in vitro was concentration- and time-dependent in both short-term and clonogenic assays. XAC 1396-11-induced apoptosis was confirmed by PARP cleavage and characteristic nuclear morphology. XAC 1396-11 synergised with vinorelbine±cisplatin in H460 and A549 NSCLC cells. The mechanism of synergy was enhanced apoptosis, shown by increased cleavage of caspase-3 and PARP and by the reversal of synergy by a pan-caspase inhibitor. Synergy between XAC 1396-11 and vinorelbine was augmented by optimising drug scheduling with superior effects when XAC 1396-11 was administered before vinorelbine. Conclusion: These preclinical data suggest that XIAP inhibition in combination with vinorelbine holds potential as a therapeutic strategy in NSCLC. PMID:19904270

  20. Anti-Ulcer Efficacy of Soluble Epoxide Hydrolase Inhibitor TPPU on Diclofenac-Induced Intestinal Ulcers

    PubMed Central

    Goswami, Sumanta Kumar; Wan, Debin; Yang, Jun; Trindade da Silva, Carlos A.; Morisseau, Christophe; Kodani, Sean D.; Yang, Guang-Yu; Inceoglu, Bora

    2016-01-01

    Proton pump inhibitors such as omeprazole (OME) reduce the severity of gastrointestinal (GI) ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs) but can also increase the chance of dysbiosis. The aim of this study was to test the hypothesis that preventive use of a soluble epoxide hydrolase inhibitor (sEHI) such as TPPU can decrease NSAID-induced ulcers by increasing anti-inflammatory epoxyeicosatrienoic acids (EETs). Dose- [10, 30, and 100 mg/kg, by mouth (PO)] and time-dependent (6 and 18 hours) ulcerative effects of diclofenac sodium (DCF, an NSAID) were studied in the small intestine of Swiss Webster mice. Dose-dependent effects of TPPU (0.001–0.1 mg/kg per day for 7 days, in drinking water) were evaluated in DCF-induced intestinal toxicity and compared with OME (20 mg/kg, PO). In addition, the effect of treatment was studied on levels of Hb in blood, EETs in plasma, inflammatory markers such as myeloperoxidase (MPO) in intestinal tissue homogenates, and tissue necrosis factor-α (TNF-α) in serum. DCF dose dependently induced ulcers that were associated with both a significant (P < 0.05) loss of Hb and an increase in the level of MPO and TNF-α, with severity of ulceration highest at 18 hours. Pretreatment with TPPU dose dependently prevented ulcer formation by DCF, increased the levels of epoxy fatty acids, including EETs, and TPPU’s efficacy was comparable to OME. TPPU significantly (P < 0.05) reversed the effect of DCF on the level of Hb, MPO, and TNF-α. Thus sEHI might be useful in the management of NSAID-induced ulcers. PMID:26989141

  1. Effect of the 5-lipoxygenase inhibitor ZD2138 on aspirin-induced asthma.

    PubMed Central

    Nasser, S. M.; Bell, G. S.; Foster, S.; Spruce, K. E.; MacMillan, R.; Williams, A. J.; Lee, T. H.; Arm, J. P.

    1994-01-01

    BACKGROUND--The cysteinyl leukotrienes may play a central part in the mechanisms of aspirin-sensitive asthma. Previous work has shown that individuals with aspirin-sensitive asthma have high basal urinary LTE4 levels which increase further upon aspirin ingestion, and that sulphidopeptide leukotriene receptor antagonists attenuate aspirin-induced airflow obstruction. If the cysteinyl leukotrienes cause aspirin-induced asthmatic reactions, inhibition of the 5-lipoxygenase pathway should prevent aspirin-induced bronchospasm. This hypothesis has been tested with ZD2138, a specific non-redox 5-lipoxygenase inhibitor. METHODS--Seven subjects (four men) with aspirin-sensitive asthma with baseline FEV1 values > 67% were studied. ZD2138 (350 mg) or placebo was given on two separate occasions two weeks apart in a randomised double blind fashion. A single dose of aspirin was administered four hours after dosing and FEV1 was measured for six hours. Inhibition of the 5-lipoxygenase pathway by ZD2138 was assessed by measurements of urinary LTE4 levels and ex vivo calcium ionophore stimulated LTB4 generation in whole blood, before administration of drug or placebo and at regular time intervals after dosing and aspirin administration. RESULTS--ZD2138 protected against the aspirin-induced reduction in FEV1 with a 20.3 (4.9)% fall in FEV1 following placebo compared with 4.9 (2.9)% following ZD2138. This was associated with 72% inhibition of ex vivo LTB4 generation in whole blood at 12 hours and a 74% inhibition of the rise in urinary LTE4 excretion at six hours after aspirin ingestion. CONCLUSIONS--In aspirin-sensitive asthma the 5-lipoxygenase inhibitor ZD2138 inhibits the fall in FEV1 induced by aspirin and this is associated with substantial inhibition of 5-lipoxygenase. PMID:8091318

  2. Betulin, betulinic acid and butein are inhibitors of acetaldehyde-induced activation of liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Plewka, Krzysztof; Kandefer-Szerszeń, Martyna

    2011-01-01

    Liver fibrosis has been reported to be inhibited in vivo by oleanolic and ursolic acids; however, the activity of other triterpenes like betulin and betulinic acid has not been examined. Butein has also been reported to prevent and partly reverse liver fibrosis in vivo, although its mechanism of action is poorly understood. Therefore, the aim of this study was to determine the antifibrotic potential of butein, betulin, and betulinic acid and examine their mechanisms of action in vitro. This study was conducted in rat stellate cells (HSCs) that were treated with acetaldehyde, which is the most reactive product of ethanol metabolism. Butein, betulin, and betulinic acid were preincubated with rat HSCs at non-toxic concentrations. Treatment effects were measured in regard to acetaldehyde-induced toxicity and cell migration, and several markers of HSC activation were evaluated, including smooth muscle α-actin (α-SMA) and procollagen I expression. In addition, changes in the release of reactive oxygen species (ROS) and cytokines such as tumor necrosis factor-α (TNF-α) and tumor growth factor-β1 (TGF-β1) and changes in the production of metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were determined. In vitro, HSCs were protected against acetaldehyde-induced toxicity by betulin but not by betulinic acid and butein. However, butein, betulin, and betulinic acid inhibited the production of ROS by HSCs treated with acetaldehyde and inhibited their migration. Butein also inhibited acetaldehyde-induced TGF-β1 production. Butein, betulin, and betulinic acid down-regulated acetaldehyde-induced production of TIMP-1 and TIMP-2. Betulin decreased the acetaldehyde-induced activity of MMP-2, but butein and betulinic acid did not. The results indicated that butein, betulin, and betulinic acid inhibited the acetaldehyde-induced activation of HSCs. Each drug functioned in a different manner, whereby some were acting as either

  3. PredPlantPTS1: A Web Server for the Prediction of Plant Peroxisomal Proteins

    PubMed Central

    Reumann, Sigrun; Buchwald, Daniela; Lingner, Thomas

    2012-01-01

    Prediction of subcellular protein localization is essential to correctly assign unknown proteins to cell organelle-specific protein networks and to ultimately determine protein function. For metazoa, several computational approaches have been developed in the past decade to predict peroxisomal proteins carrying the peroxisome targeting signal type 1 (PTS1). However, plant-specific PTS1 protein prediction methods have been lacking up to now, and pre-existing methods generally were incapable of correctly predicting low-abundance plant proteins possessing non-canonical PTS1 patterns. Recently, we presented a machine learning approach that is able to predict PTS1 proteins for higher plants (spermatophytes) with high accuracy and which can correctly identify unknown targeting patterns, i.e., novel PTS1 tripeptides and tripeptide residues. Here we describe the first plant-specific web server PredPlantPTS1 for the prediction of plant PTS1 proteins using the above-mentioned underlying models. The server allows the submission of protein sequences from diverse spermatophytes and also performs well for mosses and algae. The easy-to-use web interface provides detailed output in terms of (i) the peroxisomal targeting probability of the given sequence, (ii) information whether a particular non-canonical PTS1 tripeptide has already been experimentally verified, and (iii) the prediction scores for the single C-terminal 14 amino acid residues. The latter allows identification of predicted residues that inhibit peroxisome targeting and which can be optimized using site-directed mutagenesis to raise the peroxisome targeting efficiency. The prediction server will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants. PredPlantPTS1 is freely accessible at ppp.gobics.de. PMID:22969783

  4. Nitric Oxide Synthase Inhibitor Improves De Novo and Long-Term l-DOPA-Induced Dyskinesia in Hemiparkinsonian Rats

    PubMed Central

    Padovan-Neto, Fernando Eduardo; Echeverry, Marcela Bermúdez; Chiavegatto, Silvana; Del-Bel, Elaine

    2011-01-01

    Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (l-DOPA)-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of l-DOPA-induced abnormal involuntary movements (AIMs) in 6-hydroxydopamine (6-OHDA)-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-l-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated AIMs induced by chronic and acute l-DOPA. In contrast, rotational behavior was attenuated only after chronic l-DOPA. The 6-OHDA lesion and the l-DOPA treatment induced a bilateral increase (1.5 times) in the neuronal nitric oxide synthase (nNOS) protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/ΔFosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic l-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under l-DOPA acute and chronic treatment. The l-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that l-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the l-DOPA structural modifications in the Parkinsonian brain. Taken together, these data provided a rationale for further evaluation of NOS inhibitors in the treatment of l-DOPA-induced dyskinesia. PMID:21713068

  5. The Role of the Endoplasmic Reticulum in Peroxisome Biogenesis

    PubMed Central

    Dimitrov, Lazar; Lam, Sheung Kwan; Schekman, Randy

    2013-01-01

    Peroxisomes are essential cellular organelles involved in lipid metabolism. Patients affected by severe peroxisome biogenesis disorders rarely survive their first year. Genetic screens in several model organisms have identified more than 30 PEX genes that are required for the formation of functional peroxisomes. Despite significant work on the PEX genes, the biogenic origin of peroxisomes remains controversial. For at least two decades, the prevailing model postulated that peroxisomes propagate by growth and fission of preexisting peroxisomes. In this review, we focus on the recent evidence supporting a new, semiautonomous model of peroxisomal biogenesis. According to this model, peroxisomal membrane proteins (PMPs) traffic from the endoplasmic reticulum (ER) to the peroxisome by a vesicular budding, targeting, and fusion process while peroxisomal matrix proteins are imported into the organelle by an autonomous, posttranslational mechanism. We highlight the contradictory conclusions reached to answer the question of how PMPs are inserted into the ER. We then review what we know and what still remains to be elucidated about the mechanism of PMP exit from the ER and the contribution of preperoxisomal vesicles to mature peroxisomes. Finally, we discuss discrepancies in our understanding of de novo peroxisome biogenesis in wild-type cells. We anticipate that resolving these key issues will lead to a more complete picture of peroxisome biogenesis. PMID:23637287

  6. The PI3K inhibitor GS-1101 synergistically potentiates HDAC inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and ERK pathways

    PubMed Central

    Bodo, Juraj; Zhao, Xiaoxian; Sharma, Arishya; Hill, Brian T.; Portell, Craig A.; Lannutti, Brian J.; Almasan, Alexandru; Hsi, Eric D.

    2013-01-01

    Previously, we showed that inhibition of the protein kinase C β (PKCβ)/AKT pathway augments engagement of the histone deacetylase inhibitor (HDI)-induced apoptosis in lymphoma cells. In the present study, we investigated the cytotoxicity and mechanisms of cell death induced by the delta isoform-specific phosphatidylinositide 3-kinase (PI3K) inhibitor, GS-1101, in combination with the HDI, panobinostat (LBH589) and suberoylanilide hydroxamic acid (SAHA). Lymphoma cell lines and primary Non-Hodgkin Lymphoma (NHL) and chronic lymphocytic leukaemia (CLL) cells were simultaneously treated with the HDI, LBH589 and GS-1101. An interaction of the LBH589/GS-1101 combination was formally examined by using various concentrations of LBH589 and GS-1101. Combined treatment resulted in a synergistic inhibition of proliferation and showed synergistic effect on apoptotic induction in all tested cell lines and primary NHL and CLL cells. This study indicates that interference with PI3K signalling dramatically increases HDI-mediated apoptosis in malignant haematopoietic cells, possibly through both AKT-dependent or AKT- independent mechanisms. Moreover, the increase in HDI-related apoptosis observed in PI3K inhibitor-treated cells appears to be related to the disruption of the extracellular signal-regulated kinase (ERK) signalling pathway. This study provides a strong rational for testing the combination of PI3K inhibitors and HDI in the clinic. PMID:23889282

  7. Pharmacologic Profiling of Phosphoinositide 3-Kinase Inhibitors as Mitigators of Ionizing Radiation–Induced Cell Death

    PubMed Central

    Sharlow, Elizabeth R.; Epperly, Michael W.; Lira, Ana; Leimgruber, Stephanie; Skoda, Erin M.; Wipf, Peter; Greenberger, Joel S.

    2013-01-01

    Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after

  8. Tolerogenic nanoparticles to induce immunologic tolerance: Prevention and reversal of FVIII inhibitor formation.

    PubMed

    Zhang, Ai-Hong; Rossi, Robert J; Yoon, Jeongheon; Wang, Hong; Scott, David W

    2016-03-01

    The immune response of hemophilia A patients to administered FVIII is a major complication that obviates this very therapy. We have recently described the use of synthetic, biodegradable nanoparticles carrying rapamycin and FVIII peptide antigens, to induce antigen-specific tolerance. Herein we test the tolerogenicity of nanoparticles that contains full length FVIII protein in hemophilia A mice, focusing on anti-FVIII humoral immune response. As expected, recipients of tolerogenic nanoparticles remained unresponsive to FVIII despite multiple challenges for up to 6 months. Furthermore, therapeutic treatments in FVIII-immunized mice with pre-existing anti-FVIII antibodies resulted in diminished antibody titers, albeit efficacy required longer therapy with the tolerogenic nanoparticles. Interestingly, durable FVIII-specific tolerance was also achieved in animals co-administered with FVIII admixed with nanoparticles encapsulating rapamycin alone. These results suggest that nanoparticles carrying rapamycin and FVIII can be employed to induce specific tolerance to prevent and even reverse inhibitor formation.

  9. Effects of a lipoxygenase inhibitor, panaxynol, on vascular contraction induced by angiotensin II.

    PubMed

    Takai, S; Jin, D; Kirimura, K; Ikeda, J; Sakaguchi, M; Baba, K; Fujita, T; Miyazaki, M

    1999-05-01

    We investigated whether a lipoxygenase inhibitor, panaxynol, affected the vascular contraction induced by angiotensin (Ang) II and the mean arterial pressure in spontaneously hypertensive rats (SHR). Panaxynol suppressed dose-dependently the contractile responses induced by 30 nM Ang II in isolated intact and endothelial cell-denuded aorta in the hamster. IC50 values in the intact and endothelial cell-denuded aorta were 23 and 20 microM, respectively. In SHR, the mean arterial pressure after injection of 30 and 60 mg/kg panaxynol was reduced, and the maximum hypotensive values were 23 and 48 mmHg, respectively. Thus, lipoxygenase products may affect the renin-angiotensin system.

  10. Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket.

    PubMed

    Forster, Michael; Chaikuad, Apirat; Bauer, Silke M; Holstein, Julia; Robers, Matthew B; Corona, Cesear R; Gehringer, Matthias; Pfaffenrot, Ellen; Ghoreschi, Kamran; Knapp, Stefan; Laufer, Stefan A

    2016-11-17

    Janus kinases (JAKs) are a family of cytoplasmatic tyrosine kinases that are attractive targets for the development of anti-inflammatory drugs given their roles in cytokine signaling. One question regarding JAKs and their inhibitors that remains under intensive debate is whether JAK inhibitors should be isoform selective. Since JAK3 functions are restricted to immune cells, an isoform-selective inhibitor for JAK3 could be especially valuable to achieve clinically more useful and precise effects. However, the high degree of structural conservation makes isoform-selective targeting a challenging task. Here, we present picomolar inhibitors with unprecedented kinome-wide selectivity for JAK3. Selectivity was achieved by concurrent covalent reversible targeting of a JAK3-specific cysteine residue and a ligand-induced binding pocket. We confirmed that in vitro activity and selectivity translate well into the cellular environment and suggest that our inhibitors are powerful tools to elucidate JAK3-specific functions.

  11. Ubiquitin in the peroxisomal protein import pathway.

    PubMed

    Francisco, Tânia; Rodrigues, Tony A; Pinto, Manuel P; Carvalho, Andreia F; Azevedo, Jorge E; Grou, Cláudia P

    2014-03-01

    PEX5 is the shuttling receptor for newly synthesized peroxisomal matrix proteins. Alone, or with the help of an adaptor protein, this receptor binds peroxisomal matrix proteins in the cytosol and transports them to the peroxisomal membrane docking/translocation module (DTM). The interaction between cargo-loaded PEX5 and the DTM ultimately results in its insertion into the DTM with the concomitant translocation of the cargo protein across the organelle membrane. PEX5 is not consumed in this event; rather it is dislocated back into the cytosol so that it can promote additional rounds of protein transportation. Remarkably, the data collected in recent years indicate that dislocation is preceded by monoubiquitination of PEX5 at a conserved cysteine residue. This mandatory modification is not the only type of ubiquitination occurring at the DTM. Indeed, several findings suggest that defective receptors jamming the DTM are polyubiquitinated and targeted to the proteasome for degradation.

  12. Identification of H7 as a novel peroxiredoxin I inhibitor to induce differentiation of leukemia cells

    PubMed Central

    Qin, Dongjun; Chen, Yingyi; Liu, Chuanxu; Xia, Li; Wang, Tongdan; Lei, Hu; Yu, Yun; Huang, Min; Tong, Yin; Xu, Hanzhang; Gao, Fenghou

    2016-01-01

    Identifying novel targets to enhance leukemia-cell differentiation is an urgent requirment. We have recently proposed that inhibiting the antioxidant enzyme peroxiredoxin I (Prdx I) may induce leukemia-cell differentiation. However, this concept remains to be confirmed. In this work, we identified H7 as a novel Prdx I inhibitor through virtual screening, in vitro activity assay, and surface plasmon resonance assay. Cellular thermal shift assay showed that H7 directly bound to Prdx I but not to Prdxs II–V in cells. H7 treatment also increased reactive oxygen species (ROS) level and cell differentiation in leukemia cells, as reflected by the upregulation of the cell surface differentiation marker CD11b/CD14 and the morphological maturation of cells. The differentiation-induction effect of H7 was further observed in some non-acute promyelocytic leukemia (APL) and primary leukemia cells apart from APL NB4 cells. Moreover, the ROS scavenger N-acetyl cysteine significantly reversed the H7-induced cell differentiation. We demonstrated as well that H7-induced cell differentiation was associated with the activation of the ROS-Erk1/2-C/EBPβ axis. Finally, we showed H7 treatment induced cell differentiation in an APL mouse model. All of these data confirmed that Prdx I was novel target for inducing leukemia-cell differentiation and that H7 was a novel lead compound for optimizing Prdx I inhibition. PMID:26716647

  13. Alpha-fluoromethylhistidine, a histamine synthesis inhibitor, inhibits orexin-induced wakefulness in rats.

    PubMed

    Yasuko, Seki; Atanda, Akanmu Moses; Masato, Matsuura; Kazuhiko, Yanai; Kazuki, Honda

    2010-02-11

    Orexins A and B are involved in the regulation of feeding and arousal state. Previously, we reported that third intracerebroventricular (icv) infusion of both orexins A and B induced a significant arousal effect in rats. We determined the effects of intraperitoneal (i.p.) injection of alpha-fluoromethylhistidine (alpha-FMH), a histamine synthesis inhibitor, on orexin-induced wakefulness in freely behaving rats. Male Sprague-Dawley rats were chronically implanted with cortical electroencephalogram (EEG) and neck electromyogram (EMG) electrodes, and a cannula for icv infusion. EEG and EMG were monitored for three consecutive days during continuous icv saline infusion at a rate of 10 microl/h. For a 5-h diurnal period, orexin-B (10 nmol/50 microl saline) replaced the icv infusion of saline. alpha-FMH (100mg/kg, i.p.) was administered 6h before icv infusion of orexin-B. Orexin-B at a dose of 10 nmol/h markedly increased the amount of wakefulness by 99.4% (p<0.05) over the baseline value, whereas alpha-FMH decreased orexin-B-induced wakefulness by 48.8%. Orexin-B-induced suppression of non-REM sleep was reversed by alpha-FMH treatment. Pretreatment with alpha-FMH, significantly inhibited orexin-B-induced wakefulness in rats. The findings of this study therefore suggest that arousal-state regulation by orexin neurons is possibly mediated via the histaminergic system in the tuberomammilary nucleus.

  14. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  15. Peroxisome proliferator-activated receptor gamma regulates expression of signal transducer and activator of transcription 5A

    SciTech Connect

    Olsen, Hanne; Haldosen, Lars-Arne . E-mail: Lars-Arne.Haldosen@mednut.ki.se

    2006-05-01

    Signal transducer and activator of transcription 5A (STAT5A) has been shown to be important for terminal differentiation of mammary epithelial cells. In order to understand regulation of expression of STAT5A, the 5' end of the mouse Stat5a gene was isolated. Putative regulatory elements was searched for and several peroxisome proliferator response elements (PPREs) were found, one with high (12/13 nucleotides) and three with less (8-10/13) similarity to the reported consensus sequence. Mouse mammary epithelial HC11 cells were treated with peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligand, the thiazolidinedione (TZD) troglitazone, and an increase in STAT5A protein expression was seen. The 5' flank of Stat5a gene was cloned in a luciferase reporter vector. A concentration dependent activation of the STAT5A-luciferase reporter was detected, when transiently transfected HC11 cells were treated with TZD. The activation could be inhibited by treatment with a PPAR{gamma} antagonist. It has earlier been shown that epidermal growth factor (EGF) induces MAPK phosphorylation of PPAR{gamma} resulting in a less transcriptionally active receptor. In HC11 cells, EGF inhibited TZD induced STAT5A-reporter activity suggesting that our previously reported EGF-mediated suppression of STAT5A expression is mediated in all or partly through inhibition of PPAR{gamma} activity. Furthermore, the MEK inhibitor PD98059 inhibited the EGF effect. All together, data presented suggest that PPAR{gamma} participates in regulation of STAT5A expression.

  16. Novel MDM2 inhibitor SAR405838 (MI-773) induces p53-mediated apoptosis in neuroblastoma

    PubMed Central

    Lu, Jiaxiong; Guan, Shan; Zhao, Yanling; Yu, Yang; Wang, Yongfeng; Shi, Yonghua; Mao, Xinfang; Yang, Kristine L.; Sun, Wenjing; Xu, Xin; Yi, Joanna S.; Yang, Tianshu; Yang, Jianhua; Nuchtern, Jed G.

    2016-01-01

    Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common childhood extracranial malignant tumor. In NB, somatic mutations of the tumor suppressor, p53, are exceedingly rare. Unlike in adult tumors, the majority of p53 downstream functions are still intact in NB cells with wild-type p53. Thus, restoring p53 function by blocking its interaction with p53 suppressors such as MDM2 is a viable therapeutic strategy for NB treatment. Herein, we show that MDM2 inhibitor SAR405838 is a potent therapeutic drug for NB. SAR405838 caused significantly decreased cell viability of p53 wild-type NB cells and induced p53-mediated apoptosis, as well as augmenting the cytotoxic effects of doxorubicin (Dox). In an in vivo orthotopic NB mouse model, SAR405838 induced apoptosis in NB tumor cells. In summary, our data strongly suggest that MDM2-specific inhibitors like SAR405838 may serve not only as a stand-alone therapy, but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact MDM2-p53 axis. PMID:27764791

  17. Development of decision tree models for substrates, inhibitors, and inducers of p-glycoprotein.

    PubMed

    Hammann, Felix; Gutmann, Heike; Jecklin, Ursula; Maunz, Andreas; Helma, Christoph; Drewe, Juergen

    2009-05-01

    In silico classification of new compounds for certain properties is a useful tool to guide further experiments or compound selection. Interaction of new compounds with the efflux pump P-glycoprotein (P-gp) is an important drug property determining tissue distribution and the potential for drug-drug interactions. We present three datasets on substrate, inhibitor, and inducer activities for P-gp (n = 471) obtained from a literature search which we compared to an existing evaluation of the Prestwick Chemical Library with the calcein-AM assay (retrieved from PubMed). Additionally, we present decision tree models of these activities with predictive accuracies of 77.7 % (substrates), 86.9 % (inhibitors), and 90.3 % (inducers) using three algorithms (CHAID, CART, and C4.5). We also present decision tree models of the calcein-AM assay (79.9 %). Apart from a comprehensive dataset of P-gp interacting compounds, our study provides evidence of the efficacy of logD descriptors and of two algorithms not commonly used in pharmacological QSAR studies (CART and CHAID).

  18. Efficacy of Rho kinase inhibitor on cognitive impairment induced by chronic cerebral hypoperfusion in rats

    PubMed Central

    Zhang, Qiang; Zhang, Jun-Jian; Han, Zhong-Mou

    2015-01-01

    This work aims to explore the efficacy of Rho kinase inhibitor Fasudil on cognitive impairment induced by chronic cerebral hypoperfusion in rats. A total of 32 male adult Sprague Dawley (SD) rats were randomly divided into three groups: treatment group, control group and sham-operated group for severe carotid artery stenosis model. After two weeks, 8.35 mg/kg Fasudil and physiological saline were intraperitoneally applied twice per day in treatment group and control group, respectively. Morris water maze test was performed in each group to detect the changes of cognitive function and observe the hippocampal pathomorphology in rats after eight weeks. The average escape latency distinctly shortened (P < 0.01) and the percentage of swimming distance in the platform quadrant significantly increased (P < 0.01) in treatment group compared with those at corresponding time points in control group. The rate of carotid artery stenosis in rats had no statistical difference between treatment and control groups (P > 0.05). Fasudil effectively improved hippocampal pathomorphology. Rho kinase inhibitor obviously ameliorated cognitive impairment induced by chronic cerebral hypoperfusion in rats. PMID:25932185

  19. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  20. Glycine transporters type 1 inhibitor promotes brain preconditioning against NMDA-induced excitotoxicity.

    PubMed

    Pinto, Mauro Cunha Xavier; Lima, Isabel Vieira de Assis; da Costa, Flávia Lage Pessoa; Rosa, Daniela Valadão; Mendes-Goulart, Vânia Aparecida; Resende, Rodrigo Ribeiro; Romano-Silva, Marco Aurélio; de Oliveira, Antônio Carlos Pinheiro; Gomez, Marcus Vinícius; Gomez, Renato Santiago

    2015-02-01

    Brain preconditioning is a protective mechanism, which can be activated by sub-lethal stimulation of the NMDA receptors (NMDAR) and be used to achieve neuroprotection against stroke and neurodegenerative diseases models. Inhibitors of glycine transporters type 1 modulate glutamatergic neurotransmission through NMDAR, suggesting an alternative therapeutic strategy of brain preconditioning. The aim of this work was to evaluate the effects of brain preconditioning induced by NFPS, a GlyT1 inhibitor, against NMDA-induced excitotoxicity in mice hippocampus, as well as to study its neurochemical mechanisms. C57BL/6 mice (male, 10-weeks-old) were preconditioned by intraperitoneal injection of NFPS at doses of 1.25, 2.5 or 5.0 mg/kg, 24 h before intrahippocampal injection of NMDA. Neuronal death was evaluated by fluoro jade C staining and neurochemical parameters were evaluated by gas chromatography-mass spectrometry, scintillation spectrometry and western blot. We observed that NFPS preconditioning reduced neuronal death in CA1 region of hippocampus submitted to NMDA-induced excitotoxicity. The amino acids (glycine and glutamate) uptake and content were increased in hippocampus of animals treated with NFPS 5.0 mg/kg, which were associated to an increased expression of type-2 glycine transporter (GlyT2) and glutamate transporters (EAAT1, EAAT2 and EAAT3). The expression of GlyT1 was reduced in animals treated with NFPS. Interestingly, the preconditioning reduced expression of GluN2B subunits of NMDAR, whereas did not change the expression of GluN1 or GluN2A in all tested doses. Our study suggests that NFPS preconditioning induces resistance against excitotoxicity, which is associated with neurochemical changes and reduction of GluN2B-containing NMDAR expression.

  1. Increase in morphine antinociceptive activity by a P-glycoprotein inhibitor in cisplatin-induced neuropathy.

    PubMed

    Balayssac, David; Cayre, Anne; Ling, Bing; Maublant, Jean; Penault-Llorca, Frédérique; Eschalier, Alain; Coudoré, François; Authier, Nicolas

    2009-11-06

    Pain from anticancer drugs-induced neuropathies is difficult to treat and can significantly alter the patient's quality of life. These neuropathies are considered relatively resistant to conventional analgesic drugs (opioids). Opioids are also P-glycoprotein substrates and it has been demonstrated that the P-glycoprotein is linked to the integrity of blood-brain barrier protecting the nervous system. Previous works presented an increase of P-glycoprotein in vincristine- and cisplatin-induced neuropathy which could potentially decrease opioid efficiency. To test this hypothesis, the efflux inhibition of P-glycoprotein and the antinociceptive effect of morphine were assessed in normal and cisplatin-induced neuropathic rats after the administration of the P-glycoprotein inhibitor (R101933). R101933 (20 mg/kg) inhibited significantly the efflux transporter under the condition of the study and had no analgesic effect. Nociceptive thresholds were measured by the paw pressure test. R101933 (20 mg/kg) enhanced antinociceptive activity of morphine (0.5 mg/kg) to a maximum of +58% and +35%, respectively compared with control animals and animals treated by morphine alone (0.5 mg/kg). R101933 increased morphine (2 mg/kg) antinociceptive activity to a maximum of +105% compared with control animals and to a maximum of +41% compared with morphine alone (2 mg/kg). This study demonstrated that cisplatin-induced neuropathy may present a particular pathophysiology with a multidrug resistance, of the central nervous system, to analgesics. This resistance can be blocked by a P-glycoprotein inhibitor which may enhance analgesia of low doses of morphine.

  2. Peroxisome Ca(2+) homeostasis in animal and plant cells.

    PubMed

    Costa, Alex; Drago, Ilaria; Zottini, Michela; Pizzo, Paola; Pozzan, Tullio

    2013-01-01

    Ca(2+) homeostasis in peroxisomes has been an unsolved problem for many years. Recently novel probes to monitor Ca(2+) levels in the lumen of peroxisomes in living cells of both animal and plant cells have been developed. Here we discuss the contrasting results obtained in mammalian cells with chemiluminecsent (aequorin) and fluorescent (cameleon) probes targeted to peroxisomes. We briefly discuss the different characteristics of these probes and the possible pitfalls of the two approaches. We conclude that the contrasting results obtained with the two probes may reflect a heterogeneity among peroxisomes in mammalian cells. We also discuss the results obtained in plant peroxisomes. In particular we demonstrate that Ca(2+) increases in the cytoplasm are mirrored by similar rises of Ca(2+) concentration the lumen of peroxisomes. The increases in peroxisome Ca(2+) level results in the activation of a catalase isoform, CAT3. Other functional roles of peroxisomal Ca(2+) changes in plant physiology are briefly discussed.

  3. Peroxin Puzzles and Folded Freight: Peroxisomal Protein Import in Review

    NASA Astrophysics Data System (ADS)

    Crookes, Wendy J.; Olsen, Laura J.

    Peroxisomes are organelles that perform a variety of functions, including the metabolism of hydrogen peroxide and the oxidation of fatty acids. Peroxisomes do not possess organellar DNA; all peroxisomal matrix proteins are posttranslationally translocated into the organelle. The mechanism of peroxisomal protein translocation has been the subject of vigorous research in the past decade. Many of the proteins (peroxins, abbreviated Pex) that play critical roles in peroxisome biogenesis have been identified through functional complementation of yeast strains and of Chinese hamster ovary cell lines that are defective in peroxisome biogenesis. Researchers are now turning towards biochemical and genetic analyses of these peroxins to define their roles in peroxisome biogenesis and to discover interacting protein partners. Evidence suggests that some of the interacting partners include molecular chaperones. Several current models for peroxisomal protein import are presented.

  4. The effect of inducers and inhibitors of urethane metabolism on its in vitro and in vivo metabolism in rats.

    PubMed

    Carlson, G P

    1994-12-09

    The activation of urethane (ethyl carbamate) is important in its exerting its carcinogenic effect. Rats were treated with inducers and inhibitors of urethane metabolism, and the conversion of [carbonyl-14C]urethane to 14CO2 in vivo was measured. The cytochrome P-450 inducers, phenobarbital and beta-naphthoflavone, and esterase inhibitor, paraoxon, were without effect while the CYP2E1 inhibitor, diethyldithiocarbamate, decreased metabolism to about 3% of control. Ethanol administered acutely inhibited urethane metabolism. Pyridine, shown previously to enhance this metabolism in microsomal preparations, greatly inhibited it in vivo. The discordant results between the in vitro and in vivo studies may be related to the presence of pyridine acting as an inhibitor in whole animals and suggest that caution is needed in extrapolating from in vitro results to in vivo implications.

  5. The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation

    PubMed Central

    1995-01-01

    We previously described the isolation of mutants of the methylotrophic yeast Hansenula polymorpha that are defective in peroxisome biogenesis. Here, we describe the characterization of one of these mutants, per8, and the cloning of the PER8 gene. In either methanol or methylamine medium, conditions that normally induce the organelles, per8 cells contain no peroxisome-like structures and peroxisomal enzymes are located in the cytosol. The sequence of PER8 predicts that its product (Per8p) is a novel polypeptide of 34 kD, and antibodies against Per8p recognize a protein of 31 kD. Analysis of the primary sequence of Per8p revealed a 39-amino-acid cysteine-rich segment with similarity to the C3HC4 family of zinc-finger motifs. Overexpression of PER8 results in a markedly enhanced increase in peroxisome numbers. We show that Per8p is an integral membrane protein of the peroxisome and that it is concentrated in the membranes of newly formed organelles. We propose that Per8p is a component of the molecular machinery that controls the proliferation of this organelle. PMID:7844145

  6. Aleglitazar, a dual peroxisome proliferator-activated receptor-α and -γ agonist, protects cardiomyocytes against the adverse effects of hyperglycaemia

    PubMed Central

    Chen, Yan; Chen, Hongmei; Birnbaum, Yochai; Nanhwan, Manjyot K; Bajaj, Mandeep; Ye, Yumei; Qian, Jinqiao

    2017-01-01

    Purpose: To assess the effects of Aleglitazar on hyperglycaemia-induced apoptosis. Methods: We incubated human cardiomyocytes, cardiomyocytes from cardiac-specific peroxisome proliferator-activated receptor-γ knockout or wild-type mice in normoglycaemic or hyperglycaemic conditions (glucose 25 mM). Cells were treated with different concentrations of Aleglitazar for 48 h. We measured viability, apoptosis, caspase-3 activity, cytochrome-C release, total antioxidant capacity and reactive oxygen species formation in the treated cardiomyocytes. Human cardiomyocytes were transfected with short interfering RNA against peroxisome proliferator-activated receptor-α or peroxisome proliferator-activated receptor-γ. Results: Aleglitazar attenuated hyperglycaemia-induced apoptosis, caspase-3 activity and cytochrome-C release and increased viability in human cardiomyocyte, cardiomyocytes from cardiac-specific peroxisome proliferator-activated receptor-γ knockout and wild-type mice. Hyperglycaemia reduced the antioxidant capacity and Aleglitazar significantly blunted this effect. Hyperglycaemia-induced reactive oxygen species production was attenuated by Aleglitazar in both human cardiomyocyte and wild-type mice cardiomyocytes. Aleglitazar improved cell viability in cells exposed to hyperglycaemia. The protective effect was partially blocked by short interfering RNA against peroxisome proliferator-activated receptor-α alone and short interfering RNA against peroxisome proliferator-activated receptor-γ alone and completely blocked by short interfering RNA to both peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor-γ. Conclusion: Aleglitazar protects cardiomyocytes against hyperglycaemia-induced apoptosis by combined activation of both peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor-γ in a short-term vitro model. PMID:28111985

  7. Special delivery from mitochondria to peroxisomes.

    PubMed

    Schumann, Uwe; Subramani, Suresh

    2008-06-01

    Inter-organellar communication and interactions are necessary and accepted consequences of the segregation of biochemical functions into subcellular organelles. Recently, Heidi McBride and her collaborators found a novel link between mitochondria and peroxisomes in their discovery of mitochondria-derived vesicles (MDVs), which appear to fuse with a fraction of pre-existing peroxisomes in mammalian cells. We discuss the potential role of this vesicle population in the context of pathways for the exchange of metabolites and/or macromolecules between these compartments.

  8. Incredibly close-A newly identified peroxisome-ER contact site in humans.

    PubMed

    Schuldiner, Maya; Zalckvar, Einat

    2017-02-01

    Peroxisomes are tiny organelles that control important and diverse metabolic processes via their interplay with other organelles, including the endoplasmic reticulum (ER). In this issue, Costello et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201607055) and Hua et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201608128) identify a peroxisome-ER contact site in human cells held together by a tethering complex of VAPA/B (vesicle-associated membrane protein-associated proteins A/B) and ACBD5 (acyl Co-A binding protein 5).

  9. TNF inhibitor induced alopecia: an unusual form of psoriasiform alopecia that breaks the Renbök mold.

    PubMed

    Craddock, Lauren N; Cooley, David M; Endo, Justin O; Longley, B Jack; Caldera, Freddy

    2017-03-15

    TNF-α-inhibitors are known to induce skin adverseeffects including psoriasis and alopecia areata. Here, wedescribe a unique pattern of hair loss that has psoriaticand alopecia areata-like features. Diagnosis requiresclinical-pathologic correlation and is supportedby increased catagen/telogen hairs, psoriasiformepidermal hyperplasia, perifollicular lymphocyticinfiltrate, and the presence of eosinophils and plasmacells. Although there are no treatment consensusguidelines, management options include stoppingtherapy, switching to a different TNF-α inhibitor orustekinumab (in severe cases), or continuing TNF-αinhibitor therapy with addition of topical, intralesional,or systemic immunosuppressants.

  10. Role of Pex21p for Piggyback Import of Gpd1p and Pnc1p into Peroxisomes of Saccharomyces cerevisiae*

    PubMed Central

    Effelsberg, Daniel; Cruz-Zaragoza, Luis Daniel; Tonillo, Jason; Schliebs, Wolfgang; Erdmann, Ralf

    2015-01-01

    Proteins designated for peroxisomal protein import harbor one of two common peroxisomal targeting signals (PTS). In the yeast Saccharomyces cerevisiae, the oleate-induced PTS2-dependent import of the thiolase Fox3p into peroxisomes is conducted by the soluble import receptor Pex7p in cooperation with the auxiliary Pex18p, one of two supposedly redundant PTS2 co-receptors. Here, we report on a novel function for the co-receptor Pex21p, which cannot be fulfilled by Pex18p. The data establish Pex21p as a general co-receptor in PTS2-dependent protein import, whereas Pex18p is especially important for oleate-induced import of PTS2 proteins. The glycerol-producing PTS2 protein glycerol-3-phosphate dehydrogenase Gpd1p shows a tripartite localization in peroxisomes, in the cytosol, and in the nucleus under osmotic stress conditions. We show the following: (i) Pex21p is required for peroxisomal import of Gpd1p as well as a key enzyme of the NAD+ salvage pathway, Pnc1p; (ii) Pnc1p, a nicotinamidase without functional PTS2, is co-imported into peroxisomes by piggyback transport via Gpd1p. Moreover, the specific transport of these two enzymes into peroxisomes suggests a novel regulatory role for peroxisomes under various stress conditions. PMID:26276932

  11. Activation of peroxisome proliferators-activated receptor δ (PPARδ) promotes blastocyst hatching in mice.

    PubMed

    Kang, Hee Jung; Hwang, Soo Jin; Yoon, Jung Ah; Jun, Jin Hyun; Lim, Hyunjung Jade; Yoon, Tae Ki; Song, Haengseok

    2011-10-01

    Prostaglandins participate in a variety of female reproductive processes, including ovulation, fertilization, embryo implantation and parturition. In particular, maternal prostacyclin (PGI(2)) is critical for embryo implantation and the action of PGI(2) is not mediated via its G-protein-coupled membrane receptor, IP, but its nuclear receptor, peroxisome-proliferator-activated receptor δ (PPARδ). Recently, several studies have shown that PGI(2) enhances blastocyst development and/or hatching rate in vitro, and subsequently implantation and live birth rates in mice. However, the mechanism by which PGI(2) improves preimplantation embryo development in vitro remains unclear. Using molecular, pharmacologic and genetic approaches, we show that PGI(2)-induced PPARδ activation accelerates blastocyst hatching in mice. mRNAs for PPARδ, retinoid X receptor (heterodimeric partners of PPARδ) and PGI(2) synthase (PGIS) are temporally induced after zygotic gene activation, and their expression reaches maximum levels at the blastocyst stage, suggesting that functional complex of PPARδ can be formed in the blastocyst. Carbaprostacyclin (a stable analogue of PGI(2)) and GW501516 (a PPARδ selective agonist) significantly accelerated blastocyst hatching but did not increase total cell number of cultured blastocysts. Whereas U51605 (a PGIS inhibitor) interfered with blastocyst hatching, GW501516 restored U51605-induced retarded hatching. In contrast to the improvement of blastocyst hatching by PPARδ agonists, PPAR antagonists significantly inhibited blastocyst hatching. Furthermore, deletion of PPARδ at early stages of preimplantation mouse embryos caused delay of blastocyst hatching, but did not impair blastocyst development. Taken together, PGI(2)-induced PPARδ activation accelerates blastocyst hatching in mice.

  12. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    PubMed

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  13. PPARÁ-DEPENDENT GENE EXPRESSION CHANGES IN THE MOUSE LIVER AFTER EXPOSURE TO PEROXISOME PROLIFERATORS

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor ¿ (PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPAR&#...

  14. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of pr...

  15. IDENTIFICATION OF EARLY MOLECULAR EVENTS AFTER PEROXISOME PROLIFERATOR EXPOSURE IN THE RODENT LIVER

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor α(PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPARα but do...

  16. Effect of the Angiotensin I Converting Enzyme Inhibitor, MK-421, on Experimentally Induced Drinking

    NASA Technical Reports Server (NTRS)

    Fregley, Melvin J.; Fater, Dennis C.; Greenleaf, John E.

    1982-01-01

    MK-421, the ethyl ester maleate salt of N-(S)-1-(ethoxycarbonyl)-3-phenyl-propyl- Ala-L-Pro, is an angiotensin I converting enzyme inhibitor. An initial objective was to determine whether MK-421, administered at 0, 2.5, 5.0, 10.0, 20.0 and 40.0 mg/kg, ip to 96 female rats 15 min prior to administration of the beta-adrenergic agonist, isoproterenol (25 microgram/kg, ip), would inhibit the drinking induced by isoproterenol during 2 h after its administration. The water intake induced by isoproterenol was inhibited significantly by 2.5 mg MK-421/kg. When a similar experiment was performed using Angiotensin I (AI) (200 microgram/kg, ip) as the dipsogenic agent, MK-421 (5 mg/kg, ip), administered 15 min prior to AI, inhibited significantly both the dipsogenic and the diuretic effect of AI. However, administration of angiotensin II (AII, 200 microgram/kg, ip) 15 min after MK-421 (5mg/kg) was accompanied by a water intake that did not differ from AII alone. The drink induced by ip administration of 1.0 m NaCl solution (1% of body wt, ip) was not inhibited by administration of MK-421 (5 mg/kg) 15 min prior to allowing access to water while the drink induced by a 24 h dehydration was partially inhibited. Thus, the drinks induced by administraition of either isoproterenol or AI are dependent on formation of AII. That induced by dehydration is partially dependent, while that induced by hypertonic siilinc is independent of the formation of AII.

  17. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    SciTech Connect

    Zhou, Dan; Liu, Yuan; Ye, Josephine; Ying, Weiwen; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Wada, Yumiko; Koya, Keizo; Huang, Qin; Bates, Richard C.; Sonderfan, Andrew J.

    2013-12-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal

  18. Phosphodiesterase 5 inhibitors prevent 3,4-methylenedioxymethamphetamine-induced 5-HT deficits in the rat.

    PubMed

    Puerta, Elena; Hervias, Isabel; Goñi-Allo, Beatriz; Lasheras, Berta; Jordan, Joaquin; Aguirre, Norberto

    2009-02-01

    inhibitor. In conclusion, sildenafil protects against MDMA-induced long-term reduction of indoles by a mechanism involving increased production of cGMP and subsequent activation of PKG and mitochondrial ATP-sensitive K(+) channel opening.

  19. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation.

    PubMed

    McKallip, Robert J; Hagele, Harriet F; Uchakina, Olga N

    2013-10-17

    Exposure to bacterial superantigens, such as staphylococcal enterotoxin B (SEB), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for SEB-induced inflammation. In the current study we investigated the potential use of the hyaluronic acid synthase inhibitor 4-methylumbelliferone (4-MU) on staphylococcal enterotoxin B (SEB) induced acute lung inflammation. Culturing SEB-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production as well as an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from SEB-induced lung injury. Specifically, 4-MU treatment led to a reduction in SEB-induced HA levels, reduction in lung permeability, and reduced pro-inflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target hyaluronic acid production may be an effective treatment for the inflammatory response following exposure to SEB.

  20. Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses SEB-Induced Lung Inflammation

    PubMed Central

    McKallip, Robert J.; Hagele, Harriet F.; Uchakina, Olga N.

    2013-01-01

    Exposure to bacterial superantigens, such as staphylococcal enterotoxin B (SEB), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for SEB-induced inflammation. In the current study we investigated the potential use of the hyaluronic acid synthase inhibitor 4-methylumbelliferone (4-MU) on staphylococcal enterotoxin B (SEB) induced acute lung inflammation. Culturing SEB-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production as well as an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from SEB-induced lung injury. Specifically, 4-MU treatment led to a reduction in SEB-induced HA levels, reduction in lung permeability, and reduced pro-inflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target hyaluronic acid production may be an effective treatment for the inflammatory response following exposure to SEB. PMID:24141285

  1. Calcineurin inhibitors cyclosporine A and tacrolimus induce vascular inflammation and endothelial activation through TLR4 signaling

    PubMed Central

    Rodrigues-Diez, Raquel; González-Guerrero, Cristian; Ocaña-Salceda, Carlos; Rodrigues-Diez, Raúl R.; Egido, Jesús; Ortiz, Alberto; Ruiz-Ortega, Marta; Ramos, Adrián M.

    2016-01-01

    The introduction of the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus greatly reduced the rate of allograft rejection, although their chronic use is marred by a range of side effects, among them vascular toxicity. In transplant patients, it is proved that innate immunity promotes vascular injury triggered by ischemia-reperfusion damage, atherosclerosis and hypertension. We hypothesized that activation of the innate immunity and inflammation may contribute to CNI toxicity, therefore we investigated whether TLR4 mediates toxic responses of CNIs in the vasculature. Cyclosporine and tacrolimus increased the production of proinflammatory cytokines and endothelial activation markers in cultured murine endothelial and vascular smooth muscle cells as well as in ex vivo cultures of murine aortas. CNI-induced proinflammatory events were prevented by pharmacological inhibition of TLR4. Moreover, CNIs were unable to induce inflammation and endothelial activation in aortas from TLR4−/− mice. CNI-induced cytokine and adhesion molecules synthesis in endothelial cells occurred even in the absence of calcineurin, although its expression was required for maximal effect through upregulation of TLR4 signaling. CNI-induced TLR4 activity increased O2−/ROS production and NF-κB-regulated synthesis of proinflammatory factors in cultured as well as aortic endothelial and VSMCs. These data provide new insight into the mechanisms associated with CNI vascular inflammation. PMID:27295076

  2. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury.

    PubMed

    Chaaban, Hala; Keshari, Ravi S; Silasi-Mansat, Robert; Popescu, Narcis I; Mehta-D'Souza, Padmaja; Lim, Yow-Pin; Lupu, Florea

    2015-04-02

    Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma.

  3. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Takemasa, Akihiro; Ishii, Yoshiki; Fukuda, Takeshi

    2012-12-01

    Neutrophil elastase plays pivotal roles in the pathogenesis of pulmonary fibrosis. The neutrophil elastase inhibitor, sivelestat, could alleviate pulmonary fibrosis; however, the antifibrotic mechanisms have not yet been clarified. We examined the antifibrotic mechanisms, mainly focusing on a key fibrotic cytokine, transforming growth factor (TGF)-β1, in this study. To elucidate the antifibrotic mechanisms of sivelestat, we examined a murine model of bleomycin-induced early-stage pulmonary fibrosis. After intratracheal instillation of bleomycin, sivelestat was administered intraperitoneally once a day for 7 or 14 days. Bronchoalveolar lavage fluid and lung samples were examined on day 7 or day 14 after bleomycin instillation. In the bleomycin-induced early-stage pulmonary fibrosis model, the neutrophil elastase level was increased in the lungs. Sivelestat significantly inhibited the increase in lung collagen content, fibrotic changes, the numbers of total cells (including macrophages, neutrophils and lymphocytes), the levels of the active form of TGF-β1 and phospho-Smad2 in bleomycin-induced early-stage pulmonary fibrosis. The total TGF-β1 levels and relative changes of TGF-β1 mRNA expression, however, were not decreased significantly by sivelestat. These results suggest that sivelestat alleviated bleomycin-induced pulmonary fibrosis via inhibition of both TGF-β activation and inflammatory cell recruitment in the lung.

  4. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    PubMed

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  5. Arabidopsis Bax Inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in Saccharomyces cerevisiae

    PubMed Central

    Çakır, Birsen; Tumer, Nilgun E.

    2015-01-01

    Apoptosis is an active form of programmed cell death (PCD) that plays critical roles in the development, differentiation and resistance to pathogens in multicellular organisms. Ribosome inactivating proteins (RIPs) are able to induce apoptotic cell death in mammalian cells. In this study, using yeast as a model system, we showed that yeast cells expressing pokeweed antiviral protein (PAP), a single-chain ribosome-inactivating protein, exhibit apoptotic-like features, such as nuclear fragmentation and ROS production. We studied the interaction between PAP and AtBI-1 (Arabidopsis thaliana Bax Inhibitor-1), a plant anti-apoptotic protein, which inhibits Bax induced cell death. Cells expressing PAP and AtBI-1 were able to survive on galactose media compared to PAP alone, indicating a reduction in the cytotoxicity of PAP in yeast. However, PAP was able to depurinate the ribosomes and to inhibit total translation in the presence of AtBI-1. A C-terminally deleted AtBI-1 was able to reduce the cytotoxicity of PAP. Since anti-apoptotic proteins form heterodimers to inhibit the biological activity of their partners, we used a co-immunoprecipitation assay to examine the binding of AtBI-1 to PAP. Both full length and C-terminal deleted AtBI-1 were capable of binding to PAP. These findings indicate that PAP induces cell death in yeast and AtBI-1 inhibits cell death induced by PAP without affecting ribosome depurination and translation inhibition. PMID:28357275

  6. Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF-beta1 induced murine tissue inhibitor of metalloproteinases-1 gene expression.

    PubMed

    Young, David A; Billingham, Olivia; Sampieri, Clara L; Edwards, Dylan R; Clark, Ian M

    2005-04-01

    Expression of the tissue inhibitor of metalloproteinases-1 (Timp-1) gene can be induced by either phorbol myristate acetate (PMA) or transforming growth factor beta1 (TGF-beta1), although the signalling pathways involved are not clearly defined. Canonically, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) or sodium butyrate (NaB) increase total cellular histone acetylation and activate expression of susceptible genes. Remarkably, PMA and TGF-beta1 stimulation of Timp-1 show a differential response to TSA or NaB. TSA or NaB potentiate PMA-induced Timp-1 expression but repress TGF-beta1-induced Timp-1 expression. The repression of TGF-beta1-induced Timp-1 by TSA was maximal at 5 ng.mL(-1), while for the superinduction of PMA-induced Timp-1 expression, the maximal dose is > 500 ng x mL(-1) TSA. A further HDACi, valproic acid, did not block TGF-beta1-induced Timp-1 expression, demonstrating that different HDACs impact on the induction of Timp-1. For either PMA or TGF-beta1 to induce Timp-1 expression, new protein synthesis is required, and the induction of AP-1 factors closely precedes that of Timp-1. The effects of the HDACi can be reiterated in transient transfection using Timp-1 promoter constructs. Mutation or deletion of the AP-1 motif (-59/-53) in the Timp-1 promoter diminishes PMA-induction of reporter constructs, however, the further addition of TSA still superinduces the reporter. In c-Jun-/- cells, PMA still stimulates Timp-1 expression, but TSA superinduction is lost. Transfection of a series of Timp-1 promoter constructs identified three regions through which TSA superinduces PMA-induced Timp-1 and we have demonstrated specific protein binding to two of these regions which contain either an avian erythroblastosis virus E26 (v-ets) oncogene homologue (Ets) or Sp1 binding motif.

  7. [Mechanism of HL-60 cells apoptosis induced by proteasome inhibitor MG132].

    PubMed

    Zhou, Yong-Ming; Yu, Mei-Xia; Qiu, Yu-Zhen; Xing, Xiao-Lei; Yao, Chun-Hong; Bai, Ru-Jun

    2013-08-01

    The purpose of this study was to elucidate the apoptosis, apoptotic pathway of HL-60 cells induced by proteasome inhibitor MG132 and its effect on allogeneic mixed lymphocyte reaction. Apoptosis of HL-60 cells was detected by flow cytometry, the expression of P21, P27 and P53 proteins in HL-60 cells treated with MG132 was assayed by Western blot. The HL-60 cells were treated with 1 µmol/L MG132 for 48 h, and irradiated by 75 Gy of (60)Co γ-ray, but their antigenicity was preserved. The effect of irradiated HL-60 cells treated with MG132 on proliferation of peripheral blood mononuclear cells (PBMNC) was measured by CCK-8 method. The results showed that the apoptotic rate of MG132-treated HL-60 cells increased in dose-and time-dependent manner. No significant changes in MG132-induced apoptosis were observed after inhibiting caspase-8 and caspase-9 pathway. The expression of P21 and P27 protein increased after treatment of HL-60 cells with MG132. CCK-8 test showed that HL-60 cells induced with low-dose of MG132 displayed the enhancing effect on proliferation of PBMNC. It is concluded that high dose of MG132 can induce the apoptosis of HL-60 cells, and has direct killing effect on HL-60 cells, but this inducing apoptotic effect on HL-60 cells can not be realized through caspase-8 and caspase-9 pathway. The P21 and P27 protein may be involved in MG132 induced HL-60 cell apoptosis. Low dose of MG132 promotes the proliferation of PBMNC in healthy individuals and enhance the immunity of organism.

  8. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    SciTech Connect

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.; Rando, Roy J.; Pathak, Yashwant V.; Hoyle, Gary W.

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  9. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974

    PubMed Central

    Jang, Jaewoong; Jung, Yoonju; Kim, Youngeun; Jho, Eek-hoon; Yoon, Yoosik

    2017-01-01

    In this study, LPS-induced inflammatory responses in BEAS-2B human bronchial epithelial cells and human umbilical vein endothelial cell (HUVEC)s were found to be prevented by Dickkopf-1 (DKK-1), a secreted Wnt antagonist, and LGK974, a small molecular inhibitor of the Wnt secretion. LPS-induced IκB degradation and NF-κB nuclear translocation as well as the expressions of pro-inflammatory genes including IL-6, IL-8, TNF- α, IL-1β, MCP-1, MMP-9, COX-2 and iNOS, were all suppressed by DKK-1 and LGK974 in a dose-dependent manner. The suppressive effects of LGK974 on NF-κB, IκB, and pro-inflammatory gene expression were rescued by ectopic expression of β-catenin, suggesting that the anti-inflammatory activity of LGK974 is mediated by modulation of the Wnt/β-catenin pathway and not by unrelated side effects. When Wnt recombinant proteins were treated to cells, Wnt3a and Wnt5a significantly induced pro-inflammatory gene expressions, while Wnt7a and Wnt10b showed little effects. It was also found that Wnt3a and Wnt5a expressions were significantly induced by LPS treatment. Consistently, knockdown of Wnt3a and Wnt5a blocked LPS-induced inflammatory responses, while treatment of recombinant Wnt3a and Wnt5a proteins rescued the inhibition of inflammatory responses by LGK974. Findings of this study showed that DKK-1 and LGK974 suppress LPS-induced inflammatory response by modulating Wnt/β-catenin pathway. PMID:28128299

  10. The effects of celecoxib, a COX-2 selective inhibitor, on acute inflammation induced in irradiated rats.

    PubMed

    Khayyal, M T; El-Ghazaly, Mona A; El-Hazek, R M; Nada, A S

    2009-10-01

    The potential value of selective and non-selective COX-2 inhibitors in preventing some of the biochemical changes induced by ionizing radiation was studied in rats exposed to carrageenan-induced paw edema and 6-day-old air pouch models. The animals were exposed to different exposure levels of gamma-radiation, namely either to single doses of 2 and 7.5 Gy or a fractionated dose level of 7.5 Gy delivered as 0.5 Gy twice weekly for 7.5 weeks. The inflammatory response produced by carrageenan in irradiated rats was markedly higher than that induced in non-irradiated animals, and depended on the extent of irradiation. Celecoxib, a selective COX-2 inhibitor, in doses of 3, 5, 10, and 15 mg/kg was effective in reducing paw edema in irradiated and non-irradiated rats in a dose-dependent manner as well as diclofenac (3 mg/kg), a non-selective COX inhibitor. Irradiation of animals before the induction of the air pouch by an acute dose of 2 Gy led to a significant increase in leukocytic count, as well as in the level of interleukin-6 (IL-6), interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), LTB(4), PGE(2) (as an index of COX-2 activity), TXB(2) (as an index of COX-1 activity), and the plasma level of MDA. This increase in level of these parameters was more marked than that observed in the non-irradiated animals subjected to the inflammagen. The blood GSH level was not affected by the dose of irradiation used, whereas superoxide dismutase (SOD) activity was suppressed. In many respects, celecoxib (5 mg/kg) was as potent as diclofenac in decreasing the elevated levels of IL-6, IL-1beta, TNF-alpha, LTB(4), PGE(2), but lacked any significant effect on TXB(2) level. Since it is mostly selective for COX-2 with a rare effect on COX-1 enzyme, both drugs at the selected dose levels showed no effect on level of MDA, GSH, and SOD activity.

  11. Screening for Small Molecule Inhibitors of Statin-Induced APP C-terminal Toxic Fragment Production.

    PubMed

    Poksay, Karen S; Sheffler, Douglas J; Spilman, Patricia; Campagna, Jesus; Jagodzinska, Barbara; Descamps, Olivier; Gorostiza, Olivia; Matalis, Alex; Mullenix, Michael; Bredesen, Dale E; Cosford, Nicholas D P; John, Varghese

    2017-01-01

    Alzheimer's disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds - identified here using cells and tissues expressing wt human APP - in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects.

  12. Structural requirements for human inducible nitric oxide synthase substrates and substrate analogue inhibitors.

    PubMed

    Grant, S K; Green, B G; Stiffey-Wilusz, J; Durette, P L; Shah, S K; Kozarich, J W

    1998-03-24

    Inducible nitric oxide synthase (iNOS; EC 1.14.13.39) catalyzes the NADPH-dependent oxidation of one of the free guanidino nitrogens of L-Arg to form nitric oxide and L-citrulline. Analogues of L-Arg and the inhibitor, L-N6-(1-iminoethyl)lysine, were used to define structural elements required for the binding and catalysis of compounds. L-Arg analogues with sequentially shorter methylene spacing between the guanidino group and the amino acid portion of the molecule were not iNOS substrates but were reversible inhibitors. L-Arg analogues such as agmatine with a hydroxyl substitution at the 2-amino position were substrates. Desaminoarginine was not a substrate but a reversible inhibitor. Desaminoarginine, agmatine, and argininic acid bound to the enzyme to give type I difference spectra similar to that of L-Arg. The amidino compounds L-N6-(1-iminoethyl)lysine, L-N5-(1-iminoethyl)ornithine, and N5-(1-iminoethyl)cadaverdine, but not N6-(1-iminoethyl)-6-aminocaproic acid, were NADPH-dependent, irreversible inactivators of iNOS. For both the L-Arg and L-N6-(1-iminoethyl)lysine analogues, the 2-amino group appeared to play an important role in catalytic events leading to either substrate turnover or mechanism-based inactivation. Inactivation of iNOS by L-N6-(1-iminoethyl)lysine was NADPH- and dioxygen-dependent, but low incorporation of radiolabel with DL--4, 5-3H]-N6-(1-iminoethyl)lysine indicates that the mechanism of enzyme inactivation is not covalent modification of the protein.

  13. Screening for Small Molecule Inhibitors of Statin-Induced APP C-terminal Toxic Fragment Production

    PubMed Central

    Poksay, Karen S.; Sheffler, Douglas J.; Spilman, Patricia; Campagna, Jesus; Jagodzinska, Barbara; Descamps, Olivier; Gorostiza, Olivia; Matalis, Alex; Mullenix, Michael; Bredesen, Dale E.; Cosford, Nicholas D. P.; John, Varghese

    2017-01-01

    Alzheimer’s disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds – identified here using cells and tissues expressing wt human APP – in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects. PMID:28261092

  14. Natural Product-Based Inhibitors of Hypoxia-Inducible Factor-1 (HIF-1)

    PubMed Central

    Nagle, Dale G.; Zhou, Yu-Dong

    2010-01-01

    The transcription factor hypoxia-inducible factor-1 (HIF-1) regulates the expression of more than 70 genes involved in cellular adaptation and survival under hypoxic stress. Activation of HIF-1 is associated with numerous physiological and pathological processes that include tumorigenesis, vascular remodeling, inflammation, and hypoxia/ischemia-related tissue damage. Clinical studies suggested that HIF-1 activation correlates directly with advanced disease stages and treatment resistance among cancer patients. Preclinical studies support the inhibition of HIF-1 as a major molecular target for antitumor drug discovery. Considerable effort is underway, in government laboratories, industry and academia, to identify therapeutically useful small molecule HIF-1 inhibitors. Natural products (low molecular weight organic compounds produced by plants, microbes, and animals) continue to play a major role in modern antitumor drug discovery. Most of the compounds discovered to inhibit HIF-1 are natural products or synthetic compounds with structures that are based on natural product leads. Natural products have also served a vital role as molecular probes to elucidate the pathways that regulate HIF-1 activity. Natural products and natural product-derived compounds that inhibit HIF-1 are summarized in light of their biological source, chemical class, ancd effect on HIF-1 and HIF-mediated gene regulation. When known, the mechanism(s) of action of HIF-1 inhibitors are described. Many of the substances found to inhibit HIF-1 are non-druggable compounds that are too cytotoxic to serve as drug leads. The application of high-throughput screening methods, complementary molecular-targeted assays, and structurally diverse chemical libraries hold promise for the discovery of therapeutically useful HIF-1 inhibitors. PMID:16515532

  15. Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts.

    PubMed

    Poh, Su Li; Linn, Yeh Ching

    2016-05-01

    We studied whether blockade of inhibitory receptors on cytokine-induced killer (CIK) cells by immune checkpoint inhibitors could increase its anti-tumour potency against haematological malignancies. CIK cultures were generated from seven normal donors and nine patients with acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) or multiple myeloma (MM). The inhibitory receptors B and T lymphocyte attenuator, CD200 receptor, lymphocyte activation gene-3 (LAG-3) and T cell immunoglobulin and mucin-domain-containing-3 (TIM-3) were present at variable percentages in most CIK cultures, while cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed death-1 (PD-1) and killer cell immunoglobulin-like receptors (KIR2DL1/2/3) were expressed at low level in most cultures. Without blockade, myeloid leukaemia cells were susceptible to autologous and allogeneic CIK-mediated cytotoxicity. Blockade of KIR, LAG-3, PD-1 and TIM-3 but not CTLA-4 resulted in remarkable increase in killing against these targets, even in those with poor baseline cytotoxicity. ALL and MM targets were resistant to CIK-mediated cytotoxicity, and blockade of receptors did not increase cytotoxicity to a meaningful extent. Combination of inhibitors against two receptors did not further increase cytotoxicity. Interestingly, potentiation of CIK killing by blocking antibodies was not predicted by expression of receptors on CIK and their respective ligands on the targets. Compared to un-activated T and NK cells, blockade potentiated the cytotoxicity of CIK cells to a greater degree and at a lower E:T ratio, but without significant increase in cytotoxicity against normal white cell. Our findings provide the basis for clinical trial combining autologous CIK cells with checkpoint inhibitors for patients with AML.

  16. Peroxisome dynamics during development of the fungus Podospora anserina.

    PubMed

    Takano-Rojas, Harumi; Zickler, Denise; Peraza-Reyes, Leonardo

    2016-01-01

    Peroxisomes are versatile and dynamic organelles that are required for the development of diverse eukaryotic organisms. We demonstrated previously that in the fungus Podospora anserina different peroxisomal functions are required at distinct stages of sexual development, including the initiation and progression of meiocyte (ascus) development and the differentiation and germination of sexual spores (ascospores). Peroxisome assembly during these processes relies on the differential activity of the protein machinery that drives the import of proteins into the organelle, indicating a complex developmental regulation of peroxisome formation and activity. Here we demonstrate that peroxisome dynamics is also highly regulated during development. We show that peroxisomes in P. anserina are highly dynamic and respond to metabolic and environmental cues by undergoing changes in size, morphology and number. In addition, peroxisomes of vegetative and sexual cell types are structurally different. During sexual development peroxisome number increases at two stages: at early ascus differentiation and during ascospore formation. These processes are accompanied by changes in peroxisome structure and distribution, which include a cell-polarized concentration of peroxisomes at the beginning of ascus development, as well as a morphological transition from predominantly spherical to elongated shapes at the end of the first meiotic division. Further, the mostly tubular peroxisomes present from second meiotic division to early ascospore formation again become rounded during ascospore differentiation. Ultimately the number of peroxisomes dramatically decreases upon ascospore maturation. Our results reveal a precise regulation of peroxisome dynamics during sexual development and suggest that peroxisome constitution and function during development is defined by the coordinated regulation of the proteins that control peroxisome assembly and dynamics.

  17. Discovery of new MurA inhibitors using induced-fit simulation and docking.

    PubMed

    Rožman, Kaja; Lešnik, Samo; Brus, Boris; Hrast, Martina; Sova, Matej; Patin, Delphine; Barreteau, Hélène; Konc, Janez; Janežič, Dušanka; Gobec, Stanislav

    2017-02-15

    We report on the successful application of ProBiS-CHARMMing web server in the discovery of new inhibitors of MurA, an enzyme that catalyzes the first committed cytoplasmic step of bacterial peptidoglycan synthesis. The available crystal structures of Escherichia coli MurA in the Protein Data Bank have binding sites whose small volume does not permit the docking of drug-like molecules. To prepare the binding site for docking, the ProBiS-CHARMMing web server was used to simulate the induced-fit effect upon ligand binding to MurA, resulting in a larger, more holo-like binding site. The docking of a filtered ZINC compound library to this enlarged binding site was then performed and resulted in three compounds with promising inhibitory potencies against MurA. Compound 1 displayed significant inhibitory potency with IC50 value of 1μM. All three compounds have novel chemical structures, which could be used for further optimization of small-molecule MurA inhibitors.

  18. BCL-W is a regulator of microtubule inhibitor-induced mitotic cell death

    PubMed Central

    Huang, Shan; Tang, Rui; Randy, Y.C. Poon

    2016-01-01

    Microtubule inhibitors including taxanes and vinca alkaloids are among the most widely used anticancer agents. Disrupting the microtubules activates the spindle-assembly checkpoint and traps cells in mitosis. Whether cells subsequently undergo mitotic cell death is an important factor for the effectiveness of the anticancer agents. Given that apoptosis accounts for the majority of mitotic cell death induced by microtubule inhibitors, we performed a systematic study to determine which members of the anti-apoptotic BCL-2 family are involved in determining the duration of mitotic block before cell death or slippage. Depletion of several anti-apoptotic BCL-2-like proteins significantly shortened the time before apoptosis. Among these proteins, BCL-W has not been previously characterized to play a role in mitotic cell death. Although the expression of BCL-W remained constant during mitotic block, it varied significantly between different cell lines. Knockdown of BCL-W with siRNA or disruption of the BCL-W gene with CRISPR-Cas9 speeded up mitotic cell death. Conversely, overexpression of BCL-W delayed mitotic cell death, extending the mitotic block to allow mitotic slippage. Taken together, these results showed that BCL-W contributes to the threshold of anti-apoptotic activity during mitosis. PMID:27231850

  19. Suppression of collagen-induced arthritis with a serine proteinase inhibitor (serpin) derived from myxoma virus.

    PubMed

    Brahn, Ernest; Lee, Sarah; Lucas, Alexandra; McFadden, Grant; Macaulay, Colin

    2014-08-01

    Many viruses encode virulence factors to facilitate their own survival by modulating a host's inflammatory response. One of these factors, secreted from cells infected with myxoma virus, is the serine proteinase inhibitor (serpin) Serp-1. Because Serp-1 had demonstrated anti-inflammatory properties in arterial injury models and viral infections, it was cloned and evaluated for therapeutic efficacy in collagen-induced arthritis (CIA). Clinical severity was significantly lower in the Serp-1 protocols (p<0.0001) and blinded radiographs indicated that the Serp-1 group had significantly less erosions than the controls (p<0.01). Delayed-type hypersensitivity was lower in the Serp-1 group but antibody titers to type II collagen were not significantly altered. Recipients had minimal histopathologic synovial changes and did not develop neutralizing antibodies to Serp-1. These results indicate that Serp-1 impedes the pathogenesis of CIA and suggests that the therapeutic potential of serine proteinase inhibitors in inflammatory joint diseases, such as rheumatoid arthritis, should be investigated further.

  20. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli

    PubMed Central

    Dwyer, Daniel J; Kohanski, Michael A; Hayete, Boris; Collins, James J

    2007-01-01

    Modulation of bacterial chromosomal supercoiling is a function of DNA gyrase-catalyzed strand breakage and rejoining. This reaction is exploited by both antibiotic and proteic gyrase inhibitors, which trap the gyrase molecule at the DNA cleavage stage. Owing to this interaction, double-stranded DNA breaks are introduced and replication machinery is arrested at blocked replication forks. This immediately results in bacteriostasis and ultimately induces cell death. Here we demonstrate, through a series of phenotypic and gene expression analyses, that superoxide and hydroxyl radical oxidative species are generated following gyrase poisoning and play an important role in cell killing by gyrase inhibitors. We show that superoxide-mediated oxidation of iron–sulfur clusters promotes a breakdown of iron regulatory dynamics; in turn, iron misregulation drives the generation of highly destructive hydroxyl radicals via the Fenton reaction. Importantly, our data reveal that blockage of hydroxyl radical formation increases the survival of gyrase-poisoned cells. Together, this series of biochemical reactions appears to compose a maladaptive response, that serves to amplify the primary effect of gyrase inhibition by oxidatively damaging DNA, proteins and lipids. PMID:17353933

  1. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor.

    PubMed

    Flinspach, M; Xu, Q; Piekarz, A D; Fellows, R; Hagan, R; Gibbs, A; Liu, Y; Neff, R A; Freedman, J; Eckert, W A; Zhou, M; Bonesteel, R; Pennington, M W; Eddinger, K A; Yaksh, T L; Hunter, M; Swanson, R V; Wickenden, A D

    2017-01-03

    Pain places a devastating burden on patients and society and current pain therapeutics exhibit limitations in efficacy, unwanted side effects and the potential for drug abuse and diversion. Although genetic evidence has clearly demonstrated that the voltage-gated sodium channel, Nav1.7, is critical to pain sensation in mammals, pharmacological inhibitors of Nav1.7 have not yet fully recapitulated the dramatic analgesia observed in Nav1.7-null subjects. Using the tarantula venom-peptide ProTX-II as a scaffold, we engineered a library of over 1500 venom-derived peptides and identified JNJ63955918 as a potent, highly selective, closed-state Nav1.7 blocking peptide. Here we show that JNJ63955918 induces a pharmacological insensitivity to pain that closely recapitulates key features of the Nav1.7-null phenotype seen in mice and humans. Our findings demonstrate that a high degree of selectivity, coupled with a closed-state dependent mechanism of action is required for strong efficacy and indicate that peptides such as JNJ63955918 and other suitably optimized Nav1.7 inhibitors may represent viable non-opioid alternatives for the pharmacological treatment of severe pain.

  2. Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses.

    PubMed

    Peres, Adrian; Churchman, Michelle L; Hariharan, Srivaidehirani; Himanen, Kristiina; Verkest, Aurine; Vandepoele, Klaas; Magyar, Zoltan; Hatzfeld, Yves; Van Der Schueren, Els; Beemster, Gerrit T S; Frankard, Valerie; Larkin, John C; Inzé, Dirk; De Veylder, Lieven

    2007-08-31

    The EL2 gene of rice (Oryza sativa), previously classified as early response gene against the potent biotic elicitor N-acetylchitoheptaose and encoding a short polypeptide with unknown function, was identified as a novel cell cycle regulatory gene related to the recently reported SIAMESE (SIM) gene of Arabidopsis thaliana. Iterative two-hybrid screens, in vitro pull-down assays, and fluorescence resonance energy transfer analyses showed that Orysa; EL2 binds the cyclin-dependent kinase (CDK) CDKA1;1 and D-type cyclins. No interaction was observed with the plant-specific B-type CDKs. The amino acid motif ELERFL was identified to be essential for cyclin, but not for CDK binding. Orysa;EL2 impaired the ability of Orysa; CYCD5;3 to complement a budding yeast (Saccharomyces cerevisiae) triple CLN mutant, whereas recombinant protein inhibited CDK activity in vitro. Moreover, Orysa;EL2 was able to rescue the multicellular trichome phenotype of sim mutants of Arabidopsis, unequivocally demonstrating that Orysa;EL2 operates as a cell cycle inhibitor. Orysa;EL2 mRNA levels were induced by cold, drought, and propionic acid. Our data suggest that Orysa;EL2 encodes a new type of plant CDK inhibitor that links cell cycle progression with biotic and abiotic stress responses.

  3. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor

    PubMed Central

    Flinspach, M.; Xu, Q.; Piekarz, A. D.; Fellows, R.; Hagan, R.; Gibbs, A.; Liu, Y.; Neff, R. A.; Freedman, J.; Eckert, W. A.; Zhou, M.; Bonesteel, R.; Pennington, M. W.; Eddinger, K. A.; Yaksh, T. L.; Hunter, M.; Swanson, R. V.; Wickenden, A. D.

    2017-01-01

    Pain places a devastating burden on patients and society and current pain therapeutics exhibit limitations in efficacy, unwanted side effects and the potential for drug abuse and diversion. Although genetic evidence has clearly demonstrated that the voltage-gated sodium channel, Nav1.7, is critical to pain sensation in mammals, pharmacological inhibitors of Nav1.7 have not yet fully recapitulated the dramatic analgesia observed in Nav1.7-null subjects. Using the tarantula venom-peptide ProTX-II as a scaffold, we engineered a library of over 1500 venom-derived peptides and identified JNJ63955918 as a potent, highly selective, closed-state Nav1.7 blocking peptide. Here we show that JNJ63955918 induces a pharmacological insensitivity to pain that closely recapitulates key features of the Nav1.7-null phenotype seen in mice and humans. Our findings demonstrate that a high degree of selectivity, coupled with a closed-state dependent mechanism of action is required for strong efficacy and indicate that peptides such as JNJ63955918 and other suitably optimized Nav1.7 inhibitors may represent viable non-opioid alternatives for the pharmacological treatment of severe pain. PMID:28045073

  4. Involvement of tyrosine phosphorylation in HMG-CoA reductase inhibitor-induced cell death in L6 myoblasts.

    PubMed

    Mutoh, T; Kumano, T; Nakagawa, H; Kuriyama, M

    1999-02-05

    Our previous studies have shown that the HMG-CoA reductase (HCR) inhibitor (HCRI), simvastatin, causes myopathy in rabbits and kills L6 myoblasts. The present study was designed to elucidate the molecular mechanism of HCRI-induced cell death. We have demonstrated that simvastatin induces the tyrosine phosphorylation of several cellular proteins within 10 min. These phosphorylations were followed by apoptosis, as evidenced by the occurrence of internucleosomal DNA fragmentation and by morphological changes detected with Nomarski optics. Simvastatin-induced cell death was prevented by tyrosine kinase inhibitors. The MTT assay revealed that the addition of mevalonic acid into the culture medium partially inhibited simvastatin-induced cell death. Thus, these results suggested that protein tyrosine phosphorylation might play an important role in the intracellular signal transduction pathway mediating the HCRI-induced death of myoblasts.

  5. Catalase degradation in sunflower cotyledons during peroxisome transition from glyoxysomal to leaf peroxisomal function. [Helianthus annuus

    SciTech Connect

    Eising, R.; Gerhardt, B.

    1987-06-01

    First order rate constant for the degradation (degradation constants) of catalase in the cotyledons of sunflower (Helianthus annuus L.) were determined by measuring the loss of catalase containing /sup 14/C-labeled heme. During greening of the cotyledons, a period when peroxisomes change from glyoxysomal to leaf peroxisomal function, the degradation of glyoxysomal catalase is significantly slower than during all other stages of cotyledon development in light or darkness. The degradation constant during the transition stage of peroxisome function amounts to 0.205 day/sup -1/ in contrast to the constants ranging from 0.304 day/sup -1/ to 0.515 day/sup -1/ during the other developmental stages. Density labeling experiments comprising labeling of catalase with /sup 2/H/sub 2/O and its isopycnic centrifugation on CsCl gradients demonstrated that the determinations of the degradation constants were not substantially affected by reutilization of /sup 14/C-labeled compounds for catalase synthesis. The degradation constants for both glyoxysomal catalase and catalase synthesized during the transition of peroxisome function do not differ. This was shown by labeling the catalases with different isotopes and measuring the isotope ratio during the development of the cotyledons. The results are inconsistent with the concept that an accelerated and selective degradation of glyoxysomes underlies the change in peroxisome function. The data suggest that catalase degradation is at least partially due to an individual turnover of catalase and does not only result from a turnover of the whole peroxisomes.

  6. Molecular Mechanism of Silver Nanoparticles-Induced Human Osteoblast Cell Death: Protective Effect of Inducible Nitric Oxide Synthase Inhibitor

    PubMed Central

    Zielinska, Ewelina; Tukaj, Cecylia; Radomski, Marek Witold; Inkielewicz-Stepniak, Iwona

    2016-01-01

    Background Silver nanoparticles (AgNPs) show strong antibacterial properties, making them excellent candidates to be used in orthopaedic repair and regeneration. However, there are concerns regarding the cytotoxicity of AgNPs and molecular mechanisms underlying AgNPs-induced bone cells toxicity have not been elucidated. Therefore, the aim of our study was to explore mechanisms of AgNPs-induced osteoblast cell death with particular emphasis on the role of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS). Methods and Result Silver nanoparticles used in this study were 18.3±2.6 nm in size, uncoated, spherical, regular shape and their zeta potential was -29.1±2.4 mV as measured by transmission electron microscopy (TEM) and zetasizer. The release of silver (Ag) from AgNPs was measured in cell culture medium by atomic absorption spectroscopy (AAS). The exposure of human osteoblast cells (hFOB 1.19) to AgNPs at concentration of 30 or 60 μg/mL for 24 or 48 hours, respectively resulted in cellular uptake of AgNPs and changes in cell ultrastructure. These changes were associated with apoptosis and necrosis as shown by flow cytometry and lactate dehydrogenase (LDH) assay as well as increased levels of pro-apoptotic Bax and decreased levels of anti-apoptotic Bcl-2 mRNA and protein. Importantly, we have found that AgNPs elevated the levels of nitric oxide (NO) with concomitant upregulation of inducible nitric oxide synthase (iNOS) mRNA and protein. A significant positive correlation was observed between the concentration of AgNPs and iNOS at protein and mRNA level (r = 0.837, r = 0.721, respectively; p<0.001). Finally, preincubation of osteoblast cells with N-iminoethyl-l-lysine (L-NIL), a selective iNOS inhibitor, as well as treating cells with iNOS small interfering RNAs (siRNA) significantly attenuated AgNPs-induced apoptosis and necrosis. Moreover, we have found that AgNPs-induced cells death is not related to Ag dissolution is cell culture medium

  7. Translation inhibitors induce cell death by multiple mechanisms and Mcl-1 reduction is only a minor contributor

    PubMed Central

    Lindqvist, L M; Vikström, I; Chambers, J M; McArthur, K; Ann Anderson, M; Henley, K J; Happo, L; Cluse, L; Johnstone, R W; Roberts, A W; Kile, B T; Croker, B A; Burns, C J; Rizzacasa, M A; Strasser, A; Huang, DC S

    2012-01-01

    There is significant interest in treating cancers by blocking protein synthesis, to which hematological malignancies seem particularly sensitive. The translation elongation inhibitor homoharringtonine (Omacetaxine mepesuccinate) is undergoing clinical trials for chronic myeloid leukemia, whereas the translation initiation inhibitor silvestrol has shown promise in mouse models of cancer. Precisely how these compounds induce cell death is unclear, but reduction in Mcl-1, a labile pro-survival Bcl-2 family member, has been proposed to constitute the critical event. Moreover, the contribution of translation inhibitors to neutropenia and lymphopenia has not been precisely defined. Herein, we demonstrate that primary B cells and neutrophils are highly sensitive to translation inhibitors, which trigger the Bax/Bak-mediated apoptotic pathway. However, contrary to expectations, reduction of Mcl-1 did not significantly enhance cytotoxicity of these compounds, suggesting that it does not have a principal role and cautions that strong correlations do not always signify causality. On the other hand, the killing of T lymphocytes was less dependent on Bax and Bak, indicating that translation inhibitors can also induce cell death via alternative mechanisms. Indeed, loss of clonogenic survival proved to be independent of the Bax/Bak-mediated apoptosis altogether. Our findings warn of potential toxicity as these translation inhibitors are cytotoxic to many differentiated non-cycling cells. PMID:23059828

  8. Proton-pump inhibitor-induced hypomagnesemia: Current research and proposed mechanisms.

    PubMed

    William, Jeffrey H; Danziger, John

    2016-03-06

    Since the early reports nearly a decade ago, proton-pump inhibitor-induced hypomagnesemia (PPIH) has become a well-recognized phenomenon. While many observational studies in the inpatient and outpatient populations have confirmed the association of PPI exposure and serum magnesium concentrations, there are no prospective, controlled studies to support causation. Molecular mechanisms of magnesium transporters, including the pH-dependent regulation of transient receptor potential melastatin-6 transporters in the colonic enterocyte, have been proposed to explain the effect of PPIs on magnesium reabsorption, but may be a small part of a more complicated interplay of molecular biology, pharmacology, and genetic predisposition. This review explores the current state of research in the field of PPIH and the proposed mechanisms of this effect.

  9. Proton-pump inhibitor-induced hypomagnesemia: Current research and proposed mechanisms

    PubMed Central

    William, Jeffrey H; Danziger, John

    2016-01-01

    Since the early reports nearly a decade ago, proton-pump inhibitor-induced hypomagnesemia (PPIH) has become a well-recognized phenomenon. While many observational studies in the inpatient and outpatient populations have confirmed the association of PPI exposure and serum magnesium concentrations, there are no prospective, controlled studies to support causation. Molecular mechanisms of magnesium transporters, including the pH-dependent regulation of transient receptor potential melastatin-6 transporters in the colonic enterocyte, have been proposed to explain the effect of PPIs on magnesium reabsorption, but may be a small part of a more complicated interplay of molecular biology, pharmacology, and genetic predisposition. This review explores the current state of research in the field of PPIH and the proposed mechanisms of this effect. PMID:26981439

  10. The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis.

    PubMed

    Monti, Martina; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia

    2013-10-01

    Pediatric and adult cancer patients, following the use of the antitumor drug Doxorubicin develop cardiotoxicity. Pharmacological protection of microvascular endothelium might produce a double benefit: (i) reduction of myocardial toxicity (the primary target of Doxorubicin action) and (ii) maintenance of the vascular functionality for the adequate delivery of chemotherapeutics to tumor cells. This study was aimed to evaluate the mechanisms responsible of the protective effects of the angiotensin converting enzyme inhibitor (ACEI) Zofenoprilat against the toxic effects exerted by Doxorubicin on coronary microvascular endothelium. We found that exposure of endothelial cells to Doxorubicin (0.1-1μM range) impaired cell survival by promoting their apoptosis. ERK1/2 related p53 activation, but not reactive oxygen species, was responsible for Doxorubicin induced caspase-3 cleavage. P53 mediated-apoptosis and impairment of survival were reverted by treatment with Zofenoprilat. The previously described PI-3K/eNOS/endogenous fibroblast growth factor signaling was not involved in the protective effect, which, instead, could be ascribed to cystathionine gamma lyase dependent availability of H2S from Zofenoprilat. Furthermore, considering the tumor environment, the treatment of endothelial/tumor co-cultures with Zofenoprilat did not affect the antitumor efficacy of Doxorubicin. In conclusion the ACEI Zofenoprilat exerts a protective effect on Doxorubicin induced endothelial damage, without affecting its antitumor efficacy. Thus, sulfhydryl containing ACEI may be a useful therapy for Doxorubicin-induced cardiotoxicity.

  11. Proton pump inhibitor induced collagen expression in colonocytes is associated with collagenous colitis

    PubMed Central

    Mori, Shiori; Kadochi, Yui; Luo, Yi; Fujiwara-Tani, Rina; Nishiguchi, Yukiko; Kishi, Shingo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2017-01-01

    AIM To elucidate the role of proton pump inhibitors (PPIs) in collagenous disease, direct effect of PPI on colonocytes was examined. METHODS Collagenous colitis is a common cause of non-bloody, watery diarrhea. Recently, there has been increasing focus on the use of proton PPIs as a risk factor for developing collagenous colitis. Mouse CT26 colonic cells were treated with PPI and/or PPI-induced alkaline media. Expression of fibrosis-associated genes was examined by RT-PCR. In human materials, collagen expression was examined by immunohistochemistry. RESULTS CT26 cells expressed a Na+-H+ exchanger gene (solute carrier family 9, member A2). Treatment with PPI and/or PPI-induced alkaline media caused growth inhibition and oxidative stress in CT26 cells. The treatment increased expression of fibrosis inducing factors, transforming growth factor β and fibroblast growth factor 2. The treatment also decreased expression of a negative regulator of collagen production, replication factor C1, resulting in increased expression of collagen types III and IV in association with lipid peroxide. In biopsy specimens from patients with collagenous colitis, type III and IV collagen were increased. Increase of type III collagen was more pronounced in PPI-associated collagenous colitis than in non-PPI-associated disease. CONCLUSION From these findings, the reaction of colonocytes to PPI might participate in pathogenesis of collagenous colitis. PMID:28321159

  12. MLN4924 induces Noxa upregulation in acute myelogenous leukemia and synergizes with Bcl-2 inhibitors.

    PubMed

    Knorr, K L B; Schneider, P A; Meng, X W; Dai, H; Smith, B D; Hess, A D; Karp, J E; Kaufmann, S H

    2015-12-01

    MLN4924 (pevonedistat), an inhibitor of the Nedd8 activating enzyme (NAE), has exhibited promising clinical activity in acute myelogenous leukemia (AML). Here we demonstrate that MLN4924 induces apoptosis in AML cell lines and clinical samples via a mechanism distinct from those observed in other malignancies. Inactivation of E3 cullin ring ligases (CRLs) through NAE inhibition causes accumulation of the CRL substrate c-Myc, which transactivates the PMAIP1 gene encoding Noxa, leading to increased Noxa protein, Bax and Bak activation, and subsequent apoptotic changes. Importantly, c-Myc knockdown diminishes Noxa induction; and Noxa siRNA diminishes MLN4924-induced killing. Because Noxa also neutralizes Mcl-1, an anti-apoptotic Bcl-2 paralog often upregulated in resistant AML, further experiments have examined the effect of combining MLN4924 with BH3 mimetics that target other anti-apoptotic proteins. In combination with ABT-199 or ABT-263 (navitoclax), MLN4924 exerts a synergistic cytotoxic effect. Collectively, these results provide new insight into MLN4924-induced engagement of the apoptotic machinery that could help guide further exploration of MLN4924 for AML.

  13. Drug-Induced Subacute Cutaneous Lupus Erythematosus Associated with Proton Pump Inhibitors.

    PubMed

    Aggarwal, Nitish

    2016-06-01

    Subacute cutaneous lupus erythematosus (SCLE) is an autoimmune disease that may be induced by proton pump inhibitors (PPIs) in at-risk populations. The US FDA does not recognize SCLE as an adverse event associated with PPIs. We queried the FDA Adverse Event Reporting System database, which contains adverse event case reports submitted by the public as well as by industry, and analyzed the data to quantify passive pharmacovigilance signals for SCLE associated with PPIs. A disproportionality analysis of the signals yielded a significant association between SCLE and PPIs. Discontinuation of PPI resulted in remission, with PPI re-challenge causing SCLE to reoccur. A follow-up analysis also yielded a significant association between SCLE and H2 receptor antagonists. We conducted a brief literature survey of published case reports and studies to discern the validity of PPI-induced SCLE signals. Healthcare prescribers and patients should be made aware that SCLE can be induced by PPIs. In such cases, PPIs should be discontinued and alternative clinical treatment sought. Regulatory bodies such as the FDA should incorporate the adverse reaction in PPI prescription labels.

  14. Studies of benzamide- and thiol-based histone deacetylase inhibitors in models of oxidative-stress-induced neuronal death: identification of some HDAC3-selective inhibitors.

    PubMed

    Chen, Yufeng; He, Rong; Chen, Yihua; D'Annibale, Melissa A; Langley, Brett; Kozikowski, Alan P

    2009-05-01

    We compare three structurally different classes of histone deacetylase (HDAC) inhibitors that contain benzamide, hydroxamate, or thiol groups as the zinc binding group (ZBG) for their ability to protect cortical neurons in culture from cell death induced by oxidative stress. This study reveals that none of the benzamide-based HDAC inhibitors (HDACIs) provides any neuroprotection whatsoever, in distinct contrast to HDACIs that contain other ZBGs. Some of the sulfur-containing HDACIs, namely the thiols, thioesters, and disulfides present modest neuroprotective activity but show toxicity at higher concentrations. Taken together, these data demonstrate that the HDAC6-selective mercaptoacetamides that were reported previously provide the best protection in the homocysteic acid model of oxidative stress, thus further supporting their study in animal models of neurodegenerative diseases.

  15. Attenuation of endothelin-1-induced calcium response by tyrosine kinase inhibitors in vascular smooth muscle cells.

    PubMed

    Liu, C Y; Sturek, M

    1996-06-01

    Although tyrosine kinases play an important role in cell growth and have been implicated in regulation of smooth muscle contraction, their role in agonist-induced myoplasmic Ca2+ responses is unclear. We examined effects of the tyrosine kinase inhibitors genistein and methyl 2,5-dihydroxycinnamate (MDHC) on the endothelin-1 (ET-1)-induced Ca2+ response and determined underlying mechanisms for the effects. Freshly isolated smooth muscle cells from porcine coronary arteries were loaded with fura 2 ester, and myoplasmic free Ca2+ (Ca2+ (m)) concentration was estimated with fura 2 microfluorometry. Both genistein and MDHC inhibited the initial transient Cam2+ response to ET by 54 and 81%, respectively (P < 0.05), in the presence of extracellular Ca2+. Genistein also significantly delayed the Cam2+ response, with the latent period from ET-1 application to the beginning of the Cam2+ response being increased from 1.08 +/- 0.17 to 2.65 +/- 0.52 min (P < 0.05). In the absence of extracellular Ca2+, genistein inhibited the ET-1-induced Cam2+ response by 93% (P < 0.05). The Cam2+ responses to caffeine (5 mM) or inositol trisphosphate (IP3) applied intracellularly via a patch-clamp pipette were not affected by genistein. Both genistein and MDHC also abolished the sustained Cam2+ response to ET-1. However, the Cam2+ response to depolarization by 80 mM K+ was not inhibited by MDHC and only inhibited 22% by genistein (P < 0.05). These results indicate that 1) activation of tyrosine kinases is an important regulatory mechanism for the ET-1-induced Cam2+ response in vascular smooth muscle and 2) tyrosine kinases mediate ET-1-induced Ca2+ release with no direct effect on IP3-mediated Ca2+ release. Thus ET-1-mediated signaling upstream of IP3 interaction with the Ca2+ stores is regulated by tyrosine kinases.

  16. Selective phosphodiesterase 3 inhibitor olprinone attenuates meconium-induced oxidative lung injury.

    PubMed

    Mokra, Daniela; Drgova, Anna; Pullmann, Rudolf; Calkovska, Andrea

    2012-06-01

    Since inflammation and oxidation play a key role in the pathophysiology of neonatal meconium aspiration syndrome, various anti-inflammatory drugs have been tested in the treatment. This study evaluated whether the phosphodiesterase (PDE) 3 inhibitor olprinone can alleviate meconium-induced inflammation and oxidative lung injury. Oxygen-ventilated rabbits intratracheally received 4 ml/kg of meconium (25 mg/ml) or saline. Thirty minutes after meconium/saline instillation, meconium-instilled animals were treated by intravenous olprinone (0.2 mg/kg) or were left without treatment. All animals were oxygen-ventilated for an additional 5 h. A bronchoalveolar lavage (BAL) of the left lungs was performed and differential leukocyte count in the sediment was estimated. The right lungs were used to determine lung edema by wet/dry weight ratio, as well as to detect oxidative damage to the lungs. In the lung tissue homogenate, total antioxidant status (TAS) was determined. In isolated lung mitochondria, the thiol group content, conjugated dienes, thiobarbituric acid-reactive substances (TBARS), dityrosine, lysine-lipid peroxidation products, and activity of cytochrome c oxidase (COX) were estimated. To evaluate the effects of meconium instillation and olprinone treatment on the systemic level, TBARS and TAS were determined in the blood plasma, as well. Meconium instillation increased the relative numbers of neutrophils and eosinophils in the BAL fluid, increased edema formation and concentrations of oxidation markers, and decreased TAS. Treatment with olprinone reduced the numbers of polymorphonuclears in the BAL fluid, decreased the formation of most oxidation markers in the lungs, reduced lung edema and prevented a decrease in TAS in the lung homogenate compared to non-treated animals. In the blood plasma, olprinone decreased TBARS and increased TAS compared to the non-treated group. Conclusion, the selective PDE3 inhibitor olprinone has shown potent antioxidative and anti

  17. C1 inhibitor-mediated myocardial protection from chronic intermittent hypoxia-induced injury

    PubMed Central

    Fu, Jinrong; Guo, Furong; Chen, Cheng; Yu, Xiaoman; Hu, Ke; Li, Mingjiang

    2016-01-01

    The optimal treatment for chronic intermittent hypoxia (CIH)-induced cardiovascular injuries has yet to be determined. The aim of the current study was to explore the potential protective effect and mechanism of a C1 inhibitor in CIH in the myocardium. The present study used a rat model of CIH in which complement regulatory protein, known as C1 inhibitor (C1INH), was administered to the rats in the intervention groups. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The expression of proteins associated with the apoptotic pathway, such as B-cell lymphoma 2 (Bcl-2), Bax and caspase-3 were detected by western blot analysis. The expression of complement C3 protein and RNA were also analyzed. C1INH was observed to improve the cardiac function in rats with CIH. Myocardial myeloperoxidase activity, a marker of neutrophil infiltration, was significantly decreased in the C1INH intervention group compared with the CIH control group, and cardiomyocyte apoptosis was significantly attenuated (P<0.05). Western blotting and reverse transcription-polymerase chain reaction analysis indicated that the protein expression levels of Bcl-2 were decreased and those of Bax were increased in the CIH group compared with the normal control group, but the protein expression levels of Bcl-2 were increased and those of Bax were decreased in the C1INH intervention group, as compared with the CIH group. Furthermore, the CIH-induced expression and synthesis of complement C3 in the myocardium were also reduced in the C1INH intervention group. C1INH, in addition to inhibiting complement activation and inflammation, preserved cardiac function in CIH-mediated myocardial cell injury through an anti-apoptotic mechanism. PMID:27698713

  18. Mitigation and Treatment of Radiation-Induced Thoracic Injury With a Cyclooxygenase-2 Inhibitor, Celecoxib

    SciTech Connect

    Hunter, Nancy R.; Valdecanas, David; Liao Zhongxing; Milas, Luka; Thames, Howard D.; Mason, Kathy A.

    2013-02-01

    Purpose: To test whether a cyclooxygenase-2 inhibitor (celecoxib) could reduce mortality resulting from radiation-induced pneumonitis. Methods and Materials: Celecoxib was given to mice twice daily for 40 consecutive days starting on the day of local thoracic irradiation (LTI) or 40 or 80 days later. C3Hf/KamLaw mice were observed for morbidity, and time to death was determined. Results were analyzed using the Cox proportional hazards model. Results: Timing of celecoxib relative to LTI determined efficacy. A significant reduction in time to death was achieved only when celecoxib was started 80 days after LTI, corresponding to the time when pneumonitis is expressed. For these mice the reduction in mortality was quantified as a hazard ratio for mortality of treated vs untreated of 0.36 (95% confidence interval [CI] 0.24-0.53), thus significantly less than 1.0. Correspondingly, the median lethal dose for treated mice (12.9 Gy; 95% CI 12.55-13.25 Gy) was significantly (P=.026) higher than for untreated mice (12.4 Gy; 95% CI 12.2-12.65 Gy). Conclusions: Celecoxib significantly reduced lung toxicity when administered months after LTI when the deleterious effects of radiation were expressed. The schedule-dependent reduction in fatal pneumonitis suggests that celecoxib could be clinically useful by reintroduction of treatment months after completion of radiation therapy. These findings may be important for designing clinical trials using cyclooxygenase-2 inhibitors to treat radiation-induced lung toxicity as a complement to concurrent radiation therapy of lung cancers.

  19. A novel complex I inhibitor protects against hypertension-induced left ventricular hypertrophy.

    PubMed

    Matsumura, Nobutoshi; Robertson, Ian M; Hamza, Shereen M; Soltys, Carrie-Lynn M; Sung, Miranda M; Masson, Grant; Beker, Donna L; Dyck, Jason R B

    2017-03-01

    Since left ventricular hypertrophy (LVH) increases the susceptibility for the development of other cardiac conditions, pharmacotherapy that mitigates pathological cardiac remodeling may prove to be beneficial in patients with LVH. Previous work has shown that the activation of the energy-sensing kinase AMP-activated protein kinase (AMPK) can inhibit some of the molecular mechanisms that are involved in LVH. Of interest, metformin activates AMPK through its inhibition of mitochondrial complex I in the electron transport chain and can prevent LVH induced by pressure overload. However, metformin has additional cellular effects unrelated to AMPK activation, raising questions about whether mitochondrial complex I inhibition is sufficient to reduce LVH. Herein, we characterize the cardiac effects of a novel compound (R118), which is a more potent complex I inhibitor than metformin and is thus used at a much lower concentration. We show that R118 activates AMPK in the cardiomyocyte, inhibits multiple signaling pathways involved in LVH, and prevents Gq protein-coupled receptor agonist-induced prohypertrophic signaling. We also show that in vivo administration of R118 prevents LVH in a mouse model of hypertension, suggesting that R118 can directly modulate the response of the cardiomyocyte to stress. Of importance, we also show that while R118 treatment prevents adaptive remodelling in response to elevated afterload, it does so without compromising systolic function, improves myocardial energetics, and prevents a decline in diastolic function in hypertensive mice. Taken together, our data suggest that inhibition of mitochondrial complex I may be worthy of future investigation for the treatment of LVH.NEW & NOTEWORTHY Inhibition of mitochondrial complex I by R118 reduces left ventricular hypertrophy (LVH) and improves myocardial energetics as well as diastolic function without compromising systolic function. Together, these effects demonstrate the therapeutic potential of

  20. Shear stress-induced Ets-1 modulates protease inhibitor expression in microvascular endothelial cells.

    PubMed

    Milkiewicz, Malgorzata; Uchida, Cassandra; Gee, Eric; Fudalewski, Tomasz; Haas, Tara L

    2008-11-01

    Elevated shear stress within the skeletal muscle microvasculature is implicated in the induction of a longitudinal splitting form of angiogenesis, which is characterized by the lack of basement membrane breakage. We investigated whether the transcriptional regulator, Ets-1, is responsive to changes in hemodynamic forces and if so, whether Ets-1 controls microvascular endothelial cell integrity by inducing the expression of inhibitors of matrix degrading proteases. Rats were treated with prazosin for 2, 4, and 7 days to increase in microvascular shear stress in hindlimb skeletal muscles. In complimentary in vitro experiments, rat microvascular skeletal muscle endothelial cells were exposed to laminar shear stress (15 dyne/cm(2)) for 0.5, 2, and 24 h. TaqMan PCR analysis of laser microdissected capillaries isolated from EDL muscles demonstrated transient (after 2 days) induction of Ets-1 gene expression. In cultured cells, a transient up-regulation of Ets-1 mRNA was observed after 2 h shear stimulation, accompanied by increased phosphorylation of Ets-1 and enhanced Ets-1 DNA binding activity. This response was modulated by ERK1/2 and p38 MAP kinases, but was not dependent on NOS or COX-2 activity. PAI-1, TIMP-1 and TIMP-3 mRNA were elevated significantly in prazosin treated EDL, and in response to shear stimulation in vitro. In cultured endothelial cells, Ets-1 RNA interference abolished the shear-induced increases in Ets-1, PAI-1, TIMP-1, and TIMP-3 mRNA expression. These results suggest that enhanced laminar shear stress may act to preserve the integrity of microvascular walls in part through Ets-1-dependent induction of protease inhibitors.

  1. Sphingosine 1-phosphate is a ligand for peroxisome proliferator-activated receptor-γ that regulates neoangiogenesis.

    PubMed

    Parham, Kate A; Zebol, Julia R; Tooley, Katie L; Sun, Wai Y; Moldenhauer, Lachlan M; Cockshell, Michaelia P; Gliddon, Briony L; Moretti, Paul A; Tigyi, Gabor; Pitson, Stuart M; Bonder, Claudine S

    2015-09-01

    Sphingosine 1-phosphate (S1P) is a bioactive lipid that can function both extracellularly and intracellularly to mediate a variety of cellular processes. Using lipid affinity matrices and a radiolabeled lipid binding assay, we reveal that S1P directly interacts with the transcription factor peroxisome proliferator-activated receptor (PPAR)γ. Herein, we show that S1P treatment of human endothelial cells (ECs) activated a luciferase-tagged PPARγ-specific gene reporter by ∼12-fold, independent of the S1P receptors. More specifically, in silico docking, gene reporter, and binding assays revealed that His323 of the PPARγ ligand binding domain is important for binding to S1P. PPARγ functions when associated with coregulatory proteins, and herein we identify that peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1)β binds to PPARγ in ECs and their progenitors (nonadherent endothelial forming cells) and that the formation of this PPARγ:PGC1β complex is increased in response to S1P. ECs treated with S1P selectively regulated known PPARγ target genes with PGC1β and plasminogen-activated inhibitor-1 being increased, no change to adipocyte fatty acid binding protein 2 and suppression of CD36. S1P-induced in vitro tube formation was significantly attenuated in the presence of the PPARγ antagonist GW9662, and in vivo application of GW9662 also reduced vascular development in Matrigel plugs. Interestingly, activation of PPARγ by the synthetic ligand troglitazone also reduced tube formation in vitro and in vivo. To support this, Sphk1(-/-)Sphk2(+/-) mice, with low circulating S1P levels, demonstrated a similar reduction in vascular development. Taken together, our data reveal that the transcription factor, PPARγ, is a bona fide intracellular target for S1P and thus suggest that the S1P:PPARγ:PGC1β complex may be a useful target to manipulate neovascularization.

  2. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice.

    PubMed

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo

    2017-02-14

    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.

  3. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles

    SciTech Connect

    Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio

    2013-12-06

    Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.

  4. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice

    PubMed Central

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo

    2017-01-01

    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management. PMID:28216579

  5. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells

    PubMed Central

    Huayin, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-01-01

    Background The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. Material/Methods A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. Results Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. Conclusions KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms. PMID:28002389

  6. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells.

    PubMed

    Huaying, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-12-21

    BACKGROUND The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. MATERIAL AND METHODS A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. RESULTS Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. CONCLUSIONS KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms.

  7. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    SciTech Connect

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-08-07

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.

  8. In vitro effects of cysteine protease inhibitors on Trichomonas foetus-induced cytopathic changes in porcine intestinal epithelial cells.

    PubMed

    Tolbert, M Katherine; Brand, Mabre D; Gould, Emily N

    2016-08-01

    OBJECTIVE To investigate the effects of specific cysteine protease (CP) inhibitors on cytopathic changes to porcine intestinal epithelial cells induced by Tritrichomonas foetus isolated from naturally infected cats. SAMPLE T foetus isolates from 4 naturally infected cats and nontransformed porcine intestinal epithelial cells. PROCEDURES T foetus isolates were treated with or without 0.1 to 1.0mM of the CP inhibitors antipain, cystatin, leupeptin, and chymostatin and the vinyl sulfone inhibitors WRR-483 and K11777. In-gel gelatin zymography was performed to evaluate the effects of these inhibitors on CP activity of T foetus isolates. Each treated or untreated isolate was also cocultured with monolayers of porcine intestinal epithelial cells for 24 hours, and cytopathic effects of T foetus were evaluated by light microscopy and crystal violet spectrophotometry. RESULTS Results of in-gel gelatin zymography suggested an ability of WRR-483, K11777, and cystatin to target specific zones of CP activity of the T foetus isolates. These inhibitors had no effect on T foetus growth, and the cytopathic changes to the intestinal epithelium induced by all 4 T foetus isolates were significantly inhibited. CONCLUSIONS AND CLINICAL RELEVANCE This study revealed that certain protease inhibitors were capable of inhibiting regions of CP activity (which has been suggested to cause intestinal cell damage in cats) in T foetus organisms and of ameliorating T foetus-induced cytopathic changes to porcine intestinal epithelium in vitro. Although additional research is needed, these inhibitors might be useful in the treatment of cats with trichomonosis.

  9. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses.

    PubMed

    Lingner, Thomas; Kataya, Amr R; Antonicelli, Gerardo E; Benichou, Aline; Nilssen, Kjersti; Chen, Xiong-Yan; Siemsen, Tanja; Morgenstern, Burkhard; Meinicke, Peter; Reumann, Sigrun

    2011-04-01

    In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous plant sequences, mainly from EST databases. We applied a discriminative machine learning approach to derive two different prediction methods, both of which showed high prediction accuracy and recognized specific targeting-enhancing patterns in the regions upstream of the PTS1 tripeptides. Upon application of these methods to the Arabidopsis thaliana genome, 392 gene models were predicted to be peroxisome targeted. These predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. The prediction methods were able to correctly infer novel PTS1 tripeptides, which even included novel residues. Twenty-three newly predicted PTS1 tripeptides were experimentally confirmed, and a high variability of the plant PTS1 motif was discovered. These prediction methods will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants.

  10. Clinical significance of plasminogen activator inhibitor activity in patients with exercise-induced ischemia

    SciTech Connect

    Sakata, K.; Kurata, C.; Taguchi, T.; Suzuki, S.; Kobayashi, A.; Yamazaki, N.; Rydzewski, A.; Takada, Y.; Takada, A. )

    1990-10-01

    To assess the fibrinolytic system in patients with exercise-induced ischemia and its relation to ischemia and severity of coronary artery disease (CAD), 47 patients with CAD confirmed by results of coronary angiography underwent symptom-limited multistage exercise thallium-201 emission computed tomography. All patients with CAD had exercise-induced ischemia as assessed from thallium-201 images. Pre- and peak exercise blood samples from each patient and preexercise blood samples from control subjects were assayed for several fibrinolytic components and were also assayed for plasma adrenaline. The extent of ischemia was defined as delta visual uptake score (total visual uptake score in delayed images minus total visual uptake score in initial images) and the severity of CAD as the number of diseased vessels. In the basal condition, plasminogen activator inhibitor (PAI) activity was significantly higher in patients with exercise-induced ischemia as compared to control subjects (p less than 0.01), although there were no significant differences in other fibrinolytic variables between the two groups. Moreover, PAI activity in the basal condition displayed a significantly positive correlation with the extent of ischemia (r = 0.47, p less than 0.01). Patients with exercise-induced ischemia were divided into two groups (24 with single-vessel disease and 23 with multivessel disease). There were no significant differences in coronary risk factors, hemodynamics, or plasma adrenaline levels during exercise between single-vessel and multivessel disease except that delta visual uptake score was significantly higher in multivessel disease (p less than 0.01).

  11. The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+.

    PubMed

    Agrimi, Gennaro; Russo, Annamaria; Scarcia, Pasquale; Palmieri, Ferdinando

    2012-04-01

    The essential cofactors CoA, FAD and NAD+ are synthesized outside the peroxisomes and therefore must be transported into the peroxisomal matrix where they are required for important processes. In the present study we have functionally identified and characterized SLC25A17 (solute carrier family 25 member 17), which is the only member of the mitochondrial carrier family that has previously been shown to be localized in the peroxisomal membrane. Recombinant and purified SLC25A17 was reconstituted into liposomes. Its transport properties and kinetic parameters demonstrate that SLC25A17 is a transporter of CoA, FAD, FMN and AMP, and to a lesser extent of NAD+, PAP (adenosine 3',5'-diphosphate) and ADP. SLC25A17 functioned almost exclusively by a counter-exchange mechanism, was saturable and was inhibited by pyridoxal 5'-phosphate and other mitochondrial carrier inhibitors. It was expressed to various degrees in all of the human tissues examined. Its main function is probably to transport free CoA, FAD and NAD+ into peroxisomes in exchange for intraperoxisomally generated PAP, FMN and AMP. The present paper is the first report describing the identification and characterization of a transporter for multiple free cofactors in peroxisomes.

  12. Evaluation of Protease Inhibitors and an Antioxidant for Treatment of Sulfur Mustard-Induced Toxic Lung Injury

    DTIC Science & Technology

    2009-01-01

    development of chronic obstructive pulmonary dis- ase (mustard lung), bronchiectasis, asthma , andfibrosis (Emadand ezaian, 1997). Although not fully...inhibitor pre- vents cigarette smoke-induced emphysema in the mouse. COPD 2 (3), 303– 310. utnam, J.B., Royston, D. (Eds.), 2003. Evaluating the Role

  13. A novel aggregation-induced emission based fluorescent probe for an angiotensin converting enzyme (ACE) assay and inhibitor screening.

    PubMed

    Wang, Haibo; Huang, Yi; Zhao, Xiaoping; Gong, Wan; Wang, Yi; Cheng, Yiyu

    2014-12-11

    A 'turn-on' fluorescent probe based on aggregation-induced emission (AIE) has been developed. It exhibits excellent selectivity and sensitivity for monitoring angiotensin converting enzyme (ACE) activity both in solutions and in living cells as well as for screening ACE inhibitors in vitro.

  14. Attenuation of malonate-induced degeneration of the nigrostriatal pathway by inhibitors of nitric oxide synthase.

    PubMed

    Connop, B P; Boegman, R J; Beninger, R J; Jhamandas, K

    1996-04-01

    Focal infusions of the succinate dehydrogenase inhibitor, malonate, into the substantia nigra pars compacta (SNc) of adult Sprague-Dawley rats resulted in a substantial depletion of ipsilateral striatal tyrosine hydroxylase (TH) activity. The percentage decrease in striatal TH activity following intranigral malonate (0.5 mumol/0.5 microliter) infusion was similar at 4 (58%) and 7 days (62%) post-infusion. To assess the role of N-methyl-D-aspartate (NMDA) receptor activation in malonate neurotoxicity, animals were pretreated with the NMDA receptor antagonist MK-801 (2 x 5 mg/kg, i.p.). Four days post-infusion of malonate (0.5 mumol/0.5 microliter) into the SNc, striatal TH activity was depleted by 58% in vehicle pretreated animals and 14% in the presence of MK-801 indicating a significant neuroprotective effect of MK-801 on malonate action. To determine the role of nitric oxide (NO) in malonate-induced nigral toxicity, the actions of malonate were evaluated in the presence of the nitric oxide synthase (NOS) inhibitors, 7-nitro indazole (7-NI) and N omega-nitro-L-arginine methyl ester (L- NAME). Systemic injections of 7-NI (20, 30, 40, 50 and 75 mg/kg, i.p.) produced a dose-related inhibition of nigral NOS activity which was maximal at a dose of 40 mg/kg. Intranigral infusion of malonate with 20 and 50 mg/kg 7-NI pretreatment produced a 46 and 31% decrease in striatal TH activity, respectively. Thus, a significant protective effect at the higher but not lower dose of 7-NI was observed. Pretreatment with a L- NAME regimen (2 x 250 mg/kg; i.p.), previously shown to inhibit brain NOS activity by greater than 86%, also produced a significant neuroprotective effect against malonate-induced neurotoxicity (30% decrease). The results of this study suggest that malonate-induced toxicity to the dopaminergic neurons of the nigrostriatal pathway is mediated, at least in part, by NMDA receptor activation and the formation of NO.

  15. Discovery of a novel Nrf2 inhibitor that induces apoptosis of human acute myeloid leukemia cells.

    PubMed

    Zhang, JinFeng; Su, Le; Ye, Qing; Zhang, ShangLi; Kung, HsiangFu; Jiang, Fan; Jiang, GuoSheng; Miao, JunYing; Zhao, BaoXiang

    2017-01-31

    Nuclear factor-erythroid 2-related factor 2 (Nrf2) is persistently activated in many human tumors including acute myeloid leukemia (AML). Therefore, inhibition of Nrf2 activity may be a promising target in leukemia therapy. Here, we used an antioxidant response element-luciferase reporter system to identify a novel pyrazolyl hydroxamic acid derivative, 1-(4-(tert-Butyl)benzyl)-3-(4-chlorophenyl)-N-hydroxy-1H pyrazole-5-carboxamide (4f), that inhibited Nrf2 activity. 4f had a profound growth-inhibitory effect on three AML cell lines, THP-1, HL-60 and U937, and a similar anti-growth effect in a chick embryo model. Moreover, flow cytometry of AML cells revealed increased apoptosis with 4f (10 μM) treatment for 48 h. The protein levels of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase were enhanced in all three AML cell types. Furthermore, Nrf2 protein level was downregulated by 4f. Upregulation of Nrf2 by tert-butylhydroquinone (tBHQ) or Nrf2 overexpression could ameliorate 4f-induced growth inhibition and apoptosis. Treatment with 4f reduced both B-cell lymphoma-2 (Bcl-2) expression and Bcl-2/Bcl-2-associated X protein (Bax) ratio, which indicated that 4f induced apoptosis, at least in part, via mitochondrial-dependent signaling. Therefore, as an Nrf2 inhibitor, the pyrazolyl hydroxamic acid derivative 4f may be a promising agent in AML therapy.

  16. Design and Synthesis of Novel Small-molecule Inhibitors of the Hypoxia Inducible Factor Pathway

    PubMed Central

    Mooring, Suazette Reid; Jin, Hui; Devi, Narra S.; Jabbar, Adnan A.; Kaluz, Stefan; Liu, Yuan; Van Meir, Erwin G.; Wang, Binghe

    2012-01-01

    Hypoxia, a reduction in partial oxygen pressure, is a salient property of solid tumors. Hypoxia drives malignant progression and metastasis in tumors and participates in tumor resistance to radio- and chemotherapies. Hypoxia activates the hypoxia-inducible factor (HIF) family of transcription factors, which induce target genes that regulate adaptive biological processes such as anaerobic metabolism, cell motility and angiogenesis. Clinical evidence has demonstrated that expression of HIF-1 is strongly associated with poor patient prognosis and activation of HIF-1 contributes to malignant behavior and therapeutic resistance. Consequently, HIF-1 has become an important therapeutic target for inhibition by small molecules. Herein, we describe the design and synthesis of small molecules that inhibit the HIF-1 signaling pathway. Many of these compounds exhibit inhibitory activity in the nanomolar range. Separate mechanistic studies indicate that these inhibitors do not alter HIF-1 levels, but interfere with the HIF-1α/HIF-1β/p300/CBP complex formation by interacting with p300 and CBP. PMID:22032632

  17. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury

    PubMed Central

    Eid, Ali Hussein

    2017-01-01

    Diabetic nephropathy (DN) is the leading cause of end stage renal disease worldwide. Increased glucose flux into the aldose reductase (AR) pathway during diabetes was reported to exert deleterious effects on the kidney. The objective of this study was to investigate the renoprotective effects of AR inhibition in high glucose milieu in vitro. Rat renal tubular (NRK-52E) cells were exposed to high glucose (30 mM) or normal glucose (5 mM) media for 24 to 48 hours with or without the AR inhibitor epalrestat (1 μM) and assessed for changes in Akt and ERK1/2 signaling, AR expression (using western blotting), and alterations in mitochondrial membrane potential (using JC-1 staining), cell viability (using MTT assay), and cell cycle. Exposure of NRK-52E cells to high glucose media caused acute activation of Akt and ERK pathways and depolarization of mitochondrial membrane at 24 hours. Prolonged high glucose exposure (for 48 hours) induced AR expression and G1 cell cycle arrest and decreased cell viability (84% compared to control) in NRK-52E cells. Coincubation of cells with epalrestat prevented the signaling changes and renal cell injury induced by high glucose. Thus, AR inhibition represents a potential therapeutic strategy to prevent DN. PMID:28386557

  18. Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors.

    PubMed

    Segatto, Oreste; Anastasi, Sergio; Alemà, Stefano

    2011-06-01

    Signalling by the epidermal growth factor receptor (EGFR) controls morphogenesis and/or homeostasis of several tissues from worms to mammals. The correct execution of these programmes requires the generation of EGFR signals of appropriate strength and duration. This is obtained through a complex circuitry of positive and negative feedback regulation. Feedback inhibitory mechanisms restrain EGFR activity in time and space, which is key to ensuring that receptor outputs are commensurate to the cell and tissue needs. Here, we focus on the emerging field of inducible negative feedback regulation of the EGFR in mammals. In mammalian cells, four EGFR inducible feedback inhibitors (IFIs), namely LRIG1, RALT (also known as MIG6 and ERRFI1), SOCS4 and SOCS5, have been discovered recently. EGFR IFIs are expressed de novo in the context of early or delayed transcriptional responses triggered by EGFR activation. They all bind to the EGFR and suppress receptor signalling through several mechanisms, including catalytic inhibition and receptor downregulation. Here, we review the mechanistic basis of IFI signalling and rationalise the function of IFIs in light of gene-knockout studies that assign LRIG1 and RALT an essential role in restricting cell proliferation. Finally, we discuss how IFIs might participate in system control of EGFR signalling and highlight the emerging roles for IFIs in the suppression of EGFR-driven tumorigenesis.

  19. Cholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced beta-amyloid aggregation.

    PubMed

    Belluti, Federica; Rampa, Angela; Piazzi, Lorna; Bisi, Alessandra; Gobbi, Silvia; Bartolini, Manuela; Andrisano, Vincenza; Cavalli, Andrea; Recanatini, Maurizio; Valenti, Piero

    2005-06-30

    In continuing research that led us to identify a new class of carbamate derivatives acting as potent (Rampa et al. J. Med. Chem. 1998, 41, 3976) and long-lasting (Rampa et al. J. Med. Chem. 2001, 44, 3810) acetylcholinesterase (AChE) inhibitors, we obtained some analogues able to simultaneously block both the catalytic and the beta-amyloid (Abeta) proaggregatory activities of AChE. The key feature of these derivatives is a 2-arylidenebenzocycloalkanone moiety that provides the ability to bind at the AChE peripheral site responsible for promoting the Abeta aggregation. The new carbamates were tested in vitro for the inhibition of both cholinesterases and also for the ability to prevent the AChE-induced Abeta aggregation. All of the compounds had AChE IC(50) values in the nanomolar range and showed the ability to block the AChE-induced Abeta aggregation, thus supporting the feasibility of this new strategy in the search of compounds for the treatment of Alzheimer's disease.

  20. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    SciTech Connect

    Riganti, Chiara

    2008-05-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-{kappa}B and decreased intracellular level of its inhibitor IkB{alpha}. These effects, accompanied by increased production of H{sub 2}O{sub 2}, were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-{kappa}B activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed.

  1. CT-2576, an inhibitor of phospholipid signaling, suppresses constitutive and induced expression of human immunodeficiency virus.

    PubMed Central

    Leung, D W; Peterson, P K; Weeks, R; Gekker, G; Chao, C C; Kaplan, A H; Balantac, N; Tompkins, C; Underiner, G E; Bursten, S

    1995-01-01

    Viruses such as human immunodeficiency virus (HIV) require cellular activation for expression. Cellular activation in lymphoid cells is associated with augmented accumulation of certain phosphatidic acid (PA) species derived from the hydrolysis of glycan phosphatidylinositol (GPI). This suggests that activation of a phospholipid pathway may play a role in initiation of viral replication. To test this hypothesis, we examined the effect of tat gene expression on the production of cellular PA species, as the Tat protein is essential for HIV expression and has been implicated in activating the expression of multiple host cellular genes. Expression of tat increased the expression of PA. We then tested whether synthetic inhibitors of PA metabolism would inhibit activation of the HIV long terminal repeat by Tat and tumor necrosis factor alpha (TNF-alpha). CT-2576 suppressed both PA generation induced by Tat and HIV long terminal repeat-directed gene expression in response to Tat or TNF-alpha at a posttranscriptional step. CT-2576 also inhibited constitutive as well as TNF-alpha- and interleukin 6-induced expression of HIV p24 antigen in chronically infected U1 cells and in peripheral blood lymphocytes acutely infected with a clinical isolate of HIV. Pharmacological inhibition of synthesis of selected PA species may therefore provide a therapeutic approach to suppression of HIV replication. Images Fig. 1 Fig. 3 Fig. 5 PMID:7761405

  2. Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation

    PubMed Central

    Bu, Li-Jia; Yu, Han-Qing; Fan, Lu-Lu; Li, Xiao-Qiu; Wang, Fang; Liu, Jia-Tao; Zhong, Fei; Zhang, Cong-Jun; Wei, Wei; Wang, Hua; Sun, Guo-Ping

    2017-01-01

    AIM To clarify the mechanisms involved in the critical endoplasmic reticulum (ER) stress initiating unfolded protein response pathway modified by melatonin. METHODS Hepatoma cells, HepG2, were cultured in vitro. Flow cytometry and TUNEL assay were used to measure HepG2 cell apoptosis. Western blotting and quantitative reverse transcription-polymerase chain reaction methods were used to determine the protein and messenger RNA levels of ER stress and apoptosis related genes’ expression, respectively. Tissue microarray construction from patients was verified by immunohistochemical analysis. RESULTS In the present study, we first identified that melatonin selectively blocked activating transcription factor 6 (ATF-6) and then inhibited cyclooxygenase-2 (COX-2) expression, leading to enhanced liver cancer cell apoptosis under ER stress condition. Dramatically increased CCAAT-enhancer-binding protein homologous protein level, suppressed COX-2 and decreased Bcl-2/Bax ratio by melatonin or ATF-6 siRNA contributed the enhanced HepG2 cell apoptosis under tunicamycin (an ER stress inducer) stimulation. In clinical hepatocellular carcinoma patients, the close relationship between ATF-6 and COX-2 was further confirmed. CONCLUSION These findings indicate that melatonin as a novel selective ATF-6 inhibitor can sensitize human hepatoma cells to ER stress inducing apoptosis. PMID:28246472

  3. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells.

    PubMed

    Carlson, Morgan E; Hsu, Michael; Conboy, Irina M

    2008-07-24

    Adult skeletal muscle robustly regenerates throughout an organism's life, but as the muscle ages, its ability to repair diminishes and eventually fails. Previous work suggests that the regenerative potential of muscle stem cells (satellite cells) is not triggered in the old muscle because of a decline in Notch activation, and that it can be rejuvenated by forced local activation of Notch. Here we report that, in addition to the loss of Notch activation, old muscle produces excessive transforming growth factor (TGF)-beta (but not myostatin), which induces unusually high levels of TGF-beta pSmad3 in resident satellite cells and interferes with their regenerative capacity. Importantly, endogenous Notch and pSmad3 antagonize each other in the control of satellite-cell proliferation, such that activation of Notch blocks the TGF-beta-dependent upregulation of the cyclin-dependent kinase (CDK) inhibitors p15, p16, p21 and p27, whereas inhibition of Notch induces them. Furthermore, in muscle stem cells, Notch activity determines the binding of pSmad3 to the promoters of these negative regulators of cell-cycle progression. Attenuation of TGF-beta/pSmad3 in old, injured muscle restores regeneration to satellite cells in vivo. Thus a balance between endogenous pSmad3 and active Notch controls the regenerative competence of muscle stem cells, and deregulation of this balance in the old muscle microniche interferes with regeneration.

  4. Gamma secretase inhibitor impairs epithelial-to-mesenchymal transition induced by TGF-β in ovarian tumor cell lines.

    PubMed

    Pazos, M C; Abramovich, D; Bechis, A; Accialini, P; Parborell, F; Tesone, M; Irusta, G

    2017-01-15

    Ovarian cancer is characterized by being highly metastatic, a feature that represents the main cause of failure of the treatment. This study investigated the effects of γ-secretase inhibition on the TGF-β-induced epithelial-mesenchymal transition (EMT) process in ovarian cancer cell lines. SKOV3 cells incubated in the presence of TGF-β showed morphological and biochemical changes related to EMT, which were blocked by co-stimulation with TGF-β and the γ-secretase inhibitor DAPT. In SKOV3 and IGROV1 cells, the co-stimulation blocked the cadherin switch and the increase in the transcription factors Snail, Slug, Twist and Zeb1 induced by TGF-β. DAPT impaired the translocation of phospho-β-catenin to the inner cell compartment observed in TGF-β-treated cells, but was not able to block the induction at protein level induced by TGF-β. Moreover, the inhibitor blocked the increased cell migration and invasiveness ability of both cell lines induced by TGF-β. Notch target genes (Hes1 and Hey1) were induced by TGF-β, decreased by DAPT treatment and remained low in the presence of both stimuli. However, DAPT alone caused no effects on most of the parameters analyzed. These results demonstrate that the γ-secretase inhibitor used in this study exerted a blockade on TGF-β-induced EMT in ovarian cancer cells.

  5. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    SciTech Connect

    Liu, Tongxin; Li, Qi; Sun, Quanquan; Zhang, Yuqin; Yang, Hua; Wang, Rong; Chen, Longhua; Wang, Wei

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediated by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.

  6. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins*

    PubMed Central

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina; Cruz-Zaragoza, Luis Daniel; Garcia, Esther; Clausen, Mathias P.; Schliebs, Wolfgang; Erdmann, Ralf; Eggeling, Christian

    2016-01-01

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future. PMID:27311714

  7. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins.

    PubMed

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina; Cruz-Zaragoza, Luis Daniel; Garcia, Esther; Clausen, Mathias P; Schliebs, Wolfgang; Erdmann, Ralf; Eggeling, Christian

    2016-08-12

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.

  8. Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells.

    PubMed

    Filosto, Simone; Baston, David S; Chung, Samuel; Becker, Cathleen R; Goldkorn, Tzipora

    2013-08-01

    The EGF receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung carcinoma (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKI) such as erlotinib. However, despite the efficacy observed in patients with NSCLC harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in patients with NSCLC who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke, evidenced by their autophosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating cigarette smoke-induced resistance to TKIs in both WT EGFR- and L858R MT EGFR-expressing NSCLC cells. First, we show that cigarette smoke exposure of A549 cells leads to time-dependent activation of Src, which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we show that Src inhibition restores TKI sensitivity in cigarette smoke-exposed NSCLC cells, preventing EGFR autophosphorylation in the presence of erlotinib. Furthermore, we show that overexpression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to cigarette smoke. Importantly, the TKI resistance that emerges even in cigarette smoke-exposed L858R EGFR-expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers.

  9. Topoisomerase I inhibitor, camptothecin, induces apoptogenic signaling in human embryonic stem cells.

    PubMed

    García, Carolina Paola; Videla Richardson, Guillermo Agustín; Romorini, Leonardo; Miriuka, Santiago Gabriel; Sevlever, Gustavo Emilio; Scassa, María Elida

    2014-03-01

    Embryonic stem cells (ESCs) need to maintain their genomic integrity in response to DNA damage to safeguard the integrity of the organism. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and, if not repaired correctly, they can lead to cell death, genomic instability and cancer. How human ESCs (hESCs) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. In the present study we aim to determine the hESC response to the DSB inducing agent camptothecin (CPT). We find that hESCs are hypersensitive to CPT, as evidenced by high levels of apoptosis. CPT treatment leads to DNA-damage sensor kinase (ATM and DNA-PKcs) phosphorylation on serine 1981 and serine 2056, respectively. Activation of ATM and DNA-PKcs was followed by histone H2AX phosphorylation on Ser 139, a sensitive reporter of DNA damage. Nuclear accumulation and ATM-dependent phosphorylation of p53 on serine 15 were also observed. Remarkably, hESC viability was further decreased when ATM or DNA-PKcs kinase activity was impaired by the use of specific inhibitors. The hypersensitivity to CPT treatment was markedly reduced by blocking p53 translocation to mitochondria with pifithrin-μ. Importantly, programmed cell death was achieved in the absence of the cyclin dependent kinase inhibitor, p21(Waf1), a bona fide p53 target gene. Conversely, differentiated hESCs were no longer highly sensitive to CPT. This attenuated apoptotic response was accompanied by changes in cell cycle profile and by the presence of p21(Waf1). The results presented here suggest that p53 has a key involvement in preventing the propagation of damaged hESCs when genome is threatened. As a whole, our findings support the concept that the phenomenon of apoptosis is a prominent player in normal embryonic development.

  10. Model boiler testing to evaluate inhibitors for caustic induced stress corrosion cracking of Alloy 600 tubes

    SciTech Connect

    Daret, J.; Paine, J.P.N.; Partridge, M.J.

    1995-12-31

    A series of model boiler tests, using a mixture of precracked and non-precracked (virgin) tube-to-tube support plate intersections was performed. The testing supported the qualification of inhibitors for mitigating the secondary side corrosion of alloy 600 steam generator tubes. Many utilities suspect that the caustic impurities come from the feedwater. Candidate inhibitors included boric acid (as a reference), cerous acetate, and two forms of titanium dioxide: a laboratory produced titania-silica sol-gel, and manometer sized anatase The latter was combined with a 150 C pre-soaking with a titanium lactate, and was tested with and without a zeta potential treatment by sodium aluminate. Effectiveness of boric acid to prevent and retard caustic induced intergranular corrosion was confirmed in all crevice configurations (open and packed). The cerous acetate treatment multiplied by two to four the time necessary to detect a primary-to-secondary leak on virgin tubes, and reduced the propagation rate on precracked tubes. Cerium was found intimately mixed, as cerianite, with the free span and crevice deposits, when the crevices were sufficiently accessible. Due to its very low solubility and large particle size, the titania-silica sol-gel was unable to penetrate the crevices and had no effect on the degradation process. The nanometric particle size titania treatment and/or the preceding soaking with soluble titanium lactate drastically increased the titanium concentration in free span and open crevice deposit (with no added sodium aluminate, titania reacted with magnetite to form ilmenite) and showed undeniable capacity to prevent tubing degradation. Its effectiveness, in the case of packed crevices and for arresting cracks, was not so conclusive.

  11. A rodent model of HIV protease inhibitor indinavir induced peripheral neuropathy.

    PubMed

    Huang, Wenlong; Calvo, Margarita; Pheby, Tim; Bennett, David L H; Rice, Andrew S C

    2017-01-01

    HIV-associated sensory neuropathy (HIV-SN) is the most frequent manifestation of HIV disease. It often presents with significant neuropathic pain and is associated with previous exposure to neurotoxic nucleoside reverse transcriptase inhibitors. However, HIV-SN prevalence remains high even in resource-rich settings where these drugs are no longer used. Previous evidence suggests that exposure to indinavir, a protease inhibitor commonly used in antiretroviral therapy, may link to elevated HIV-SN risk. Here, we investigated whether indinavir treatment was associated with the development of a "dying back" axonal neuropathy and changes in pain-relevant limb withdrawal and thigmotactic behaviours. After 2 intravenous injections of indinavir (50 mg/kg, 4 days apart), adult rats developed hind paw mechanical hypersensitivity, which peaked around 2 weeks post first injection (44% reduction from baseline). At this time, animals also had (1) significantly changed thigmotactic behaviour (62% reduction in central zone entries) comparing with the controls and (2) a significant reduction (45%) in hind paw intraepidermal nerve fibre density. Treatment with gabapentin, but not amitriptyline, was associated with a complete attenuation of hind paw mechanical hypersensitivity observed with indinavir treatment. Furthermore, we found a small but significant increase in microglia with the effector morphology in the lumbar spinal dorsal horn in indinavir-treated animals, coupled with significantly increased expression of phospho-p38 in microglia. In summary, we have reported neuropathic pain-related sensory and behavioural changes accompanied by a significant loss of hind paw skin sensory innervation in a rat model of indinavir-induced peripheral neuropathy that is suitable for further pathophysiological investigation and preclinical evaluation of novel analgesics.

  12. RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis.

    PubMed

    Löder, S; Fakler, M; Schoeneberger, H; Cristofanon, S; Leibacher, J; Vanlangenakker, N; Bertrand, M J M; Vandenabeele, P; Jeremias, I; Debatin, K-M; Fulda, S

    2012-05-01

    Evasion of apoptosis may contribute to poor treatment response in pediatric acute lymphoblastic leukemia (ALL), calling for novel treatment strategies. Here, we report that inhibitors of apoptosis (IAPs) at subtoxic concentrations cooperate with various anticancer drugs (that is, AraC, Gemcitabine, Cyclophosphamide, Doxorubicin, Etoposide, Vincristine and Taxol) to induce apoptosis in ALL cells in a synergistic manner as calculated by combination index and to reduce long-term clonogenic survival. Importantly, we identify RIP1 as a critical regulator of this synergism of IAP inhibitors and AraC that mediates the formation of a RIP1/FADD/caspase-8 complex via an autocrine/paracrine loop of tumor necrosis factor-α (TNFα). Knockdown of RIP1 abolishes formation of this complex and subsequent activation of caspase-8 and -3, mitochondrial perturbations and apoptosis. Similarly, inhibition of RIP1 kinase activity by Necrostatin-1 or blockage of TNFα by Enbrel inhibits IAP inhibitor- and AraC-triggered interaction of RIP1, FADD and caspase-8 and apoptosis. In contrast to malignant cells, IAP inhibitors and AraC at equimolar concentrations are non-toxic to normal peripheral blood lymphocytes or mesenchymal stromal cells. Thus, our findings provide first evidence that IAP inhibitors present a promising strategy to prime childhood ALL cells for chemotherapy-induced apoptosis in a RIP1-dependent manner. These data have important implications for developing apoptosis-targeted therapies in childhood leukemia.

  13. OCTN3 is a mammalian peroxisomal membrane carnitine transporter

    SciTech Connect

    Lamhonwah, Anne-Marie; Ackerley, Cameron A.; Tilups, Aina; Edwards, Vernon D.; Wanders, Ronald J.; Tein, Ingrid . E-mail: ingrid.tein@sickkids.ca

    2005-12-30

    Carnitine is a zwitterion essential for the {beta}-oxidation of fatty acids. The role of the carnitine system is to maintain homeostasis in the acyl-CoA pools of the cell, keeping the acyl-CoA/CoA pool constant even under conditions of very high acyl-CoA turnover, thereby providing cells with a critical source of free CoA. Carnitine derivatives can be moved across intracellular barriers providing a shuttle mechanism between mitochondria, peroxisomes, and microsomes. We now demonstrate expression and colocalization of mOctn3, the intermediate-affinity carnitine transporter (K {sub m} 20 {mu}M), and catalase in murine liver peroxisomes by TEM using immunogold labelled anti-mOctn3 and anti-catalase antibodies. We further demonstrate expression of hOCTN3 in control human cultured skin fibroblasts both by Western blotting and immunostaining analysis using our specific anti-mOctn3 antibody. In contrast with two peroxisomal biogenesis disorders, we show reduced expression of hOCTN3 in human PEX 1 deficient Zellweger fibroblasts in which the uptake of peroxisomal matrix enzymes is impaired but the biosynthesis of peroxisomal membrane proteins is normal, versus a complete absence of hOCTN3 in human PEX 19 deficient Zellweger fibroblasts in which both the uptake of peroxisomal matrix enzymes as well as peroxisomal membranes are deficient. This supports the localization of hOCTN3 to the peroxisomal membrane. Given the impermeability of the peroxisomal membrane and the key role of carnitine in the transport of different chain-shortened products out of peroxisomes, there appears to be a critical need for the intermediate-affinity carnitine/organic cation transporter, OCTN3, on peroxisomal membranes now shown to be expressed in both human and murine peroxisomes. This Octn3 localization is in keeping with the essential role of carnitine in peroxisomal lipid metabolism.

  14. Short-term cardiovascular effects of selective phosphodiesterase 3 inhibitor olprinone versus non-selective phosphodiesterase inhibitor aminophylline in a meconium-induced acute lung injury.

    PubMed

    Mokra, D; Tonhajzerova, I; Pistekova, H; Visnovcova, Z; Mokry, J; Drgova, A; Repcakova, M; Calkovska, A

    2013-12-01

    Various anti-inflammatory drugs have been used for treatment of neonatal meconium aspiration syndrome (MAS). As their adverse effects are poorly described, this study compared effects of selective phosphodiesterase (PDE) 3 inhibitor olprinone and non-selective PDE inhibitor aminophylline on cardiovascular parameters in animal model of MAS. Oxygen-ventilated rabbits were intratracheally instilled 4 mL/kg of meconium (25 mg/mL) or saline. Thirty minutes later, meconium-instilled animals were intravenously given olprinone (0.2 mg/kg) at a single dose at 0.5 h after meconium instillation, or aminophylline (2.0 mg/kg) at two doses at 0.5 and 2.5 h after meconium instillation, or were left without treatment. Cardiovascular changes were evaluated within 5 min of administration and 5 min after finishing the administration. Furthermore, respiratory and cardiovascular parameters were measured within 5 hours following treatment delivery. Oxidation markers (thiobarbituric acid-reactive substances (TBARS), and total antioxidant status) and markers of cardiovascular injury (aldosterone, gamma-glutamyltransferase (GGT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT)) were determined in the plasma. Meconium instillation induced acute lung injury associated with oxidative stress, elevated aldosterone, and slightly increased GGT and AST levels. Both aminophylline and olprinone improved lung functions and reduced oxidation stress. However, the PDE inhibitors acutely increased blood pressure and heart rate, whereas heart rate variability remained higher till the end of experiment and correlated well with markers of cardiovascular injury. Considering that systemic administration of olprinone and aminophylline was accompanied by acute cardiovascular changes in the meconium-instilled animals, use of PDE inhibitors in the newborns with MAS should be carefully monitored.

  15. Histone Deacetylase Inhibitor Trichostatin A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction

    PubMed Central

    Hsing, Chung-Hsi; Hung, Shih-Kai; Chen, Yeong-Chang; Wei, Tsui-Shan; Sun, Ding-Ping; Wang, Jhi-Joung; Yeh, Ching-Hua

    2015-01-01

    Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs) modulate cytokine synthesis and release. Trichostatin A (TSA), an HDAC inhibitor, is documented to be anti-inflammatory and neuroprotective. We investigated whether TSA reduces lipopolysaccharide- (LPS-) induced neuroinflammation and cognitive dysfunction. ICR mice were first intraperitoneally (i.p.) injected with vehicle or TSA (0.3 mg/kg). One hour later, they were injected (i.p.) with saline or Escherichia coli LPS (1 mg/kg). We analyzed the food and water intake, body weight loss, and sucrose preference of the injected mice and then determined the microglia activation and inflammatory cytokine expression in the brains of LPS-treated mice and LPS-treated BV-2 microglial cells. In the TSA-pretreated mice, microglial activation was lower, anhedonia did not occur, and LPS-induced cognitive dysfunction (anorexia, weight loss, and social withdrawal) was attenuated. Moreover, mRNA expression of HDAC2, HDAC5, indoleamine 2,3-dioxygenase (IDO), TNF-α, MCP-1, and IL-1β in the brain of LPS-challenged mice and in the LPS-treated BV-2 microglial cells was lower. TSA diminished LPS-induced inflammatory responses in the mouse brain and modulated the cytokine-associated changes in cognitive function, which might be specifically related to reducing HDAC2 and HDAC5 expression. PMID:26273133

  16. Epilepsy and hippocampal neurodegeneration induced by glutamate decarboxylase inhibitors in awake rats.

    PubMed

    Salazar, Patricia; Tapia, Ricardo

    2015-10-01

    Glutamic acid decarboxylase (GAD), the enzyme responsible for GABA synthesis, requires pyridoxal phosphate (PLP) as a cofactor. Thiosemicarbazide (TSC) and γ-glutamyl-hydrazone (PLPGH) inhibit the free PLP-dependent isoform (GAD65) activity after systemic administration, leading to epilepsy in mice and in young, but not in adult rats. However, the competitive GAD inhibitor 3-mercaptopropionic acid (MPA) induces convulsions in both immature and adult rats. In the present study we tested comparatively the epileptogenic and neurotoxic effects of PLPGH, TSC and MPA, administered by microdialysis in the hippocampus of adult awake rats. Cortical EEG and motor behavior were analyzed during the next 2h, and aspartate, glutamate and GABA were measured by HPLC in the microdialysis-collected fractions. Twenty-four hours after drug administration rats were fixed for histological analysis of the hippocampus. PLPGH or TSC did not affect the motor behavior, EEG or cellular morphology, although the extracellular concentration of GABA was decreased. In contrast, MPA produced intense wet-dog shakes, EEG epileptiform discharges, a >75% reduction of extracellular GABA levels and remarkable neurodegeneration of the CA1 region, with >80% neuronal loss. The systemic administration of the NMDA glutamate receptor antagonist MK-801 30 min before MPA did not prevent the MPA-induced epilepsy but significantly protected against its neurotoxic effect, reducing neuronal loss to <30%. We conclude that in adult awake rats, drugs acting on PLP availability have only a weak effect on GABA neurotransmission, whereas direct GAD inhibition produced by MPA induces hyperexcitation leading to epilepsy and hippocampal neurodegeneration. Because this degeneration was prevented by the blockade of NMDA receptors, we conclude that it is due to glutamate-mediated excitotoxicity consequent to disinhibition of the hippocampal excitatory circuits.

  17. Inhibitors of the mitochondrial permeability transition reduce ammonia-induced cell swelling in cultured astrocytes.

    PubMed

    Reddy, Pichili V B; Rama Rao, Kakulavarapu V; Norenberg, Michael D

    2009-09-01

    Ammonia is the principal neurotoxin implicated in the pathogenesis of hepatic encephalopathy, and astrocytes are the neural cells predominantly affected in this condition. Astrocyte swelling (cytotoxic edema) represents a critical component of the brain edema in acute form of hepatic encephalopathy (acute liver failure, ALF). Although mechanisms of astrocyte swelling by ammonia are not completely understood, cultured astrocytes exposed to pathophysiological levels of ammonia develop the mitochondrial permeability transition (mPT), a process that was shown to result in astrocyte swelling. Cyclosporin A (CsA), a traditional inhibitor of the mPT, was previously shown to completely block ammonia-induced astrocyte swelling in culture. However, the efficacy of CsA to protect cytotoxic brain edema in ALF is problematic because it poorly crosses the blood-brain barrier, which is relatively intact in ALF. We therefore examined the effect of agents that block the mPT but are also known to cross the blood-brain barrier, including pyruvate, magnesium, minocycline, and trifluoperazine on the ammonia-induced mPT, as well as cell swelling. Cultured astrocytes exposed to ammonia for 24 hr displayed the mPT as demonstrated by a CsA-sensitive dissipation of the mitochondrial inner membrane potential. Pyruvate, minocycline, magnesium, and trifluoperazine significantly blocked the ammonia-induced mPT. Ammonia resulted in a significant increase in cell volume, which was blocked by the above-mentioned agents to a variable degree. A regression analysis indicated a high correlation between the effectiveness of reducing the mPT and cell swelling. Our data suggest that all these agents have therapeutic potential in mitigating brain edema in ALF.

  18. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation.

    PubMed

    Fukuda, Kazuki; Matsumura, Takeshi; Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko; Nakao, Saya; Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji; Kawada, Teruo; Nishikawa, Takeshi; Araki, Eiichi

    2015-01-30

    The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe(-/-) mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe(-/-) mice. In conclusion, statins mediate anti-atherogenic effects through PPARγ activation in SMCs. These effects of statins on SMCs may be beneficial for the prevention of atherosclerosis.

  19. Effect of inhibitors of inducible and neuronal NO synthases on the development of audiogenic stress-induced damage in Krushinskii-Molodkina rats.

    PubMed

    Krushinskii, A L; Kuzenkov, V S; D'yakonova, V E; Reutov, V P

    2010-12-01

    Experiments on the models of epileptiform seizure and hemorrhagic stroke (Krushinskii-Molodkina rats) showed that selective inhibitors of inducible and neuronal NO synthases (aminoguanidine and 7-nitroindazole) significantly decrease the mortality rate, reduce the severity of motor disorders, and prevent the development of intracranial hemorrhages under conditions of audiogenic stress.

  20. HSP90 Inhibitors, Geldanamycin and Radicicol, Enhance Fisetin-Induced Cytotoxicity via Induction of Apoptosis in Human Colonic Cancer Cells

    PubMed Central

    Wu, Ming-Shun; Lien, Gi-Shih; Shen, Shing-Chuan; Yang, Liang-Yo; Chen, Yen-Chou

    2013-01-01

    We revealed the cytotoxic effect of the flavonoid, fisetin (FIS), on human COLO205 colon cancer cells in the presence and absence of the HSP90 inhibitors, geldanamycin (GA) and radicicol (RAD). Compared to FIS treatment alone of COLO205 cells, GA and RAD significantly enhanced FIS-induced cytotoxicity, increased expression of cleaved caspase-3 and the PAPR protein, and produced a greater density of DNA ladder formation. GA and RAD also reduced the MMPs with induction of caspase-9 protein cleavage in FIS-treated COLO205 cells. Increased caspase-3 and -9 activities were detected in COLO205 cells treated with FIS+GA or FIS+RAD, and the intensity of DNA ladder formation induced by FIS+GA was reduced by adding the caspase-3 inhibitor, DEVD-FMK. A decrease in Bcl-2 but not Bcl-XL or Bax protein by FIS+GA or FIS+RAD was identified in COLO205 cells by Western blotting. A reduction in p53 protein with increased ubiquitin-tagged proteins was observed in COLO205 cells treated with FIS+GA or FIS+RAD. Furthermore, GA and RAD reduced the stability of the p53 protein in COLO205 cells under FIS stimulation. The evidence supports HSP90 inhibitors possibly sensitizing human colon cancer cells to FIS-induced apoptosis, and treating colon cancer by combining HSP90 inhibitors with FIS deserves further in vivo study. PMID:23840275

  1. A selective plasmin inhibitor, trans-aminomethylcyclohexanecarbonyl-L-(O-picolyl)tyrosine-octylamide (YO-2), induces thymocyte apoptosis.

    PubMed

    Lee, Eibai; Enomoto, Riyo; Takemura, Kazu; Tsuda, Yuko; Okada, Yoshio

    2002-04-01

    The treatment of rat thymocytes with YO-2, a novel inhibitor of plasmin, resulted in an increase in DNA fragmentation. DNA fragmentation was also induced by another YO compounds such as YO-0, -3, -4 and -5. These YO compounds are the inhibitor of plasmin activity. On the other hand, YO-1, -6 and -8 that hardly inhibit plasmin activity had no effect on DNA fragmentation. Analysis of fragmented DNA from thymocytes treated with YO-2 by agarose gel electrophoresis revealed that the compound caused internucleosomal DNA fragmentation. In addition, judging from a laser scanning microscopy, annexin V-positive and propidium iodide-negative cells were increased by the treatment of the cells with the compound. Moreover, chromatin condensation was observed in thymocytes treated with the compound. These results demonstrated that YO-2 induces thymocyte apoptosis. There seemed to be some correlation between the apoptosis induced by YO compounds and their plasmin inhibitory effect. However, because the other protease inhibitors including pepstatin A, leupeptin, AEBSF, DFP and E-64-d did not affect DNA fragmentation, YO compounds are likely to have unique mechanism on plasmin or to show the effect on the other plasmin-like proteases. The plasmin inhibitory activity may have an important role in YO-2-induced apoptosis. Furthermore, the stimulations of caspase-8, -9 and -3-like activities were observed in thymocytes treated with YO-2. These results suggest that YO-2 induces thymocyte apoptosis via activation of caspase cascade.

  2. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production.

    PubMed

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-08-07

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions.

  3. Statins Increase Mitochondrial and Peroxisomal Fatty Acid Oxidation in the Liver and Prevent Non-Alcoholic Steatohepatitis in Mice

    PubMed Central

    Park, Han-Sol; Jang, Jung Eun; Ko, Myoung Seok; Woo, Sung Hoon; Kim, Bum Joong; Kim, Hyun Sik; Park, Hye Sun; Park, In-Sun; Koh, Eun Hee

    2016-01-01

    Background Non-alcoholic fatty liver disease is the most common form of chronic liver disease in industrialized countries. Recent studies have highlighted the association between peroxisomal dysfunction and hepatic steatosis. Peroxisomes are intracellular organelles that contribute to several crucial metabolic processes, such as facilitation of mitochondrial fatty acid oxidation (FAO) and removal of reactive oxygen species through catalase or plasmalogen synthesis. Statins are known to prevent hepatic steatosis and non-alcoholic steatohepatitis (NASH), but underlying mechanisms of this prevention are largely unknown. Methods Seven-week-old C57BL/6J mice were given normal chow or a methionine- and choline-deficient diet (MCDD) with or without various statins, fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin (15 mg/kg/day), for 6 weeks. Histological lesions were analyzed by grading and staging systems of NASH. We also measured mitochondrial and peroxisomal FAO in the liver. Results Statin treatment prevented the development of MCDD-induced NASH. Both steatosis and inflammation or fibrosis grades were significantly improved by statins compared with MCDD-fed mice. Gene expression levels of peroxisomal proliferator-activated receptor α (PPARα) were decreased by MCDD and recovered by statin treatment. MCDD-induced suppression of mitochondrial and peroxisomal FAO was restored by statins. Each statin's effect on increasing FAO and improving NASH was independent on its effect of decreasing cholesterol levels. Conclusion Statins prevented NASH and increased mitochondrial and peroxisomal FAO via induction of PPARα. The ability to increase hepatic FAO is likely the major determinant of NASH prevention by statins. Improvement of peroxisomal function by statins may contribute to the prevention of NASH. PMID:27098507

  4. Fatty acid synthase inhibitors induce apoptosis in non-tumorigenic melan-a cells associated with inhibition of mitochondrial respiration.

    PubMed

    Rossato, Franco A; Zecchin, Karina G; La Guardia, Paolo G; Ortega, Rose M; Alberici, Luciane C; Costa, Rute A P; Catharino, Rodrigo R; Graner, Edgard; Castilho, Roger F; Vercesi, Aníbal E

    2014-01-01

    The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce

  5. Fatty Acid Synthase Inhibitors Induce Apoptosis in Non-Tumorigenic Melan-A Cells Associated with Inhibition of Mitochondrial Respiration

    PubMed Central

    Rossato, Franco A.; Zecchin, Karina G.; La Guardia, Paolo G.; Ortega, Rose M.; Alberici, Luciane C.; Costa, Rute A. P.; Catharino, Rodrigo R.; Graner, Edgard; Castilho, Roger F.; Vercesi, Aníbal E.

    2014-01-01

    The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat

  6. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways.

    PubMed

    DeLoache, William C; Russ, Zachary N; Dueber, John E

    2016-03-30

    Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. This work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.

  7. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways

    SciTech Connect

    DeLoache, William C.; Russ, Zachary N.; Dueber, John E.

    2016-03-30

    Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. Lastly, this work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.

  8. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways

    DOE PAGES

    DeLoache, William C.; Russ, Zachary N.; Dueber, John E.

    2016-03-30

    Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzymemore » pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. Lastly, this work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less

  9. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    SciTech Connect

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  10. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation

    SciTech Connect

    Fukuda, Kazuki; Matsumura, Takeshi; Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko; Nakao, Saya; Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji; Kawada, Teruo; Nishikawa, Takeshi; Araki, Eiichi

    2015-01-30

    Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe{sup −/−} mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe{sup −/−} mice. In conclusion, statins mediate anti-atherogenic effects

  11. Dietary modulation of peroxisome proliferator-activated receptor gamma.

    PubMed

    Marion-Letellier, R; Déchelotte, P; Iacucci, M; Ghosh, S

    2009-04-01

    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor that regulates intestinal inflammation. PPAR gamma is highly expressed in the colon and can be activated by various dietary ligands. A number of fatty acids such as polyunsaturated fatty acids or eicosanoids are considered as endogenous PPAR gamma activators. Nevertheless, other nutrients such as glutamine, spicy food or flavonoids are also able to activate PPAR gamma. As PPAR gamma plays a key role in bacterial induced inflammation, anti-inflammatory properties of probiotics may be mediated through PPAR gamma. The aims of the present review are to discuss of the potential roles of dietary compounds in modulating intestinal inflammation through PPAR gamma.

  12. The peroxisomal receptor dislocation pathway: to the exportomer and beyond.

    PubMed

    Platta, Harald W; Hagen, Stefanie; Reidick, Christina; Erdmann, Ralf

    2014-03-01

    The biogenesis of peroxisomes is an ubiquitin-dependent process. In particular, the import of matrix proteins into the peroxisomal lumen requires the modification of import receptors with ubiquitin. The matrix proteins are synthesized on free polyribosomes in the cytosol and are recognized by import receptors via a peroxisomal targeting sequence (PTS). Subsequent to the transport of the receptor/cargo-complex to the peroxisomal membrane and the release of the cargo into the peroxisomal lumen, the PTS-receptors are exported back to the cytosol for further rounds of matrix protein import. The exportomer represents the molecular machinery required for the retrotranslocation of the PTS-receptors. It comprises enzymes for the ubiquitination as well as for the ATP-dependent extraction of the PTS-receptors from the peroxisomal membrane. Furthermore, recent evidence indicates a mechanistic interconnection of the ATP-dependent removal of the PTS-receptors with the translocation of the matrix protein into the organellar lumen. Interestingly, the components of the peroxisomal exportomer seem also to be involved in cellular tasks that are distinct from the ubiquitination and dislocation of the peroxisomal PTS-receptors. This includes work that indicates a central function of this machinery in the export of peroxisomal matrix proteins in plants, while a subset of exportomer components is involved in the meiocyte formation in some fungi, the peroxisome-chloroplast contact during photorespiration in plants and possibly even the selective degradation of peroxisomes via pexophagy. In this review, we want to discuss the central role of the exportomer during matrix protein import, but also highlight distinct roles of exportomer constituents in additional cellular processes. This article is part of a Special Issue entitled: Peroxisomes: biogenesis, functions and diseases.

  13. The β-lactamase inhibitor avibactam (NXL104) does not induce ampC β-lactamase in Enterobacter cloacae

    PubMed Central

    Miossec, Christine; Claudon, Monique; Levasseur, Premavathy; Black, Michael T

    2013-01-01

    Induction of ampC β-lactamase expression can often compromise antibiotic treatment and is triggered by several β-lactams (such as cefoxitin and imipenem) and by the β-lactamase inhibitor clavulanic acid. The novel β-lactamase inhibitor avibactam (NXL104) is a potent inhibitor of both class A and class C enzymes. The potential of avibactam for induction of ampC expression in Enterobacter cloacae was investigated by ampC messenger ribonucleic acid quantitation. Cefoxitin and clavulanic acid were confirmed as ampC inducers, whereas avibactam was found to exert no effect on ampC expression. Thus, avibactam is unlikely to diminish the activity of any partner β-lactam antibiotic against AmpC-producing organisms. PMID:24348054

  14. Protease inhibitor reduces airway response and underlying inflammation in cockroach allergen-induced murine model.

    PubMed

    Saw, Sanjay; Arora, Naveen

    2015-04-01

    Protease(s) enhances airway inflammation and allergic cascade. In the present study, effect of a serine protease inhibitor was evaluated in mouse model of airway disease. Mice were sensitized with cockroach extract (CE) or Per a 10 and treated with 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) 1 h before or after challenge to measure airway response. Mice were euthanized to collect bronchoalveolar lavage fluid (BALF), blood, and lung to evaluate inflammation. AEBSF treatment significantly reduced the AHR in allergen-challenged mice in dose-dependent manner (p≤ 0.01). IgE (p≤0.05) and Th2 cytokines (p≤0.05) were significantly reduced in treated mice. AEBSF treatment lowered total cell (p≤0.05), eosinophil (p≤0.05), and neutrophil (p≤0.05) in BALF and lung tissue. Oxidative stress parameters were impaired on treatment in allergen-challenged mice (p≤0.05). AEBSF had therapeutic effect in allergen-induced airway resistance and underling inflammation and had potential for combination or as add-on therapy for respiratory diseases.

  15. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  16. Plasminogen Activator Inhibitor-1 Is Involved in Streptozotocin-Induced Bone Loss in Female Mice

    PubMed Central

    Tamura, Yukinori; Kawao, Naoyuki; Okada, Kiyotaka; Yano, Masato; Okumoto, Katsumi; Matsuo, Osamu; Kaji, Hiroshi

    2013-01-01

    In diabetic patients, the risk of fracture is high because of impaired bone formation. However, the details of the mechanisms in the development of diabetic osteoporosis remain unclear. In the current study, we investigated the role of plasminogen activator inhibitor (PAI)-1 in the pathogenesis of type 1 diabetic osteoporosis by using PAI-1–deficient mice. Quantitative computed tomography analysis showed that PAI-1 deficiency protected against streptozotocin-induced bone loss in female mice but not in male mice. PAI-1 deficiency blunted the changes in the levels of Runx2, osterix, and alkaline phosphatase in tibia as well as serum osteocalcin levels suppressed by the diabetic state in female mice only. Furthermore, the osteoclast levels in tibia, suppressed in diabetes, were also blunted by PAI-1 deficiency in female mice. Streptozotocin markedly elevated the levels of PAI-1 mRNA in liver in female mice only. In vitro study demonstrated that treatment with active PAI-1 suppressed the levels of osteogenic genes and mineralization in primary osteoblasts from female mouse calvaria. In conclusion, the current study indicates that PAI-1 is involved in the pathogenesis of type 1 diabetic osteoporosis in females. The expression of PAI-1 in the liver and the sensitivity of bone cells to PAI-1 may be an underlying mechanism. PMID:23715621

  17. The tyrosine phosphatase inhibitor orthovanadate mimics NGF-induced neuroprotective signaling in rat hippocampal neurons.

    PubMed

    Gerling, Norbert; Culmsee, Carsten; Klumpp, Susanne; Krieglstein, Josef

    2004-06-01

    Activation of the high affinity neurotrophin receptor tropomyosin-related kinase A (TrkA) by nerve growth factor (NGF) leads to phosphorylation of intracellular tyrosine residues of the receptor with subsequent activation of signaling pathways involved in neuronal survival such as the phosphoinositide-3-kinase (PI3-K)/protein kinase B (PKB/Akt) pathway and the mitogen-activated protein kinase (MAPK) cascade. In the present study, we tested whether inhibition of protein-tyrosine phosphatases (PTP) by orthovanadate could enhance tyrosine phosphorylation of TrkA thereby stimulating NGF-like survival signaling in embryonic hippocampal neurons. We found that the PTP inhibitor orthovanadate (1 microM) enhanced TrkA phosphorylation and protected neurons against staurosporine (STS)-induced apoptosis in a time-and concentration-dependent manner. Inhibition of PTP enhanced TrkA phosphorylation also in the presence of NGF antibodies indicating that NGF binding to TrkA was not required for the effects of orthovanadate. Moreover, orthovanadate enhanced phosphorylation of Akt and the MAPK Erk1/2 suggesting that the signaling pathways involved in the protective effect were similar to those activated by NGF. Accordingly, inhibition of PI3-K by wortmannin and MAPK-kinase (MEK) inhibition by UO126 abolished the neuroprotective effects. In conclusion, the results indicate that orthovanadate mimics the effect of NGF on survival signaling pathways in hippocampal neurons. Thus, PTP inhibition appears to be an appropriate strategy to trigger neuroprotective signaling pathways downstream of neurotrophin receptors.

  18. HIV Protease Inhibitor-Induced Cathepsin Modulation Alters Antigen Processing and Cross-Presentation.

    PubMed

    Kourjian, Georgio; Rucevic, Marijana; Berberich, Matthew J; Dinter, Jens; Wambua, Daniel; Boucau, Julie; Le Gall, Sylvie

    2016-05-01

    Immune recognition by T cells relies on the presentation of pathogen-derived peptides by infected cells, but the persistence of chronic infections calls for new approaches to modulate immune recognition. Ag cross-presentation, the process by which pathogen Ags are internalized, degraded, and presented by MHC class I, is crucial to prime CD8 T cell responses. The original degradation of Ags is performed by pH-dependent endolysosomal cathepsins. In this article, we show that HIV protease inhibitors (PIs) prescribed to HIV-infected persons variably modulate cathepsin activities in human APCs, dendritic cells and macrophages, and CD4 T cells, three cell subsets infected by HIV. Two HIV PIs acted in two complementary ways on cathepsin hydrolytic activities: directly on cathepsins and indirectly on their regulators by inhibiting Akt kinase activities, reducing NADPH oxidase 2 activation, and lowering phagolysosomal reactive oxygen species production and pH, which led to enhanced cathepsin activities. HIV PIs modified endolysosomal degradation and epitope production of proteins from HIV and other pathogens in a sequence-dependent manner. They altered cross-presentation of Ags by dendritic cells to epitope-specific T cells and T cell-mediated killing. HIV PI-induced modulation of Ag processing partly changed the MHC self-peptidome displayed by primary human cells. This first identification, to our knowledge, of prescription drugs modifying the regulation of cathepsin activities and the MHC-peptidome may provide an alternate therapeutic approach to modulate immune recognition in immune disease beyond HIV.

  19. HIV-1 protease inhibitor induced oxidative stress suppresses glucose stimulated insulin release: protection with thymoquinone.

    PubMed

    Chandra, Surabhi; Mondal, Debasis; Agrawal, Krishna C

    2009-04-01

    The highly active anti-retroviral therapy (HAART) regimen has considerably reduced the mortality rate in HIV-1 positive patients. However, long-term exposure to HAART is associated with a metabolic syndrome manifesting cardiovascular dysfunction, lipodystrophy, and insulin resistance syndrome (IRS). The inclusion of HIV-1 protease inhibitors (PIs) in HAART has been linked to the induction of IRS. Although several molecular mechanisms of PI-induced effects on insulin action have been postulated, the deleterious effects of PIs on insulin production by pancreatic beta-cells have not been fully investigated and therapeutic strategies to ameliorate insulin dysregulation at this level have not been targeted. The present study showed that exposure to several different PIs, nelfinavir (5-10 microM), saquinavir (5-10 microM) and atazanavir (8-20 microM), decreases glucose stimulated insulin secretion from rat pancreatic beta-cells (INS-1). Nelfinavir significantly increased reactive oxygen species (ROS) generation and suppressed cytosolic, but not mitochondrial superoxide dismutase (SOD) levels. Nelfinvair also decreased both glutathione and ATP and increased UCP2 levels in these cells. Simultaneous treatment with thymoquinone (TQ) (2.5 microM), an active ingredient of black seed oil, significantly inhibited the effect of nelfinavir on augmented ROS production and suppressed SOD levels. Both TQ and black seed oil exposure increased glucose stimulated insulin secretion and ameliorated the suppressive effect of nelfinavir. The present findings imply a direct role of ROS in PI induced deleterious effects on pancreatic beta-cells. Our findings also suggest that TQ may be used as a potential therapeutic agent to normalize the dysregulated insulin production observed in HAART treated patients.

  20. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    SciTech Connect

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  1. An inhibitor of thrombin activated fibrinolysis inhibitor (TAFI) can reduce extracellular matrix accumulation in an in vitro model of glucose induced ECM expansion.

    PubMed

    Atkinson, J M; Pullen, N; Johnson, T S

    2013-06-24

    Chronic kidney disease (CKD) is characterised by the pathological accumulation of extracellular matrix (ECM) proteins leading to progressive kidney scarring via glomerular and tubular basement membrane expansion. Increased ECM synthesis and deposition, coupled with reduced ECM breakdown contribute to the elevated ECM level in CKD. Previous pre-clinical studies have demonstrated that increased plasmin activity has a beneficial effect in the protein overload model of CKD. As plasmin activation is downregulated by the action of the thrombin activated fibrinolytic inhibitor (TAFI), we tested the hypothesis that inhibition of TAFI might increase plasmin activity and reduce ECM accumulation in an in vitro model of glucose induced ECM expansion. Treatment of NRK52E tubular epithelial cells with increasing concentrations of glucose resulted in a 40% increase in TAFI activity, a 38% reduction in plasmin activity and a subsequent increase in ECM accumulation. In this model system, application of the previously reported TAFI inhibitor UK-396082 [(2S)-5-amino-2-[(1-n-propyl-1H-imidazol-4-yl)methyl]pentanoic acid] caused a reduction in TAFI activity, increased plasmin activity and induced a parallel decrease in ECM levels. In contrast, RNAi knockdown of plasmin resulted in an increase in ECM levels. The data presented here indicate that high glucose induces TAFI activity, inhibiting plasmin activation which results in elevated ECM levels in tubular epithelial cells. The results support the hypothesis that UK-396082 is able to reduce TAFI activity, normalising plasmin activity and preventing excess ECM accumulation suggesting that TAFI inhibition may have potential as an anti-scarring strategy in CKD.

  2. A comparative study of the aneugenic and polyploidy-inducing effects of fisetin and two model Aurora kinase inhibitors.

    PubMed

    Gollapudi, P; Hasegawa, L S; Eastmond, D A

    2014-06-01

    Fisetin, a plant flavonol commonly found in fruits, nuts and vegetables, is frequently added to nutritional supplements due to its reported cardioprotective, anti-carcinogenic and antioxidant properties. Earlier reports from our laboratory and others have indicated that fisetin has both aneugenic and clastogenic properties in cultured cells. More recently, fisetin has also been reported to target Aurora B kinase, a Ser/Thr kinase involved in ensuring proper microtubule attachment at the spindle assembly checkpoint, and an enzyme that is overexpressed in several types of cancer. Here we have further characterized the chromosome damage caused by fisetin and compared it with that induced by two known Aurora kinase inhibitors, VX-680 and ZM-447439, in cultured TK6 cells using the micronucleus assay with CREST staining as well as a flow cytometry-based assay that measures multiple types of numerical chromosomal aberrations. The three compounds were highly effective in inducing aneuploidy and polyploidy as evidenced by increases in kinetochore-positive micronuclei, hyperdiploidy, and polyploidy. With fisetin, however, the latter two effects were most significantly observed only after cells were allowed to overcome a cell cycle delay, and occurred at higher concentrations than those induced by the other Aurora kinase inhibitors. Modest increases in kinetochore-negative micronuclei were also seen with the model Aurora kinase inhibitors. These results indicate that fisetin induces multiple types of chromosome abnormalities in human cells, and indicate a need for a thorough investigation of fisetin-augmented dietary supplements.

  3. Histone Deacetylase Inhibitors Trichostatin A and MCP30 Relieve Benzene-Induced Hematotoxicity via Restoring Topoisomerase IIα.

    PubMed

    Chen, Jingjing; Zheng, Zhouyi; Chen, Yi; Li, Jiaqi; Qian, Shanhu; Shi, Yifen; Sun, Lan; Han, Yixiang; Zhang, Shenghui; Yu, Kang

    2016-01-01

    Dysfunction of histone acetylation inhibits topoisomerase IIα (Topo IIα), which is implicated in benzene-induced hematotoxicity in patients with chronic benzene exposure. Whether histone deacetylase (HDAC) inhibitors can relieve benzene-induced hematotoxicity remains unclear. Here we showed that hydroquinone, a main metabolite of benzene, increased the HDAC activity, decreased the Topo IIα expression and induced apoptosis in human bone marrow mononuclear cells in vitro, and treatment with two HDAC inhibitors, namely trichostatin A (TSA) or a mixture of ribosome-inactivating proteins MCP30, almost completely reversed these effects. We further established a benzene poisoning murine model by inhaling benzene vapor in a container and found that benzene poisoning decreased the expression and activity of Topo IIα, and impaired acetylation of histone H4 and H3. The analysis of regulatory factors of Topo IIα promoter found that benzene poisoning decreased the mRNA levels of SP1 and C-MYB, and increased the mRNA level of SP3. Both TSA and MCP30 significantly enhanced the acetylation of histone H3 and H4 in Topo IIα promoter and increased the expression and activity of Topo IIα in benzene poisoning mice, which contributed to relieve the symptoms of hematotoxicity. Thus, treatment with HDAC inhibitors represents an attractive approach to reduce benzene-induced hematotoxicity.

  4. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    SciTech Connect

    Fujii, Seiko; Okinaga, Toshinori; Ariyoshi, Wataru; Takahashi, Osamu; Iwanaga, Kenjiro; Nishino, Norikazu; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  5. Dual PI3K/mTOR inhibitor NVP-BEZ235-induced apoptosis of hepatocellular carcinoma cell lines is enhanced by inhibitors of autophagy.

    PubMed

    Chang, Zhexing; Shi, Guang; Jin, Jiqiang; Guo, Huatao; Guo, Xuefeng; Luo, Fangyue; Song, Yuguo; Jia, Xiaojing

    2013-06-01

    Dysregulation of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling has been found in several types of human cancer, including hepatocellular carcinoma (HCC). NVP-BEZ235 is a novel, orally bioavailable dual PI3K/mTOR inhibitor that has exhibited promising activity against HCC in preclinical models. Autophagy is a cellular lysosomal degradation pathway essential for the regulation of cell survival and death to maintain homeostasis. This process is negatively regulated by mTOR signaling and often counteracts the efficacy of certain cancer therapeutic agents. In this study, we explored the role of autophagy in apoptosis induced by NVP-BEZ235 in two HCC cell lines, Hep3B and PLC/PRF/5, and identified the mechanism of combinatorial treatment. NVP-BEZ235 was effective in inhibiting the growth of the two HCC cell lines possibly though induction of apoptosis. NVP-BEZ235 also potently increased the expression of LC3-II and decreased the expression of p62, indicating induction of autophagy. When NVP-BEZ235 was used in combination with Atg5 siRNA or the autophagy inhibitor 3-methyladenine (3-MA), enhancement of the inhibitory effects on the growth of HCC cells was detected. In addition, enhanced induction of apoptosis was observed in cells exposed to the combination of NVP-BEZ235 and Atg5 siRNA or 3-MA. Thus, induction of autophagy by NVP-BEZ235 may be a survival mechanism that counteracts its anticancer effects. Based on these data, we suggest a strategy to enhance the anticancer efficacy of BEZ235 by blockade of autophagy. Thus, our study provides a rationale for the clinical development of combinations of NVP-BEZ235 and autophagy inhibitors for the treatment of HCC and other malignancies.

  6. Dabigatran and rivaroxaban do not affect AA- and ADP-induced platelet aggregation in patients receiving concomitant platelet inhibitors.

    PubMed

    Olivier, Christoph B; Weik, Patrick; Meyer, Melanie; Weber, Susanne; Diehl, Philipp; Bode, Christoph; Moser, Martin; Zhou, Qian

    2016-08-01

    Dabigatran and rivaroxaban are novel, vitamin K-independent oral anticoagulants (NOACs) and act via antagonism of the coagulation factor (F) IIa (dabigatran) or FXa (rivaroxaban), respectively. Compared to vitamin-K-antagonists, NOACs have shown non-inferiority of risk and benefit in patients with non valvular atrial fibrillation (AF). In clinical practice there is increasing use of NOACs combined with platelet inhibitors in patients with AF and coronary artery disease. However, whether NOACs affect the function of platelet inhibitors remains incompletely known. This observational study aimed to assess the platelet function in patients receiving dabigatran or rivaroxaban and concomitant platelet inhibitors. A single centre observational study was performed analysing the platelet aggregation of patients treated with dabigatran or rivaroxaban with or without concomitant platelet inhibitors. Measurements before the initiation of NOAC therapy served as the respective control group. Platelet aggregation was measured by multiple electrode aggregometry and was induced with adenosine diphosphate (ADP, 6.5 µM) and arachidonic acid (AA, 0.5 mM), respectively. In order to evaluate whether NOACs interact with platelet inhibition by ASA or the P2Y12-antagonist clopidogrel, 87 patients were grouped according to their concomitant antiplatelet medication. Comparing the ADP- and AA-induced platelet aggregation in patients without concomitant platelet inhibitors (n = 45) no significant differences under therapy with dabigatran (d) or rivaroxaban (r) compared to the control group (c) were observed. In patients taking clopidogrel as a concomitant platelet inhibitor (n = 21), neither dabigatran nor rivaroxaban affected the ADP-induced platelet aggregation (c 20 ± 11, d 21 ± 14, r 18 ± 8 AU*min, p = 0.200). Patients receiving dabigatran or rivaroxaban in combination with ASA (n = 42; 21 ASA only, 21 ASA + clopidogrel) showed no significant differences of the AA-induced

  7. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma.

    PubMed

    Turner, Joel G; Kashyap, Trinayan; Dawson, Jana L; Gomez, Juan; Bauer, Alexis A; Grant, Steven; Dai, Yun; Shain, Kenneth H; Meads, Mark; Landesman, Yosef; Sullivan, Daniel M

    2016-11-29

    Acquired proteasome-inhibitor (PI) resistance is a major obstacle in the treatment of multiple myeloma (MM). We investigated whether the clinical XPO1-inhibitor selinexor, when combined with bortezomib or carfilzomib, could overcome acquired resistance in MM. PI-resistant myeloma cell lines both in vitro and in vivo and refractory myeloma patient biopsies were treated with selinexor/bortezomib or carfilzomib and assayed for apoptosis. Mechanistic studies included NFκB pathway protein expression assays, immunofluorescence microscopy, ImageStream flow-cytometry, and proximity-ligation assays. IκBα knockdown and NFκB activity were measured in selinexor/bortezomib-treated MM cells. We found that selinexor restored sensitivity of PI-resistant MM to bortezomib and carfilzomib. Selinexor/bortezomib treatment inhibited PI-resistant MM tumor growth and increased survival in mice. Myeloma cells from PI-refractory MM patients were sensitized by selinexor to bortezomib and carfilzomib without affecting non-myeloma cells. Immunofluorescence microscopy, Western blot, and ImageStream analyses of MM cells showed increases in total and nuclear IκBα by selinexor/bortezomib. Proximity ligation found increased IκBα-NFκB complexes in treated MM cells. IκBα knockdown abrogated selinexor/bortezomib-induced cytotoxicity in MM cells. Selinexor/bortezomib treatment decreased NFκB transcriptional activity. Selinexor, when used with bortezomib or carfilzomib, has the potential to overcome PI drug resistance in MM. Sensitization may be due to inactivation of the NFκB pathway by IκBα.

  8. Chicago sky blue 6B, a vesicular glutamate transporters inhibitor, attenuates methamphetamine-induced hyperactivity and behavioral sensitization in mice.

    PubMed

    He, Zongsheng; Yan, Lingdi; Yong, Zheng; Dong, Zhaoqi; Dong, Huajin; Gong, Zehui

    2013-02-15

    Several lines of evidence demonstrate that glutamatergic system plays an important role in drug addiction. The present study was designed to investigate the effects of Chicago sky blue 6B (CSB6B), a vesicular glutamate transporters (VGLUTs) inhibitor, on methamphetamine (METH)-induced behaviors in mice. Mice were induced behavioral sensitization to METH by subcutaneous injection of 1mg/kg METH once daily for 7 days and then challenged with 1mg/kg METH in 14th day. Intracerebroventricular administration of CSB6B (7.5μg) 2.5h prior to METH was to observe its effects on METH -induced behavioral sensitization. Our results showed that the expressions of behavioral sensitization were significantly attenuated by intracerebroventricular administration of CSB6B 2.5h prior to METH either during the development period or before methamphetamine challenge in mice, while CSB6B itself had no effect on locomotor activity. Meanwhile, pretreatment of CSB6B also attenuated hyperactivity caused by a single injection of METH in mice. These results demonstrated that CSB6B, a VGLUTs inhibitor, attenuated acute METH-induced hyperactivity and chronic METH-induced behavioral sensitization, which indicated that VGLUTs were involved in the effect of chronic METH-induced behavioral sensitization and may be a new target against the addiction of METH.

  9. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    SciTech Connect

    Park, So Jung; Park, Young Jun; Shin, Ji Hyun; Kim, Eun Sung; Hwang, Jung Jin; Jin, Dong-Hoon; Kim, Jin Cheon; Cho, Dong-Hyung

    2011-05-13

    Highlights: {yields} We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. {yields} Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. {yields} Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. {yields} Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  10. EGF Induced RET Inhibitor Resistance in CCDC6-RET Lung Cancer Cells

    PubMed Central

    Sung, Ji Hea; Moon, Sung Ung; Kim, Han-Soo; Kim, Jin Won; Lee, Jong Seok

    2017-01-01

    Purpose Rearrangement of the proto-oncogene rearranged during transfection (RET) has been newly identified potential driver mutation in lung adenocarcinoma. Clinically available tyrosine kinase inhibitors (TKIs) target RET kinase activity, which suggests that patients with RET fusion genes may be treatable with a kinase inhibitor. Nevertheless, the mechanisms of resistance to these agents remain largely unknown. Thus, the present study aimed to determine whether epidermal growth factor